
On Inverting the Burrows-Wheeler Transform
Nicola Cotumaccio #

University of Helsinki, Finland

Abstract
We study the relationship between four fundamental problems: sorting, suffix sorting, element
distinctness and BWT inversion. Our main contribution is an Ω(n logn) lower bound for BWT
inversion in the comparison model. As a corollary, we obtain a new proof of the classical Ω(n logn)
lower bound for sorting, which we believe to be of didactic interest for those who are not familiar
with the Burrows-Wheeler transform.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Models of computation

Keywords and phrases Burrows-Wheeler transform, sorting, suffix array, element distinctness

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.17

Category Research

Funding Funded by the Helsinki Institute for Information Technology (HIIT).

1 Introduction

Sorting is typically one of the introductory topics in a first course on algorithms and data
structures. Knuth devotes almost four hundred pages to the problem in the The Art of
Computer Programming [12] and Cormen et al. use insertion sort as a first example of an
algorithm [3].

Consider a sorted alphabet (i.e., an alphabet endowed with a total order). The problem
of sorting can be stated as follows.

▶ Problem 1 (Sorting). Given a string T = a1a2 . . . an, compute a permutation ψ of
{1, 2, . . . , n} such that aψ(i) ≤ aψ(i+1) for every 1 ≤ i ≤ n− 1.

For example, if T = cdba, then the output of Problem 1 is the permutation ψ of {1, 2, 3, 4}
such that ψ(1) = 4, ψ(2) = 3, ψ(3) = 1 and ψ(4) = 2. Note that the permutation ψ of
Problem 1 is uniquely defined if and only the ai’s are pairwise distinct. More generally, ψ
becomes uniquely defined if we add the additional requirement that, for every 1 ≤ i ≤ n− 1,
if aψ(i) = aψ(i+1), then ψ(i) < ψ(i + 1). The permutation ψ that satisfies this additional
requirement is the stable sort of T .

Both Knuth and Cormen at al.’s consider the comparison model, in which no restriction
on the (possibly infinite) sorted alphabet is assumed, and the only way to obtain information
on the mutual order between the characters in T is by solving queries c(i, j) of the following
type: given 1 ≤ i, j ≤ n, decide whether ai ≤ aj . We assume that each query c(i, j) takes
O(1) time.

In the comparison model, the (worst-case) complexity of Problem 1 is Θ(n logn): there
exist algorithms (e.g., merge sort, which computes the stable sort of T) solving Problem 1
in O(n logn) time, and any algorithm solving Problem 1 has complexity Ω(n logn). The
(classical) proof of the Ω(n logn) lower bound [12, 3] shows a stronger result: to solve Problem
1, in the worst case we need Ω(n logn) queries c(i, j)’s, and this is true even if we know that
the ai’s are pairwise distinct. In other words, Ω(n logn) is not only an algorithmic lower
bound, but it also captures the minimum number of operations required to have enough
information for solving Problem 1.

© Nicola Cotumaccio;
licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 17; pp. 17:1–17:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicola.cotumaccio@helsinki.fi
https://orcid.org/0000-0002-1402-5298
https://doi.org/10.4230/OASIcs.Grossi.2025.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

17:2 On Inverting the Burrows-Wheeler Transform

The comparison model yields a simple, informative, and mathematically appealing
setting for studying the complexity of sorting, but it can hardly be considered a realistic
computational model. For example, if the ai’s are known to be integers in a polynomial
range, Problem 1 can be solved in O(n) time via radix sort, which also computes the stable
sort of T [10].

The landscape becomes more complex if one considers alternative models of computations.
On the one hand, it is possible to obtain models that are more flexible than the comparison
model by allowing more complex queries in O(1) time. Assume that the alphabet is the set of
all real numbers, and consider the function f(x, y) = x− y. In the comparison model, in O(1)
time we can test whether f(x, y) ≤ 0 for any choice of x, y ∈ {a1, a2, . . . , an}. In the linear
decision tree model, one is allowed more general tests of the type f(x1, x2, . . . , xn) ⋚ 0, where
we consider a linear function f(x1, x2, . . . , xn) = c0 +c1x1 +c2x2 + · · ·+cnxn. In the algebraic
decision tree model, we can choose f(x1, x2, . . . , xn) to be an arbitrary polynomial. Even if
the linear decision tree model and the algebraic decision tree model are more general than the
comparison model, the complexity of Problem 1 in all these models is still Θ(n logn) [4, 1].
On the other hand, it is possible to consider (realistic) variants of the RAM model. In the
word-RAM model with word size w ≥ logN , where N is the size of the input, the complexity
of Problem 1 is still open, even though it is known to be o(n logn) [8, 9]. Other variants
of these models are possible, but we will focus only on the comparison model and the case
of integers in a polynomial range, which are arguably the most common settings in the
literature.

In this paper, we show that the complexity of Problem 1 (Sorting) is the same as the
complexity of other fundamental problems: suffix sorting, element distinctness and BWT
inversion. The complexity of these problems in Θ(n logn) in the comparison model and Θ(n)
in the case of integers in a polynomial range. Our main contribution is an Ω(n logn) lower
bound for BWT inversion in the comparison model (Theorem 1). We also show that Theorem
1 implies a new proof of the classical Ω(n logn) lower bound for sorting (Corollary 2), which
we believe to be of didactic interest for those who are not familiar with the Burrows-Wheeler
transform.

2 Sorting, BWT Inversion and Related Problems

Problem 1 is closely related to several fundamental problems. Here are some examples.

▶ Problem 2 (Suffix sorting). Given a string T = a1a2 . . . an, compute the permutation ψ of
{1, 2, . . . , n} such that aψ(i)aψ(i)+1 . . . an−1an is the i-th lexicographically smallest suffix of
T for every 1 ≤ i ≤ n.

For example, if T = banana, then the output of Problem 2 is the permutation ψ of
{1, 2, 3, 4, 5, 6} such that ψ(1) = 6, ψ(2) = 4, ψ(3) = 2, ψ(4) = 1, ψ(5) = 5 and ψ(6) = 3.
Note that ψ is uniquely defined because the suffixes of a string are pairwise distinct.

▶ Problem 3 (Element distinctness). Given a string T = a1a2 . . . an, decide whether there
exist 1 ≤ i < j ≤ n such that ai = aj.

For example, if T = cdba, then the output of Problem 3 is “no”.
The complexity of Problems 2 and 3 is Θ(n) in the case of integers in a polynomial

range, and Θ(n logn) in the comparison model. Let us show how to obtain these bounds by
reducing these problems to Problem 1 (Sorting).

N. Cotumaccio 17:3

Let us consider the case of integers in a polynomial range.
Problem 2 can be solved in O(n) time by using any linear-time algorithm for building
the suffix array (see [15] for a survey). Historically, the linear time complexity was first
proved by Farach, who solved the more general problem of building the suffix tree of a
string in linear time [5]. Conceptually, the easiest algorithm is probably Kärkkäinen et
al.’s algorithm [11].
Problem 3 can be solved in O(n) time by first computing a permutation ψ as in Problem
1 (Sorting) and then checking in O(n) time if there exists 1 ≤ i ≤ n − 1 such that
aψ(i) = aψ(i+1).

Let us consider the comparison model.
On the one hand, Problem 2 can be solved in O(n logn) time by (i) sorting the ai’s via any
O(n logn) comparison-based algorithm, (ii) replacing each ai with its rank in the sorted
list of all ai’s (which does not affect the mutual order of the suffixes) and (iii) applying any
O(n) suffix sorting algorithm mentioned earlier. On the other hand, to solve Problem 2 we
need Ω(n logn) queries c(i, j)’s in the worst case, and the same lower bound is true even if
we know that the ai’s are pairwise distinct. Indeed, given the permutation ψ of Problem 2,
we have aψ(i) ≤ aψ(i+1) for every 1 ≤ i ≤ n− 1 (because the suffix aψ(i)aψ(i)+1 . . . an−1an
is lexicographically smaller than the suffix aψ(i+1)aψ(i+1)+1 . . . an−1an), so ψ is also a
correct output for Problem 1, and the conclusion follows from the lower bound for
Problem 1 mentioned earlier.
On the one hand, Problem 3 has complexity O(n logn): we can argue as in the case of
integers in a polynomial range, but we use any O(n logn) comparison-based algorithm
to compute a permutation ψ as in Problem 1. On the other hand, to solve Problem 3
we need Ω(n logn) queries c(i, j)’s in the worst case, as we show next. Fix an integer n,
and consider an algorithm that solves Problem 3 for every string T = a1a2 . . . an. Let
f(n) be the number of queries c(i, j)’s solved by the algorithm in the worst case. If the
ai’s are pairwise distinct, the permutation ψ of Problem 1 is uniquely defined, and the
algorithm for Problem 3 must return “no”. To this end, the algorithm must solve the
query c(ψ(i+ 1), ψ(i)) for every 1 ≤ i ≤ n− 1 because otherwise the algorithm could not
infer that aψ(i) ≠ aψ(i+1) from the other queries that it solves and so it would not have
enough information to solve Problem 3 correctly on input T . Consequently, if for every
query c(i, j) solved by the algorithm we also consider the query c(j, i), we obtain at most
2f(n) queries. In particular, we consider both the query c(ψ(i+ 1), ψ(i)) and the query
c(ψ(i), ψ(i+ 1)) for every 1 ≤ i ≤ n− 1, from which we can infer that aψ(i) < aψ(i+1) for
every 1 ≤ i ≤ n− 1. We conclude that at most 2f(n) queries c(i, j)’s are sufficient in the
worst case to compute ψ and so solve Problem 1 for every T = a1a2 . . . an in which the
ai’s are pairwise distinct. Hence, we obtain f(n) = Ω(n logn) from the lower bound for
Problem 1 mentioned earlier.

Let us show that Problem 1 is related to another fundamental problem in string processing
and compression. To this end, we need to introduce the Burrows-Wheeler transform (BWT)
of a string [2]. Let S = b1b2 . . . bn be a string such that bn = $, where $ is a special character
such that (i) $ does not occur anywhere else in the string and (ii) $ is smaller than all the
other characters. For example, we can consider the string S = banana$ (where n = 7). For
1 ≤ i ≤ n, let Si = bibi+1 . . . bnb1b2 . . . bi−1 be the i-th circular suffix of S. For example,
if S = banana$, we have S1 = banana$, S2 = anana$b, S3 = nana$ba, S4 = ana$ban,
S5 = na$bana, S6 = a$banan and S7 = $banana. Note that the circular suffixes of S are
pairwise distinct because $ occurs in a different position in each of them.

Grossi’s Festschrift

17:4 On Inverting the Burrows-Wheeler Transform

Table 1 The Burrows-Wheeler transform of banana$.

i F [i] L[i] ψ A

1 $ b a n a n a 5 7
2 a $ b a n a n 1 6
3 a n a $ b a n 6 4
4 a n a n a $ b 7 2
5 b a n a n a $ 4 1
6 n a $ b a n a 2 5
7 n a n a $ b a 3 3

We build the square matrix M of size n× n such that, for every 1 ≤ i ≤ n, the i-th row
Ri[1, n] is equal to i-th (lexicograhically) smallest circular suffix of S (see Table 1 for the
matrix M of size 7 × 7 obtained from S = banana$). Note that R1 = bnb1b2 . . . bn−1 = Sn
because bn = $ is the smallest character.

For 1 ≤ i ≤ n, let Ci[1, n] be the i-th column of M from left to right. Notice that
every Ci is a rearrangement of the characters in S. Let F = C1 and L = Cn be the first
column and the last column of M , respectively. In Table 1, we have F = $aaabnn and
L = annb$aa. Note that F can be obtained by sorting the characters of S. By definition,
the Burrows-Wheeler transform BWT[S] of S is the column F , that is, BWT[S] = F = Cn.
In Table 1, we have BWT[S] = annb$aa.

Crucially, the Burrows-Wheeler transform BWT[S] of a string S is an encoding of the
string: given BWT[S], we can retrieve the string S. In Table 1, given BWT[S] = annb$aa,
we can retrieve S = banana$. To prove this, we only need to show that from BWT[S] we
can retrieve the matrix M , because then the unique row of the matrix ending with $ yields
the original string S. We can retrieve M by computing all columns Ci’s. We know that
Cn = BWT(S), and we can retrieve C1 by sorting all characters in Cn. Let us show how to
retrieve C2. We know Cn and C1, so we know all pairs of consecutive characters in S. If
we sort these pairs lexicographically and we pick the last element of each pair, we retrieve
C2. In Table 1, all pairs of consecutive characters in S are a$, na, na, ba, $b, an, an. By
sorting these pairs, we obtain b, a, an, an, ba, na, na, and by picking the last element of
each pair, we can infer that C2 = b$nnaaa. Let us show how to retrieve C3. We know Cn,
C1 and C2, so we know all triples of consecutive characters in S. If we sort these triples
lexicographically and we pick the last element of each triple, we retrieve C3. In Table 1, all
triples of consecutive characters in S are ab, na, nan, ban, $ba, ana, ana. By sorting these
triples, we obtain ba, ab, ana, ana, ban, na$, nan, and by picking the last element of each
triple, we can infer that C3 = abaan$n. In the same way, we can retrieve C4, C5, . . . , Cn−1.

Since BWT(S) is an encoding of S, we can store BWT(S) instead of S without losing
information. The reason why storing BWT(S) may be more beneficial than storing S is that
the string BWT(S) tends to be repetitive if in S several substrings have multiple occurrences,
so we can exploit the repetitiveness of S to compress BWT(S). This property motivated the
introduction of the Burrows-Wheeler transform in the original paper [2] and can be stated in
precise mathematical terms via the notion of entropy [13]. Surprisingly, it is also possible to
solve pattern matching on the original string by augmenting the compressed representation
of the Burrows-Wheeler transform with space-efficient data structures, thus obtaining the
FM-index [6].

We described an (inefficient) algorithm to invert the Burrows-Wheeler transform. Let us
state the problem formally.

N. Cotumaccio 17:5

▶ Problem 4 (BWT inversion). Given a string T = a1a2 . . . an such that T = BWT(S) for
some ($-terminated) string S, compute S.

For example, if T = annb$aa, then S = banana$ (see Table 1).

3 Our Results

In this section, we show that the complexity of Problem 4 in Θ(n logn) in the comparison
model and Θ(n) in the case of integers in a polynomial range. The only bound that cannot
be inferred from the original paper on the Burrows-Wheeler transform [2] is the Ω(n logn)
lower bound in the comparison model. Notice that the four problems considered in this
paper have the same complexity.

To prove the Ω(n logn) bound for Problem 4, we will proceed differently from Problems 2
and 3. We will prove the lower bound directly, without relying on the lower bound for
Problem 1 (Sorting). Then, we will use the lower bound for Problem 4 (BWT inversion)
to infer the lower bound for Problem 1 (Sorting). In addition to establishing interesting
relationships between fundamental problems, our approach yields a new proof of the celebrated
Ω(n logn) bound for sorting, which we believe to be of didactic interest.

Let us start with the lower bound for BWT inversion.

▶ Theorem 1. In the comparison model, to solve Problem 4 we need Ω(n logn) queries
c(i, j)’s in the worst case. The same lower bound holds even if we know that the ai’s are
pairwise distinct.

Proof. Fix an integer n. Consider n − 1 distinct characters b1, b2, . . . , bn−1 such that
$ < b1 < b2 < · · · < bn−1. Then, the set:

S = {bϕ(1)bϕ(2) . . . bϕ(n−1)$ | ϕ is a permutation of {1, 2, . . . , n− 1}}

has size (n− 1)!. For every S ∈ S, the string BWT(S) is an encoding of S, so the set:

T = {BWT(S) | S ∈ S}

has also size (n− 1)!. Notice that for every string T = a1a2 . . . an, if T ∈ T , then the ai’s
are pairwise distinct.

Consider any algorithm solving Problem 4 for every input T = a1a2 . . . an ∈ T . The
algorithm can gather information on the mutual order between the ai’s only by solving
queries c(i, j)’s. The decision on the next query c(i, j) can depend on the outcome of the
previous queries c(i, j)’s, so we can describe the behavior of the algorithm on all inputs
T ∈ T through a decision tree (see Figure 1 for the case n = 4). Since the algorithm correctly
solves Problem 4 for every input T = a1a2 . . . an ∈ T , then the outcome of all queries c(i, j)’s
on a path from the leaf to a roof cannot be consistent with two distinct elements of T ,
otherwise the algorithm would not have enough information to compute S . For example,
in Figure 1, if the output of “a1 ≤ a3” is “no” and then the output “a1 ≤ a2” is “yes”,
then the algorithm must necessarily solve an additional query c(i, j): both T1 = b1b3$b2 and
T2 = b2b3b1$ are strings in T for which ¬(a1 ≤ a3) ∧ (a1 ≤ a2), and we have T1 = BWT(S1)
and T2 = BWT(S2) for two distinct S1, S2 ∈ S, where S1 = b2b3b1$ and S2 = b3b1b2$.

Assume that the longest path in the tree consists of k edges. Then, the number of paths
from the root to a leaf is upper bounded by 2k, so we must have 2k ≥ (n− 1)!, which implies
k = Ω(n logn). This means that there exists T ∈ T for which the algorithm needs to solve
Ω(n logn) queries c(i, j)’s. ◀

Grossi’s Festschrift

17:6 On Inverting the Burrows-Wheeler Transform

a1 ≤ a3

a2 ≤ a1

b2$b3b1 b1b2b3$

a1 ≤ a2

a3 ≤ a4

b1b3$b2 b2b3b1$

a2 ≤ a3

b3$b1b2 b3b2$b1

yes

yes
no

no

yes

yes
no

no

yes
no

Figure 1 The decision tree of a possible algorithm solving Problem 4 (see the proof of Theorem 1)
for n = 4. We have |S| = |T | = (4 − 1)! = 6. The tree describes the sequence of all queries
c(i, j)’s for every input T = a1a2a3a4 ∈ T . Recall that we assume $ < b1 < b2 < b3. We have
BWT(b1b2b3$) = b3$b1b2, BWT(b1b3b2$) = b2$b3b1, BWT(b2b1b3$) = b3b2$b1, BWT(b2b3b1$) =
b1b3$b2, BWT(b3b1b2$) = b2b3b1$ and BWT(b3b2b1$) = b1b2b3$. Every element of T corresponds to
a path from the root to a leaf.

The proof of Theorem 1 is similar to the classical proof of the Ω(n logn) lower bound
for sorting [12, 3]. In the classical proof, one typically uses the fact that a binary tree with
n! leaves must have height at least log(n!). Here we used a slightly more direct pigeonhole
argument to prove the inequality 2k ≥ (n− 1)!. The worst-case entropy of a set S is log |S|
by a similar pigeonhole argument [14], so one may argue that in the proof of Theorem 1 we
used an entropy-based argument. This appears to establish an interesting analogy because
we have already mentioned that the compressibility of the Burrows-Wheeler transform can
be described through the notion of entropy [13].

Now, let us describe an efficient algorithm to solve Problem 4. The original paper by
Burrows and Wheeler [2] follows an approach based on a permutation called LF-mapping.
Here we will use a different approach based on the permutation ψ, which is the inverse of the
LF-mapping. The permutation ψ plays a crucial role in compressed suffix arrays [7], and it
captures the connection between Problem 4 (BWT inversion) and Problem 1 (Sorting) more
explicitly. We are given T = a1a2 . . . an such that T = BWT(S) for some S = b1b1 . . . bn,
where bn = $, and we need to compute S. By definition, T = L, where L is the last column
of the matrix M , so we know that L = a1a2 . . . an and we must retrieve S.

Let ψ be the stable sort of L (see Problem 1 and Table 1). Since $ is the smallest character,
we have L[ψ(1)] = $ = bn. We will prove that bi = L[ψi+1(1)] for every 1 ≤ i ≤ n − 1.
For example, in Table 1 we have b1 = L[ψ2(1)] = L[4] = b, b2 = L[ψ3(1)] = L[7] = a,
b3 = L[ψ4(1)] = L[3] = n, b4 = L[ψ5(1)] = L[6] = a, b5 = L[ψ6(1)] = L[2] = n and
b6 = L[ψ7(1)] = L[1] = a, so S = banana$. After computing ψ, we can retrieve all the bi’s in
O(n) time by computing all the powers ψi+1(1)’s. In the comparison model, we can compute
ψ in O(n logn) time, and in the case of integers in a polynomial range we can compute ψ in
O(n) time, so the complexity of Problem 4 is O(n logn) in the comparison model and O(n)
in the case of integers in a polynomial range. We are left with proving that bi = L[ψi+1(1)]
for every 1 ≤ i ≤ n− 1.

N. Cotumaccio 17:7

Let A[1, n] be the array such that, for every 1 ≤ i ≤ n, the row Ri of the matrix M

is equal to the circular suffix SA[i] (see Table 1). Then, A[1, n] yields a permutation of
{1, 2, . . . , n}. Moreover, we have F [i] = bA[i] and L[i] = bA[i]−1 for every 1 ≤ i ≤ n, where
we assume b0 = bn. In particular, bA[ψ(1)]−1 = L[ψ(1)] = $, so we have A[ψ(1)] = 1 and
2 ≤ A[ψ(i)] ≤ n for 2 ≤ i ≤ n. Notice that A yields a permutation of {1, 2, . . . , n}. From
R1 = Sn we obtain A[1] = n.

Let us prove that A[ψ(i)] = A[i] + 1 for every 2 ≤ i ≤ n (for example, in Table 1 we
have A[ψ(2)] = A[1] = 7 = 6 + 1 = A[2] + 1). Fix a character c ̸= $ that occurs in S.
Let 1 ≤ i1 ≤ n be the smallest integer such that F [i1] = c, and let 1 ≤ i2 ≤ n be the
largest integer such that F [i2] = c. We only have to prove that A[ψ(i)] = A[i] + 1 for every
i1 ≤ i ≤ i2, because by picking all possible values c ̸= $ from smallest to largest we cover
every i between 2 and n (i = 1 corresponds to $). Let us prove that A[ψ(i)] = A[i] + 1 for
every i1 ≤ i ≤ i2. From the definitions of i1 and i2 we obtain that in every row of M and
in every column of M there are exactly i2 − i1 + 1 characters equal to c, and in particular
L[ψ(i1)] = L[ψ(i1 + 1)] = · · · = L[ψ(i2 − 1)] = L[ψ(i2)] = c. Since ψ is the stable sort
of L, we obtain ψ(i1) < ψ(i1 + 1) < · · · < ψ(i2 − 1) < ψ(i2). This implies that SA[ψ(i1)]
is lexicographically smaller than SA[ψ(i1+1)], SA[ψ(i1+1)] is lexicographically smaller than
SA[ψ(i1+2)], . . . , SA[ψ(i2−1)] is lexicographically smaller than SA[ψ(i2)]. We have bA[ψ(i)]−1 =
L[ψ(i)] = c for every i1 ≤ i ≤ i2, so we conclude that SA[ψ(i1)]−1 is lexicographically
smaller than SA[ψ(i1+1)]−1, SA[ψ(i1+1)]−1 is lexicographically smaller than SA[ψ(i1+2)]−1, . . . ,
SA[ψ(i2−1)]−1 is lexicographically smaller than SA[ψ(i2)]−1, where bA[ψ(i)]−1 = c for every
i1 ≤ i ≤ i2. At the same time, for every 1 ≤ i ≤ n we have bA[i] = c if and only if i1 ≤ i ≤ i2,
and SA[i1] is lexicographically smaller than SA[i1+1], SA[i1+1] is lexicographically smaller than
SA[i1+2], . . . , SA[i2−1] is lexicographically smaller than SA[i2]. We obtain A[ψ(i)] − 1 = A[i]
for every i1 ≤ i ≤ i2, so A[ψ(i)] = A[i] + 1 for every i1 ≤ i ≤ i2, as claimed.

Let us prove that A[ψi(1)] = i for every 1 ≤ i ≤ n (for example, in Table 1 we have
A[ψ2(1)] = A[ψ(5)] = A[4] = 2). We proceed by induction on i. For i = 1, we know that
A[ψ(1)] = 1. Now assume that 2 ≤ i ≤ n. By the inductive hypothesis, we know that
A[ψi−1(1)] = i − 1. In particular, A[ψi−1(1)] ̸= n, so 2 ≤ ψi−1(1) ≤ n and we obtain
A[ψi(1)] = A[ψ(ψi−1(1))] = A[ψi−1(1)] + 1 = (i− 1) + 1 = i.

We are now ready to prove the main claim. We have bi = b(i+1)−1 = bA[ψi+1(1)]−1 =
L[ψi+1(1)] for every 1 ≤ i ≤ n− 1.

We conclude our paper by showing that Theorem 1 implies a new proof of the lower
bound for sorting.

▶ Corollary 2. In the comparison model, to solve Problem 1 we need Ω(n logn) queries
c(i, j)’s in the worst case. The same lower bound holds even if we know that the ai’s are
pairwise distinct.

Proof. Consider any algorithm solving Problem 4 for every input T = a1a2 . . . an such that
the ai’s are pairwise distinct. Since the ai’s are pairwise distinct, the permutation ψ of
Problem 1 is uniquely defined, and ψ is also the stable sort of T . Let f(n) be the number
of queries c(i, j)’s solved by the algorithm in the worst case to compute ψ. Assume that
T = BWT(S), where S = b1b2 . . . bn. After computing ψ, we can compute S in O(n) time
(because bi = T [ψi+1(1)] for every 1 ≤ i ≤ n − 1, as we have seen before) without solving
any additional query c(i, j). Consequently, f(n) queries are sufficient in the worst case to
solve Problem 4 for every input T = a1a2 . . . an such that the ai’s are pairwise distinct. By
Theorem 1, we conclude f(n) = Ω(n logn). ◀

Grossi’s Festschrift

17:8 On Inverting the Burrows-Wheeler Transform

4 Conclusions

In this paper, we have shown that, in the comparison model, inverting the Burrows-Wheeler
transform has complexity Θ(n logn). As a corollary, we have obtained a new proof of the
Ω(n logn) sorting lower bound. Our main goal was to highlight how the ideas behind the
Burrows-Wheeler transform are deeply intertwined with the most fundamental results in
Computer Science.

References
1 Michael Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the fifteenth

Annual ACM Symposium on Theory of Computing, pages 80–86, 1983.
2 Michael Burrows and David J. Wheeler. A block-sorting lossless data compression algorithm.

Technical report, Systems Research Center, 1994.
3 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

algorithms. MIT press, 2022.
4 David P Dobkin and Richard J Lipton. On the complexity of computations under varying

sets of primitives. Journal of Computer and System Sciences, 18(1):86–91, 1979. doi:
10.1016/0022-0000(79)90054-0.

5 Martin Farach. Optimal suffix tree construction with large alphabets. In Proceedings 38th
Annual Symposium on Foundations of Computer Science, pages 137–143. IEEE, 1997. doi:
10.1109/SFCS.1997.646102.

6 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 390–398.
IEEE, 2000. doi:10.1109/SFCS.2000.892127.

7 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. In Proceedings of the thirty-second Annual
ACM Symposium on Theory of Computing, pages 397–406, 2000.

8 Torben Hagerup. Sorting and searching on the word RAM. In STACS 98: 15th Annual
Symposium on Theoretical Aspects of Computer Science Paris, France, February 25–27, 1998
Proceedings 15, pages 366–398. Springer, 1998. doi:10.1007/BFB0028575.

9 Yijie Han. Deterministic sorting in O(n log logn) time and linear space. Journal of Algorithms,
50(1):96–105, 2004. doi:10.1016/J.JALGOR.2003.09.001.

10 John E Hopcroft, Jeffrey D Ullman, and Alfred Vaino Aho. Data structures and algorithms,
volume 175. Addison-wesley Boston, MA, USA:, 1983.

11 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
Journal of the ACM (JACM), 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

12 Donald E Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley Professional, 1998.

13 Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM
(JACM), 48(3):407–430, 2001. doi:10.1145/382780.382782.

14 Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press,
2016.

15 Simon J Puglisi, William F Smyth, and Andrew H Turpin. A taxonomy of suffix array
construction algorithms. ACM Computing Surveys (CSUR), 39(2):4–es, 2007.

https://doi.org/10.1016/0022-0000(79)90054-0
https://doi.org/10.1016/0022-0000(79)90054-0
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1007/BFB0028575
https://doi.org/10.1016/J.JALGOR.2003.09.001
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/382780.382782

	1 Introduction
	2 Sorting, BWT Inversion and Related Problems
	3 Our Results
	4 Conclusions

