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—— Abstract

The Wavelet Tree data structure introduced in Grossi, Gupta, and Vitter [16] is a space-efficient
technique for rank and select queries that generalizes from binary symbols to an arbitrary multisymbol
alphabet. Over the last two decades, it has become a pivotal tool in modern full-text indexing
and data compression because of its properties and capabilities in compressing and indexing data,
with many applications to information retrieval, genome analysis, data mining, and web search. In
this paper, we survey the fascinating history and impact of Wavelet Trees; no doubt many more
developments are yet to come. Our survey borrows some content from the authors’ earlier works.

This paper is divided into two parts: one (this one) giving a brief history of Wavelet Trees,
including its varieties and practical implementations, dedicated to this Festschrift’s honoree Roberto
Grossi; the second part deals with Wavelet Tree-based text indexing and is included in the Festschrift
dedicated to Giovanni Manzini [10].
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1 Introduction

The field of compressed full-text indexing [29] involves the design of data structures (aka,
indexes) that support fast substring matching using small amounts of space. For a text
string T[1,n] over an arbitrary alphabet ¥ of size o and a pattern P[1,m], the goal of text
indexing is to preprocess 7T using succinct space so that queries like the following can be
quickly answered: (1) count the number occ of occurrences of P in T; (2) locate the occ
positions in T where P occurs; and (3) starting at text position start, extract the length-¢
substring T [start, start + ¢ — 1].

© Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, Giovanna Rosone, Rossano Venturini, and
5v Jeffrey Scott Vitter;

licensed under Creative Commons License CC-BY 4.0
From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 15; pp. 15:1-15:11

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:paolo.ferragina@santannapisa.it
https://orcid.org/0000-0003-1353-360X
mailto:raffaele.giancarlo@unipa.it
https://orcid.org/0000-0002-6286-8871
mailto:giovanni.manzini@unipi.it
https://orcid.org/0000-0002-5047-0196
mailto:giovanna.rosone@unipi.it
https://orcid.org/0000-0001-5075-1214
mailto:rossano.venturini@unipi.it
https://orcid.org/0000-0002-9830-3936
mailto:jsv@vitter.org
https://orcid.org/0000-0001-7970-6118
https://doi.org/10.4230/OASIcs.Grossi.2025.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

15:2

Wavelet Tree, Part I: A Brief History

A main goal is to create an index whose size is roughly equal to the size of the text
in compressed format, with search performance comparable to the well-known indexes on
uncompressed text, such as suffix trees and suffix arrays. Some compressed data structures
are in addition self-indezes in that the data structure encapsulates the original text and,
thus, can quickly recreate any portion of it. As a result, the original text is not needed, it
can be discarded and replaced by only the (self-)index.

Most compressed indexing techniques developed in the last two decades make use of the
powerful Wavelet Tree data structure, developed by Grossi, Gupta, and Vitter [16], with
many applications to information retrieval, genome analysis, data mining, and web search. A
Wavelet Tree supports fast rank and select queries on any string from a general multisymbol
alphabet Y. As such, it provides an elegant extension of rank-select data structures for
binary sequences [31, 29] to the general case of alphabets of arbitrary size.

The Wavelet Tree represents a string of symbols from an arbitrary alphabet ¥ as a
hierarchical set (or tree) of binary strings. It has the following key compression property: If
each such binary string is compressed according to its information-theoretic minimum size,
then the original string is compressed to its information-theoretic minimum size.

The Wavelet Tree tree structure can be thought of as a generalization in the context of
computational geometry of the two-dimensional range search data structure of Chazelle [4]
in which the two-dimensional points stored in a binary tree node are initially sorted in one
dimension and then recursively partitioned into children based upon the second dimension.
Kérkkéinen [21] used a similar data structure in a very different way and purpose in the
context of highly repetitive texts.

Why the name “Wavelet Tree”? One of the codevelopers suggested the name based upon
his research interests in the fields of image compression and database query optimizaton,
where he used wavelet transforms and their hierarchical decompositions to approximate
multiresolution data [33].

In this paper (PART I), we give a brief history of Wavelet Trees, including its varieties
and practical implementations. We refer the reader to PART II, included in the Festschrift
dedicated to Giovanni Manzini, for a discussion about the important role of Wavelet Trees in
text indexing, particularly for compressed suffix arrays and the FM-index, which can produce
self-indexes with size related to the higher-order entropy of the text.

2 Preliminaries

Let ¥ = {0,1,...,0 — 1} be a finite ordered alphabet of size o. Let T = T[0,n — 1] be a
text string consisting of n symbols from alphabet . For simplicity, we assume that 7[n — 1]
is a special end-of-text symbol # that is the lexicographically smallest symbol in ¥. We use
T1i, j] to denote the substring of 7 consisting of the symbols T[i]T[i +1]... T[j]. A prefix
of T is a substring of the form 7710, 4], and a suffix is a substring of the form 7[j,n — 1].

Two key operations we will need for accessing and traversing Wavelet Trees are rank and
select:

» Definition 1 (rank and select). Let B[1,m] be a bit array of length m and let bit b € {0,1}.
We define the rank and select operations as follows:
ranky(B,1): return the number of occurrences of bit b in B[1,1] for any 1 <i <m;

selecty (B, j): return the position in B of the jth occurrence of bit b for any 1 < j <
ranky (B, m).
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» Definition 2 ((Oth-order) empirical entropy). Let T be a text string of length n over an
alphabet ¥ = {0,1,...,0 — 1} of size 0. The Oth-order empirical entropy of T is defined as

1
7‘[0 :Ho(T) = ﬁ anlogn£

where ny, is the number of occurrences in T of symbol w € X.

A more stringent notion of entropy is the information-theoretic minimum (or Oth-order
finite-set entropy), given by

)
— log .
n ny,N2,..., Ny

It is always less than or equal to the Oth-order empirical entropy.
Higher orders of entropy can be defined readily if we encode symbols based upon their
frequencies of occurrence when grouped into common contexts.

» Definition 3 (kth-order empirical entropy). Let T be a text string of length n over an
alphabet ¥ = {0,1,...,0 — 1} of size 0. The kth-order empirical entropy of T is defined as

e = He(T) = = 3" e Ho(T)

xeXk

where x € ¥F designates a string (context) of length k and Ty denotes the string of length ny
formed by taking the symbol immediately preceding each occurrence of x in T and concatenating
all these symbols together.

In a like manner, we can define the kth-order finite-set entropy by

1 Ny
— E log ,
nx . M1xyN2xy+ -+ Mo x

where n,  for y € X is the number of occurrences of yx as a substring in 7. The kth-order
finite-set entropy is always less than or equal to the kth-order empirical entropy.

In other words, the key point of the kth-order entropy definition is that we can achieve
it by encoding the relevant parts of 7 using Oth-order entropy. (This property was later
appropriately dubbed “boosting.”) In particular, if we form the substrings 7. for each
relevant k-context x and compress each 7T, to achieve space of n, times its Oth-order empirical
entropy Ho(7x), then the resulting compression for the full text string 7 will be n times
the kth-order empirical entropy Hi (7). Wavelet Trees are a natural and elegant way to
compress each substring Ty to ny Ho(7x) bits plus lower-order terms, and thus the resulting
cumulative encoding of 7 has size in bits bounded by n H(7) plus lower-order terms. This
fact is exploited in PART II to show how Wavelet Trees can be used to create text indexes
that use space related to the high-order entropy of 7.

For two strings S and T, we define the lexicographic order S < T (and say that S is
smaller than T') if S is a proper prefix of T, or if there exists an index 1 < ¢ < min{|S|, |T|}
such that S[i] < T'[i] and for all j < ¢, S[j] = T[j]-

We use SA[0,n — 1] to denote the suffix array (SA) of 7. It consists of the positions
of all the suffixes of T in lexicographical order. For example, in the text string T =
tcaaaatatatgcaacatatagtattagattgtat# in Table 1, the smallest suffix begins at position
SA[0] = 35, and the next smallest suffix begins at position SA[1] = 2. The ordered suffixes
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Table 1 For text 7 = tcaaaatatatgcaacatatagtattagattgtat# containing symbols from the al-
phabet ¥ = {#,a,c,g,t} shown in the first column, the subsequent columns show the suffix array SA4,
its neighbor function ¥, and the LF function of the BWT. The (wide) second-to-last column shows
the suffixes in sorted order; each suffix starts at the symbol under F' (first) and ends at the symbol un-
der L (last). The BWT of T is the string of symbols L = tcacaattttcatttgtgaattaatagaaag#ataa.
The last column B is the bit array for the root node of the Wavelet Tree of L; symbols #, a, and ¢
(for the left subtree) are designated by a 0, and symbols g and t (for the right subtree) are designated
by a 1. The Wavelet Tree for L is pictured in Figure 1.

i | T |SA| ¥ | LF | F L| B
0 t 35 | 31 23 | #t c a ...a t| 1
1 c 2 2 16 |a a a a ...t ¢| O
2 a 3 4 llaaat ...calO0
3 a 13 5 17| a a c a ...g ¢| O
4 a 4] 11 2laat a ...a a0
5 a 14 | 18 3]lacat ...c al] 0
6 t 26 | 19 24 la g at ...t t| 1
7| a 20 | 22 25 |a gt a ...a t| 1
8 t 33 | 23 26 |[a t #t ...g t| 1
9 a 18 | 25 27 |a t a g ...a t| 1
10 t 16 | 27 18|at at ...ac| O
11 g 5| 28 4]lat at ...a al 0
12 c 7129 28lat at ...a t| 1
13 a 9 | 32 29 |at gc ...a t| 1
14 a 23 | 34 30 at t a...g t| 1
15 c 28 | 35 19 ]at t g ...a g| 1
16 a 1 1 31| c aaa ...#t| 1
17 t 12 3 200 c a ac ...t g| 1
18 a 15 | 10 5|c at a ...a a| 0
19 t 27 | 15 6|gat t ...t a| 0
20 a 11 | 17 32| gcaa...at|l
21 g 31 | 26 33|gt at ...t t| 1
22 t 21 | 30 7lgt at ...t a|] 0
23 a 34 0 8|t #t ¢ ...t a| O
24 t 25 6 3|t aga ...a t| 1l
25 t 19 7 9|1t a gt ...t a|] 0O
26 a 32 8 21 |t a t # ...t g| 1
27 | g 17 9 10|t at a ...c a|] O
28 a 6 | 12 11|t at a ...a a| 0
29 t 8 | 13 12|t at g ...t a|] O
30 t 22 | 14 22 |t at t ...a g| 1
31| g 0| 16 Ot caa ...t # 0
32 t 10 | 20 13|t gca ...t a|] 0
33 a 30 | 21 3|t gt a ...at| 1l
34 t 24 | 24 41t t ag ...t a| 0
35 | # 29 | 33 15t t gt ...g a|] O

are pictured in the (wide) second-to-last column of the table. For convenience, we regard
text 7 as a circular string and implicitly use modular arithmetic base n for the indices of T .
In other words, references to a symbol T [i] actually refer to 7 [i mod n].

Further development of suffix arrays that leads to the notion of compressed suffix arrays
is discussed in PART II. Compressed suffix arrays are self-indexes that use space proportional
to the high-order entropy of the text and provide fast pattern-matching queries. The key
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notion that leads to the compression of suffix arrays is the important neighbor function,
which for each ¢ € [0,n — 1] maps 7 to the lexicographic order of the suffix formed by taking
the ith smallest suffix of 7 and rotating it to the left by one symbol.

The Burrows-Wheeler Transform (BWT) is another reversible transformation of a text
string T that rearranges the symbols of 7 in a way that groups together the same symbols
from similar contexts, thus resulting in high compressibility [2, 26]. In terms of Table 1, the
BWT is represented by the last subcolumn (designated by L). PART II provides further
development of the BWT that leads to the FM-index, which like the compressed suffix array,
uses space proportional to the high-order entropy of the text and provides fast pattern-
matching queries. The key notion behind the FM-index and its compression is the LF
function, which is the inverse of the neighbor function for compressed suffix arrays mentioned
above. That is, the LF function maps each ¢ to the lexicographic order of the suffix formed
by taking the ith smallest suffix of T and rotating it to the right (rather than to the left) by
one symbol. The symbol under L in row i is the same symbol under F' in row LF(i).

3 Wavelet trees

Wavelet Trees provide an elegant and efficient implementation of rank-select data structures
for strings of symbols from an arbitrary multisymbol alphabet. They generalize the well-
known rank-select data structures such as RRR [31] that handle binary strings.

Conceptually, the Wavelet Tree is most simply described as a full (and often balanced)
binary tree (see the example in Figure 1). The root node is a bit array B of the same length
as the input text 7 and partitions the text’s alphabet into two sets, where a 0-bit indicates
that the corresponding text symbol is in the left set and a 1-bit indicates that the text
symbol is in the right set. (See Table 1 for the bit array B applied to the string L.) Such a
bit array representation happens recursively at each internal node, where the text at the
internal node is of the symbols dispatched from the parent node with their order in the text
preserved. Each leaf node represents a distinct symbol of the alphabet of the input text,
with its multiplicity preserved.

Operations of rank and select on binary strings, as defined in Definition 1, are used to
navigate up and down the Wavelet Tree. For example, in the root node of the Wavelet Tree
of Figure 1, consider the symbol a in the sixth position of L, which is represented by a 0,
which means that its corresponding entry on the next level is in the left subtree. To find
that entry, we compute ranko(L,6) = 5 using a data structure such as RRR; we thus find
that the corresponding entry is entry 5 in the left subtree. To go from that entry on level 2
back to the position of the corresponding entry in root node, we compute selecto(L,5) = 6.

Of course, extra data structures are needed in order to support the needed query operations
and functionality in an efficient way. Those details are not given here in this survey. Instead
we focus on the main ideas that make wavelet trees such an elegant and powerful method.

The key aspect of Wavelet Trees is that they cleverly decompose the text into a hierarchy
of bit arrays without introducing any redundancy, so that the total size of the raw bit arrays
in the Wavelet Tree is exactly the same as the size (in bits) of the input text, regardless of
the shape of the Wavelet Tree. If the bit array at each node is Oth-order entropy compressed,
the resulting cumulative space usage of the Wavelet Tree is equal to n times the Oth-order
entropy-compressed size of the input text, again regardless of the shape of the tree [16, 11].

15:5
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a ggegeg ttttttttttttt

Figure 1 The Wavelet Tree for string L = tcacaattttcatttgtgaattaatagaaag#ataa of Table 1.

4 Properties of Wavelet Trees

The Wavelet Tree pictured in Figure 1 is a balanced binary tree, in which the number of
symbols at each internal node are partitioned as evenly as possible for the level below. As
such it has at most log o levels, and each level (in raw uncompressed form) consists of a bit
array of length n. Using RRR [31] to encode each internal node allows fast rank and select
queries for general alphabets on the overall tree.

For an internal node of m bits with ¢ 1-bits and m — ¢ 0-bits, the RRR encoding [31] uses
log (7}) + o(£) + O(log log m) bits, where log (") is the information theoretic minimum. This
form of entropy is called Oth-order finite-set entropy; it is always less than or equal to the
empirical entropy of Definition 2, since it removes dependence from the statistical model.
Summing the log (”;) terms over all the internal nodes of the Wavelet Tree cascades into the
multinomial coefficient (nhn;__mg) [17], which is less than or equal n times the Oth-order
empirical entropy of the text 7.

There is much interesting work on efficient ways to construct Wavelet Trees. For example,
Munro et al. [27] show that construction can be done in O(n(logo)//logn) time.

5 Varieties of Wavelet Trees and Their Characteristics

There are several variants of Wavelet Trees. In this section, we focus on Huffman Wavelet
Trees, Pruned Wavelet Trees, and Wavelet Trees with multiway branching.

In [24, 28] the authors propose giving the Wavelet Tree the Huffman shape of the
frequencies with which the symbols appear in the text string 7. It has been shown that the
total number of bits stored in the Huffman Wavelet Tree is exactly the number of bits output
by a Huffman compressor that takes the symbol frequencies in 7, which is upper-bounded
by n(Ho(T) + 1). Moreover, the accesses to the leaves in the Huffman Wavelet Tree can be
obtained with frequency proportional to their number of occurrences in 1. Huffman shapes
can be combined with multiway Wavelet Trees and entropy compression of the bitmaps [1]. In
this case, one can achieve space nH(7) + o(n) bits, worst-case time O(1 + (log o)/ loglogn),
and average case time O(1 4+ Ho(7)/loglogn) for both rank and select queries.

Ferragina, Giancarlo, and Manzini [11] addressed the impact of the Wavelet Tree data
structure on data compression by providing a theoretical analysis of a wide class of compression
algorithms based upon Wavelet Trees, and proposing a novel framework, called pruned Wavelet
Trees, that aims for the best combination of Wavelet Trees of properly-designed shapes and
compressors either binary (like, run-length encoders) or non-binary (like, Huffman and
arithmetic encoders). There were three main contributions in that paper.
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First, they proposed a thorough analysis of Wavelet Trees as stand-alone general-purpose
compressor, by considering two specific cases (extending [13]) in which either the binary
strings associated to their nodes are compressed via RLE (referred to as the Rle Wavelet
Tree) or via Gap Encoding (referred to as the Ge Wavelet Tree). These analyses provided
compression bounds that depended on the features of these prefix-free encoders and the
Oth-order entropy of the input string. As a result, the authors were able to prove that Rle
Wavelet Trees can achieve a compression bound in terms of the kth order empirical entropy,
whereas Ge Wavelet Trees cannot. This result has been then strengthened in [25] where the
authors showed that Rle can be replaced by the succinct dictionaries of [31].

Ferragina et al. [11] introduced the pruned Wavelet Trees that generalize and improve
Wavelet Trees by working on (C.1) the shape (or topology) of the binary tree underlying their
structure; and on (C.2) the assignment of alphabet symbols to the binary-tree leaves. The
authors showed that it is possible to exhibit an infinite family of strings over an alphabet %
for which changing the Wavelet Tree shape influences the coding cost by a factor ©(log o),
and changing the assignment of symbols to leaves influences the coding cost by a factor
©(0). Moreover, they showed that (C.3) Wavelet Trees commit to binary compressors, losing
the potential advantage that might come from a mixed strategy in which only some strings
are binary and the others are defined on an arbitrary alphabet (and can be compressed via
general-purpose Oth-order compressors, such as arithmetic and Huffman coding). Again, that
paper showed that it is possible to exhibit an infinite family of strings for which a mixed
strategy yields a constant multiplicative factor improvement over standard Wavelet Trees.

It is exactly to address these questions that Ferragina et al. [11] introduced the pruned
Wavelet Trees where only a subset of their nodes is binary, and then developed a combinatorial
optimization strategy addressing (C1)—(C3) simultaneously. As a corollary, they specialized
that strategy to design a polynomial-time algorithm for finding the optimal pruned Wavelet
Tree of fixed shape and assignment of alphabet symbols to its leaves; or, for selecting the
optimal tree shape when only the assignment of symbols to the leaves of the tree is fixed.

Ferragina et al. [12] showed that increasing the branching factor in the wavelet tree nodes
can reduce the time for rank and select queries to constant time, assuming that the alphabet
size satisfies 0 = O(polylogn).

6 Practical Implementations of Wavelet Trees

In this section, we review some approaches for designing fast and compact implementations
of Wavelet Trees. Grossi, Vitter, and Xu [18] provided a full generic package of Wavelet
Trees for a wide range of options on the dimensions of coding schemes and tree shapes. Their
experimental study reveals the practical performance of the various modifications. It provides
potential users a rationale for how to implement a Wavelet Tree based upon the particular
characteristics of the underlying datat.

The authors[18] considered three styles of Wavelet Trees:

Normal: Each node is partitioned by alphabetically dividing the symbols represented in

the node into two nearly equal-sized halves;

Alphabetic weight-balanced: Each node is partitioned by alphabetically dividing the

symbols represented in the node into two nearly equal-weighted halves, where the weights

are designated by the frequencies of the symbols; and

Huffman: Each node is partitioned as in Huffman compression.

15:7
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They also considered several styles of encoding the conceptual bit array in each node, the
main ones being

None: The raw bit array is used at each node; support for member, rank, and select

queries is provided by o(n)-space auxiliary structures using superblocks and lookup-table

based popcount operations [15];

RRR: The practical implementation of the RRR method [31] given in [6];

RLE+~: Run-length encoding with Elias v encoding [8] for the runs; queries are supported

using the o(n)-space auxiliary structures [15];

RLE+4: Same as RLE++, but using Elias § encoding [8] instead of ~;

SC: Small-integer t-subset encoding [22];

AC: Arithmetic coding [19]; and

LP/«: Bit arrays are compressed by a specified method iff there are at most three distinct

symbols represented in the node, since nodes close to the leaf level are typically highly

compressible.

The overall results of experiments on 33 Wavelet Tree options on texts from English,
Protein, and Genome sources (several with very low entropy) suggest that RLE-encoded
Wavelet Trees are the best in space efficiency when coding BWTs or sequences with very
low Oth-order entropy, but are slower in query performance. RLE+{ is especially space-
efficient for low-entropy sequences. AAWT and Huffman-shaped Wavelet Trees have similar
performance, with the latter more space efficient for low-entropy sequences. When used with
RRR encoding, both offer good all-around space and query time performance. AAWT+None
is generally the fastest in all the experiments for queries and construction time.

Many existing implementations construct the Wavelet Matrix [7], which is an alternat-
ive representation for the Wavelet Tree, dropping its structure and thus achieving faster
performance in practice. It is especially effective for large alphabets.

At the first level of the Wavelet Matrix, the most significant bits (MSBs) of the symbols
are stored, analogous to the first level of the Wavelet Tree. Then, to construct the next
level ¢, starting with the second, the text is stably sorted using the (¢ — 1)th MSB as key.
Just as with the Wavelet Tree, the symbols are represented using their /th MSB on each
level . However, the order of the symbols on each level is given by the stably sorted text.
This removes the tree structure of the Wavelet Tree. However, the same intervals as in the
Wavelet Tree occur on each level, just in a bit-reversal permutation order !. The number of Os
in each level is stored in an array. This information is needed to answer queries using one less
binary rank and/or select query per level compared to Wavelet Trees. In the following, we
use Wavelet Tree to refer to both Wavelet Tree and Wavelet Matrix, and refer the interested
reader to [7] for more details.

Practical Binary Rank and Select Data Structures

As we mentioned before, rank and select data structures with constant query time can be
constructed in linear time requiring o(n) extra space for a binary vector of size n [5, 20]. The
currently most space-efficient rank and select support for a size-n binary array that contains
m ones requires only log () + n/logn + O(n®/*) bits (including the bit vector) [30], which
however is not of practical interest.

Almost all practical data structures to support rank queries follow the same layout. The
main idea is to split the binary array into blocks of b bits each and superblocks of B blocks

each. This way, every bit belongs to a block and every block belongs to a superblock. Then

! See https://oeis.org/A030109, last accessed 2025-02-24.
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rank queries are supported by storing a counter for each superblock and block. For each
superblock, we store the number of ones in the binary array up to the beginning of the
superblock. Similarly, for each block, we store the number of ones from the beginning of its
superblock to the beginning of the block. This hierarchy of counters is used to limit the
number of bits to be used for each counter. The counter of a superblock is stored in ©(logn)
bits, while the counter of a block is stored in ©(logb + log B) bits.

A rank query at a certain position is computed by summing up the counter of the
superblock and the counter of the block that contains the queried position, and the rank
intra-block. The latter is computed with a popcount operation, which is supported by any
modern CPU (see e.g. [9]).

Different superblock and block sizes are chosen by different implementations. For example,

many implementations [32, 14] use superblocks of size B = 8 and blocks of size b = 64 bits.

Wider block sizes B =4 and b = 512 are chosen by the most recent implementations [34, 23]

and computations intra-block with such a large block size are done with SIMD operations.

These implementations have a smaller space overhead than the ones with smaller block sizes,
but they require more time to answer rank queries. However, when the binary vector is large,
the query time is dominated by the cost of accessing the block content from memory rather
than the CPU time to perform the operations within the block. Thus, the disadvantage of
having larger block sizes becomes almost negligible, and these solutions should be preferred
because of their smaller space overhead.

The support for select queries is more involved. There exist two possible approaches:
rank-based and position-based. Rank-based select structures rely on the rank data structure
that is augmented by a lightweight index storing sampled positions for every kth occurrence
of a1 or 0. To answer a select query, the first step is to locate the nearest block using
the sampled positions. Subsequently, consecutive blocks are examined until the basic block
containing the target bit (with the specified rank) is found. The exact position within
the basic block can then be determined directly. Although this method typically does not
guarantee constant query time, it is efficient in practice. On the other hand, position-based
select structures split the binary vector into blocks and sample positions of the block based
on its density [32]. For example, if the block is sparse, we can store the answer of every select
query directly. The main advantage of position-based select data structures is their constant
worst-case query time. However, this comes at the cost of higher space usage.

Faster Wavelet Tree Implementations

When answering queries using a Wavelet Tree, the query is translated to ©(log o) binary rank
or select queries as described above. Most of the time to answer a query on the Wavelet Tree
is spent answering these binary rank and select queries. Additionally, on each level of the
Wavelet Tree, the binary rank and select queries will result in at least one cache miss, which
again is the dominant cost of these binary queries. The currently fastest implementation [3]
reduces the number of cache misses by reducing the number of levels. This is done by making
use of a 4-ary Wavelet Tree. By doubling the number of children, it (roughly) halves the
number of levels. A 4-ary Wavelet Tree represents the symbols on each level using two
bits stored in a quad vector, i.e., a vector over the alphabet {0,1,2,3} with access, rank,
and select support. The rank and select support for the quad vector is implemented using
strategies similar to the ones of rank and select data structures for binary vectors.

The speed-up of this implementation over the other existing ones is approximately a
factor 2 for all the queries. The rank queries can be further improved using a small prediction
model designed to anticipate and pre-fetch the cache lines required for rank queries. This
could give a further improvement up to a factor of 1.6 for rank query [3].
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