An Efficient Heuristic for Graph Edit Distance

Xiaoyang Chen &

Department of Computer Science, Xidian University, Xi’an, China
Yujia Wang &

Department of Computer Science, Xidian University, Xi’an, China

Hongwei Huo! &

Department of Computer Science, Xidian University, Xi’an, China

Jeffrey Scott Vitter! =

Department of Computer Science, Tulane University, New Orleans, LA, USA
The University of Mississippi, MS, USA

—— Abstract

The graph edit distance (GED) is a flexible distance measure widely used in many applications.
Existing GED computation methods are usually based upon the tree-based search algorithm that
explores all possible vertex (or edge) mappings between two compared graphs. During this process,
various GED lower bounds are adopted as heuristic estimations to accelerate the tree-based search
algorithm. For the first time, we analyze the relationship among three state-of-the-art GED lower
bounds, label edit distance (LED), Hausdorff edit distance (HED), and branch edit distance (BED).
Specifically, we demonstrate that BED(G, Q) > HED(G, Q) and BED(G, Q) > LED(G, Q) for any
two undirected graphs G and Q. Furthermore, for BED we propose an efficient heuristic BED™ for
improving the tree-based search algorithm. Extensive experiments on real and synthetic datasets
confirm that BED™ achieves smaller deviation and larger solvable ratios than LED, HED and BED
when they are employed as heuristic estimations. The source code is available online.

2012 ACM Subject Classification Information systems — Query optimization

Keywords and phrases Graph edit distance, Label edit distance, Hausdorff edit distance, Branch
edit distance, Tree-based search, Heuristics

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.1
Category Research

Supplementary Material
Software (Source Code): https://github.com/Hongweihuo-Lab/Heur-GED [11]

Funding This work was supported in part by the National Natural Science Foundation of China
under Grant No. 62272358.

1 Introduction

Graphs are frequently used to represent a wide variety of various objects, such as networks,
maps, handwriting, molecular compounds, and protein structures. The process of evaluating
the similarity of two graphs is referred to as error-tolerant graph matching, aiming to find a
correspondence between their vertices. In this paper, we focus upon the similarity measure
graph edit distance (GED) because it can be applied to all types of graphs and can precisely
capture structural differences between the compared graphs. The GED of two graphs is
defined as the minimum cost of transforming one graph into another through a sequence

b corresponding author

© Xiaoyang Chen, Yujia Wang, Hongwei Huo, and Jeffrey Scott Vitter;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 1; pp. 1:1-1:18

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jackcxy@126.com
https://orcid.org/0000-0003-1858-2400
mailto:upcheers@gmail.com
https://orcid.org/0009-0001-3105-519X
mailto:hwhuo@mail.xidian.edu.cn
https://orcid.org/0000-0002-5436-1851
mailto:jsv@vitter.org
https://orcid.org/0000-0001-7970-6118
https://doi.org/10.4230/OASIcs.Grossi.2025.1
https://github.com/Hongweihuo-Lab/Heur-GED
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

1:2

An Efficient Heuristic for Graph Edit Distance

of edit operations (inserting, deleting and substituting vertices or edges). An edit cost is
assigned to each edit operation to measure its strength, which can be obtained by combining
specific knowledge of the domain or learning from a set of sample graphs [14].

However, computing the GED is an NP-hard problem [30] and usually based upon the
tree-based search algorithm. This search tree enumerates all possible mappings between
vertices (or edges) of two compared graphs, where the inner nodes denote partial mappings
and the leaf nodes denote complete mappings. Most existing GED computation methods
employ different search paradigms to traverse this search tree to seek for the optimal mapping
that induces the GED. Riesen et al. [25, 26] proposed the standard method, A*-GED, based
upon the best-first search paradigm. It needs to store numerous inner nodes, resulting in
high memory consumption. To overcome this bottleneck, Abu-Aisheh et al. [3] proposed a
depth-first search based algorithm, DF-GED, whose memory requirement increases linearly
with the number of vertices of graphs. On the other hand, Chen et al. [9] introduced a method
for the GED computation based upon beam-stack search [28], achieving a flexible tradeoff
between memory consumption and the time overhead of backtracking in the depth-first
search. Chang et al. [8] developed a unified framework that can be instantiated into either a
best-first search approach or a depth-first search approach. Gouda et al. [17] proposed a novel
edge-mapping based approach, CSI_GED, and also employed the depth-first search paradigm.
CSI_GED works only for the uniform cost model, and Blumenthal et al. [4, 6] generalized
it to cover the non-uniform cost model. Kim [19] developed an efficient GED computation
algorithm using isomorphic vertices [9]. Liu et al. [22] explored a learning-based method
for the approximate GED computation. Piao et al. [23] propose a deep learning method for
the GED computation. It is worth mentioning that many researchers have proposed various
indexing techniques [31, 8, 10] to accelerate graph similarity searches under the GED metric.
They use the above GED computation methods as the final phase to verify the candidate
graphs that satisfy the GED constraint.

In the tree-based search algorithm, a heuristic estimation is usually adopted to prune the
useless search space to accelerate the search process. In order to ensure that the optimal
mapping is not erroneously pruned, this heuristic function must be admissible; namely, it
estimates the cost of a tree node that is less than or equal to the real cost. In the previous
works A*-GED and DF-GED, they adopted the label edit distance (LED) as the heuristic, which
calculates the minimum substitution cost of vertices and edges of two compared graphs.
After that, Fischer et al. [15, 16] proposed the Hausdorff edit distance (HED) as a heuristic
estimation. HED, based upon Hausdorff matching [29], performs a bidirectional matching
between two graphs and allows multiple assignments between their vertices. Recently,
Blumenthal et al. [5] proposed another effective GED lower bound, branch edit distance
(BED), which also can be adopted as a heuristic estimation.

As observed in other studies [7, 15, 27], the higher the heuristic estimates the cost, the
better the tree-based search algorithm performs. The following question naturally arises:
Which of these three state-of-the-art GED lower bounds (namely, LED, HED, or BED) is more
effective? In this paper, we first analyze the relationship among these three lower bounds and
then propose an effective heuristic estimation. Our contributions are summarized as follows:
(1) We analyze the relationship among LED, HED and BED for the first time, and we derive

that BED(G,Q) > HED(G, Q) and BED(G,Q) > LED(G, Q) for any two undirected

graphs G and Q.

(2) We propose an efficient heuristic estimation BED" based upon BED, and demonstrate
that BED™ is still admissible.
(3) We conduct extensive experiments to confirm BED’s effectiveness on the real and

synthetic datasets. The source code is available online [11].

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

The rest of this paper is organized as follows. In Section 2, we give the definition of the
graph edit distance and revisit three state-of-the-art GED lower bounds. In Section 3, we
theoretically analyze the relationship between LED, HED and BED. In Section 4, we propose
the heuristic function BEDT for improving the GED computation. In Section 5, we report
the experimental results. Finally, we summarize this paper in Section 6.

2 Graph edit distance

In this paper, we consider undirected, labeled graphs without multi-edges or self-loops. A
labeled graph is a triplet G = (Vg, Fq, L), where Vi is the set of vertices, E¢ is the set of
edges, L : Vg U Eg — X is a labeling function that assigns a label to a vertex or an edge,
and ¥ is a set of labels. Also, we use a special symbol ¢ to denote a dummy vertex or a
dummy edge.

Given two graphs G and @, six edit operations [18, 25, 21, 5] can be used to transform G
to @ (or vice versa): inserting or deleting a vertex or an edge, and substituting the label
of a vertex or an edge. We denote the label substitution (or simply substitution) of vertices
u € Vg and v € Vg by (u — v), the deletion of u by (u — ¢), and the insertion of v by
(e — v). For the three edit operations on edges, we use similar notation.

An edit path P = (p1,p2,...,pk) between G and @ is a sequence of edit operations that
transforms G to Q, such as G = G0 2 .. gt 22 gitl 25, Gk — . where graph Git!
is obtained by performing the edit operation p;y; on graph G*, for 0 < i < k — 1. During
this transformation, each edit operation p; is assigned a penalty cost ¢(p;) to reflect whether
it can strongly change a graph. Note that the cost of editing two dummy vertices (or edges)
is 0; that is, ¢c(¢ = ¢) = 0. Thus, P’s edit cost is defined as Zle c(pi). We define the graph
edit distance as follows:

» Definition 1. Given two graphs G and Q, the graph edit distance between them, denoted
by ged(G,Q), is defined as the minimum cost of transforming G to Q, namely,

9ed(G, Q) = minper(c,q) >, __ cpi) (1)

p; €P

where T (G, Q) is the set of all edit paths between G and Q, and c(p;) is edit operation p;’s
cost.

Vol

Hereafter, for ease of presentation, we denote V& = Vg U {e,... e} and Vg =VoU
Vel

—_—
{e,..., e} as the expanded sets of Vz and E¢, respectively, so that V5 and V§ have the same
|Eq] |Ec|
— —
number of vertices. Similarly, EG = Eg U {e,...,e} and Ef = Eq U {e, ..., e} denote the
expanded sets of Eg and Eg, respectively.

2.1 State-of-the-art GeED lower bounds

Below we introduce three state-of-the-art GED lower bounds, which can be used as heuristic
estimations in the tree-based search algorithm to compute GED. Each of the methods gives a
lower bound on GED because the operations are done in sets that do not have to be consistent
with one another. For example, in the first method LED described below, the edit operations
on the vertex labels can be done independently of the edit operations on the edge labels, and
thus they may not be globally consistent.

1:3

Grossi's Festschrift

1:4

An Efficient Heuristic for Graph Edit Distance

Label Edit Distance. Riesen et al. [27, 26] proposed the label edit distance (LED), which is
the minimum cost of substituting vertices and edges of two graphs.

» Definition 2 (Label edit distance). Given two graphs G and @Q, the label edit
distance between them is defined as LED(G,Q) = M/ (G,Q) + Ap(G,Q), where
aw(G,Q) = ming.ve ve Zuevg c(lu — o(u)) is the minimum cost of sub-
stituting wvertices of G and Q, and ¢ is a bijection from V5 to V§; and
Ae(G, Q) = ming. ge - By Ze(u,u')eEg cle(u,u') = p(e(u,u’))) is the minimum cost of sub-
stituting edges of G and Q, and ¢ is a bijection from Eg, to Eg,.

Hausdorff Edit Distance. Inspired by the Hausdorff distance [29] between two finite sets,
Fischer et al. [16] proposed the Hausdorff edit distance (HED) between two graphs G and Q.
The key ideas of HED are to perform a bidirectional matching between G and @ and to allow
multiple assignments between their vertices.

» Definition 3 (Hausdorff edit distance). Given two graphs G and Q, their
Hausdorff edit distance is defined as HED(G,Q) = 3 oy, minyev,uey fu(u,v) +
Z%VQ min,evyuqe) fr(u,v), where frg(u,v) is the Hausdorff cost of matching vertex u
to verter v.

The Hausdorff vertex matching cost fr(u,v) considers not only the two vertices u € Vg
and v € Vg but also their neighboring edges.

» Definition 4 (Neighboring edges). Given graph G and a vertex u € Vg, the neighboring
edges N, of u are defined as N, = {e(u,u’) : ' € Vg ANe(u,u') € Eg}.

We define fy(u,v) as

clu—e)+ . en, @ if v=rg¢;
fa(u,v) =19 cle =v)+>0, cn, C(EgeZ) if u=e¢; (2)

HED(Ny ,Ny)
2

2

c(u—v)+

otherwise.

Similarly to Definition 3, the Hausdorff edit distance HED(N,,, N,,) between N,, and N, is
defined as

HED(N,, N,) = i , i , 3
() e;\/ ezefj{}iful{e}fH(ﬁ €2)+€;\[elerﬁig{a}fH(el e2) (3)

where fr(e1,es) is the cost of matching two edges such that

cler —e) if eg =¢;
fuler,e2) =< cle > e2) if eg =g (4)

c(e1—e .
w otherwise.

Branch Edit Distance. Blumenthal et al. [5] recently proposed the branch edit distance
(BED), which computes the minimum cost of editing branch structures of two graphs.

» Definition 5 (Branch structure). The branch structure of vertex w in graph G is defined as
B, = (u, Ny), where N, is the set of neighboring edges of u.

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

Given two branch structures B, and B,, the minimum cost of editing B, into B, is
defined as

B 1 . / /
ol =cum g i 3 el el (5)

[N [V |
where N = N, U{e,...,e} and N = N, U {e,...,e} are expanded sets of N,, and N,,

respectively, and g is a bijection from NS to N:.

» Definition 6 (Branch edit distance). Given two graphs G and Q, the branch edit distance
between them is defined as BED(G,Q) = min,:vevs Zuevé fB(u, p(u)), where p is a
bijection from V¢ to V5, and fp(-,-) is defined in (5).

3 Tightness analysis

In this section, we analyze the tightness of the three GED lower bounds: LED, HED and BED.
Specifically, we will prove that BED is the strongest of all; that is, for any two undirected
graphs G and @, we have BED(G,Q) > LED(G, Q) and BED(G,Q) > HED(G, Q).

3.1 Relation of LED and BED
» Theorem 7. Given two graphs G and Q, we have BED(G,Q) > LED(G, Q).

Proof. For ease of proof, we insert dummy vertices and edges into G to make it become a
complete graph with (|Vg| + [Vgl|) vertices. Similarly, we transform) into a complete graph
that also has (|Vg| + |Vg|) vertices. Then, we can simplify (5) as

B 1 . / ’
a0 =ea o)t i, S el o)

1 . ’ ’
=c(u—v)+ 3 C:VG\{IILI}}E}VQ\{’U} u,e‘%{u} cle(u,u’) = e(v,((u)))
= c(u = v) + % > ele(u,u) = e(v, Grin (@)

u' €Ve\{u}

u,v
min

where is the bijection from Vg \{u} to Vo\{v} for which fg(u,v) achieves the minimum

value. Thus, we have
BED(G,Q)= min > fp(u,p(u))

Va—V
pve QuGVG

5 {etus o)+ 5 X eleluanr) - elpinlu). G2 0}

uEVe u' €Vg\{u}
1 w,u’
= > c(u— puin(w) + 3 Do > ele(u,) = e(pmin(w), G ()
ueVa ueVeg u' eVg\{u}
= > clu=pun(w)+ D cle(u,u) = E(e(u,u)))
ueVeg e(u,u’)EEqG
> . . / /
- ¢2‘}2£va UEZV:G C(U ~ ¢(U)) + <p:Er2E>1EQ e(u uZ’:)GEG C(e(u, B) - Sp(e(u, B))

=M (G,Q) + Ae(Eg, Eq) = LED(G, Q)

1:5

Grossi's Festschrift

1:6

An Efficient Heuristic for Graph Edit Distance

where puin is the bijection from Vi to Vg for which BED(G, Q) achieves the minimum
value, and ¢ is the bijection from E¢ to Eq satisfying e(pmin(u), (i (u'))) = &(e(u, u’)) for

Vu € Vg, u' € Va\{u}. <
3.2 Relation of HED and BED

> Lemma 8. Given two vertices u € V& and v € V§, then we have

F(u.v) < { {B(uw) ifuzforvzs;
5fB(u,v) otherwise.
where fr(u,v) and fp(u,v) are defined in (2) and (5), respectively.
The proof of Lemma 8 is in Appendix A.
» Theorem 9. Given two graphs G and @, we have BED(G,Q) > HED(G, Q).

Proof. By fr(u,v)’s definition in (2), we know that when u = ¢, min,ev,u(e} fu(e,v) =
Ju(g,€) = 0; and similarly when v = ¢, minyev,uqey fr(u, €) = fu(e,€) = 0. We can rewrite
HED(G, Q) as

HED(G = i i
(G,Q) > ve‘rglg{s}fH(u,v)Jr > peiin fa(u,v)
ueVg veVg
= D min fa(wv)+) min fia(u,0)
uevg @ veV§
= Y fulu,m@)+ Y fulm(v),v))
ueVg VeV
= Z {fH(u7 1 (u)> + fH (7T2(pmin(u))a pmin(u)) }7 (6)
ueVE
where 71 is a mapping from V§ to V§ satisfying 1 (u) = arg minyevg fu(u,v),; mo is

a mapping from V§ to V¢ satisfying ma(v) = argminyevg fu(u,v); and pmin is the bijection
from V§ to V{5 for which BED(G, Q) achieves the minimum value. We know that

BED(G,Q) = Y f5(u, pmin(w)). (7)

ueVes
By (6) and (7), we can complete the proof by showing that

fH (u’ 1 (u>) + fH (772 (pmin(u)>7 Pmin (u)) < fB (u’ Pmin (u))

We do so by considering the following four exhaustive cases:

Case I. When u = ¢ and pmin(u) =& then fH(uaﬂ-l(u)) + fH(ﬂ-Q(pmin(u))?pmin(u)) <
fule,e) + fule,e) = fp(e,e) = 0, by the definitions of 71, 72, and pPmin.

Case Il. When u # ¢ and ppmin(u) = ¢, then fg(u,m1(v)) + fu(m2(pmin (1)), Pmin (u)) <
fu(u,e)+ fu(e,e) = fu(u,e), by the definitions of w1, 72, and pmyin. By Lemma 8, we
know that fr(u,e) < fp(u,e) = fB(u, pmin(w)).

Case Ill. When u = ¢ and ppin(u) # €, the analysis is similar to that of Case II.

Case IV. When u # ¢ and pmin(u) # €, then we have fg(u, 71 (uw)) < fr(u, pmin(u)) and
fr(m2(pmin (1)), pmin (@) < fH (U, pmin(w)), by the definitions of my, 72, and pmin. By
Lemma 8, we know that fr (u, pmin()) < 3 f5(u, pmin(u)). Thus, we have fp(u, w1 (u)) +
fu (7T2(pmin(u))7pmin(“)) <2x %fB(uvpmin(u)) = fB (U, pmin(u)). <

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

4 Tree-based search algorithm

The previous section showed that BED achieves the tightest GED lower bound. In this section,
based upon BED we propose an efficient heuristic estimation to improve the tree-based search
algorithm [2, 3] for the GED computation.

4.1 Search tree

Computing the GED of graphs G and (@ is typically based upon a tree-based search procedure
that explores all possible graph mappings from G to . Starting from a dummy node, root
= (), we logically create the search tree layer by layer by iteratively generating successors
using BasicGenSuccr [9]. This search space can be organized as an ordered search tree, where
the inner nodes denote partial graph mappings and the leaf nodes denote complete graph
mappings. Such a search tree is created dynamically at runtime by iteratively generating
successors linked by edges to the currently considered node. For more details, please refer to
Section 2 in the reference [9].

4.2 Heuristic cost estimation

For a node r in the search tree, let h(r) be the estimated cost from r to its descendant
leaf node that is less than or equal to the real cost. Based upon BED, we introduce how to
estimate h(r) in the tree-based search algorithm.

4.2.1 Heuristic function

Consider an inner node r = {(u1 — vj,),..., (w — v;,)}, where vj, is ux’s mapped vertex,
for 1 < k < ¢. We divide G into two subgraphs G} and G2, where G! is the mapped part
of G such that Vg1 = {uy,...,w} and Eg1 = {e(u,v) : u,v € Vg1 Ae(u,v) € Eg}, and G? is
the unmapped part such that Vgz = Vo \Ver and Egz = {e(u,v) : u,v € Vgz Ae(u,v) € Eg}.
We obtain Q! and Q2 similarly.

Clearly, the lower bound BED(G?,@Q?) can be used to estimate r’s cost. However,
BED(G?,Q?) has not covered the potential edit cost on the edges between Gl (resp., Q1)
and G? (resp., Q?). Recently, [8, 9] proposed two different methods to cover this potential
cost; nevertheless, these two methods only worked for the uniform cost function (i.e., for
which the cost of each edit operation is 1). We expand the method in [8] to support for any
cost function.

» Definition 10. Given vertices u € G2 and v € Q?, we define the cost of matching u to v
as f3(u,v) = felu,v) + Zu’evcl cle(u,u’) — e(v,v")), where v’ is the mapped vertex of the
already processed verter u', and fg(u,v) is the minimum cost of transforming B, to B,,
which we defined in (5).

When there is no edge between u and ', we set e(u, u') = ¢, and similarly for e(v,v").
Based upon f7 (u,v), we define the improved lower bound BED* as

T2 H2) : +
BED*(G2,Q?) = GXV: I (u, p(u) 8)

» Theorem 11. Given a node r in the GED tree of graphs G and Q, then BEDT(G?,Q?) >
BED(G?,Q2), where G2 and Q? are the unmapped subgraphs of G and Q, respectively,
BED™(-,-) and BED(-,-) are defined in (8) and Definition 6, respectively.

1:7

Grossi's Festschrift

1:8

An Efficient Heuristic for Graph Edit Distance

Proof. We trivially obtain this theorem since f3 (u,v) > f5(u,v) for Vu € Vg2, v € V2. <

» Theorem 12. Given a descendant leaf node s of r, the heuristic estimation h(r) =
BED™(G?,Q?) is admissible; that is, h(r) < g(s) — g(r), where g(-) gives the incurred cost
from the root node to the currently considered node.

Proof. For ease of proof, we insert dummy vertices and edges into G to transform it to a
complete graph with (|Vg| + |Vg|) vertices. Similarly, we transform @) to a complete graph
that also has (|Vg| + |Vgl) vertices.

Consider an internal node r = {(u1 — v;,),..., (ug — v;,)} in the search tree, where v;,
is the mapped vertex of ug, for 1 < k < £. For easy presentation, hereafter we use r(uy) to
denote ug’s mapped vertex, i.e., vj, = r(ux). Given a descendent leaf node s (i.e., s is a
complete vertex mapping from G to @) of r, then the incurred cost of s is

o)=Y clwrs@) + 5 3 S lelwu) > els(u),s(w))

u€Va u€Vag u' eVg\{u} (9)
= Z c(u — s(u)) + Z cle(u,u") — e(s(u), s(u)))
ueVa e(u,u’)e(vzg)

As we know, 7 induces an edit path transforming G} to QL, where G and Q! are the
already mapped subgraphs of G and @Q, respectively, and Vg1 = {u1,...,up} and Vo1 =
{r(u1),...,r(ug)}. According to (9), we know that

giry= Y clu—=r@) + D elelu) = e(r(u), ()

\Y
UGVG} e(u,u/)e(C;%)

Let w = s\r be the partial mapping that contains the vertex mapping pairs belong to s
but not r; namely, w = {(u — s(u)) : u € Vg\Vg1}. We can obtain that

g(s) —glr)= D clu—=s) + Y eleluu) = e(s(u),s(w)))

u€Vq e(u,u/)e(VQG)
—{ Sooclw—r) + > cle(uu) — e(r(u),r(u')))}
uEVGT{ e(u,M)E(V‘-;’l)
= Z c(u — w(u)) + Z cle(u,u') — e(w(u),w(u’)))
uGVGfﬁ e(u,u’)e(vé"?«)

+ Z Z cle(u,u') = e(w(u),r(u')))

’
uGVG% u EDG}

= Z {c(u — w(u)) + % Z cle(u,u’) = e(w(u),w(u’)))
= W eVgz\{u}
b eleluat) > el) |
u’EVGi

= Y Silnwt) > min o) = BED*(GEQ2) = hir)
UGVG% e Q7

where Vg2 = Vg\Vgr and Vg2 = V\V:. The second equality is due to (VQG) = (Vgl) U

(Vgi) U (Ve x Vgz) when Vg is partitioned into two disjoint sets Vg1 and V. <

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

We give an example in Appendix B of computing three GED lower bounds: LED, HED
and BED. The same optimization that produces BED+ from BED can be applied to LED
and HED to achieve enhanced heuristics LED+ and HED+, but we do not include them in
this paper.

4.3 Algorithm

In this section, we show how to incorporate the heuristic estimation BED™ into the anytime-
based GED computation algorithm [2]. The reason we consider the anytime-based algorithm
is that it is flexible and can control the algorithm to output tighter and tighter GED upper
bounds until the exact GED value by setting more and more running time.

Algorithm 1 gives the anytime-based algorithm for computing the GED, where t;,.x is the
user-defined maximum running time. We perform a depth-first search over the GED search
tree of G and @ to find better and better GED upper bounds until the running time #t
reaches tax. To accomplish this, we first employ the BP [25] algorithm to fast compute an
initial GED upper bound ub; then, we adopt a stack S to finish the depth-first search. Each
time we pop a node g from S. If ¢ is a leaf node, then we find a better solution. Otherwise,
we call procedure BasicGenSuccr [9] (see Appendix C) to generate ¢’s successors and then
insert them into S. During this process, we adopt the branch-and-bound strategy to prune
the useless space: for each successor r, if g(r) + h(r) > ub, we can safely prune it, where
h(r) = BED"(G?,Q?) is defined in (8).

Algorithm 1 Anytime-based GED computation.

Input :G and @, and tmax

Output : best GED upper bound for tmax
initialize ub with the BP algorithm

root < {},S < {}

S.push(root)

while S # 0 and #t < tmax do

q + S.pop()

if q is a complete mapping then

ub < g(q), export ub and ¢
continue

© N O oA W N

succ < BasicGenSuccr(q)

foreach r € succ do

if g(r) + h(r) < ub then
‘ S.push(r)

export ub and ¢

e
= O

-
® o

5 Experiments

5.1 Datasets and settings

Datasets. We chose four real (GREC, MUTA, PRO, and CMU) and one synthetic (SYN)
datasets in the experiments. The datasets GREC, MUTA, and PRO were taken from the TAM
Graph Database Repository [24]; the CMU dataset could be found at the CMU website [13]; and
the SYN dataset was generated by the synthetic graph generator GraphGen [12]. Following
the same procedure in [2, 21], we selected some subsets of GREC, MUTA, and PRO as
the tested datasets, respectively, where each subset consists of graphs that have the same

1:9

Grossi's Festschrift

1:10 An Efficient Heuristic for Graph Edit Distance

Table 1 Summary of characteristics of datasets and cost functions used.

Dataset #Graphs|V| |E| vertex labels edge labels ¢, ¢ « Cos Ces
GREC 40 12.5 17.5 (x,y) coord. Line type 90 15 0.5 Ext. ED Dirac
MUTA 70 40 41.5 Chem. symbol Valence 11 1.1 0.25 Dirac Dirac
PRO 30 30 58.6 Type/AA-seq. Type/length 11 1 0.75 Ext. SED Dirac
CMU 111 30 79.1 None Distance co — 05 0 L1 norm
SYN 100 14.5 20 Symbol Symbol 0.3 0.5 0.75 Dirac Dirac

number of vertices. Specifically, the subsets of CREC contain 5, 10, 15, and 20 vertices,
respectively; the subsets of MUTA contain 10, 20, ..., 70 vertices, respectively; the subsets
of PRO contain 20, 30, and 40 vertices, respectively; and each subset consists of 10 graphs.

Table 1 summarizes the characteristic and applied cost function of each dataset. ED and
SED are short for Euclidean distance and string edit distance functions, respectively. ¢, is
the cost of inserting/deleting a vertex; ¢, is the cost of inserting/deleting an edge; ¢,s and
Ces are the costs of substituting a vertex and an edge, respectively. In addition, we introduce
a parameter « to control whether edit operations on vertices or edges are more important.

Settings. We conducted all the experiments on a HP Z800 PC running the Ubuntu 12.04
LTS operating system and equipped with a 2.67GHz CPU and 24 GB of memory. We
implemented the algorithm in C++, using -O3 to compile and run it.

5.2 Evaluation metrics

We discuss two metrics to evaluate algorithm performance: deviation (dev) [1] and solv-
able ratio (sr) [9]. The metric dev measures the deviation generated by an algorithm.
Formally, given two graphs G and @, the deviation of the two graphs can be computed
as deviation(G, Q) = |dis(G,Q) — R(G,Q)|/R(G,Q), where dis(G, Q) is the (approximate)
GED value produced by the algorithm, and R(G, Q) is the best GED value produced in all
the experiments done on the graph database repository in [1]. Based upon the pairwise
comparison model, the deviation on the dataset G can be computed as

1 ..
dev = m ZGeg ZQeg deviation(G, Q) (10)

The metric sr measures how often the exact GED value is obtained when reaching
the maximum running time threshold ¢,,.x. Formally, let slove(G, @) indicate whether an
algorithm outputs the exact GED of G and) within t,,,x time; in other words, if the
algorithm requires less than t,,.x time to output the GED, slove(G,Q) = 1; otherwise,
slove(G, Q) = 0. The solvable ratio (sr) on the dataset G can be computed as

1
sr =] Zceg ZQEQ slove(G, Q) (11)

Obviously, a smaller dev and a larger sr reflects a better performance of an algorithm.

5.3 Experimental results

As described earlier in this paper, we first analyzed the relation of three GED lower bounds
(i.e., LED, HED and BED). Then based upon BED we proposed an efficient heuristic estimation
BED™T. Thus, it is necessary to evaluate the contribution of these lower bounds to the GED
computation.

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

5.3.1 Tightness of LED, HED and BED

In this section, we evaluate the tightness of three GED lower bounds LED, HED and BED as
well as their running time. Table 2 shows the obtained results, where the abbreviation “ms”
represents milliseconds.

As shown in Table 2, BED achieves the smallest dev, which means that BED is closest
to the exact GED value. This result is consistent with the analysis in Section 3, i.e.,
BED(G, Q) > HED(G, Q) and BED(G, Q) > LED(G, Q) for any two graphs G and Q. We
also find in most cases tthat LED performs better than HED; the reason is that HED allows
multiple assignments between vertices of G and @ and greedily selects matched vertices with
the lowest cost.

We also list the running time of each method in Table 2. It can be seen from this table
that HED runs faster than LED and LED runs faster than BED. The reason is that HED runs
in quadratic time, while both LED and BED run in cubic time. LED independently considers
the cost of substituting vertices and edges and ignores the structures, thus it has a better
running time than BED.

Table 2 Deviation (%) and running time (ms) of LED, HED, and BED.

Datasets LED HED BED
dev time dev time dev time
GREC 4.41 0.38 17.45 0.29 3.54 0.52
MUTA 12.54 1.07 30.13 0.47 11.49 2.72
PRO 4.61 3.75 21.31 2.84 3.25 6.07
CMU 61.56 9.53 57.6 3.77 25.1 13.2
SYN 67.41 0.28 91.92 0.14 46.61 0.45

5.3.2 Effect of heuristic

Observing that BED produces the tighter lower bound than LED and HED, we propose BED™
as a heuristic estimation to improve the GED computation. To achieve the comparison, we
adopted LED, HED, BED, and BED™ as the heuristic estimations, respectively, and fixed the
running time ¢, = 10* ms. Table 3 lists the obtained deviation dev and solvable ration sr.

Table 3 Deviation (%) and solvable ratio (%) of of LED, HED, BED, and BED™.

Datasets LED HED BED BED™
dev sT dev sr dev sr dev ST
GREC 0.36 69.87 0.56 54.38 0.22 67.88 0.01 920
MUTA 5.56 3.47 4.85 3.27 4.49 3.51 2.6 22.33
PRO 1.27 4 0.71 3.56 0.68 4.22 0.06 4.22
CMU 109.89 19.06 49.18 19.06 52.83 31.16 2.97 75.79
SYN 8.79 8.4 9.48 4.18 7.96 7.48 0.17 94.34

From Table 3, we know that using BED™ as a heuristic can produce the smallest dev.
This is due to the fact that BEDT produces a higher estimated bound. For the solvable
ratio sr, we also find that BED™T achieves the best performance.

We also varied the running time #,,.y from 10' ms to 10° ms in order to evaluate the
above heuristic estimations under different running times. From Figure 1, as the running
time tax increases, using the above four heuristic estimations we obtain lower and lower

1:11

Grossi's Festschrift

1:12

An Efficient Heuristic for Graph Edit Distance

deviation dev as well as higher and higher solvable ratio sr. Also, we find in most cases
that BEDT achieves the best dev and sr under both small (e.g., 10> ms) and large (e.g.,
10° ms) running times. Compared with the widely used heuristic estimation LED, using BED*
can decrease the dev by 72.2%, 34.1%, 48.1%, 39.4%, and 52.1% on average on the GREC,
MUTA, PRO, CMU, and SYN datasets, respectively. Using BEDT can increase the sr by
54.3%, 293.2%, 3.4%, 113.1%, and 702.8% on average on the five above datasets, respectively.
Thus, we conclude that using BEDT as a heuristic estimation can greatly improve the GED
computation.

GREC MUTA PRO
r T r r r r r r r r . T T T T T
ALED 2n 1
= a1t g SR | [1
= = = 4| i
2 05f . 2 s5p — 2
= = Z 05| [aLED i
8 5 & OHED
= = - @ BED
of 1 or 1 O mBED* 1
I | I I I I I I I I [I I I I
10" 10% 10* 10t 10° 10! 10* 10° 10t 10° 10! 102 10% 10t 10°
running time #,,0, (ms) running time £, (ms) running time #,,5, (ms)
CMU SYN
r r r r r r r r r r
ALED ALED
150} i 30
= S
< 100} i < 200 1
g g
t=1 i<}
= s0p i = 10p 1
= z
3 3
of - of .
I I I I I I I I I I
10! 10? 10° 10* 10° 10! 102 10° 10* 10°
running time £, (ms) running time #,,5, (ms)
GREC MUTA PRO
r T r r T r r r r r r r r r r
100 | |ALED L ALED ALED
OHED [|oHED 1 __ 42|OHED 4
= S0 @ BED < @ BED X @ BED
& MBED* EBED* ~ 4 |MBED" u
2 sl . g 7 I 2
z 0 = = 380 1
i 2 2
o @ o
= 40f r = 10f 1 = 36} 1
E} = [
E i =
2 a0l L 2 2 34 —
(U 1
I | I I | I I I I I 32 i i i |
10" 10? 10° 10* 10° 10" 10? 10% 10* 10° 10! 102 10° 10* 10°
running time #,,q, (ms) running time ¢,,q, (ms) running time #,,q, (ms)

CMU SYN
100 r T T T T i T T T T
ALED ALED
. OHED __ 100/ {oHED
< 80 eBED i IS @BED
= mBED* ~ S0fmBED*
g oo i S 60|
= =}
o 40|
l I E
£ 20|
S
2 o0 Il 2
ol
I I I I I I I I I I
10! 102 10° 10t 107 0t 102 10° 10t 107
running time #,,q, (ms) running time #,,q, (ms)

Figure 1 The dev (top two rows) and sr (bottom two rows) under different running time.

6 Conclusion and future works

In this paper, we analyze the relationship among three state-of-the-art GED lower bounds
that are widely used as heuristic estimations in the tree-based search algorithm for the GED
computation. Specifically, we demonstrate that BED(G, Q) > LED(G, Q) and BED(G, Q) >

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

HED(G, Q) for any two undirected graphs G and @. Furthermore, based upon BED we
propose an efficient heuristic estimation BED™ and demonstrate that BED™ still estimates
a cost that is not greater than the real cost. Experimental results on four real and one
synthetic datasets confirm that BED can achieve the best performance under both small
and large running time.

When calculating the heuristic estimation BED™ (G?,Q?), we first compute the trans-
formation cost (i.e., fg(+,)) of two compared branch structures. In fact, the transformation
cost of these two branch structures may have been calculated many times in the previous
traversal of the search tree. Future work will consider how to build a suitable index structure
to maintain the transformation cost of these traversed branch structures in order to accelerate
the computation of BED™ (G2, Q?).

—— References

1 Z. Abu-Aisheh, R. Raveaux, and J. Y. Ramel. A graph database repository and performance
evaluation metrics for graph edit distance. In GbRPR, pages 138-147, 2015.
2 7. Abu-Aisheh, R. Raveaux, and J. Y. Ramel. Anytime graph matching. Pattern Recogn Lett.,
84:215-224, 2016. doi:10.1016/J.PATREC.2016.10.004.
3 Z. Abu-Aisheh, R. Raveaux, J. Y. Ramel, and P. Martineau. An exact graph edit distance
algorithm for solving pattern recognition problems. In ICPRAM, pages 271-278, 2015.
4 D. B. Blumenthal and J. Gamper. Exact computation of graph edit distance for uniform and
non-uniform metric edit costs. In GbRPR, pages 211-221, 2017.
5 D. B. Blumenthal and J. Gamper. Improved lower bounds for graph edit distance. IFEE
Trans. Knowl Data Eng., 30(3):503-516, 2018. doi:10.1109/TKDE.2017.2772243.
6 D. B. Blumenthal and J. Gamper. On the exact computation of the graph edit distance.
Pattern Recogn Lett., 134:46-57, 2020. doi:10.1016/J.PATREC.2018.05.002.
7 B. Bonet and H. Geffner. Planning as heuristic search. Artif. Intell., 129(1-2):5-33, 2001.
doi:10.1016/S0004-3702(01)00108-4.
8 L. Chang, X. Feng, X. Lin, L. Qin, and W. Zhang. Efficient graph edit distance computation
and verification via anchor-aware lower bound estimation. CoRR, 2017. arXiv:1709.06810.
9 X. Chen, H. Huo, J. Huan, and J. S. Vitter. An efficient algorithm for graph edit distance
computation. Knowl.-Based Syst., 163:762—775, 2019. doi:10.1016/J.KNOSYS.2018.10.002.
10 X. Chen, H. Huo, J. Huan, J. S. Vitter, W. Zheng, and L. Zou. MSQ-Index: A succinct
index for fast graph similarity search. IEEE Trans. Knowl Data Eng., 33(6):2654-2668, 2021.
doi:10.1109/TKDE.2019.2954527.
11 X. Chen, Y. Wang, H. Huo, and J. S. Vitter. An efficient heuristic for graph edit distance
[source code], June 2019. URL: https://github.com/Hongweihuo-Lab/Heur-GED.
12 James Cheng, Yiping Ke, and Wilfred Ng. GraphGen — a synthetic graph data generator.
URL: https://cse.hkust.edu.hk/graphgen/.
13 CMU house and hotel datasets. URL: https://github.com/dbblumenthal/gedlib/blob/
master/data/datasets/CMU-GED.
14 X. Cortés and F. Serratosa. Learning graph-matching edit-costs based on the optimality of the

oracle’s node correspondences. Pattern Recogn Lett., 56:22-29, 2015. doi:10.1016/J.PATREC.

2015.01.009.

15 A. Fischer, R. Plamondon, Y. Savaria, K. Riesen, and H. Bunke. A Hausdorff heuristic for
efficient computation of graph edit distance. Structural, Syntactic, and Statistical Pattern
Recognition, LNCS 8621:83-92, 2014.

16 A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke. Approximation of graph
edit distance based on Hausdorfl matching. Pattern Recogn., 48(2):331-343, 2015. doi:
10.1016/J.PATC0G.2014.07.015.

17 K. Gouda and M. Hassaan. CSI_GED: An efficient approach for graph edit similarity
computation. In ICDE, pages 256275, 2016.

1:13

Grossi's Festschrift

https://doi.org/10.1016/J.PATREC.2016.10.004
https://doi.org/10.1109/TKDE.2017.2772243
https://doi.org/10.1016/J.PATREC.2018.05.002
https://doi.org/10.1016/S0004-3702(01)00108-4
https://arxiv.org/abs/1709.06810
https://doi.org/10.1016/J.KNOSYS.2018.10.002
https://doi.org/10.1109/TKDE.2019.2954527
https://github.com/Hongweihuo-Lab/Heur-GED
https://cse.hkust.edu.hk/graphgen/
https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/CMU-GED
https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/CMU-GED
https://doi.org/10.1016/J.PATREC.2015.01.009
https://doi.org/10.1016/J.PATREC.2015.01.009
https://doi.org/10.1016/J.PATCOG.2014.07.015
https://doi.org/10.1016/J.PATCOG.2014.07.015

1:14

An Efficient Heuristic for Graph Edit Distance

18

19

20

21

22

23

24

25

26

27

28

29

30

31

A

D. Justice and A. Hero. A binary linear programming formulation of the graph edit distance.
IEEE Trans. Pattern Anal Mach Intell., 28(8):1200-1214, 2006. doi:10.1109/TPAMI.2006.152.
J. Kim. Efficient graph edit distance computation using isomorphic vertices. Pattern Recogn
Lett., 168(2023):71778, 2023. doi:10.1016/J.PATREC.2023.03.002.

H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83-97, 1955. doi:10.1002/nav.3800020109.

J. Lerouge, Z. Abu-Aisheh, R. Raveaux, P. Héroux, and S. Adam. New binary linear
programming formulation to compute the graph edit distance. Pattern Recogn., 72:254-265,
2017. doi:10.1016/J.PATC0G.2017.07.029.

J. Liu, M. Zhou, S. Ma, and L. Pan. MATA*: Combining learnable node matching with A*
algorithm for approximate graph edit distance computation. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management (CIKM ’23), pages
1503-1512, 2023.

Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. Com-
puting graph edit distance via neural graph matching. Proceedings of the VLDB Endowment,
16(8):1817-1829, 2023. doi:10.14778/3594512.3594514.

K. Riesen and H. Bunke. ITAM graph database repository for graph based pattern recognition
and machine learning. Structural, Syntactic, and Statistical Pattern Recognition, pages 287-297,
2008.

K. Riesen and H. Bunke. Approximate graph edit distance computation by means of bipartite
graph matching. Image Vision Comput., 27(7):950-959, 2009. doi:10.1016/J.IMAVIS.2008.
04.004.

K. Riesen, S. Emmenegger, and H. Bunke. A novel software toolkit for graph edit distance
computation. In GbRPR, pages 142-151, 2013.

K. Riesen, S. Fankhauser, and H. Bunke. Speeding up graph edit distance computation with a
bipartite heuristic. In MLG, pages 21-24, 2007.

S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach (2nd ed.). Prentice-Hall,
New Jersey, USA, 2002.

O Schiitze, X. Esquivel, A. Lara, and C. A. C. Carlos. Using the averaged Hausdorff distance
as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Fvol.
Comput., 16(4):504-522, 2012. doi:10.1109/TEVC.2011.2161872.

Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou. Comparing stars: On approximating
graph edit distance. PVLDB, 2(1):25-36, 2009. doi:10.14778/1687627.1687631.

W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao. Efficient graph similarity search
over large graph databases. IEEE Trans. Knowl Data Eng., 27(4):964-978, 2015. doi:
10.1109/TKDE.2014.2349924.

Proof of Lemma 8

Proof. We prove this lemma by considering the following two cases:

Case |. when u = € or v = ¢. We first discuss the case u = . It is trivial to know that

fr(u,e) = fp(u,e) = c(u =€) + 5> ., c(e = €). Similarly, when v = &, we also have
fu(u,v) = fp(u,v). Thus, when v = € or v = ¢, the lemma follows.

Case Il. when u # ¢ and v # . Then, we know that

felu,v) = c(u—>v)—|—%MLS(Nu,NU), (12)

fa(u,v) = ;{c(u—>v)—|—;HED(Nu,Nv)} (13)

where MLS(Ny, Ny) = ming ne sn: Y c - c(e — o(e)), and g is a bijection from N to
NE.

https://doi.org/10.1109/TPAMI.2006.152
https://doi.org/10.1016/J.PATREC.2023.03.002
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1016/J.PATCOG.2017.07.029
https://doi.org/10.14778/3594512.3594514
https://doi.org/10.1016/J.IMAVIS.2008.04.004
https://doi.org/10.1016/J.IMAVIS.2008.04.004
https://doi.org/10.1109/TEVC.2011.2161872
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.1109/TKDE.2014.2349924
https://doi.org/10.1109/TKDE.2014.2349924

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

In order to prove f(u,v) < 5 fp(u,v), it suffices from (12) and (13) to prove
HED(N,,N,) < MLS(N,,N,),

which we do as follows:
(i) Rewriting MLS(N,, N,) and HED(N,, N,):

MLS(NM,NIU) = Z C(e — Qmin(e)) = Z C(@ - y)a

eeN¢E eENE

where gmin is the bijection from NZ to NE that MLS(N,, N,) achieves the minimum
value; ¥y = gmin(€) € NE is e’s mapped edge under the bijection g, for Ve € N&;

HED(N,, N,) = Z {fH(€7X1(@)) +fH(><z(y),y)},

ecN¢

where x; is the mapping from N; to N7 satisfying xi(e) = argmingen: fu(e,€),

for Ve € Ng; and x2 is the mapping from NF to N satisfying xa2(y) =
argmineen: fr(e,y).

(ii) Proving fu(e, x1(e)) + fu(x2(y),y) < c(e = y): According to the definition of x; and

X2, fu(e,x1(e)) < min{fu(e,y), fule,

We discuss the following cases (a)—(d):

(a) When e =€ and y = ¢, then fr(e,x1(€)) + fu(x2(v),y) < fu(e,e) + fule,e) =

cle =€) =0;
(b) When e # ¢ and y = ¢, then fu(e, x1(e)) + fu(x2(y),y) < fule,€) + fu(e,e) =
cle = €);

(c) When e = ¢ and y # ¢, the analysis is similar to that of (b);

(d) When e # € and y # ¢, then fu(e, x1(e)) + fu(x2(y),y) < fule,y) + fule,y) =
2fu(e,y) =2 x %c(e —y) =cle = y).
(iii) Combining both (i) and (ii), we have

HED(N,N) = 3 {fnleoa(@) + fulat)n | < Y cle) = MES(V, V)

ecN¢E eeNE

Therefore, fg(u,v) < %fB (u,v) when u # € and v # . This completes the proof. <

B Examples of computing LED, HED and BED

In this section, we give an example of calculating three GED lower bounds, LED, HED and
BED.

U1

a a
us Uy V3 V4 V2

Figure 2 Graphs G (left) and @ (right).

e)} and fr(x2(y),y) < min{fmu(e,y), fu(e,y)}-

1:15

Grossi's Festschrift

1:16

An Efficient Heuristic for Graph Edit Distance

Figure 2 shows two graphs G and @, where “A”, “B” and “C” denote vertex labels, and
“a” and “b” denote edge labels. Consider the cost function ¢ satisfying: (i) the cost of each
vertex edit operation is 2, that is, ¢(u — v) = 2 when two vertices v € V& and v € V{5 have
different labels, and ¢(u — v) = 0 otherwise; (ii) the cost of each edge edit operation is 1,
that is, c(e; — e2) = 1 when two edges e; € Ef, and es € Eé have different labels, and
c(e; — e2) = 0 otherwise. Based upon this cost function ¢, we discuss how to compute
LED(G,Q), HED(G, Q) and BED(G, @) below using the examples shown in Figure 2.

(1) Computing LED(G, Q)

In LED(G, Q) (see Definition 2 in main text), we need to compute the minimum substitution

cost of vertices and edges of G and @Q, ie., A\v(G,Q) and A\g(G,Q). For \y(G,Q) =

ming.veve Zuevé c(u — ¢(u)), we seek for a bijection ¢ from V5 to V5 to minimize the

linear sum Ay (G, Q); this is a well-investigated linear sum assignment problem (LSAP) and

can be solved by the Hungarian algorithm [20] through the following two steps:

(1) Construct the vertex substitution cost matrix WV, such that W\, = ¢(u — v) is the
cost of substituting vertices u € V7 and v € Vi; WXE = ¢(u — €) is the cost of deleting
u; and Wg‘fv = ¢(e — v) is the cost of inserting v. In this example, we compute WV as

V1 V2 V3 V4 e e e e
Uy 2 2 2 2 2 o oo o0
u |l 0 0 0 2 oo 2 oo ™
us | 0 0 0O 2 o0 oo 2 oo
WY o U 2 2 2 0 o0 o0 oo 2
€ 2 oo oo oo 0O 0 0 O
€ © 2 oo oo 0 0 0 O
€ © oo 2 oo 0 0 0 O
€ © oo oo 2 0 0 0 O

(2) Find the optimal assignment ¢min that minimizes the linear sum on WV. In this example,
we find that ¢min = {(u1 = v1), (u2 = v2), (uz = v3), (ug — v4), (¢ — €)} is the optimal
assignment, and then obtain A\y(G,Q) =W\ +WY ~+wV +wWY + WE‘; =2.

U1,v1 Uu2,v2 u3,v3 Uq,V4

Similar to the above process, we can compute the edge substitution cost matrix W¥ as
follows:

e(vi,vq) e(vo,v4) e(vs,vg) € e € ¢

e(uy,ug) 1 1 1 1 oo oo o
e(uy,us) 1 1 1 oo 1 oo oo

e(usg, uq) 0 0 0 oo oo 1 o

WE = e(us,uy) 0 0 0 oo oo oo 1
€ 1 o0 o0 0O 0 0 O

€ 00 1 %) 0O 0 0 O

€ 00 o0 1 0O 0 0 O

With the Hungarian algorithm, we know that the optimal assignment on W¥ is @i, =

{(e(ur,us) = &), (e(ur,us) — e(vy,v4)), (e(ug, us) = e(va,v4)), (e(us, us) — e(vs,vq)), (e =
_WwE E E E

5)} Then, A\g(G, Q) - We(u1,u2),€ + We(ul,us)»e(vhw) + We(uz,w)’e(vz,m) + We(“3’“4)’e(”3ﬁv4) +

WZE. = 2. Combing A\v(G, Q) and (G, Q), we have LED(G, Q) = A\ (G, Q) + Ap(G, Q) =
242=4

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

(2) Computing HED(G, Q)

According to the definition of HED(G, Q) (see Definition 3 in main text), we need to calculate
the hausdorff matching cost fg(u,v) between two vertices u € V§ and v € V{5, and then
perform a bidirectional matching between G and (. When performing a matching from G to @,
we greedily seek for the minimum matching cost minvevé fr(u,v) of each vertex u; then, the

sum of these minimum costs is the matching cost from G to Q, i.e., Z’MEVG minvevé fr(u,v).

Similarly, the matching cost from @ to G is Z’UEVQ minyeve fu (u,v). Finally, the sum of
the above two matching costs is HED(G, @)). We can summarize the computation process of
HED(G, Q) as two steps:

(1) Construct the hausdorff matching cost matrix W#, such that W, = fp(u,v) is the
hausdorff cost of matching vertex u € Vg to vertex v € Vo; W = fy(u,e) is the
hausdorff cost of deleting u; and va = fu(e,v) is the hausdorff cost of inserting v,
where fz(-,-) is defined in (2) in main text. In this example, we can compute W as

U1 V2 U3 (%
wp /1.375 1.375 1.375 1.625
uy [0.125 0.125 0.125 1.125
wWH = wus | 0125 0.125 0.125 1.125
m 1 1 1 0
€ 25 25 25 35

S W W W w M

(2) Based upon W, compute Y-, ... minyeys WE, and > vev, Miluevg WE,. In this ex-
ample, we trivially obtain HED(G, Q) = }_, cy,, minvevg va—i—ZvGVQ min,eve Wh, =
H H H H H H H H _
(Wul,vl T Wagor T Wago, + Wu4,v4) + (WUz,vl T Wigs T Wagop + WU4,U4) = (1.375 +
0.125 4 0.125 + 0) + (0.125 4+ 0.125 4+ 0.125 + 0) = 2.
Note that when calculating W/, (i.e., fu(u,v)), we need to calculate HED(N,, N,) (see
Equation (3) in main context), where N,, and N, are the sets of edges adjacent to u and v,
respectively. The computation of HED(N,,, N,)) is similar to the above process of computing
HED(G, Q); and thus, we omit the detailed calculation here.

(3) Computing BED(G, Q)

The process of calculating BED(G, Q) is similar to that of calculating Ay (G, @), which is
also looking for a bijection p from V§ to V(5 to minimize the linear sum ZuEVé fe(u, p(u)).
The computation contains two steps:

(1) Construct the branch matching cost matrix W7, such that W,2, = fp(u, v) is the branch
cost of matching vertex u € Vi to vertex v € Vp; Wfs = fB(u,e) is the branch cost of
deleting u; and va = fB(e,v) is the branch cost of inserting v, where fg(-,-) is defined
in (5) in main text. In this example, we can compute W% as

V1 (%] V3 V4 9 9 9 9

Uup 3 3 3 35 3 oo oo o™

uz | 0.5 0.5 05 3 o 3 oo o©

ug | 0.5 05 05 3 oo oo 3 ™

WB — ug | 25 25 25 05 o0 oo > 3
e 25 oo oo oo 0 0 0 O

e c© 25 oo oo 0 0 0 O

e oo o 25 oo 0 0 0 O

e oo oo oo 35 0 0 0 0

1:17

Grossi's Festschrift

1:18

An Efficient Heuristic for Graph Edit Distance

(2) Find the optimal assignment pmin that minimizes the linear sum on W5, In this example,
we find that pmin = {(u1 = v1), (ug = v2), (ug — v3), (ug — v4), (e = €)} is the optimal
assignment, and then obtain BED(G, Q) =WE +WB +WE +Ww5B -I-ng =4.5.

U1,v1 U2,v2 us,v3 Ugq,Vq

Note that when calculating W2, (i.e., fz(u,v)), we need to calculate the minimum edge
substitution cost between N, and N,, which is similar to the process of calculating Ag(,);
and thus, we omit the detailed computation here.

For graphs G and @ in Figure 2, we finally obtain that LED(G, Q) = 4, HED(G,Q) = 2
and BED(G,Q) = 4.5. Clearly, BED(G,Q) > LED(G, Q) and BED(G,Q) > HED(G, Q).

C Successor generation

We discuss how to generate successors of each node in the GED search tree with Algorithm 2.

Consider an inner node r = {(u1 — vj,),...,(u¢ = vj;,)}, where vj, is the mapped
vertex of uy in the GED search tree, for 1 < k < /. BasicGenSuccr generates all the possible
successors of r. First, we compute the sets of unmapped vertices in G and @, respectively,
Le, V& =Ve\{ur,...,w}and Vi) = Vo\{vy,, ..., v5 }. I [VE&] > 0, then we select a vertex z
from Vo u {e} as the mapped vertex of us41, and consequently, obtain a successor child of r
such that child = r U {(ugs1 — 2)}. Otherwise, all the vertices of G are processed; trivially,
we obtain a leaf node s =r U Uzchg{(E — 2)}.

Algorithm 2 BasicGenSuccr(r).

suce + {}

VCT; — VG\{ul, B ,uz}

VQT <~ Vo\{vjis- -, v50}

if |Vz| > 0 then

foreach z € V5 U {¢} do
child < r U {(ug+1 — 2)}
succ < succ U {child}

else
s rUU.ey (e 2))
Q

suce < succ U {s}

© 0 g o Uk~ W N

11 return succ

	1 Introduction
	2 Graph edit distance
	2.1 State-of-the-art GED lower bounds

	3 Tightness analysis
	3.1 Relation of LED and BED
	3.2 Relation of HED and BED

	4 Tree-based search algorithm
	4.1 Search tree
	4.2 Heuristic cost estimation
	4.2.1 Heuristic function

	4.3 Algorithm

	5 Experiments
	5.1 Datasets and settings
	5.2 Evaluation metrics
	5.3 Experimental results
	5.3.1 Tightness of LED, HED and BED
	5.3.2 Effect of heuristic

	6 Conclusion and future works
	A Proof of Lemma 8
	B Examples of computing LED, HED and BED
	C Successor generation

