Faster Range LCP Queries in Linear Space
Yakov Nekirch £
Michigan Technological University, Houghton, MI, USA

Sharma V. Thankachan &
North Carolina State University, Raleigh, NC, USA

—— Abstract

A range LCP query rlcp(a, 8) on a text T'[1..n] asks to return the length of the longest common
prefix of any two suffixes of T' with starting positions in a range [a, 8]. In this paper we describe
a data structure that uses O(n) space and supports range LCP queries in time O(log® n) for any
constant € > 0. Our result is the fastest currently known linear-space solution for this problem.
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Problem Definition and Previous Work

In this note we consider a variant of the longest common prefix (LCP) problem, called the
range LCP problem. In this problem we store a text T[1..n] in a data structure so that range
LCP queries can be answered efficiently. A range LCP query [a, 8] asks to return the length
of the longest common prefix of any two suffixes with starting positions in a range [«, 3],

rlep(ar, ) = max{LCP(i, ) | i # j and i, € [a, ]},

where LCP(i, j) denotes the length of the longest common prefix of T'[i..n] and T'[j..n].

This problem and its variants were considered in several papers, see e.g., [5, 9, 2, 3, 1, 10, 7].
The currently fastest data structure by Amir et al. [2] uses O(nlogn) words of space and
answers range LCP queries in O(loglogn) time. Henceforth we assume that a word of space
consists of logn bits. The data structure with O(n) space usage by Abedin et al. [1] supports
queries in O(log" ™ n) time for any constant ¢ > 0. The data structure of Matsuda et al. [10]
uses O(nHy) bits of space where Hy is the 0-order entropy of the text T; however this space
usage is achieved at a cost of significantly higher query time as their data structure supports
queries in time O(n®).

In this note we describe a new trade-off between the space usage and the query time:
Our data structure uses linear space and supports queries in time O(log® n) for any constant
¢ > 0. Thus we achieve the same space usage as in [1] and query time that is close to [2].
Our solution combines the techniques from some previous papers with some new ideas.
The compact data structure for predecessor queries by Grossi et al. [8] is also used in our
construction.
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Notation

We will say that a triple (4,7, k) is a bridge if 1 < i < j < n and LCP(4,j) = h. The total
number of bridges is O(n?). However in order to answer a range LCP query it is sufficient to
consider a subset of all bridges of size O(nlogn) [2, 1]. Following the method of Abedin et
al. [1], we consider special bridges that are defined below.

We consider the suffix tree of the text T" and divide its nodes into heavy and light
nodes [11]. Let size(u) denote the number of leaves in the subtree rooted at u. The root is
a light node. Exactly one child «’ of every internal node u is designated as a heavy node,
specifically one with the largest size(u’) (ties are broken arbitrarily). All other nodes are
light. Let ¢; and ¢; denote the leaves in the suffix tree that hold suffixes T'[i..n] and T'[j..n]
respectively. Let v denote the lowest common ancestor of ¢; and ¢; and let u; and u; denote
the children of u that are ancestors of ¢; and ¢; respectively. A bridge (4, j, h) is a special
bridge if one of the following conditions is satisfied:

1. w; is a light node and j = min{x | (¢, 2, h) is a bridge}
2. u; is a light node and ¢ = max{z | (z, j, h) is a bridge}

» Lemma 1 ([1]). There are O(nlogn) special bridges. For any o and B such that 1 < a <
B <n, we have rlep(a, B) = max{ h | (i,5,h) is a special bridge and o < i,57 <}

In the rest of this paper a bridge will denote a special bridge.

Bridge Classification

Let A =logn. For a bridge (i, j, h) we will say that ¢ is its left leg, j is its right leg, and h is
its height. We will say that a bridge (4, j, h) is in the interval [a,b] if a < i < j < b. Let B,
denote the set of all bridges of height t.

By pigeonhole principle, there exists some value 7, 1 < 7 < A such that the total number
of bridges in Ug>0Br+ka is bounded by O(’”Z—g”) = O(n); see also [1, Section 5.1] We will
say that all bridges in By U (Ux>0Br+ka) are base bridges. All other bridges are implicit
bridges. Data structures for different categories of bridges are described below.

Base bridges

The total number of base bridges is O(n). Furthermore we can find the maximum height
base bridge in a query range by answering a variant of an orthogonal range searching query.
Our data structure for base bridges is summarized in the following lemma.

» Lemma 2. There exists an O(n)-word data structure that finds, for any interval (o, 0],
the base bridge with maximal height in [, B]. The query time is O(loglogn).

Proof. There is at most one bridge (i,7,1) for every value of i, 1 < ¢ < n and the total
number of bridges in B; is O(n). Hence the total number of base bridges is O(n). In order
to answer a query, we must find the largest A such that a <i < 8, o <j < 3, and there
is a base bridge (i,7,h). Since i < j, this is equivalent to finding the triple (4,7, ) such
that i > «, j < B, and h is maximized. The latter query is equivalent to a two-dimensional
dominance maxima query. Using a data structure for top-k dominance queries with k = 1,
such a query can be answered in O(loglogn) time using O(n) space, see [4, Theorem 7]. <
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Implicit Bridges

Using Lemma 2, we can find the largest hg such that there is a base bridge of height hg in
the query range [, 8]. Now we explain how to find the largest h, hg < h < ho + A, such
that there is (an implicit) bridge of height A in [, 8 — Al.

The following properties of special bridges will be used.

» Lemma 3 ([1], Lemma 6). If there is a special bridge (i,7,h), then for any d < h there is
a special bridge (i +d,j' + d,h — d) for some j' < j and a special bridge (i' + d,j + d, h — d)
for some i’ > 1.

» Lemma 4 ([1], Lemma 5). There exists a data structure that uses O(n) space and supports
the following queries in O(log®n) time:
find the right leg j of a special bridge (i, 7, h) if its left leg i and its height h are known
find the left leg i of a special bridge (i, 7, h) if its right leg j and its height h are known

Let Hy denote the set of heights of base bridges. For every hy € Hy we consider all
bridges of height hy and construct the list of their left legs sorted in increasing order
L(ho) = { 81,82, -, Sng }, where ng is the number of special bridges with height hq. For each
k, 1 <k <A, we also construct an array Ry, k[1..no] so that Ry, x[i] = min{j|LCP(s; —
k,j) > ho + k }. Finally let

Min(hg, k,a) = min{ Ry, x[i] | iq < i},

where s;, is the successor of (a 4+ k) in L(hg) and i, is the position of s;, in L(hg).

» Lemma 5. If Min(hg, k,a) < b, then there is a bridge of height hg + k in [a, b].
If Min(hg, k,a) > b, then there is no bridge (i,4,h’') in [a,b — A] such that b’ > ho + k

Proof. The first statement directly follows from the definition of Min: if Min(hg, k,a) < b,
then there is an index i,,, such that s; , > a + k and a position j, such that s;, —k <j <b
and LCP(s;, —k,j) > ho + k. Hence there is also a special bridge (s;,, — k, j’, ho + k) where
j<j<banda<s;, —k<b.

To prove the second part of the lemma, suppose that there is a bridge (¢,j, h’) where
a<i<b-—A,a<j<b-—Aand h = hg+k+ f for some f, 0 < f < A —k. Then
LCP(i,j) = ho + k+ f and LCP(i + k + f,j + k + f) = ho. Hence there is a base bridge
(i +k+ f,40, ho) for some j) < j+ k+ f. Let t denote the position of (i + k + f, 4}, ho) in
L(hgp). Furthermore LCP(i+ f, j+ f) = ho+ k and there is an implicit bridge (i + f, ji, ho + k)
for some ji < j+ f. Since j + f < b, Ry, k[t] <band Min(hg, k,a) < b. <

» Lemma 6. For any hg € Hy, there exists a data structure that uses O(nglogn) bits and
determines whether Min(hg, k,a) < b in O(log® n) time for any 1 < a < b <n and for any
1<k<A.

Proof. For every k, 1 < k < A, we store a compact data structure that supports range
minimum queries on Ry, in O(1) time and uses O(ng) bits of space. We can use the
data structure from [6] for this purpose. All compact range minima data structures use
O(npA) = O(nglogn) bits. Arrays Ry, are not stored. Additionally we store L(hg) in
a data structure that uses O(nglogn) bits and supports successor queries in O(loglogn)
time [12].
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To compute Min(hg, k,a), we find the smallest s € L(hg) such that s > a + k. Then
we use the range minimum data structure and find the index i,, such that i,, > s and
Rio klim] < Rngykli] for any ¢ > s. Finally we compute the right leg j,, of the bridge
(tms Jms ho + k) using Lemma 4. If j, > b, then Min(ho,k,a) > b. If j,, < b, then
Min(hg, k,a) <. <

We keep a data structure from Lemma 6 for every hg € Hy. The total space usage of
these data structures is O(nlogn) bits. Using Lemma 6 and binary search, we find the
largest k such that Min(hg, k,a) < b. By Lemma 5, there is a bridge of height hg + & in [a, b];
hence LCP(a,b) > h. Also, by Lemma 5 there is no bridge (¢, , k) in [a,b — A], such that
h > ho 4+ k + 1. The total time is O(log® nloglogn). We thus proved the following lemma.

» Lemma 7. There exists an O(n)-word data structure that finds, for any interval [a, ],
the implicit bridge with height h; in [a, 8], so that there is no bridge of height h > h; in
[a, B — A]. The query time is O(log® nloglogn).

Block Bridges

It remains to consider the case of bridges with right leg in the interval [ — A, 5] and of height
h, ho < h < hg + A. We apply the pigeonhole principle again. Let A; = loglogn. There
exists some value 7, 1 < m < Ay, such that the total number of bridges in Ug>0Bx, 414, is
bounded by O(%%") = O(nlog’lgogn). Let HH={m + kA1 | 1<k<(n—m)/A1}. We
will say that all bridges B; where t € Hy U Hy are good bridges. All other bridges are bad
bridges.

We will denote by Blocky 5, the set of all bridges (¢,r, h) such that (a) h € Hy U Hy and
ho < h < ho+ A for some hg € H and (b) tA+1<r < (t+1)A for some k, 0 <k < %.

» Lemma 8. Let m denote the number of bridges in Block: n,. There exists a data structure
that finds, for any interval [, 5], the bridge from Block: 5, with mazimal height such that
its right and left legs are in [a, B]. This data structure uses O(logn + mloglogn) bits and
supports queries in O(log® n) time.

Proof. Let I;, denote the set that contains left legs of all bridges in Block; ,. Every
bridge (i,7,h) from Block: p, is represented as follows: We replace the right leg j with
d(j) = j —tA and the height h with d(h) = h — hg. We replace the left leg ¢ with (), where
r(i) = {x <i|x € Iin, }| is the rank of ¢ in I j,. Thus a bridge (4, j, h) € Blocky p, is
represented by a triple (r(¢),d(j),d(h)). Since r(i), d(j), and d(h) are bounded by A we can
store each triple (r(i),d(j),d(h)) using O(loglogn) bits. For each (r(i),d(j),d(h)), we can
retrieve the corresponding values of j and h with one addition. If j and h of some bridge
(i,7,h) are known, we can obtain the value of its left leg ¢ in O(log® n) time using the data
structure from Lemma 4.

In addition, we store all elements of I; 5, in a compact data structure that is described
by Grossi et al. in [8, Lemma 3.3]. This data structure supports successor queries on a set of
integers S; provided that we can access an arbitrary element of S in time t,.., a successor
query can be answered in time O(logm/loglogn + tac.) where m is the number of elements
in S. The data structure uses O(loglogu) bits per element, where u is the size of the universe
(in addition to the space required to store S). In our case, I; », has O(A?) elements and the
size of the universe is n. Hence for every left leg i € I, 5, the data structure uses O(loglogn)
bits. We can obtain the value of any left leg in time O(log® n). Hence successor queries are
answered in O((log A?)/loglogn + log®n) = O(log® n) time. That is, we can find for any «
the smallest i, € It p, such that i, > a.
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Finally all triples (r(i),d(j),d(h)) are stored in the data structure described in [4, The-
orem 7] 1. This data structure uses O(mlogm) = O(mloglogn) bits and supports the
following range maxima queries in O(loglogn) time: for any r, and dg, find the highest
d(h), among all tuples (r(2),d(j), d(h)) satisfying r(i) > ro and d(j) > dg.

In order to find the maximum-height bridge in [o, 8] from Block p,, we find the successor
of a and its rank r(a), using the compact successor data structure. We also compute
d(B) = B —tA. Then we find the highest value d(hmax) among all (r(¢),d(j),d(h)) satisfying
(i) > 7o and d(j) < dg. The maximum height of a bridge in [a, 5] iS Amax = d(hmax) + ho-
The total time required to answer a query is O(log® n + loglogn) = O(log® n). <

» Lemma 9. There are O(n) non-empty blocks.

Proof. Suppose that there is at least one implicit bridge (4, j, h) in Blocky p,. Let k = h — ho.
Then by Lemma 3 there is a special bridge (¢',j + k, ho) such that i + k <4’ < j + k. Since
1<k<AandtA<j<(t+1)A, we have tA < j+k < t+2A. Thus for every base bridge
(¢',7', hg) where hg € Hy there are at most two non-empty blocks. Since there are O(n) base
bridges, the number of non-empty blocks is O(n). <

» Lemma 10. There exists a data structure that finds, for any a < 8, and any hg € Hy, the
highest good bridge (i,4,h) in o, 8] such that its right leg j is in [ — A, 8] and its height
h is in [ho, ho + A]. The data structure uses O(n) words of space and supports queries in
O(log® n) time.

Proof. We store a block data structure from Lemma 8 for each non-empty block Blocks p,, .
The total number of bridges in all blocks is equal to the total number of good bridges. By
Lemma 9, the total number of non-empty blocks is O(n). Hence the total space usage of
all block data structures is O(nlogn + (nlol‘;ﬁ)gn) loglogn) = O(nlogn) bits. The range
[ — A, ] intersects with at most two blocks. Hence we can find the highest bridge satisfying
the conditions of this lemma in time O(log®n) by answering two queries to block data

structures. <

Putting All Parts Together

In order to answer a range LCP query [«, 3] we need to identify the largest h such that there

is a bridge (4,4, h) in [, 8]. Our algorithm works in four stages:

1. First, we find the largest hg such that there is a base bridge of height hg in [, 3]. This
step takes O(loglogn) time by Lemma 2.

2. Then we find the largest h;, where hg < h; < hg+ A, such that there is an implicit bridge
of height h; in [«, 8 — A]. This can be done in O(log® nloglogn) time by Lemma 7

3. We find the largest h,, such that there is a good bridge of height h, > hy with right leg
in [8 — A, 5]. This step takes O(log® n) time by Lemma 10.

4. Let hy = max(hg, hi, hy). We check if there is a bridge of height A in [«, 8] for each h,
h1 < h < h; + Ay. By Lemma 5 we can check each candidate value of h in O(log® n)
time. Hence this step takes O(log® A1) = O(log® nloglogn) time.

The total query time is O(log® nloglogn). By replacing ¢ with a constant &’ < ¢ in the
above construction, we obtain our final result.

» Theorem 11. There exists a data structure that uses O(n) words of space and answers
range LCP queries in time O(log® n) time.

1 The same data structure was also used in Lemma 2.
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