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—— Abstract

We define a new entropy measure L(S), called the containment entropy, for a set S of sets, which
considers the fact that some sets can be contained in others. We show how to represent S within
space close to L(S) so that any element of any set can be retrieved in logarithmic time. We extend
the result to predecessor and successor queries and show how some common set operations can be
implemented efficiently.
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1 Introduction

We consider the problem of representing a collection of sets S = {S7,..., 5} from a universe
U of size u while supporting basic queries, including retrieving the kth element and predecessor
and successor queries. The goal is to store the sets compactly while supporting fast queries.
This problem has important applications, including the representation of postings lists in
inverted indexes and adjacency-list representations of graphs.

To measure space, we often consider the worst-case entropy defined as H(S) =
i lg (I ;i‘) as a natural information-theoretic worst-case lower bound on the number
of bits needed to store S. Using standard techniques [6, 5, 9], we can store & within
H(S) + O(n + slogn) bits and support retrieval (i.e., accessing any kth element of any set)
in constant time.
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In this paper, we propose a finer measure of entropy for S that can take advantage of the
fact that some sets may be subsets of others. If S; C S, we can encode S; using log (‘éq‘)
bits, by indicating which elements in S; are also in S;. We show how to construct a hierarchy
from S such that children are subsets of their parent. This leads to a new notion of entropy
called the containment entropy, defined as

L(s) = glg ("5,

where p(S;) is the parent of S; (see Section 3). It is easy to see that the containment entropy
is a finer notion of entropy since L(S) < H(S). Our main result is that we efficiently represent
S in space close to its containment entropy while supporting queries efficiently.

» Theorem 1. Let S be a set of s sets of total size n, elements of which are drawn from
a universe of size u. We can construct a data structure in O(snlogn) time that uses
L(S) + O(n + slogn) bits of space and supports retrieval, predecessor, and successor queries
on any set S € S in time O(log(u/|S])).

Thus, compared to the above-mentioned standard data structures, we replace the worst-case
entropy H(S) with L(S) in our space bound in Theorem 1.

We also obtain several corollaries of Theorem 1. We show how to implement the common
operations of set intersection, set union, and set difference. By combining Theorem 1 with
techniques from Barbay and Kenyon [2] we obtain fast implementations of these operations
in terms of the alternation bound [2] directly on our representation. We also show how to
apply Theorem 1 to efficiently store a collection of bitvectors while supporting access, rank,
and select queries.

Technically, the result is obtained by constructing a tree structure, where each node
represents a set, and children represent subsets of their parent. We then represent each set as
a sparse bitvector that indicates which of the elements of the parent are present in the child.
This leads to a simple representation that achieves the desired space bound. Unfortunately,
if we directly implement a retrieval query on this representation, we have to traverse the
path from the set S to the root leading to a query time of Q(h), where h is the height of the
tree. We show how to efficiently shortcut paths in the tree without asymptotically increasing
the space, yielding the O(log(u/|S])) time. We then extend these techniques to handle
predecessor and successor queries in the same time, leading to the full result of Theorem 1.

Relation with wavelet trees. We note that the idea is reminiscent of wavelet trees [7],
which represent a sequence of symbols as a binary tree where each node stores a bitvector. In
the root’s bitvector, 0s/1s mark the sequence positions with symbols in the first/second half
of the alphabet, and left/right children recursively represent the subsequences formed by the
symbols in the first/second half of the alphabet. Nodes handling single-symbol subsequences
are wavelet tree leaves. If we define S as the sets of positions in the sequence holding the
symbols of each subalphabet considered in the wavelet tree, then our data structure built on
S has the same shape of the wavelet tree. The wavelet tree uses less space, however, because
it corresponds to a particular case where the maximal subsets of each set partition it into
two: while the wavelet tree can be compressed to the zero-order entropy of the sequence [7],
L(S) doubles that entropy.
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2 Basic Concepts

A bitvector B[1..u] is a data structure that represents a sequence of u bits and supports the
following operations:
access(B, i) returns Bli], the ith bit of B.
ranky(B, i), where b € {0,1}, returns the number of times bit b occurs in the prefix
BJ1..i] of the bitvector. We assume rank,(B,0) = 0.
selecty(B, j) returns the position in B of the jth occurrence of bit b € {0,1}. We assume
selecty(B,0) = 0 and selecty(B,i) =n+ 1 if b does not occur 7 times in B.

Note that ranko(B,i) = i — rank;(B, ). By default we assume b = 1. It is possible to
represent bitvector B using u + o(u) bits and solve all the operations in O(1) time [3, 8]. If
n is the number of 1s in B, it is possible [6, 5, 9] to represent B using

nlgE +2n = lg <u> + O(n + logu)
n n

bits,! so that select; is implemented in constant time, while access and rank, are solved
in time O(1 +log %*). Operation selecty can be solved in time O(logn) by binary search on
selecty. This is called the sparse bitvector representation in this paper.

We note that 1g (Z) is the entropy of the set of positions where B contains n 1s, or
equivalently, the entropy of the sets of n elements in a universe of size u. We will indistinctly
speak of the operations access, rank, and select over sets S on the universe [1..u], referring
to the corresponding bitvector B where B[i] = 1 iff i € S. For example, select(S, k) is the

kth smallest element of S.

3 Containment Entropy

Let S = {S1,5,...,S55} be a set of s distinct sets, and U = S; U Sy U---U S be their union.

For simplicity we assume U = [1..u], so u = [U|. Let n; = |S;] and n = Y ;_, n; be the total
size of all sets; note n > w.
A simple notion of entropy for S is its worst-case entropy

H(S) = ilg (;)

i=1

It is not hard to store S within H(S) + O(n + slogn) bits, by using the sparse bitvector
representation of Section 2, which stores each S; within Ig (71;1) + O(n; +log u) bits, and offers
constant-time retrieval of any element of S; via select(S;, k). We use O(slogn) additional
bits to address the representations of the s sets.

We now propose a finer measure of entropy for S, which exploits the fact that some sets
can be subsets of others. If S; C S, we can describe S; using lg (ZJ) bits, which indicate
which elements of S; are also in S;. We define a tree structure whose nodes are the sets
S;, and the parent of S;, p(S;), is any smallest S; such that S; C S;. If S; is not contained
in any other set, then its parent is the tree root, which represents &/. We then define the
following measure of entropy, which we call the containment entropy.

1 The formula on the left is zero if n = 0.
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Algorithm 1 Retrieving the kth element of a set S in a hierarchy.

Input :Set S and rank k of the element to be retrieved, with 1 < k < |S].
Output : The kth smallest element in S.

1 function retrieve (S, k)
2 if S is the root then return k
3 else return retrieve(p(S), select(S,k)) // use ¢(S) on contracted hierarchy

» Definition 2. Let S be a set of sets S;. Its hierarchy has U = U;S; at the root, and
the parent p(S;) of S; is any smallest set containing S; (or U if no such set exists). Let
p; = |p(S;)|. The containment entropy of S is

L) = leg@)

Clearly L(S) < H(S) because p; < u for every i. Note that L(S) is arguably the optimal
space we can achieve by representing sets as subsets of others in S, but we could obtain less
space if other arrangements were possible. For example, if many sets are subsets of both
S; and S;, it could be convenient to introduce a new set S; N.S; in the hierarchy, even if it
is not in S. An advantage of L(S) is that it is easily computed in polynomial time from S,
whereas more general notions like the one that allows the creation of new sets may be not.

4 A Containment Entropy Bounded Representation with Fast Retrieval

It is not hard to represent S within space close to L(S): we can use the sparse bitvector
representation of Section 2 to store each S; relative to its parent p(.S;), within lg (ﬁl) +O0(n; +
log p;) bits, which add up to L(S)+ O(n+ slogu) bits. The problem is that now select(S;, k)
gives the position of the kth element of S; within those of p(S;), not within U, and thus
select(S;, k) is not directly the identity of the kth element of S;. In order to obtain the
identity of the element, we must compute select(p(S;), select(S;, k)) and so on, consecutively
following the chain of ancestors of S; until the root U; see Algorithm 1. This may take time
proportional to the height of the hierarchy, which can be up to O(s). We now show how to
reduce this time to logarithmic, by introducing shortcuts in the hierarchy.

» Definition 3. The contracted hierarchy of S has U as its root, and the parent c(S;) of
S; is the highest ancestor Sy of p(S;) in the hierarchy of S such that ny < 2n;. If no such
ancestor exists, then ¢(S;) = p(S;).

We now prove a couple of relevant properties of this contracted hierarchy.

» Lemma 4. The depth of node S; in the contracted hierarchy of S is O(log(u/n;)). The
height of the contracted hierarchy is O(logu).

Proof. By definition, the grandparent of node S;, if it exists, has size > 2n;; thus the path
towards the root (whose size is u) cannot be longer than 21g(u/n;). An obvious consequence
is that the height of the tree cannot be longer than 21g u. <

If we change p(S) to ¢(S) in Algorithm 1, then, the retrieval time becomes O(log(u/|S])).
We now show that the space is not asymptotically affected by contracting the hierarchy.

» Lemma 5. The contracted hierarchy of S can be represented within L(S) + O(n + slogn)
bits.
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Algorithm 2 Finding the position of the predecessor of k in the set S of a hierarchy.

Input :Set S and element k of the universe, 1 < k < u.
Output : The position of the predecessor of k in S.

1 function predecessor (S, k)
2 L if S is the root then return k

3 else return rank(S,predecessor(c(S5),k))

Proof. We start from our representation that uses L(S)+ O(n+ slogn) bits, and show how it
changes when we replace p(S;) by ¢(S;). In case p(S;) # ¢(S;), it holds that |c¢(S;)| < 2|p(S:)],
because S; C p(S;) and thus |¢(S;)] < 2]9;] < 2|p(S;)|. Then, changing p(S;) to ¢(S;) increases

the size of the representation from n;lg 2= + 2n; to at most n; lg 20i 4 oy, =, lg 2 4 3n;.

Thus, the total increase produced by changlng all p(S;) to ¢(S;) is bounded by n; we still
use L(S) + O(n + slogn) bits. The parent pointers that allow climbing paths also fit in
O(slogn) bits. <

In summary, we have the following result.

» Lemma 6. A set S of s sets of total size n and universe size u can be represented
within L(S) + O(n + slogn) bits so that any element of any set S can be retrieved in time

O(log(u/]S]))-
5 Other Operations

5.1 Predecessor and Successor in a Set

Given an element identifier £ and a set S;, the predecessor is the largest v < k such that
v € S;. Conversely, the successor is the smallest v > k such that v € S;. We can find the
predecessor in O(logu) time, as follows. We start at the node S; and walk up the path to
the root U, so as to determine the nodes in the path. In the return from the recursion, we
start at the position v < k in U, and whenever returning from a node S to its child S’, we
compute v < rank(S’,v), which gives the number of elements from S’ up to the element v in
S, that is, the predecessor of v among the elements of S’. By the time we return to S; again,
v is the position in S; of the predecessor of k; see Algorithm 2. We then find out the identity
of v in U using Algorithm 1. To find the successor, we use v < 1 + rank(S’,v — 1) instead.

Operation rank takes time O(1 + log(]S|/|S’])) in the sparse bitvector representation of
S’ as seen in Section 2. Therefore, the sum of the times along the path to S; telescopes to
O(log(u/n;)). This yields the following result.

» Lemma 7. On the same representation of Lemma 6, we can compute the predecessor and
successor of any element of any set S in time O(log(u/|S])).
5.2 Set Operations

These operations are useful to compute set operations, by mimicking any standard algorithm
that traverses both ordered sets. In particular, we can implement an intersection algorithm
that is close to the alternation complexity lower bound d [2]: any algorithm that can find

the successor of any element in either list in time ¢, can intersect both lists in time O(dt).

Predecessor and successor on the complement of a set can also be solved in time O(t), by
using rankg instead of rank (and managing the base case accordingly).

6:5
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» Corollary 8. On the representation of Lemma 6, we can compute the intersection between
any two sets S; and S; in time O(6logu), where § is the alternation complexity of both sets.
We can also compute their union in time O(|S; U Sj|logu). The difference S; \ S; can be
implemented in time O(&'logu), where &' is the alternation complexity of S; and S5.

5.3 Back to Bitvectors

Returning to the bitvector semantics, our results allow us store a set of sparse bitvectors
B;[1..u], representing subsets S; of a universe U of size u, so that operations access(B;, k),
rank(B;, k) and select(B;, k) take time O(log(u/n;)). To implement access(B;, k), we return
1 if the predecessor of k in S; is k, or else 0. To implement rank(B;, k), we compute the
position v of the predecessor of k in the ordered set S; and return rank(S;,v). To implement
select1(B;, k), we retrieve the kth element of S;, and for selecty we do binary search on
selecty.

» Corollary 9. A set of s bitvectors B;[1..u] can be represented in L(S) + O(n + slogu)
bits, where S is the set of sets S; = {k, B;[k] = 1}, n; is the number of 1s in B; and
n=Y_.n;. This representation supports operations access, ranky, and select, on any B; in
time O(log(u/n;)), and selecty in time O(logn; log(u/n;)).

This is to be compared with storing each bitvector directly [9], which gives total space
H(S) + O(n + slogu) and supports access and ranks, in the same time O(log(u/n;)), and
selecty, in the better times O(1) for b =1 and O(logn;) for b = 0.

6 Construction

We can build the hierarchical representation by adding one set S at a time, in decreasing
order of size, to ensure it is correct to insert S as a leaf. To insert S in S, we first find a
smallest set S’ € S such that S C S’. The sets that contain S form a connected subgraph of
the hierarchy that includes the root. So we can traverse the hierarchy from the root, looking
for the lowest nodes that contain S, and retain the smallest of those. For each hierarchy
node S; to check, we take each element of S and verify that it exists in .S; via a predecessor
query, which takes time O(log(u/|S;])) € O(log(u/|S])), because |S| < |S;|. We then find
a smallest set S” containing S in time O(s'|S|log(u/|S])), where s’ < n/|S| is the current
number of sets in S and n is its final sum of set sizes.

We then insert S in the hierarchy by setting p(S) = S’. To find ¢(S), we find the highest
ancestor S” of S” whose size is |S”| < 2|S] (or let S” = S’ if no such ancestor exists), and
set ¢(S) = S”. Finally, we build the representation of S relative to S, in time O(|S|) [9].

Note that, when we find the ancestor S”, we traverse the upward path defined by the
parent function p(-), not ¢(-). We still use ¢(-) during construction to answer the predecessor
queries, to determine inclusion of S, in logarithmic time.

» Lemma 10. The representation of Lemma 6 can be built in time O(snlogn).

Combining Lemmas 6, 7, and 10 we have shown Theorem 1.

7 Concluding Remarks

We have described the containment entropy, a new entropy measure for collections of sets,
which is sensitive to subset relationships between sets. To our knowledge, this idea has not
before been considered in the vast literature on efficient set representations that has emerged
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primarily from efficiency concerns in information retrieval systems [11]. One could consider
dictionary-based compression of sets (see, e.g., [10, 4]) as implicitly capturing some aspect of
subset relationships, but the representations and analysis we have described here consider
subset relationships explicitly.

An interesting direction for future work is to explore the practicality of these hierarchical
set representations in various application contexts. An immediate concern is that of hierarchy
construction. Our initial experiments with a collection of sets taken from the genomic search
engine Themisto [1] applied to a set of 16 thousand bacterial genomes (over 80GB of data)
indicate that, even for large set collections, hierarchy construction is tractable and scales
almost linearly with the total length of the sets in practice. On a collection of 10.55 million
sets of average size 3,607 (10.52 million of which were subsets of at least one other set) of
more than 38 billion elements in total, we were able to find the smallest super set of every set
in less than 40 hours in total, using just 16 threads of execution. The resulting representation
used just 0.18 bits per element, compared to the 0.32 bits per element used by Themisto’s
representation, which selects between different set representations based on set density.
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