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Abstract
Efficiently processing range queries on arrays is a fundamental problem in computer science, with
applications spanning diverse domains such as database management, computational biology, and
geographic information systems. A range query retrieves information about a specific segment of
an array, such as the sum, minimum, maximum, or median of elements within a given range. The
challenge lies in designing data structures that allow such queries to be answered quickly, often in
constant or logarithmic time, while keeping space overhead (and preprocessing time) small. Encoding
data structures for range queries has emerged as a pivotal area of research due to the increasing
demand for high-performance systems handling massive datasets. These structures consider the
data together with the queries and aim to store only as much information about the data as is
needed to answer the queries. The data structure does not need to access the original data to
answer the queries. Encoding-based solutions often leverage techniques from succinct data structures,
bit manipulation, and combinatorial optimization to achieve both space and time efficiency. By
encoding the array in a manner that preserves critical information, these methods strike a balance
between query time and space usage. In this survey article, we explore the landscape of encoding
data structures for range queries on arrays, providing a comprehensive overview of some important
results on space-efficient encodings for various types of range query.
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1 Introduction

Efficiently processing range queries on arrays is a fundamental problem in computer science,
with applications spanning diverse domains such as database management, computational
biology, geographic information systems, and data analytics. A range query retrieves specific
information about a contiguous segment of an array, such as the sum, minimum, maximum,
or median of elements within a given range. Designing data structures to process such queries
efficiently is critical, especially as datasets grow in size and complexity. The challenge lies
in enabling fast query responses – often aiming for constant or logarithmic time – while
minimizing the space overhead and preprocessing time required by the data structures.

Encoding data structures for range queries have emerged as a crucial area of research
to address these challenges. Unlike traditional approaches that rely on augmenting the
array with auxiliary structures or preprocessing, encoding-based methods focus on storing a
compact representation of the data tailored specifically to the types of queries to be answered.
These structures are designed to store only the information necessary for query resolution,
eliminating the need to access the original array during query processing. The encoding
data structures typically combine techniques from succinct/compressed data structures,
combinatorial optimization and algorithmic design.
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12:2 Encoding Data Structures for Range Queries on Arrays

This survey aims to provide a comprehensive and structured overview of the key develop-
ments in the field of encoding data structures for range queries on arrays. We categorize
the encoding solutions based on the specific types of range queries they support, such as
range minimum/maximum queries, range top-k queries, range mode queries, and range
majority/minority queries. The survey article by Skala [51] from 2013 gives a detailed
summary of various results for “range queries on arrays”. Thus we mainly focus on the new
results since 2013, briefly summarizing the previous results.

Data structures can be classified into two categories: indexing and encoding data structures.
For an indexing data structure, we preprocess the data and build an index so that subsequent
queries can be answered efficiently by probing the index and the input data. On the other
hand, for an encoding data structure, we preprocess the input data and build an encoding of
the input so that subsequent queries can be answered by probing only the encoding (i.e.,
with no access to the input at query time). In this survey, we mainly focus on the results on
encoding data structures, but occasionally mention a few results on indexing data structures
for comparison. For many problems, the size of an encoding can be smaller than the size of
the input, which is in fact the case for many range queries that we consider.

For example, given a query range, a range minimum query returns the minimum element
within the query range. Range median, range mode, range selection and top-k, range mode
and majority/minority queries are defined analogously. With this definition of range queries,
one can reconstruct the input array by asking point queries with range that contains a single
element, and hence the size of an encoding is at least the size of the input, and storing the
input explicitly gives an optimal space encoding. To avoid this, we define the range queries
as follows. For a query range, the range minimum query returns a position of the minimum
element within the query range (and analogously for other range queries), instead of the
value at the position. With this definition, one can obtain an encoding of size linear in bits
for range minimum queries, which is asymptotically less than the space required to store the
input array in the word RAM model.

In this article, we consider the encoding data structures for a 1D array A[1, n], and a 2D
array A[1, m][1, n], where m ≤ n. We assume that the array indices start from 1. For 2D
arrays, we use the term range to mean an rectangular range which is defined as a Cartesian
product of a given set of intervals in each dimension. We assume a word RAM model with
word-size Θ(log n) bits. For the encoding structures where we do not mention the query times,
queries can be supported in polynomial time by essentially decoding the entire structure.

2 Range minimum queries

Given an input array and a query range, a range minimum query (RMQ) returns the
position of the minimum element within the query range. From its wide applications (e.g.,
constructing an indexing structure on a string [15]), designing a data structure to answer
RMQ has intensive attention from the community. For the 1D case, any encoding for RMQ
requires at least 2n − o(n) bits due to its bijective relationship with the Cartesian tree of the
input [53]. The best-known result for a worst-case input is the (2n + o(n))-bit data structure
by Fisher and Heun that supports O(1) query time1. For earlier results, see [51].

When the input is highly compressible, there are some results whose space usages are
parameterized based on the compressed size of the input while still supporting efficient
query time. Here, compressibility is considered in two ways: (1) The compressibility of the

1 considering the o(n)-term, the current best result is Navarro and Sadakane’s (2n + O(n/( log n
t )t))-bit

data structure that supports queries in O(t) time [45].
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input [2, 18, 21, 49], and (2) the compressibility of the Cartesian tree of the input [21, 43].
Note that data structures in (1) can access the input, as they maintain the input array in a
compressed form. In contrast, the results in (2) cannot access to the input as they maintain
the compressed Cartesian tree with some auxiliary structures for the query support.

There also has been progress on space-query time trade-off lower bounds for the problem
under the cell-probe model, which measures query time by counting the number of memory
cell accesses only. Liu and Yu showed that any data structure answering RMQ in O(t) time
requires at least 2n + O(n/(log n)O(t2 log2 t)) bits of space [42]. Later, Liu improved the space
lower bound to 2n + O(n/(log n)O(t log2 t)) bits [41].

2.1 Range minimum and maximum queries
To address range minimum and maximum queries on 1D array simultaneously, a straightfor-
ward approach is to use separate data structures for each query. Since any data structure
designed for range minimum queries can be easily adapted for range maximum queries, the
data structure of Fischer and Heun [17] provide a (4n + o(n))-bit data structure that can
answer both queries in O(1) time. Gawrychowski and Nicolson [26] showed that if an array
contains no consecutive equal values, there exists a data structure that uses 3n + o(n) bits
and supports both queries in O(1) time. Furthermore, they proved that any encoding data
structure for answering both queries requires at least 3n − Θ(log n) bits, as any Baxter
permutation can be fully reconstructed using only range minimum and maximum queries.

When the input array contains consecutive equal values, a straightforward solution is to
use two separate data structures proposed by Fischer [14] for range minimum and maximum
queries. This approach uses 5.08n + o(n) bits of space and supports both queries in O(1)
time. Additionally, for any given p, the data structure also can answer the position of
the p-th leftmost minimum or maximum value within a query range in O(1) time [35]. Jo
and Satti [35] improved the space usage of the data structure to 4.585n + o(n) bits while
maintaining the same O(1) query time. Subsequently, Tsur [52] further reduced the space to
3.701n bits with O(n) time for queries. Recently, Jo and Kim [33] proposed a data structure
that uses 3.701n + o(n) bits while supporting all queries in O(log(ℓ) n) time for any positive
integer ℓ (here log(ℓ) denotes logarithm iterated ℓ times for any constant ℓ ≥ 1). They also
showed that any data structure for answering these queries requires at least 3.16n − Θ(log n)
bits when the input contains consecutive equal values.

2.2 Range minimum queries on non-permutation input
Consider a 1D array with duplicate entries. In this case, some ranges may have multiple
answers for RMQ. The data structures discussed in Skala’s survey [51] return either the
leftmost or rightmost position among the possible answers. Motivated by the efficient
construction of compressed suffix trees [50], Fischer and Heun [16] considered the problem of
finding the position of an approximated median among all positions of minimums within a
given range. Specifically, for any constant 1 < c < 1/2, they proposed a (log (3 + 2

√
2)n +

o(n/c) ≈ 2.54n + o(n/c))-bit data structure that can answer the position of the r-th leftmost
minimum in O(1/c) time, where r ∈ [ 1

2 (1/2 − c), 1
2 (1/2 + c)]. The data structure uses a super

Cartesian tree, a Cartesian tree in which each edge is colored either red or blue.

2.3 Range minimum queries on 2D array
When the input is an m × n 2D array with m ≤ n, Demaine et al. [11] showed that there
is no Cartesian tree-like structure for the 2D case. Specifically, no structure exists that
fully encodes the answer to all queries and can be constructed in linear time. They further
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showed that when m = n, any encoding data structure for answering RMQ queries requires
Ω(n2 log n) bits. Since the input array can be stored using O(n2 log n) bits, this implies
that any encoding data structure uses asymptotically the same space as indexing data
structures [1, 5, 54] when m = Θ(n). In this survey, we focus on the case where m = o(n).

Brodal et al. [5] proposed an O(nm · min(m, log n))-bit data structure with O(1) query
time. The O(nm2)-bit data structure is achieved by maintaining O(m2) 1D RMQ structures
to support queries over the range [i, j] × [1, n] for all 1 ≤ i ≤ j ≤ m along with the 1D
RMQ structures on the columns. Additionally, they proved that any encoding for answering
RMQ requires at least Ω(nm log m) bits. When m is 2 or 3, Golin et al. [29] improved the
encoding space of the result in [5] (see Table 1) by introducing the joint Cartesian tree of
the input. This structure is used to compare two minimum elements in ranges where the
row ranges are [1, m − 1] and m, respectively. Furthermore, when m = 2, they proposed a
data structure that answers queries in O(t) time using 5n + O(n log t/t) bits of space, for
any t = (log n)O(1).

Table 1 Encoding space for RMQ queries on m × n 2D array with m = 2 or 3.

Input Space (in bits) ref

2 × n
7n − O(log n) [5]
5n − O(log n) [29]

3 × n
(12 + log 5)n − O(log n) [5]
(6 + log 5)n + o(n) [29]

Also for the 2D array case with 1 ≤ i ≤ m and 1 ≤ j ≤ n, the query range can be restricted
as follows: (1) 1-sided: [1, m] × [1, j], (2) 2-sided: [1, i] × [1, j], (3) 3-sided: [1, i] × [j1, j2] for
1 ≤ j1 ≤ j2 ≤ n, and (4) 4-sided: any rectangular range. Golin et al.[29] provided upper
bounds and matching lower bounds for the encoding space required to answer RMQ under
these four restricted query cases (see Table 2). Here the encoding space is expressed as an
expected value, assuming that the input is arranged in row- or column-major order, uniformly
chosen from all permutations of size mn.

Table 2 Expected encoding space (in bits) for RMQ with restricted query ranges [29].

1-sided 2-sided 3-sided 4-sided
Θ(log2 n) Θ(log2 n log m) Θ(n log2 m) Θ(mn)

For general m and query ranges, Brodal et al. [6] proposed an O(nm log m)-bit encoding
for answering RMQ. Based on the their lower bound result of [6], this encoding is asymptot-
ically optimal. For m = o(n), the problem of designing a o(nm log n)-bit data structure for a
2D array that answers queries in sublinear time remains an open problem.

RMQ on (partial) Monge Matrices. A 2D matrix (array) M is called Monge if M [i1, j1] +
M [i2, j2] ≥ M [i1, j2] + M [i2, j1] for any 1 ≤ i1 ≤ i2 ≤ m and 1 ≤ j1 ≤ j2 ≤ n (it is more
common to define a Monge matrix with ≤ rather than ≥. In this case, a matrix defined with
≥ is referred to as an inverse Monge matrix. All the results presented in this survey can
be easily adapted for inverse Monge matrices [38]). Solving RMQ on Monge matrices is of
interest due to their various applications in combinatorial optimization and computational
geometry [38]. Due to the property of Monge matrices, it is possible to design encoding
data structures for RMQ that are more space-efficient than those for general 2D arrays.
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Table 3 Data structures on n × n Monge and partial Monge matrices. Here α(n) denotes the
inverse Ackermann function.

Input Space (in bits) Query time ref

Monge

O(n log2 n) O(log2 n) [37]
O(n log n) O(log n) [22]
O(n1+ϵ) O(1)
O(n log n) O(log log n) [23]

Partial Monge
O(n log2 n · α(n)) O(log2 n) [37]
O(n log n) O(log n · α(n)) [22]
O(n log n) O(log log n) [23]

The first non-trivial result was proposed by Kaplan et al. [37] (the journal version of the
paper published in 2017 [38]). They showed that for an n × n Monge matrix, there exists an
O(n log2 n)-bit data structure that can answer RMQ in O(log2 n) time.

The result was later improved by Gawrychowski et al. [22] who proposed a data structure
using O(n log n) bits while supporting the query in O(log n) time. Furthermore, they showed
that with O(n1+ϵ) bits of space for any 0 < ϵ < 1, the query can be answered in O(1) time.
This was further improved in a subsequent work by Gawrychowski et al. [23], where they
presented a data structure using O(n log n) bits of space while supporting O(log log n) query
time. Additionally, they provided a lower bound of the data structure by showing that any
data structure of size O(n · polylog(n)) bits requires Ω(log log n) time to answer RMQ on an
n × n Monge matrix. This lower bound was derived by reducing the predecessor problem to
RMQ, implying that their data structure is asymptotically optimal (the journal version of
the results in [22] and [23] was published in 2020 [24]).

Monge matrices can be generalized to partial Monge matrices, which are Monge matrices
with some undefined entries, and the defined entries in each row and column form a contiguous
interval. Solving RMQ on partial Monge matrices has applications in areas such as algorithms
for maximum flow in planar graphs [38]. In [37], as well as in subsequent works [22] and [23],
data structures for partial Monge matrices were proposed by extending those designed for
Monge matrices. A summary of these results is presented in Table 3.

3 Range top-k queries

Range selection and range top-k queries are natural extensions of the RMQ, defined as
follows: Given a positive integer k and a query range, a range selection query (denoted as
sel-k) returns the position of the k-th largest value within the range of the input. Similarly, a
range top-k query (denoted as top-k) returns the positions of the k′-largest values within the
range for all k′ ≤ k. From these definitions, RMQ can be considered a special case of sel-k or
top-k with k = 1. There are two variations of top-k: (1) sorted top-k reports the answers in
sorted order, based on the corresponding values in the input, and (2) unsorted top-k reports
the answers in an arbitrary order. For 1D array, Gawrychowski and Nicholson [25] showed
that the space lower bound for answering sorted and unsorted top-k are the same within
additive lower order terms when k = o(n). Throughout this survey, we use top-k to refer to
the sorted one.

For k = 2, Davoodi et al. [10] proposed a (3.272n + o(n))-bit data structure that can
answer top-2 in O(1) time. Their solution is based on the Cartesian tree of the input,
combined with additional information to support the queries. Furthermore, they showed
that at least 2.656n − O(log n) bits are required to answer top-2.

Grossi’s Festschrift
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Table 4 Data structures for top-k on a 1D array.

Query Space (in bits) Query time ref

Upper bounds

top-2 3.272n + o(n) O(1) [10]
2.755n + o(n) [26]

top-k
O(n log k) O(k) [31]
n log k + n(k + 1) log(1 + 1/k) + o(n log k) O(log n) [26]
1.5n log k − Θ(n) poly(k log n) [25]

Lower bounds

top-2 2.656n − O(log n) [10]
2.755n − o(n) [26]

top-k n log k − O(n + k log k) [31]
n log k + n(k + 1) log(1 + 1/k) − o(n log k) [26]

For general k, the first non-trivial result was introduced by Grossi et al.[31]. This work
is an extended journal version of two earlier conference papers published in 2013 [32] and
2014 [44]. They first gave a space lower bound result that at least n log k − O(n + k log k) bits
are necessary to answer sel-k or top-k, even when the query range is restricted to being 1-sided
(i.e., a prefix of the input). Then using the concept of shallow cuttings [9], they design two
O(n log k)-bit data structures. These structures support: (1) sel-k in O(1 + log k′/ log log n)
time, and (2) top-k in O(k′) time, for any 1 ≤ k′ ≤ k. Hence, both data structures use
asymptotically optimal space. Moreover, the query time for (1) is also optimal for any data
structures using O(n · polylog(n)) space, as shown by the lower bound result of Jørgensen
and Larsen [36]. However, when the query range is 1-sided, they show that the time lower
bound on range selection queries can be circumvented. Specifically, for 1-sided sel-k, they
proposed two data structures that (1) uses n log k + o(n log k) + n bits and supports queries
in any ω(1) time, or (2) uses (1 + ϵ)n log k bits and supports queries in O(1/ϵ) time, for any
constant 0 < ϵ < 1.

The space upper and lower bounds for answering top-k from [31] were later improved by
Gawrychowski and Nicholson [23]. They showed that at least n log k + n(k + 1) log(1 + 1/k)
bits are necessary to answer top-k and proposed an encoding scheme whose space usage is
optimal up to lower-order additive terms. For instance, when k = 2, their encoding uses
2.755n + o(n) bits of space, improving upon the result of Davoodi et al.[10]. In the extended
version of their paper [25], they also presented a (1.5n log k − Θ(n))-bit data structure that
can answer top-k in poly(k log n) time. See Table 4 for a summary of the results on data
structures for top-k in a 1D array.

The approximated selection query is to find the position of an element whose rank lies
between k − αs and k + αs for a constant 0 < α < 1/2, where s denotes the length of the
query range. In the special case where k = 1/2, the query is referred to as an approximate
range median query. Bose et al. [4] introduced a data structure that uses O(n log n/α) bits
of space, which can answer approximate range median queries in O(1) time. For general k,
El-Zein et al. [13] proposed a data structure with size O(n/α3) bits that also supports O(1)
query time. When k is fixed, they showed that the size of the data structure can be reduced
to O(n/α2) bits while maintaining the same query time. Therefore, the result improves the
space usage of [4] for approximated range median queries. Additionally, they showed that
both data structures use asymptotically optimal space for constant α by proving an Ω(n)-bit
encoding lower bound for approximate range median queries.
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Jo et al. [34] studied the top-k on an m × n 2D array with m ≤ n. For queries restricted
to the range [1, m] × [1, j], they proposed an O(min nk lg m, nm lg k)-bit encoding for sorted
top-k and an O(min nk lg(m/k), nm lg(k/m))-bit encoding for unsorted top-k. This result
implies a space gap between the encodings for sorted and unsorted top-k in 2D, unlike the
1D case, even when k = o(mn). For arbitrary rectangular query ranges, they presented
an (m log

((k+1)n
n

)
+ 2nm(m − 1) + o(n))-bit encoding to answer top-k. Compared to the

O(nm log n)-bit trivial encoding, which explicitly stores the input, their encoding uses less
space when m = o(log n).

4 Range mode

A mode of a multiset S is an element of S that occurs at least as frequently as any other
element in S. In the range mode problem, we are given an array A of n elements which we
can preprocess so as to answer range mode queries efficiently. Given a query range (i, j),
the range mode query returns any position, between i and j, of a mode of the multiset
{A[i], A[i+1], · · · , A[j]}. Krizanc et al. [40] were the first to consider the data structure version
of the range mode problem. They proposed two structures achieving different time-space
tradeoffs: (i) a data structure that takes O(n2−2ϵ) words and supports queries in O(nϵ log n)
time, for any 0 < ϵ ≤ 1/2, and (ii) a data structures that takes O(n2 log log n/ log n) words
and supports range mode queries in O(1) time. The space bound of the second structure was
improved to O(n2/ log n) words by Petersen [47]. Subsequently, Petersen and Grabowski [48]
improved both the tradeoffs to shave-off a log factor, to obtain the following results: (i) an
O(n2−2ϵ) space structure that supports queries in O(nϵ) time, for any 0 < ϵ < 1/2, and (ii)
an O(n2 log log n/ log2 n) space structure that supports the queries in O(1) time.

Greve et al. [30] showed that any data structure that uses S memory cells of w bits needs
Ω( log n

log(Sw/n) ) time to answer range mode queries. Chan et al. [7] designed a data structure
that uses O(n) words of space and answers range mode queries in O(

√
n/ log n) time. Also,

by reducing the Boolean matrix multiplication problem to the range mode problem, they
showed that any data structure for range mode must have either Ω(nω/2) preprocessing
time or Ω(nω/2−1) query time in the worst case, where ω denotes the matrix multiplication
exponent.

As all the above data structures use at least linear space, they can store the input as
part of the data structure. One can improve the space usage significantly by considering
approximate versions of the query as described in the next subsection.

4.1 Approximate range mode
In the approximate range mode problem, given a query range (i, j) and a parameter c ≥ 1,
we are interested in returning a position k such that the element A[k] occurs at least 1/c

times the number of occurrences of the mode of the query range.
Bose et al. [4] were the first to consider this problem whose proposed data structures

achieve constant query time for c = 2, 3 and 4, using storage space of O(n log n), O(n log log n)
and O(n) words, respectively. They also give another data structure that takes O(n/ϵ) words
and answers (1 + ϵ)-approximate range mode queries in O(log log1+ϵ n) time. This gives a
linear space data structure that answers c-approximate range mode queries in O(log log n)
time, for constant c. Greve et al. [30] propose an improved data structure that uses linear
space and answers 3-approximate range mode queries in O(1) time. Using this data structure,

Grossi’s Festschrift
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they design another data structure that takes O(n/ϵ) words and answers (1 + ϵ)-approximate
range mode queries in O(log(1/ϵ)) time. This gives a linear space data structure that answers
c-approximate range mode queries in O(1) time, for constant c.

Finally, El-Zein et al. [13] designed an encoding data structure for approximate range
mode queries that occupies O(n/ϵ) bits of space and answers (1 + ϵ)-approximate range
mode queries in O(log(1/ϵ)) time. This improves the space usage of Greve et al. [30] by a
factor of log n while maintaining the query time. They also show that the space usage of
their structure is asymptotically optimal for constant ϵ by proving a matching lower bound.

5 Range majority and minority

Range majority and range minority queries are fundamental problems in data mining and
theoretical computer science. They involve preprocessing a sequence such that, given a range
(i, j), one can efficiently determine elements that occur frequently (majority) or infrequently
(minority) within the range. These problems are closely related to range mode queries, which
aim to find the most frequent element but are computationally harder.

Range majority. Range majority problems are mainly studied under the assumption that
one can access either the original or a compressed version of the input array. For the case
when τ is fixed at preprocessing time, Karpinski and Nekrich [39] gave a data structure that
takes O(n/τ) words and supports τ -majority queries in O((log log n)2/τ) time. Durocher
et al. [12] independently considered the same problem and obtained an improved result
which takes O(n log(1/τ)) words and supports queries in optimal O(1/τ) time. For the
case when τ is not fixed at preprocessing time, Chan et al. [8] gave a structure that uses
O(n log n) words and supports queries in optimal O(1/τ) time. Gagie et al. [19] gave another
structure for this case that takes O(n(H0 + 1)) words while supporting queries in optimal
time (here Hk denotes the k-th order empirical entropy of the input). Belazzougui et al. [3]
designed two improved structures: one that takes nH0 + o(n)(H0 + 1) bits and supports
queries in (1/τ) · ω(1) time, for any slowly growing function, and another structure that takes
(1 + ϵ)nH0 + o(n) bits, for any constant ϵ > 0 and supports queries in O(1/τ) time. For the
case when the alphabet size σ satisfies log σ = O(log w), they also gave another structure
that uses nH0 + o(n) bits and supports queries in O(1/τ) time.

For encoding data structures, Navarro and Thankachan [46] were the first to consider
the encoding version of the τ -majority problem They obtained an encoding for range τ -
majority queries that takes O(n⌈log(1/τ)⌉ bits and supports range τ ′-majority queries, for
any τ < τ ′ < 1, in time O((1/τ) log logw(1/τ) log n), where w = Ω(log n) is the word size.
Moreover, they showed that the space usage is optimal by showing that any encoding
for range τ -majority queries must use Ω(n⌈log(1/τ)⌉) bits. They also propose another
structure that takes O(n⌈log(1/τ)⌉ + n log log n) bits and answers range τ ′-majority queries
in O((1/τ) log logw(1/τ)) time. Finally, Gawrychowski and Nicholson [27] improved the
query time of the first structure above of Navarro and Thankachan to obtain a structure
that uses O(n log(1/τ)) bits and supports queries in O(1/τ) time. Moreover they showed
that the space bound is optimal even for a weaker query in which one must decide whether
the query range contains at least one τ -majority element. Gawrychowski and Nicholson [28]
also showed that for an array of size 2n logc n, for a large constant c, any data structure
for checking an existence of element with 1/ logc n-majority either needs Ω(n2) space or
Ω(logc−1 n) query time, through a reduction from the set intersection problem. This implies
that it is unlikely that one can improve the query time to the output sensitive bound of
O(occ + 1) when returning occ = o(1/τ) positions for range τ -majority queries.
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Range minority. Parameterized range minority problem was introduced by Chan et al. [8].
In this problem, we need to preprocess a given array such that given a parameter τ and a
range (i, j), we need to return an element within the range that is not one of its τ -majorities,
if there exists one. Currently, there are no encoding results for range minority queries.
Also encoding data structure for minority queries are likely harder than the encoding data
structures for majority queries. This is because at most 1/τ elements can be candidates for
τ -majority, whereas such a lower bound doesn’t exist for minority queries. Here, we mention
some indexing data structures for range τ -minority queries.

Chan et al. gave a structure that takes O(n) words and supports queries in O(1/τ) time.
By exploiting the duality of this problem with range τ -majorities problem, Belazzougui et
al. [3] obtain exactly the same tradeoffs they obtained for the τ -majority problem, mentioned
above. Also, analogous to their range majority structure, Gagie et al. [20] propose a data
structure that takes nHk + 2n + o(n log σ) bits for any k = o(logσ n), and answers range
τ -minority queries in O((log logw σ)/τ) time, where w = Ω(log n) is the word size.
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