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Abstract
We design alignment-free techniques for comparing a set of sequences or just a word, called a target,
against another set of words, called a reference. This is done with the detection of factor patterns that
distinguish the target from the reference. A target-specific factor of a target T against a reference R

is then a factor w of a word in T that is not a factor of a word in R but whose proper factors of w

are factors of a word in R. The strategy is based on the notion of minimal absent/forbidden words.
We first address the computation of the set of target-specific factors of a target T against

a reference R, where T and R are finite sets of sequences. The result is the construction of an
automaton accepting the set of all considered target-specific factors. The construction algorithm
runs in linear time according to the size of T ∪R.

The second result is the design of an algorithm to compute all the occurrences in a single sequence
T of its target-specific factors against a reference R. The algorithm runs in real-time on the target
sequence, independently of the number of occurrences of target-specific factors.
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1 Introduction

The goal of this article is to design an alignment-free technique for comparing a set of
sequences or words, called a target, against a set of words, called a reference.

The motivation comes from the analysis of genomic sequences as done, for example, by
Khorsand et al. in [23] in which the authors introduce the notion of sample-specific strings.
To avoid alignments but to extract interesting elements that differentiate the target from the
reference, or in general two words, the chosen specific fragments are minimal absent words,
also called minimal forbidden words. Target-specific words are factors of the target that are
minimal absent words of the reference.

These types of factors associated with absent patterns are rather commonly used to
efficiently compare sequences by avoiding complete alignments of full sequences, see, for
example, [11] and references therein. In bioinformatics, target-specific words serve as
signatures for newly sequenced biological molecules, helping to identify their characteristics.
In the domain of molecular biology they allow the discovery of remarkable patterns in some
genomic sequences, such as persitent patterns in the analysis of SARS-CoV-2 genomes that
are absent in the human genome [31] and minimal sequences in Ebola virus also absent in
the human genome [33]), or to build phylogenies of biological molecular sequences using a
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14:2 Specific Patterns

distance based on absent words (see [10, 32]). These patterns are also helpful to improve both
pattern matching methods (see [15]) and text compression with the concept of antidictionaries
(see for example [17, 1]). They are also central in some approaches related to the sanitisation
of data, that is, the process of hiding confidential information [5, 6], to quote only a few
applications.

The notion of a minimal absent word was introduced by Mignosi et al. [27] (see also [4])
in relation to combinatorial aspects of certain sequences. The first linear-time computation
of the minimal absent words of the factors of a single sequence is described in [16] (see
also [14]). Its time complexity is O(n) on a fixed-size alphabet for a sequence of size n. The
algorithm uses the computation of the directed acyclic word graph (DAWG), also called
suffix automaton (see [8, 14]), of a single sequence. The same time complexity holds for an
integer alphabet of polynomial size (see [19], [20]). This result is obtained using the O(n)
time complexity for computing the DAWG of a single sequence, in the case of an integer
alphabet of polynomial size. For a general ordered alphabet A, the running time becomes
O(n log |A|).

These algorithms extend to the computation of the minimal absent words of the set of
factors of a finite set of sequences of total size n. This is done in [3] in O(n) for a fixed-size
alphabet. It becomes O(n log |A|) for a general ordered alphabet. It is done in O(n) in [29]
for an integer alphabet of polynomial size, extending the linear time computation of the
DAWG in [19] and [20] to a finite set of sequences. It is also mentioned in [2] that the DAWG
of a finite set of sequences can be computed in O(n) time using sparse matrices for an integer
alphabet of polynomial size.

Due to the significant role of the notion, the efficient computation of minimal absent
words has attracted considerable attention (see, for example, [30] and references therein).

In this article, we continue exploring the approach of target-specific words as in [23] by
introducing new algorithmic techniques to detect them. A more general view of the usefulness
of formal languages in analyzing a series of genomes using pangenomic graphs is described
by Bonizzoni et al. in [9].

A preliminary version of this paper was presented at the DLT 2023 conference [2]. In the
present article, the motivation is strengthened due to additional references, the presentation
of algorithms has been improved and complete proofs have been added. In addition, Section 5
reveals a surprising phenomenon on the tight link between DAWG matching and the search
for minimal absent words, a technique at the core of our solution in Section 4.

The results

We design two algorithms that use intensively the notion of suffix links of indexing data
structures, such as suffix trees (see [21, 14]) and DAWGs. The links can also be simulated
using suffix arrays [26] and their implementations, such as the FM-index [18]. The algorithm
in [23] uses the FMD index of Li [25]. All these data structures can accommodate the
sequences and their reverse complements.

First, we address the computation of the set of target-specific factors of a target T against
a reference R, where T and R are finite sets of sequences over an alphabet A. The result
is the construction of an automaton that accepts the set of all the target-specific factors
considered. This automaton is a digital tree whose leaves correspond to the specific words.
The construction algorithm runs in linear time according to the size n of T ∪ R, when A has
a fixed size. The time complexity is O(n log |A|) when A is an ordered alphabet. Further,
using the result of [29], the running time becomes O(n) when A is an integer alphabet of
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polynomial size according to n. Our algorithm uses a marking technique of the DAWG of a
finite set of sequences, very close to the skip links used in [29], to compute minimal absent
words using a DAWG.

The second result shows the design of an algorithm to compute all the occurrences in a
single sequence T of its target-specific factors against a reference R. The algorithm runs in
real-time on the target sequence over a fixed-size alphabet and independently of the number
of occurrences of target-specific factors. This is obtained after standard processing of the
DAWG of the reference, similarly as above. This improves on the result in [23], where the
running time of the main algorithm depends on the number of occurrences of sought factors.

Definitions
Let A be a finite alphabet and A∗ be the set of finite words drawn from the alphabet A,
including the empty word ε. A language is a set of finite words. The concatenation of two
words u, v is denoted by uv, and, if x = uv, v is also denoted by u−1x. A factor of a word
x ∈ A∗ is a word v ∈ A∗ that satisfies x = uvw for some words u, w ∈ A∗. A proper factor
of x is a factor distinct from the whole word. If P is a set of words, we denote by Fact(P )
the set of factors of words in P , and, if P is finite, size(P ) denotes the sum of lengths of the
words in P . A language L is factorial is each factor of a word of L belongs to L.

A minimal absent word (also called a minimal forbidden word) for a given factorial
language L ⊆ A∗ with respect to a given alphabet B containing A is a word of B∗ that does
not belong to L but whose all proper factors do.

Let R, T be two sets of finite words. A T -specific word with respect to R is a word u such
that: u is a factor of a word in T , u is not a factor of a word in R and any proper factor of u

is a factor of a word in R. The set R is called the reference and T the target of the problem.
Note that a word is a T -specific word with respect to R if and only if it is a minimal

absent word of Fact(R), with respect to the alphabet of letters occurring in R ∪ T , and is
also in Fact(T ). As a consequence, the set of T -specific words with respect to R is both
prefix-free (i.e., no word of the set is a prefix of another word of the set) and suffix-free (i.e.,
no word of the set is a suffix of another word of the set).

It follows from the definition that the set S of T -specific words with respect to R is:

Fact(T ) ∩ (A∗ − Fact(R)) ∩ A Fact(R) ∩ Fact(R)A,

where A is the alphabet of letters of words R and T . It is thus a regular language when R

and T are regular, in particular, when R and T are finite.
A finite deterministic automaton is denoted by A = (Q, A, i, F, δ), where A is a finite

alphabet, Q is its finite set of states, i ∈ Q is the unique initial state, F ⊆ Q is the set of
final states and δ is the partial function from Q × A to Q representing the transitions of the
automaton. The partial function δ extends naturally to Q × A∗ and a word u is accepted by
A if and only if δ(i, u) is defined and belongs to F .

2 Background: directed acyclic word graph

In this section, we recall the definition and sketch the construction of the directed acyclic
word graph of a finite set of words. This description already appears in [3].

Let P = {x1, x2, . . . , xr} be a finite set of r finite words. A linear-time construction of a
deterministic finite state automaton recognizing Fact(P ) has been obtained by Blumer et al.
in [8, 7] (see also [28]). Their construction is an extension of the well-known incremental
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14:4 Specific Patterns

construction of the suffix automaton of a single word (see for instance [12, 14]). The words
are added one by one to the automaton. In the sequel, we call this algorithm the Dawg
algorithm since it outputs a deterministic automaton called a directed acyclic word graph.
Let us denote it by DAWG(P ) = (Q, A, i, Q, δ). Let Suff (v) denote the set of suffixes of a
word v and Suff (P ) the union of all Suff (v) for v ∈ P .

The states of DAWG(P ) are the equivalence classes of the right invariant equival-
ence ≡Suff (P ) defined as follows. For u, v ∈ Fact(P ),

u ≡Suff (P ) v iff ∀i ∈ [1, r] u−1Suff (xi) = v−1Suff (xi).

There is a transition labelled by a from the class of a word u to the class of ua. The
automaton DAWG(P ) has a unique initial state, which is the class of the empty word, and all
its states are final. Note that the (syntactic) congruence ∼ defining the minimal automaton
of the language is

u ∼ v iff
r⋃

i=1
u−1Suff (xi) =

r⋃
i=1

v−1Suff (xi),

and is not the same as the below equivalence. In other words, DAWG(P ) is not always a
minimal automaton.

The construction of DAWG(P ) is performed in time O(size(P ) × log |A|) in [8]. A time
complexity of O(size(P )) can be obtained for an integer alphabet of polynomial size in [19]
and [20]. It can also be obtained with an implementation of automata with sparse matrices
(see [14, Exercise 1.15]).

An essential element of the efficient construction is the notion of suffix links between
states, denoted by s. We first define the function s′ from Fact(P ) \ {ε} to Fact(P ) as follows:
for any v ∈ Fact(P ) \ {ε},

s′(v) is the longest suffix of v that satisfies u ̸≡Suff (P ) v.

Then, we define the partial function s from Q to Q as follows. When p = δ(i, v) for v ̸= ε,
s(p) is the state δ(i, s′(v)). The function s is not defined on the initial state i.
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Figure 1 Automaton DAWG(P ) for P = {abbab, abaab}.

▶ Example 1. The DAWG obtained with the Dawg algorithm applied to P = {abbab, abaab}
is displayed in Figure 1. Dashed edges represent the suffix links and marks r, t on states relate
to the reference word abbab and the target abaab. Note that this deterministic automaton
is not minimal, as the states 6 and 10, 5 and 9, and 3 and 7, respectively, can be merged
pairwise.
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3 Computing the set of T -specific words

In this section, we assume that the reference R and the target T are two finite sets of words
and our goal is to compute the set of T-specific factors of T against R. To do so, we first
compute the directed acyclic word graph DAWG(R ∪ T ) = (Q, A, i, Q, δ) of R ∪ T . Further,
we compute a table, called mark, indexed by the set of states Q and that satisfies: for each
state p in Q, mark[p] is one of the three values r, t or both r, t according to the fact that
each word labeling a path from i to p is a factor of some word in R, in T or in both. This
information can be obtained during the construction of the directed acyclic word graph
without increasing the running time.

The following algorithm outputs the set of T -specific words occurring in T with respect
to R in the form of a trie (digital tree, see [14]).

Specific-trie((Q, A, i, Q, δ) DAWG of (R ∪ T ), s its suffix link)

1 for each p ∈ Q with mark[p] = r, t in width-first search from i do
2 for each a ∈ A do
3 if δ(p, a) = q with mark[q] = r, t not reached yet then
4 δ′(p, a)← q

5 elseif (δ(p, a) defined with mark[δ(p, a)] = t) and
(p = i or δ(s(p), a) defined with mark[δ(s(p), a)] = r or r, t) then

6 δ′(p, a)← new sink
7 return (Q, A, i, {sinks}, δ′)

▶ Proposition 2. Let DAWG(R ∪ T ) be the output of Algorithm Dawg on the finite set of
words R ∪ T , let s be its suffix function, and let mark be the table defined as above. Algorithm
Specific-trie builds the trie recognizing the set of T -specific words with respect to R.

Proof. Let S be the set of T -specific words with respect to R.
Consider a word ua (a ∈ A) accepted by the automaton A = (Q, A, i, {sinks}, δ′) returned

by the algorithm. Note that A accepts only nonempty words. Let p = δ′(i, u). Since the
DAWG automaton is processed with a width-first search, u is the shortest word for which
δ(i, u) = p. Therefore, if u = bv with b ∈ A, we have δ(i, v) = s(p) by definition of the suffix
function s. When the test “(δ(p, a) defined and mark[δ(p, a)] = t) and (δ(s(p), a) defined and
mark[δ(s(p), a)] = r or r, t)” is satisfied, this implies that va ∈ Fact(R). Thus, bva /∈ Fact(R),
while bv, va ∈ Fact(R) and bva ∈ Fact(T ). So, ua is a T -specific word with respect to R. If
u is the empty word, then p = i. The transition from i to the sink labeled by a is created
under the condition “δ(p, a) defined and mark[δ(p, a)] = t”, which means that a ∈ Fact(T ).
The word a is again a T -specific word with respect to R. Thus the words accepted by A are
T -specific words with respect to R.

Conversely, let ua ∈ S. If u is the empty word, this means that a does not occur in Fact(R)
and occurs in Fact(T ) therefore there is a transition labeled by a from i in DAWG(R ∪ T ) to
a state marked t. Thus, a transition from i to a sink state in A is created in line 6, and a is
accepted by A. Now assume that u = bv. The word u is in Fact(R). So let p = δ(i, u). Note
that u is the shortest word for which p = δ(i, u), because all such words are suffixes of each
other in the DAWG automaton. The word ua is not in Fact(R) and is in Fact(T ), so the
condition “δ(p, a) defined and mark[p, a] = t” is satisfied. Let q = s(p). We have q = δ(i, v)
because of the minimality of the length of u and the definition of s. Since va is in Fact(R),
the condition “δ(s(p), a) defined and mark[δ(s(p), a)] = r or r, t” at line 5 is satisfied. This
results in the creation of a transition at line 6, enabling A to accept ua as desired. ◀

Grossi’s Festschrift



14:6 Specific Patterns

▶ Example 3. The automaton DAWG(R∪T ), where R = {abbab} and T = {abaab} is shown
in Figure 1. The output of Algorithm Specific-trie applied to it is shown in Figure 2,
where the black squares are the accepting sink states of the trie. The set of T -specific words
with respect to R is {aa, aba}.

0 1 2

4 8

a b

a
b

r, t r, t r, t

r, t r, t

a a

Figure 2 The trie of T -specific words with respect to R.

A main point in algorithm Specific-trie is that it uses the function s defined on states
of the input DAWG. It is not possible to proceed similarly when considering the minimal
factor automaton of Fact(R ∪ T ) because there is no analogue function s. However, it is
possible to reduce the automaton DAWG(R ∪ T ) by merging states having the same future
(right context) and the same image by s. For example, on the DAWG of Figure 1, states 6
and 10 can be merged because s(6) = s(10) = 2. States 3 and 7, nor states 5 and 9 cannot
be merged with the same argument.

▶ Proposition 4. Algorithms Dawg and Specific-trie together run in time O(size(R ∪
T ) × |A|) when applied to reference R and target T , two finite sets of words, if the transition
functions are implemented by transition matrices. This complexity is O(size(R ∪ T ) × log |A|)
for an ordered alphabet, and O(size(R ∪ T )) for an integer alphabet of polynomial size.

Proof. The running time depends on the time for computing the DAWG of R ∪ T . The relies
on the time for computing the transitions of the DAWG, that is δ(q, a), which is constant for
an integer alphabet of polynomial size, due to [29]. ◀

For P a set of words, we denote by AP the set of letters occurring in P .

▶ Proposition 5. Let R, T be two finite sets of words. The number of T -specific words with
respect to R is no more than (2 size(R) − 2)(|AR| − 1) + |AT \ AR| − |AR| + m, if size(R) > 1,
where m the number of words in R. The bound becomes |AT \ AR| when size(R) ≤ 1.

Proof. We let S denote the set of T -specific words with respect to R. Since S is included in
the set of minimal absent words of Fact(R) with respect to the alphabet A = AR ∪ AT , the
bound comes from [3, Corollary 4.1]. ◀

In conclusion, the algorithm generates a trie of minimal absent words, which represent
potentially interesting patterns. This trie can be used to explore the set of patterns that
align with the application’s objectives.
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4 Computing occurrences of target-specific factors: the T -specific
table

In this section, we consider that T is a single word and R is a finite set of words as before.
The goal of the section is to design an algorithm that computes all the occurrences in T

of words that are T -specific with respect to R. To do so, we define the T -specific table
associated with the pair R, T of words of the problem.

A letter of T at position k is denoted by T [k] and T [i . . j] denotes the factor T [i]T [i +
1] · · · T [j] of T . Then, the T-specific table Ts is defined, for i = 0, . . . , |T | − 1, by

Ts[i] =
{

j, if T [i . . j] is T -specific, i ≤ j,

−1, else.

Note that the set of T -specific factors is prefix-free, that is, no proper prefix of an element
of the set is also in the set. (The set of T -specific factors is also suffix-free.) Therefore, for
each position k on T , there is at most one T -specific factor of T starting at k (and for each
position j on T there is at most one T -specific factor of T ending at j).

Instead of computing the T-specific table Ts, in a straightforward way, the algorithm
below can be transformed to compute the list of pairs (i, j) of positions on T for which
Ts[i] = j and j ̸= −1.

To compute the table we use R, the Suffix automaton or rather the DAWG of R. The
former is the minimal automaton accepting the suffixes of R (see [14, Section[5.4]) and the
latter has the same structure but with all states as terminal states instead (see [8]). As such,
it accepts Fact(R) the set of factors of R.

The automaton is given with its transition function δ, its initial state i and and is equipped
with both the suffix link s (used here as a failure link) and the length function ℓ defined on
states. The function ℓ is defined by: ℓ[p] = max{|z| ∈ A∗ | δ(i, z) = p}. The functions s and
ℓ transform the automaton into a search machine (see [14, Section 6.6]).

T
0 k j − ℓ[q′] − 1 j |T | − 1

u b
i q

i q′-�
ℓ[q′]

a v

T
0 k j |T | − 1

u
i q

Figure 3 A T -specific word found: when u ∈ Fact(R) and ub ̸∈ Fact(R), either avb or b is a
T -specific factor with respect to R (a, b are letters). The gray bottom displays the situation, and
specifically the variables q and j used in Algorithm TsTable, after processing letter b.

Figure 3 illustrates the principle of Algorithm TsTable. Let us assume that the factor
u = T [k . . j − 1] is a factor of R but ub is not for some letter b. Then, let v be the longest
suffix of u for which vb is a factor of R. If it exists, then clearly avb, with the letter a

preceding v, is T -specific. Indeed, av, vb ∈ Fact(R) and avb ̸∈ Fact(R), which means that
avb is a minimal absent word of R while occurring in T . Therefore, setting q′ = δ(i, v) and
since |v| = ℓ[q′], the minimal absent word avb is identified by setting Ts[j − ℓ[q′] − 1] = j. If
there is no suffix of u satisfying the condition, the letter b alone is T -specific and is identified
by setting Ts[j] = j.
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TsTable(T target word,R DAWG(R), i initial(R))

1 (q, j)← (i, 0)
2 while j < |T | do
3 Ts[j]← −1
4 if δ(q, T [j]) undefined then
5 while q ̸= i and δ(q, T [j]) undefined do
6 q ← s[q]
7 if δ(q, T [j]) undefined then ▷ q = i

8 Ts[j]← j

9 else Ts[j − ℓ[q]− 1]← j

10 q ← δ(q, T [j])
11 else q ← δ(q, T [j])
12 j ← j + 1
13 return Ts

▶ Theorem 6. Algorithm TsTable computes the T -specific table with respect to R and runs
in linear time, that is, O(|T |) on a fixed-size alphabet.

Proof. The algorithm implements the ideas detailed above and illustrated by Figure 3. The
formal proof relies on the following invariant condition of the main while loop: let u be a
factor of R and q be a state of R that satisfies q = δ(i, u), and let j be the current position
on T , then u is the longest factor of R ending at position j − 1 on T . Before the first pass in
the main while loop starts, u is the empty word, q = i, j = 0, and the condition is satisfied.

During each pass in the main while loop, by default Ts[j] is first set to −1 (line 3) to
cover the possibility that no minimal absent word ends at position j. Let us examine what is
done during a pass in the while loop after the instruction at line 3.

If δ(q, T [j]) is defined at line 4, the next value of q is set at line 11, followed by the
increment of j at line 12. Therefore, uT [j] is the longest factor of R ending at j − 1, as
required for the invariant to hold.
The case where δ(q, T [j]) is undefined at line 4 is illustrated on Figure 3. Then, the loop
at lines 5-6 uses the suffix link s to finds the longest suffix v of u for which vb = vT [j] is
a factor of R by the definition of s in the DAWG.

If the execution of the loop terminates with δ(q, T [j]) still undefined, this indicates
that q is the initial state and that v is the empty word. Consequently, the letter T [j]
is the minimal absent word at position j.
Otherwise, first note that v is shorter than u because ub is not a factor of R. Thus,
there exists a letter a such that av is a suffix of u. Therefore, avb is the minimal
absent word ending at position j because av, vb ∈ Fact(R) but avb /∈ Fact(R). This is
established at line 9 because the position of letter a is j − ℓ[q] − 1. The subsequent
execution of lines 9 and 10 ensures that the invariant condition holds in this case as
well.

As for the running time, note that the instructions at lines 3 and 7-12 execute in constant
time for each value of j. All the executions of the instruction at line 6 execute in time O(|T |)
because the link s reduces strictly the potential length of the T -specific word ending at j,
incrementing the starting position j − ℓ[q] − 1 of v in the picture.

Moreover, each computation of a transition δ(q, T [j]) executes in constant time on a
fixed-size alphabet if, for example, the DAWG is implemented with a sparse matrix technique.

Thus, the entire execution is completed in time O(|T |). ◀
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Algorithm TsTable can be improved to run in real-time on a fixed-size alphabet. This
is done by optimising the suffix link s defined on the automaton R. To do so, let us define,
for each state q of R,

out(q) = {a | δ(q, a) defined for letter a}.

Then, the optimised suffix link G is defined by G[initial(R)] = nil and, for any other state q

of R, by

G[q] =
{

s[q], if out(q) ⊂ out(s[q]),
G[s[q]], else.

Note that, since we always have out(q) ⊆ out(s[q]), the definition of G can be reformulated as

G[q] =
{

s[q], if deg(q) < deg(s[q]),
G[s[q]], else,

where deg is the outgoing degree of a state. Therefore, its computation can be performed
in linear time with respect to the number of states of R. After substituting G for s in
Algorithm TsTable, when the alphabet is of size α the instruction at line 6 executes no
more than α times for each value of q. So the time to process a given state q is constant.
This is summarized in the next corollary.

▶ Corollary 7. When using the optimised suffix link, Algorithm TsTable runs in real time
on a fixed-size alphabet.

On a more general alphabet of size α, processing a given state of the automaton can be
done in time O(log α).

5 Absent word searching vs string matching

Searching for absent factor occurrences as done in the previous section is based on the
DAWG matching technique [13] (see also [14, Section 6.6]) in the domain of string matching
algorithms. As such, Algorithm TsTable looks like a side product of string matching.

The goal of string matching algorithms is to locate a given pattern p in a longer text T .
Figure 3 displays the generic situation when a part u of the pattern has been found in T and
is about to be appended with the letter b. The extension of u is successful if b matches its
aligned letter of the pattern, which eventually can lead to the detection of an occurrence of
the whole pattern.

The situation in Figure 3 is also the generic situation when searching for minimal absent
words. However, in contrast, this is an unsuccessful match of the letter b that immediately
yields the detection in T of a minimal absent word of p.

The role of the DAWG matching technique is essential here to detect minimal absent
words of p occurring in T because the DAWG of p stores and provides direct access to
all factors of p. Instead, if an online string matching algorithm is used, like KMP [24] or
Simon-Hancart [34, 22] algorithms (see also [14, Chapter 2]), the algorithm will detect only
some absent words. That is, those of the form aub in which au is a factor of p but ub is only
a prefix of it. This does not produce all the minimal absent words. However, other types of
string matching based on text indexes can certainly be used for the same purpose.

As a conclusion, the algorithm designed in the previous section reveals a surprising
phenomenon: the very tight link between the existence of minimal absent words that pop up
naturally in the analysis of pattern searching based on a Suffix automaton or a DAWG.
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