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—— Abstract

This paper proposes a secure compressed suffiz array, which is a data oblivious and compressed
version of the suffix array used for finding substrings of a large string. Secure compressed suffix
arrays can be used for indexing a large collection of strings containing personal information such as
DNA data.
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1 Introduction

As the amount of data increases, the following points are becoming more problematic.
Processing time for analyzing the data increases. We need efficient algorithms and data
structures.

We need to care about the use of sensitive data such as personal information.

For the former problem, many researches on algorithms for compressed data have been

conducted. Seminal results on this topic are succinct bit-vectors [6, 11], succinct ordered

trees [9], and compressed suffix arrays [4, 2]. For the latter problem, data anonymization [16)

and secure computation [17] have been proposed. Because data anonymization modifies input

data, some information will be lost. We focus on secure computation, which is a technique
to process encrypted data without decryption.
There are two main schemes for secure computation: secret sharing [13] and fully

homomorphic encryption [3].

Assume that there are a client and a server. There are two main scenarios.

1. A client has private data and wants to use a cloud service to process the data. Data
are stored in the cloud server in an encrypted form. The client runs a program on itself.
When some data are necessary, the client asks the server to obtain the data. Then the
client decrypts the data, does some computation, encrypts the data and sends back to
the server. In this scenario, the task of the server is to store the data and give accesses to
a part of the data to the client. The data must be stored as an encrypted form on the
server, but computation on encrypted data is not necessary. Therefore it is enough to
hide the access pattern to the data on the server.

2. The server stores encrypted data and the secret key is not known to the server. The
client asks the server to run a program. The server does some computation and returns
the answer to the client. The client decrypts the answer using the secret key. In this
scenario, algorithms executed on the server must be data oblivious and the computation
must be done on encrypted data.

The second scenario is preferable because the client does not require computation power for

analyzing big data. However, we need to design special algorithms for the server which are

data oblivious and which run on encrypted data. We call such algorithms secure algorithms.
This paper proposes secure compressed suffix array, which is a data oblivious and encrypted
version of the compressed suffix array [4].
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2 Preliminaries

2.1 Suffix arrays

Let T be a string of length n on alphabet A of size o. The j-th character of T" is denoted
by T[j] (j =0,1,...,n — 1) and it belongs to .A. We assume that a unique terminator $,
which is smaller than any character in A, is appended to T. That is, T[n] = $. A substring
T[)T[i + 1] ---T[j] of T is denoted by T'i, j]. The substring T[j,n] is called the j-th suffix
of T" and denoted by T}.

The suffix array [8] of the string T is an integer array SA[0,n] defined as SA[i] = j
(¢t =0,1,...,n) if T} is the lexicographically the i-th suffix of T. It always holds that
SA[0] = n, which corresponds to the shortest suffix consisting of only the terminator.

If we have T and SA, we can support the following queries:

Count(P,T): returns the number of occurrences of P in T in O(|P|logn) time

Locate(P,T'): returns the positions of occurrences of P in T in O(|P|logn + occ) time

where occ = Count(P,T)

To support these queries, we use the following query:

Range(P,T): returns the maximal range [s,e] C [0,n] so that for any i € [s,e] the

substring T[S A[i], SA[i] + |P| — 1] is equal to P.

Let [s,e] = Range(P,T). Then it holds Count(P,T) = e — s + 1 and Locate(P,T) =
{SA[s],SA[s +1],...,SAle]}.

The size of the suffix array SA is nlogn bits. We also need to store the string T itself,
which occupies nlog o bits. The suffix array requires a huge space compared with the string
itself, especially for strings on small alphabets, such as DNA strings. For human DNA, ¢ = 4,
whereas n > 23!, Then logn is more than 15 times larger than logo.

2.2 Succinct bit-vectors

Succinct data structures are data structures storing objects in minimum number of bits.
More precisely, consider storing an element = of a set S. Then the information-theoretic
lower bound of the number of bits to represent x is defined as [log, z]. Hereafter we omit
the base 2 of logarithm. Let Z denote this value. Then a data structure for storing x is
called succinct if it uses Z + o(Z) bits, and compact if it uses O(Z) bits.

The most fundamental succinct data structure is a bit-vector supporting rank and select
queries. A bit-vector is a string B[1,n] on the binary alphabet {0,1} and rank and select are
defined as follows.

rank.(B,?) returns the number of ¢’s in B[0,i]. We define rank.(B,0) = 0 and

rank.(B, 1) = rank.(B,n) if i > n.

select.(B, j) returns the position of the j-th ¢ in B. We define select.(B,0) = 0 and

select(B,j) =n+11if j > rank.(B,n).

For a bit-vector of length n, rankand selectare computed in constant time using the bit-vector
itself and an O(nloglogn/logn) bit auxiliary data structure [11].

We briefly review the rank data structure. The bit-vector B is partitioned into super-
blocks of length L, each, and each super-block is further partitioned into blocks of length Lo
each. We store rank values for all super-block boundaries in array Ry using O((nlogn)/L1)
bits, and rank values for all block boundaries in array Ry using O((nlog L1)/Ls) bits. Inside
a block, we count the number of ¢’s using table lookups for every 1/2logn bits. The size of
the table is O(y/nlognloglogn) = o(n) and the time complexity is O(Lzs/logn). If we set
L) = @(log2 n) and Lo = %log n, we obtain the desired bound.
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Table 1 Oblivious RAM data structures for storing n bits. Bits are grouped into blocks of
b > logn bits each. Bandwidh blowup is the number of blocks to be accessed to obtain one block
obliviously.

Server space (#bits) ‘ Bandwidth blowup ‘ User space (#blocks) ‘ Reference
O(n) O(log? n/ loglog n) 0(1) Kushilevitz et al. [7]
O(n) O(log? n) w(logn) Stefanov et al. [15]
n(l1+06(1/logn)) O(log? n) O(lognloglogn) Onodera, Shibuya [10]

2.3 Secure algorithms

If we forget about time efficiency, any computation can be done on encrypted data if we
can support additions and multiplications on two encrypted integers. There exist two such
schemes.

Secret Sharing [13]. Data are distributed into two or more servers and for each server
the stored data look like random values and no information is leaked. Additions can be
done locally in each server, whereas for multiplications the servers must comminicate
each other.

Fully Homomorphic Encryption (FHE) [3, 1]. Any number of additions and multiplications

on encrypted numbers can be done.
Both schemes have a drawback that the computation is much slower than plain (unencrypted)
data. In Secret Sharing schemes the servers communicate each other for computing multipli-
cations. This takes much more time than the computation on plain data in a single server.
In FHE schemes, there are no communication because there is only one server. However
multiplications are extremely slow. Therefore it is important to develop efficient secure
algorithms.

In this paper, we assume that in both schemes, integer addition, multiplication, division,
less-than comparison are done efficiently in unit time. Then our algorithm runs in both
schemes.

2.4 Oblivious RAM

Oblivious RAMs [7, 15, 10], or ORAMs for short, are data structures supporting oblivious
read and write to an array. Without loss of generality we can assume the array stores a
binary string S of length n. S can be regarded as an array of length n/w storing w-bit
integers. An ORAM has a parameter b called the block size. S is partitioned into blocks of
length b each, and a block is accessed as a unit. To achieve oblivious access, more than one
blocks are accessed to obtain one block. The ratio is called bandwidth blowup.

Obliviousness is defined as follows. Let ¥ = ((opy, a1, d1), (0py,a1,di), ..., (0Pass anr, dar))
be a sequence of accesses to an ORAM where op, is either read or write, a; is the address
of the i-th access, and d; is the content to be written in the a;-th block when op, is write.
Let A(%) be denote the sequence of accesses to the server given ¢. Then the ORAM is said
to be oblivious if two any access sequences ¢ and Z of the same length, A(7) and A(Z) are
computationally indistinguishable by anyone but the client, and if the failure probability is
negligible [15].

Table 1 shows existing oblivious RAM data structures. Onodera and Shibuya [10] give
a succinct oblivious RAM, that is, the server space is n 4+ o(n) bits. The other two data
structures are compact, that is, the server space is O(n) bits.
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3 Compressed Suffix Arrays

3.1 The original structure

Grossi and Vitter [5, 4] have proposed compressed suffiz arrays, which are a compressed
version of suffix arrays. Let SA be the suffix array of string T' of length n on alphabet A
of size 0. The compressed suffix array is a data structure which efficiently supports the
following operation:

Lookup(4): returns SA[i].

Inverse(j): returns 4 such that j = SA[i] (the inverse suffix array).

The core component of the compressed suffix arrays is the ¥ function, defined as follows.
W[i] = SAT[SAJ] + 1]

if i > 0, and ¥[0] = SA™'[1]. The ¥ function has a good property that it is piecewise
monotone. Precisely, let [s., e.] be the range of the suffix array such that T[SA[i]] = ¢ for
any i € [s¢,e.] where ¢ € A. Then if 4,5 € [s., e.] and i < j, it holds ¥[i] < ¥[j]. Then the
following function is strictly increasing.

W'[i] = T[SA[{]] - (n + 1) + ¥[i]

We can compress ¥’ in n(2 + log o) + o(n) bits so that any ¥’[i] is computed in constant
time. From W’[i], we can obtain T[SA[i]] and ¥[i] easily in constant time.

The encoding of ¥’ is as follows. each entry of ¥’ is a (log o + logn)-bit integer. We
partition it into higher part and lower part. The higher part has logn bits and the lower
part has the rest (logo bits). The lower parts for all entries are stored in an integer array
L[0,n] in nlog o bits. The upper parts for all entries are represented by a bit-vector H[0, 2n)
as follows. Let d; = (¥'[i] +0) — (V' [i — 1] = 0) for i =0,1,...,n (we assume ¥'[—1] = 0).
Because WU’ is increasing, d; > 0 for any i. We encode d;’s by unary codes. That is, we write
d; many zeros followed by a one, to H. Then, H|[i] can be computed in constant time as

H{[i] = selecty (H,i) — 1

From the definition of U, if SA[i] = j, it holds SA[¥[i]] = j + 1. That is, if we know the
lexicographic order ¢ of a suffix T);, we can obtain that of the next suffix T} by computing
U[i]. We sample the values of the suffix array for every Lj entries and stores them in an
array A. We also store a bit-vector F'[0,n] such that F[i] = 1 iff SA[i] is sampled. Then
Lookup(4) is computed as follows.

Alrank; (F, )] if F[i] =

1
Lookup(¥[i]) —1 if F[i{j=0

Lookup(i) = {

The array A uses O((nlogn)/L3) bits and F uses n 4 o(n) bits. If we set Ly = O(logn), the
space for A is O(n) bits and Lookup(i) is computed in O(logn) time. See Figure 1 for an
example of

3.2 Self-indexes

The original compressed suffix array is a compressed representation of the suffix array and
used together with the string itself. We can change it to a self-index, that is, a data structure
for string matching which does not use the string. It is enough to add n + o(n) + O(o logn)
bits. We use a bit-vector D0, n] showing that if D[i] = 1 then ¢ = 0 or T[S A[i]] # T[SA[i—1]].
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Figure 1 An example of compressed suffix arrays.

That is, D[i] = 1 iff lexicographically the i-th suffix has a different head character from the
(i — 1)-st suffix. We use an array C of length o such that C[rank;(D,)] = T[SA[i]]. We

define Head (i) = Clrank; (D, ¢)]. The array uses ologo = O(o logn) bits (we assume o < n).

We use another array C~1[1, 0] storing in C|c] the range [s., e.] C [0,n] such that for any
i € [S¢, ec) it holds T[S A[i]] = ¢. This array uses O(ologn) bits.

Using C, we can recover a substring of 7. Assume the lexicographic order ¢ of a suffix T}
is known (SA[i] = j). Then the character T[j + k] is equal to Head(¥*[i]). The substring
T[4,7 + £ — 1] is computed in O(¢) time by iteratively computing ¢ := ¥[i]. Computing the
lexicographic order i of T} is equivalent to computing Inverse(j), and it is done similarly to
computing an entry of the suffix array using ¥ and the sampled suffix array [12].

To support Range(P, T), we use what we call backward search. Let m be the length of P.

First we obtain the range for the shortest suffix P[m,m] by [s, €] := C~1[P[m]]. Then, given

the range [s, e] for a suffix P[j + 1, m], we compute the range [s, e’] for the suffix P[j, m].

This is done as follows.

s' = argminec-ppy { P[] > s}

(& = al‘gmaXichl[p[j” {\IJ[’L] S 6}

By a simple binary search, the new range is obtained in O(logn) time, and therefore
Range(P,T') is done in O(|P|logn) time, which is the same as the suffix array [12].

We can simplify the algorithm as follows.

s’ = argminggp ) {9'[i] > P[j]- (n +1) + s}

>
¢ = argmax;c o n) {\PI[Z] < P[j] : (TL + 1) + 6}

Now we do not need the array C~!. This has another merit that it is easier to make it
oblivious, which will be shown in the next section.
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4 Secure Compressed Suffix Arrays

We show that the compressed suffix arrays can be modified so that all the operations ¥,
Range, Lookup, and Inverse. First we show that Range, Lookup, and Inverse can be done
obliviously if ¥’ is computed obliviously. We assume that the lengths of the string T and
the pattern P, and the alphabet size o are public.

4.1 Computing Range

As shown in Section 3.2, Range(P,T') is done by |P| many binary searches on ¥'. Given
the range [s, €] for P[j + 1,m|, we compute the range [s', '] for P[j, m]. To do so, we first
compute P[j]-(n+1)+ s and P[j]- (n+ 1)+ e, which can be done obliviously. Then using a
binary search on ¥’ we compute s’. The initial range is [0,n], and in each step we update
the range based on the result of a less-than comparison. Using ¥’ is easier than using ¥
because we do not need the array C'~! that must support oblivious accesses. We can compute
Range(P,T') using O(]P|logn) many oblivious accesses to ¥'.

4.2 Computing Lookup and Inverse

Lookup(i) can be done using the sampled array A, the bit-vector F', and ¥. The original
algorithm repeats computing ¢ := ¥[¢] until F[i] = 1. This is not oblivious because the
number k of iteration depends on i. Precisely, it holds Lookup(i) = Afrank, (F, ¥*[i])] — k
where k > 0 is the smallest number such that F[U*[i]] = 1.

To change the algorithm oblivious, we fix the number of iterations to Ls. Because the
suffix array entries are sampled every L3 entries in text order, for exactly one entry it holds
F[¥*[i]] = 1 among those for k = 0,1,..., L3 — 1. Therefore we change the algorithm as
follows.

1. 2:=0

2. fork=0,1,...,L3—1

3. x:=x+ F[i] - (A[rank,(F,7)] — k)
4, 1 := Wi

5. return x
Here we need oblivious accesses to F' and A, and oblivious computation of rank; (F, ).

For A, we use the Path ORAM [15] with block size b = log® n. Then the space usage is
O(n) bits and an entry of A is obtained in O(log® n) many accesses to blocks, which can be
done in O(log® n) time.

For F, we use the succinct ORAM [10] with block size b = log? n. Then a block of F is
obtained in in O(log® n) many accesses to blocks, which can be also done in O(log®n) time.
For computing a rank on F', we use the array R; defined in Section 2.2. This is stored using
the Path ORAM. The space usage is O(n/logn) bits. The rank inside a block is computed
by logical operations in O(logn) time. Therefore a rank value is computed in O(log®n) time.

The computation of Inverse(j) is similar.

4.3 Computing ¥

Finally, we show how to compute ¥[i]. As shown in Section 3.1, ¥’ is represented by a
bit-vector H|[0,2n] and an array L[0,n] of log o-bit integers. The array L is stored using the
succinct ORAMs. The bit-vector H is stored similarly to F', but here we also need to store
the auxiliary data structure for select;. This can be stored using the Path ORAM.
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To sum up, ¥[i] is computed in O(log®n) time and the space usage is n(2 + logo) +
o(n)log o bits.

4.4 Summary

W[i] takes O(log® n) time. A step of a backward search is a binary search on ¥, and therefore
it is done in O(log* n) time. Then Range(P, T takes O(|P|log* n) time. For Lookup(i), we
set Ly = O(logn). Then it takes O(log* n) time. The space usage is (n 4 o(n))logo + O(n)
bits in total.

5 Concluding Remarks

We have proposed secure compressed suffix arrays. For a string of length n on an alphabet
of size o, It uses (n + o(n))logo + O(n) bits of space and the Count(P,T) query is done in
O(|P|log* n) time, and the Lookup(i) query is done in O(log* n) time. Therefore there is an
O(log® n) multiplicative overhead compared with the original compressed suffix arrays [4].
To improve the running time, we need more efficient succinct ORAM [10] and standard
ORAMs [14]. Future work will be developing such oblivious RAM data structures and giving
efficient implementions.
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