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Abstract
The hypercube of dimension n is the graph with 2n vertices associated to all binary words of length
n and edges connecting pairs of vertices with Hamming distance equal to 1. Here, an edit distance
based on swaps and mismatches is considered and referred to as tilde-distance. Accordingly, the
tilde-hypercube is defined, with edges linking words having tilde-distance equal to 1. The focus is
on the subgraphs of the tilde-hypercube obtained by removing all vertices having a given word
as factor. If the word is 11, then the subgraph is called tilde-Fibonacci cube; in the case of a
generic word, it is called generalized tilde-Fibonacci cube. The paper surveys recent results on the
definition and characterization of those words that define generalized tilde-Fibonacci cubes that are
isometric subgraphs of the tilde-hypercube. Finally, a special attention is given to the study of the
tilde-Fibonacci cubes.
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1 Introduction

The n-dimensional hypercube, Qn, is the well-known graph whose vertices are in corres-
pondence with the 2n words of length n over the binary alphabet {0, 1} and two vertices
are connected by an edge if the corresponding words differ in one position, that is, if their
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5:2 Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

Hamming distance is 1. Hence, the distance (number of edges in a minimal path) between
two vertices in the graph is the Hamming distance of the corresponding words. The notion
of hypercube has been extensively investigated because it is used to design interconnection
networks (cf. [13, 17]) and also finds applications in theoretical chemistry (cf. [27] and
[20, 24] for surveys). However, the critical limitation of the hypercube lies in its exponen-
tial growth in size, specifically in the number of vertices. Exploring some of its isometric
subgraphs can improve efficiency. A subgraph of the n-dimensional hypercube is isometric
to Qn if the distance between any pair of vertices in such subgraphs is the same as the
distance in the complete hypercube. With this aim, in 1993, Hsu introduced the Fibonacci
cubes [21], obtained from Qn by selecting only those vertices that do not contain 11 as a
factor. They have a Fibonacci number of vertices making them useful in applications to
reduce the complexity and to limit resources. They have many remarkable properties, also
related to Fibonacci numbers (cf. [15]).

In 2012, Generalized Fibonacci cubes have been defined by means of a binary word f ;
the graph Qn(f) is a subgraphs of Qn whose vertices do not contain f as a factor, i.e.
the vertices are f -free binary words [22]. Then, the property of Qn(f) being an isometric
subgraph of Qn is related to some combinatorial properties of the avoided word f that
in such cases is called isometric. More formally, a binary word f is isometric (or Ham-
isometric) when, for any n ≥ 1, Qn(f) is an isometric subgraph of Qn, and non-isometric,
otherwise [25]. The definition can also be done without mentioning graphs and only in terms
of the Hamming distance. A word f is Ham-isometric, if for any pair of f -free words u

and v of the same length, u can be transformed into v by a minimal sequence of symbol
replacements that each time produce an f -free word, as well. Binary Ham-isometric words
have been characterized in [23, 25, 35, 38, 39] and research on the topic remains very active
[11, 36, 37, 12, 6, 7, 16, 8, 9, 4, 10].

Over the years, many variations of the hypercube have been introduced to enhance certain
features. For example, folded hypercubes (cf. [18]) and enhanced hypercubes (cf. [32]) have
been defined by adding some edges to the original structure, providing several advantages
in terms of topological properties. Motivated by the same reasons, we introduced a type of
generalized hypercube that employs a different distance, enabling the definition of isometric
subgraphs. The inspiration and motivation came from many applications of computational
biology, where many processes involve complex transformations and it is natural to consider
not only replacement operations but also swap operations that exchange two adjacent different
symbols in a word. The edit distance based on swaps and replacements is worth considering
[1, 19, 29] instead of the Hamming distance. Actually, this distance was defined in the 70s
by Wagner and Fischer [34, 33] who proved that it can be efficiently computed.

In [3] this distance is referred to as tilde-distance, since the ∼ symbol somehow evokes the
swap operation. In [2], the tilde-distance is taken as the base to define the tilde-hypercube,
Q̃n; it has again all the n-binary strings as vertices, but two vertices are adjacent if the
tilde-distance is equal to 1. This implies that Q̃n has more edges than Qn; in particular,
since a swap corresponds to two replacements of consecutive characters, some vertices at
distance 2 in Qn, become adjacent in Q̃n.

This paper surveys most of the recent results on tilde-isometric words and generalized tilde-
Fibonacci cubes. In particular, we collect the main definitions to give a recursive construction
of tilde-hypercubes and enumerate their edges and vertices. Then, the subgraphs Q̃n(f) of the
tilde-hypercubes are considered. They are obtained by selecting the vertices corresponding to
f -free words, for a given word f . It is also reported the characterization of words f such that
Q̃n(f) is an isometric subgraph of Q̃n as proved in [5]. We also exhibit an infinite family of
tilde-isometric words that are not Hamming-isometric and vice versa. Finally, the last part
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of the paper focuses on the word f = 11, that is both a Hamming- and a tilde-isometric word;
the subgraph Q̃n(11) is referred to as the tilde-Fibonacci cube. We describe its recursive
construction and present new simple results on diameter and radius that prove that the
tilde-Fibonacci cubes are self-centered graphs.

2 Basic on Strings and Fibonacci Cubes

In this paper we focus only on the binary alphabet Σ = {0, 1}. A word (or string) w over Σ
of length |w| = n, is w = a1a2 · · · an, where a1, a2, . . . , an are symbols in Σ. The set of all
words over Σ is denoted Σ∗. Finally, ϵ denotes the empty word and Σ+ = Σ∗ − {ϵ}. For any
word w = a1a2 · · · an, the reverse of w is the word wrev = anan−1 · · · a1. If x ∈ Σ, x denotes
the opposite of x, i.e x = 1 if x = 0 and vice versa. Then we define the complement of w the
word w = a1a2 · · · an.

Let w[i] denote the symbol of w in position i, i.e. w[i] = ai. Then, w[i..j] = ai . . . aj ,
for 1 ≤ i ≤ j ≤ n, denotes a factor u of w of length j − i + 1 placed from the i-th to the
jth position of w. We say that I = [i..j] is the interval where the factor u occurs in w.
The prefix (resp. suffix) of w of length l, with 1 ≤ l ≤ n − 1 is prel(w) = w[1..l] (resp.
suf l(w) = w[n − l + 1..n]). When prel(w) = suf l(w) = u then u is here referred to as an
overlap of w of length l; in other frameworks, it is also called the border, or bifix of w (cf. [30]).
A word w avoids a word f if w does not contain f as a factor: we also say that w is f -free.

An edit operation is a function O : Σ∗ → Σ∗ that transforms a word into another one.
Let OP be a set of edit operations. The edit distance of words u, v ∈ Σ∗, with respect to the
set OP , is the minimum number of edit operations in OP needed to transform u into v.

In this paper, we consider the edit distance that uses only swap and replacement operations.
Note that these operations preserve the length of the word.

▶ Definition 1. Let w = a1a2 . . . an be a word over Σ.
The replacement operation (or replacement, for short) on w at position i, with i = 1, . . . , n,
is defined by

Ri(a1a2 . . . ai−1aiai+1 . . . an) = a1a2 . . . ai−1aiai+1 . . . an.

The swap operation (or swap, for short) on w at position i, with i = 1, . . . , n−1 and ai ≠ ai+1,
is defined by

Si(a1a2 . . . ai−1aiai+1ai+2 . . . an) = a1a2 . . . ai−1ai+1aiai+2 . . . an.

Note that one swap corresponds to two replacements of consecutive symbols.
The Hamming distance distH(u, v) of equal-length words u, v ∈ Σ∗ is defined as the

minimum number of replacements needed to obtain v from u.

Let G = (V (G), E(G)) be a graph, V (G) be the set of its nodes and E(G) be the set
of its edges. The distance of u, v ∈ V (G), distG(u, v), is the length of the shortest path
that connects u and v in G. A subgraph S = (V (S), E(S)) of a (connected) graph G is an
isometric subgraph if for any u, v ∈ V (S), distS(u, v) = distG(u, v).

The n-hypercube, or binary n-cube, Qn, is a graph with 2n vertices, labeled with the
words of length n and edges connecting two vertices u and v in Qn when their labels differ
exactly in 1 position, i.e. when distH(u, v) = 1. Therefore, distQn

(u, v) = distH(u, v).
Denote by fn the n-th Fibonacci number, defined by f1 = 1, f2 = 1 and fi = fi−1 + fi−2,

for i ≥ 3. The Fibonacci cube (cf. [22]) Fn of order n is the subgraph of Qn whose vertices
are binary words of length n avoiding the factor 11. It is well known that Fn is an isometric
subgraph of Qn (cf. [24]).

Grossi’s Festschrift



5:4 Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

One of the main properties of Qn and Fn is their recursive structure that have been
extensively studied (cf. [21, 28, 26, 24]).

The following results are well-known, but are hereby stated for future reference.

▶ Proposition 2. Let Qn be the hypercube of order n. Then
|V (Qn)| = 2n,
|E(Qn)| = n2n−1.

▶ Proposition 3. Let Fn be the Fibonacci cube. Then:
|V (Fn)| = fn+2,
|E(Fn)| = 2(n+1)fn+nfn+1

5 .

In other terms, if the number of vertices N = 2n of the hypercube is taken as main
parameter, the number of edges of a hypercube with N vertices is (N log N)/2.

The sequence |E(Fn)| is Sequence A001629 in [31]. Hence, the number of edges of a
Fibonacci cube with N vertices, N = fn+2, is O(N log N), asymptotically equal to the
number of edges of a hypercube with the same number of vertices.

In order to generalize the notion of Fibonacci cube, one can consider the subgraphs of
the n-hypercube whose nodes are f -free, for some word f ∈ Σ∗, denoted by Qn(f), called
generalized Fibonacci cubes. Of course, if n < |f |, then Qn(f) = Qn; so it makes sense to
consider n ≥ |f |. Unfortunately, not all the words f make Qn(f) an isometric subgraph
of Qn. The words having this property have been widely studied (cf. [23, 25, 35, 38, 39]).
These words are in fact called isometric words, because they reflect on this isometry property
on the corresponding graphs.

Under the combinatorial point of view, isometric words are defined as follows. A word
f ∈ Σ∗ is Ham-isometric (or simply isometric) if and only if Qn(f) is an isometric subgraph
of Qn. A word that is not Ham-isometric is said to be Ham-non-isometric. In terms of
transformations, isometric words can be characterized by the following:

▶ Proposition 4. A word f is isometric iff for any pair of f -free words u and v, there exists
a sequence of distH(u, v) replacements that transforms u into v where all the intermediate
words are also f -free.

A word w has a 2-error overlap if there exists l ≤ |w| such that prel(w) and suf l(w) have
Hamming distance 2. Then, the following characterization of Ham-non-isometric words is
proved (cf. [35]).

▶ Proposition 5 ([35]). A word f is Ham-non-isometric if and only if f has a 2-error
overlap.

3 Tilde-distance and Tilde-hypercube

In this section, the edit distance based on swap and replacement operations is considered.
In [3] it is called tilde-distance and denoted by dist∼ . According to this definition one can
define the n-tilde-hypercube. We start with the definition of tilde-distance.

▶ Definition 6. Let u, v ∈ Σ∗ be words of equal length. The tilde-distance dist∼(u, v) between
u and v is the minimum number of replacements and swaps needed to transform u into v.

Note that for all u, v ∈ Σ∗, dist∼(u, v) ≤ distH(u, v), since a swap is a shortcut for two
adjacent replacements.
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▶ Example 7. The words u = 1011 and v = 0110 have tilde-distance dist∼(u, v) = 2. In fact,
v can be obtained from u with a swap S1 of the first and the second bits, and a replacement
R4 in the fourth position. Note that, in order to compute the Hamming distance, three
replacements are needed in positions 1, 2 and 4, therefore distH(u, v) = 3.

In order to describe the sequence of the operations that are used to compute the tilde-
distance of two words, we need the following definition of a tilde-transformation:

▶ Definition 8. Let u, v ∈ Σ∗ be words of equal length and dist∼(u, v) = d. A tilde-
transformation τ from u to v is a sequence of d + 1 words (w0, w1, . . . , wd) such that w0 = u,
wd = v, and for any k = 0, 1, . . . , d − 1, dist∼(wk, wk+1) = 1. Further, τ is f -free if for any
i = 0, 1, . . . , d, word wi is f -free.

A tilde-transformation (w0, w1, . . . , wd) from u to v with dist∼(u, v) = d is associated to a
sequence of d operations (Oi1 , Oi2 , . . . , Oid

) such that, for any k = 1, . . . , d, Oik
∈ {Rik

, Sik
}

and wk = Oik
(wk−1); it can be graphically represented as follows:

u = w0
Oi1−−→ w1

Oi2−−→ · · ·
Oih−−→ wh = v.

With a little abuse of notation, in the sequel we will refer to a tilde-transformation both as a
sequence of words and as a sequence of operations. Furthermore, as a consequence of the
definition, in a tilde-transformation, the positions i1, i2, . . ., id are all distinct.
In the following we give some examples that show some special features of tilde-
transformations, which never occur when transformations using only replacements are
considered. This highlights, on the one hand, the richness of new situations that arise from
introducing the swap operation, and on the other hand, it anticipates the need for new and
more sophisticated techniques to handle these increasingly complex scenarios. First of all,
we point out that when only replacements are used, the different transformations from u to
v use the same set of operations, possibly applied in a different order. This is not the case
for the different tilde-transformations between two words. The following two examples show
two singular cases of different tilde-transformations which use different sets of operations.

▶ Example 9. Let u = 100, v = 001. In this case σ1 = (S1, S2) and σ2 = (R1, R2) are two
tilde-transformations from u to v on different sets of operations. In particular, observe that
σ1 flips twice the bit in the second position, whereas in σ2 the second bit is not involved.

σ1 : 100 S1−→ 010 S2−→ 001 σ2 : 100 R1−−→ 000 R3−−→ 001

▶ Example 10. Consider u′ = 010 and v′ = 101 and the tilde-transformations ρ1 = (S1, R3)
and ρ2 = (S2, R1) from u′ to v′. Here, different sets of operations are used and, differently
from Example 9 in both transformations each symbol is changed just once:

ρ1 : 010 S1−→ 100 R3−−→ 101 ρ2 : 010 S2−→ 001 R1−−→ 101

The variety of situations described above translates into a higher degree of difficulty of the
tilde-transformations (compared to the Hamming transformations) when handling some
property like, for instance, isometricity.

▶ Remark 11. Let u, v ∈ Σm and τ be a tilde-transformation from u to v. Referring to
Example 9, if τ contains two swaps, Si and Si+1, at consecutive positions i and i + 1 of u,
then such swaps can be substituted by two replacements, namely Ri and Ri+2, still obtaining
a tilde-transformation from u to v of length equal to their distance. Hence, in particular, if
u = 00u′ and v = 10v′, among all sequences of swaps and replacements of minimal length
that transform u into v there is one starting with the replacement R1.

Grossi’s Festschrift



5:6 Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

Figure 1 Tilde-hypercubes with n=1,2,3,4 (the colored edges are those added to the traditional
hypercube).

▶ Remark 12. Let u, v ∈ Σm and τ be a tilde-transformation from u to v. Referring to
Example 10. If τ contains a swap Si+1 and a replacement Ri then they can be substituted
by Si and Ri+2. As a consequence, if u = 01u′ and v = 10v′ among all sequences of swaps
and replacements of minimal length that transform u into v there is one starting with the
replacement R1.

Based on the definition of tilde-distance, a natural extension of the concept of n-hypercube
is given in [2] as follows:

▶ Definition 13. The n-tilde-hypercube Q̃n, or tilde-hypercube of order n, is a graph with 2n

vertices, labeled with binary words of length n. Two vertices in Q̃n, are adjacent whenever
the tilde-distance of their labels is 1.

Figure 1 shows the tilde-hypercubes of order 1, 2, 3, 4.
▶ Remark 14. Qn is a proper subgraph of Q̃n. In fact, for u, v ∈ Σ∗, distH(u, v) = 1
implies dist∼(u, v) = 1. Note that Qn is not an isometric subgraph of Q̃n. Indeed, for any
n ≥ 2, there exists a pair of words (un, vn) of length n such that dist∼(un, vn) = 1 and
distH(un, vn) ̸= 1. For instance, for any 0 ≤ k, h ≤ n − 2, h + k = n − 2, consider the words
un = 0h010k and vn = 0h100k; then dist∼(un, vv) = 1 and distH(un, vn) = 2, therefore
(un, vn) is an edge in Q̃n but not in Qn.

The following lemma is the main tool for exhibiting a recursive definition of the tilde-
hypercube, in analogy with the classical hypercube.

▶ Lemma 15. For any u, v ∈ Σn−1, dist∼(u0, v0) = dist∼(u, v) = dist∼(u1, v1) and
dist∼(u0, u1) = 1. Moreover, for any u′ ∈ Σn−2, dist∼(u′01, u′10) = 1.

▶ Proposition 16 ([2]). The n-tilde-hypercubes Q̃n, with n ≥ 1, can be recursively defined.

Proof. If n = 1, Q̃1 has just two vertices 0 and 1 connected by an edge.
Suppose all the tilde-hypercubes of dimension smaller than n have been defined. The

hypercube Q̃n is recursively constructed as follows. Start with a copy of Q̃n−1 where every
vertex u is replaced by u0, and denote this copy by Q̃n−10 and a second copy where every
vertex u is replaced by u1, and denoted by Q̃n−11.

By Lemma 15, if (u, v) ∈ E(Q̃n−1), then (u0, v0), (u1, v1) ∈ E(Q̃n−1), this means that
Q̃n−10 and Q̃n−11 are subgraphs of Q̃n. Moreover, for any u ∈ Σn−1, there is an edge
(u0, u1) in Q̃n with u0 ∈ V (Q̃n−10) and u1 ∈ V (Q̃n−11). Finally, for any v ∈ Σn−2

(v10, v01) ∈ E(Q̃n) with v10 ∈ V (Q̃n−10) and v01 ∈ V (Q̃n−11). In Fig. 1, these latter edges
added in the fourth step of recursion, are depicted with orange edges. For any other pair of
words u, v ∈ {0, 1}n, dist∼(u, v) > 1, then (u, v) is not an edge of Q̃n. ◀
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▶ Corollary 17. Let Q̃n be the tilde-hypercube of order n. Then, |E(Q̃1)| = 1 and, for any
n ≥ 2 |E(Q̃n)| = 2|E(Q̃n−1)| + 2n−1 + 2n−2.

By solving the above recurrence, we find the exact formula |E(Q̃n)| = (3n − 1) · 2n−2

(Sequence A053220 in [31]). Let ẼQ(N) be the number of edges of the tilde-hypercube with
N vertices, N = 2n. Then,

ẼQ(N) = 3N(log N − 1)
4 . (1)

4 Tilde-hypercube Avoiding a Word and Tilde-isometric Words

In analogy with the n-hypercube avoiding a word based on the Hamming distance, referred
to as generalized Fibonacci cube in [22], in this section, we consider the n-tilde-hypercube
avoiding a word, based on the tilde-distance, here named generalized tilde-Fibonacci cubes.

In [2] the following definition is given:

▶ Definition 18. The n-tilde-hypercube avoiding a word f , or the tilde-hypercube of order n

avoiding a word f , denoted Q̃n(f), is the subgraph of Q̃n obtained by removing those vertices
which contain f as a factor.

We are interested in those words f such that Q̃n(f) is an isometric subgraph of Q̃n, i.e.
the distance of two vertices of Q̃n(f) is equal to the tilde-distance of the corresponding labels.

▶ Definition 19. A word f ∈ Σ∗ is tilde-isometric if and only if for all n ≥ |f |, Q̃n(f) is an
isometric subgraph of Q̃n.

The following proposition characterizes isometric words re-stating the definition of iso-
metric word under a combinatorial point of view.

▶ Proposition 20. Let f ∈ Σ∗ be a word of length n with n ≥ 1. The word f is tilde-
isometric if and only if for any pair of f-free words u and v of equal length m ≥ n, there
exists a tilde-transformation from u to v that is f-free. It is tilde-non-isometric if it is not
tilde-isometric.

In order to show that a word is tilde-non-isometric it is sufficient to exhibit a pair (u, v)
of f -free words such that all the tilde-transformations from u to v are not f -free. Such
pair of words is called a pair of tilde-witnesses. More challenging is to prove that a word is
tilde-isometric.

▶ Example 21. The word f = 1010 is tilde-non-isometric. In fact, let u = 11000 and v =
10110; then (u, v) is a pair of tilde-witnesses for f . In fact u and v are f -free; moreover there
are only two possible tilde-transformations from u to v, namely 11000 S2−→ 10100 R4−−→ 10110
and 11000 R4−−→ 11010 S2−→ 10110, and in both cases 1010 appears as factor after the first step.
On the other side, observe that f is Ham-isometric by Proposition 5.

The following straightforward property of tilde-isometric binary words is very helpful to
simplify proofs and computations.

▶ Remark 22. A word f is tilde-isometric iff f is tilde-isometric iff frev is tilde-isometric.

In view of Remark 22 , we will focus on words starting with 1.

Grossi’s Festschrift



5:8 Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

5 Characterization of Tilde-isometric Words

The characterization of Ham-isometric words given in [38] and here reported as Proposi-
tion 5, uses the notion of 2-error overlap. In this section we introduce the corresponding
definition that refers to the tilde-distance. Tilde-error overlaps will have a main role in the
characterization of tilde-isometric words but the presence of swap operations will force us to
handle them with care.

▶ Definition 23. Let f ∈ Σn. Then, f has a q-tilde-error overlap of length ℓ and shift
r = n − ℓ, with 1 ≤ ℓ ≤ n − 1 and 0 ≤ q ≤ ℓ, if dist∼(preℓ(f), sufℓ(f)) = q.

▶ Example 24. The word f = 1101110101101 has a 2-tilde-error overlap of length 6 and
shift 7. Indeed, pre6(f) = 110111, suf6(f) = 101101 and dist∼(110111, 101101) = 2.

For our proofs, given a word f with a q-tilde-error overlap of length ℓ, we will study the
tilde-transformations τ from preℓ(f) to sufℓ(f) with q operations. For this reason, it is useful
to refer to the alignment of the two strings preℓ(f) to sufℓ(f). Furthermore, for our purpose,
it is relevant to consider also the bits adjacent to a tilde-error overlap of a word. For this
reason, we introduce the following notation.

Let f be a word in {0, 1}∗ and $ be a symbol different from 0, 1, here used as delimiter of a
word, that by definition “matches” any symbol of the word. Consider f with its delimiters $f$.
A q-tilde-error overlap of length ℓ is denoted by

($xb
ay$

)
where xb, ay are a prefix and a suffix,

respectively, of f , a, b ∈ Σ, x, y ∈ Σ∗ with |x| = |y| = ℓ, and dist∼($xb, ay$) = dist∼(x, y) = q.
This notation makes evident the fact that in f the prefix x is followed by b and the suffix y

is preceded by a. Moreover, a q-tilde-error overlap
($xb

ay$
)

is sometimes factorized into blocks
to highlight the significant parts. For example, the 2-tilde-error overlap in Example 24 is
denoted by

($1
01

)(1011
0110

)(10
1$

)
because dist∼(110111, 101101) = 2 = dist∼(1011, 0110).

f :
i j

w2 1 w 1 w3 w4

f :
r+i r+j

w1 w2 0 w 0 w3

r ℓ = n − r r

f :
i i+1 j

w2 1 0 w 1 w3 w4

f :
r+i r+i+1 r+j

w1 w2 0 1 w 0 w3

r ℓ = n − r r

Figure 2 A word f and its 2-tilde-error overlap of shift r and length ℓ = n − r, with tilde-
transformation (Oi, Oj) = (Ri, Rj) (left), and (Oi, Oj) = (Si, Rj) (right).

In the sequel, we will be interested in the specific case of 1-tilde-error overlap where the
single error in the alignment is a swap and in all the cases of 2-tilde-error overlaps. Consider
a 2-tilde-error overlap of f of shift r, length ℓ = n − r, and let (Oi, Oj), 1 ≤ i < j ≤ ℓ, be a
tilde-transformation from preℓ(f) to sufℓ(f). Observe that the positions in preℓ(f) modified
by Oi are either i or both i and i+1, following that Oi is a replacement or a swap. Hence, the
number of the positions modified by Oi and Oj may be 2, 3 or 4. Fig. 2 shows a word f with
its 2-tilde-error overlap of shift r and length ℓ = n − r. With our notation, the 2-tilde-error
overlap is

($w21w1w3b
aw20w0w3$

)
in the figure on the left and

($w210w1w3b
aw201w0w3$

)
in the figure on the right,

where b is the first letter of w4 and a the last letter of w1. A tilde-transformation from
preℓ(f) to sufℓ(f) is given by (Oi, Oj) = (Ri, Rj) in the first case and by (Oi, Oj) = (Si, Rj)
in the second case. We say that a 2-tilde-error overlap has non-adjacent errors when there is
at least one character interleaving the positions modified by Oi and those modified by Oj .
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The 2-tilde-error overlap
($x

ax

)(100
001

)(
yb
y$

)
is also considered as having non-adjacent errors

because it admits the tilde-transformation (Oi, Oj) = (Ri, Ri+2), despite it has also the other
tilde-transformation (Oi, Oj) = (Si, Si+1).

In all the other cases, we say that the 2-tilde-error overlap has adjacent errors.
Let us state the characterization of tilde-isometric words in terms of special configurations

in their overlap proved in [5].

▶ Theorem 25. A word f ∈ Σn is tilde-non-isometric if and only if one of the following
cases occurs (up to complement, reverse and inversion of rows):
(C0) f has a 1-tilde-error overlap

($x
ax

)(01
10

)(
yb
y$

)
with x, y ∈ Σ∗, a, b ∈ Σ;

(C1) f has a 2-tilde-error overlap with non-adjacent errors, different from
($x

ax

)(000
101

)(
yb
y$

)
with

x, y ∈ Σ+, a, b ∈ Σ;
(C2) f has a 2-tilde-error overlap

($x
ax

)(0101
1010

)(
yb
y$

)
or

($x
ax

)(0110
1001

)(
yb
y$

)
with x, y ∈ Σ∗, a, b ∈ Σ;

(C3) f has a 2-tilde-error overlap
($x

ax

)(010
101

)(
yb
y$

)
with x, y ∈ Σ∗, a, b ∈ Σ;

(C4) f has a 2-tilde-error overlap
($x

ax

)(011
100

)(0
$
)

with x ∈ Σ∗, a ∈ Σ;
(C5) f has a 2-tilde-error overlap

($
0
)(00

11
)(1

$
)
.

Thanks to Theorem 25, we can classify any word as isometric or non-isometric. In the
following, several examples are given. The following are two examples of words with a
2-tilde-error overlap with adjacent errors; the first one is tilde-isometric, the second one is
tilde-non-isometric.

▶ Example 26. The word f = 010110000 is tilde-isometric; indeed its unique 2-tilde-error
overlap has shift 5 and length 4,

($0
10

)(101
000

)(1
$
)
. Note this is the case of non-adjacent errors

but of the type prohibited by the condition in (C1).

▶ Example 27. The word f = 1011000 is tilde-non-isometric; indeed it has the 2-tilde-
error overlap, of shift 4 and length 3,

($
1
)(101

000
)(1

$
)
, that satisfies (C1). Note that the pair

(u, v) = (10110011000, 10101001000) is a pair of tilde-witnesses for f .

The following example shows an infinite family of words that are tilde-isometric and
Ham-non-isometric.

▶ Example 28. All the words f = 1n0m (and their complement f = 0n1m) for n, m > 2 are
Ham-non isometric, by Proposition 5, and tilde-isometric. In fact, for n, m > 2, f = 1n0m

has only two 2-tilde-error overlaps and none of them fall into a case in the statement of
Theorem 25. The first one is the tilde-error overlap with shift 2,

($1n−2

11n−2

)(11
00

)(0n−20
0n−2$

)
, the other

one has shift n + m − 2, and it is
($

0
)(11

00
)(1

$
)
.

Instead, if n = m = 2, f = 1100 is both tilde-non-isometric and Ham-non-isometric. In
fact, f has only one 2-tilde-error overlap

($
1
)(11

00
)(0

$
)
, corresponding to case (C5) of Theorem 25.

Moreover, one can verify that (u, v) = (110100, 101010) is a pair of tilde-witnesses for f .

The next corollary shows that there exist Ham-isometric words that are not tilde-isometric.
This fact, together with Example 5, proves that the families of Ham-isometric and tilde-
isometric words are incomparable.

▶ Corollary 29. The word f = 1010 is Ham isometric and tilde non-isometric.

Proof. The word 1010 has no 2-error overlap, therefore is isometric. Instead, it has a
2-tilde-error overlap

(1
$
)(010

101
)($

0
)

corresponding to case (C3) of Theorem 25. ◀
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Figure 3 Tilde-Fibonacci cubes with n=1,2,3,4 (the colored edges are those added to the
traditional hypercube).

6 Tilde-Fibonacci Cubes

Theorem 25 allows also to give light to isometric subgraphs of Q̃n avoiding a word. In fact
they are those avoiding a tilde-isometric word.

In analogy with the definition of Fibonacci cubes introduced by Hsu [21], we give the
following:

▶ Definition 30. Let n ≥ 1 and Q̃n be the tilde-hypercube of dimension n. The n-tilde-
Fibonacci cube, or tilde-Fibonacci cube of dimension n is F̃n = Q̃n(11).

Figure 3 shows the tilde-Fibonacci cube of order 1, 2, 3, 4.
From Theorem 25 and Proposition 19, the following corollary derives.

▶ Corollary 31. The tilde-Fibonacci cube F̃n = Q̃n(11) is an isometric subgraph of Q̃n.

Further, about other hypercubes avoiding words of length 2, we have the following:

▶ Remark 32. For each n ≥ 1, Q̃n(10) and Qn(10) coincide. In fact, V (Q̃n(10)) =
{0h1k| h, k ≥ 0, h + k = n} = V (Qn(10)) and E(Q̃n(10)) = {(0i1j , 0i−11j+1)| 1 ≤ i ≤
n, 0 ≤ j ≤ n − 1, i + j = n} = E(Qn(10)).

By complement, also Q̃n(01) and Qn(01) coincide (see Remark 22).
Note also that Q̃n(01) is obtained from Q̃n(10) by complementing all the bits in the

vertices labels, i.e. they are isomorphic.

The tilde Fibonacci cube admits also a recursive construction that allows one to enumerate
its edges.

By Proposition 2, |V (F̃n)| = |V (Fn)| = fn+2. Among these vertices, fn+1 end with a 0
and fn end with a 1. Figure 3 shows the tilde-Fibonacci cube of order 4.

▶ Remark 33. Let u ∈ V (Fn−1), x ∈ Σ. If u ends with 1, then ux ∈ V (F̃n) iff x = 0. If u

ends with 0 then ux ∈ V (F̃n), for any x ∈ {0, 1}.

▶ Proposition 34. The n-tilde-Fibonacci cubes F̃n, with n ≥ 1, can be defined recursively.

Proof. If n = 1, F̃1 has two vertices 0 and 1 connected by an edge. If n = 2, F̃2 has three
vertices 00, 01 and 10 and E(F̃2) = {(00, 10), (00, 01), (01, 10)}.

Let n ≥ 3 and suppose that F̃i are defined for all i < n. Then, F̃n can be constructed
from a copy of F̃n−1 where each vertex u is replaced by u0, denoted by F̃n−10, and a copy of
F̃n−2, where each vertex v is replaced by v01, and denoted by F̃n−201. If there is an edge
(u, v) in F̃n−1, then there is en edge (u0, v0) F̃n, i.e. F̃n−10 is a subgraph of F̃n. For similar
reasons F̃n−201 is a subgraph of F̃n. Further, for any u0 ∈ V (F̃n−1), then there is an edge in
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F̃n connecting v00 in F̃n−10 and u01 in F̃n−201 and for any u1 ∈ V (F̃n−1) there is an edge
linking u10 in F̃n−10 and u01 in F̃n−201 (see the orange edges in Fig. 3). By Remark 33
and Lemma 15 no further edges exist in F̃n. ◀

▶ Corollary 35. Let F̃n be the n-tilde-Fibonacci cube. Then, |E(F̃1)| = 1, |E(F̃2)| = 3 and,
for any n ≥ 2

|E(F̃n)| = |E(F̃n−1)| + |E(F̃n−2)| + fn+1.

Hence, we can give the following exact formula:

|E(F̃n)| = (n + 1)fn+3 + (n − 2)fn+1

5 ,

(Sequence A023610 in [31] for |E(F̃n+1|). Since the number of vertices of F̃n is fn+2, from
the previous formula it follows that the tilde-Fibonacci cube has O(N log N) edges, where N

is the number of vertices, as for the tilde-hypercube (see Equation (1)). Let us conclude the
section with some structural properties of tilde-Fibonacci cubes such as the diameter and
the radius.
The eccentricity of a vertex v of a connected graph G is defined as

e(v) = max
u ∈ V (G)

dG(u, v),

where dG(u, v) is the length of a shortest path from u to v in G. The diameter and the radius
of G are respectively defined by

d(G) = max
v ∈ V (G)

e(v) and r(G) = min
v ∈ V (G)

e(v).

In [21] it is proven that d(Fn) = n and that the maximal distance involves the words
(10)n/2 and (01)n/2 for even n, and (01)⌊n/2⌋0 and (10)⌊n/2⌋1 for odd n. Note that, since
the swap operation adds new edges, it shortens the distances between vertices. Moreover,
the distances can even be halved because a swap replaces two replacement operations. More
precisely, we have the following proposition.

▶ Proposition 36. Let F̃n be the n-tilde-Fibonacci cube. Then, for any n ≥ 1, d(F̃n) =
r(F̃n) = ⌈n/2⌉.

Proof. First, we prove that for any n ≥ 1 and u, v ∈ V (F̃n), dist∼(u, v) ≤ ⌈n/2⌉ by induction
on n.
The case where n = 1 is trivial. If n = 2, then for any u, v ̸= 11, we have dist∼(u, v) = 1.
Let now u, v be 11-free words of same length n, with n > 2. Then, u = xyu′ and v = ztv′,
with x, y, z, t ∈ {0, 1} and u′, v′ ∈ {0, 1}∗. Recall that dist∼(u, v) is the minimal number of
swaps and replacements to transform u into v. Since xy can be transformed into zt with at
most a single swap or replacement, a possible way to transform u in v is to transform xy into
zt and then u′ into v′. Therefore, dist∼(u, v) ≤ 1 + dist∼(u′, v′) ≤ 1 + ⌈(n − 2)/2⌉ ≤ ⌈n/2⌉.

Moreover, for each 11-free word u of length n, with n ≥ 1, there exists a 11-free word v

of length n such that dist∼(u, v) = ⌈n/2⌉. In fact, for each word u of length n, the word v is
obtained by replacing in u, from left to right, the blocks 00 with 10, the blocks 10 with 00,
the blocks 01 with 10 and finally, for odd n, the last bit with its complement. Trivially, if u

is 11-free then v is 11-free, as well. We prove that dist∼(u, v) = ⌈n/2⌉ by induction on n.
The case n = 1 is trivial. If n = 2 then dist∼(01, 10) = dist∼(10, 00) = dist∼(00, 10) = 1. If
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n > 2 then either u = 00u′ (v = 10v′) or u = 01u′ (v = 10v′). In the first case, by Remark
11, one has dist∼(u, v) = 1 + ⌈(n − 2)/2⌉ = ⌈n/2⌉. In the second case, by Remark 12, one has
dist∼(u, v) = 1 + ⌈(n − 2)/2⌉ = ⌈n/2⌉. In any case, dist∼(u, v) = ⌈n/2⌉. Finally, since F̃n is
an isometric subgraph of Q̃n then dF̃n

(u, v) = dist∼(u, v) and r(F̃n) = d(F̃n) = ⌈n/2⌉. ◀

The previous proposition proves that F̃n is a self-centered graph, that is, a graph in which
radius and diameter coincide (cf. [14] for a survey).

7 Conclusions

The paper surveys some recent results on isometric words with respect to the edit distance
that allows swap and replacement operations, here referred to as tilde-distance. Moreover,
the tilde-hypercube and the tilde-Fibonacci cube are presented as a generalization of the
corresponding classical notions, with the tilde-distance in place of the Hamming distance.

Compared with the setting of Hamming distance, all the problems appear to be more
complicated since, when using swaps, the order of performing the operations does matter.
Nevertheless, isometric words and generalized Fibonacci cubes based on this tilde-distance
open up new scenarios and present interesting new situations that surely deserve further
investigation as it can serve as base for string and graph algorithmic developments.
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