Search Schemes for Approximate Pattern
Matching: An Overview

Lore Depuydt =

Department of Information Technology, Ghent University - imec, Belgium

Jan Fostier =
Department of Information Technology, Ghent University - imec, Belgium

Simon Gottlieb =
FB Mathematik & Informatik, Freie Universitdt Berlin, Germany

Gregory Kucherov &
LIGM, CNRS, Université Gustave Eiffel, Marne-la-Vallée, France

Knut Reinert &
FB Mathematik & Informatik, Freie Universitdt Berlin, Germany

Luca Renders &
Department of Information Technology, Ghent University - imec, Belgium

—— Abstract
We provide a brief survey of results on solving the approximate pattern matching problem using
search schemes, as introduced by Kucherov et al. (2016). We demonstrate that search schemes
constitute a flexible and versatile tool that enable the specification of various search strategies,
including several known filtering methods. We present approaches for designing efficient search
schemes and for implementing them effectively. Finally, we conclude with experimental results
comparing multiple search schemes on DNA sequencing data using the Columba software by Renders
et al. (2021).

2012 ACM Subject Classification Theory of computation — Pattern matching
Keywords and phrases FM-index, bidirectional index, approximate pattern matching, search scheme
Digital Object Identifier 10.4230/OASIcs.Manzini.2025.9

Supplementary Material Software: https://github.com/biointec/columba
archived at swh:1:dir:3dc8bae72bcd433£3e2ff1cdf0016666a5b6e816

Funding Lore Depuydt: Ph.D. Fellowship FR (1117322N), Research Foundation - Flanders (FWO).
Luca Renders: Ph.D. Fellowship SB (1SE7822N), Research Foundation - Flanders (FWO).

1 Introduction

Quickly locating a given string (pattern) in a long sequence is a canonical algorithmic problem
with numerous practical applications. In bioinformatics, for example, an important task is
to locate thousands of reads generated by DNA sequencing in a genomic sequence. In this
example, as well as in most other practical settings, it is necessary to allow for a certain
number of errors, i.e., differences between the pattern and its occurrence in the sequence.
This leads to the problem of approximate pattern matching (APM) that we address in this
paper. A common algorithmic formalization, which we follow in this paper, assumes that
we are given an error threshold k and that we are looking for all occurrences of a given
pattern up to k errors in a text. The error model is defined either by the Hamming distance,
which considers only character substitutions, or by the edit (Levenshtein) distance, which

also allows character insertions and deletions.
© Lore Depuydt, Jan Fostier, Simon Gottlieb, Gregory Kucherov, Knut Reinert, and Luca Renders;
37 licensed under Creative Commons License CC-BY 4.0

The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini’s 60th Birthday.
Editors: Paolo Ferragina, Travis Gagie, and Gonzalo Navarro; Article No. 9; pp. 9:1-9:16

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:lore.depuydt@ugent.be
https://orcid.org/0000-0001-8517-0479
mailto:jan.fostier@ugent.be
https://orcid.org/0000-0002-9994-8269
mailto:s.gottlieb@fu-berlin.de
https://orcid.org/0009-0004-6132-1665
mailto:Gregory.Kucherov@univ-eiffel.fr
https://orcid.org/0000-0001-5899-5424
mailto:knut.reinert@fu-berlin.de
https://orcid.org/0000-0003-3078-8129
mailto:luca.renders@ugent.be
https://orcid.org/0000-0002-2244-1427
https://doi.org/10.4230/OASIcs.Manzini.2025.9
https://github.com/biointec/columba
https://archive.softwareheritage.org/swh:1:dir:3dc8bae72bcd433f3e2ff1cdf0016666a5b6e816;origin=https://github.com/biointec/columba;visit=swh:1:snp:10bb64ebf47c4ccff309913fe8c4237e64612f0b;anchor=swh:1:rev:db30599186770cfbbaf73e84170859da846806d6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

9:2

Search Schemes for Approximate Pattern Matching: An Overview

Pattern matching is a problem that has been extensively studied. One class of solutions,
relevant for most practical applications, is indexed pattern matching, where the text is
preprocessed into an index data structure that supports efficient pattern search. Among
such data structures, the FM-indez, also known as the BWT-index, is particularly important.
It was proposed by Ferragina and Manzini in 2000 [7]. Unlike other popular data structures
such as suffic trees [43, 28, 40] and suffiz arrays [26], the FM-index is a succinct data
structure whose size (in bits) is asymptotically the same as that of the underlying sequence.
Interestingly, the FM-index is built upon the Burrows- Wheeler transform [5], which is rooted
in word combinatorics [8] and was initially proposed for text compression [27]. However, the
idea proved extremely useful for indexing: the FM-index and its variants became integral
components of many bioinformatics tools, such as Bowtie [19, 18], BWA and BWA-SW [20, 21],
SOAP2 [22], Masai [37], Centrifuge [12], FMAlign [23, 44], Centrifuger [38], or ProPhyle [3].

In contrast to exact pattern matching, which can be solved very efficiently, approximate
pattern matching with k errors is a more challenging problem, as known algorithms are,
in the worst case, exponential in k with respect to either time or space requirements [39].
Considerable effort has been made to develop practically efficient APM algorithms. One
proposed heuristic is seeding, based on the observation that approximately matching fragments
typically share exact patterns of certain size. The idea is then to use small exactly matching
patterns, or their combinations, as seeds for potential enclosing approximate matches. Another
perspective on this approach is filtering where seeds are viewed as indicators of potential
match locations in the sequence, filtering out irrelevant regions and narrowing the search.
To efficiently detect seeds, all patterns in the text that could serve as seeds are indexed in a
data structure, typically a hash table. The most prominent example of such algorithms is
the BLAST alignment method, which was a predominant tool in bioinformatics for many
years [13]. While seeding is generally not used for exhaustive search, it can also be applied
to APM in a non-trivial way through the concept of spaced seeds [4, 24, 6]. This approach
allows for defining one or several seeds such that any pattern occurrence contains at least
one of them. However, computing spaced seeds that ensure a lossless search is a challenging
problem, even for the Hamming distance [14]. For the edit distance, this approach becomes
even more difficult to implement effectively.

In this paper, we focus on a different approach that leverages efficient indexing of the text
via an FM-index. Although the standard method of pattern search using an FM-index scans
the pattern backward (right-to-left), extensions of the FM-index, known as the bidirectional
FM-index, support searching in both directions [17, 35, 36, 2, 1, 30]. This feature can be
advantageous for approximate pattern matching, as first demonstrated by Lam et al. [17] for
restricted cases of one or two errors. The idea of combining forward and backward searches
for APM was also explored in [19] and [20], although those works employed a separate index
for each direction.

In general, the idea involves partitioning the pattern into k+ 1 or more parts and breaking
the search into independent searches, which can potentially run in parallel. Each search
begins with one of the parts, allowing either no errors or a small number of errors. This
approach drastically reduces the search space compared to the naive backtracking method
where the pattern is searched in one direction while exploring all possible errors at each step.
This idea is formalized through the concept of search schemes which we study in this paper.
Search schemes constitute a flexible and versatile formalism for specifying search strategies.
They can also be used to simulate some existing filtering methods, such as the one based on
the pigeonhole principle, the suffix filter [10] or the 01*0 filter [42].

L. Depuydt, J. Fostier, S. Gottlieb, G. Kucherov, K. Reinert, and L. Renders

The goal of this paper is to provide an overview of search schemes, relate it to other meth-
ods, and present its current state-of-the-art. We will also survey some techniques for designing
efficient search schemes. Finally, we provide some experimental results demonstrating and
comparing the efficiency of different search schemes.

2 Definitions

A string is denoted as A = ajasy . ..aj4) where |A| represents its length, and a; refers to the
i-th character of the string. An infix (or substring) of A is denoted as 4; ; = a;a;11 ... a;.
Given an error threshold k, the approximate pattern matching problem for a query pattern
P = pipa...pp and a text T = 11ty .. .1, is defined as finding the set of all substrings
{Ts,.e1,Tss,e0,-- - such that d(Ts, ¢,, P) < k for some distance measure d(-,-). In this work,
we consider either the Hamming distance dp., or the edit distance deqit. The Hamming
distance dpam(X,Y) between two strings X and Y of equal length is the number of positions
at which the corresponding symbols are different. The edit distance deqst(X,Y’) between
two strings X and Y is the minimum number of operations required to transform X into Y,
where an operation is an insertion, deletion, or substitution of a single character.

A bidirectional index of a text is a data structure for pattern matching that supports
incremental search of the pattern in both directions. This allows a pattern to be searched
starting from any position, extending either to the left or right, and possibly alternating
directions. More specifically, given an already matched substring M, the index supports
extending that match to either Mc or cM, where c is a character.

Assume a query pattern P is divided into p non-overlapping parts P = P;...P,. A
search is a triplet S = (w, L,U). Here, # = (x[1],...,w[p]) is a permutation of {1,...,p}
defining the search order in which these parts will be matched. To make it consistent with
bidirectional indices, it is required that = fulfills the connectivity property: for each ¢ > 1,
m; is either min;j«; m; — 1, or maxj<;m; +1. L = L[1]...L[p] and U = U[1]...U[p| are
non-negative integer sequences of length p that specify respectively lower and upper bounds
on the cumulative number of errors when searching for consecutive parts in the order specified
by m. Formally, L and U must satisfy L[1] < ... < L[p] <k, U[1] < ... < Ulp] < k, and
L[i] < UJi] for all i <p. A search scheme S is a collection of searches S = {51, S2,..., 55|}
For ease of reading, sequences w, L and U are written as strings without separators, for
example search ((2,3,1), (0,0,0), (0,1,2)) is written as (231,000, 012).

An error configuration e = (e1,...,ep) is a distribution of at most k errors over the p
parts, i.e. 327 e; < k. A search S = (m,L,U) covers e if L[i] < 3, ; eq; < Uli] for all i.
A search scheme is called lossless if each possible error configuration is covered by at least
one of its searches. Furthermore, if each error configuration is covered by only one search,
it is called non-redundant. In the case of Hamming distance, a lossless and non-redundant
search scheme will lead to each match being found exactly once. In contrast, in the case of
edit distance, different error configurations can actually correspond to the same match.

An example of a search scheme is given in Fig. 1. The scheme contains three searches for
a pattern of length 8 over a binary alphabet, with up to k = 2 errors under the Hamming
distance. The pattern is partitioned into three parts of length 3, 3,2 respectively. Note that
scheme S5 requires bidirectional search: after initially searching part Ps, part P, is searched
backward and then Ps is searched forward. The scheme simulates the well-known pigeonhole
principle for APM when the pattern is partitioned into k + 1 parts and an exact occurrence
of each part is then extended into a potential match (see Section 3). Observe that the scheme
is lossless but redundant.

9:3

Manzini's Festschrift

9:4

Search Schemes for Approximate Pattern Matching: An Overview

Py P

obobodbobddnd obobodbobddnd obobobbol dobbldold
Figure 1 Pigeonhole principle expressed as a search scheme Spn = {51 = (123,000, 022), S; =
(213,000,022), S3 = (321,000,022)} with k = 2 errors, under the Hamming distance dham. The
pattern P = P, P, Ps, defined over a binary alphabet, has length |P| = 8 and part lengths |P;| = 3,
|P;| =3, and | P3| = 2. A vertical edge (solid line) represents a character match between the query

pattern and the text, while a skewed edge (dotted line) denotes a mismatch. The horizontal lines
delineate the parts of P.

Fig. 2 depicts another lossless search scheme for the search setting of Fig. 1. This scheme
follows the algorithm of Lam et al. [17]. The third search Sy; covers error configuration
(1,0,1), the only one not covered by Sgya and Spywa. One can observe that Sp,m has a smaller
search space than the search scheme from Fig. 1.

P P

P
P, 3

n 1 E E E E E E % E E
olodobbodlalll LolododBolllodlbell “oJL%1
Figure 2 A search scheme described by Kucherov et al. [15] simulating the search strategy proposed

by Lam et al. [17]: Stam = {Stwa = (123,000, 022), Sbwa = (321,000,012), Sy = (231,012,012)}.
The parameter setting is the same as in Fig. 1.

3 Search schemes

To gain intuition about what constitutes an efficient search scheme, we first consider naive
backtracking as a baseline algorithm. Naive backtracking can be expressed as a search scheme
with a single search Sy, = {(1,0, %)}, where pattern P is not partitioned (p = 1) and is
matched in its entirety, with a lower bound of 0 and an upper bound of k errors. Using an
index such as the FM-index, candidate occurrences O of the pattern P in the text T are
incrementally enumerated character by character in a depth-first manner. For simplicity,
we assume that O is spelled from left to right. The number of errors between a (partial)
candidate occurrence O and (a prefix of) P is tracked using a dynamic programming matrix
D, where each matrix element D(%, j) represents d(O1 4, P ;), i.e., the distance between the
first ¢ characters of O and the first j characters of P. As soon as all values in row |O] of D
exceed the threshold k, it is impossible to further extend O to match P within k errors. In this
case, the algorithm backtracks to the most recent branching point with unexplored characters
and continues the search from there. If P can be completely matched (i.e., d(O, P) < k),
then O constitutes an approximate occurrence of P in T and its position(s) in 7' can be

L. Depuydt, J. Fostier, S. Gottlieb, G. Kucherov, K. Reinert, and L. Renders

90000000000
dense

Tree level
o) — —
o ot (e}

sparse

[\
ot

1234

Avg. no. of children per node

Figure 3 Left panel: average number of children per node at different levels in the substring trie
of the human reference genome (GRCh38). Short sequences (length < 12) can be extended by all
four nucleotides. In contrast, longer sequences (length > 20) have a unique extension. Right panel:
illustration of the corresponding substring trie which is dense near its root and becomes increasingly
sparse at deeper levels.

reported. Note that in the case of the edit distance, maintaining a banded matrix D with
2k + 1 entries per row suffices. In the case of the Hamming distance, it is sufficient to track
only of the diagonal elements of D.

The naive backtracking algorithm induces a search tree where each node corresponds
to a single character extension and, therefore, to a unique substring O of the text that is
enumerated. Since the FM-index enables character extensions in constant time, the runtime
of naive backtracking is proportional to the number of nodes in this search tree. The size of
the search tree, i.e., the total number of strings O enumerated, is governed by two factors: (i)
the string O should exist in T, and (ii) either d(O, P) < k (and then O should be reported
as an occurrence), or it must still be possible to further extend O to some O’, such that
d(0’, P) < k. Criterion (i) is controlled by the FM-index which spells out only candidate
occurrences that exist in 7. For (ii), the (banded) dynamic programming (DP) matrix D is
used to track the distance between a (partial) candidate occurrence O and pattern P. Using
naive backtracking, the search tree grows rapidly with the maximum number of allowed
errors k and becomes impractically large even for modest values of k. This is because the
region near the root of the search tree is densely branched. This is illustrated in Fig. 3
showing the trie of all substrings of the human reference genome. Each search enumerates a
part of this trie, and a large number of short strings O are enumerated only to find out that
the vast majority of them cannot be extended to an actual (approximate) occurrence of P in
T. The reason that many short strings are enumerated is because short strings O are likely
to be present in T and not (yet) exceed the threshold of k errors.

One way to avoid exploring the densely branched region near the root of the substring
trie is to use the pigeonhole scheme Sy, illustrated in Fig. 1. If k errors are allowed, the
pattern P is partitioned into p = k 4 1 parts P = P, ... P,. Regardless of how the k errors
are distributed across the parts, at least one part must be error-free. Consequently, each

9:5

Manzini's Festschrift

9:6

Search Schemes for Approximate Pattern Matching: An Overview

approximate occurrence O of P with at most k errors must contain at least one such error-free
part of P. The key idea is to first match this error-free part of P, and then to extend this
match with the remaining parts of P using backtracking, allowing up to k errors in total. To
identify all occurrences, this procedure must be performed p times, each time assuming a
different part of P to be error-free. In each such search, the initial exact matching bypasses
the densely branched upper levels of the substring trie, and the backtracking procedure is
performed only in deeper levels which are more sparsely branched (nodes have fewer possible
character extensions, see Fig. 3). This pigeonhole-based approach can be formally expressed
as a search scheme with p = k + 1 searches: Sp, = {51,...,Sk+1}, where

Si=(i...p(i=1)...1,0...0,0k... k) fori=1...k+1. (1)

Formula (1) expresses that during search S;, part P; is matched first with no errors allowed.
Next, this seed is extended with parts Pj11,. .., P, to the right, followed with parts P;_1,... P
to the left, allowing up to k errors in total. Collectively, searches S; of Sy will identify all
approximate occurrences O of P. However, the same occurrence may be reported by multiple
searches. Indeed, any occurrence with more than one error-free part will be reported by
multiple searches. The pigeonhole-based search has been applied in many earlier works (see
e.g. [29]). Note that searches S; with ¢ = 2...p — 1 require bidirectional search that supports
extending a partial occurrence O with a single character ¢ either to the left (cO) or to the
right (Oc).

Although conceptually simple, the pigeonhole search scheme can already outperform
naive backtracking by a significant margin in practical applications. Yet, each search in
the pigeonhole search scheme already admits the maximum number of k£ errors starting
from the second part that is searched. Intuitively, performance could benefit from only
gradually allowing more errors when additional parts are matched. Indeed, deeper levels in
the substring trie are associated with fewer branches (see Fig. 3), so admitting more errors is
best postponed as much as possible.

Kérkkiinen and Na [10] proposed a suffiz filter that enhances the pigeonhole method.
The pattern is still partitioned into p = k + 1 parts P = Py ... P,, but the search is now
performed for strongly matching suffixes P; ... P,. A suffix P;... P, is said to strongly match
a string O = O; ... O, (suffix of a potential approximate match O = O, ...0O,) if for any j
with i < j < p, the condition d(P;...P;,0;...0;) < j — ¢ holds. It was proven in [10] that
this filter is lossless, meaning that for any error configuration, there always exists a strongly
matching suffix. Note that the distance function dist can be either dpam Or degit-

It is easily seen that the suffix filter can be simulated by a search scheme that first searches
forward for a strongly matching suffix and then extends it backward to the beginning of
P. The idea of combining suffix filter with the search on the FM-index was exploited in
[25, 41, 16] in application to DNA read alignment problems. Formally, the search scheme for
suffix filter is defined by Ssut = {S1, ..., Sk+1}, where

Si=(i...p(i=1)...1,0...0,01...(p—i)k...k) fori=1...k+1. (2)

Another improvement of the pigeonhole-based approach was proposed by Vroland et
al. [42]. Here, pattern P is partitioned into p = k + 2 parts instead of k + 1. This guarantees
that any approximate occurrence O of P contains at least two error-free parts. Among these
pairs, there exists one separated by a sequence of zero or more parts each containing exactly
one error [42, Lemma 2]|. This (variable-length) sequence of parts is referred to as a 01*0
seed. Compared to the suffix filter, the seeding of the 01*0 filter requires searching for parts
with no more than one error, which contributes to its efficiency. Unfortunately, a direct

L. Depuydt, J. Fostier, S. Gottlieb, G. Kucherov, K. Reinert, and L. Renders

simulation of the 01*0 filter with a search scheme requires (k + 2)(k+ 1)/2 searches. However,
as observed by Pockrandt [31], one can simulate a weaker version by searching for an exactly
matching part P; followed by part P;;; matching with at most one error. This requires only
k + 1 searches, where the last (k + 1)-th search can be restricted to be followed by an exactly

matching part Prio. In summary, this search scheme is defined by So; = {S1,...,Sk+1},
where
(i...p@i—1)...1,0...0,01k... k) fori=1...k
S; = . . . (3)
(¢...p(i—1)...1,0...0,00k... k) fori=k+1

Compared to the pigeonhole scheme (1) which uses k + 1 parts, Sp; uses k + 2 parts
which are thus slightly shorter, making the starting exact match of P; a slightly weaker
filter. However, the requirement that the following part is matched with at most one error
outweighs this weakness in many practical scenarios, as will be shown below in Section 4.

In their seminal paper, Kucherov et al. [15] provided search schemes with k& + 1 and k + 2
parts for up to k = 4 errors. They differ from Spp, Ssur and Sp1 in several aspects. First, they
often contain a larger number of searches. For example, for k =4 errorsand p=k+1=5
parts, Skuch = {S1,...,Ss} contains eight searches!:

Sy = (12345,00000,02244); So = (54321, 00000, 01344);
Sy = (21345,01333,01334); Sy = (12345,01333,01334);
S5 = (43521,00111,01244); Sg = (32145,00113,01244);
Sy = (21345,01224,01244); Ss = (12345, 00334, 00444);

(4)

Increasing the number of searches reduces the search space per search and enables a more
gradual increase in the allowed number of errors as additional parts are added. Indeed, in
search scheme (4), most searches allow the maximum number of k = 4 errors only from
the fourth part that is matched. Kucherov et al. [15] define the eritical string of a search
scheme S as the lexicographically maximal U-string of a search in S. The critical U-string
in Skuen (for k = 4 errors and p = 5 parts) is 02244 from search S;. This is more favorable
than 04444, the critical U-string for the pigeonhole-based search scheme Spy,. Second, the
search schemes Skyucn Were the first to exploit the lower bound L. By carefully introducing
a minimum number of errors on certain parts of each search, overlap between searches is
minimized, reducing the search space and reducing the number of redundantly reported
occurrences. Nevertheless, the searches in Skyen collectively still cover all error configurations
and therefore maintain their lossless character. Third, the authors of [15] observed that the
search pattern P does not necessarily need to be divided into equal-length parts. In fact,
the part lengths can be chosen arbitrarily, provided that the same part lengths are used
across all searches. Since search Sj is associated with the critical U-string, it will likely
correspond to the largest search space (and thus the longest runtime) if P is partitioned into
equally sized parts. Therefore, it may be beneficial to slightly increase the size of part P;
while slightly decreasing the sizes of the other parts. This adjustment reduces the search
space for searches that match P; as their first, error-free part (i.e., searches Sy, Sy, and Ss),
while increasing the search space for the remaining searches. Although some searches will
become slower while others speed up, the overall effect is a net performance gain. A more
formal justification of the benefit of uneven partitioning is given in [15], Section 3.2. Overall,
the search schemes proposed in [15] proved to be very efficient for practical bioinformatics
applications [34].

! Note that [15] has a different definition of lower bound, therefore those were adjusted to the definition
we use in this paper. Furthermore, lower bounds in S¢ and S7 were slightly corrected compared to [15].

9:7

Manzini's Festschrift

9:8

Search Schemes for Approximate Pattern Matching: An Overview

3.1 Design of search schemes

Designing efficient (or even optimal) search schemes is a fundamental and difficult combin-
atorial optimization problem, due to a large number of degrees of freedom in designing a
search scheme: the number of searches |S|, the number of parts p, the size of each part | F;|
(i =1...p), and the strings 75, Us and L, for each search S; (s =1...[S]).

Kianfar et al. [11] were the first to tackle this problem in a systematic way for the
Hamming distance. They proposed a mixed integer linear program (MILP) that minimizes
the expected size of the search tree, i.e., the expected number of strings O enumerated.
Assuming a fixed number of |S| searches, a fixed number of parts p parts and fixed part
lengths |P;| (¢ =1...p), and a maximum number of allowed errors k, this objective translates
into

ISl p |Proal Usld] i—1
Minimize Z Z Z Z nyd, where [= j + Z | P11 (5)
s=1i=1 j=1 d=L,[i—1] ir=1

Here, n; 4 denotes the expected number of enumerated strings O of length [that have
exactly d mismatches with respect to the corresponding part of search pattern P. The
summations express that, during each search S, the number of errors d is constrained by
Ls[i — 1] < d < Ui, and that parts of P are matched in the sequence specified by the
permutation array ms. Note that during the matching of part Py |;], the lower bound is
L[i — 1], rather than L,[i], because the lower bound L,[i] applies only after part P [; has
been fully matched. L4[0] is always 0. If the characters of the search text T and the search
pattern P are assumed to be independently and uniformly drawn from the alphabet, n; 4
can be efficiently computed for the Hamming distance (see [15, Section 3] for details). The
MILP formulation imposes several constraints to ensure that the resulting search scheme S
is valid. For example, the search scheme S should be lossless and the permutation array
should satisfy the connectivity property. Using the CPLEX solver on the MILP formulation,
optimal triplets (7, Ls, Us) are provided for each search Ss (s = 1...|S|) as output. Note
that the value of |S|, provided as input to the MILP solver, denotes an upper bound on the
number of searches. If a resulting, MILP-optimal search scheme has |S*| < |S| searches, then
|S| — |S*| empty searches are generated. The solves achieves this by setting Lg[i] > Us]i] for
some 4.

Using their MILP formulation, Kianfar et al. [11] were able to generate search schemes
for up to k = 4 errors for the Hamming distance. For example, for k=4 and p=k+1=5
parts, the resulting search scheme Sk;an consists of three searches:

Sy = (12345, 00004, 03344);
S = (23451,00000, 22334); (6)
S5 = (54321,00033,00444);

Note that search S5 already allows two errors in the first part of P that is matched. This
makes Skian less suitable for matching under the edit distance, as the dense region near the
root of the search tree becomes very large.

More recently, Renders et al. [32] applied a MILP approach to generate search schemes,
albeit with a different optimization function. The authors focus on the edit distance, where
computing the expected number of enumerated strings O during a search is computationally
more challenging. Additionally, they argue that the expected number of enumerated strings —
computed under the assumption of uniformly random 7" and P — is a poor approximation of
the actual number observed in real-world applications, such as read mapping against the

L. Depuydt, J. Fostier, S. Gottlieb, G. Kucherov, K. Reinert, and L. Renders

human reference genome. This discrepancy arises because the human reference genome has a
complex repeat structure, in which certain patterns occur significantly more frequently than
would be expected under a uniform randomness assumption.

Therefore, rather than trying to minimize the expected number of generated strings, the
following objective function is used in their MIP formulation:

IS » S Q ISl

Minimize Y Y (k+ D)@ U[i] => Y (p—i+1)- Lfil + > > A (7)

s=1 =1 s=1 =1 g=1 s=1

The first term of objective function (7) seeks to provide lexicographically small U-arrays. The
weighting factors, (k + 1)P=9 are larger for smaller values of i, meaning that the number of
allowed errors in Uy should increase only gradually as more parts of P are matched. The
intuition is that allowing more errors should be deferred until the search tree becomes sparsely
branched. The second term aims to maximize the L-arrays. In this case, the weighting factors
are smaller, because the impact on runtime of the L-arrays is less pronounced compared to
the U-arrays. Finally, the third component promotes minimizing the redundant reporting
of occurrences by multiple searches. Here, A4 is a boolean variable indicating whether an
error distribution ¢ is covered by search s. Note that there are Q = (p‘};k) possible ways to
distribute at most k errors over p parts and that each error distribution should be covered
by at least one search, i.e., Zl‘i‘l Ag,s = 1.

Assuming p = k + 1 parts and a search scheme S with exactly |S| = p searches, Renders
et al. [33] provided MILP-optimal search schemes for up to k = 7 errors. These search
schemes are referred to as MinU search schemes due to the primary focus on providing
lexicographically small U-arrays. For reference, we provide three resulting optimal search
schemes Suminu,A, SMinU,B; and Swminu,c for k =4 errors and p = k + 1 = 5 parts:

SMinU,A SMminU,B Sminu,c
Sy (12345, 00222, 02244) (12345, 01114, 01444) (12345, 01114, 01444)
S, (23145, 00000, 01244) (21345, 00003, 01444) (21345, 00008, 01444)
S3 (32145, 01111, 01244) (34521, 01111, 02244) (34521, 01111, 01244)
Sy (45321, 00003, 01444) (43521, 00000, 01244) (43521, 00000, 01244)
Ss (54321, 01114, 01444) (54321, 00222, 01244) (54321, 00222, 02244)

Next to these MILP-optimal search schemes for up to k = 7 errors, Renders et al. [32]
provide search schemes for up to k = 13 errors that were generated using a greedy heuristic.

Note that despite this progress, the design of efficient search schemes remains an open
research problem. First, due to the large number of variables involved, generating MILP-
optimal search schemes becomes computationally challenging for larger values of k; even
for k = 7, the solving the optimization problem (7) requires many hours of computing time.
Second, it is difficult to formulate the goal of minimizing the search space as an optimization
criterion that is both accurate and easy to evaluate.

3.2 Dynamic selection of search schemes

For a fixed long text, such as a sequence of human genome, further optimizations of the search
process are possible. The expected size of the search tree, and consequently the expected
workload, associated with the optimal search schemes Swinu,a, Sminu,B, and Swminu,c is
identical. In other words, across a large number of (random) patterns P, and assuming
equally sized parts P;, the three search schemes should require the same amount of work.
This can be verified by comparing their L- and U-arrays.

9:9

Manzini's Festschrift

9:10

Search Schemes for Approximate Pattern Matching: An Overview

However, the workload for individual patterns P may vary significantly between the
optimal search schemes. Recall that the critical U-string of a search scheme is the lexico-
graphically largest U-string. Kucherov et al. [15] showed that in a search scheme with &
errors and p = k + 1 parts, the minimal critical U-string is given by 02244 ... kk when k is
even, and 013355. .. kk when k is odd [15, Theorem 1]. In Sminu,a, SMinU,B, and Sminu,c,
searches S1, S3, and Ss, respectively, have the critical U-string 02244 (indicated in boldface
in (8)). As these searches already allow for two errors in the second part that is matched
(Prg), they are expected to require more work than the other searches in their respective
search schemes. In other words, to minimize the workload associated with a search scheme,
one should primarily focus on the search that contains the critical U-string.

These insights lead to the following heuristic for reducing workload. First, perform exact
matching for parts P; (for ¢ = 1,3,5) individually. Next, compare their number of exact
matches. If P; has the fewest exact matches, execute search scheme Syiinu,a. Similarly,
if P3 has the fewest matches, execute search scheme Swminu . Otherwise, execute search
scheme Syinu,c. The number of exact matches in P; (for ¢ = 1,3,5) is thus used as a proxy
for the size of the search tree that must be explored during the search that contains the
critical U-string. While this heuristic offers no strong guarantees regarding the workload
of individual patterns, it performs very well on average across a large number of patterns.
Additionally, the results from the exact matching of P; (for ¢ = 1,3,5) in the first step of the
heuristic can be reused during the execution of the individual searches. Consequently, the
heuristic incurs minimal overhead.

3.3 Dynamic partitioning of search patterns

Recall that search patterns P can be partitioned arbitrarily, as long as the same partitioning
is consistently applied across all searches within a given search scheme. This flexibility allows
for partitioning P in a way that balances the workload among searches.

In their original work, Kucherov et al. [15] proposed a dynamic programming algorithm
to compute an optimal pattern partition for a given search scheme, under the assumption of
a random pattern searched in a random text. They also provided some examples of uneven
partitions outperforming even ones. They point out, however, that an optimal partition is
very sensible to the choice of parameters such as the search scheme, number of parts but
also the text length.

In practice, we are often interested to design an efficient search for a fixed text, such as
a human genome. If all searches within a search scheme have the same expected workload
—such as in the pigeonhole-based search scheme Sp,— it is advantageous to partition P so that
each part P; has approximately the same number of exact occurrences in the text. However,
for a specific pattern P, an equal-sized partitioning does not necessarily achieve this balance,
since certain parts P; may occur more frequently within the search text 7" than others. In
other words, an effective partitioning strategy should be tailored to the content of P itself.

To address this, Renders et al. [34] proposed a greedy heuristic that determines the part
sizes dynamically to ensure a suitably balanced distribution of exact occurrences across
the parts P;. What constitutes a “suitably balanced” distribution depends on the search
scheme. For symmetric search schemes like Spp, this means ensuring a uniform distribution
of the number of occurrences of P;. In general, balance is achieved when the number of
occurrences of each P; is inversely proportional to the expected workload of the searches
that begin at P;. The heuristic by Renders et al. operates by determining part sizes while
performing exact matching for each P;, introducing minimal overhead. However, it does not
provide guarantees regarding the workload of individual patterns in the context of dynamic

L. Depuydt, J. Fostier, S. Gottlieb, G. Kucherov, K. Reinert, and L. Renders

Table 1 The average size of the search tree (lower = better) for different search schemes when
aligning 1 million Illumina reads (151 bp) and their reverse complements to the human reference
genome using Columba, allowing for at most k errors in Hamming distance. Each value represents
the average size for a single read and its reverse complement. A dash (‘-’) indicates no search scheme
is available for that value of k. dnc = did not complete.

Search scheme k=1 k=2 k=3 k=4 k=5 k=6 k=17

Naive backtracking 3946 48630 430831 2950884 dnc dnc dnc
Pigeonhole [17] 439 1151 3605 10851 29956 74175 165197
Suffix filter [10] 439 954 2275 5153 10902 21589 40707
01 [31] 516 1115 2749 6510 14363 30098 61651
Kucherov k + 1 [15] 439 902 1715 4260 - - -
Kucherov k + 2 [15] 516 1156 2131 6020 - - -
Kianfar [11] 439 899 6355 52492 - - -
Manbcst [31] - - - 5549 - - -
MinU [33] 439 902 1715 3506 6595 10394 16371

search scheme selection. Nevertheless, it has been shown to yield performance improvements
of approximately 30% on average. Notably, dynamic partitioning of search patterns and
dynamic selection of search schemes are independent techniques and can be combined for
further optimization.

4 Results

4.1 Dataset

In all benchmarks, all occurrences of search patterns were identified in both strands of the
human reference genome (GRCh38) with up to k errors under the Hamming or edit distance
metrics. Non-ACGT characters (e.g., ‘N’s) in the reference sequence were replaced with
randomly chosen nucleotides. We sampled 1,000,000 Illumina NovaSeq 6000 reads (151 bp)
from a whole-genome sequencing dataset (accession no. SRR13586123). Given our focus
on approximate pattern matching, all reads were treated as single-end, ignoring paired-end
read information. All results were obtained using Columba version 2.0, an efficient tool for
approximate pattern matching using search schemes. The C++ source code of Columba is
available at https://github.com/biointec/columba under AGPL-3.0 license.

4.2 Empirical evaluation of search schemes

We exemplify the practical benefit of using different search schemes using the mentioned
data set. More extensive results can also be found in [9]. Tables 1 and 2 show the average
size of the search tree to identify all approximate occurrences of an Illumina read in the
human reference genome for different search schemes and different values of allowed errors k
under the Hamming? and edit distance?
total number of (partial) candidate occurrence strings O that were generated during the
execution of the search scheme. It evaluates the efficiency of a search scheme regardless of

, respectively. The search tree corresponds to the

implementation characteristics of the software. Note that Tables 1 and 2 report the number
of generated candidate occurrences O that actually exist in 7.

2 Command for Hamming distance:
./columba -a all -e [e] -K O -p uniform -i O -nD -m hamming -v -c
[path/to/search/scheme]

3 Command for edit distance:
./columba -a all -e [e] -K O -p uniform -i O -nD -v -c [path/to/search/scheme]

9:11

Manzini's Festschrift

https://github.com/biointec/columba

9:12

Search Schemes for Approximate Pattern Matching: An Overview

Table 2 The average size of the search tree (lower = better) for different search schemes when
aligning 1 million Illumina reads (151 bp) and their reverse complements to the human reference
genome using Columba, allowing for at most k£ errors in edit distance. Each value represents the
average size for a single read and its reverse complement. A dash (‘-’) indicates no search scheme is
available for that value of k. dnc = did not complete.

Search scheme k=1 k=2 k=3 k=4 k=5 k=6 k=7

Naive backtracking 7248 160736 2419153 24728576 dnc dnc dnc
Pigeonhole [17] 444 1205 3936 12444 36386 95614 225615
Suffix filter [10] 444 990 2434 5698 12515 25846 50837
01 [31] 523 1161 2946 7180 16426 35978 77455
Kucherov k + 1 [15] 444 937 1821 4631 - - -
Kucherov k + 2 [15] 523 1100 2157 5394 - - -
Kianfar [11] 444 934 10344 166 809 - - -
Manbcst [31] - - - 6233 - - -
MinU [33] 444 937 1821 3821 7336 11848 19021

Table 3 The runtime (in seconds, lower = better) for different search schemes when aligning
1 million Illumina reads (151 bp) and their reverse complements to the human reference genome
using Columba, allowing for at most k errors in Hamming distance. A dash (‘-’) indicates no search
scheme is available for that value of k. The runtimes for Naive Backtracking are extrapolated from
a dataset with only 10000 reads. dnc = did not complete in 3 hours.

Search scheme k=1 k=2 k=3 k=4 k=5 k=6 k=7
Naive Backtracking 328 3613 32354 235843 dnc dnc dnc

Pigeonhole 102 223 585 1681 4611 dnc dnc
Suffix filter 103 193 380 771 1575 3051 5581
01 105 208 443 947 2051 4340 dnc
Kucherov k + 1 101 187 315 638 - - -
Kucherov k + 2 108 209 344 723 - - -
Kianfar 99 187 763 4889 - - -
Manpest - - - 914 - - -
MinU 98 190 311 577 1000 1573 2334

Tables 1 and 2 include the search space for naive backtracking as a baseline scenario.
Results for backtracking with k > 4 are omitted due to computational impracticality. The
search scheme based on the pigeonhole principle already outperforms backtracking by a large
margin. This emphasizes the necessity to avoid having to explore the densely branched
region near the root of the substring trie. Exploiting the 01 principle further reduces this
search space. However, custom-designed search schemes with stringent lower and upper
bounds generally perform best, with a more significant difference for larger values of k. For
example, for k = 7, the MinU search schemes have a 10x and 4x smaller search space than
the pigeonhole principle-based and 01-based search schemes, respectively. Note that Tables 1
and 2 include Manpt, a search scheme designed by Pockrandt [31] for k& = 4.

Tables 3 and 4 report the runtime to align 1 million Illumina reads to the human reference
genome on a single core 64-core Intel® Xeon® E5-2698 v3 CPU, running at a base clock
frequency of 2.30 GHz CPU. These values correlate to a large degree with Tables 1 and 2.

4.3 Effect of dynamic selection of search schemes

To ensure an unbiased comparison between search schemes, certain optimizations in Columba,
such as dynamic selection of search schemes and dynamic partitioning of search patterns,
were disabled in the previous comparison, as they may affect different search schemes in
different ways. For example, exploiting dynamic selection of search schemes requires having
equivalent alternatives to choose from.

L. Depuydt, J. Fostier, S. Gottlieb, G. Kucherov, K. Reinert, and L. Renders

Table 4 The runtime (in seconds, lower = better) for different search schemes when aligning 1
million Illumina reads (151 bp) and their reverse complements to the human reference genome using
Columba, allowing for at most k errors in edit distance. A dash (‘-”) indicates no search scheme is
available for that value of k. The runtimes for Naive Backtracking are extrapolated from a dataset
with only 10000 reads. dnc = did not complete in 3 hours.

Search scheme k=1 k=2 k=3 k=4 k=5 k=6 k=7
Naive Backtracking 684 13125 200593 dnc dnc dnc dnc

Pigeonhole 105 256 725 2207 6657 dnc dnc
Suffix filter 102 231 479 1044 2251 4741 9687
01 112 243 550 1271 2920 6648 dnc
Kucherov k + 1 105 219 405 877 - - -
Kucherov k + 2 110 239 442 975 - - -
Kianfar 113 215 1243 - - - -
Manpest - - - 1210 - - -
MinU 104 217 392 762 1398 2281 3618

Table 5 The average size of the search space for different dynamic techniques when aligning 1
million Ilumina reads (151 bp) and their reverse complements to the human reference genome using
Columba with the minU search schemes, allowing for at most k errors in edit distance. A dash (‘-’)
indicates that dynamic selection is not useful for this value of k.

Heuristic k=1 k=2 k=3 k=4 k=5 k=6 k=7
None 444 937 1821 3821 7336 11848 19021
Dynamic Partitioning 340 742 1589 3791 7174 11679 18333
Dynamic Selection - 845 - 3721 - 11379 -
Both - 708 - 3458 - 10779 -

Table 5 presents the average size of the search space for the same alignment task using
the MinU search schemes and the edit distance metric under four scenarios: i) no heuristics
applied; ii) using only dynamic partitioning of search patterns; iii) using only dynamic
selection of search schemes (applicable only to even k); iv) both heuristics enabled. Note
that the results in scenario i) are identical to those in Table 2 for the MinU search scheme.

The use of dynamic partitioning of search patterns adaptively determines the size of the
search patterns so that their number of exact occurrences is balanced. Across all values of k,
and for a large number of search patterns, this technique reduces the search space by 4% to
23% for this dataset. The largest relative reduction occurs for smaller values of k, where
fewer but larger parts provide greater flexibility in adapting their sizes.

Enabling dynamic selection of search schemes allows Columba to choose between optimal
search schemes based on the number of exact matches in their individual parts. This
technique applies only to even values of k, where the critical U-string is 02244 ... kk. Again,
this technique reduces the search space by a similar margin.

In case both techniques are combined, dynamic partitioning of the search pattern is
applied first. Once a partitioning for the particular read has been fixed, the expected
best-performing search scheme is selected. Combining both heuristics yields a reduction in
search space between 9% (k = 6) and 24% (k = 2). Both heuristics are easy to implement
and impose almost no overhead. These results demonstrate their effectiveness for practical
applications.

—— References

1 Djamal Belazzougui and Fabio Cunial. Fully-functional bidirectional Burrows-Wheeler indexes
and infinite-order de bruijn graphs. In Nadia Pisanti and Solon P. Pissis, editors, 30th Annual

9:13

Manzini's Festschrift

9:14

Search Schemes for Approximate Pattern Matching: An Overview

10

11

12

13

14

15

16

Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20, 2019, Pisa, Italy,
volume 128 of LIPIcs, pages 10:1-10:15. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2019. doi:10.4230/LIPICS.CPM.2019.10.

Djamal Belazzougui, Fabio Cunial, Juha Kérkkainen, and Veli Mékinen. Versatile succinct
representations of the bidirectional burrows-wheeler transform. In Hans L. Bodlaender and
Giuseppe F. Italiano, editors, Algorithms - ESA 2013 - 21st Annual European Symposium,
Sophia Antipolis, France, September 2-4, 2013. Proceedings, volume 8125 of Lecture Notes in
Computer Science, pages 133-144. Springer, 2013. doi:10.1007/978-3-642-40450-4_12.
Karel Bfinda, Leandro Lima, Simone Pignotti, Natalia Quinones-Olvera, Kamil Salikhov,
Rayan Chikhi, Gregory Kucherov, Zamin Igbal, and Michael Baym. Efficient and robust
search of microbial genomes via phylogenetic compression. bioRziv:2023.04.15.536996, 2024.
to appear in Nature Methods. doi:10.1101/2023.04.15.536996.

Stefan Burkhardt and Juha Kérkkéinen. Better filtering with gapped g-grams. In Amihood
Amir and Gad M. Landau, editors, Combinatorial Pattern Matching, 12th Annual Symposium,
CPM 2001 Jerusalem, Israel, July 1-4, 2001 Proceedings, volume 2089 of Lecture Notes in
Computer Science, pages 73-85. Springer, 2001. doi:10.1007/3-540-48194-X_6.

M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm. Technical
report 124, Digital Equipment Corporation, 1994.

Martin Farach-Colton, Gad M. Landau, S. Cenk Sahinalp, and Dekel Tsur. Optimal spaced
seeds for faster approximate string matching. Journal of Computer and System Sciences,
73(7):1035-1044, 2007. Bioinformatics III. doi:10.1016/j.jcss.2007.03.007.

Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proc. 41st Symp. on Foundations of Computer Science (FOCS), Redondo Beach, California,
USA, pages 390-398. IEEE Computer Society, February 2000. doi:10.1109/SFCS.2000.
892127.

Ira M Gessel and Christophe Reutenauer. Counting permutations with given cycle structure
and descent set. Journal of Combinatorial Theory, Series A, 64(2):189-215, 1993. doi:
10.1016/0097-3165(93)90095-P.

Simon Gene Gottlieb and Knut Reinert. Search schemes for approximate string matching.
NAR Genomics and Bioinformatics, 7(1):1qaf025, March 2025. doi:10.1093/nargab/1qaf025.
Juha Karkkéainen and Joong Chae Na. Faster filters for approximate string matching. In
Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007,
New Orleans, Louisiana, USA, January 6, 2007. STAM, 2007. doi:10.1137/1.9781611972870.
8.

Kiavash Kianfar, Christopher Pockrandt, Bahman Torkamandi, Haochen Luo, and Reinert
Knut. Optimum search schemes for approximate string matching using bidirectional FM-index.
In RECOMB-Seq, pages 1-13, March 2018. available at arxiv:1711.02035.

Daehwan Kim, Li Song, Florian P Breitwieser, and Steven L Salzberg. Centrifuge: rapid and
sensitive classification of metagenomic sequences. Genome research, 26(12):1721-1729, 2016.
Gregory Kucherov. Evolution of biosequence search algorithms: a brief survey. Bioinformatics,
35(19):3547-3552, October 2019. doi:10.1093/bioinformatics/btz272.

Gregory Kucherov, Laurent Noé, and Mikhail A. Roytberg. Multiseed lossless filtration. IEEE
ACM Trans. Comput. Biol. Bioinform., 2(1):51-61, 2005. doi:10.1109/TCBB.2005.12.
Gregory Kucherov, Kamil Salikhov, and Dekel Tsur. Approximate string matching using a
bidirectional index. Theoretical Computer Science, 638:145-158, 2016. preliminary version in
CPM’2014. d0i:10.1016/J.TCS.2015.10.043.

Gregory Kucherov and Dekel Tsur. Improved filters for the approximate suffix-prefix overlap
problem. In Edleno Silva de Moura and Maxime Crochemore, editors, String Processing
and Information Retrieval - 21st International Symposium, SPIRE 2014, Ouro Preto, Brazil,
October 20-22, 2014. Proceedings, volume 8799 of Lecture Notes in Computer Science, pages
139-148. Springer, 2014. doi:10.1007/978-3-319-11918-2_14.

https://doi.org/10.4230/LIPICS.CPM.2019.10
https://doi.org/10.1007/978-3-642-40450-4_12
https://doi.org/10.1101/2023.04.15.536996
https://doi.org/10.1007/3-540-48194-X_6
https://doi.org/10.1016/j.jcss.2007.03.007
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1016/0097-3165(93)90095-P
https://doi.org/10.1016/0097-3165(93)90095-P
https://doi.org/10.1093/nargab/lqaf025
https://doi.org/10.1137/1.9781611972870.8
https://doi.org/10.1137/1.9781611972870.8
https://doi.org/10.1093/bioinformatics/btz272
https://doi.org/10.1109/TCBB.2005.12
https://doi.org/10.1016/J.TCS.2015.10.043
https://doi.org/10.1007/978-3-319-11918-2_14

L. Depuydt, J. Fostier, S. Gottlieb, G. Kucherov, K. Reinert, and L. Renders

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Tak Wah Lam, Ruigiang Li, Alan Tam, Simon C. K. Wong, Edward Wu, and Siu-Ming Yiu.
High throughput short read alignment via bi-directional BWT. In 2009 IEEE International
Conference on Bioinformatics and Biomedicine, BIBM 2009, Washington, DC, USA, November

1-4, 2009, Proceedings, pages 31-36. IEEE Computer Society, 2009. doi:10.1109/BIBM.2009.

42.

Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
methods, 9(4):357-359, 2012.

Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome biology, 10(3):R25,
2009.

Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows—Wheeler
transform. Bioinformatics, 25(14):1754-1760, 2009. doi:10.1093/bioinformatics/btp324.
Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows—Wheeler
transform. Bioinformatics, 26(5):589-595, 2010. doi:10.1093/BIOINFORMATICS/BTP698.
Ruigiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kristiansen, and
Jun Wang. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics,
25(15):1966-1967, June 2009. doi:10.1093/bioinformatics/btp336.

Huan Liu, Quan Zou, and Yun Xu. A novel fast multiple nucleotide sequence alignment
method based on FM-index. Briefings in Bioinformatics, 23(1):bbab519, 2022. doi:10.1093/
BIB/BBAB519.

Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homology search.
Bioinformatics, 18(3):440-445, March 2002. doi:10.1093/bioinformatics/18.3.440.

Veli Makinen, Niko Vélimaki, Antti Laaksonen, and Riku Katainen. Unified view of backward
backtracking in short read mapping. In Tapio Elomaa, Heikki Mannila, and Pekka Orponen,
editors, Algorithms and Applications: FEssays Dedicated to Esko Ukkonen on the Occasion
of His 60th Birthday, volume 6060 of Lecture Notes in Computer Science, pages 182-195.
Springer, 2010. doi:10.1007/978-3-642-12476-1_13.

Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. siam
Journal on Computing, 22(5):935-948, 1993. doi:10.1137/0222058.

Giovanni Manzini. Invited lecture: The Burrows-Wheeler transform: Theory and practice.
In Miroslaw Kutylowski, Leszek Pacholski, and Tomasz Wierzbicki, editors, Mathematical
Foundations of Computer Science 1999, 24th International Symposium, MFCS’99, Szklarska
Poreba, Poland, September 6-10, 1999, Proceedings, volume 1672 of Lecture Notes in Computer
Science, pages 34—47. Springer, 1999. doi:10.1007/3-540-48340-3_4.

Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal of the
ACM, 23(2):262-272, 1976. doi:10.1145/321941.321946.

Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31-88, 2001. doi:10.1145/375360.375365.

Christopher Pockrandt, Marcel Ehrhardt, and Knut Reinert. EPR-dictionaries: A practical and
fast data structure for constant time searches in unidirectional and bidirectional FM indices.
In S. Cenk Sahinalp, editor, Research in Computational Molecular Biology, pages 190-206,
Cham, 2017. Springer International Publishing. doi:10.1007/978-3-319-56970-3_12.
Christopher Maximilian Pockrandt. Approzimate string matching: improving data structures
and algorithms. PhD thesis, Freie Universitat Berlin, 2019.

Luca Renders, Lore Depuydt, Sven Rahmann, and Jan Fostier. Automated design of efficient
search schemes for lossless approximate pattern matching. In Jian Ma, editor, Research in
Computational Molecular Biology - 28th Annual International Conference, RECOMB 2024,
Cambridge, MA, USA, April 29 - May 2, 2024, Proceedings, volume 14758 of Lecture Notes in
Computer Science, pages 164-184. Springer, 2024. doi:10.1007/978-1-0716-3989-4_11.
Luca Renders, Lore Depuydt, Sven Rahmann, and Jan Fostier. Lossless approximate pattern
matching: Automated design of efficient search schemes. Journal of Computational Biology,
31(10):975-989, 2024. doi:10.1089/cmb.2024.0664.

9:15

Manzini's Festschrift

https://doi.org/10.1109/BIBM.2009.42
https://doi.org/10.1109/BIBM.2009.42
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/BIOINFORMATICS/BTP698
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1093/BIB/BBAB519
https://doi.org/10.1093/BIB/BBAB519
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1007/978-3-642-12476-1_13
https://doi.org/10.1137/0222058
https://doi.org/10.1007/3-540-48340-3_4
https://doi.org/10.1145/321941.321946
https://doi.org/10.1145/375360.375365
https://doi.org/10.1007/978-3-319-56970-3_12
https://doi.org/10.1007/978-1-0716-3989-4_11
https://doi.org/10.1089/cmb.2024.0664

9:16

Search Schemes for Approximate Pattern Matching: An Overview

34

35

36

37

38

39

40

41

42

43

44

Luca Renders, Kathleen Marchal, and Jan Fostier. Dynamic partitioning of search patterns
for approximate pattern matching using search schemes. iScience, 24(7):102687, 2021. doi:
10.1016/j.1isci.2021.102687.

Luis M. S. Russo, Gonzalo Navarro, Arlindo L. Oliveira, and Pedro Morales. Approximate string
matching with compressed indexes. Algorithms, 2(3):1105-1136, 2009. doi:10.3390/42031105.
Thomas Schnattinger, Enno Ohlebusch, and Simon Gog. Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Information and Computation, 213:13-22,
2012. doi:10.1016/J.1C.2011.03.007.

Enrico Siragusa, David Weese, and Knut Reinert. Fast and accurate read mapping with
approximate seeds and multiple backtracking. Nucleic acids research, 41(7):e78-e78, 2013.
Li Song and Ben Langmead. Centrifuger: lossless compression of microbial genomes for efficient
and accurate metagenomic sequence classification. Genome Biology, 25(1):106, 2024.
Wing-Kin Sung. Indexed approximate string matching. In Encyclopedia of Algorithms, pages
964-968. Springer, 2016. doi:10.1007/978-1-4939-2864-4_188.

Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.
doi:10.1007/BF01206331.

Niko Véliméki, Susana Ladra, and Veli Mékinen. Approximate all-pairs suffix/prefix overlaps.
Inf. Comput., 213:49-58, 2012. doi:10.1016/J.1C.2012.02.002.

Christophe Vroland, Mikael Salson, Sébastien Bini, and Héléne Touzet. Approximate search
of short patterns with high error rates using the 01*0 lossless seeds. Journal of Discrete
Algorithms, 37:3-16, 2016. doi:10.1016/j.jda.2016.03.002.

Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory (SWAT), pages 1-11. IEEE, 1973. doi:10.1109/SWAT.1973.13.
Pinglu Zhang, Huan Liu, Yanming Wei, Yixiao Zhai, Qinzhong Tian, and Quan Zou. FM-
Align2: a novel fast multiple nucleotide sequence alignment method for ultralong datasets.
Bioinformatics, 40(1):btae014, 2024. doi:10.1093/BIOINFORMATICS/BTAE014.

https://doi.org/10.1016/j.isci.2021.102687
https://doi.org/10.1016/j.isci.2021.102687
https://doi.org/10.3390/A2031105
https://doi.org/10.1016/J.IC.2011.03.007
https://doi.org/10.1007/978-1-4939-2864-4_188
https://doi.org/10.1007/BF01206331
https://doi.org/10.1016/J.IC.2012.02.002
https://doi.org/10.1016/j.jda.2016.03.002
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1093/BIOINFORMATICS/BTAE014

	1 Introduction
	2 Definitions
	3 Search schemes
	3.1 Design of search schemes
	3.2 Dynamic selection of search schemes
	3.3 Dynamic partitioning of search patterns

	4 Results
	4.1 Dataset
	4.2 Empirical evaluation of search schemes
	4.3 Effect of dynamic selection of search schemes

