Conditional Lower Bounds for String Matching in
Labelled Graphs

Massimo Equi 8 4&
Aalto University, Finland

—— Abstract

The problem of String Matching in Labelled Graphs (SMLG) is one possible generalization of the
classic problem of finding a string inside another of greater length. In its most general form,
SMLG asks to find a match for a string into a graph, which can be directed or undirected. As for
string matching, many different variations are possible. For example, the match could be exact
or approximate, and the match could lie on a path or a walk. Some of these variations easily fall
into the NP-hard realm, while other variants are solvable in polynomial time. For the latter ones,
fine-grained complexity has been a game changer in proving quadratic conditional lower bounds,
allowing to finally close the gap with those upper bounds that remained unmatched for almost
two decades.

If the match is allowed to be approximate, SMLG enjoys the same conditional quadratic lower
bounds shown for example for edit distance (Backurs and Indyk, STOC ’15). The case that really
requires ad hoc conditional lower bounds is the one of finding an ezact match that lies on a walk. In
this work, we focus on explaining various conditional lower bounds for this version of SMLG, with
the goal of giving an overall perspective that could help understand which aspects of the problem
make it quadratic. We will introduce the reader to the field of fine-grained complexity and show

how it can successfully provide the exact type of lower bounds needed for polynomial problems such
as SMLG.

2012 ACM Subject Classification Theory of computation — Pattern matching; Theory of computa-
tion — Problems, reductions and completeness

Keywords and phrases conditional lower bounds, strong exponential time hypothesis, fine-grained
complexity, string matching, graphs

Digital Object Identifier 10.4230/0OASIcs.Grossi.2025.7
Category Research

Funding This work was supported in part by the Research Council of Finland, Grant 359104.

1 Introduction

The classic problem of string matching consists in finding a match for a shorter pattern
string P into a longer text string 7. This problem has been extensively studied throughout
the years, but the core fundamental complexity result was already discovered in the '70s,
when the problem was proven to be solvable in linear time [19]. The problem of String
Matching in Labelled Graphs (SMLG) is a generalization of the string matching problem,
where we look for matches of P not in a text but in a graph with nodes labelled by single
characters. The SMLG problem first received attention in the '90s [20, 3, 4] due to potential
applications in network searches and, later on, applications such as bioinformatics [15], graph
databases [5] and heterogeneous networks [24] motivated it anew. Finding quadratic upper
bounds of the form O(]E||P|) was possible for different variations of the problem [4, 21, 25],
and those results were later proven to be optimal under some complexity hypotheses for
other problems [10, 11]. This conditional lower bounds falls into the field of the so-called

© Massimo Equi;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No.7; pp. 7:1-7:13

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:massimo.equi@aalto.fi
https://massimoequi.github.io/
https://orcid.org/0000-0001-8609-0040
https://doi.org/10.4230/OASIcs.Grossi.2025.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

7:2

Lower Bounds for String Matching in Graphs

fine-grained complexity, and in this work we aim to showcase how fine-grained complexity
lower bounds are achieved and why they changed the game for polynomial problems, in
particular for SMLG.

The journey of fine-grained complexity begins in the early 2000s, when Impagliazzo,
Paturi and Zane [17, 18] put forward a hypothesis on the complexity of SAT in conjunctive
normal form (CNF-SAT). The hypothesis was named Strong Ezponential Time Hypothesis
(SETH), and states that no algorithm can solve a CNF-SAT instance over n variables in
time O(2%"), where o < 1. This hypothesis still holds its ground, since no one has been
able to disprove it as of the writing of this work. A few years later, Williams [26] showed
how SETH can be used to prove conditional lower bounds for polynomial problems. Among
others, this work presented a fine-grained reduction from CNF-SAT to the Orthogonal Vectors
(OV) problem, that is a reduction that requires subexponential time, which in this case was
O(2%)!. In the OV problem, we are given sets X and Y of n binary vectors of dimension d,
and we are asked to find a pair (x,y) of orthogonal vectors z € X and y € Y. So far, no
algorithm was able to solve OV in O(n?~cpoly(d)) time, and this fact is referred to as the
Orthogonal Vectors Conjecture (OVC). Thus, the reduction between CNF-SAT and OV shows
that a O(n?~¢poly(d)) time algorithm for OV would disprove SETH, or SETH = OVC, and
this is an important connection between exponential and polynomial complexities. Indeed,
this allows to prove SETH-based lower bounds by reducing from OV instead of CNF-SAT,
a choice that usually makes reductions cleaner and the lower bounds more reliable as, in
principle, OVC might be true even if SETH fails.

After this initial connection, many other lower bounds for polynomial problems conditioned
on SETH have been shown. Among these, one of the most celebrated examples is probably
the lower bound for the problem of computing edit distance (EDIT) between two strings
A and B [6]. The textbook algorithm for EDIT solves the problem in O(n?) time, where
n = |A] = |B|, and has been known for decades, but the first lower bound was achieved only
thanks to a fine-grained reduction from OV. This brings us back to SMLG, as the conditional
lower bound for EDIT has consequences also for matching strings in graphs. Indeed, there
are different variations of SMLG, and one thing to specify is whether the matches for pattern
P in graph G should be exact or approximate, and whether walks are admitted (same nodes
can be matched multiple times) or only paths (every node must be matched ones). To allow
for approximate matches, one has to specify what an approximate match is. We could be
very permissive, and allowing edit operations to occur both in the pattern and in the graph.
This possibility was explored and proven to be an NP-hard problem [4]. If we then ask for
a path spelling a string at minimum edit distance from P, then we incur in the following
problem: if we label every node with character a and we query for pattern of length |P| = |V,
then we are solving the Hamiltonian Path problem, known to be NP-hard. Thus, let us look
for a walk spelling a path at minimum edit distance from P. In this setting, an O(|E||P|)
algorithm exists [21, 25], and since a string can be viewed as a chain of nodes, EDIT is a
special case of this problem, and thus the conditional quadratic lower bound matches the
upper bound.

As previously mentioned, the version of SMLG where we ask for a walk in G spelling an
exact match for P has also received a conditional quadratic lower bound [10, 11]. This result
however could not be achieved as a simple adaptation of other lower bounds, and needed a

! We acknowledge that this use of the term “subexponential” is improper, as a real subexponential

complexity should be of the form 0(2"(")). Nonetheless, we will use this wording for lack of a better
term.

M. Equi

custom fine-grained reduction from OV. Moreover, this highlights also a remarkable difference
between the text and graph case: while the problem is linear for texts, it is quadratic for
graphs, while in the approximate case it is quadratic for both texts and graphs.

At this point, one natural approach to find upper bounds could be to change the setting to
try to play around the lower bound. For example, one could ask if queries to the pattern could
be solved efficiently, that is in subquadratic time, after spending quadratic or even polynomial
time indexing the graph. Unfortunately, also this question was answered negatively, as Equi,
Maékinen and Tomescu [11] proved that superpolynomial indexing time is needed in order to
achieve subquaratic time queries. This result was given as a special case of a more general
technique, which allows to claim that the same type of indexing lower bound holds for any
problem with a fine-grained reduction from OV respecting a certain structure.

All these fine-grained results where further strengthened after the introduction of new
hardness hypotheses [1] believed to be more reliable than SETH. Using this framework,
Gibney, Hoppenworth, and Thankachan [16] showed that the hardness of SMLG can be
based on these hypotheses, and this improved the lower bound proving that even shaving
logarithmic factors from the quadratic time complexity is hard. This enhanced lower bound
is given by reducing from a problem called Formula-SAT, a generalisation of CNF-SAT, and
due to the nature of the problem the design of the reduction had to be modified into a
structure of recursively-defined gadgets.

As a final note, although this work is centred around the quadratic lower bounds for
SMLG, it is important to remember that there are graphs for which the problem is easier
to solve, and even linear time complexity can be achieved. This is the case for instance for
Wheeler graphs [14], certain (Elastic) Founder graphs [23, 13], trees [22] and Funnels [7].
More in general, it is also possible to parametrize the complexity in a parameter expressing
the “sortability” of the graph [9, 8].

In the sections that follow, we will introduce SMLG more formally as well as the fine-
grained complexity hypotheses. As a warm up, we show how to reduce CNF-SAT to OV in
subexponential time, as the reduction is very central to the field and very concise at the same
time. Then, we give an overview of the main ideas behind different fine-grained reductions
for SMLG that were given throughout the years, with the goal of showcasing the different
features among them.

2 Problem Definition

A pattern string P is a string of characters drawn from an alphabet X, has length |P|, and
P[i] is its i-th character. We say that G = (V, E,{) is a labeled graph if V' is a set of nodes,
E a set of edges over V, and ¢ : V — ¥ is a labeling function that associate a character of
alphabet ¥ to every node in V. Moreover, we say that P has a match in G if there is a walk
of nodes vy, ..., v, in G such that P = ¢(vy) - €(vy,). Then, SMLG is formally defined as
follows.

» Problem 1 (String Matching in Labelled Graphs (SMLG)).
INPUT: A labeled graph G = (V, E,¢) and a pattern string P, both over alphabet 3.
OUTPUT: True if and only if P has at least one match in G.

Note that in this definition of SMLG we ask for a walk to exist and not a simple path.
This is because, if we are not allowed to repeat nodes, there is a straightforward reduction
from the Hamiltonian path problem, making the problem NP-Complete. To see this, simply
define ¥ = {A}, P=A A---A, |P| =|V| and ¢(v) = A for every v € V. In other words, we
are asking to find a match for a path as long as the number of nodes, and if we can match
every node only once, we are finding an Hamiltonian path.

7:3

Grossi's Festschrift

7:4

Lower Bounds for String Matching in Graphs

2.1 Some Upper Bounds for SMLG

When faced with an algorithmic problem, one of the first questions we want to answer is
often how bad does the brute force algorithm performs. If by brute force we just mean trying
all possibilities, that is check all paths of length |P|, then we get very poor results, as in
general there are O(|V|I”!) many such paths. However, better alternatives exit, so let us
briefly give a bird’s-eye view of these approaches, without going into details. A quadratic
algorithm for solving SMLG in the exact setting in general graphs has been known since
the "90s [3, 4]. This algorithm constructs the product graph obtained between the graph
and the pattern, which is obtained by repeating every node in the graph as many times
as there are characters in the patterns, and then placing edges according to the original
structure of the graph plus the constraint of having node labels appear in the pattern at
specific positions. Then, the algorithm performs a DFS visit of the graph which, if successful
in reaching a certain target node, reveals a match of P in G. Not long after, a first quadratic
solution [21], which was later refined [25], was found also for the approximate setting, when
we are looking for a walk spelling a string at minimum edit distance from P. Moreover, there
are linear time algorithms for a rooted (thus directed) tree [2], and even when the roots of
many trees are connected in a cycle [11]. This highlights already some important topology
features: SMLG is linear in trees, while in DAGs it is quadratic in general. Non-topological
characterization can also be given. For instance, in Wheeler graphs [14] a node can be sorted
according to the sets of strings that it represents, that is the set of all possible strings spelled
by paths reaching that node. This implies a total order on the nodes, which leads to linear
time matching algorithms. This idea can be generalized and the time complexity can be
parametrized as a function of the sortability of the graph [8].

3 Fine-Grained Complexity

Quadratic algorithms have been the best we could achieve for general formulations of SMLG,
and the reason is because better solutions are unlikely to exist. In order to show that we
have reached the optimum, we of course need lower bound techniques, and here is where
fine-grained complexity comes into play, has it provides us the means of proving such lower
bounds via reductions. Thus, before presenting the conditional lower bounds for SMLG, we
first introduce fine-grained complexity tools and basic notions needed to understand the
later reductions. The central hypothesis in fine-grained complexity is the Strong Ezponential
Time Hypothesis (SETH).

» Definition 2 (SETH). For every € > 0, there exists k > 3 such that no deterministic or
randomized algorithm can solve an instance of CNF-SAT over n variables with clauses of size
at most k in O(20=5)") time.

This hypothesis is called strong to remark that it is a stronger statement when compared
to the more forgiving Exponential Time Hypothesis (ETH), which forbids the existence of
algorithms solving CNF-SAT in O(2°(")) time. To give an example, if an algorithm solves
CNF-SAT in O(2%), SETH is violated but ETH is not.

There are polynomial problems for which hardness conjectures are independently believed,
and for which there also exist efficient reductions from CNF-SAT. When possible, it is preferred
finding a reduction from these problems instead of reducing directly from CNF-SAT. This
way, multiple hypotheses have to fail to invalidate the conditional lower bound, and moreover
we have to deal only with polynomial complexities in the analysis, instead of having both
exponential and polynomial complexities.

M. Equi
c1 C2 C3 Cq
F= (v1V-ws) A (—v1Vove) A (—w1VosV-wg) A (v2Voy)
V1 U2 C1C2C3C4
ax (0 0) (1001 1 x5[h] =0
ag = 01 1000 =T
I
az= (1 0) (0111) =u3 ai = cp
ay (1 1) (0 010) T4
V3 Vg C1C2C3Cy
by= (00) (0101) n yj[h] =0
n | ba= (01) 0110 =v2| YEN
22 9, (1 0) (1101 =u3 b = cn
by (1 1) (1100) =
H/_/ \%/—/
n d
2

Figure 1 An example of the reduction from CNF-SAT to OV. Formula F' has n = 4 variables and
d = 4 clauses, and we construct two sets of m = 2% = 4 vectors of size d = 4.

The polynomial problems most commonly used as a base for reductions to other polynomial
problems are Orthogonal Vectors, All Pairs Shortest Paths, and 3-SUM [27]. In this work,
we focus solely on Orthogonal Vectors (OV) which, intuitively, asks the following: given two
sets of binary vectors, answer whether it is possible to find a vector in the first set and a
vector in the second set so that they are orthogonal.

» Definition 3 (OV). Let X,Y C {0,1}% be two sets of n = |X| = |Y| binary vectors
each of length d = w(logn). Determine whether there exist x € X and y € Y such that
ey =i wli] i =0,

The notation z[i] - y[i] indicates the scalar product when used for two single entries of vectors
z and y, while it refers to the dot product = - y when applied on the vectors themselves.
Currently, it is conjectured that no algorithm can solve OV in truly subquadratic time.

» Definition 4 (OVC). For every constant € > 0, no deterministic or randomized algorithm
can solve OV over two sets of n binary vectors of size d in O(n*>~€poly(d)) time.

One central result in fine-grained complexity is that SETH and OVC are connected via a
subexponential reduction. We give a proof of this result, as we find it easy to follow and
very instructive at the same time.

» Lemma 5. SETH implies OVC.

Proof. We can prove the contrapositive by showing a reduction from CNF-SAT to OV, an
example of which is given in Figure 1. In other words, we prove that a subquadratic-time
algorithm for OV implies a subexponential-time algorithm for CNF-SAT. Consider an instance
of CNF-SAT where formula F' has d clauses over n variables vy, ..., v,. The idea is to generate
two sets of vectors that can represent partial truth assignments of I using only O(2%) space,
imposing the property that finding a pair of orthogonal vectors reveals how to combine two
partial truth assignments into an actual truth assignment satisfying F'.

7:5

Grossi's Festschrift

7:6

Lower Bounds for String Matching in Graphs

To this end, we evenly split the variables into two sets V; = {vy,... ,’U%} and V5 =
{v%+17 ..., Up}t. Then, we define sets A and B as the set of every possible partial truth
assignment for the variables in Vi and Va, respectively. Given that [Vi| = [V2| = §, we have
that |A| = |B| = 2%. Now we can define our two sets of vectors X and Y, consisting of
m = 5 vectors each. For every assignment a; € A, we construct a vector in X as follows.
We evaluate the variables in V4 under a;, and if this is enough to satisfy clause ¢, (i.e. at
least one literal evaluates to 1), then the h-th entry of vector x; shall be x;[h] = 0, otherwise
x;[h] = 1. We perform the same construction for Y using B and V5.

The logic of the reduction is the following. Our goal is to find a truth assignment satisfying
F combining two partial truth assignments a; € A and b; € B encoded as vectors z; € X
and y; € Y. Since the h-th entry of vector x; corresponds to the h-th clause of F', if the
entry is x;[h] = 0 then the clause is satisfied by a;, meaning that whatever value y;[h] is, it
does not change the end result. Conversely, if x;[h] = 1, then a; does not satisfy the h-th
clause, and we need y;[h] = 0 to guarantee that b; satisfies it instead.

Now observe that the reduction takes O(2% poly(d)) time, as there are 2 - 2% of size d,
where d is the number of clauses. At this point, it is easy to see that, if vectors x; and y; are
orthogonal, and thus for every h either z;[h] = 0 or y;[h] = 0, then at least one of the two
partial truth assignments a; € A or b; € B satisfies clause ¢y, and vice versa. Thus, F' is
satisfied if and only if there exist x € X and y € Y such that 2 -y = 0. To conclude the proof,
assume OVC is false, namely there exists an algorithm that solves OV in O(m?~®poly(d))
time, for some a > 0. Then, this would provide an algorithm for CNF-SAT running in time

O(2% = *poly(d)) = O(2""~ Fpoly(d)),
Taking € = § proves SETH false. <

The connection between SETH and OVC shown by Lemma 5 allow us to obtain lower bounds
conditioned on both by only reducing from OV. This is advantageous, because conditional
lower bounds obtained in this way stop being valid only when both SETH and OVC fail.
Moreover, for polynomial problems, reducing from OV makes proofs cleaner as we can reason
only in terms of polynomial time complexities, without having to juggle them together with
exponential-time complexities.

4 The Lower Bound for String Matching in Labelled Graphs

Using fine-grained reductions, we can provide a quadratic lower bound for ezact SMLG
conditioned on SETH and OVC. In this section, we state this lower bound in its simplest
form, focusing on giving the intuition behind the structure of the reduction. In Section 5, we
explain a few different ways of strengthening this result.

The conditional lower bound for exact SMLG is formally stated as follows.

» Theorem 6. The String Matching in Labelled Graphs (SMLG) problem on pattern string
P and graph G = (V, E) cannot be solved neither in O(|E|'=¢ |P|) nor in O(|E||P|*~¢) time
for any constant € > 0, unless SETH fails.

We now sketch the idea of the reduction from OV used to show the lower bound [12, 10].
Starting from sets of vectors X and Y, the reduction builds pattern P and graph G in O(nd)
time, such that P matches in G if and only if there is a pair of orthogonal vectors between
X and Y. We first describe how to construct the pattern, and then the graph.

M. Equi

® ® ®
o) T lo R ot 27 fo R 2o
® ®

A\ AN
@ - ©ke
® ®

Ol O O Q
O, ® 0

Figure 2 A high-level view of graph G constructed by the reduction from OV. The top and
bottom rows consists of universal gadgets, while in the middle rows there are only vector gadgets,
which match only patterns corresponding to orthogonal vectors. Here, we also add an orientation
on the edges, even if it is not explicitly mentioned in the statement of Theorem 6. Indeed, this
is allowed since the b- and e-nodes already force an orientation, as stated in Theorem 10. Figure
adapted from [12].

Patter P is defined over alphabet ¥ = {b, e, 0,1}, has length |P| = O(nd), and can be
built in O(nd) time from the first set of vectors X = {x1,...,2,}. Namely, we define

P =bbP,;, ebP,e...bP, ee

where P,, is a string of length d that is just a copy of z; € X, that is z;[h] = 0= P,,[h] =0
and x;[h] =1 = P,,[h] =1, for 1 <i<nand 1 <h <d. Here we are using characters b
and e to mark the beginning and the end of each subpattern P,,, respectively. Substrings bb
and ee instead respectively mark the beginning and the end of the entire pattern, forcing it
to start and end the match at specific locations in the graph.

Graph G is built on top of the second set of vectors Y = {y1,...,yn}, and consists of
different substructures hierarchically organized: gadgets encoding single entries of the vectors
are combined into gadgets encoding entire vectors, which are further combined to form the
whole graph. At a macroscopic level, we want to structure the graph in three conceptual
rows stacked on top of each other, as exemplified in Figure 2. In the graph, characters b
and e force the subpatterns to correctly align to the gadgets encoding entire vectors, and
thus forcing the entire match to synchronize at the subpattern level. Then, the idea is to
make the top and bottom rows able to match any properly-synchronizing prefix and suffix of
the pattern, respectively, while the middle row shall match only those subpatterns encoding
vectors that are orthogonal to some vector in Y. Thus, if we force a match to start from
the top or middle row, and end in the middle or bottom row, at least one subpattern must
match in the middle row, which will be possible only if the pair of vectors encoded by that
subpattern and the graph gadget it matches in are orthogonal. As shown in Figure 2, we
can force this behaviour by introducing paths of two nodes spelling the string bb in the top
and middle row. In pattern P, this string is present only as a prefix, marking the beginning
of the pattern. The same logic applies to paths of two nodes spelling the string ee in the
middle and bottom row, since that string is present in P only as a suffix.

As already mentioned, the single graph gadgets in the middle row Gy, must provide the
following property.

» Lemma 7. Subpattern bP,, e has a match in Gg,) if and only if x; -y; = 0.

77

Grossi's Festschrift

7:8

Lower Bounds for String Matching in Graphs

= {v1 92, 93,54} = {(110), (011), (100), (001)}

1 1 0 0 1 1 1 0 0 0 0 1

@
G = O, @ @ @ © ® ©
% @/ /o \ / X @X@\@
= 7=

%/—/ %/—/
1 2 3 4
Gy G G el

Figure 3 Vector gadgets matching only patterns corresponding to orthogonal vectors. For
instance, GE,?,) will match 010 or 011, but not 110, as (110) - (100) # 0. Figure adapted from [12].

Let us see how to construct such gadgets. Since ZZ=1 x[h] - y[h] = 0 when every term of the
sum is 0, the idea is to make the graph force the pattern to have character S[h] = 0 when
y[h] = 1, while letting S[h] be either 0 or 1 when y[h] = 0. To achieve this, first we place a
path of A nodes all with label 0, then we add a node with label 1 for those positions such
that y[h] = 0, and finally we fully connect nodes encoding the entry at position i to those
for position h —l— 1 for 1 < h < d. Figure 3 shows an example of the entire middle row Gy,
where gadget G encodes vector y;, for 1 < j < n, using nodes with labels b and e to mark
the beginning and the end of the gadgets. It then holds the following.

» Lemma 8. Subpattern bF., e has a match in Gw if and only if there exists y; €Y such
that z; - y; = 0.

In order to complete the reduction, it remains only to build the universal gadgets for the
top and bottom rows of GG. This is easily achieved by following the same construction scheme
as for gadgets GE,{,), and just placing both a 0-node and a 1-node at every position. Finally,
we remark that in order to make all possible “shifts” of the pattern possible, the top and
bottom rows of G must have 2(n — 1) universal gadgets. We can now claim the following.

» Lemma 9. Pattern P has a match in G if and only if a subpattern bP,, e of P has a
match in subgraph Gyy .

Notice that every gadget Gg/) or universal gadget consists of O(d) nodes and edges, and
there are O(2(n — 1) +n + 2(n — 1)) = O(n) such gadgets, for a total size of O(nd). This
consideration together with Lemma 7, 8 and 9 let us claim Theorem 6.

5 Tighter Lower Bounds

After having established a first quadratic conditional lower bound for SMLG, we now want to
see how far we can push it. What if there are constraints on the graph, or on the alphabet?
Can we make up for the quadratic complexity if we first build an index? Can we condition the
lower bound on other hypotheses to make it even stronger? Let us explore these questions.

5.1 DAGs, Determinism and Bounded Degree

In this section, we study how strong assumptions we can make on the graph while still
having the conditional quadratic lower bound hold. Starting from the graph structure, we
remark that the nodes labelled with b and e already force the pattern to follow a specific
direction, that is the pattern never needs to visit a node twice to make the reduction work.
Indeed, directing the edges from left to right and from top to bottom as in Figure 4 does not
compromise the construction.

M. Equi

Y = A1, . 93,54} = {(110), (011), (100), (001)}

Partial Gﬁ Partial G(L? Partial G(LG}

ORORO) Q-O-0

Partial Gy >@ \ >< @

©-©@

o\ 9
ol ® ©® ® © ®
“o-0-® @0 @/ @X@ @X@\@
& T pe T

Figure 4 New gadget Guiw obtained by merging Gw with part of gadget Gyi. The pattern can
“escape” to the Gy part to match a prefix until it finds a suitable G) where to match a subpattern
encoding an orthogonal vector. Figure adapted from [12].

Nevertheless, there is one major non-trivial limitation to the reduction scheme proposed
in Section 4. Even after making the edges directed, there are nodes that have two out-
neightbours with the same label. For instance, nodes labelled with e in the top row might
have two out-neighbours labelled with e. This might suggest that forcing every out-neighbour
to have different labels could make the graph close enough to a DFA so that the problem
becomes easier. Perhaps surprisingly, there is a way to modify the reduction so that it
covers even this case. The construction is shown in Figure 4. Intuitively, we merge the top
and middle row of G together, with the idea being that the pattern tries to match every
sub-pattern in the underlying Gy as much as possible. When the match cannot be continued,
the pattern will momentarily escape to a partial universal gadget for the remaining of the
current sub-pattern. The non-determinism is removed by the fact that the nodes labelled b
in the top and middle row are now merged together.

One last concern is the degree of the graph. By looking at the graph that we obtain
after merging the top and middle row, we notice that every node is never connected to more
than three other nodes. In a DAG, we can capture this concept by saying that the sum of
outdegree and indegree of any node is at most three.

We are now ready to state the conditional lower bound for SMLG in its strongest form.

» Theorem 10. The String Matching in Labeled Graphs (SMLG) problem on pattern string P
and labelled deterministic directed acyclic graph (DAG) G = (V, E) cannot be solved neither
in O(|E|*=¢|P|) nor in O(|E||P|'~¢) time unless SETH fails, for any constant ¢ > 0. This
holds even if it is restricted to a binary alphabet and to graphs in which the sum of outdegree
and indegree of any node is at most three.

In this statement, we are claiming that the theorem holds also for a binary alphabet. Indeed,
there exists an binary encoding that allows to cover also this case. This requires to take care
of some technicalities that we do not find fitting for this work, and hence we refer the reader
to the literature [12].

5.2 Indexing Lower Bound

Given the results of previous sections, there seems to be no hope of solving SMLG in less
than quadratic time, as long as SETH holds. But rules are made to be broken, or at least
circumvented. In the lower bounds shown so far, we always analyzed the setting in which we

7:9

Grossi's Festschrift

7:10

Lower Bounds for String Matching in Graphs

have to solve the problem from ground zero, without building any data structure to help
us in performing queries. Hence, one question arises: can we break through the quadratic
complexity if we build some kind of index on the graph? In other words, can we pay a
quadratic (or even greater) cost upfront during preprocessing, so that the complexity reduces
at query time? Although tantalizing, this option is also ruled out [11].

» Theorem 11. For any «, 3,9 > 0 such that B+ § < 2, there is no algorithm preprocessing
a labeled graph G = (V,E,{) in time O(|E|*) such that for any pattern string P we can
solve the SMLG problem on G and P in time O(|P| + |E|’|P|?), unless OVC is false. This
holds even if restricted to a binary alphabet, and to deterministic DAGs in which the sum of
out-degree and in-degree of any node is at most three.

For 6 =1 and 8 = 1 this lower bound is tight because there exists a matching online
algorithm [3, 4]. However, this bound does not disprove a hypothetical polynomial indexing
algorithm with query time O(|P| + |E|°|P|?), for some 0 < § < 1. Since in practical
applications graphs are much larger than the pattern, such an algorithm would be quite
significant for small enough §. However, when the graph is allowed to have cycles, we also
show that this is impossible under OVC.

» Theorem 12. For any «,B,6 > 0, with either § < 1 or § < 1, there is no algorithm
preprocessing a labeled graph G = (V, E, £) in time O(|E|*) such that for any pattern string P
we can solve the SMLG problem on G and P in time O(|P| + |E|°|P|?), unless OVC is false.

Theorem 12 is obtained by slightly modifying the reduction of [10] with the introduction
of certain cycles that allow querying patterns of length longer than the graph size. As for
the online SMLG lower bound, it can be proven that this results holds also when restricted
to a binary alphabet, and for graphs in which the sum of out-degree and in-degree of any
node is at most three.

Without diving into technical details, we remark that this result is given as an application
of a more general technique involving linear independent-components reductions [11], combined
with some improvements on folklore knowledge about OV indexability. Intuitively, a linear
independent-components reduction is a reduction from OV performed so that the instance of
the output problem can be separated in two parts, each one depending only on one of the
two sets of vectors. For instance, in the case of SMLG, we observe that that the reduction
builds the pattern using only the first set of vectors, and the graph using only the second.

This independence property of the two components is crucial when combined with the
following fact about OV. Suppose that in a OV instance we partition sets X and Y of n
vectors into many subsets Xi,...,X» and Y1,...,Ys where N = |X;| = |Y}], so that each
(X;,Y;) is a smaller OV instance and, moreover, solving all such instances also solves OV for
the original X and Y. If we claim that we can index all the X; in polynomial time to answer
queries to the Y} in subquadratic time, then we contradict OVC. This is because it is always
possible to choose a small enough N such that both the total indexing time and the total
query time fall below quadratic. For example, assuming we can index X; in time O(N®),
we can take N = O(né). Then, given that we have % instances (X;,Y}), the total indexing
time is O(FN®) = O(n?*~=), and the total query time is bound to be subquadratic in n if
every Y; can be queried in time subquadratic in N.

Using the properties of linear independent-components reductions, we can use indexes for
SMLG to answer queries for OV, and thus we can transfer the indexing lower bounds from
OV to SMLG as in Theorem 11 and 12. Moreover, the consequences of this reduction scheme
can be further strengthened if one considers a generalized version of OV where X and Y can
have different cardinalities [11].

M. Equi
O)
- ™~
\@>4<, >4,<@/
- EEHE

G
C
o @0

Figure 5 The universal gadget of variable length (a), the gadget encoding gate V (b) and the
gadget encoding gate A (c¢). Subgraphs G1 and G2 represent two gadgets encoding two subtree
of the formula, respectively, that are the left and right children of an Vv (b) gate or an A (c¢) gate.
Figure adapted from Gibney et al. [16].

5.3 Lower Bounds from Formula-SAT for shaving Logarithmic Factors

All lower bounds shown for SMLG are conditional, and the strength of a conditional lower
bound comes from the reliability of its hypothesis. It is then desirable to always look for
more believable hypotheses on which we can base our conditional lower bounds. This is what
was done in the work by Abboud et al. [1], where the starting problems of the proposed
reductions are more general versions of the SAT problem, rather than CNF-SAT. This allows
not only to base their conditional lower bounds on more reliable hypotheses, but also to
achieve better complexity bounds. Later, Gibney et al.[16] showed how to use such techniques
to obtain better lower bounds for problems like SMLG.

» Theorem 13. [f SMLG can be solved in time O (10g II;E‘I) or O (115 IP\) for all ¢ > 0,

then NTIME[QO(")] does not have non-uniform polynomial-size log-depth circuits.

This result is achieved by showing a subexponential-time reduction from the Formula-SAT
problem to SMLG. To define the Formula-SAT problem, let us first define a deMorgan formula.
A deMorgan formula is a Boolean formula that can be represented as a binary tree where
the leaves represents a variable or its negation, while internal nodes represent either one
of the logical operators {A, V}. Notice that negation is allowed only at the leaf level. The
Formula-SAT problem is then the satisfiability problem over a deMorgan formula.

We now show the key ideas of the reduction that differ from the one based on OV. First,
here we reduce from a SAT problem over n variables and thus, as for showing SETH = OVC,
we consider two sets of partial truth assignments, each one defined on 4 variables. Next,
since the formula is structured as a tree, the operators A and V can be nested, and hence
the reduction should have a recursive structure. The base case of the recursion are the
gadgets that encode the input gates. Here, some care is needed to avoid having to deal
with negation, but we defer the details to the work of Gibney et al. [16], where they use an
intermediate problem to solve this issue. For building the recursive gadgets, an universal
gadget of variable length U(u) is needed. This has exactly the same structure of the universal
gadgets in the reduction from OV, but with the two rows of 0- and 1-nodes elongated
to accommodate matches for subpatterns of length p. Then, the gadgets encoding gates
g = (g1 *g2), * € {A,V}, can be built by combining previously constructed gadgets for gates
g1 and g, as in Figure 5.

7:11

Grossi's Festschrift

7:12

Lower Bounds for String Matching in Graphs

—— References

1

10

11

12

13

Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 375-388. ACM, 2016. doi:10.1145/2897518.2897653.

Tatsuya Akutsu. A linear time pattern matching algorithm between a string and a tree. In
Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinatorial
Pattern Matching, 4th Annual Symposium, CPM 93, Padova, Italy, June 2-4, 1993, Proceedings,
volume 684 of Lecture Notes in Computer Science, pages 1-10. Springer, 1993. doi:10.1007/
BFb0029792.

Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. Pattern matching in hypertext. In
Frank K. H. A. Dehne, Andrew Rau-Chaplin, Jorg-Riudiger Sack, and Roberto Tamassia,
editors, Algorithms and Data Structures, 5th International Workshop, WADS ’97, Halifax,
Nowa Scotia, Canada, August 6-8, 1997, Proceedings, volume 1272 of Lecture Notes in Computer
Science, pages 160-173. Springer, 1997. doi:10.1007/3-540-63307-3_56.

Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. Pattern matching in hypertext. J.
Algorithms, 35(1):82-99, 2000. doi:10.1006/jagm.1999.1063.

Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput. Surv.,
40(1):1:1-1:39, February 2008. doi:10.1145/1322432.1322433.

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087-1097, 2018. doi:10.1137/
15M1053128.

Manuel Céaceres. Parameterized algorithms for string matching to dags: Funnels and beyond.
In Laurent Bulteau and Zsuzsanna Lipték, editors, 84th Annual Symposium on Combinatorial
Pattern Matching, CPM 2023, June 26-28, 2023, Marne-la-Vallée, France, volume 259 of
LIPIcs, pages 7:1-7:19. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023. doi:
10.4230/LIPICS.CPM.2023.7.

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Co-
lexicographically ordering automata and regular languages - part I. J. ACM, 70(4):27:1-27:73,
2023. doi:10.1145/3607471.

Nicola Cotumaccio and Nicola Prezza. On indexing and compressing finite automata. In
Déaniel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2585-2599. SIAM, 2021.
doi:10.1137/1.9781611976465.153.

Massimo Equi, Roberto Grossi, Veli Mékinen, and Alexandru I. Tomescu. On the complexity
of string matching for graphs. In 46th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 132 of LIPIcs, pages 55:1-55:15, 2019. doi:10.4230/LIPICS.
ICALP.2019.55.

Massimo Equi, Veli Méakinen, and Alexandru I. Tomescu. Graphs cannot be indexed in
polynomial time for sub-quadratic time string matching, unless SETH fails. Theor. Comput.
Sci., 975:114128, 2023. doi:10.1016/J.TCS.2023.114128.

Massimo Equi, Veli Makinen, Alexandru I. Tomescu, and Roberto Grossi. On the complexity
of string matching for graphs. ACM Trans. Algorithms, 19(3):21:1-21:25, 2023. doi:10.1145/
3588334.

Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien Cazaux, Alexandru I. Tomescu, and Veli
Makinen. Algorithms and complexity on indexing elastic founder graphs. In Hee-Kap Ahn and
Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation,
ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 20:1-20:18.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021. doi:10.4230/LIPICS.ISAAC.2021.
20.

https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1007/BFb0029792
https://doi.org/10.1007/BFb0029792
https://doi.org/10.1007/3-540-63307-3_56
https://doi.org/10.1006/jagm.1999.1063
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.4230/LIPICS.CPM.2023.7
https://doi.org/10.4230/LIPICS.CPM.2023.7
https://doi.org/10.1145/3607471
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.4230/LIPICS.ICALP.2019.55
https://doi.org/10.4230/LIPICS.ICALP.2019.55
https://doi.org/10.1016/J.TCS.2023.114128
https://doi.org/10.1145/3588334
https://doi.org/10.1145/3588334
https://doi.org/10.4230/LIPICS.ISAAC.2021.20
https://doi.org/10.4230/LIPICS.ISAAC.2021.20

14

15

16

17

18

19

20

21

22

23

24

25

26

27

. Equi

Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for bwt-based
data structures. Theor. Comput. Sci., 698:67-78, 2017. doi:10.1016/J.TCS.2017.06.016.
Garrison Erik, Sirén Jouni, Novak Adam M, Hickey Glenn, Eizenga Jordan M, Dawson Eric
T, Jones William, Garg Shilpa, Markello Charles, Lin Michael F, Paten Benedict, and Durbin
Richard. Variation graph toolkit improves read mapping by representing genetic variation in
the reference. Nature Biotechnology, 36:875, August 2018. doi:10.1038/nbt.422710.1038/
nbt.4227.

Daniel Gibney, Gary Hoppenworth, and Sharma V. Thankachan. Simple reductions from
formula-sat to pattern matching on labeled graphs and subtree isomorphism. In Hung Viet Le
and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual

Conference, January 11-12, 2021, pages 232-242. STAM, 2021. doi:10.1137/1.9781611976496.

26.

Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367-375, 2001. doi:10.1006/jcss.2000.1727.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. doi:10.1006/JCSS.2001.

1774.

Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323-350, 1977. doi:10.1137/0206024.

Udi Manber and Sun Wu. Approximate string matching with arbitrary costs for text and
hypertext. In Advances In Structural And Syntactic Pattern Recognition, Bern, Switzerland,
26-28 August 1992, pages 22-33. World Scientific, 1992. doi:10.1142/9789812797919_0002.
Gonzalo Navarro. Improved approximate pattern matching on hypertext. Theor. Comput.
Sci., 237(1-2):455-463, 2000. doi:10.1016/S0304-3975(99)00333-3.

Kunsoo Park and Dong Kyue Kim. String matching in hypertext. In Zvi Galil and Esko
Ukkonen, editors, Combinatorial Pattern Matching, 6th Annual Symposium, CPM 95, Espoo,
Finland, July 5-7, 1995, Proceedings, volume 937 of Lecture Notes in Computer Science, pages
318-329. Springer, 1995. doi:10.1007/3-540-60044-2_51.

Nicola Rizzo, Massimo Equi, Tuukka Norri, and Veli Mékinen. Elastic founder graphs improved
and enhanced. Theor. Comput. Sci., 982:114269, 2024. doi:10.1016/J.TCS.2023.1142609.
Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. A survey of heterogeneous
information network analysis. IEEE Trans. Knowl. Data Eng., 29(1):17-37, 2017. doi:
10.1109/TKDE.2016.2598561.

Mikko Rautiainen Tobias and Marschall. Aligning sequences to general graphs in O(V + mE)
time. bioRxiv, 2017. doi:10.1101/216127.

Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357-365, 2005. doi:10.1016/J.TCS.2005.09.023.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.

In Proceedings of the International Congress of Mathematicians (ICM 2018), pages 3447-3487,
2018. doi:10.1142/9789813272880_0188.

7:13

Grossi's Festschrift

https://doi.org/10.1016/J.TCS.2017.06.016
https://doi.org/10.1038/nbt.4227 10.1038/nbt.4227
https://doi.org/10.1038/nbt.4227 10.1038/nbt.4227
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1137/0206024
https://doi.org/10.1142/9789812797919_0002
https://doi.org/10.1016/S0304-3975(99)00333-3
https://doi.org/10.1007/3-540-60044-2_51
https://doi.org/10.1016/J.TCS.2023.114269
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1101/216127
https://doi.org/10.1016/J.TCS.2005.09.023
https://doi.org/10.1142/9789813272880_0188

	1 Introduction
	2 Problem Definition
	2.1 Some Upper Bounds for SMLG

	3 Fine-Grained Complexity
	4 The Lower Bound for String Matching in Labelled Graphs
	5 Tighter Lower Bounds
	5.1 DAGs, Determinism and Bounded Degree
	5.2 Indexing Lower Bound
	5.3 Lower Bounds from Formula-SAT for shaving Logarithmic Factors

