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Abstract
The combination of the suffix array and the LCP-array can be used to solve many string processing
problems efficiently. We review some of the most important sequential LCP-array construction
algorithms in random access memory.
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1 Introduction

In a landmark paper, Weiner [43] presented the concept of suffix trees and devised the first
linear-time construction algorithm. For several decades, the suffix tree was the data structure
in stringology, because it can be used to efficiently solve a “myriad” of string processing
problems [4]. For instance, with the help of the suffix tree, exact pattern matching can be
done in O(m) time (assuming a constant alphabet size), where m is the length of the pattern
searched for. It should be pointed out that the search time is independent of the text length
n.

The suffix array was devised by Manber and Myers [30] and independently by Gonnet
et al. [19] under the name PAT array. Ten years later, it was shown independently and
contemporaneously by Kärkkäinen and Sanders [23], Kim et al. [26], Ko and Aluru [27], and
Hon et al. [20] that a direct linear-time construction of the suffix array is possible.

The LCP-array first appeared in the seminal paper of Manber and Myers [30], where it
was called Hgt array. The authors presented an O(n logn) time LCP-array construction
algorithm (LACA for short) and showed that the augmentation of classical binary search
with the LCP-array enables exact pattern matching on the suffix array in O(m + logn)
time. The first linear-time LACA was devised by Kasai et al. [25]. They also demonstrated
the importance of the LCP-array by presenting a linear-time algorithm that simulates the
bottom-up traversal of a suffix tree with a suffix array and the LCP-array. Their work
was taken one step further by Abouelhoda et al. [1], who showed that suffix trees can be
completely replaced with enhanced suffix arrays. An enhanced suffix array is the combination
of the suffix array with augmenting data structures, which depend on the application at
hand. For example, exact pattern matching can be done in O(m) time with the suffix array,
the LCP-array, and constant-time range minimum queries [16] on the LCP-array [1] – again
assuming constant alphabet size; for non-constant alphabet sizes σ one can extend this
idea to achieve O(m log σ) running time [15]. Algorithms on enhanced suffix arrays are not
only more space efficient than those on suffix trees, but they are also faster and easier to
implement. Since the LCP-array is of utmost importance in this context, it has been studied
extensively.
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Table 1 Suffix array, LCP-array, and BWT of the text S = mississippi$.

k SA LCP BWT SSA[k]
1 12 ⊥ i $
2 11 0 p i$
3 8 1 s ippi$
4 5 1 s issippi$
5 2 4 m ississippi$
6 1 0 $ mississippi$
7 10 0 p pi$
8 9 1 i ppi$
9 7 0 s sippi$

10 4 2 s sissippi$
11 6 1 i ssippi$
12 3 3 i ssissippi$

2 Preliminaries

Let S be a text of length n on an ordered alphabet Σ of constant size σ. We assume that
S has the sentinel $ ∈ Σ at the end (and nowhere else), which is smaller than any other
character. For 1 ≤ i ≤ n, S[i] denotes the character at position i in S. For i ≤ j, S[i, j]
denotes the substring of S starting at position i and ending at position j. Furthermore, Si

denotes the i-th suffix S[i, n] of S.
The suffix array SA of the text S is an array of integers in the range 1 to n specifying the

lexicographic ordering of the n suffixes of S, that is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n].
The suffix array can be built in linear time; we refer to the overview article of [37] for suffix
array construction algorithms and to [35] for recent developments.

The inverse suffix array ISA is an array of size n such that for any i with 1 ≤ i ≤ n the
equality ISA[SA[i]] = i holds. Obviously, it takes only linear time to invert the suffix array.

The LCP-array contains the lengths of longest common prefixes between consecutive
suffixes in SA. Formally, the LCP-array is an array such that LCP[1] = ⊥ and LCP[i] =
lcp(SSA[i−1], SSA[i]) for 2 ≤ i ≤ n, where lcp(u, v) denotes the length of the longest common
prefix between two strings u and v. Here the value LCP[1] is undefined, but – depending on
the application – it may make sense to define it as 0 or −1. Table 1 shows the LCP-array of
the string S = mississippi$.

The Burrows-Wheeler transform [9] converts S into the string BWT[1, n] defined by
BWT[i] = S[SA[i]− 1] for all i with SA[i] ̸= 1 and BWT[i] = $ otherwise. Given the suffix
array, this transformation takes only linear time.

The ψ-array is an array of size n such that ψ[1] = ISA[1] and ψ[i] = ISA[SA[i] + 1] for all
i with 2 ≤ i ≤ n. That is, ψ[i] is the index at which the suffix SSA[i]+1 occurs in the suffix
array. The ψ-array is the inverse of the LF -array, which can easily be computed in linear
time from the BWT; see e.g. [34, Section 7.2.2].

The C-array is an array of size σ. For c ∈ Σ, the entry C[c] is defined as follows: if we
consider all characters in Σ that are smaller than c, then C[c] is the overall number of their
occurrences in S.
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Algorithm 1 This procedure computes the LCP-array by Kasai et al.’s algorithm [25].

Input: S, SA, ISA
1 ℓ← 0
2 for i← 1 to n do
3 j ← ISA[i]
4 if j > 1 then
5 k ← SA[j − 1] /* Sk precedes Si in SA */

6 while S[k + ℓ] = S[i+ ℓ] do
7 ℓ← ℓ+ 1
8 LCP[j]← ℓ

9 if ℓ > 0 then
10 ℓ← ℓ− 1

3 The First Linear Time LACA

We first present Kasai et al.’s LACA [25], which computes the LCP-array from the string
S, its suffix array SA, and its inverse suffix array ISA; see Algorithm 1. It starts with
the longest suffix Si = S1 of S (so i = 1), computes j = ISA[i] and then LCP[j] by a
left-to-right comparison of the characters in Si = SSA[j] and its immediately preceding
suffix Sk = SSA[j−1] in the suffix array. The same is done for the other suffixes Si of S
by incrementing i successively. As we shall see, some character comparisons can safely be
skipped.

In our example, Algorithm 1 first compares S1 = mississippi$ with S2 = ississippi$ and
sets LCP[j] = LCP[6] = 0. In the next iteration of the for-loop, it compares S2 = ississippi$
with S5 = issippi$ and sets LCP[j] = LCP[5] = 4. In the following iterations of the for-loop the
underlined characters in S = mississippi$ will be skipped in further comparisons of adjacent
suffixes. For example, in the third iteration, Algorithm 1 must compare S3 = ssissippi$ with
S6 = ssippi$ and the first three characters will be skipped in the comparison. To prove the
correctness of Algorithm 1, we must show that if ℓ > 1 characters match in iteration i of the
for-loop, then at least ℓ− 1 characters match in iteration i+ 1. So suppose that the longest
common prefix of Si and its preceding suffix Sk is cω, where c is a character and ω is a string
of length ℓ − 1 ≥ 1. In the next iteration, Algorithm 1 compares Si+1 with its preceding
suffix, which is not necessarily Sk+1 as in the example above. However, since Sk = cωu

is lexicographically smaller than Si = cωv, it follows that Sk+1 = ωu is lexicographically
smaller than Si+1 = ωv. Moreover, all the suffixes in between Sk+1 and Si+1 must share
the prefix ω because the suffixes are ordered lexicographically. In particular, Si+1 and its
preceding suffix have ω as a common prefix. Therefore, ℓ− 1 characters (namely ω) can be
skipped in the comparison of Si+1 and its preceding suffix. If Sk+1 immediately precedes
Si+1 in the suffix array, then we can directly conclude that their longest common prefix is
ω; otherwise further character comparisons are required to determine their longest common
prefix. Obviously, Sk+1 precedes Si+1 if BWT[j′] = BWT[j′ − 1], where j′ = ISA[i+ 1]. This
result is summarized in the next lemma, which will be important later. The first proof of
Lemma 1 can be found in [25]. A value LCP[j] is called reducible if BWT[j] = BWT[j − 1];
otherwise it is called irreducible.

Manzini’s Festschrift
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Algorithm 2 This procedure computes the LCP-array by the algorithm of Kasai et al. [25] with
Manzini’s [31] improvement. Initially the array LCP stores ψ. During the course of computation,
the initial values in the LCP-array are overwritten by the correct values.

Input: S, SA, LCP = ψ

1 j ← LCP[1] /* LCP[1] = ψ[1] = ISA[1] */
2 ℓ← 0
3 for i← 1 to n do
4 next← LCP[j] /* LCP[j] = ψ[j] = ISA[i+ 1] */
5 if j > 1 then
6 k ← SA[j − 1] /* Sk precedes Si in SA */

7 while S[k + ℓ] = S[i+ ℓ] do
8 ℓ← ℓ+ 1
9 LCP[j]← ℓ

10 if ℓ > 0 then
11 ℓ← ℓ− 1
12 j ← next

▶ Lemma 1. Suppose that LCP[j] is reducible, where j = ISA[i]. Then we have LCP[j] =
LCP[ISA[i− 1]]− 1.

It will now be shown that Algorithm 1 constructs the LCP-array in O(n) time. We use
an amortized analysis to show that the while-loop is executed at most 2n times. It is readily
verified that this implies the linear run-time. Each comparison in the while-loop ends with a
mismatch, so there are n− 1 mismatches (redundant character comparisons) in total. If a
position p in S is involved in a match, then this particular occurrence of character S[p] will
be skipped in further suffix comparisons. More precisely, if we have S[k + ℓ] = S[i+ ℓ] in the
while-loop, then p = i+ ℓ will not appear on the right-hand-side of a character comparison
again. So there are at most n matches. To illustrate the argument, the positions in our
example text that are involved in a match are marked by underlining the respective character
in S = mississippi$. Since every position is marked at most once (because it is skipped in
further comparisons), it is clear that the overall number of character comparisons is n− 1
(mismatches) plus the number of underlined characters.

In Algorithm 1, the text S as well as the arrays SA, ISA, and LCP should be randomly
accessible. Under the common assumption that an entry in SA takes 4 bytes, each of the
arrays SA, ISA, and LCP requires 4n bytes. Consequently, for an 8 bit alphabet, Algorithm 1
needs 13n bytes of working memory.

In the context of compressed suffix trees, Mäkinen [29, Proposition 3.2] first showed that
the LCP-array can be constructed with less working space. Manzini [31] observed that the
additional array ISA is superfluous because it is possible to store the required information
about ISA in the LCP-array itself. If the LCP-array initially stores the ψ-array, then the cell
LCP[j] contains the value ISA[i + 1] in iteration i of the for-loop of Algorithm 2. That is,
variable next gets the value ISA[i+ 1] in line 4 and LCP[j] can safely be overwritten in line 9.
The correctness of Algorithm 2 follows directly from this fact. Algorithm 2 requires 9n bytes
of working memory because it needs random access to the text and both input arrays.

Manzini [31] proposed another LACA, which saves even more space by overwriting
the suffix array. This LACA is based on Lemma 1: if LCP[j] is reducible, then one can
immediately set LCP[j]← ℓ because the character comparisons in lines 7-8 of Algorithm 2
are superfluous. It follows as a consequence that in this case the assignment k ← SA[j − 1] is
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i 1 2 3 4 5 6 7 8 9 10 11 12
S[i] m i s s i s s i p p i $
Φ[i] 2 5 6 7 8 4 9 11 10 1 12 0

PLCP[i] 0 4 3 2 1 1 0 1 1 0 0 ⊥

Figure 1 Φ-array and PLCP-array of S = mississippi$; cf. Table 1.

superfluous, too. In other words, the value SA[j − 1] is required only if LCP[j] is irreducible.
In a preprocessing phase, Manzini’s second LACA determines the values in the suffix array
SA that are actually required and stores them in an auxiliary array. The auxiliary array is
then used instead of SA and SA can safely be overwritten. However, this LACA is of limited
value in practice because in most applications the suffix array is needed as well.

4 The Φ-Algorithm

Kärkkäinen, Manzini, and Puglisi [22] proposed a variant of Kasai et al.’s algorithm, which
first computes a permuted LCP-array (the PLCP-array) with the help of the so-called Φ-array
and then derives the LCP-array from the PLCP-array. They called it “Φ-algorithm” because
it uses the Φ-array, which “is in some way symmetric to the ψ array.”

The Φ-array and the PLCP-array, respectively, are defined as follows: For all i with
1 ≤ i ≤ n let

Φ[i] =
{

SA[ISA[i]− 1] if ISA[i] ̸= 1
0 otherwise and PLCP[i] =

{
lcp(Si, SΦ[i]) if Φ[i] ̸= 0
⊥ otherwise

Fig. 1 shows our example. So in the suffix array SA, the suffix Si is immediately preceded
by the suffix SΦ[i] unless Φ[i] = 0. Note that we have Φ[n] = 0 because we assume that S is
terminated by $. For j ̸= 1, we have

PLCP[SA[j]] = lcp(SSA[j], SΦ[SA[j]]) = lcp(SSA[j], SSA[j−1]) = LCP[j] (1)

In case j = 1, Equation (1) holds also true: LCP[1] = ⊥ and PLCP[SA[1]] = PLCP[n] = ⊥
because Φ[n] = 0. Thus, the PLCP-array is a permutation of the LCP-array. The difference
between the two arrays is that the lcp-values occur in text order (position order) in the
PLCP-array, whereas they occur in suffix array order (lexicographic order) in the LCP-array.
The pseudocode of the Φ-algorithm is shown in Algorithm 3. Its properties (correctness,
linear run-time) can be shown as in the analysis of Algorithm 1.

Experimental comparisons of Algorithm 1 and the Φ-algorithm can be found in [22, 18].
The bottom line is that the Φ-algorithm is faster because of better memory locality: it
merely needs sequential access to the Φ-array and the PLCP-array in its second for-loop.
Consequently, these arrays can be streamed and the number of possible cache misses is
limited to 3n: n in the computation of the Φ-array, n in line 6,2 and n in the conversion of
the PLCP-array into the LCP-array (in virtually all applications lcp-values are required to
be in suffix array order). By contrast, there can be up to 4n cache misses in Algorithm 1
(including the computation of ISA).

2 Remark: If PLCP[i] is reducible, then Φ[i] = Φ[i− 1] + 1 and hence S[Φ[i]] is cached.

Manzini’s Festschrift
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Algorithm 3 The Φ-algorithm of Kärkkäinen et al. [22].

Input: S, SA
1 for i← 2 to n do
2 Φ[SA[i]]← SA[i− 1]
3 ℓ← 0
4 for i← 1 to n− 1 do
5 k ← Φ[i] /* Sk precedes Si in SA */
6 while S[k + ℓ] = S[i+ ℓ] do
7 ℓ← ℓ+ 1
8 PLCP[i]← ℓ

9 if ℓ > 0 then
10 ℓ← ℓ− 1

11 for i← 2 to n do
12 LCP[i]← PLCP[SA[i]]

If we assume that the arrays SA, Φ, PLCP, and LCP are kept in working memory, then
Algorithm 3 requires 17n bytes RAM. However, the algorithm merely needs random access
to the Φ-array in the first for-loop, to the text in the second for-loop, and to the PLCP-array
in the third for-loop. All other arrays can be streamed from or to disk. Thus, 9n bytes of
RAM are sufficient.

Kärkkäinen et al. [22] presented another algorithm for computing the PLCP-array based
on irreducible PLCP-values. We call a value PLCP[i] reducible if S[i − 1] = S[Φ[i] − 1];
otherwise it is called irreducible. The proof of the next lemma is similar to that of Lemma 1.

▶ Lemma 2. If PLCP[i] is reducible, then PLCP[i] = PLCP[i− 1]− 1.

The above-mentioned algorithm first determines all irreducible PLCP-values in a brute-force
manner: each PLCP-value is computed by comparing the respective suffixes from the very
beginning. Afterwards, it uses Lemma 2 to compute the remaining reducible PLCP-values.
The authors showed that the sum of all irreducible PLCP-values is at most 2n logn. Hence,
the overall run-time is O(n logn). An experimental comparison of this algorithm and the
Φ-algorithm showed that the Φ-algorithm is faster in practice; see [22].

5 Computing the LCP-Array along with SA

The LCP-array can also be computed while sorting the suffixes lexicographically, which we
show here for two well-known suffix array construction algorithms DC3 [24] and SAIS [33].
The adaptions to the LCP-array computation were described in the original article for DC3,
and by Bingmann et al. for SAIS [8]. Intuitively, it seems clear that LCP-array computation
during suffix array construction should be possible, as any suffix sorting algorithm must,
at least implicitly, determine the lcp-values between lexicographically adjacent suffixes to
determine their order, for otherwise it could not make the right decisions on the order of
suffixes.

5.1 A Unified Perspective
We first look at the common features that both algorithms share, which form the basis for
the LCP-computation. We assume knowledge about DC3 and SAIS, as a full exposition of
those algorithms would take too much space in this article. We also leave out some details of
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LCP-array construction and refer the readers to the original articles at various points; the
focus here is more on a common exposition of how the computations of lcp-values can be
woven into suffix sorting algorithms.

Both DC3 and SAIS are recursive algorithms, and for sorting all the suffixes of a text
S[1, n] they first sort a subset of n′ ≤ n/Ω(1) suffixes recursively, stored in an array A′[1, n′]
such that SA′[i] < SA′[i+1] for all 1 ≤ i < n′. From A′, they use different mechanisms
to compute the full suffix array SA[1, n]. In DC3, A′ contains all suffixes at positions
i ̸≡ 0 (mod 3) (see top of Fig. 2), whereas in SAIS, A′ contains those positions i with
Si−1 > Si < Si+1 (called LMS-suffixes for leftmost smallest suffixes; see top of Fig. 3 with
LMS-suffixes indicated by a star). In both algorithms, we talk about “c-buckets” for an
arbitrary character c ∈ Σ, by which we mean the subarray consisting of the suffixes starting
with c ∈ Σ as in counting or bucket sort – in the figures those buckets are depicted by dotted
lines.

By induction, we can assume that we also get the LCP-array H ′ for all the lexicographically
adjacent suffixes in A′ from the recursion: H ′[i] = lcp(SA′[i], SA′[i−1]). The details of how
to compute H ′ differ between the two algorithms and are a bit tedious, but are not the
core of the algorithmic ideas. The reason why this is not trivial is that because A′ has
been computed recursively from the suffix array of a reduced text S′ (each character in S′

representing several characters in S – 3 in DC3 (hence the name), and a non-constant number
in SAIS), the lcp-values need to be scaled to actually represent the number of characters of
shared prefixes in S, and not S′. We assume here that this scaling step has already been
performed – see again Fig. 2 for DC3 and Fig. 3 for SAIS, where, in the latter case, both
arrays A′ and H ′ are already stored in the final arrays SA and LCP, as the algorithm works
in-place (skip the gray values in LCP for this moment, as they will be written in the course
of the algorithm that follows).

Then both SAIS and DC3 compute the suffix array SA from A′, and the algorithms can
be enhanced to compute the full LCP-array from H ′. Both algorithms finally place suffixes
into SA in a left-to-right manner (for SAIS, this happens in actually two passes, the second
one right-to-left but symmetrically). Say the algorithm just wrote SA[x]← i and now needs
to compute the lcp-value h between Si and its lexicographic predecessor Sj at position x− 1
in SA; the result h will have to be stored at LCP[x] ← h. As the values in SA are filled
from left to right, the value SA[x− 1] = j has been set in a previous iteration of this loop.
(In SAIS, this left-to-right filling is per bucket, but the principle remains the same, as only
suffixes in the same c-bucket have an lcp-value > 0.)

The easy case is if both i and j were neighbors in A′; then we know their lcp-values and
we can just copy the lcp-value from H ′. Consider, for example, the placement of suffix i = 5
and j = 13 at positions x = 6 and x− 1 = 5 in Fig. 2: those suffixes are also neighbors in
A′ at positions 4 and 3, respectively, and hence the lcp-value H ′[4] = 9 can be copied to
LCP[6]← 9 (left red arrow). The same situation might occur in SAIS, e.g. in Fig. 3 suffix
i = 9 is placed to the right of j = 6, whose lcp-value of 2 can just be copied from H ′.

The more difficult case is when i and j were not neighbors in A′. Here, the techniques
differ between the algorithms, but they share some common ideas. We first compare the
two characters S[i] and S[j] (if in DC3 i + 1 ≡ 0 (mod 3), we also compare S[i + 1] and
S[j + 1]). If the 1 or 2 compared characters are all the same (otherwise the lcp-value h
has been determined), it is clear that the value h = lcp(Si, Sj) must be one more than
h′, where h′ = lcp(Si+1, Sj+1) (possibly two more than h′′ = lcp(Si+2, Sj+2) in DC3, see
above). Now h′ (or h′′) can be computed by a range minimum query on H ′, which gives
the minimum value between two specified array indices. More formally, the range minimum

Manzini’s Festschrift
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S =
1 2
a b a b

3 4 5 6 7 8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2
a a b a b a a b a a b a b a a b a $

A′ = 22 10 13 5 19 16 8 11 14 1 20 17 4 7 2 A′′ =21 18 3 6 9 12 15
$ a ab b

H ′ = H ′′ =4 90 1 3 6 6 3 8 0 2 5 2 7 1 1 3 0 5 2
RMQ

H′ (4, 6) + 1 = 1 + 1 = 2

SA = 22
$ a

21 18 10 13 5 19 16 8 11 14 1

1 3 6 6 3 8

3 6
b
20 17

0 2

9 12

5

4 15 7 2

70 1 4

RMQ
H′ (6, 8) + 1 = 3 + 1 = 4

4 9 11 8 5 10 2 7

RMQ
H′ (6, 8) + 2 = 3 + 2 = 5

⊥

⊥

⊥

LCP =

Figure 2 Example of LCP-array computation with the DC3 suffix sorting algorithm.

query (RMQ) problem on a general array X[1,m] is to find a data structure such that
later, for two specified indices ℓ, r with 1 ≤ ℓ ≤ r ≤ m, the minimum in X[ℓ, r] can be
returned efficiently, in symbols: rmqX(ℓ, r) = min{X[k] : ℓ ≤ k ≤ r}. For these queries,
linear preprocessing schemes exist that can answer the queries in constant time [16]. Armed
with this tool, in DC3 we can simply compute h′ = rmqH′(A′−1[i + 1] + 1, A′−1[j + 1])
(or h′′ = rmqH′(A′−1[i + 2] + 1, A′−1[j + 2])), where A′−1 is the inverse of A′, defined by
A′[A′−1[p]] = p for all values p actually stored in A′[1, n′] – note that for all the positions p
queried we have p ̸≡ 0 (mod 3); this is also why the distinction between h′ and h′′ has been
made.

For example, in Fig. 2, when writing SA[4] ← 10 to the right of SA[3] = 18, we have
A′−1[11] = 8 and A′−1[19] = 5 and hence compute h′ = rmqH′(6, 8) = 3 and thus finally
write LCP[4] = 3 + 1 (green color). When writing SA[17]← 9 to the right of SA[16] = 17, we
compute h′′ = rmqH′(6, 8) = 3 and thus finally write LCP[17] = 3 + 2 (blue color).

The justification of this approach is the following: Let Y [1,m] be an arbitrary array storing
strings in lexicographically sorted order, and let X[2,m] be an array such that X[i] stores the
lcp-value between strings Y [i] and Y [i− 1] for all 2 ≤ i ≤ m. Then due to the lexicographic
sortedness of Y , the lcp-value between two arbitrary strings Y [z] and Y [y] is the minimum
value from X[z+1], . . . , X[y] (assuming z < y), in symbols: lcp(Y [z], Y [y]) = rmqX(z+1, y).
In our case, we exploit this fact with Y [i] = SA′[i] and X[i] = H ′[i].

In SAIS, the situation is different, as there is (most likely) no constant K such that
i+K and j +K are both in A′. Instead, we make use of the fact that (in the left-to-right
scan) both suffixes Si+1 and Sj+1 are lexicographically smaller than Si and Sj , respectively,
and are thus already present in SA (say at positions z with SA[z] = i + 1 and y < z with
SA[y] = j + 1), including the lcp-values with their respective lexicographic predecessors
and all lcp-values in between (the entire subarray LCP[y, z] has already been written). So
h′ = rmqLCP(y + 1, z) can be easily computed in the same manner as in DC3. Look at the
computation of the values SA[16] and LCP[16] in Fig. 3 (orange color): We write SA[16]← 11
when the scanning of SA reaches position z = 11 with SA[11] = 12. As j = SA[15] = 1, which
was written when at position y = 8, we need to set LCP[16] to the lcp-value of suffix S11
and its lexicographic predecessor S1. The values LCP[8, 11] are all known (gray values in H

below the b-bucket); hence we can perform an RMQ from positions 9 to 11 in LCP, which
gives a 2. We thus set LCP[16]← 2 + 1 = 3.

Commenting on the differences between the RMQs in DC3 and SAIS, we can say that
in DC3 the RMQs are performed on the static array H ′ (for which optimal preprocessing
schemes exist), whereas for SAIS the array LCP on which RMQs are performed grows
semi-dynamically from the left to the right. We comment below how this can be done
efficiently.
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Figure 3 Example of LCP-array computation with the SAIS suffix sorting algorithm. Note that
this only shows the left-to-right scan – in a subsequent right-to-left scan the missing suffixes 10 and
4 including the affected lcp-values would also be considered; the final result is shown at the bottom.

5.2 DC3

The above description of DC3 skipped one important detail of its inner workings: when it
returns from the recursion, before it finally computes the full suffix array SA, it first needs to
compute an array A′′ containing the lexicographic order of the suffixes starting at positions
i ≡ 0 (mod 3). This is done by a left-to-right scan through A′: for z = 1, . . . , n′ ≈ 2n

3 in
ascending order, if A′[z] = i+ 1 ≡ 1 (mod 3), place i to the first free place p in A′′’s c-bucket
for c = S[i]. (By “first free position” we mean the first position not already written in that
bucket, as in classical counting- or bucket-sort algorithms.)

Having computed A′′ from A′, we now explain how to compute array H ′′ storing the lcp-
values of lexicographically adjacent suffixes in A′′. When placing i to A′′[p], let A′′[p− 1] = j

be its immediate predecessor in A′′ in the c-bucket (first suffixes in a bucket are simple
as their lcp-values are 0). Since both Si+1 and Sj+1 are suffixes in A′, we can compute
H ′′[p] = 1 + h′′, where h′′ = rmqH′(A′−1[j] + 1, A′−1[i]). Note that this is another usage of
the RMQ data structure on H ′ that needs to be precomputed anyway for the later steps.

For example, in Fig. 2, when we write the final value A′′[7]← 15 next to A′′[6] = 12, we
have A′−1[13] = 3 and A′−1[16] = 6, and hence compute H ′′[7] as rmqH′(4, 6)+1 = 1+1 = 2
(orange color).

The rest of the algorithm works exactly as explained above – with the addition that if
two suffixes from A′′ are placed adjacently into SA, we can look up their lcp-value directly in
H ′′. In more detail, the final computation of SA can be viewed as merging the arrays A′ and
A′′, as they are both sorted lexicographically and, together, contain all the suffixes from S.
Hence, if in this merging the value i is written to SA[x] and we already know SA[x− 1] = j

with both i, j ≡ 0 (mod 3), their lcp-value can be directly retrieved from H ′′ and written to
LCP, as i and j are neighbors in A′′. See Fig. 2 for an example, where the value SA[18] = 12
is written right after SA[17] = 9, both of which come from A′′ at adjacent positions 5 and 6
with H ′′[6] = 5 (right red arrow). We note here that neither A′′ nor H ′′ need be materialized,
but can be computed on the fly during the merging process.
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5.3 SAIS

We now give more details about the LCP-array computation during the SAIS-algorithm. Let
us first consider the scaling of the lcp-values to compute H ′. As a reminder, the suffixes
in A′ (those positions i with Si−1 > Si < Si+1) are called LMS-suffixes, including the
sentinel character $ at the end. The recursion works by computing the suffix array of a
reduced text with meta-characters ranging from one LMS-suffix to the next. In our example,
the reduced text is T ′ = [aaba][abba][abcba][aba$][$] (with square brackets indicating the
meta-characters), and the recursion stops immediately with A′ = [16, 3, 6, 9, 13], as all
meta-characters are different. Now in order to see the issue with LCP-computation, look
at the suffixes S6 and S9 from A′: in A′, their order was determined from the order of the
meta-characters S[6, 9] = [abba] and S[9, 13] = [abcba], where the first one is smaller, and
the lcp-value of the suffixes – in terms of meta-characers – is 0. But the meta-characters
themselves share a common prefix, ab in this case. Hence, the correct lcp-value for suffixes S6
and S9 is 2. Here, we do not give the full details of how the array H ′ is actually computed
correctly, but refer the reader to [8, Lemma 3.1] for the correct way to do it, and to [14, Sect.
3.3] for the way how to compute this efficiently.

For what follows, we also need to classify the other suffixes: if Si > Si+1, then Si is
called L-suffix (for “larger”); if Si−1 < Si < Si+1, then Si is called S-suffix (for “smaller”).
The left-to-right pass (as shown in the example in Fig. 3) actually sorts the L-suffixes from
the LMS-suffixes (whose order has been computed recursively), whereas the subsequent
right-to-left pass sorts the S-suffixes into the already sorted LMS-suffixes. In a c-bucket in SA
for a character c ∈ Σ, all the L-suffixes come first, followed by a mix of S- and LMS-suffixes.
E.g., at the bottom of Fig. 3 one can see that in the a-bucket the only L-suffix S15 comes
first, followed by the LMS-suffix S3, an S-suffix S4, followed by three more LMS-suffixes S3,
S9, S13 in this order.

A further detail is the computation of the lcp-value between the last L-suffix in a bucket
and its lexicographic successor (which is either S or LMS). In Fig. 3, this happens in the
a-bucket, where the L-suffix S15 is placed right before the LMS-suffix S3, which had an
lcp-value of 0 in H ′ (stored at LCP[3]) because it was the lexicographically first suffix starting
with an a among those in A′. However, with the placement of SA[2]← 15, the value LCP[3]
is not 0 anymore, but needs to be updated to 1 (second gray arrow from the left). It can
be shown [8, Lemma 3.2] that in the c-bucket only the character c, possibly repeated many
times, can contribute to the lcp-value of those suffixes. Hence, a naive LCP-computation per
bucket suffices to compute these lcp-values, as any character from S can contribute at most
once to this naive computation (in its corresponding bucket).

The last issue is that the RMQs needed for LCP-computation are performed on an
array LCP where values are constantly being written to, no data structures are known for
constant-time range minimum queries for dynamic arrays. However, the updates occur in a
regular manner, namely from left to right per bucket in the left-to-right scan (and again,
symmetrically from right to left in the right-to-left scan). We sketch here the solution for
such semi-dynamic RMQs [8, Sect. 3.2] based on LRM-trees [5, Def. 1] – also known under
the slightly misleading name 2d-Min-Heaps [16, Def. 5.3]. We maintain an LRM-tree Tc

for each bucket c, which initially contains only the LMS-suffixes of that bucket with their
respective lcp-values (as computed in the recursive call). When a new L-suffix along with
lcp-value h is written into its c-bucket, we climb up the rightmost path of Tc until we find
an element x whose corresponding LCP-entry is strictly smaller than h (Tc has an artificial
root holding lcp-value −∞, which guarantees that such an element always exists). The new
element is then added as x’s new rightmost leaf; an easy amortized argument shows that
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Table 2 BWT of S = mississippi$ and its partially filled LCP-array.

i LCP BWT SSA[i]
1 ⊥ i $
2 0 //⊥ p i$
3 ⊥ s ippi$
4 ⊥ s issippi$
5 ⊥ m ississippi$
6 0 //⊥ $ mississippi$
7 0 //⊥ p pi$
8 ⊥ i ppi$
9 0 //⊥ s sippi$

10 ⊥ s sissippi$
11 ⊥ i ssippi$
12 ⊥ i ssissippi$
13 −1

this results in overall linear time. Tc is stored with a data structure for constant-time lowest
common ancestor queries (LCAs) that supports dynamic leaf additions in O(1) worst-case
time [10]. Then the minimum in any range in the processed portion of the c-bucket can be
found in O(1) time [16, Lemma 5.5] by LCA-queries on Tc.

Interestingly, this solution for RMQs on semi-dynamic arrays is the only scenario known
to the authors where LRM-trees are actually advantageous over the better known Cartesian
Trees [42, Sect. 3.1], as only in LRM-trees appending elements to the array results in pure
leaf additions to the tree. In a Cartesian Tree, appending a single new element might result
in more complicated relinking operations on the tree topology (be it in constant time), and
no data structure for constant-time LCAs is known in fully dynamic trees. A final caveat is
that one would probably not want to implement this approach due to the complicated data
structure for dynamic LCAs – see [8, Sect. 3.2] for alternatives that work better in practice.

6 Computing the LCP-array from the BWT

Next, we will present a LACA that is based on the BWT of S [7]. We start with some
prerequisites.

Let ω be a substring of S. The ω-interval is the interval [i, j] such that ω is a common
prefix of SSA[i], SSA[i+1], . . . , SSA[j], but neither of SSA[i−1] nor of SSA[j+1]. For example, in
Table 2 one can see that the miss-interval is [6, 6], while the iss-interval is [4, 5]. Since the
empty string ε is a common prefix of all suffixes of S, the ε-interval is [1, n]. The LACA in
Algorithm 4 is based on the procedure getIntervals, which has the following functionality:
For an ω-interval [i, j], the call getIntervals([i, j]) returns the list of all cω-intervals, where
c ∈ Σ and cω is a substring of S. In our example, getIntervals applied to the ε-interval
[1, 12] generates the $-interval [1, 1], the i-interval [2, 5], the m-interval [6, 6], the p-interval
[7, 8] and the s-interval [9, 12]. Beller et al. [7] describe an implementation of the procedure
getIntervals that is based on the wavelet tree of the BWT of S. A call to getIntervals([i, j])
takes O(k log σ) time if it returns a list with k intervals (so each interval can be generated in
O(log σ) time).
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Algorithm 4 Computation of the LCP-array based on the BWT [7].

Input: wavelet tree of the BWT
1 initialize the array LCP[1, n+ 1] by LCP[i]← ⊥ for all i
2 ℓ← −1
3 initialize an empty queue Q
4 enqueue(Q, [1, n]) /* add the ε-interval to Q */
5 size← 1 /* initial size of Q */
6 while Q is not empty do
7 if size = 0 then
8 ℓ← ℓ+ 1
9 size← |Q| /* current size of Q */

10 [lb, rb]← dequeue(Q)
11 size← size− 1
12 if LCP[rb+ 1] = ⊥ then
13 LCP[rb+ 1]← ℓ /* case 1 */
14 list← getIntervals([lb, rb])
15 foreach [i, j] in list do
16 enqueue(Q, [i, j])

17 else
18 nothing to do /* case 2 */

Algorithm 4 shows how the LCP-array of a string S can be obtained solely based on the
procedure getIntervals. The algorithm maintains a queue Q, which initially contains the
ε-interval [1, n]. Moreover, the variable ℓ stores the current lcp-value (initially, ℓ = −1) and
size memorizes how many elements there are in Q that correspond to the current lcp-value
(initially, size = 1). Algorithm 4 computes lcp-values in increasing order (first the artificial
entry LCP[n+ 1] = −1, then the 0 entries, and so on) as follows: whenever it dequeues an
element from Q, say the ω-interval [lb, rb] where |ω| = ℓ+ 1, it tests whether LCP[rb+ 1] = ⊥.
If so, it assigns ℓ to LCP[rb + 1], generates all non-empty cω-intervals (where c ∈ Σ) and
adds them to (the back of) Q. Otherwise, it does nothing.

Let us illustrate the algorithm by computing the artificial −1 entry and all 0 entries
in the LCP-array of our example in Table 2. Initially, ℓ = −1 and the queue Q contains
the ε-interval [1, 12]. Consequently, the first interval that is pulled from the queue is the
ε-interval [1, 12] and size is decreased by one. Since LCP[12 + 1] = ⊥, case 1 in Algorithm
4 applies. Thus, LCP[13] is set to ℓ = −1 and getIntervals([1, 12]) generates the $-interval
[1, 1], the i-interval [2, 5], the m-interval [6, 6], the p-interval [7, 8] and the s-interval [9, 12].
These intervals are put into the queue Q. In the second iteration of the while-loop, we have
size = 0. Therefore, ℓ = −1 is increased by one and the variable size gets the new value |Q|.
At that point, the size of Q is 5; so five intervals correspond to the new lcp-value ℓ = 0. The
second interval that is pulled from the queue is the $-interval [1, 1] and size is decreased by
one. Since LCP[1+1] = ⊥, case 1 in Algorithm 4 applies. Thus, LCP[2] is set to ℓ = 0 and the
i$-interval [2, 2], which is the only interval in the list returned by getIntervals([1, 1]), is added
to the queue. Next, the i-interval [2, 5] is dequeued (and size is decreased by one). Again,
case 1 applies because LCP[5 + 1] = ⊥. So LCP[6] is set to ℓ = 0, getIntervals([2, 5]) returns
the list [[6, 6], [7, 7], [9, 10]], and the intervals in the list are added to the queue Q. When the
m-interval [6, 6] is dequeued, size is decreased by one, LCP[7] is set to ℓ = 0, but no new
interval is added to the queue (observe that getIntervals does not generate the $m-interval
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because $m is not a substring of S). Then the p-interval is dequeued, size is decreased by
one, LCP[9] is set to 0, and the intervals [3, 3] and [8, 8] (the ip- and the pp-interval) are
enqueued. Finally, the s-interval [9, 12] is pulled from the queue. Again, size is decreased by
one; it now has the value 0. Because LCP[12 + 1] = −1, case 2 in Algorithm 4 applies. In the
next iteration of the while-loop, ℓ is increased by one and size is set to the current size 6 of
Q. At that point in time, the six elements in Q are the following intervals that correspond
to the lcp-value ℓ = 1:

[2, 2]i$, [6, 6]mi, [7, 7]pi, [9, 10]si, [3, 3]ip, [8, 8]pp

where the notation [lb, rb]ω indicates that the interval [lb, rb] is the ω-interval. The reader is
invited to compute all 1 entries in the LCP-array by executing the algorithm by hand.

▶ Theorem 3. Algorithm 4 correctly computes the LCP-array.

Proof. We proceed by induction on ℓ. After the first iteration of the while-loop (which
leads to the artificial entry LCP[n + 1] = −1), we have ℓ = 0 and the queue Q contains
the c-interval [lb, rb] for every character c = Σ[k], where lb = C[c] + 1 and rb = C[d] with
d = Σ[k + 1]. The algorithm sets LCP[rb+ 1] = 0 unless rb = n. This is certainly correct
because the suffix SSA[rb] starts with the character c and the suffix SSA[rb+1] starts with the
character d. Clearly, the LCP-array contains all entries with value 0. Let ℓ > 0. By the
inductive hypothesis, we may assume that Algorithm 4 has correctly computed all lcp-values
< ℓ. Immediately after the value of ℓ was incremented in line 8 of Algorithm 4, the queue Q
solely contains intervals that correspond to the lcp-value ℓ (i.e., maximal intervals in which
the suffixes share a common prefix of length ℓ+ 1). Let the ωa-interval [lb, rb] be in Q, where
|ω| = ℓ and a ∈ Σ. If LCP[rb + 1] = ⊥, then we know from the induction hypothesis that
LCP[rb+ 1] ≥ ℓ, i.e., ω is a common prefix of the suffixes SSA[rb] and SSA[rb+1]. On the other
hand, ωa is a prefix of SSA[rb] but not of SSA[rb+1]. Consequently, ω is the longest common
prefix of SSA[rb] and SSA[rb+1]. Hence Algorithm 4 assigns the correct value ℓ to LCP[rb+ 1].

We still have to prove that all entries of the LCP-array with value ℓ are really set. So
let k, 0 ≤ k < n, be an index with LCP[k + 1] = ℓ. Since ℓ > 0, the longest common prefix
of SSA[k] and SSA[k+1] can be written as cω, where c ∈ Σ, ω ∈ Σ∗, and |ω| = ℓ− 1. Let cωa
be the length ℓ + 1 prefix of SSA[k] and cωd be the length ℓ + 1 prefix of SSA[k+1], where
a ̸= d. Because ωa is a prefix of SSA[k]+1 and ωd is a prefix of SSA[k+1]+1, it follows that ω
is the longest common prefix of SSA[k]+1 and SSA[k+1]+1. Let [i, j] be the ω-interval, p be
the index with SA[p] = SA[k] + 1, and q be the index with SA[q] = SA[k + 1] + 1. Clearly,
i ≤ p < q ≤ j. Let t, p < t ≤ q, be the smallest index at which the corresponding suffix does
not start with ωa; see Fig. 4. Consequently, LCP[t] = |ω| = ℓ− 1. According to the inductive
hypothesis, Algorithm 4 assigns the value ℓ− 1 to LCP[t]. Therefore, getIntervals is called
with the ωa-interval [s, t− 1] for some s ≤ t. Since ωa is a prefix of SSA[p] and BWT[p] = c, it
follows that the cωa-interval, say [lb, rb], is not empty. Moreover, rb = k because BWT[r] ̸= c

for all p < r < q. Thus, [lb, k] is in the list returned by getIntervals([s, t− 1]). Hence it is
added to the queue Q. At some point in time, [lb, k] will be removed from Q and LCP[k + 1]
will be set to ℓ. ◀

▶ Theorem 4. Algorithm 4 has a worst-case time complexity of O(n log σ).

Proof. We use an amortized analysis to prove that each of the cases 1 and 2 can occur at
most n times. Case 1 occurs as often as an entry of the LCP-array is filled, and this happens
exactly n times. It remains for us to analyze how often case 2 can occur. We claim that
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i LCP[i] BWT[i] SSA[i]

...
...

...
...

p c ωa. . .
... ωa. . .
t ℓ− 1 ωb. . .
...
q c ωd. . .
...

...
...

...
k cωa. . .

k + 1 ℓ cωd. . .
...

...
...

...

Figure 4 Correctness of Algorithm 4.

for a fixed position j, 1 ≤ j ≤ n, there is at most one substring ω = S[i, j] ending at j for
which the ω-interval [lb, rb] belongs to case 2. If i is the largest position with ω = S[i, j]
such that the ω-interval [lb, rb] belongs to case 2, then none of the left-extensions of ω is
generated. More precisely, none of the ω′-intervals, where ω′ = S[i′, j] with 1 ≤ i′ < i, will
be enqueued. This proves the claim. As there are only n possibilities for j, it follows that
case 2 occurs at most n times. In summary, the procedure getIntervals can create at most 2n
intervals because every interval belongs to exactly one case. Each interval can be generated
in O(log σ) time, so the run-time of Algorithm 4 is O(n log σ). ◀

It is shown in [7] that Algorithm 4 can be implemented in such a way that it needs only
4n bits for the storage of the intervals in the queue. Furthermore, n log σ + o(n log σ) bits
are required for the wavelet tree and 4n bytes are needed for the LCP-array itself. Under the
assumption that log σ = 8, the algorithm requires 5.5n bytes plus o(n) bits of RAM in total.

In essence, Algorithm 4 enumerates all substring-intervals in a breadth-first manner and
Beller et al. [7] demonstrated how this can be done space efficiently. Belazzougui [6] showed
that the enumeration can also be done space-efficiently in a depth-first manner. Prezza
and Rosone [36] analyzed the space consumption of the two alternatives and came to the
conclusion that Beller et al.’s algorithm is more space-efficient on large alphabets whereas
Belazzougui’s algorithm is more space-efficient on small alphabets. Prezza and Rosone
designed an algorithm which is the combination of the two alternatives: if the alphabet
size σ is larger than

√
n

log2 n
, they apply the algorithm of Beller et al. and otherwise they

use Belazzougui’s algorithm to compute the LCP-array. The resulting algorithm fills the
LCP-array in O(n log σ) time, using only o(n log σ) bits of working space on top of the BWT
and the LCP-array [36, Theorem 3].

7 Final Remarks

We have only scratched the surface of LCP-array construction and reviewed some classic
algorithms, but we did not cover results on the efficient storage of lcp-values, such as sampled
[41] or compressed [13, 39] LCP-arrays. There are also variants of LCP-arrays, such as for
labeled graphs [3], spectra [2], or Wheeler DFAs [11], or with mismatches [32], which were all
not covered here. We also did not look at more advanced models of computation, like parallel
shared or distributed memory [17, 40] or external memory [8, 21]. Finally, LCP-arrays for
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collections of strings have also been considered [12, 28]. All citations in this subsection
should only be seen as a point of entry for further literature research, as they are far from
exhaustive. We close this review article by mentioning that for large repetitive data sets the
currently best practical algorithm is based on prefix free parsing [38, Lemma 2].
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