From Strings to Graphs, and
Back Again:

A Festschrift for

Roberto Grossi’'s 60th Birthday

Grossi’s Festschrift, July 25, 2025, Venice, ltaly

Edited by
Alessio Conte
Andrea Marino
Giovanna Rosone
Jeffrey Scott Vitter

\\v OASICS

OASlcs — Vol. 132 - Grossi’s Festschrift www.dagstuhl.de/oasics

Editors

Alessio Conte
University of Pisa, Italy
alessio.conte@unipi.it

Andrea Marino
University of Florence, Italy
andrea.marinoQunifi.it

Giovanna Rosone
University of Pisa, Italy
giovanna.rosone@unipi.it

Jeffrey Scott Vitter

Tulane University, New Orleans, USA
University of Mississippi, Oxford, USA
jsvQ@vitter.org

ACM Classification 2012
Theory of computation — Design and analysis of algorithms; Theory of computation — Data structures
design and analysis; Theory of computation — Data compression; Applied computing — Bioinformatics

ISBN 978-3-95977-391-1

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-391-1.

Publication date
August, 2025

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASlIcs.Grossi.2025.0
ISBN 978-3-95977-391-1 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0003-0770-2235
mailto:alessio.conte@unipi.it
https://orcid.org/0000-0002-9854-7885
mailto:andrea.marino@unifi.it
https://orcid.org/0000-0001-5075-1214
mailto:giovanna.rosone@unipi.it
https://orcid.org/0000-0001-7970-6118
mailto:jsv@vitter.org
https://www.dagstuhl.de/dagpub/978-3-95977-391-1
https://www.dagstuhl.de/dagpub/978-3-95977-391-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.Grossi.2025.0
https://www.dagstuhl.de/dagpub/978-3-95977-391-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

O:iii

OASlcs — OpenAccess Series in Informatics

OASlcs is a series of high-quality conference proceedings across all fields in informatics. OASlIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU Miinchen, Germany)
Barbara Hammer (Universitét Bielefeld, Germany)
Marc Langheinrich (Universita della Svizzera ltaliana — Lugano, Switzerland)

Dorothea Wagner (Editor-in-Chief, Karlsruher Institut fiir Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

Grossi's Festschrift

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

A collection of articles written in honor of the 60th birthday of
Roberto Grossi, a great academic and much more.

Contents

Preface

Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter

List of Authors

Papers

An Efficient Heuristic for Graph Edit Distance

Xiaoyang Chen, Yujia Wang, Hongwei Huo, and Jeffrey Scott Vitter

On the Construction of Elastic Degenerate Strings

Nicola Rizzo, Veli Mdkinen, and Nadia Pisanti o i,

“Strutture Di Dati e Algoritmi. Progettazione, Analisi e Visualizzazione”, a Book
Beating Its Own Drum

Anna Bernasconi and Linda Pagli i

On Graph Burning and Edge Burning

Giuseppe F. Italiano, Athanasios L. Konstantinidis, and Manas Jyoti Kashyop ...

Generalized Fibonacci Cubes Based on Swap and Mismatch Distance
Marcella Anselmo, Giuseppa Castiglione, Manuela Flores, Dora Giammarresi,

Maria Madonia, and Sabrina Mantaciciiueeiiiiieeiiiineennn.

Compact Data Structures for Collections of Sets
Jarno N. Alanko, Philip Bille, Inge Li Gortz, Gonzalo Navarro,

and Stmon J. Puglisi

Conditional Lower Bounds for String Matching in Labelled Graphs

Massimo EQUi

Enumeration of Ordered Trees with Leaf Restrictions
Yasuaki Kobayashi, Dominik Koppl, Yasuko Matsui, Hirotaka Ono,

Toshiki Saitoh, and Yushi Uno i

On String and Graph Sanitization

Giulia Bernardini, Huiping Chen, Grigorios Loukides, and Solon P. Pissis

Faster Run-Length Compressed Suffix Arrays
Nathaniel K. Brown, Travis Gagie, Giovanni Manzini, Gonzalo Navarro,

and Marinella SCioTtino

Turing Arena Light: Enhancing Programming Education Through Competitive
Environments
Giorgio Audrito, Luigi Laura, Alessio Orlandi, Dario Ostuni, Romeo Rizzi,

and Luca VETSATt o

Encoding Data Structures for Range Queries on Arrays

Seungbum Jo and Srinivasa Rao Satti i

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

1:1-1:18

2:1-2:13

3:1-3:5

4:1-4:18

5:1-5:14

6:1-6:7

7:1-7:13

8:1-8:19

9:1-9:10

10:1-10:15

11:1-11:14

12:1-12:12

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:viii

Contents

Secure Compressed Suffix Arrays
Kunihiko Sadakamneo 13:1-13:8

Specific Patterns Against Reference Sequences
Marie-Pierre Béal and Mazime Crochemorec.c.couueeiiiiiieeininnn... 14:1-14:12

Wavelet Tree, Part I: A Brief History
Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, Giovanna Rosone,
Rossano Venturini, and Jeffrey Scott Vitter i 15:1-15:11

Faster Range LCP Queries in Linear Space
Yakov Nekirch and Sharma V. Thankachan 0. 16:1-16:6

On Inverting the Burrows-Wheeler Transform
Nicola COtUMACCTO ... v e e 17:1-17:8

DNA Is a Puzzle Enthusiast
Roberto Marangonio oo 18:1-18:8

Designing Output Sensitive Algorithms for Subgraph Enumeration
Alessio Conte, Kazuhiro Kurita, Andrea Marino, Giulia Punzi, Takeaki Uno,
and Kunihiro Wasa o et 19:1-19:40

Subsequence-Based Indices for Genome Sequence Analysis
Giovanni Buzzega, Alessio Conte, Veronica Guerrini, Giulia Punzi,
Giovanna Rosone, and Lorenzo Tattingt 20:1-20:21

Preface

This Festschrift volume celebrates the 60th anniversary of Professor Roberto Grossi, in
short Roberto in the following, accompanying a workshop scheduled on 25th July 2025,
as a satellite workshop of SEA 2025, 23rd Symposium on Experimental Algorithms. The
contributors of this volume, as well as the attendees to the workshop, are gathered from all
over the world to express their admiration for Roberto as a researcher and educator, as well
as their love for him as a person.

The contributions of Roberto to the academic world, particularly in the fields of algorithms
and data structures for strings and graphs, have left an indelible mark on both his students
and colleagues. Roberto’s work is characterized by a profound commitment to research and
teaching, and his ability to seamlessly integrate theory with practical applications has made
his contributions invaluable. In this sense, we believe the collocation of the workshop, namely
as a SEA satellite workshop, reflects the contamination of theory and practice which have
pervaded the work of Roberto. His passion for knowledge and teaching extends beyond the
classroom, fostering environments of intellectual curiosity and rigorous inquiry.

This collection of papers, gathered from colleagues, students, and collaborators, serves as
both a tribute to his legacy and an exploration of the ideas and discussions that have shaped
his academic journey. The variety of topics covered by this volume reflects the broad scope
of his influence, showcasing the depth and breadth of his intellectual pursuits. It is our hope
that this volume will serve as both a reflection of the profound impact Roberto has had on
the academic community and as an inspiration for future generations to continue his work of
intellectual exploration and discovery. Through this tribute, we honor a remarkable scholar,
teacher, and mentor whose legacy will continue to inspire researchers over the years.

Beyond his scholarly achievements, Roberto is renowned for his unwavering kindness and
generosity of spirit. Even during the busiest seasons of research and teaching, he always
showed empathy, grace, and genuine care for those around him. His kindness has instilled a
culture of respect, patience, and mentorship that will last beyond any publication or citation.
The many contributions of this volume celebrate not only the academic achievements but
also his kind and human impact on the community.

The story of Roberto: a very long CV made short

In the following, we are reporting a brief summary of Roberto’s CV, mainly inspired by his
home page and a very old CV we have found. This is far from being complete and updated
as we realized that many of his achievements are not mentioned by him anywhere and we
are aware of them only thanks to personal knowledge and the contributions will follow later
in this volume.

Roberto got his degree (Laurea) summa cum laude in Computer Science (Scienze
dell’Informazione) in the academic year 1987-1988 from Universita di Pisa. He then obtained
his Ph.D. degree in Computer Science (Dottorato di Ricerca in Informatica) from Universita
di Pisa in the academic year 1992-1993. He has been research and teaching assistant (Ricer-
catore) at Dipartimento di Sistemi e Informatica, Universita di Firenze, from March 1993
to October 1998 and then Associate Professor (Professore Associato) at Dipartimento di
Informatica, Universita di Pisa, from November 1998 to October 2010. He is currently Full
Professor (Professore Ordinario) at Dipartimento di Informatica, Universita di Pisa, since
November 2010.

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Preface

He has been: Visiting scholar at Columbia University, Department of Computer Science,
1990-1991; Visiting researcher at AT&T Bell Laboratories, USA, 1993 and 1995; Visiting
scientist at Berkeley, International Institute of Computer Science, USA, 1995; Visiting
researcher at Aarhus University, Institute for Basic Research in Computer Science, Denmark,
1996; Visiting professor at the Universite de Marne-la-Vallee, Laboratoire de Informatique,
France, 2001; Visiting researcher at Tohoku University, Graduate School for Information
Sciences, Japan, 2002, and Haifa University, Department of Computer Science, 2005 and
2010; Visiting professor at the National Institute of Informatics, Japan, 2018-2019 and Tokyo
University, Japan, 2024. He is member of ERABLE (European Research team in Algorithms
and Biology, formaL. and Experimental), INRIA Rhone Alpes, France, since 2005.

Roberto has been the advisor of the following Ph.D. students (in chronological order):
Gianni Franceschini (U. di Roma “La Sapienza”), Ankur Gupta (Butler U., advisor Jeff
Vitter), Iwona Bialynicka-Birula (Microsoft), Giovanni Battaglia (ION Trading, Dimoco),
Alessio Orlandi (Google), Mauriana Pesaresi (1983-2008, passed away during studies), Rui
Andre’ Ferreira (Microsoft, Facebook, Spotify), Giuseppe Ottaviano (Facebook), Alessio
Conte (NII Japan, U. di Pisa), Shima Moghtasedi (Milan), Luca Versari (Google), Giulia
Punzi (U. Pisa), Giovanni Buzzega (U. Pisa).

Roberto has been (and still is) a very active member of the scientific and academic
community, both nationally and internationally. He has been a member of the International
Scientific Committee of the International Olympiad in Informatics. He has been the Treasurer
of the Italian Chapter of the European Association for Theoretical Computer Science
(EATCS). He has been the reviewer of international research projects for several Science
Foundations, and international PhD Theses committees. He has been PC member of many
prestigious conferences, to name a few ESA, SODA, FOCS, STACS, WWW, and CIKM. He
is one of the few Italian authors cited in the second edition of the third volume of The Art of
Computer Programming: Sorting and Searching by Donald Knuth for his contribution to
the String B-Tree (along with P. Ferragina)

Roberto is internationally acknowledged for his outstanding and fundamental contributions
to the area of the design and analysis of algorithms and data structures. His research interests
are both in theoretical problems for core research and in applications and experimental
work. Specifically, his interests are focused on algorithms for combinatorial pattern matching
and mining on strings, sequences, trees, matrices, and graphs; design of algorithms and
data structures for external and hierarchical memory; implicit, succinct and compressed
data structures for (compressed) data sets; space- and time-efficient compressed indexing
and fast searching in compressed text; text indexing and editing; multi-dimensional data
structures; algorithm engineering for quick-access tables and dictionaries; routing algorithms
for networks and robot.

Some testimonies

In this section, we report four extended testimonies about Roberto, respectively from his
PhD Advisor, Fabrizio Luccio, from his long-term research collaborator Jeffrey Scott Vitter,
from his colleague at Italian Olympiads in Informatics Luigi Laura, and from colleagues
at the University of Pisa. In the resulting three orthogonal aspects of his work, first as a
student, and later as a researcher, and educator, and colleague, Roberto is described as an
extraordinary scholar, mentor, collaborator, and friend.

Preface

A great academic and much more

by Fabrizio Luccio

I met Roberto forty years ago in a classroom at the University of Pisa. He had enrolled to
pursue a degree in Informatics, the Italian equivalent of a Master’s degree in Computer Science,
and was attending a course on Information Processing Systems that I was teaching. Roberto
was a serious, responsible person, quickly mastering every aspect of the study material in all
fields of CS and emerging as one of our top students. I was therefore particularly pleased
when he asked me to supervise and discuss his final thesis for the Master’s degree, in which
the first signs of his groundbreaking research on the design and analysis of algorithms and
data structures, for which he is now universally esteemed, began to emerge.

After graduating, Roberto was admitted to our PhD program under my supervision, then
spent most of his academic life in our department, up to his current position as a highly
regarded professor and an excellent research director. He initially joined a research group
that I had led for many years. Eventually, the group split into two parts, and he took over the
leadership of one of them. From the very beginning, our scientific work was carried out side
by side, right up to the day of my retirement and, to some extent, even after that. As time

went by, an unbreakable bond of friendship and mutual respect was established between us.

Other colleagues, on this occasion, will present and discuss his research achievements and his
commitment to teaching in various courses. I would like to highlight Roberto’s fundamental
role as a mentor to many young scholars in the PhD program and in guiding them toward
research, as well as his openness to various activities where the experience gained during his
academic career plays a crucial role.

First of all, Roberto has been and still is a great scientific leader, and this is perhaps
the most important contribution that can be expected of a university professor. He has
built relationships and collaborations with major research groups in Italy and abroad. Many
excellent PhD students have studied or are studying under his guidance in our department,
gaining top-level training and putting the acquired expertise and genuine enthusiasm at
the service of the scientific and technical life of our country and abroad. Furthermore,
several students who simply completed their Master’s thesis under his supervision and then
pursued professional or research careers have been able to approach their work on an excellent
foundation of scientific knowledge.

Another activity of Roberto, which had significant international relevance, was the
direction of training for the Informatics Olympiad, where young Italian university students

had the opportunity to compete on equal footing with their peers from many other countries.

Speaking with some of them years later, I appreciated their enthusiasm for that experience
and the importance of the memory it left. Among other things, it is thanks to Roberto that a
version of these Olympiads was organized in Italy. On a local level as well, he was among the
organizers and evaluators of informatics contests for a large number of high school students
eager to test their knowledge against others and to seek guidance on which university studies
to pursue.

Finally, I want to highlight Roberto’s commitment to initiatives aimed at enhancing both
university and school-level teaching, as a contribution to education in the broader sense. Of
particular importance is the ongoing professional development of teachers at all levels of
education, achieved through courses that allow them to discuss the latest developments in
their subjects and gain new inspiration for teaching.

In conclusion, Roberto has approached and developed his profession in the most intelligent
and noble way, and everyone should be grateful to him for this.

0:xi

Grossi's Festschrift

0:xii

Preface

My great friend and collaborator!

by Jeffrey Scott Vitter

I had the great fortune to meet Roberto 30 years ago. He and colleague Paolo Ferragina
visited the USA to present their innovative way to index strings in external memory at the
1995 STOC conference. Much of my work was focused at that time on the field of external
memory algorithms, in which the main bottleneck is the I/O communication between a small
but fast memory (such as RAM) and a large but slow memory (such as disk, which utilizes
block transfer). Roberto and Paolo’s approach for strings met the optimal I/O bounds for
processing strings, and they did it in a very elegant way. Shortly afterward, we had the
opportunity along with our collaborator (the late) Lars Arge to work together on sorting
strings in external memory, which we presented at the 1997 STOC conference.

Through the years, Roberto has truly become a great friend and collaborator. I don’t
think T know anyone who is more receptive and eager than Roberto when it comes to
interacting with colleagues and developing new ideas. He gives of himself selflessly and is full
of encouragement. And on a personal level, he is such a positive person. Sharon and our
kids had great times visiting him and his family in Pisa during our sabbatical in 1998-1999,
which was nearby at INRIA in Sophia-Antipolis, France.

Figure 1 After a fun dinner in August 1998 with our families in Pisa.

As with all my favorite reminiscences, food and wine play an important part. Roberto
and Paolo introduced me during my sabbatical to the delicacy of alici, which we had for
lunch one day during a visit to Pisa. I make sure to order them whenever I’'m in Italy.

And T think I can legitimately credit Roberto as the person most responsible for my
ever-growing interest in wine. During our sabbatical visits, Roberto shared that his wife
Antonella’s dad — who was an avid wine connoisseur and collector — had to give up drinking
wine for health reasons. And in order to avoid temptation, he began giving away his extensive
collection, much of it to Roberto and Antonella. In the process, Roberto gifted us with
several bottles of stellar wine, including a 1967 Giordano Barolo, which figures prominently
in our 1998 Christmas card.

Sharon and I still talk about it to this day; that’s how memorable both Roberto and
the Barolo were! Barolo wines are notorious for containing a lot of sediment, so the wine
generally needs to be filtered first, and then it’s best to decant it for an hour for each year of

Preface 0:xiii

Figure 3 Our 1998 Christmas photo from our terrace in Valbonne, France, with Roberto’s gifted
bottle of 1967 Giordano Barolo!

age. So given that it was 31 years old at the time, we filtered the wine and then aired it in a
carafe for about a day and a half. And what an amazing wine it was!

On a professional level, Roberto is the person responsible for bringing me into the field
of compressed text indexing. I was always interested in data compression — in the text,
image, and video domains — but Roberto helped indoctrinate me into the fascinating world
of stringology. I loved the elegant theory and was “all in.” Roberto was the lead in our 2000
STOC work on compressed suffix arrays, in which we presented the first provably succinct
text index whose space requirement was within a constant factor of the input size. The
space savings was a factor of logy; n over the well-known suffix tree and suffix array data
structures, where |X| is the size of the alphabet.

Grossi's Festschrift

0:xiv

Preface

[ea e

&uﬂﬁﬂ
~‘ 1 v.g..a,
f.

s

4
k-
2
o2

o

Figure 4 At Bertinoro in 2006, with Gonzalo Navarro, Kunihiko Sadakane, Rahul Shah, and
Roberto.

Roberto was also a great mentor to my graduate student Ankur Gupta. A couple of years
later, the three of us developed the wavelet tree rank/select data structure, which generalized
the famous RRR data structure for bit arrays in order to handle arbitrary alphabets . Like
RRR, the wavelet tree data structure provided Oth-order entropy compression with leading
constant factor of 1, and when the portions of text sharing a common context of length &
were each encoded in that manner, the resulting global structure provided kth-order entropy
compression. Not only that, but the space bound had the constant factor of 1 in front of the
leading nH} term, which answered an open question of Giovanni Manzini and established
asymptotic optimality for both compressed suffix arrays and the FM-index.

I feel very blessed to have had the opportunity to collaborate over the years with Roberto
and witness his great understanding of the field as well as his scientific creativity. It was
always fun to be at a conference with Roberto because the energy that developed led to many
interesting collaborations. But mostly I am thankful for his friendship and for his being the
person he is. Roberto, I hope this Festschrift lets you know how much you mean to us!

Twenty Years with Roberto: An Olympic Journey

by Luigi Laura

I have known Roberto for 25 years or slightly more. I probably met him when I was
a PhD student in Sapienza, but our intense interaction started when Alberto Marchetti-
Spaccamela came into my office in 2005, asking if I wanted to help with the Italian Olympiads
in Informatics (OII): “it will not take you more than a few hours per year” Alberto said.
It quite soon became my principal activity and still is today. Roberto was the head of the
Italian organisation, for the scientific/educational part. In 2012 we also organized, in Italy,
the International Olympiads in Informatics: 85 participating countries, with four students
and two teachers (team leaders) per country. After that very tiring experience, Roberto
stepped back (as much as he can, he has been also later very involved) and we switched roles.

Preface

Figure 5 Pisa, 2007: a consciousness-raising sessions; from left to right Sebastiano Maggiolo,
Roberto Grossi, Nicola Pierazzo and Romeo Rizzi.

Figure 6 Volterra, 2010: Alessio Guerrieri and Roberto Grossi are distributing food to the
students. (Photo by Giuseppe Ottaviano)

Thus, over the last 20 years we have worked together extensively, and I can proudly say
that the overall OII organization grew a lot under “our” guide (or despite it, depending on
the point of view). We spent a lot of time together, and I can tell dozens of stories about
Roberto. A few of them can be reported here (don’t worry Roberto, the couple that you fear
will not be included, nor will the “few-lines-of-prolog-solving-every-problem” induced anger
one).

Before diving into the stories, here’s a quick crash course on the organization of OII: we
start (first phase) with approximately 15,000 students in their own schools. .. then (second
phase) the best 1-2k compete in 40-50 schools distributed across all the Italian territory,
and (national final) the top 100 students participate in the final contest, in a school (or,
sometimes, in a university) that changes every year. Then, the top 20 from the final are
selected to participate in 4 periods of few days of training and selection, until we have four
students to send to the International Olympiads in Informatics (I01).

The majority of my interactions with Roberto have been in the training camps and when
we went together to IOI (2007 Croatia, 2008 Egypt, 2010 Canada, and 2011 Thailand).

0:xv

Grossi's Festschrift

0:xvi

Preface

Figure 7 The Italian Team at IOI 2008 in Egypt: from left to right, first row: Matteo Boscariol,
Massimo Cairo, Luigi Laura, one of the guides of the team, Marta Genovie De Vita. Second row:
the other guide, Roberto Grossi, Giovanni Mascellani, and Paolo Comaschi (Photo by Giuseppe
Ottaviano)

A tradition of the training camps, started by Sebastiano Vigna, in charge of OII before
Roberto, was the “Consciousness-raising sessions” (sedute di autocoscienza in italiano), a post
dinner activity with all the students, where each participant explained their first experience
with coding in an Alcoholics Anonymous-style format. In Figure 5 we can see Roberto in
one of the consciousness-raising sessions from 2007 in Pisa.

The most amusing thing about Roberto regarding the training camps was that the
technical team would often pull all-nighters to prepare the competition for the students the
next morning. At a certain point in the evening or night, Roberto would finish his part and
have nothing else to do, but he felt bad about abandoning the others, so he would sleep on a
bench. Roberto spent quite a few nights in the early years of the training camps sleeping on
benches. In Figure 6 we can see Roberto in Volterra during a training camp.

The most interesting single experience, together with Roberto, has been in IOI Egypt, in
2008. Egypt was under Mubarak’s government. The venue of the IOl competition was the
so called Mubarak Educational City, a complex of six large buildings, in a beautiful lawn
(in the desert!), surrounded by a high wall, guarded by armed sentries, complete with the
traditional changing of the guard. It was a suspicious location. We, as participants of 101,
had a map of the complex, and in the map one of the six buildings was not present! Most
notably, whenever one of the participants tried to approach the unmapped building, someone
would ’coincidentally’ emerge from it, apparently to make a phone call or have a cigarette,
who would politely invite the participant to move away from the building.

Now, if you know Roberto you might be aware that he has some inclination toward
conspiracy theories (he would not state it in this form). So Roberto started developing a
theory where the unmapped building was a missile base (in retrospect, he might be right).
Instead of trying to reassure him, I would escalate with phrases like “you’re right, but at
this point, if they realize you know, they might decide to kidnap you or eliminate you. If
you disappear, I'll immediately take our students to the Italian embassy. I already warned
them that if both of us disappear they need to run and search for a safe place”. I had a lot
of fun playing the spy game with Roberto in those days.

Preface

Giuseppe Ottaviano, who shared the room in Egypt with me and Roberto, might focus
on the fact that every morning he complained to us, saying something like “you both snored
all night, sometimes in unison, sometimes taking turns, and I didn’t sleep at all”. In Figure 7
the Italian team at IOI 2008.

Over these years we have seen many young people grow: we saw them first participate in
competitions and then, while studying at university, they collaborated with the Olympics as
tutors; many did a PhD, continuing to collaborate. Some of them, even after completing
their studies and finding work, have continued to collaborate. Among them, we mention
Giorgio Audrito, soon to be an associate professor at the University of Turin, who has been
the scientific coordinator of OII since 2020. Luca Foschini and Alessio Signorini met at OII
in 2001 and few years ago founded Evidation Health, a startup now valued more than a
billion dollars. We’ll mention, in random order and with no claim to completeness, just a
few others: Giuseppe Ottaviano works for Meta (formerly Facebook); Alessandro Dovis,
Stefano Maggiolo, Andrea Ciprietti, Nicolo Mazzuccato, Alessio Orlandi, Marco Ribero and
Luca Versari work at Google, the first two in London and the others in Zurich. Giovanni
Campagna is in San Francisco, hired by Bardeen, while Gabriele Farina is an Assistant
Professor at MIT, after working for a year as a Research Scientist at Meta. At MIT we also
find Giada Franz, currently as an Instructor. Alice Cortinovis is an Assistant Professor at
Stanford, where Matilde Padovano is completing a PhD in Machine Learning, while Federico
Glaudo is a Postdoctoral Research Associate at Princeton. MIT, Stanford and Princeton:
academically we can’t complain, and on the corporate front as well, between Google, Meta,
Microsoft (where Ottaviano worked in the past), DeepMind (Matilde Padovano’s internship),
Twitter (Emanuele Rossi, who now works for VantAI), we can say that the former Olympians
are doing quite well for themselves.

Those young students might not have written a paper about succinct data structures or
enumerating cliques in temporal graphs, but I am sure that at a certain point of their early
careers they have been inspired, as much as I had, by the words and the works of Roberto.
This is his legacy. Thank you Roberto!

Roberto: Master of Algorithms and Ceremonies

by Giovanni Buzzega, Alessio Conte, Veronica Guerrini, Andrea Marino, Giulia Punzi, Nadia
Pisanti, Giovanna Rosone, Giorgio Vinciguerra

From tales of travels to work discussions, to fond memories of his students, Roberto
always has a story to share, topped off with some good tea or coffee. His office has become
famous for brewing traditional Japanese tea, a craft that he learned and perfected during his
many travels to Japan, even attending a traditional tea ceremony. Recently, he moved on to
specialty coffee as well, approaching it with a true scientific mindset and experimenting with
different filters, techniques, and coffee varieties. During work breaks or meals, he is more
than happy to prepare tea, infusions or coffee for anyone around. The kind and generous
spirit that he shows in sharing with others is the same that he brings to research, teaching,
and everyday life. Anyone who knows Roberto has seen his ability to make everyone feel
welcome, at ease, and treated as equal, whether they are visiting scholars from around the
world or first-year students.

It was during one of the shared meals in our department that we celebrated Roberto’s
60th birthday. He brought some pastries to have a small celebration in the office, thinking
that nobody knew about his birthday. Not only were we and our colleagues fully aware of it,
but we had also prepared a surprise for him.

0:xvii

Grossi's Festschrift

0:xviii

Preface

Figure 8 An overjoyed Roberto hugging his new grinder tightly, with some of his friends and
colleagues. From left to right: (standing) Filippo Geraci, Roberto Grossi, Giovanni Buzzega, Veronica
Guerrini, Alice Cortinovis, Francesco Landolfi, Giorgio Vinciguerra; (on the sofa) Alessio Conte,
Linda Pagli, Giovanna Rosone, Giulia Punzi, Luca Mencarelli; (on call) Andrea Marino and Rossano
Venturini.

There is a story behind it all, and it started during his trip to Tokyo in July 2024.
Roberto was attending a seminar at Kanda lab, the lab of his collaborator and long-time
friend Takeaki Uno. Kanda lab is Roberto’s home-away-from-home when he is in Japan, so
he was, as usual, offering to prepare coffee for the seminar participants. When approaching
the kitchenette of the lab, he noticed a high-end coffee grinder belonging to the lab postdoc
Yuta. It was, as Roberto himself later put it, “the Ferrari of coffee grinders”. The postdoc, a
fellow coffee enthusiast, saw Roberto’s excitement and gladly agreed to let him prepare the
ritual coffee using his grinder. It was only after Roberto had happily completed the grinding,
boiling, filtering, and handing out of cups to his colleagues that he realized there was no
more coffee left for him. At the time, he hid his disappointment quite well; still, in the many
meals we shared in Pisa after that incident, he often expressed his regret at not having tasted
such a premium-ground coffee when it had been so close at hand.

When his fellow coffee drinkers, colleagues, and friends found out that his birthday was
approaching, a plan was set in motion. We asked Yuta for the specific coffee grinder’s model
and managed to have the same grinder delivered from a specialty coffee shop just in time
for his birthday. On that day, imagine the surprise of Roberto, going from thinking that he
was quietly announcing his birthday to oblivious people, to finally being able to prepare the
coffee that he had been craving for months. .. the picture (Figure 8) says it all!

Roberto, this is for your (26 — 4)th birthday, with wishes for many joyful coffee-grinding
moments ahead.

Preface

Open Messages to Roberto

In this Section we have collected some open messages to Roberto from some of his colleagues
and his friends. They talk about their experience with Roberto, whether personal or
professional. This collection of heartfelt tributes highlight his impactful contributions to
theoretical computer science — especially in string algorithms, data structures, and succinct
indexing — as well as his inspiring personality. In particular, he is described by many as
kind, humorous, down-to-earth, and joyful in collaboration. Praised for making research fun,
inspiring, and deeply human, often accompanied by thoughtful touches — like sharing fine
Japanese tea or musical interests. These tributes show how his intellect and humanity have
deeply shaped the lives and work of many across the globe.

I arrived in Florence in November 1997 and had to share a work room (not really
an office) in an apartment with Roberto and Alberto Del Lungo. Roberto’s surprise
when he saw me enter the room with a tennis bag made me immediately understand
that it was the beginning of a beautiful friendship. And so it was, but it was also the
beginning of a superlative collaboration with one of the most brilliant researchers I
have ever worked with. Our first paper together was about the problem of the IP
address lookup: Leandro Dardini had a very nice idea, Roberto quickly formalized it
and made a great result, and I well, I loved being part of it. And I remember
that, when we discovered on the ESA website that the paper had been accepted
(surprisingly, we had not yet received an acceptance letter), we started jumping and
hugging each other in the room, as if Italy had won the world championship. Yes,
that’s what I miss the most: the enthusiasm that Roberto and other friends and
colleagues allowed me to experience simply by proving theorems and writing code.
Thanks, Robi!

Pilu Crescenzi

0:xix

Grossi's Festschrift

0:xx Preface

Dear Roberto,

The first memory that I have of you dates back to 2015, when I attended your
course “Algoritmica 2” during my master’s studies. The course had an unconventional
structure that I enjoyed a lot, especially for the exam format. However, what struck
me the most was your availability to students and your charming personality, which
made student-professor interactions very smooth.

This trait of yours became even more evident to me when, a few years later, you
became my first academic mentor, as I started working on my master’s thesis under
your supervision. I remember that, since day one, you asked me not to address you
in a formal way by saying: “Dammi del tu, siamo colleghi adesso.” You were able to
make me feel like I was really talking to a peer, even though I was just a student,
while you were a well established and acclaimed professor. I consider that to be at
the very beginning my academic career, and I will always keep close to my heart the
sweet memory of those spring mornings spent in your office, sipping from a cup of
fine Japanese tea while tackling research questions on strings and graphs.

Years have passed since that spring in 2018, and if I grew into a more mature researcher
and person it is also thanks to your teachings. I am thankful for your trust in my
ideas but, above all, for your constructive criticism. Thank you for so explicitly telling
me that I was wrong when you thought so. I always admired this ability of yours; not
so much for spotting technical mistakes, but rather for identifying a sterile line of
research, as it is way easier to fall in love with new ideas than it is to divorce them.
My warmest regards and wishes!

Massimo Equi

Epic times. I'll never forget those legendary mornings in my apartment while we
were preparing our STOC 95 paper on String B-trees, taking inspiration from “the
opening of a shutter” that, when discovered, brought both of us to be very very

tight in the morning schedule I do not know whether those events sparked our
creativity, or it was just good luck. Who knows — but man, those were epic times,
Rob!

Paolo Ferragina

Preface 0:xxi

Dear Roberto,

We’ve watched you dance through trees and strings,
And build such clever index things!

You squeeze in bits where none should fit,

Then blaze new trails with endless grit.

From FOCS to SODA, peer review —

The world of theory knows what you do.
You set the tone with Olympiad flair —
While others blinked, you were just there.

You mapped out patterns hard to find,
And surely left no clique behind.

And in the land of cycles and paths,
You conquered even tricky graphs.

At Pisa’s halls you made your stand,

With succinct structures close at hand.
Your code is clean, your bounds are tight,
Your papers? Always a delight!

And though we joke in rhyme today,
We mean each word — chapeau, we say!

Irene Finocchi

Hi everyone,

My connections to Italy are very strong. For over 30 years I spend part of every
summer in Italy with one or two exceptions. I am actually in Italy right now. I
have got to know and to interact with dozens of Italian computer scientists. Giorgio
Ausioello sent me Pino Italiano, Alberto Apostolico sent me Raffaele Giancarlo. Pino
and Raffaele were fantastic PhD students. Fabrizio Luccio sent me Roberto Grossi
over thirty years ago. He was already in the middle of his PhD studies. If I remember
correctly he spent a year at Columbia. Everybody liked Roberto. We have stayed in
touch ever since and I have followed Roberto. He has had a very impressive career.
He has had some beautiful results in stringology. Congratulations Roberto for your
60th birthday.

Zvi Galil

Grossi's Festschrift

0:xxii Preface

My passion for efficient algorithms has its roots in a beautiful algorithms course taught
by Roberto. After the course I decided to ask Roberto to supervise my thesis. What
I didn’t know at the time was that that professor would later have become a good
friend. In recent years, I've taught a few hours of one of Roberto’s courses. To all the
colleagues who asked me why I enjoyed doing it (at CNR we are not required to do
teaching) I always replied that the payoff of that course was the lunch with Roberto
after class.

Thank you, Roberto for the thousands of scientific and human things I learned from
you. I've learned that I am more likely to prove P = NP (not sure about that) than I
ever get to argue with you.

Filippo Geraci

Roberto personifies stringology — in fact, I can think of few others who deserve such a
prominent recognition within the community. I am certain that others will speak of
his well-deserved scholarly success, so I will talk more about how instrumental he was
in my own career path. I remember Roberto fondly in his role as my second advisor.
We worked extensively for several years on compressed suffix arrays and related work
during my Ph.D. I had the pleasure of learning from his uncanny ability to attack
problems in innovative ways until the solution was laid bare. Often, the elegance of
the final result led to key insights in related problems. And you can 100% bet that is
exactly what we did next.

Roberto also hosted my postdoc shortly after I was married. My wife (as of just a few
days prior) and I stayed in Pisa for several months. I clearly recall one morning when
we were working out how to represent the information-theoretic minimum space of
the BWT on a whiteboard dense with combinatorics. It was electric fun, and there’s
no other way to describe it. Nevertheless, whenever I remember Roberto, I remember
a warm, caring face, and a genuinely gracious host ...and an Italian that did his best
to avoid “Italian food” when visiting the United States. I have now eaten enough
proper pasta from the experts to know that he was right all along. Congrats Roberto,
on an amazing and awe-inspiring legacy!

Ankur Gupta

With Appreciation. Congratulations, Roberto, on your 60th birthday and such an
influential career!

When I spent a year at KU as a visiting scholar with Jeff Vitter (too many years ago
for me to say!), I learned so much from your research on compressed suffix arrays
and graph algorithms. Your work has been a big influence on and inspiration for my
research career.

I wish I could be in Venice in person, but unfortunately have conflicts that make that
impossible. T hope my contribution with Jeff on graph edit distance heuristics will
serve to memorialize the occasion. I look forward to meeting you sometime in person.

Hongwei Huo

Preface 0:xxiii

Dear Roberto,

You made truly remarkable contributions to data structures, pattern matching theory
and enumeration complexity, among other topics. Although we never collaborated
on a common project, I keep a wonderful memory of our numerous meetings and
discussions.

With my congratulations for your achievements, I wish you best of luck in all of your
future scientific endeavors, and many happy returns with new beautiful discoveries!

Gregory Kucherov

To Roberto, a brilliant colleague and an even better friend — we’'ve shared ideas,
papers, research projects, and ... sushi!

Giuseppe F. Italiano

In the (relatively short) time I've had the chance to work with Roberto, I discovered
we share more than just a name — we’ve also got a common love for science and the
sea. But here’s the catch: we approach both with very different levels of bravery.
When it comes to the sea, I stick to sunbathing and the occasional cautious swim —
and only in summer, of course. Roberto? He has no problem throwing himself into
pre-dawn winter dives, clad in nothing but a wetsuit. Just thinking about it makes
me shiver. Same story with research. Roberto dives headfirst into algorithms, data
structures, and code — no clue if he wears a wetsuit there too, but one thing’s certain:
he’s not afraid to go deep. Meanwhile, I sit on the metaphorical shore, waiting for
him to come back up with something useful that we poor biologists can use to save
our skins. For his 60th birthday, I send him my loudest, most thunderous best wishes —
loud enough to reach him all the way down in whatever deepness he’s currently diving
in his latest challenge with himself.

Roberto Marangoni

Grossi's Festschrift

0:xxiv Preface

Figure 9 In Pisa, on the terrace of the office of Linda Pagli. At that time the Department of
Computer Science of University of Pisa was in Corso Italia. With Fabrizio Luccio, Linda Pagli,
Elena Lodi, Roberto, and Geppino Pucci.

It was 2003 where I was in Japan and Veli Mékinen was emailing me about an idea he
had. His enthusiasm was contagious, and I got engaged in his line of thought about
a data structure that, by hierarchically partitioning the alphabet, could represent a
sequence in succinct space and recover the symbols in logarithmic time. After a few
days he sent me a final email like: “Never mind, look at the SODA paper of Grossi et
al. this year”. Yes, the wavelet tree was there, buried in a lot of other interesting stuff.
Over time, I even managed to understand that paper. I remember when, again with
Veli, we were writing in 2006 a survey on compressed full-text indexes, and I wrote
the section for their paper. Veli said, impressed, “You actually went through it!”.
That 2003 paper was my first “encounter” with Roberto. Over time, I had the pleasure
of meeting him in person in many occasions, and we even wrote a paper together.
Roberto was always easy to deal with, agreeable, and full of interesting ideas. I'm
always eager to see him wherever life puts us together.

Happy Birthday, Roberto!

Gonzalo Navarro

Many wishes Roberto, colleague of many years but above all dear friend!

Linda Pagli

Preface 0:xxv

Dear Roberto, the three of us have walked side by side since the very beginning of our
respective research journey. Indeed, we are siblings, since we share the same academic
father and extended family. Due to this life-long acquaintance, we can authoritatively
affirm that you are an outstanding researcher as well as an extraordinary human
being, and a great friend. We wish you that the next 60 years of your life will be at
least as successful and productive.

With love and affection,

Andrea Pietracaprina and Geppino Pucci

I came to know Roberto when I was a PhD student. This was longer ago than I like
to admit. .. his hairs were longer than what I have now, and mine were all black!
Roberto was then just back in Pisa as an associate professor after having been assistant
professor in Florence for a few years. Hence, we were both working in Pisa but -
ironically - our collaboration started... in Paris!

I was visiting Marie-France Sagot at the Pasteur Institute for a few months, and he
was visiting Maxime Crochemore in Marne-la-Vallée (at a University now named Paris
Est). T was a regular visitor at Marne, where I had been master student a couple
of years back, and in particular both Marie-France and I used to attend the weekly
Tuesday seminars there. One of these Tuesdays Roberto was the speaker. I took
the opportunity to introduce him and Marie-France to each other, and we shared
with Roberto and Maxime the problem we were investigating. Working with him and
Maxime was fun, and we end up with very nice results. That was the first one of many
joint papers with many different co-authors, and also the beginning of a friendship.
In these years, I have been admiring Roberto’s curiosity, passion, and brilliance when
it’s about doing research, and the way he conveys this to his students for whom he is
an excellent mentor. I find it very significant that his former students, whether now
in academia or industry, keep on coming to visit him even years after earning their
degree.

Last but not least, conversations with him are not just about strings, trees or graphs.
Roberto has many hobbies and passions: there is hi-fi sound, bread making, coffee
grinding, swimming, green tea tasting... one never gets bored with him.

In Italy we have a saying that well applies to Roberto, I believe: se non ci fosse
bisognerebbe inventarlo! (translatable into “if he weren’t there, then someone should
invent him”). ... Happy Birthday, Roberto!

Nadia Pisanti

Wishing you a very happy 60th, Roberto! You’ve reached a wonderful milestone with
the curiosity, energy, and sense of FUN of someone half your age! Ever since we met
at that memorable Dagstuhl seminar on data structures in the now-distant ’90s, it’s
been a pleasure to share ideas, laughs, and inspiring conversations with you. May the
next decades be just as rewarding — and just as much FUN!

Guido Proietti

Grossi's Festschrift

0:xxvi

Preface

With sincere esteem and affection, and deep gratitude for each opportunity shared to
collaborate with fulfillment as educators and researchers.

Romeo Rizzi

La storia siamo noi,
Collaborazioni e
Amicizia anche

Marie France Sagot

My first impression of Roberto was that he was an awesome researcher. The Phi
function and wavelet trees were these magical structure. But when I started to interact
with him (working on some research and then a joint paper), he came across not only
as one of the smartest persons, but also as a kind, wise, humorous and down-to-earth
person. I believe he has influenced many and I am one of them. At this milestone, I
express my warm wishes to Roberto for best of the health, so that we see many more
cool things coming out from his endeavors.

Rahul Shah

I would like to wish Roberto the happiest birthday ever! I have been involved few times
in organizing conferences with Roberto and it has always been a great experience!
Roberto and I share another passion: high-end music! I wish Roberto many cable
building experiences :-)

Fabrizio Silvestri

Dear Roberto,

Congratulations with your 60th birthday. And thanks a lot for what you are to me
and lots of other people. It is an enrichment of my life to know people like you.
Working with you has always been a pleasure and made me realize how privileged 1
am working in this field of applied mathematics. It has given me a wonderful. By the
joy you radiate I am sure the same feeling holds for you. So you are heading for the
last 10 years of your academic life in the Italian system. Enjoy it fully!!!

With friendship and admiration,

Leen Stougie

You have shown me how to make international communication fun, pleasant, and
fruitful through high-quality research discussions and exchanges. Thanks to you, our
lab has grown, and many of our members have now made good friends overseas and
are able to enjoy top-level research. I am truly grateful for this.

Takeaki Uno

Preface

Working and interacting with Roberto has always been an inspiring experience: he
brings his passion for research and his deep insights to every conversation. On top
of that, his great sense of humor makes every collaboration not only productive but
genuinely a lot of fun. Wishing you a fantastic birthday, Roberto!

0:xxvii

Fabio Vandin

Happy 60th Birthday, Roberto!

In Japan, turning 60 is a very special milestone known as Kanreki (/). It’s a time
for celebration, symbolizing a rebirth and a fresh start. As part of the tradition, the
person celebrating Kanreki often wears red items, such as a red hat or clothing, to
signify this significant occasion and ward off evil.

Wishing you all the best on your Kanreki, Roberto!

Kunihiro Wasa

When I joined Dr. Jeff Vitter’s group as a postdoc in 2009, compressed data structures
for string search was a new and unfamiliar field to me. I began my learning with
Roberto’s groundbreaking work: his papers on the compressed suffix array (with Jeff
Vitter, STOC2000) and the high-order compressed suffix array (with Ankur Gupta and
Jeff Vitter, SODA2003). Later, I had the privilege of collaborating with Roberto and
Jeff on an experimental study of the wavelet tree, exploring various coding techniques
for the bit arrays on the tree nodes.

I was deeply impressed by Roberto’s humility and meticulousness. He thoroughly
reviewed every data table in the paper, asking insightful questions that often led to
improvements or corrections. When a visa issue prevented me from traveling to Italy
to present our paper, Roberto’s support was unwavering. I vividly recall him taking
multiple trains from northern to southern Italy to present the work himself. Roberto,
thank you for your selfless support — it meant so much, especially as you had little to
gain. My warmest congratulations on your remarkable career and your 60th birthday!

Bojian Xu

Organization of the volume

The papers included in this volume are peer-reviewed scientific contributions dedicated to
Roberto, reflecting the diverse areas of his research interests. Of course, even though these
papers are related to Roberto’s research, they do not include him as an author since this

is meant as a surprise for him. The papers fall in two categories: research and education.

The research category includes papers related to the research fields Roberto has contributed
to, while the education category includes papers related to Roberto’s activities in teaching,
training, and educational development.

July 2025
Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter

Grossi's Festschrift

List of Authors

Jarno N. Alanko (6)
Department of Computer Science,
University of Helsinki, Finland

Marcella Anselmo (5)
Dipartimento di Informatica,
Universita di Salerno, Italy

Giorgio Audrito (11)
University of Turin, Italy

Giulia Bernardini (9)
University of Milan, Italy

Anna Bernasconi (3)
Dipartimento di Informatica,
University of Pisa, Italy

Philip Bille (6)
Technical University of Denmark,
Lyngby, Denmark

Nathaniel K. Brown (10)
Department of Computer Science, Johns
Hopkins University, Baltimore, MD, USA

Giovanni Buzzega (20)
Department of Computer Science,
University of Pisa, Italy

Marie-Pierre Béal (14)
Univ. Gustave Eiffel, CNRS, LIGM,
Champs-sur-Marne, France

Giuseppa Castiglione (5)

Dipartimento di Matematica e Informatica,

Universita di Palermo, Italy

Huiping Chen 9)
University of Birmingham, UK

Xiaoyang Chen (1)
Department of Computer Science, Xidian
University, Xi’an, China

Alessio Conte (19, 20)
University of Pisa, Italy

Nicola Cotumaccio (17)
University of Helsinki, Finland

Maxime Crochemore (14)
Univ. Gustave Eiffel, CNRS, LIGM,
Champs-sur-Marne, France;

King’s College London, UK

Massimo Equi (7)
Aalto University, Finland

Paolo Ferragina (15)

Department L’EMbeDS, Sant’Anna School of
Advanced Studies, Pisa, Italy;

Department of Computer Science,

University of Pisa, Italy

Manuela Flores (5)
Dipartimento di Bioscienze e Territorio,
Universita del Molise, Campobasso, Italy

Travis Gagie (10)
Faculty of Computer Science,
Dalhousie University, Halifax, Canada

Dora Giammarresi (5)
Dipartimento di Matematica,
Universita Roma “Tor Vergata”, Italy

Raffaele Giancarlo (15)
Department of Mathematics and Computer
Science, University of Palermo, Italy

Veronica Guerrini (20)
Department of Computer Science,
University of Pisa, Italy

Inge Li Ggrtz (6)
Technical University of Denmark,
Lyngby, Denmark

Hongwei Huo (1)
Department of Computer Science,
Xidian University, Xi’an, China

Giuseppe F. Italiano (4)
LUISS University, Rome, Italy

Seungbum Jo (12)
Chungnam National University,
Daejeon, South Korea

Manas Jyoti Kashyop (4)
Indian Institute of Technology Bhubaneswar,
India

Yasuaki Kobayashi (8)
Faculty of Information Science and Technology,
Hokkaido University, Sapporo, Japan

Athanasios L. Konstantinidis (4)
University of Ioannina, Greece

Kazuhiro Kurita (19)
Nagoya University, Japan
Dominik Koppl (8)
Department of Informatics,
Yamanashi University, Japan

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8003-9225
https://doi.org/10.4230/OASIcs.Grossi.6
https://orcid.org/0000-0002-6487-8619
https://doi.org/10.4230/OASIcs.Grossi.5
https://orcid.org/0000-0002-2319-0375
https://doi.org/10.4230/OASIcs.Grossi.11
https://orcid.org/0000-0001-6647-088X
https://doi.org/10.4230/OASIcs.Grossi.9
https://orcid.org/0000-0003-0263-5221
https://doi.org/10.4230/OASIcs.Grossi.3
https://orcid.org/0000-0002-1120-5154
https://doi.org/10.4230/OASIcs.Grossi.6
https://orcid.org/0000-0002-6201-2301
https://doi.org/10.4230/OASIcs.Grossi.10
https://orcid.org/0000-0002-4117-5312
https://doi.org/10.4230/OASIcs.Grossi.20
https://orcid.org/0000-0002-0089-1486
https://doi.org/10.4230/OASIcs.Grossi.14
https://orcid.org/0000-0002-1838-9785
https://doi.org/10.4230/OASIcs.Grossi.5
https://orcid.org/0000-0003-1782-667X
https://doi.org/10.4230/OASIcs.Grossi.9
https://orcid.org/0000-0003-1858-2400
https://doi.org/10.4230/OASIcs.Grossi.1
https://orcid.org/0000-0003-0770-2235
https://doi.org/10.4230/OASIcs.Grossi.19
https://doi.org/10.4230/OASIcs.Grossi.20
https://orcid.org/0000-0002-1402-5298
https://doi.org/10.4230/OASIcs.Grossi.17
https://orcid.org/0000-0003-1087-1419
https://doi.org/10.4230/OASIcs.Grossi.14
https://orcid.org/0000-0001-8609-0040
https://doi.org/10.4230/OASIcs.Grossi.7
https://orcid.org/0000-0003-1353-360X
https://doi.org/10.4230/OASIcs.Grossi.15
https://orcid.org/0000-0001-5676-6900
https://doi.org/10.4230/OASIcs.Grossi.5
https://orcid.org/0000-0003-3689-327X
https://doi.org/10.4230/OASIcs.Grossi.10
https://orcid.org/0000-0001-6100-9904
https://doi.org/10.4230/OASIcs.Grossi.5
https://orcid.org/0000-0002-6286-8871
https://doi.org/10.4230/OASIcs.Grossi.15
https://orcid.org/0000-0001-8888-9243
https://doi.org/10.4230/OASIcs.Grossi.20
https://orcid.org/0000-0002-8322-4952
https://doi.org/10.4230/OASIcs.Grossi.6
https://orcid.org/0000-0002-5436-1851
https://doi.org/10.4230/OASIcs.Grossi.1
https://doi.org/10.4230/OASIcs.Grossi.4
https://orcid.org/0000-0002-8644-3691
https://doi.org/10.4230/OASIcs.Grossi.12
https://orcid.org/0000-0002-5727-5406
https://doi.org/10.4230/OASIcs.Grossi.4
https://orcid.org/0000-0003-3244-6915
https://doi.org/10.4230/OASIcs.Grossi.8
https://orcid.org/0009-0001-5566-5187
https://doi.org/10.4230/OASIcs.Grossi.4
https://orcid.org/0000-0002-7638-3322
https://doi.org/10.4230/OASIcs.Grossi.19
https://orcid.org/0000-0002-8721-4444
https://doi.org/10.4230/OASIcs.Grossi.8
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xxx

Authors

Luigi Laura (11)
International Telematic University Uninettuno,
Rome, Italy

Grigorios Loukides 9)
King’s College London, UK

Maria Madonia (5)
Dipartimento di Matematica e Informatica,
Universita di Catania, Italy

Sabrina Mantaci (5)
Dipartimento di Matematica e Informatica,
Universita di Palermo, Italy

Giovanni Manzini (10, 15)
Department of Computer Science,
University of Pisa, Italy

Roberto Marangoni (18)
Department of Biology,
University of Pisa, Italy

Andrea Marino (19)
University of Florence, Italy

Yasuko Matsui (8)
Department of Mathematical Sciences,
Tokai University, Japan

Veli Mékinen (2)
Department of Computer Science,
University of Helsinki, Finland

Gonzalo Navarro (6, 10)

Department of Computer Science,
University of Chile, Santiago, Chile;

Center for Biotechnology and Bioengineering
(CeBiB), Santiago, Chile

Yakov Nekirch (16)
Michigan Technological University,
Houghton, MI, USA

Hirotaka Ono (8)
Department of Mathematical Informatics,
Nagoya University, Japan

Alessio Orlandi (11)
Google, Ziirich, Switzerland

Dario Ostuni (11)
Universita degli Studi di Milano, Italy

Linda Pagli 3)
Dipartimento di Informatica,
University of Pisa, Italy

Nadia Pisanti (2)
Universita di Pisa, Italy

Solon P. Pissis (9)
CWI, Amsterdam, The Netherlands;
Vrije Universiteit, Amsterdam, The Netherlands

Simon J. Puglisi (6)
Department of Computer Science,
University of Helsinki, Finland

Giulia Punzi (19, 20)
University of Pisa, Italy

Romeo Rizzi (11)
Universita di Verona, Italy

Nicola Rizzo (2)
Department of Computer Science,
University of Helsinki, Finland

Giovanna Rosone (15, 20)
Department of Computer Science,
University of Pisa, Italy

Kunihiko Sadakane (13)
The University of Tokyo, Japan

Toshiki Saitoh (8)

School of Computer Science and Systems
Engineering, Kyushu Institute of Technology,
Fukuoka, Japan

Srinivasa Rao Satti (12)
Norwegian University of Science and Technology,
Trondheim, Norway

Marinella Sciortino (10)
Department of Mathematics and Computer
Science, University of Palermo, Italy

Lorenzo Tattini (20)
EURECOM, Biot, France;
CNRS UMR 7284, INSERM U 1081,
Université Cote d’Azur, Nice, France

Sharma V. Thankachan (16)
North Carolina State University,
Raleigh, NC, USA

Takeaki Uno (19)
National Institute of Informatics, Tokyo, Japan

Yushi Uno (8)
Graduate School of Informatics,
Osaka Metropolitan University, Japan

Rossano Venturini (15)
Department of Computer Science,
University of Pisa, Italy

Luca Versari (11)
Google, Ziirich, Switzerland

https://orcid.org/0000-0001-6880-8477
https://doi.org/10.4230/OASIcs.Grossi.11
https://orcid.org/0000-0003-0888-5061
https://doi.org/10.4230/OASIcs.Grossi.9
https://orcid.org/0000-0002-3616-3173
https://doi.org/10.4230/OASIcs.Grossi.5
https://orcid.org/0000-0002-9200-0520
https://doi.org/10.4230/OASIcs.Grossi.5
https://orcid.org/0000-0002-5047-0196
https://doi.org/10.4230/OASIcs.Grossi.10
https://doi.org/10.4230/OASIcs.Grossi.15
https://orcid.org/0000-0002-6603-6984
https://doi.org/10.4230/OASIcs.Grossi.18
https://orcid.org/0000-0002-9854-7885
https://doi.org/10.4230/OASIcs.Grossi.19
https://orcid.org/0009-0007-0790-1425
https://doi.org/10.4230/OASIcs.Grossi.8
https://orcid.org/0000-0003-4454-1493
https://doi.org/10.4230/OASIcs.Grossi.2
https://orcid.org/0000-0002-2286-741X
https://doi.org/10.4230/OASIcs.Grossi.6
https://doi.org/10.4230/OASIcs.Grossi.10
https://doi.org/10.4230/OASIcs.Grossi.16
https://orcid.org/0000-0003-0845-3947
https://doi.org/10.4230/OASIcs.Grossi.8
https://orcid.org/0009-0001-1501-7986
https://doi.org/10.4230/OASIcs.Grossi.11
https://orcid.org/0000-0002-7275-8123
https://doi.org/10.4230/OASIcs.Grossi.11
https://orcid.org/0000-0003-3717-3952
https://doi.org/10.4230/OASIcs.Grossi.3
https://orcid.org/0000-0003-3915-7665
https://doi.org/10.4230/OASIcs.Grossi.2
https://orcid.org/0000-0002-1445-1932
https://doi.org/10.4230/OASIcs.Grossi.9
https://orcid.org/0000-0001-7668-7636
https://doi.org/10.4230/OASIcs.Grossi.6
https://orcid.org/0000-0001-8738-1595
https://doi.org/10.4230/OASIcs.Grossi.19
https://doi.org/10.4230/OASIcs.Grossi.20
https://orcid.org/0000-0002-2387-0952
https://doi.org/10.4230/OASIcs.Grossi.11
https://orcid.org/0000-0002-2035-6309
https://doi.org/10.4230/OASIcs.Grossi.2
https://orcid.org/0000-0001-5075-1214
https://doi.org/10.4230/OASIcs.Grossi.15
https://doi.org/10.4230/OASIcs.Grossi.20
https://orcid.org/0000-0002-8212-3682
https://doi.org/10.4230/OASIcs.Grossi.13
https://orcid.org/0000-0003-4676-5167
https://doi.org/10.4230/OASIcs.Grossi.8
https://orcid.org/0000-0003-0636-9880
https://doi.org/10.4230/OASIcs.Grossi.12
https://orcid.org/0000-0001-6928-0168
https://doi.org/10.4230/OASIcs.Grossi.10
https://orcid.org/0000-0002-5477-084X
https://doi.org/10.4230/OASIcs.Grossi.20
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.4230/OASIcs.Grossi.16
https://orcid.org/0000-0001-7274-279X
https://doi.org/10.4230/OASIcs.Grossi.19
https://doi.org/10.4230/OASIcs.Grossi.8
https://orcid.org/0000-0002-9830-3936
https://doi.org/10.4230/OASIcs.Grossi.15
https://orcid.org/0000-0003-3495-1325
https://doi.org/10.4230/OASIcs.Grossi.11

Authors

Jeffrey Scott Vitter (1, 15)
Department of Computer Science,

Tulane University, New Orleans, LA, USA;
The University of Mississippi, MS, USA

Yujia Wang (1)
Department of Computer Science, Xidian

University, Xi’an, China

Kunihiro Wasa (19)
Hosei University, Tokyo, Japan

0:xxxi

Grossi's Festschrift

https://orcid.org/0000-0001-7970-6118
https://doi.org/10.4230/OASIcs.Grossi.1
https://doi.org/10.4230/OASIcs.Grossi.15
https://orcid.org/0009-0001-3105-519X
https://doi.org/10.4230/OASIcs.Grossi.1
https://orcid.org/0000-0001-9822-6283
https://doi.org/10.4230/OASIcs.Grossi.19

An Efficient Heuristic for Graph Edit Distance

Xiaoyang Chen &

Department of Computer Science, Xidian University, Xi’an, China
Yujia Wang &

Department of Computer Science, Xidian University, Xi’an, China

Hongwei Huo! &

Department of Computer Science, Xidian University, Xi’an, China

Jeffrey Scott Vitter! =

Department of Computer Science, Tulane University, New Orleans, LA, USA
The University of Mississippi, MS, USA

—— Abstract

The graph edit distance (GED) is a flexible distance measure widely used in many applications.
Existing GED computation methods are usually based upon the tree-based search algorithm that
explores all possible vertex (or edge) mappings between two compared graphs. During this process,
various GED lower bounds are adopted as heuristic estimations to accelerate the tree-based search
algorithm. For the first time, we analyze the relationship among three state-of-the-art GED lower
bounds, label edit distance (LED), Hausdorff edit distance (HED), and branch edit distance (BED).
Specifically, we demonstrate that BED(G, Q) > HED(G, Q) and BED(G, Q) > LED(G, Q) for any
two undirected graphs G and Q. Furthermore, for BED we propose an efficient heuristic BED™ for
improving the tree-based search algorithm. Extensive experiments on real and synthetic datasets
confirm that BED™ achieves smaller deviation and larger solvable ratios than LED, HED and BED
when they are employed as heuristic estimations. The source code is available online.

2012 ACM Subject Classification Information systems — Query optimization

Keywords and phrases Graph edit distance, Label edit distance, Hausdorff edit distance, Branch
edit distance, Tree-based search, Heuristics

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.1
Category Research

Supplementary Material
Software (Source Code): https://github.com/Hongweihuo-Lab/Heur-GED [11]

Funding This work was supported in part by the National Natural Science Foundation of China
under Grant No. 62272358.

1 Introduction

Graphs are frequently used to represent a wide variety of various objects, such as networks,
maps, handwriting, molecular compounds, and protein structures. The process of evaluating
the similarity of two graphs is referred to as error-tolerant graph matching, aiming to find a
correspondence between their vertices. In this paper, we focus upon the similarity measure
graph edit distance (GED) because it can be applied to all types of graphs and can precisely
capture structural differences between the compared graphs. The GED of two graphs is
defined as the minimum cost of transforming one graph into another through a sequence

b corresponding author

© Xiaoyang Chen, Yujia Wang, Hongwei Huo, and Jeffrey Scott Vitter;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 1; pp. 1:1-1:18

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jackcxy@126.com
https://orcid.org/0000-0003-1858-2400
mailto:upcheers@gmail.com
https://orcid.org/0009-0001-3105-519X
mailto:hwhuo@mail.xidian.edu.cn
https://orcid.org/0000-0002-5436-1851
mailto:jsv@vitter.org
https://orcid.org/0000-0001-7970-6118
https://doi.org/10.4230/OASIcs.Grossi.2025.1
https://github.com/Hongweihuo-Lab/Heur-GED
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

1:2

An Efficient Heuristic for Graph Edit Distance

of edit operations (inserting, deleting and substituting vertices or edges). An edit cost is
assigned to each edit operation to measure its strength, which can be obtained by combining
specific knowledge of the domain or learning from a set of sample graphs [14].

However, computing the GED is an NP-hard problem [30] and usually based upon the
tree-based search algorithm. This search tree enumerates all possible mappings between
vertices (or edges) of two compared graphs, where the inner nodes denote partial mappings
and the leaf nodes denote complete mappings. Most existing GED computation methods
employ different search paradigms to traverse this search tree to seek for the optimal mapping
that induces the GED. Riesen et al. [25, 26] proposed the standard method, A*-GED, based
upon the best-first search paradigm. It needs to store numerous inner nodes, resulting in
high memory consumption. To overcome this bottleneck, Abu-Aisheh et al. [3] proposed a
depth-first search based algorithm, DF-GED, whose memory requirement increases linearly
with the number of vertices of graphs. On the other hand, Chen et al. [9] introduced a method
for the GED computation based upon beam-stack search [28], achieving a flexible tradeoff
between memory consumption and the time overhead of backtracking in the depth-first
search. Chang et al. [8] developed a unified framework that can be instantiated into either a
best-first search approach or a depth-first search approach. Gouda et al. [17] proposed a novel
edge-mapping based approach, CSI_GED, and also employed the depth-first search paradigm.
CSI_GED works only for the uniform cost model, and Blumenthal et al. [4, 6] generalized
it to cover the non-uniform cost model. Kim [19] developed an efficient GED computation
algorithm using isomorphic vertices [9]. Liu et al. [22] explored a learning-based method
for the approximate GED computation. Piao et al. [23] propose a deep learning method for
the GED computation. It is worth mentioning that many researchers have proposed various
indexing techniques [31, 8, 10] to accelerate graph similarity searches under the GED metric.
They use the above GED computation methods as the final phase to verify the candidate
graphs that satisfy the GED constraint.

In the tree-based search algorithm, a heuristic estimation is usually adopted to prune the
useless search space to accelerate the search process. In order to ensure that the optimal
mapping is not erroneously pruned, this heuristic function must be admissible; namely, it
estimates the cost of a tree node that is less than or equal to the real cost. In the previous
works A*-GED and DF-GED, they adopted the label edit distance (LED) as the heuristic, which
calculates the minimum substitution cost of vertices and edges of two compared graphs.
After that, Fischer et al. [15, 16] proposed the Hausdorff edit distance (HED) as a heuristic
estimation. HED, based upon Hausdorff matching [29], performs a bidirectional matching
between two graphs and allows multiple assignments between their vertices. Recently,
Blumenthal et al. [5] proposed another effective GED lower bound, branch edit distance
(BED), which also can be adopted as a heuristic estimation.

As observed in other studies [7, 15, 27], the higher the heuristic estimates the cost, the
better the tree-based search algorithm performs. The following question naturally arises:
Which of these three state-of-the-art GED lower bounds (namely, LED, HED, or BED) is more
effective? In this paper, we first analyze the relationship among these three lower bounds and
then propose an effective heuristic estimation. Our contributions are summarized as follows:
(1) We analyze the relationship among LED, HED and BED for the first time, and we derive

that BED(G,Q) > HED(G, Q) and BED(G,Q) > LED(G, Q) for any two undirected

graphs G and Q.

(2) We propose an efficient heuristic estimation BED" based upon BED, and demonstrate
that BED™ is still admissible.
(3) We conduct extensive experiments to confirm BED’s effectiveness on the real and

synthetic datasets. The source code is available online [11].

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

The rest of this paper is organized as follows. In Section 2, we give the definition of the
graph edit distance and revisit three state-of-the-art GED lower bounds. In Section 3, we
theoretically analyze the relationship between LED, HED and BED. In Section 4, we propose
the heuristic function BEDT for improving the GED computation. In Section 5, we report
the experimental results. Finally, we summarize this paper in Section 6.

2 Graph edit distance

In this paper, we consider undirected, labeled graphs without multi-edges or self-loops. A
labeled graph is a triplet G = (Vg, Fq, L), where Vi is the set of vertices, E¢ is the set of
edges, L : Vg U Eg — X is a labeling function that assigns a label to a vertex or an edge,
and ¥ is a set of labels. Also, we use a special symbol ¢ to denote a dummy vertex or a
dummy edge.

Given two graphs G and @, six edit operations [18, 25, 21, 5] can be used to transform G
to @ (or vice versa): inserting or deleting a vertex or an edge, and substituting the label
of a vertex or an edge. We denote the label substitution (or simply substitution) of vertices
u € Vg and v € Vg by (u — v), the deletion of u by (u — ¢), and the insertion of v by
(e — v). For the three edit operations on edges, we use similar notation.

An edit path P = (p1,p2,...,pk) between G and @ is a sequence of edit operations that
transforms G to Q, such as G = G0 2 .. gt 22 gitl 25, Gk — . where graph Git!
is obtained by performing the edit operation p;y; on graph G*, for 0 < i < k — 1. During
this transformation, each edit operation p; is assigned a penalty cost ¢(p;) to reflect whether
it can strongly change a graph. Note that the cost of editing two dummy vertices (or edges)
is 0; that is, ¢c(¢ = ¢) = 0. Thus, P’s edit cost is defined as Zle c(pi). We define the graph
edit distance as follows:

» Definition 1. Given two graphs G and Q, the graph edit distance between them, denoted
by ged(G,Q), is defined as the minimum cost of transforming G to Q, namely,

9ed(G, Q) = minper(c,q) >, __ cpi) (1)

p; €P

where T (G, Q) is the set of all edit paths between G and Q, and c(p;) is edit operation p;’s
cost.

Vol

Hereafter, for ease of presentation, we denote V& = Vg U {e,... e} and Vg =VoU
Vel

—_—
{e,..., e} as the expanded sets of Vz and E¢, respectively, so that V5 and V§ have the same
|Eq] |Ec|
— —
number of vertices. Similarly, EG = Eg U {e,...,e} and Ef = Eq U {e, ..., e} denote the
expanded sets of Eg and Eg, respectively.

2.1 State-of-the-art GeED lower bounds

Below we introduce three state-of-the-art GED lower bounds, which can be used as heuristic
estimations in the tree-based search algorithm to compute GED. Each of the methods gives a
lower bound on GED because the operations are done in sets that do not have to be consistent
with one another. For example, in the first method LED described below, the edit operations
on the vertex labels can be done independently of the edit operations on the edge labels, and
thus they may not be globally consistent.

1:3

Grossi's Festschrift

1:4

An Efficient Heuristic for Graph Edit Distance

Label Edit Distance. Riesen et al. [27, 26] proposed the label edit distance (LED), which is
the minimum cost of substituting vertices and edges of two graphs.

» Definition 2 (Label edit distance). Given two graphs G and @Q, the label edit
distance between them is defined as LED(G,Q) = M/ (G,Q) + Ap(G,Q), where
aw(G,Q) = ming.ve ve Zuevg c(lu — o(u)) is the minimum cost of sub-
stituting wvertices of G and Q, and ¢ is a bijection from V5 to V§; and
Ae(G, Q) = ming. ge - By Ze(u,u')eEg cle(u,u') = p(e(u,u’))) is the minimum cost of sub-
stituting edges of G and Q, and ¢ is a bijection from Eg, to Eg,.

Hausdorff Edit Distance. Inspired by the Hausdorff distance [29] between two finite sets,
Fischer et al. [16] proposed the Hausdorff edit distance (HED) between two graphs G and Q.
The key ideas of HED are to perform a bidirectional matching between G and @ and to allow
multiple assignments between their vertices.

» Definition 3 (Hausdorff edit distance). Given two graphs G and Q, their
Hausdorff edit distance is defined as HED(G,Q) = 3 oy, minyev,uey fu(u,v) +
Z%VQ min,evyuqe) fr(u,v), where frg(u,v) is the Hausdorff cost of matching vertex u
to verter v.

The Hausdorff vertex matching cost fr(u,v) considers not only the two vertices u € Vg
and v € Vg but also their neighboring edges.

» Definition 4 (Neighboring edges). Given graph G and a vertex u € Vg, the neighboring
edges N, of u are defined as N, = {e(u,u’) : ' € Vg ANe(u,u') € Eg}.

We define fy(u,v) as

clu—e)+ . en, @ if v=rg¢;
fa(u,v) =19 cle =v)+>0, cn, C(EgeZ) if u=e¢; (2)

HED(Ny ,Ny)
2

2

c(u—v)+

otherwise.

Similarly to Definition 3, the Hausdorff edit distance HED(N,,, N,,) between N,, and N, is
defined as

HED(N,, N,) = i , i , 3
() e;\/ ezefj{}iful{e}fH(ﬁ €2)+€;\[elerﬁig{a}fH(el e2) (3)

where fr(e1,es) is the cost of matching two edges such that

cler —e) if eg =¢;
fuler,e2) =< cle > e2) if eg =g (4)

c(e1—e .
w otherwise.

Branch Edit Distance. Blumenthal et al. [5] recently proposed the branch edit distance
(BED), which computes the minimum cost of editing branch structures of two graphs.

» Definition 5 (Branch structure). The branch structure of vertex w in graph G is defined as
B, = (u, Ny), where N, is the set of neighboring edges of u.

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

Given two branch structures B, and B,, the minimum cost of editing B, into B, is
defined as

B 1 . / /
ol =cum g i 3 el el (5)

[N [V |
where N = N, U{e,...,e} and N = N, U {e,...,e} are expanded sets of N,, and N,,

respectively, and g is a bijection from NS to N:.

» Definition 6 (Branch edit distance). Given two graphs G and Q, the branch edit distance
between them is defined as BED(G,Q) = min,:vevs Zuevé fB(u, p(u)), where p is a
bijection from V¢ to V5, and fp(-,-) is defined in (5).

3 Tightness analysis

In this section, we analyze the tightness of the three GED lower bounds: LED, HED and BED.
Specifically, we will prove that BED is the strongest of all; that is, for any two undirected
graphs G and @, we have BED(G,Q) > LED(G, Q) and BED(G,Q) > HED(G, Q).

3.1 Relation of LED and BED
» Theorem 7. Given two graphs G and Q, we have BED(G,Q) > LED(G, Q).

Proof. For ease of proof, we insert dummy vertices and edges into G to make it become a
complete graph with (|Vg| + [Vgl|) vertices. Similarly, we transform) into a complete graph
that also has (|Vg| + |Vg|) vertices. Then, we can simplify (5) as

B 1 . / ’
a0 =ea o)t i, S el o)

1 . ’ ’
=c(u—v)+ 3 C:VG\{IILI}}E}VQ\{’U} u,e‘%{u} cle(u,u’) = e(v,((u)))
= c(u = v) + % > ele(u,u) = e(v, Grin (@)

u' €Ve\{u}

u,v
min

where is the bijection from Vg \{u} to Vo\{v} for which fg(u,v) achieves the minimum

value. Thus, we have
BED(G,Q)= min > fp(u,p(u))

Va—V
pve QuGVG

5 {etus o)+ 5 X eleluanr) - elpinlu). G2 0}

uEVe u' €Vg\{u}
1 w,u’
= > c(u— puin(w) + 3 Do > ele(u,) = e(pmin(w), G ()
ueVa ueVeg u' eVg\{u}
= > clu=pun(w)+ D cle(u,u) = E(e(u,u)))
ueVeg e(u,u’)EEqG
> . . / /
- ¢2‘}2£va UEZV:G C(U ~ ¢(U)) + <p:Er2E>1EQ e(u uZ’:)GEG C(e(u, B) - Sp(e(u, B))

=M (G,Q) + Ae(Eg, Eq) = LED(G, Q)

1:5

Grossi's Festschrift

1:6

An Efficient Heuristic for Graph Edit Distance

where puin is the bijection from Vi to Vg for which BED(G, Q) achieves the minimum
value, and ¢ is the bijection from E¢ to Eq satisfying e(pmin(u), (i (u'))) = &(e(u, u’)) for

Vu € Vg, u' € Va\{u}. <
3.2 Relation of HED and BED

> Lemma 8. Given two vertices u € V& and v € V§, then we have

F(u.v) < { {B(uw) ifuzforvzs;
5fB(u,v) otherwise.
where fr(u,v) and fp(u,v) are defined in (2) and (5), respectively.
The proof of Lemma 8 is in Appendix A.
» Theorem 9. Given two graphs G and @, we have BED(G,Q) > HED(G, Q).

Proof. By fr(u,v)’s definition in (2), we know that when u = ¢, min,ev,u(e} fu(e,v) =
Ju(g,€) = 0; and similarly when v = ¢, minyev,uqey fr(u, €) = fu(e,€) = 0. We can rewrite
HED(G, Q) as

HED(G = i i
(G,Q) > ve‘rglg{s}fH(u,v)Jr > peiin fa(u,v)
ueVg veVg
= D min fa(wv)+) min fia(u,0)
uevg @ veV§
= Y fulu,m@)+ Y fulm(v),v))
ueVg VeV
= Z {fH(u7 1 (u)> + fH (7T2(pmin(u))a pmin(u)) }7 (6)
ueVE
where 71 is a mapping from V§ to V§ satisfying 1 (u) = arg minyevg fu(u,v),; mo is

a mapping from V§ to V¢ satisfying ma(v) = argminyevg fu(u,v); and pmin is the bijection
from V§ to V{5 for which BED(G, Q) achieves the minimum value. We know that

BED(G,Q) = Y f5(u, pmin(w)). (7)

ueVes
By (6) and (7), we can complete the proof by showing that

fH (u’ 1 (u>) + fH (772 (pmin(u)>7 Pmin (u)) < fB (u’ Pmin (u))

We do so by considering the following four exhaustive cases:

Case I. When u = ¢ and pmin(u) =& then fH(uaﬂ-l(u)) + fH(ﬂ-Q(pmin(u))?pmin(u)) <
fule,e) + fule,e) = fp(e,e) = 0, by the definitions of 71, 72, and pPmin.

Case Il. When u # ¢ and ppmin(u) = ¢, then fg(u,m1(v)) + fu(m2(pmin (1)), Pmin (u)) <
fu(u,e)+ fu(e,e) = fu(u,e), by the definitions of w1, 72, and pmyin. By Lemma 8, we
know that fr(u,e) < fp(u,e) = fB(u, pmin(w)).

Case Ill. When u = ¢ and ppin(u) # €, the analysis is similar to that of Case II.

Case IV. When u # ¢ and pmin(u) # €, then we have fg(u, 71 (uw)) < fr(u, pmin(u)) and
fr(m2(pmin (1)), pmin (@) < fH (U, pmin(w)), by the definitions of my, 72, and pmin. By
Lemma 8, we know that fr (u, pmin()) < 3 f5(u, pmin(u)). Thus, we have fp(u, w1 (u)) +
fu (7T2(pmin(u))7pmin(“)) <2x %fB(uvpmin(u)) = fB (U, pmin(u)). <

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

4 Tree-based search algorithm

The previous section showed that BED achieves the tightest GED lower bound. In this section,
based upon BED we propose an efficient heuristic estimation to improve the tree-based search
algorithm [2, 3] for the GED computation.

4.1 Search tree

Computing the GED of graphs G and (@ is typically based upon a tree-based search procedure
that explores all possible graph mappings from G to . Starting from a dummy node, root
= (), we logically create the search tree layer by layer by iteratively generating successors
using BasicGenSuccr [9]. This search space can be organized as an ordered search tree, where
the inner nodes denote partial graph mappings and the leaf nodes denote complete graph
mappings. Such a search tree is created dynamically at runtime by iteratively generating
successors linked by edges to the currently considered node. For more details, please refer to
Section 2 in the reference [9].

4.2 Heuristic cost estimation

For a node r in the search tree, let h(r) be the estimated cost from r to its descendant
leaf node that is less than or equal to the real cost. Based upon BED, we introduce how to
estimate h(r) in the tree-based search algorithm.

4.2.1 Heuristic function

Consider an inner node r = {(u1 — vj,),..., (w — v;,)}, where vj, is ux’s mapped vertex,
for 1 < k < ¢. We divide G into two subgraphs G} and G2, where G! is the mapped part
of G such that Vg1 = {uy,...,w} and Eg1 = {e(u,v) : u,v € Vg1 Ae(u,v) € Eg}, and G? is
the unmapped part such that Vgz = Vo \Ver and Egz = {e(u,v) : u,v € Vgz Ae(u,v) € Eg}.
We obtain Q! and Q2 similarly.

Clearly, the lower bound BED(G?,@Q?) can be used to estimate r’s cost. However,
BED(G?,Q?) has not covered the potential edit cost on the edges between Gl (resp., Q1)
and G? (resp., Q?). Recently, [8, 9] proposed two different methods to cover this potential
cost; nevertheless, these two methods only worked for the uniform cost function (i.e., for
which the cost of each edit operation is 1). We expand the method in [8] to support for any
cost function.

» Definition 10. Given vertices u € G2 and v € Q?, we define the cost of matching u to v
as f3(u,v) = felu,v) + Zu’evcl cle(u,u’) — e(v,v")), where v’ is the mapped vertex of the
already processed verter u', and fg(u,v) is the minimum cost of transforming B, to B,,
which we defined in (5).

When there is no edge between u and ', we set e(u, u') = ¢, and similarly for e(v,v").
Based upon f7 (u,v), we define the improved lower bound BED* as

T2 H2) : +
BED*(G2,Q?) = GXV: I (u, p(u) 8)

» Theorem 11. Given a node r in the GED tree of graphs G and Q, then BEDT(G?,Q?) >
BED(G?,Q2), where G2 and Q? are the unmapped subgraphs of G and Q, respectively,
BED™(-,-) and BED(-,-) are defined in (8) and Definition 6, respectively.

1:7

Grossi's Festschrift

1:8

An Efficient Heuristic for Graph Edit Distance

Proof. We trivially obtain this theorem since f3 (u,v) > f5(u,v) for Vu € Vg2, v € V2. <

» Theorem 12. Given a descendant leaf node s of r, the heuristic estimation h(r) =
BED™(G?,Q?) is admissible; that is, h(r) < g(s) — g(r), where g(-) gives the incurred cost
from the root node to the currently considered node.

Proof. For ease of proof, we insert dummy vertices and edges into G to transform it to a
complete graph with (|Vg| + |Vg|) vertices. Similarly, we transform @) to a complete graph
that also has (|Vg| + |Vgl) vertices.

Consider an internal node r = {(u1 — v;,),..., (ug — v;,)} in the search tree, where v;,
is the mapped vertex of ug, for 1 < k < £. For easy presentation, hereafter we use r(uy) to
denote ug’s mapped vertex, i.e., vj, = r(ux). Given a descendent leaf node s (i.e., s is a
complete vertex mapping from G to @) of r, then the incurred cost of s is

o)=Y clwrs@) + 5 3 S lelwu) > els(u),s(w))

u€Va u€Vag u' eVg\{u} (9)
= Z c(u — s(u)) + Z cle(u,u") — e(s(u), s(u)))
ueVa e(u,u’)e(vzg)

As we know, 7 induces an edit path transforming G} to QL, where G and Q! are the
already mapped subgraphs of G and @Q, respectively, and Vg1 = {u1,...,up} and Vo1 =
{r(u1),...,r(ug)}. According to (9), we know that

giry= Y clu—=r@) + D elelu) = e(r(u), ()

\Y
UGVG} e(u,u/)e(C;%)

Let w = s\r be the partial mapping that contains the vertex mapping pairs belong to s
but not r; namely, w = {(u — s(u)) : u € Vg\Vg1}. We can obtain that

g(s) —glr)= D clu—=s) + Y eleluu) = e(s(u),s(w)))

u€Vq e(u,u/)e(VQG)
—{ Sooclw—r) + > cle(uu) — e(r(u),r(u')))}
uEVGT{ e(u,M)E(V‘-;’l)
= Z c(u — w(u)) + Z cle(u,u') — e(w(u),w(u’)))
uGVGfﬁ e(u,u’)e(vé"?«)

+ Z Z cle(u,u') = e(w(u),r(u')))

’
uGVG% u EDG}

= Z {c(u — w(u)) + % Z cle(u,u’) = e(w(u),w(u’)))
= W eVgz\{u}
b eleluat) > el) |
u’EVGi

= Y Silnwt) > min o) = BED*(GEQ2) = hir)
UGVG% e Q7

where Vg2 = Vg\Vgr and Vg2 = V\V:. The second equality is due to (VQG) = (Vgl) U

(Vgi) U (Ve x Vgz) when Vg is partitioned into two disjoint sets Vg1 and V. <

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

We give an example in Appendix B of computing three GED lower bounds: LED, HED
and BED. The same optimization that produces BED+ from BED can be applied to LED
and HED to achieve enhanced heuristics LED+ and HED+, but we do not include them in
this paper.

4.3 Algorithm

In this section, we show how to incorporate the heuristic estimation BED™ into the anytime-
based GED computation algorithm [2]. The reason we consider the anytime-based algorithm
is that it is flexible and can control the algorithm to output tighter and tighter GED upper
bounds until the exact GED value by setting more and more running time.

Algorithm 1 gives the anytime-based algorithm for computing the GED, where t;,.x is the
user-defined maximum running time. We perform a depth-first search over the GED search
tree of G and @ to find better and better GED upper bounds until the running time #t
reaches tax. To accomplish this, we first employ the BP [25] algorithm to fast compute an
initial GED upper bound ub; then, we adopt a stack S to finish the depth-first search. Each
time we pop a node g from S. If ¢ is a leaf node, then we find a better solution. Otherwise,
we call procedure BasicGenSuccr [9] (see Appendix C) to generate ¢’s successors and then
insert them into S. During this process, we adopt the branch-and-bound strategy to prune
the useless space: for each successor r, if g(r) + h(r) > ub, we can safely prune it, where
h(r) = BED"(G?,Q?) is defined in (8).

Algorithm 1 Anytime-based GED computation.

Input :G and @, and tmax

Output : best GED upper bound for tmax
initialize ub with the BP algorithm

root < {},S < {}

S.push(root)

while S # 0 and #t < tmax do

q + S.pop()

if q is a complete mapping then

ub < g(q), export ub and ¢
continue

© N O oA W N

succ < BasicGenSuccr(q)

foreach r € succ do

if g(r) + h(r) < ub then
‘ S.push(r)

export ub and ¢

e
= O

-
® o

5 Experiments

5.1 Datasets and settings

Datasets. We chose four real (GREC, MUTA, PRO, and CMU) and one synthetic (SYN)
datasets in the experiments. The datasets GREC, MUTA, and PRO were taken from the TAM
Graph Database Repository [24]; the CMU dataset could be found at the CMU website [13]; and
the SYN dataset was generated by the synthetic graph generator GraphGen [12]. Following
the same procedure in [2, 21], we selected some subsets of GREC, MUTA, and PRO as
the tested datasets, respectively, where each subset consists of graphs that have the same

1:9

Grossi's Festschrift

1:10 An Efficient Heuristic for Graph Edit Distance

Table 1 Summary of characteristics of datasets and cost functions used.

Dataset #Graphs|V| |E| vertex labels edge labels ¢, ¢ « Cos Ces
GREC 40 12.5 17.5 (x,y) coord. Line type 90 15 0.5 Ext. ED Dirac
MUTA 70 40 41.5 Chem. symbol Valence 11 1.1 0.25 Dirac Dirac
PRO 30 30 58.6 Type/AA-seq. Type/length 11 1 0.75 Ext. SED Dirac
CMU 111 30 79.1 None Distance co — 05 0 L1 norm
SYN 100 14.5 20 Symbol Symbol 0.3 0.5 0.75 Dirac Dirac

number of vertices. Specifically, the subsets of CREC contain 5, 10, 15, and 20 vertices,
respectively; the subsets of MUTA contain 10, 20, ..., 70 vertices, respectively; the subsets
of PRO contain 20, 30, and 40 vertices, respectively; and each subset consists of 10 graphs.

Table 1 summarizes the characteristic and applied cost function of each dataset. ED and
SED are short for Euclidean distance and string edit distance functions, respectively. ¢, is
the cost of inserting/deleting a vertex; ¢, is the cost of inserting/deleting an edge; ¢,s and
Ces are the costs of substituting a vertex and an edge, respectively. In addition, we introduce
a parameter « to control whether edit operations on vertices or edges are more important.

Settings. We conducted all the experiments on a HP Z800 PC running the Ubuntu 12.04
LTS operating system and equipped with a 2.67GHz CPU and 24 GB of memory. We
implemented the algorithm in C++, using -O3 to compile and run it.

5.2 Evaluation metrics

We discuss two metrics to evaluate algorithm performance: deviation (dev) [1] and solv-
able ratio (sr) [9]. The metric dev measures the deviation generated by an algorithm.
Formally, given two graphs G and @, the deviation of the two graphs can be computed
as deviation(G, Q) = |dis(G,Q) — R(G,Q)|/R(G,Q), where dis(G, Q) is the (approximate)
GED value produced by the algorithm, and R(G, Q) is the best GED value produced in all
the experiments done on the graph database repository in [1]. Based upon the pairwise
comparison model, the deviation on the dataset G can be computed as

1 ..
dev = m ZGeg ZQeg deviation(G, Q) (10)

The metric sr measures how often the exact GED value is obtained when reaching
the maximum running time threshold ¢,,.x. Formally, let slove(G, @) indicate whether an
algorithm outputs the exact GED of G and) within t,,,x time; in other words, if the
algorithm requires less than t,,.x time to output the GED, slove(G,Q) = 1; otherwise,
slove(G, Q) = 0. The solvable ratio (sr) on the dataset G can be computed as

1
sr =] Zceg ZQEQ slove(G, Q) (11)

Obviously, a smaller dev and a larger sr reflects a better performance of an algorithm.

5.3 Experimental results

As described earlier in this paper, we first analyzed the relation of three GED lower bounds
(i.e., LED, HED and BED). Then based upon BED we proposed an efficient heuristic estimation
BED™T. Thus, it is necessary to evaluate the contribution of these lower bounds to the GED
computation.

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

5.3.1 Tightness of LED, HED and BED

In this section, we evaluate the tightness of three GED lower bounds LED, HED and BED as
well as their running time. Table 2 shows the obtained results, where the abbreviation “ms”
represents milliseconds.

As shown in Table 2, BED achieves the smallest dev, which means that BED is closest
to the exact GED value. This result is consistent with the analysis in Section 3, i.e.,
BED(G, Q) > HED(G, Q) and BED(G, Q) > LED(G, Q) for any two graphs G and Q. We
also find in most cases tthat LED performs better than HED; the reason is that HED allows
multiple assignments between vertices of G and @ and greedily selects matched vertices with
the lowest cost.

We also list the running time of each method in Table 2. It can be seen from this table
that HED runs faster than LED and LED runs faster than BED. The reason is that HED runs
in quadratic time, while both LED and BED run in cubic time. LED independently considers
the cost of substituting vertices and edges and ignores the structures, thus it has a better
running time than BED.

Table 2 Deviation (%) and running time (ms) of LED, HED, and BED.

Datasets LED HED BED
dev time dev time dev time
GREC 4.41 0.38 17.45 0.29 3.54 0.52
MUTA 12.54 1.07 30.13 0.47 11.49 2.72
PRO 4.61 3.75 21.31 2.84 3.25 6.07
CMU 61.56 9.53 57.6 3.77 25.1 13.2
SYN 67.41 0.28 91.92 0.14 46.61 0.45

5.3.2 Effect of heuristic

Observing that BED produces the tighter lower bound than LED and HED, we propose BED™
as a heuristic estimation to improve the GED computation. To achieve the comparison, we
adopted LED, HED, BED, and BED™ as the heuristic estimations, respectively, and fixed the
running time ¢, = 10* ms. Table 3 lists the obtained deviation dev and solvable ration sr.

Table 3 Deviation (%) and solvable ratio (%) of of LED, HED, BED, and BED™.

Datasets LED HED BED BED™
dev sT dev sr dev sr dev ST
GREC 0.36 69.87 0.56 54.38 0.22 67.88 0.01 920
MUTA 5.56 3.47 4.85 3.27 4.49 3.51 2.6 22.33
PRO 1.27 4 0.71 3.56 0.68 4.22 0.06 4.22
CMU 109.89 19.06 49.18 19.06 52.83 31.16 2.97 75.79
SYN 8.79 8.4 9.48 4.18 7.96 7.48 0.17 94.34

From Table 3, we know that using BED™ as a heuristic can produce the smallest dev.
This is due to the fact that BEDT produces a higher estimated bound. For the solvable
ratio sr, we also find that BED™T achieves the best performance.

We also varied the running time #,,.y from 10' ms to 10° ms in order to evaluate the
above heuristic estimations under different running times. From Figure 1, as the running
time tax increases, using the above four heuristic estimations we obtain lower and lower

1:11

Grossi's Festschrift

1:12

An Efficient Heuristic for Graph Edit Distance

deviation dev as well as higher and higher solvable ratio sr. Also, we find in most cases
that BEDT achieves the best dev and sr under both small (e.g., 10> ms) and large (e.g.,
10° ms) running times. Compared with the widely used heuristic estimation LED, using BED*
can decrease the dev by 72.2%, 34.1%, 48.1%, 39.4%, and 52.1% on average on the GREC,
MUTA, PRO, CMU, and SYN datasets, respectively. Using BEDT can increase the sr by
54.3%, 293.2%, 3.4%, 113.1%, and 702.8% on average on the five above datasets, respectively.
Thus, we conclude that using BEDT as a heuristic estimation can greatly improve the GED
computation.

GREC MUTA PRO
r T r r r r r r r r . T T T T T
ALED 2n 1
= a1t g SR | [1
= = = 4| i
2 05f . 2 s5p — 2
= = Z 05| [aLED i
8 5 & OHED
= = - @ BED
of 1 or 1 O mBED* 1
I | I I I I I I I I [I I I I
10" 10% 10* 10t 10° 10! 10* 10° 10t 10° 10! 102 10% 10t 10°
running time #,,0, (ms) running time £, (ms) running time #,,5, (ms)
CMU SYN
r r r r r r r r r r
ALED ALED
150} i 30
= S
< 100} i < 200 1
g g
t=1 i<}
= s0p i = 10p 1
= z
3 3
of - of .
I I I I I I I I I I
10! 10? 10° 10* 10° 10! 102 10° 10* 10°
running time £, (ms) running time #,,5, (ms)
GREC MUTA PRO
r T r r T r r r r r r r r r r
100 | |ALED L ALED ALED
OHED [|oHED 1 __ 42|OHED 4
= S0 @ BED < @ BED X @ BED
& MBED* EBED* ~ 4 |MBED" u
2 sl . g 7 I 2
z 0 = = 380 1
i 2 2
o @ o
= 40f r = 10f 1 = 36} 1
E} = [
E i =
2 a0l L 2 2 34 —
(U 1
I | I I | I I I I I 32 i i i |
10" 10? 10° 10* 10° 10" 10? 10% 10* 10° 10! 102 10° 10* 10°
running time #,,q, (ms) running time ¢,,q, (ms) running time #,,q, (ms)

CMU SYN
100 r T T T T i T T T T
ALED ALED
. OHED __ 100/ {oHED
< 80 eBED i IS @BED
= mBED* ~ S0fmBED*
g oo i S 60|
= =}
o 40|
l I E
£ 20|
S
2 o0 Il 2
ol
I I I I I I I I I I
10! 102 10° 10t 107 0t 102 10° 10t 107
running time #,,q, (ms) running time #,,q, (ms)

Figure 1 The dev (top two rows) and sr (bottom two rows) under different running time.

6 Conclusion and future works

In this paper, we analyze the relationship among three state-of-the-art GED lower bounds
that are widely used as heuristic estimations in the tree-based search algorithm for the GED
computation. Specifically, we demonstrate that BED(G, Q) > LED(G, Q) and BED(G, Q) >

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

HED(G, Q) for any two undirected graphs G and @. Furthermore, based upon BED we
propose an efficient heuristic estimation BED™ and demonstrate that BED™ still estimates
a cost that is not greater than the real cost. Experimental results on four real and one
synthetic datasets confirm that BED can achieve the best performance under both small
and large running time.

When calculating the heuristic estimation BED™ (G?,Q?), we first compute the trans-
formation cost (i.e., fg(+,)) of two compared branch structures. In fact, the transformation
cost of these two branch structures may have been calculated many times in the previous
traversal of the search tree. Future work will consider how to build a suitable index structure
to maintain the transformation cost of these traversed branch structures in order to accelerate
the computation of BED™ (G2, Q?).

—— References

1 Z. Abu-Aisheh, R. Raveaux, and J. Y. Ramel. A graph database repository and performance
evaluation metrics for graph edit distance. In GbRPR, pages 138-147, 2015.
2 7. Abu-Aisheh, R. Raveaux, and J. Y. Ramel. Anytime graph matching. Pattern Recogn Lett.,
84:215-224, 2016. doi:10.1016/J.PATREC.2016.10.004.
3 Z. Abu-Aisheh, R. Raveaux, J. Y. Ramel, and P. Martineau. An exact graph edit distance
algorithm for solving pattern recognition problems. In ICPRAM, pages 271-278, 2015.
4 D. B. Blumenthal and J. Gamper. Exact computation of graph edit distance for uniform and
non-uniform metric edit costs. In GbRPR, pages 211-221, 2017.
5 D. B. Blumenthal and J. Gamper. Improved lower bounds for graph edit distance. IFEE
Trans. Knowl Data Eng., 30(3):503-516, 2018. doi:10.1109/TKDE.2017.2772243.
6 D. B. Blumenthal and J. Gamper. On the exact computation of the graph edit distance.
Pattern Recogn Lett., 134:46-57, 2020. doi:10.1016/J.PATREC.2018.05.002.
7 B. Bonet and H. Geffner. Planning as heuristic search. Artif. Intell., 129(1-2):5-33, 2001.
doi:10.1016/S0004-3702(01)00108-4.
8 L. Chang, X. Feng, X. Lin, L. Qin, and W. Zhang. Efficient graph edit distance computation
and verification via anchor-aware lower bound estimation. CoRR, 2017. arXiv:1709.06810.
9 X. Chen, H. Huo, J. Huan, and J. S. Vitter. An efficient algorithm for graph edit distance
computation. Knowl.-Based Syst., 163:762—775, 2019. doi:10.1016/J.KNOSYS.2018.10.002.
10 X. Chen, H. Huo, J. Huan, J. S. Vitter, W. Zheng, and L. Zou. MSQ-Index: A succinct
index for fast graph similarity search. IEEE Trans. Knowl Data Eng., 33(6):2654-2668, 2021.
doi:10.1109/TKDE.2019.2954527.
11 X. Chen, Y. Wang, H. Huo, and J. S. Vitter. An efficient heuristic for graph edit distance
[source code], June 2019. URL: https://github.com/Hongweihuo-Lab/Heur-GED.
12 James Cheng, Yiping Ke, and Wilfred Ng. GraphGen — a synthetic graph data generator.
URL: https://cse.hkust.edu.hk/graphgen/.
13 CMU house and hotel datasets. URL: https://github.com/dbblumenthal/gedlib/blob/
master/data/datasets/CMU-GED.
14 X. Cortés and F. Serratosa. Learning graph-matching edit-costs based on the optimality of the

oracle’s node correspondences. Pattern Recogn Lett., 56:22-29, 2015. doi:10.1016/J.PATREC.

2015.01.009.

15 A. Fischer, R. Plamondon, Y. Savaria, K. Riesen, and H. Bunke. A Hausdorff heuristic for
efficient computation of graph edit distance. Structural, Syntactic, and Statistical Pattern
Recognition, LNCS 8621:83-92, 2014.

16 A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke. Approximation of graph
edit distance based on Hausdorfl matching. Pattern Recogn., 48(2):331-343, 2015. doi:
10.1016/J.PATC0G.2014.07.015.

17 K. Gouda and M. Hassaan. CSI_GED: An efficient approach for graph edit similarity
computation. In ICDE, pages 256275, 2016.

1:13

Grossi's Festschrift

https://doi.org/10.1016/J.PATREC.2016.10.004
https://doi.org/10.1109/TKDE.2017.2772243
https://doi.org/10.1016/J.PATREC.2018.05.002
https://doi.org/10.1016/S0004-3702(01)00108-4
https://arxiv.org/abs/1709.06810
https://doi.org/10.1016/J.KNOSYS.2018.10.002
https://doi.org/10.1109/TKDE.2019.2954527
https://github.com/Hongweihuo-Lab/Heur-GED
https://cse.hkust.edu.hk/graphgen/
https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/CMU-GED
https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/CMU-GED
https://doi.org/10.1016/J.PATREC.2015.01.009
https://doi.org/10.1016/J.PATREC.2015.01.009
https://doi.org/10.1016/J.PATCOG.2014.07.015
https://doi.org/10.1016/J.PATCOG.2014.07.015

1:14

An Efficient Heuristic for Graph Edit Distance

18

19

20

21

22

23

24

25

26

27

28

29

30

31

A

D. Justice and A. Hero. A binary linear programming formulation of the graph edit distance.
IEEE Trans. Pattern Anal Mach Intell., 28(8):1200-1214, 2006. doi:10.1109/TPAMI.2006.152.
J. Kim. Efficient graph edit distance computation using isomorphic vertices. Pattern Recogn
Lett., 168(2023):71778, 2023. doi:10.1016/J.PATREC.2023.03.002.

H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83-97, 1955. doi:10.1002/nav.3800020109.

J. Lerouge, Z. Abu-Aisheh, R. Raveaux, P. Héroux, and S. Adam. New binary linear
programming formulation to compute the graph edit distance. Pattern Recogn., 72:254-265,
2017. doi:10.1016/J.PATC0G.2017.07.029.

J. Liu, M. Zhou, S. Ma, and L. Pan. MATA*: Combining learnable node matching with A*
algorithm for approximate graph edit distance computation. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management (CIKM ’23), pages
1503-1512, 2023.

Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. Com-
puting graph edit distance via neural graph matching. Proceedings of the VLDB Endowment,
16(8):1817-1829, 2023. doi:10.14778/3594512.3594514.

K. Riesen and H. Bunke. ITAM graph database repository for graph based pattern recognition
and machine learning. Structural, Syntactic, and Statistical Pattern Recognition, pages 287-297,
2008.

K. Riesen and H. Bunke. Approximate graph edit distance computation by means of bipartite
graph matching. Image Vision Comput., 27(7):950-959, 2009. doi:10.1016/J.IMAVIS.2008.
04.004.

K. Riesen, S. Emmenegger, and H. Bunke. A novel software toolkit for graph edit distance
computation. In GbRPR, pages 142-151, 2013.

K. Riesen, S. Fankhauser, and H. Bunke. Speeding up graph edit distance computation with a
bipartite heuristic. In MLG, pages 21-24, 2007.

S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach (2nd ed.). Prentice-Hall,
New Jersey, USA, 2002.

O Schiitze, X. Esquivel, A. Lara, and C. A. C. Carlos. Using the averaged Hausdorff distance
as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Fvol.
Comput., 16(4):504-522, 2012. doi:10.1109/TEVC.2011.2161872.

Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou. Comparing stars: On approximating
graph edit distance. PVLDB, 2(1):25-36, 2009. doi:10.14778/1687627.1687631.

W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao. Efficient graph similarity search
over large graph databases. IEEE Trans. Knowl Data Eng., 27(4):964-978, 2015. doi:
10.1109/TKDE.2014.2349924.

Proof of Lemma 8

Proof. We prove this lemma by considering the following two cases:

Case |. when u = € or v = ¢. We first discuss the case u = . It is trivial to know that

fr(u,e) = fp(u,e) = c(u =€) + 5> ., c(e = €). Similarly, when v = &, we also have
fu(u,v) = fp(u,v). Thus, when v = € or v = ¢, the lemma follows.

Case Il. when u # ¢ and v # . Then, we know that

felu,v) = c(u—>v)—|—%MLS(Nu,NU), (12)

fa(u,v) = ;{c(u—>v)—|—;HED(Nu,Nv)} (13)

where MLS(Ny, Ny) = ming ne sn: Y c - c(e — o(e)), and g is a bijection from N to
NE.

https://doi.org/10.1109/TPAMI.2006.152
https://doi.org/10.1016/J.PATREC.2023.03.002
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1016/J.PATCOG.2017.07.029
https://doi.org/10.14778/3594512.3594514
https://doi.org/10.1016/J.IMAVIS.2008.04.004
https://doi.org/10.1016/J.IMAVIS.2008.04.004
https://doi.org/10.1109/TEVC.2011.2161872
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.1109/TKDE.2014.2349924
https://doi.org/10.1109/TKDE.2014.2349924

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

In order to prove f(u,v) < 5 fp(u,v), it suffices from (12) and (13) to prove
HED(N,,N,) < MLS(N,,N,),

which we do as follows:
(i) Rewriting MLS(N,, N,) and HED(N,, N,):

MLS(NM,NIU) = Z C(e — Qmin(e)) = Z C(@ - y)a

eeN¢E eENE

where gmin is the bijection from NZ to NE that MLS(N,, N,) achieves the minimum
value; ¥y = gmin(€) € NE is e’s mapped edge under the bijection g, for Ve € N&;

HED(N,, N,) = Z {fH(€7X1(@)) +fH(><z(y),y)},

ecN¢

where x; is the mapping from N; to N7 satisfying xi(e) = argmingen: fu(e,€),

for Ve € Ng; and x2 is the mapping from NF to N satisfying xa2(y) =
argmineen: fr(e,y).

(ii) Proving fu(e, x1(e)) + fu(x2(y),y) < c(e = y): According to the definition of x; and

X2, fu(e,x1(e)) < min{fu(e,y), fule,

We discuss the following cases (a)—(d):

(a) When e =€ and y = ¢, then fr(e,x1(€)) + fu(x2(v),y) < fu(e,e) + fule,e) =

cle =€) =0;
(b) When e # ¢ and y = ¢, then fu(e, x1(e)) + fu(x2(y),y) < fule,€) + fu(e,e) =
cle = €);

(c) When e = ¢ and y # ¢, the analysis is similar to that of (b);

(d) When e # € and y # ¢, then fu(e, x1(e)) + fu(x2(y),y) < fule,y) + fule,y) =
2fu(e,y) =2 x %c(e —y) =cle = y).
(iii) Combining both (i) and (ii), we have

HED(N,N) = 3 {fnleoa(@) + fulat)n | < Y cle) = MES(V, V)

ecN¢E eeNE

Therefore, fg(u,v) < %fB (u,v) when u # € and v # . This completes the proof. <

B Examples of computing LED, HED and BED

In this section, we give an example of calculating three GED lower bounds, LED, HED and
BED.

U1

a a
us Uy V3 V4 V2

Figure 2 Graphs G (left) and @ (right).

e)} and fr(x2(y),y) < min{fmu(e,y), fu(e,y)}-

1:15

Grossi's Festschrift

1:16

An Efficient Heuristic for Graph Edit Distance

Figure 2 shows two graphs G and @, where “A”, “B” and “C” denote vertex labels, and
“a” and “b” denote edge labels. Consider the cost function ¢ satisfying: (i) the cost of each
vertex edit operation is 2, that is, ¢(u — v) = 2 when two vertices v € V& and v € V{5 have
different labels, and ¢(u — v) = 0 otherwise; (ii) the cost of each edge edit operation is 1,
that is, c(e; — e2) = 1 when two edges e; € Ef, and es € Eé have different labels, and
c(e; — e2) = 0 otherwise. Based upon this cost function ¢, we discuss how to compute
LED(G,Q), HED(G, Q) and BED(G, @) below using the examples shown in Figure 2.

(1) Computing LED(G, Q)

In LED(G, Q) (see Definition 2 in main text), we need to compute the minimum substitution

cost of vertices and edges of G and @Q, ie., A\v(G,Q) and A\g(G,Q). For \y(G,Q) =

ming.veve Zuevé c(u — ¢(u)), we seek for a bijection ¢ from V5 to V5 to minimize the

linear sum Ay (G, Q); this is a well-investigated linear sum assignment problem (LSAP) and

can be solved by the Hungarian algorithm [20] through the following two steps:

(1) Construct the vertex substitution cost matrix WV, such that W\, = ¢(u — v) is the
cost of substituting vertices u € V7 and v € Vi; WXE = ¢(u — €) is the cost of deleting
u; and Wg‘fv = ¢(e — v) is the cost of inserting v. In this example, we compute WV as

V1 V2 V3 V4 e e e e
Uy 2 2 2 2 2 o oo o0
u |l 0 0 0 2 oo 2 oo ™
us | 0 0 0O 2 o0 oo 2 oo
WY o U 2 2 2 0 o0 o0 oo 2
€ 2 oo oo oo 0O 0 0 O
€ © 2 oo oo 0 0 0 O
€ © oo 2 oo 0 0 0 O
€ © oo oo 2 0 0 0 O

(2) Find the optimal assignment ¢min that minimizes the linear sum on WV. In this example,
we find that ¢min = {(u1 = v1), (u2 = v2), (uz = v3), (ug — v4), (¢ — €)} is the optimal
assignment, and then obtain A\y(G,Q) =W\ +WY ~+wV +wWY + WE‘; =2.

U1,v1 Uu2,v2 u3,v3 Uq,V4

Similar to the above process, we can compute the edge substitution cost matrix W¥ as
follows:

e(vi,vq) e(vo,v4) e(vs,vg) € e € ¢

e(uy,ug) 1 1 1 1 oo oo o
e(uy,us) 1 1 1 oo 1 oo oo

e(usg, uq) 0 0 0 oo oo 1 o

WE = e(us,uy) 0 0 0 oo oo oo 1
€ 1 o0 o0 0O 0 0 O

€ 00 1 %) 0O 0 0 O

€ 00 o0 1 0O 0 0 O

With the Hungarian algorithm, we know that the optimal assignment on W¥ is @i, =

{(e(ur,us) = &), (e(ur,us) — e(vy,v4)), (e(ug, us) = e(va,v4)), (e(us, us) — e(vs,vq)), (e =
_WwE E E E

5)} Then, A\g(G, Q) - We(u1,u2),€ + We(ul,us)»e(vhw) + We(uz,w)’e(vz,m) + We(“3’“4)’e(”3ﬁv4) +

WZE. = 2. Combing A\v(G, Q) and (G, Q), we have LED(G, Q) = A\ (G, Q) + Ap(G, Q) =
242=4

X. Chen, Y. Wang, H. Huo, and J. S. Vitter

(2) Computing HED(G, Q)

According to the definition of HED(G, Q) (see Definition 3 in main text), we need to calculate
the hausdorff matching cost fg(u,v) between two vertices u € V§ and v € V{5, and then
perform a bidirectional matching between G and (. When performing a matching from G to @,
we greedily seek for the minimum matching cost minvevé fr(u,v) of each vertex u; then, the

sum of these minimum costs is the matching cost from G to Q, i.e., Z’MEVG minvevé fr(u,v).

Similarly, the matching cost from @ to G is Z’UEVQ minyeve fu (u,v). Finally, the sum of
the above two matching costs is HED(G, @)). We can summarize the computation process of
HED(G, Q) as two steps:

(1) Construct the hausdorff matching cost matrix W#, such that W, = fp(u,v) is the
hausdorff cost of matching vertex u € Vg to vertex v € Vo; W = fy(u,e) is the
hausdorff cost of deleting u; and va = fu(e,v) is the hausdorff cost of inserting v,
where fz(-,-) is defined in (2) in main text. In this example, we can compute W as

U1 V2 U3 (%
wp /1.375 1.375 1.375 1.625
uy [0.125 0.125 0.125 1.125
wWH = wus | 0125 0.125 0.125 1.125
m 1 1 1 0
€ 25 25 25 35

S W W W w M

(2) Based upon W, compute Y-, ... minyeys WE, and > vev, Miluevg WE,. In this ex-
ample, we trivially obtain HED(G, Q) = }_, cy,, minvevg va—i—ZvGVQ min,eve Wh, =
H H H H H H H H _
(Wul,vl T Wagor T Wago, + Wu4,v4) + (WUz,vl T Wigs T Wagop + WU4,U4) = (1.375 +
0.125 4 0.125 + 0) + (0.125 4+ 0.125 4+ 0.125 + 0) = 2.
Note that when calculating W/, (i.e., fu(u,v)), we need to calculate HED(N,, N,) (see
Equation (3) in main context), where N,, and N, are the sets of edges adjacent to u and v,
respectively. The computation of HED(N,,, N,)) is similar to the above process of computing
HED(G, Q); and thus, we omit the detailed calculation here.

(3) Computing BED(G, Q)

The process of calculating BED(G, Q) is similar to that of calculating Ay (G, @), which is
also looking for a bijection p from V§ to V(5 to minimize the linear sum ZuEVé fe(u, p(u)).
The computation contains two steps:

(1) Construct the branch matching cost matrix W7, such that W,2, = fp(u, v) is the branch
cost of matching vertex u € Vi to vertex v € Vp; Wfs = fB(u,e) is the branch cost of
deleting u; and va = fB(e,v) is the branch cost of inserting v, where fg(-,-) is defined
in (5) in main text. In this example, we can compute W% as

V1 (%] V3 V4 9 9 9 9

Uup 3 3 3 35 3 oo oo o™

uz | 0.5 0.5 05 3 o 3 oo o©

ug | 0.5 05 05 3 oo oo 3 ™

WB — ug | 25 25 25 05 o0 oo > 3
e 25 oo oo oo 0 0 0 O

e c© 25 oo oo 0 0 0 O

e oo o 25 oo 0 0 0 O

e oo oo oo 35 0 0 0 0

1:17

Grossi's Festschrift

1:18

An Efficient Heuristic for Graph Edit Distance

(2) Find the optimal assignment pmin that minimizes the linear sum on W5, In this example,
we find that pmin = {(u1 = v1), (ug = v2), (ug — v3), (ug — v4), (e = €)} is the optimal
assignment, and then obtain BED(G, Q) =WE +WB +WE +Ww5B -I-ng =4.5.

U1,v1 U2,v2 us,v3 Ugq,Vq

Note that when calculating W2, (i.e., fz(u,v)), we need to calculate the minimum edge
substitution cost between N, and N,, which is similar to the process of calculating Ag(,);
and thus, we omit the detailed computation here.

For graphs G and @ in Figure 2, we finally obtain that LED(G, Q) = 4, HED(G,Q) = 2
and BED(G,Q) = 4.5. Clearly, BED(G,Q) > LED(G, Q) and BED(G,Q) > HED(G, Q).

C Successor generation

We discuss how to generate successors of each node in the GED search tree with Algorithm 2.

Consider an inner node r = {(u1 — vj,),...,(u¢ = vj;,)}, where vj, is the mapped
vertex of uy in the GED search tree, for 1 < k < /. BasicGenSuccr generates all the possible
successors of r. First, we compute the sets of unmapped vertices in G and @, respectively,
Le, V& =Ve\{ur,...,w}and Vi) = Vo\{vy,, ..., v5 }. I [VE&] > 0, then we select a vertex z
from Vo u {e} as the mapped vertex of us41, and consequently, obtain a successor child of r
such that child = r U {(ugs1 — 2)}. Otherwise, all the vertices of G are processed; trivially,
we obtain a leaf node s =r U Uzchg{(E — 2)}.

Algorithm 2 BasicGenSuccr(r).

suce + {}

VCT; — VG\{ul, B ,uz}

VQT <~ Vo\{vjis- -, v50}

if |Vz| > 0 then

foreach z € V5 U {¢} do
child < r U {(ug+1 — 2)}
succ < succ U {child}

else
s rUU.ey (e 2))
Q

suce < succ U {s}

© 0 g o Uk~ W N

11 return succ

On the Construction of Elastic Degenerate Strings

Nicola Rizzo =
Department of Computer Science, University of Helsinki, Finland

Veli Makinen &

Department of Computer Science, University of Helsinki, Finland

Nadia Pisanti &
Universita di Pisa, Italy

—— Abstract

An elastic degenerate string (EDS) is a sequence of sets of strings. In the context of bioinformatics,
EDSes can be used to represent the variations observed in a population from its consensus genome.
Pattern matching and comparison problems on EDSes have been widely studied in the literature, but
their construction has been largely omitted. We fill this gap by showing how algorithms originally
developed for related problems of founder reconstruction can be adapted to minimize the total
cardinality of the EDS sets and total length of the EDS strings in linear time, given suitable multiple
alignments representing the input data.

2012 ACM Subject Classification Theory of computation — Pattern matching; Theory of computa-
tion — Sorting and searching; Theory of computation — Dynamic programming; Applied computing
— Genomics

Keywords and phrases multiple sequence alignment, pattern matching, data structures, segmentation
algorithms, founder reconstruction, dynamic programming, semi-dynamic range minimum queries,
positional Burrows—Wheeler transform

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.2
Category Research

Funding This work was partially supported by the PANGAIA, ALPACA, and TeamPerMed projects
that received funding from the European Union’s Horizon 2020 research and innovation programme
with two first under the Marie Sklodowska-Curie grant agreements No. 872539 and 956229, respect-
ively, and the third under grant agreement No. 101060011. NP was also partially supported by
MUR PRIN 2022 YRB97K PINC.

1 Introduction

Computing an optimal partition of an interval [1..c], that is, a segmentation, is a problem
that arises naturally when dealing with the transformation of sequences that are aligned into
¢ positions, after trivial and contradicting constraints are imposed on the desired features
of the solution. Figure 1 gives an example of such segmentation on a multiple sequence
alignment (MSA) of 6 sequences. In an MSA, the r input sequences are made to be of equal
length ¢ by adding gaps “—” forming a matrix of r rows and ¢ columns which we will denote
MSA[1..r,1..c]. The quality of such MSA can be measured in many ways, but already the
problem of placing gaps such that the number of columns containing a single symbol is
maximized equals the problem of finding the length of the longest common subsequence
(LCS) of the input sequences, which is NP-hard [19]. Nevertheless, MSAs play a vital role in
bioinformatics, and practical heuristics have been developed to obtain high quality MSAs [23].
In this paper, we assume an MSA to be given as input, and we look for rigorous ways to
convert the MSA into a sequence of sets of strings, that is, into an elastic degenerate string

© Nicola Rizzo, Veli Méikinen, and Nadia Pisanti;

licensed under Creative Commons License CC-BY 4.0
From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 2; pp. 2:1-2:13

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:nicola.rizzo@helsinki.fi
https://orcid.org/0000-0002-2035-6309
mailto:veli.makinen@helsinki.fi
https://orcid.org/0000-0003-4454-1493
mailto:nadia.pisanti@unipi.it
https://orcid.org/0000-0003-3915-7665
https://doi.org/10.4230/OASIcs.Grossi.2025.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

2:2

On the Construction of Elastic Degenerate Strings

(EDS) [18] (also known as elastic-degenerate text). In Figure 1, we can observe that a
segmentation of the MSA directly induces an EDS by interpreting the strings of each segment
to be part of a set.

—
—
—
33
=
©
N
%}
V)
=

DU W N
QOO Q ~
=i e e
HHAEA-AHA
HHEH-AHA
QOQONQ
QOO
QOO0
et g
= e
HHEAE ==

S = [z.y] [T1..3] |[T4.6] |[[7..10] |[[i1..14] |[15..17] [[18..21] |[22..24]

{spell(MSA[in..y])‘ie[l..r]} (GAT) {ﬁég} {AAZCC} {%f{é} {f%} {GGGGGGT} [AA81

[z.y]| 3 3 4 4 3 4 3
H(z.y]) 1 3 4 3 3 3 2
N(z..y]) 3 6 9 9 4 11 6

Ne(fz.y]) 3 7 10 9 5 11 6

Figure 1 Example of an MSA[1..6,1..24] and a segmentation S containing k = 7 segments. The
maximum length L(S) is 4, the height H(S) is 4, the cardinality m(S) is 19, the size N(S) is 43, and
the gap-aware size N.(S) is 51.

The transformation from an MSA to an EDS through segmentation can be seen as lossy
compression: we merge together equal strings inside each segment and we ignore the exact
connections between segments. Such lossy compression can be a desired feature, for example,
for hiding the sensitive full sequence input by publishing only the EDS. A more rudimentary
reason for such conversion is that EDSes and related pangenome graphs do compress well
and enable fast processing and analysis of variation in populations [9]. A notable feature
of this scheme is that if a query string occurs in a row of the MSA, then it will also occur
in the EDS, but not the other way around. Various ways to optimize the transformation
to minimize false positives while not sacrificing privacy could be considered. Minimizing
a specific parameter is useful when the downstream analyses of the resulting EDS employ
algorithms whose complexity depends from that parameter.

This paper is initiating the study of EDS optimization by looking at some selected
optimization criteria (Section 3) for which we can modify algorithms from related literature.
We give linear-time algorithms (Section 4) to minimize the total cardinality of the EDS sets
(cardinality) and total length of the strings in the EDS sets (size) under specific assumptions:
the algorithms directly work for gapless MSAs, and they serve as heuristics when gaps are
interpreted as part of the alphabet. In the latter case, the optimization criteria should be
adjusted accordingly: see Section 5 for the multiple problems that we leave open for general
MSAs. We start by reviewing the related work in Section 2.

2 Related work

Founder reconstruction. Ukkonen [25] studied the problem of explaining a given set of r
aligned sequences representing ¢ haplotype sites (thus no insertions or deletions) with
the recombination of a few founder sequences, under the simple crossover model of
recombination (sequence switching at aligned positions); minimizing the founder set is

N. Rizzo, V. Makinen, and N. Pisanti 2:3

trivial if the recombination can happen at any position, but if the recombinations are
allowed only at selected positions, then the resulting segmentation problems — minimizing
the maximum cardinality of a segment (the number of founders in [25]) given a lower
bound on the segment length, or given a target average segment length size to surpass —
can be solved in polynomial time.

Norri et al. [22] solved one of the problems posed by Ukkonen — the segmentation of
aligned sequences minimizing the maximum height given a segment-length lower bound
L — in linear O(rc) time and O(r + L) space. The solution proceeds in a dynamic
programming fashion, from left to right, and for each aligned position y it uses the
positional Burrows—Wheeler Transform [10], enhanced by a few other arrays, to efficiently
compute all the possible heights of a segment ending at y and their optimal recursive
values.

Cazaux et al. [8] studied the related problem of maximizing the minimum segment length
or the average segment length of any segmentation that has height of at most a given
H, motivated by the minimization of the size of the resulting pangenomic index based
on founder sequences. To do so, they recognize that the approach by Norri et al. [22]
fits into a more general left-to-right column-stream model of computation, and use range
maximum queries to efficiently compute the recursive values. For this last task, they
modify existing techniques for the semi-dynamic setting where an array is indexed for
amortized constant-time range queries in an online fashion.

Algorithms on EDSes. There is a wide literature on pattern search and comparison on
(elastic) degenerate strings [18, 17, 5, 6, 1, 21, 4, 2, 3] where algorithmic results exhibit
complexity that depend on both the cardinality and the size of input EDSes. Moreover,
the latest algorithms for EDS-based pangenome comparison (intersection, matching
statistics, similarity and distance measures) also depend on the cardinality and size
metrics [15, 14, 16]. These results give further motivation for our focus on optimizing
these measures.

Indexable Founder Graphs. Elastic Founder Graphs (EFGs), introduced by Equi et al. [13],
take the simplified recombination model of founder sequences (recombination at selected
positions only) to transform an MSA of r sequences and ¢ aligned positions — with
insertions and deletions and thus gaps — into an acyclic Elastic Block Graph: the
segmentation results into consecutive blocks of nodes. In the general case, the resulting
graph is still hard to index just like more general graphs [12, 11], so Equi et al. [13]
prove that if each chosen segment spells strings that exclusively occur from the segments’
starting column, then this property is conserved in the resulting graph, which is easy to
index. This results in a framework of linearithmic (i.e. O(rclog(re))) time constructions
of indexable EFGs, which support fast pattern matching.

Rizzo et al. [24] improved some construction solutions to linear time (i.e. O(rc)) while
studying the problem of minimizing the maximum segment length or maximum height of
a segmentation resulting in an indexable EFG.

MSA covers. While segmentation induces a limited class of acyclic pangenome graph repres-
entations, there is an analogous approach by Cartes et al. [7] to cover MSAs and generate
arbitrary acyclic graphs; the related optimization problems are much harder, although
small instances can be solved using integer linear programming.

Grossi's Festschrift

2:4

On the Construction of Elastic Degenerate Strings

3 Preliminaries

We denote integer interval {1,...,n} as [1.n]. Let MSA[l..r,1..c] € (£ U {—})""¢ be a
multiple sequence alignment of r rows and ¢ columns representing the input sequences (or
strings) and the aligned positions, respectively. It is built from a finite integer alphabet
¥ = [l..o] (X = {A,C,G,T} in our examples) augmented with the gap symbol — ¢ X to
represent insertions and deletions. It is immediate to see that the alignment takes at most
O(rc) words of space, or O(rclog|X]|) bits of space. We denote the i-th row of the MSA as
MSA[i, 1..c], and the concatenation of its characters from position x to y, with z < y, as
MSA[i, z..y]. We say that MSA[1..r,1..c] is gapless if no gap symbol is used. The operator
spell(T") removes all the gap symbols from a given string T € (X u {—})¢ for example,
spell(MSA[i, 1..c]) is the i-th (unaligned) sequence. If T' contains only gaps then spell(T') = ¢,
the empty string. Consider the following definition alongside Figure 1.

» Definition 1 (Segmentation). Given MSA[l..r,1..c] € (X U {—})"*¢, a segmentation of
the MSA is a partition S = S1,S2,...,Sk of [1..c], i.e. a sequence of contiguous and non-
overlapping intervals covering [1..c]. In symbols
xr, = 1,
S| = [xl..yl], ey S = [.’I}kyk] with Yk = ¢, and
Y; +1= Tjt+1 V] € I:lk — 1]

We denote:

the number of segments of S as |S| = k;

the maximum segment length max e x1|S;| of S as L(S), where |[z.y]| =y —x + 1;

the height maxepy. 1) H(S;) of S as H(S), where the height H(S;) of a segment S; = [z..y]

is defined as

H([z..y]) = ‘{spell(MSA[i,x..y]) ‘ i€ [lr]}’

(note that the empty string is counted by H);
the cardinality >,y 4 H(S;) as m(5);
the size 3 ;e 31 N(Sj) as N(S), where the size N(S;) of a segment Sj = [2..y] is defined as

N([z..y]) = > 7| with

T e spell(MSA[1..r,z..y])

spell(MSA[1..r,z..y]) = {spell(MSA[i,x..y]) ‘ i€ [1..7"]}

(note that the empty string e contributes 0 units to N([z..y])); and
the gap-aware size N.(S) as above, substituting N([z..y]) with

N([z..y]) + 1 if € € spell(MSA[1..r, z..y]),
N([z..y]) otherwise.

Ne([z-y]) = {

Consider the problem of finding a segmentation S of minimum cardinality m(S). If the
MSA contains few but very long sequences, that is, r « ¢, the trivial segmentation S= = [1..c]
might be optimal. We can encourage a certain level of recombination in the corresponding
EDS by setting an upper bound U on the length of the accepted segments.

» Problem 2 (min-U-cardinality). Given MSA[1..r,1..c] and an upper bound U on the segment
length, find a segmentation S containing segments of length at most U and minimizing the
cardinality m(S5).

N. Rizzo, V. Makinen, and N. Pisanti

On the other hand, consider finding a segmentation S of minimum gap-aware size N ().

In Section 4.1 we show that the trivial segmentation Sl = [1],..., [¢] has always minimum
size in the gapless setting, resulting in a highly recombinant EDS. We can symmetrically
discourage recombination in regions of low sequence similarity by fixing a lower bound L on
the length of the accepted segments.

» Problem 3 (min-L-size). Given MSA[1..r,1..c] and a lower bound L on the segment length,

find a segmentation S containing segments of length at least L and minimizing the gap-aware
size N.(9).

One crucial data structure that we use in Section 4 is based on sorting iteratively the MSA
rows while reading the alignment from left to right, column by column. Let 3 have an implicit
total order < on its characters. Given strings S, T € X¢, we say that S is lexicographically
smaller than T, in symbols S <jex T, if S[1l..z] = T[1..2] and S[z + 1] < T[z + 1] for
some = € [0..c — 1] (where S[1..0] is equal to the empty string £). Symmetrically, S
is co-lexicographically smaller than T, in symbols S <coex T, if S[z..c] = T[z..c] and
Sz —1] < T[x — 1] for some z € [1..c + 1] (where S[c+ 1..c] = €). Moreover, we call S[1..z]

a prefix of S and S[1..x] a suffiz of S. They are non-empty if > 1 and x < ¢, respectively.

» Definition 4 (Positional Burrows—Wheeler transform [10]). The positional Burrows-Wheeler
transform (pBWT) of a gapless MSA[1..r,1..c] for position x € [l..c] consists of array
a,[1..r], representing the prefives MSA[i, 1..z] for i € [1..r] sorted co-lexicographically, and
array dz[1..r], describing the length of the longest common suffizes of adjacent prefizes in
the sorted order. More specifically:

ag[1..r] is the permutation of [1..r] such that
MSA[a,[1], 1..2] <colex MSA[a:[2], 1..2] <colex * * * <colex MSA[a,[r], 1..2];

d.[?] is an integer in [1..x+1] such that the longest common suffiz between MSA[a,[i], 1..x]
and MSA[a,[i — 1], 1..x] has length d.[i], if i > 1 and such suffiz is non-empty, otherwise
dg[i] =z + 1.

» Lemma 5 ([10, 20]). Let MSA[1l..r,1..c] be a gapless MSA over integer alphabet ¥ of size
O(r). Given the positional Burrows—Wheeler transform for position x € [1..c — 1], that is,
arrays ag[l..r] and d;[1..r], arrays ag41[1..r] and dyy1[1..r] can be computed in O(r) time.

Finally, one last data structure that we use in this paper indexes an integer array to later
find out the minimum value inside a given range of array positions.

» Lemma 6 (Semi-dynamic range minimum query data structure [8, Lemma 7]). There exists a
data structure that maintains an integer array I[1..c|] and supports: the append query, which
adds a new element to the end of I and increments ¢, in O(1) amortized time; and the Range
Minimum Query, which for any given x,y € [1..c] with x <y, computes a position k € [1..c]
such that I[k] = min{Q[¢] : ¢ < £ < y}, in O(1) time.

4 Solutions

In Section 4.1 we remark useful properties of gapless MSAs. Then, in Sections 4.2 and 4.3 we

provide linear-time solutions to min-U-cardinality and min-L-size for MSAs under this setting.

2:5

Grossi's Festschrift

2:6

On the Construction of Elastic Degenerate Strings

4.1 Basic properties and non-trivial settings

Before investigating under which setting problems min-U-cardinality and min-L-size are trivial,
consider the following properties of MSAs without gaps that we will exploit in this section.

» Observation 7 (Monotonicity of left extensions [22]). Given MSA[1..r,1..c], for any x,y
with 1 < x < y < ¢ we say that [x..y] is a left extension of suffix MSA[1..r,y + 1..c]. If the
MSA is gapless, the following monotonicity property holds for any left extension [z..y] of
MSA[1..r,y + 1..c]:

r = H([2".y]) = H([z..y]) Va' < .

» Observation 8. Given a gapless MSA[1..r, 1..c], the (gap-aware) size of any segment [z..y]
is equal to the height times the length of the segment, in symbols N ([z..y]) = N([z..y]) =
|z..y|-H([x..y]). Indeed, if the MSA does not contain the gap symbol then spell(MSA[i, z..y]) =
MSA[i, z..y] for all i € [1..r] and all strings spelled by segment [x..y] have length y — x + 1.

The simplest version of min-L-size occurs when the MSA contains no gap symbol and
there is no lower bound on the segment length, that is, when L = 1. Intuitively, this
setting presents the same trivial solution as in the founder reconstruction problem (see [25,
Theorem 1)), since transforming each column into its own segment achieves the best possible
compression. Let [z] denote the singleton range [z..z] = {z}.

» Theorem 9. An optimal solution to min-1-size for a gapless MSA[1..r,1..c|] is the trivial
segmentation S = [1],[2],...,[c].

Proof. Consider any segment [z..y] with |[z..y]| > 1. Then [x..y — 1] and [y] are also valid
segments, and since the MSA is gapless

N[z..y] = |[x..y — 1]| - H([z..y]) + 1 - H([z..y]) (Observation 8)
> |[z..y — 1| - H([z..y — 1]) + |[y]| - H([y]) (Observation 7)
= N([z.y = 1]) + N([y])-

Thus breaking down segments longer than 1 never increases the size and the (gap-aware)
size of Sl is less than or equal to the size of any other segmentation. <

However, the trivial solution is not valid if L > 1 or it can be suboptimal if the MSA
contains gaps: in the former setting, greedily picking segments of length exactly L can be
suboptimal, and in the latter case each empty string ¢ contributes 1 to the total size of the
segmentation so the parts of the MSA with long runs of gaps need to be carefully considered.
See Figure 2.

Regarding the problem of minimizing the cardinality of the resulting segmentation, min-
U-card behaves differently than the other segmentation problems, as it does not admit a
trivial optimal segmentation even if there is no upper bound on the segment length (i.e.
U = ¢) and the MSA does not have any gap symbol.

» Observation 10. Trivial segmentations S = [1],[2],...,[c] and S= = [1..c] are not
optimal with respect to min-c-card for some gapless MSA[1..r, 1..c]: on one hand, in regions
of high similarity longer segments can be preferable as they can spell very few strings; on
the other hand, shorter segments generate less strings in regions of high diversity. See the
example MSA[1..10,1..4] in Figure 3.

N. Rizzo, V. Makinen, and N. Pisanti 2:7

S=| IL_I IL_I | s= [0]

ety {&8} rtmy (A1} oAy iccH{ i K Hac) AT
N(z.y) 3 4 3 4 3 Ne(fzy)) 203 2 3 2

Figure 2 On the left, a gapless MSA where the optimal solution to min-2-size (i.e. the lower
bound on the minimum segment length is 2) has size 17 and is non-trivial. On the right, an MSA
with gaps for which the optimal solution to min-1-size is non-trivial and has gap-aware size 12.

=

0O U W
it e
HHEa-Ha-aa4a4
cacam===
Heemsaa -

-
=2
—
Q=
Ny
——
= Haos [
——

H(fz.y]) 1

[\]

Figure 3 Example of a gapless MSA[1..8,1..4] for which the trivial segmentations S= = [1..c] =

[1..4] and sl = [1],12],[3], [4] are not a solution to min-4-size, since their cardinality is equal to 8.
Instead, S = [1..2],[3], [4] (shown) is such that m(S) = 7.

Grossi's Festschrift

2:8

On the Construction of Elastic Degenerate Strings

4.2 Minimizing the cardinality

Given MSA[L..r,1..c] and U € [1..c], for any y € [1..c] we define m, as the size of an optimal
solution of min-U-cardinality on instance MSA[1..r, 1..y] respecting segment upper bound U.
Then, the following recursion holds, since the cardinality of a segmentation .S is the sum of
the individual cardinalities of its segments:

mOZOa

m, = min (mx +H([z + 1..y])) vy e [1..c, (1)
ze[0..y—1]

and it is easy to see that m, is equal to the cardinality m(S) of an optimal segmentation S.
Norri et al. [22] recognized that, at least for gapless MSAs, all changes in segment height

can be described compactly and in a range fashion by fixing an end column y and considering

values H([z..y]) for x € [1..y]. This concept was restated and extended to MSAs with gaps by

Rizzo et al. [24] into the extensions of the MSA suffix MSA[1..r, y + 1..c] that are meaningful.

Consider the following definition alongside Figure 4.

» Definition 11 (Meaningful left extensions [22, 24]). Given MSA[1..r,1..c], let L,U € [1..c]

be some given lower bound and upper bound on the segment length', with L < U. For

any y € [l..c] we denote with L, = €y 1,0y5,...,4yq, the meaningful left extensions of

MSA[1..r,y + 1..c], meaning the strictly decreasing sequence of all positions smaller than or

equal to y such that:

Ly-U+1<¥yq4, < <lys<{ly1=y—L+1, so0that L, captures the left extensions
of MSA[1..r,y + 1..c] of length at least L and at most U; and

2. H([¢y,;..y]) # H([ty,; + 1..y]) for 2 < j < d, so that each {, ; marks a column where the
height of the left extension changes.

Ify <L, i.e. MSA[1..r,y + 1..c] has no left extension of size at least L, we define L, = ()

and d, = 0. Otherwise, for completeness, we define £y 4,1 = max(0,y — U) (see how this is

used later in Equation (2)).

1 2 3 4 5 6 7 8 9 10111213 14 15
1 TATTAATTTAGTGCG
2 TATTAATTTAGAGCG
3TATTA---TAGTGCG
4 TATTAATTTAGGGCG
5 8 1213 =Lis
H([z..15]) - - — — - 1 4433331-——

Figure 4 Example of MSA[1..4,1..15] and of meaningful left extensions £15 = 13,12, 8 (represented
from right to left in the figure), given lower bound L = 3 and upper bound U = 10.

The meaningful left extensions £, are indeed a compact description of how the height of
[z..y] changes when fixing y and moving z: all segments [z..y] with « € [£, ;41 + 1.4, ;] have
height H([¢, ;..y]); if the monotonicity of left extensions (Observation 7) holds, then d, < r,

L For simplicity, the definition accepts both a lower bound and an upper bound on the segment length,
even though min-U-cardinality and min-L-size require only one of the two. If either is unspecified, we
simply assume that L = 1 or U = ¢ accordingly, that is, there is no lower or upper bound.

N. Rizzo, V. Makinen, and N. Pisanti

that is, |£,| is at most 7 for each y € [1..c], and the cumulative count of all meaningful left
extensions and their height values is O(rc). Regardless of the number of meaningful left
extensions, Equation (1) can be rewritten as

— min (H([C, ;.. i .) 2
my = i (H(es) + oy @)

where m,_; is used due to the different meaning of z in Equation (2) and Definition 11.

Given pairs (¢, ;, H([¢y,;..y])) in input for each y € [1..c], we can compute values m, in
a dynamic programming fashion and we can solve operation minge, ;1.0 ;] Ma—1 =
Mmilge(e, ;. ..0, ,—1] Ma Dy indexing the array of values m,, for Range Minimum Queries with
Lemma 6, as shown in Algorithm 1.

Algorithm 1 Segmentation of MSA[1..r, 1..c] with segment-length upper bound U minimizing
the cardinality. Note that bound U is implicitly used in value £, 4,+1 = max(0,y — U) (see
Definition 11 and Equation (2)).

input :integers r,c e N,
segment length upper bound U € [1..c], and
meaningful left extensions (¢ ;, hy ;) for y € [1..c], j € [1..dy]

output : minimum cardinality of a segmentation Sy,..., S such that |S;| < U for
i€ [1..k]

Create array m[0..c] holding values in [0..rc];

Preprocess m for semi-dynamic Range Minimum Queries;

m[0] « 0;

for y — 1 to cdo

m[y] « +o0;

for j < 1 to d, do

z < RangeMinQuery (m, [£y j41..4y,; — 1]);

m[y]| < min (rn[y]7 hy.; + m[m]);

end

Update m for Range Minimum Queries over incremented range [1..y];
end
return m|c]

Finally, for gapless MSAs the meaningful left extensions can be computed efficiently
with a modification of the positional Burrows—Wheeler Transform (Definition 4). Norri et
al. correctly realized that the pPBW'T for position y already describes £, and all changes in
height [22, Lemma 4] and modified the pPBWT to obtain values (¢, ;, H([¢, ;..y])) in O(r)
time per each column y.

» Lemma 12 ([22, Lemmas 5 and 6]). Let MSA[1..r,1..c] be a gapless multiple sequence
alignment over alphabet 33, with || € O(r). The meaningful left extensions Ly = £y 1, ...,y q,
and their corresponding segment height values H([£, ;..y]) for j € [1..dy] can be computed
fory=1,... ¢ in O(rc) time and in O(r + ¢) working space. Specifically, the values are
computed column-wise in a streaming fashion, from y =1 to y = ¢, and the space bound does
not include storing the computed values.

By interleaving the computation from Lemma 12 and Algorithm 1 we obtain a linear-time
solution to min-U-cardinality in the case with no gap.

2:9

Grossi's Festschrift

2:10

On the Construction of Elastic Degenerate Strings

» Theorem 13. Let MSA[1..r,1..c] be a gapless multiple sequence alignment over alphabet %,
with |X| € O(r), and U € [1..c] be an upper bound on the maximum segment length. We can
solve min-U-cardinality (Problem 2) in O(rc) time and O(c +) space by finding the optimal
segmentation S respecting U and minimizing the cardinality m(S).

Proof. The final algorithm is provided by combining Algorithm 1, that utilizes the meaningful
left extensions £, and their height values from y = 1 to y = ¢, with Lemma 12, that computes
and can provide pairs (¢, j, H([¢y, ;..y])) in the same order. The correctness of Algorithm 1
follows from Equation (2). Since the MSA is gapless, the total number of iterations of the inner
for-loop in Algorithm 1 is O(rc) due to the monotonicity of left extensions (Observation 7),
and by using the Range Minimum Query data structure from Lemma 6 on array m we
obtain the stated time and space complexity. Algorithm 1 can be augmented with standard
backtracking techniques to obtain the actual segmentation, as shown by Rizzo et al. [24,
Section 4.5]. <

4.3 Minimizing the size

Similarly to Section 4.2, given MSA[1..r,1..c] and L € [1..c|, for any y € [1..c] we define N,
as the size of an optimal solution of min-L-size on instance MSA[1..r, 1..y] respecting lower
bound L. Then the following recursion holds, since the gap-aware size of a segmentation S is
the sum of the individual gap-aware segment sizes:

N0:07

N, = min (Nx N[z + 1..y])) ye[l.c, (3)
z€[0..y—1]
and it is easy to see that N, is equal to the gap-aware size of an optimal segmentation.

We now concentrate on gapless MSAs. Recall that, in such setting, segment size and
gap-aware segment size coincide, and they are equal to the length of the segment times its
height (Observation 8). Also, consider how the meaningful left extensions (Definition 11) are
a compact description of all possible segment heights, as discussed in Section 4.2. Then, in
the gapless setting, Equation (3) for y € [1..c] can be rewritten as

Ny = min (NZ +H([z+1.y]) - (y — 1:)) (Observation 8)
ze[0..y—1]
= _min (Nm —H([z + 1.y]) -z + H([z + 1..y]) - y)
= nin (Aol oyt omin(Ne = ([l]) 7)), (4)

where the last step holds because the meaningful left extensions £, partition by construction
range [1..y — L + 1] according to the segment height H([z..y]) for variable z, or in other
words, H([z + 1..y]) = H([{,,;..y]) for all x + 1 € [, j+1 + 1.4, ;], j € [1..dy]. Equation (4)
is suitable for an efficient dynamic programming approach, shown in Algorithm 2:
value H([{, ;..y]) - v inside the outer min operator depends on y and on the height
considered (i.e. the meaningful left extension), as in Equation (2) from Section 4.2;
the addends in the internal min operation depend on z and on the segment height
H([4y ;..y]) € [1..r], and since the number of possible height values is O(r) we can store
and maintain these recursive values for each column z € [l..y — 1] and each height
he[l.r].

N. Rizzo, V. Makinen, and N. Pisanti

Algorithm 2 Segmentation of MSA[1..r, 1..c] with segment-length lower bound L minimizing
the cardinality. Note that bound L is implicitly used in value ¢,,1 = y — L + 1 (see Definition 11).

input :integers r,ce N,
segment length lower bound L € [1..c], and
meaningful left extensions (¢, ;, hy ;) for y € [1..c], j € [1..dy]
output : minimum size of a segmentation Si, ..., Sk such that |S;| < U for i € [1..k]
Initialize array N[1..r] with values in [0..rc];
Initialize matrix M[1..r,0..c] with values in [0..rc];
Preprocess the rows of M for semi-dynamic Range Minimum Queries;
for h < 1 to r do
| M[R,0] < 0;
end
for y — 1 to cdo
N[y] < +oo;
for j < 1tod, do
x «— RangeMinQuery (M[hy ;], [€y,j+1--4y,; — 1]);
Ny« min (N[yl, Ay -y + Mlhyj 0]);
end
for h — 1 to r do

Mh,y] —N[y] = h-y;
Update the Range Minimum Query data structure of row h to cover
incremented range M[h, 1..y];

end

end
return N[c]

» Theorem 14. Given a gapless MSA[1..r; 1..c] and a lower bound L € [1..c] on the minimum
segment length, we can solve min-L-size (Problem 3) in O(rc) time and O(rc) space by finding
the optimal segmentation S respecting L and minimizing the size N(.S).

Proof. The final algorithm takes the output of Lemma 12, pairs (¢, ;, h, ;) for y € [1..c] and
j € [1..dy], and directly runs Algorithm 2, whose correctness follows from Equation (4). The
total number of iterations of the two inner for-loops is O(rc), since the number of meaningful
left extensions is O(rc) (Observation 7) and the possible height values are in the range [1..r].
The stated time and space complexity follows by applying Lemmas 6 and 12. Similarly to
Algorithm 1, Algorithm 2 can be augmented with standard backtracking techniques to obtain
the actual segmentation, as shown in [24, Section 4.5]. |

5 Future work

This initial study on EDS construction opens many interesting directions for further study:

Gaps as symbols yield upper bounds Even though Equations (2) and (3) (but not Equa-
tion (4)) hold for MSAs with gaps, Theorems 13 and 14 work only on MSAs without
gaps. A straightforward way to extend them is to treat them as normal symbols in the
alphabet. After segmentation, the gap symbols can be removed to obtain the final EDS.
With all the quality measures we proposed, this works as an upper bound: for example,
consider the height of a segment that contains A- and -A; height is reduced by one after
gaps are removed. Thus, the removal of gaps cannot increase the height, and it is of
interest to study experimentally how much the measures change after gap removal.

2:11

Grossi's Festschrift

2:12 On the Construction of Elastic Degenerate Strings

Gaps as symbols yield exact solutions? For height optimization, it seems possible to char-

acterize the class of MSAs with gaps where the approach above yields an optimal solution,
and not just an upper bound. Such characterization should be possible through forbidding
local sub-optimal alignments like A- and -A. This raises several natural questions: What
is the exact form of the characterization? How to efficiently detect if a given MSA is
part of this class? Do all optimal alignments under some column-wise scoring function
belong to this class? Are there efficient algorithms to convert an MSA into one in this
class without sacrificing the alignment score?

Tailored algorithms with gaps The presented Algorithms 1 and 2 do not find the optimal

—— References

1

segmentation of arbitrary MSAs, so it is natural to ask if there are efficient algorithms
to directly optimize the studied measures on general MSAs. Alternatively, there may
be slight adjustments to the measures that are amenable to efficient algorithms: in a
different context, Rizzo et al. [24] introduced the metric of prefix-aware height, which
was optimized in linear time, and also optimized in linear time the metric of maximum
segment length.

Mai Alzamel, Lorraine A. K. Ayad, Giulia Bernardini, Roberto Grossi, Costas S. Iliopoulos,
Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Comparing degenerate strings. Fundam.
Informaticae, 175(1-4):41-58, 2020. doi:10.3233/FI-2020-1947.

Rocco Ascone, Giulia Bernardini, Alessio Conte, Massimo Equi, Estéban Gabory, Roberto
Grossi, and Nadia Pisanti. A unifying taxonomy of pattern matching in degenerate strings and
founder graphs. In Solon P. Pissis and Wing-Kin Sung, editors, 24th International Conference
on Algorithms in Bioinformatics, WABI, volume 312 of LIPIcs, pages 14:1-14:21. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPICS.WABI.2024.14.
Giulia Bernardini, Estéban Gabory, Solon P. Pissis, Leen Stougie, Michelle Sweering, and
Wiktor Zuba. Elastic-degenerate string matching with 1 error or mismatch. Theory Comput.
Syst., 68(5):1442-1467, 2024. doi:10.1007/500224-024-10194-8.

Giulia Bernardini, Pawel Gawrychowski, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone.
Elastic-degenerate string matching via fast matrix multiplication. STAM J. Comput., 51(3):549—
576, 2022. doi:10.1137/20M1368033.

Giulia Bernardini, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Pattern matching on
elastic-degenerate text with errors. In Gabriele Fici, Marinella Sciortino, and Rossano Venturini,
editors, String Processing and Information Retrieval - 24th International Symposium, SPIRE
2017, Palermo, Italy, September 26-29, 2017, Proceedings, volume 10508 of Lecture Notes in
Computer Science, pages 74—90. Springer, 2017. doi:10.1007/978-3-319-67428-5_7.
Giulia Bernardini, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Approximate
pattern matching on elastic-degenerate text. Theor. Comput. Sci., 812:109-122, 2020. doi:
10.1016/J.TCS.2019.08.012.

Jorge Avila Cartes, Paola Bonizzoni, Simone Ciccolella, Gianluca Della Vedova, and Luca
Denti. Pangeblocks: customized construction of pangenome graphs via maximal blocks. BMC
Bioinform., 25(1):344, 2024. doi:10.1186/S12859-024-05958-5.

Bastien Cazaux, Dmitry Kosolobov, Veli Makinen, and Tuukka Norri. Linear time maximum
segmentation problems in column stream model. In Nieves R. Brisaboa and Simon J. Puglisi,
editors, String Processing and Information Retrieval - 26th International Symposium, SPIRE
2019, Segovia, Spain, October 7-9, 2019, Proceedings, volume 11811 of Lecture Notes in
Computer Science, pages 322—-336. Springer, 2019. doi:10.1007/978-3-030-32686-9_23.
The Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises
and challenges. Briefings in Bioinformatics, 19(1):118-135, October 2016. doi:10.1093/bib/
bbw089.

https://doi.org/10.3233/FI-2020-1947
https://doi.org/10.4230/LIPICS.WABI.2024.14
https://doi.org/10.1007/S00224-024-10194-8
https://doi.org/10.1137/20M1368033
https://doi.org/10.1007/978-3-319-67428-5_7
https://doi.org/10.1016/J.TCS.2019.08.012
https://doi.org/10.1016/J.TCS.2019.08.012
https://doi.org/10.1186/S12859-024-05958-5
https://doi.org/10.1007/978-3-030-32686-9_23
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089

N. Rizzo, V. Makinen, and N. Pisanti

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Richard Durbin. Efficient haplotype matching and storage using the positional burrows-wheeler
transform (PBWT). Bioinform., 30(9):1266-1272, 2014. doi:10.1093/BIOINFORMATICS/
BTUO14.

Massimo Equi, Veli Méakinen, and Alexandru I. Tomescu. Graphs cannot be indexed in
polynomial time for sub-quadratic time string matching, unless SETH fails. Theor. Comput.
Sci., 975:114128, 2023. doi:10.1016/J.TCS.2023.114128.

Massimo Equi, Veli Makinen, Alexandru I. Tomescu, and Roberto Grossi. On the complexity
of string matching for graphs. ACM Trans. Algorithms, 19(3):21:1-21:25, 2023. doi:10.1145/
3588334.

Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien Cazaux, Alexandru I. Tomescu, and Veli
Maékinen. Algorithms and complexity on indexing founder graphs. Algorithmica, 85(6):1586—
1623, 2023. doi:10.1007/S00453-022-01007-W.

Esteban Gabory, Moses Njagi Mwaniki, Nadia Pisanti, Solon P. Pissis, Jakub Radoszewski,
Michelle Sweering, and Wiktor Zuba. Pangenome comparison via ed strings. Frontiers
Bioinform., 4, 2024. doi:10.3389/fbinf.2024.1397036.

Estéban Gabory, Njagi Moses Mwaniki, Nadia Pisanti, Solon P. Pissis, Jakub Radoszewski,
Michelle Sweering, and Wiktor Zuba. Comparing elastic-degenerate strings: Algorithms, lower
bounds, and applications. In Laurent Bulteau and Zsuzsanna Lipték, editors, 3/th Annual
Symposium on Combinatorial Pattern Matching, CPM 2023, June 26-28, 2023, Marne-la-
Vallée, France, volume 259 of LIPIcs, pages 11:1-11:20. Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, 2023. doi:10.4230/LIPICS.CPM.2023.11.

Estéban Gabory, Njagi Moses Mwaniki, Nadia Pisanti, Solon P. Pissis, Jakub Radoszewski,
Michelle Sweering, and Wiktor Zuba. Elastic-degenerate string comparison. Inf. Comput.,
304:105296, 2025. doi:10.1016/J.1C.2025.105296.

Roberto Grossi, Costas S. Iliopoulos, Chang Liu, Nadia Pisanti, Solon P. Pissis, Ahmad Retha,
Giovanna Rosone, Fatima Vayani, and Luca Versari. On-line pattern matching on similar texts.
In Proc. CPM 2017, volume 78 of LIPIcs, pages 9:1-9:14. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, 2017. doi:10.4230/LIPICS.CPM.2017.9.

Costas S. Iliopoulos, Ritu Kundu, and Solon P. Pissis. Efficient pattern matching in elastic-
degenerate strings. Inf. Comput., 279:104616, 2021. doi:10.1016/J.IC.2020.104616.

David Maier. The complexity of some problems on subsequences and supersequences. J. ACM,
25(2):322-336, April 1978. doi:10.1145/322063.322075.

Veli Méakinen and Tuukka Norri. Applying the positional Burrows—Wheeler transform to
all-pairs Hamming distance. Inf. Process. Lett., 146:17-19, 2019. doi:10.1016/J.IPL.2019.
02.003.

Njagi Moses Mwaniki and Nadia Pisanti. Optimal sequence alignment to ED-strings. In
Mukul S. Bansal, Zhipeng Cai, and Serghei Mangul, editors, Bioinformatics Research and
Applications - 18th International Symposium, ISBRA 2022, Haifa, Israel, November 14-17,
2022, Proceedings, volume 13760 of Lecture Notes in Computer Science, pages 204—216. Springer,
2022. doi:10.1007/978-3-031-23198-8_19.

Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Médkinen. Linear time minimum
segmentation enables scalable founder reconstruction. Algorithms Mol. Biol., 14(1):12:1-12:15,
2019. doi:10.1186/S13015-019-0147-6.

Cédric Notredame. Recent evolutions of multiple sequence alignment algorithms. PLoS
Comput. Biol., 3(8), 2007. doi:10.1371/JOURNAL.PCBI.0030123.

Nicola Rizzo, Massimo Equi, Tuukka Norri, and Veli Mékinen. Elastic founder graphs improved
and enhanced. Theor. Comput. Sci., 982:114269, 2024. doi:10.1016/J.TCS.2023.114269.
Esko Ukkonen. Finding founder sequences from a set of recombinants. In Roderic Guigd
and Dan Gusfield, editors, Proceedings of 2nd International Workshop on Algorithms in
Bioinformatics WABI, volume 2452 of Lecture Notes in Computer Science, pages 277—286.
Springer, 2002. doi:10.1007/3-540-45784-4_21.

2:13

Grossi's Festschrift

https://doi.org/10.1093/BIOINFORMATICS/BTU014
https://doi.org/10.1093/BIOINFORMATICS/BTU014
https://doi.org/10.1016/J.TCS.2023.114128
https://doi.org/10.1145/3588334
https://doi.org/10.1145/3588334
https://doi.org/10.1007/S00453-022-01007-W
https://doi.org/10.3389/fbinf.2024.1397036
https://doi.org/10.4230/LIPICS.CPM.2023.11
https://doi.org/10.1016/J.IC.2025.105296
https://doi.org/10.4230/LIPICS.CPM.2017.9
https://doi.org/10.1016/J.IC.2020.104616
https://doi.org/10.1145/322063.322075
https://doi.org/10.1016/J.IPL.2019.02.003
https://doi.org/10.1016/J.IPL.2019.02.003
https://doi.org/10.1007/978-3-031-23198-8_19
https://doi.org/10.1186/S13015-019-0147-6
https://doi.org/10.1371/JOURNAL.PCBI.0030123
https://doi.org/10.1016/J.TCS.2023.114269
https://doi.org/10.1007/3-540-45784-4_21

“Strutture Di Dati e Algoritmi. Progettazione,
Analisi e Visualizzazione”, a Book Beating Its Own
Drum

Anna Bernasconi &
Dipartimento di Informatica, University of Pisa, Italy

Linda Pagli &

Dipartimento di Informatica, University of Pisa, Italy

—— Abstract

In this contribution, we discuss the innovative approach taken by Roberto Grossi and his co-authors
in their book “Strutture di dati e algoritmi. Progettazione, analisi e visualizzazione,” which aims to
bridge the gap between the theoretical and practical aspects of algorithms. Unlike traditional texts
that either focus on formal mathematical analysis or practical implementation, this book adopts
an intermediate approach that emphasizes both programming skills and theoretical understanding.
This contribution reflects our experience as instructors of the introductory algorithms course in the
Computer Science degree program at the University of Pisa.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases Algorithms, C-Programming, Basics of Computational Thinking

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.3

Category Education

Dedicated to Roberto Grossi

The book “Strutture di dati e algoritmi. Progettazione, analisi e visualizzazione” by Pierluigi
Crescenzi, Giorgio Gambosi, and Roberto Grossi was first published in 1999. Focusing on
algorithms — a foundational topic in computer science — the authors chose not to simply follow
in the footsteps of other renowned texts. Instead, they aimed to offer a fresh and innovative
perspective, taking into account the most recent developments in algorithm research at
the time.

Before this volume, there were basically two main approaches, and they were pretty
different from each other. The first one looks at algorithms, their correctness, and their
computational complexity from a more theoretical and formal angle, rich in mathematics. It
goes through the history of classic algorithms, organizing them by topic, comparing them
based on their theoretical complexity, and figuring out their computational limits. This
approach uses a high-level language to highlight the key features of an algorithm without
getting distracted by implementation details. A great example of this is the famous book
“Introduction to Algorithms” by Cormen, Leiserson, and Rivest, which first came out in 1990
and was updated to include Stein in 2002. It has been adopted in many computer science
courses around the world, including at MIT, and has become a classic in the field. Many
Italian books that followed have pretty much followed this line without altering its approach.

On the other hand, the second approach concentrates solely on the implementation of
algorithmic problems, with the goal of optimizing the computer’s capabilities for maximum
efficiency. This approach is less formal, and the study of efficiency is based more on
experimentation than on theoretical analysis. It is a practical approach focused on identifying

© Anna Bernasconi and Linda Pagli;
oY licensed under Creative Commons License CC-BY 4.0
From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 3; pp. 3:1-3:5

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:anna.bernasconi@unipi.it
https://orcid.org/0000-0003-0263-5221
mailto:linda.pagli@unipi.it
https://orcid.org/0000-0003-3717-3952
https://doi.org/10.4230/OASIcs.Grossi.2025.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

3:2

A Book Beating Its Own Drum

Pierluigi Crescenzi « Giorgio Gambosi » Roberto Grossi

Strutture di dati e algoritmi

Pierluigi Crescenti » Giorgio Gambosi
Roberto Grossi + Gianiuca Rossi

Progettazione, analisi e visualizzazione) (
STRUTTURE DI DATI
E ALGORITMI

Progettazione, analisi e programmazione
Seconds adions

Figure 1 The covers of the first and second edition of the book “Strutture di dati e algoritmi.
Progettazione, analisi e visualizzazione”.

efficient algorithms based on the actual conditions under which they operate. Quality code
and experimentation are the goals of this approach, perhaps more suited to experienced
programmers.

Roberto Grossi et al have followed an intermediate approach, aimed at students who are
tackling programming for the first time but are also beginning to orient themselves in theory,
studying classic problems and learning to analyze solutions. Special attention is given to the
code of an algorithm, which is not yet complete and is almost entirely lacking parameter
testing and input/output instructions. However, it is very close to actual code (C or Java)
and can be implemented with only a few minor additions. Programming skills are placed
on the same level as theoretical analysis. This type of training seems particularly suitable
for first-year computer science students. We, the authors of this note, were at the time
instructors of the two twin courses in Algorithms in the Computer Science degree program
at the University of Pisa. We were already experienced in teaching this subject, as well as
in using the Cormen’s book, but upon learning about the new volume, we did not miss the
opportunity to adopt it, curious about the new approach and with the convenience of being
able to consult directly with one of the authors in case of doubts.

The book also presents other attractive features: it offers students the opportunity to
visualize, through a system called Alvie accessible online, the execution of almost all the
algorithms presented in the book, with input data specified by the student. Following the
execution of an algorithm as things become more complicated is a very effective teaching tool
for both the student and the teacher, who can avoid the often tedious manual execution on
the board. Another interesting feature is the integration of theoretical topics with practical
applications, with the dual aim of providing students with a clear idea of the importance
of the concepts studied and giving teachers a set of useful motivations to present the more
challenging topics. These integration topics between theory and practice are referred to in
the volume as opus libri.

Lastly, we liked the cover of the first edition, where little robots in the shape of a colorful,
stylish personal computer, very popular in the 1990s, work together to build a treehouse and
make a computer function.

Adopting a newly released book and following its framework in teaching also means seeing
some limitations and finding inevitable calculation errors, printing mistakes, and even some
subtler ones. For us, it was a discovery, a challenge, and also a struggle, but we believe we
have prepared students well in the field of algorithms and have contributed operationally to

A. Bernasconi and L. Pagli

the production of a better second edition of the volume. The students appreciated the book,
and with the help of lessons and exercises, they also learned the most theoretical concepts and
complicated proofs; in particular, we will mention some of the most educationally formative
topics, enjoyable to teach and well-received by the students.

The book begins with difficult problems, the distinction between P and NP, and the
important concept that for many interesting problems, no better solution algorithms are
known than those that explore the whole set of possible solutions. These algorithms, known
as brute force, require exponential time in the worst case with respect to the input size of
the problem. To explain to students the complexity and length of an exponential algorithm
that tests all possibilities, the game of Sudoku is used as an example. Sudoku emerged in
the 1990s and became very popular during that time. It is a useful tool for explaining the
definition of the NP class, which includes problems that can be easily verified in polynomial
time. Indeed, in Sudoku, having the solution to a specific puzzle (which is published in
newspapers shortly after the puzzle is proposed) and placing the numbers in the correct spots
allows one to easily verify that the solution satisfies all the specified constraints. Furthermore,
in solving games proposed as difficult, one proceeds exactly as in brute force algorithms,
going through multiple decisions, where different values can be associated with a generic cell.
By choosing one of these, one can proceed for one or more steps or even to the end, or one
must go back to the most recent step where a choice was made and move on to the next
choice if it exists. With a nice example that is not too large, students, almost all familiar
with the game, can quickly grasp the meaning of a brute force algorithm and have a practical
idea of time exponential in the dimensions of the starting grid.

In our opinion, one very educational topic introduced in the volume regarding data
structures is that of variable-sized arrays. The array is studied along with its memory
allocation. When the array of size d is dynamic, meaning it undergoes many insertions and
deletions, care is taken to ensure that the memory space reserved for it is always adequate.
In particular, if, for a new insertion, the number of elements in the array reaches its size,
the array is duplicated, leading to the elements being copied into a new array of size 2d.
Conversely, if, following a new deletion, the number of stored elements becomes equal to d/4,
the array is halved, which also involves copying the elements. It is shown that n operations
of insertion or deletion in a dynamic array can be performed in O(n) time. The proof is
very brief and neat but not trivial; it simultaneously shows that halving when the number
of elements is equal to d/2, a choice that seems the most natural, does not work, which
helps to better understand why the choice to halve when n = d/4 is made. The analysis of
dynamic arrays introduces the concept of amortized complexity: the cost of copying the array
is spread over previous and subsequent operations that do not require any action, and these
are sufficiently numerous to absorb the cost of copying the elements of the array.

Amortized complexity is introduced and discussed even more explicitly in the chapter
dedicated to lists, where the study of self-organizing lists is explored, particularly the Move-
to-Front strategy. This strategy is familiar to students because it is used in the call logs on
their phones (which were not yet smart at the time). The analysis of the computational cost
of this strategy is not simple and requires nearly an entire lesson. It was especially rewarding
to complete the lesson without losing the students’ attention, and even more so when they
chose this topic as one they were eager to discuss during the oral exam.

Another innovative topic, never encountered in other similar texts, is that of recursive
algorithms on binary trees. A general paradigm is presented, as an extension of divide and
conquer on arrays, to be applied to binary trees. The typical divide and conquer scheme —
solve recursively on the left subset of n/2 elements, solve recursively on the right subset

3:3

Grossi's Festschrift

3:4

A Book Beating Its Own Drum

of n/2 elements, and then recombine — applies almost directly to binary trees, replacing
the subset with the left and right subtrees, respectively. This type of approach allows for
very easy solutions to classic problems on trees that would otherwise be quite complicated.
Students easily grasp this tool and use it to effectively solve problems that, when approached
without this framework, would traditionally be challenging.

A basic algorithm for the sorting problem is Quick-Sort, which is super efficient in the
average case, while in the worst case it is quadratic like the most basic algorithms. Since it
is ultimately the most used algorithm in practice and, with some variations, is present in
the libraries of many programming languages, it is important to demonstrate to students its
average case cost. As is well known, proofs in this case are much more complicated than
those considering the worst case, where identifying the situation that leads to the highest
complexity often involves elementary mathematical study. The average case, on the other
hand, requires considering and evaluating all possible inputs, often making use of probability,
a topic that first-year algorithm students will tackle the following year. The text offers
an alternative approach that, while not trivial, simplifies the analysis and is particularly
well-suited to students.

Dynamic Programming is a rather original algorithm design technique that is typically
applied to optimization problems, where the so-called principle of optimality holds. This
principle states that, for the problem at hand, the optimal solution can be derived from the
optimal solutions of smaller subproblems. The algorithms are generally complex and not very
intuitive, to the point that sometimes it is not at all straightforward to even understand how
they work; designing a solution using this technique is even more challenging and requires a
deep mastery of the subject. Thus, the book provides a sort of guide for defining an algorithm
based on four fundamental aspects:

1. The formulation of the problem structure that is valid for the problem in question and
its subproblems.

2. The identification of elementary subproblems and the assignment of their solution values,
obtained through direct inspection.

3. The definition of the recursive rule that allows the problem to be solved as a composition
of the solutions of subproblems.

4. The derivation of an ordering of the subproblems for efficient computation and the storage
of partial solutions in a table.

These rules, which may seem obscure at first, accompanied by various examples, provide
important guidance and assistance to those who wish to tackle the definition of a dynamic
programming algorithm. Students struggle with this topic, but in the end, with step-by-
step guidance, they manage to master it. We can assert that the four-step technique is
quite effective and provides important guidelines in the design of a dynamic programming
algorithm.

The implementation of sorted dictionaries on balanced binary search trees is another topic
that Roberto’s book presents in a clear and effective way. The chosen balancing technique
is that of 1-balanced binary search trees, known as AVL trees (named after the initials of
the Russian authors Adelson-Velsky and Landis, who proposed them in 1962). A binary
tree is 1-balanced if the heights of the two child subtrees of any node differ by at most one.
The connection between being 1-balanced and having logarithmic height is not immediate
and involves Fibonacci trees, which are the most unbalanced among 1-balanced trees. More
specifically, a Fibonacci tree is a 1-balanced tree that has the fewest nodes for a given height.
Starting with Fibonacci trees, the text walks the reader through a detailed process that

A. Bernasconi and L. Pagli

uses concepts such as minimality, recursive definitions, closed-form Fibonacci numbers, and
exponential growth. This all comes together to prove that a generic 1-balanced tree has
a logarithmic height. After this somewhat theoretical discussion, the student is quickly
rewarded with code to implement dictionary operations on AVL trees. The code is clear,
comprehensive in all its stages (including the rebalancing of the structure through rotations),
and practically ready to be executed.

In all algorithm books, graphs are treated as a static structure: memory representations
rely on keeping all the nodes of the graph in a direct access array, which requires knowing all
the nodes of the graph in advance to ensure constant time access to any node. All traversal
algorithms are based on this assumption, which is never explicitly stated, allowing their
complexity to remain linear in the number of nodes and edges, precisely because access to any
node is achieved in constant time. Classic algorithms on graph structure also always assume
that the entire graph is known a priori. Networks like the internet, naturally represented as
graphs, are instead very dynamic structures, where important information must be calculated,
such as degree, eccentricity, shortest paths, etc. In Roberto’s book, dynamic graphs are given
separate treatment, where nodes are allocated in a dictionary, that is, in a flexible structure,
for example organized as a balanced tree or a hash table, which guarantees efficient access,
insertion, and deletion operations, but not executable in constant time. Consequently, graph
algorithms can be transformed, providing students with immediate use of all variations on
the organization of a dictionary, introduced earlier, and giving instructors an inexhaustible
source of problems to propose as exercises.

When the Algorithms course was accompanied by a separate course on Practical Pro-
gramming Laboratory, the implementation part of basic algorithms was almost completely
transferred to that course, and the Algorithms course inevitably shifted a bit more towards
theory. Thus, we returned to the original course setup, resuming Cormen et al as the
textbook. Nevertheless, almost all the topics mentioned above retained the approach and
important concepts encountered in Roberto et al book during the lessons.

As a conclusion, let us say that Roberto is an innovator, and this attitude is reflected in
all his activities: from scientific research to teaching and writing textbooks, from finding the
best leavening for homemade bread to creating cooking recipes inspired by Japanese culture,
and from preparing students for the Olympiad in Informatics to educating and protecting
them as if they were his own children.

3:5

Grossi's Festschrift

On Graph Burning and Edge Burning
Giuseppe F. Italiano =
LUISS University, Rome, Italy

Athanasios L. Konstantinidis &
University of loannina, Greece

Manas Jyoti Kashyop &

Indian Institute of Technology Bhubaneswar, India

—— Abstract

Graph burning is a deterministic, discrete-time process that models how influence or contagion

spreads in a graph. Initially, all vertices are unburned. At each round, one new vertex is chosen to
burn. Once a vertex is burned, in the next round each of its unburned neighbors become burned.
The process ends when all vertices are burned. The burning number of a graph is the minimum
number of rounds needed for the process to end. Very recently, a variant called edge burning was
introduced, where instead of vertices we burn edges: at each round one new edge is burned. Once an
edge is burned, in the next round all its unburned incident edges become burned. The edge burning
number is the minimum number of rounds that are needed to burn all the edges. In this paper, we
present a systematic study of edge burning and provide some new results for graph burning. First,
we show a tight relationship between the edge burning number and the burning number of a given
graph: specifically, their absolute difference is at most 1. Moreover, we show that the edge burning
number of a graph is equal to the graph burning number of its line graph. On the computation
complexity side, we show that the edge burning problem is NP-complete, but can be solved in
linear time on paths, split graphs, and cographs. Furthermore, we give an XP algorithm when
the edge burning problem is parameterized by the diameter of the input graph and a linear kernel
when parameterized by the neighborhood diversity. For the graph burning problem, we provide
2-approximation algorithms when either the solution is part of the input or forced to form a path.

2012 ACM Subject Classification Theory of computation — Algorithm design techniques
Keywords and phrases Burning Number, Graph Burning, Edge Burning, Approximation
Digital Object Identifier 10.4230/OASIcs.Grossi.2025.4

Category Research

Funding Giuseppe F. Italiano: Giuseppe F. Italiano was partially supported by MUR, the Italian
Ministry for University and Research, under PRIN Project AHeAD (Efficient Algorithms for
HArnessing Networked Data).

Acknowledgements The work was done when the second and the third authors were postdocs at
LUISS University Rome, Italy.

1 Introduction

Graph burning was introduced as a model to study spread of an influence or a contagion in a
social network in [4]. Graph burning is a deterministic process and it advances in discrete
time steps called rounds. Input to the graph burning process is a simple, undirected, and
unweighted graph. Initially, all the vertices in the graph are marked as unburned. In the
first round a vertex is selected, it is marked as burned, and denoted as the first activator. In
round 4, where ¢ > 2, an unburned vertex (if such a vertex is available) is selected and marked
as burned (called the i-th activator). Further, in round ¢, where ¢ > 2, all the unburned
neighbors of the vertices which are marked as burned till round ¢ — 1 are marked as burned.
The goal in the graph burning process is to mark all the vertices in the graph as burned using
? Giuseppe F. Italiar.lo, Athanasios L Konstantinidis, and Manas Jyoti Kashyop;
37 icensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 4; pp. 4:1-4:18

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:gitaliano@luiss.it
mailto:a.konstantinidis@uoi.gr
https://orcid.org/0009-0001-5566-5187
mailto:manaskashyop@iitbbs.ac.in
https://orcid.org/0000-0002-5727-5406
https://doi.org/10.4230/OASIcs.Grossi.2025.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

4:2

On Graph Burning and Edge Burning

the minimum number of rounds. Bonato et al. [4] called the minimum number of rounds
required to mark all the vertices as burned in the input graph as burning number b(G) of
graph GG. The set of activators selected in every round forms a sequence, which is called the
burning sequence of the graph.

Graph burning marks vertices from unburned to burned and selects a sequence of vertices
as a sequence of activators. Mondal et al. [16] proposed the process of marking edges instead
of vertices and selecting a sequence of edges as a sequence of activators. They referred to
this process as edge burning. In other words, edge burning is a discrete deterministic process
where, instead marking all the vertices of the input graph from unburned to burned, the goal
is to mark all the edges of the graph from unburned to burned. Initially, all the edges in the
graph are marked as unburned. In the first round an edge is selected and it is marked as
burned: this edge is referred to as the first source. In round i, i > 2, an unburned edge (if
such an edge is available) is selected and marked as burned, and it is referred to as the i-th
source. Further, in round ¢, ¢ > 2, all the unburned neighbors of the edges which are marked
as burned till round (7 — 1) are marked as burned. The goal in the edge burning process is to
mark all the edges in the graph as burned using the minimum number of rounds. The edge
burning number of a graph, denoted by Eb(G), is the minimum number of rounds required to
mark all the edges in the graph as burned. The set of sources selected in every round forms
a sequence called the edge burning sequence of the graph. Throughout the paper, we will use
the notation burn a vertex instead of marking a vertexr as burned, burn an edge instead of
marking an edge as burned. Similarly, we will refer to burned (unburned) vertex/vertices and
to burned (unburned) edge/edges.

Previous work. The graph burning problem has received significant attention in recent
years. Bessy et al. [2] showed that computing the burning number is NP-complete even for
trees with maximum degree 3 but optimally solvable in linear time for paths. In addition,
this problem remains NP-hard even on caterpillar graphs [10], interval graphs [9] and spider
graphs [2], but it is polynomial time solvable on split graphs and cographs [11]. In [5],
Bonato et al. presented a very elegant 3-approximation algorithm for graph burning on
general graphs and a 2-approximation algorithm for trees. Moreover, Mondal et al. [16]
proved that graph burning is APX-hard and provided a 3-approximation algorithm with a
different approach from [5]. From the parameterized complexity viewpoint, graph burning
is W[2]-hard when parameterized by the burning number, and thus unlikely to admit an
FPT algorithm [12]. Furthermore, the problem has been studied under several structural
parameters [11, 12].

As for the edge burning problem, Mondal et al. [16] observed that the burning number
can be smaller than the edge burning number by giving the wheel graph as an example, as
shown in Figure 1 (left): W5, the wheel graph of 6 vertices, has burning number equal to 2,
and edge burning number equal to 3. It is easy to see that the edge burning number can be
smaller than the burning number, as shown in Figure 1 (right): the graph G has burning
number equal to 3, and edge burning number equal to 2. As pointed out by Mondal et
al. [16], an interesting question is to determine the relationship between the burning number
and the edge burning number of a given graph.

Our results. In this paper, we present a systematic study of edge burning and provide some
new results for graph burning. First, we address the question posed by Mondal et al. [16]
and show that there is indeed a tight relationship between the edge burning number and the
burning number of a given graph: specifically, we prove that their absolute difference can be

G. F. Italiano, A. L. Konstantinidis, and M. J. Kashyop

Ws

Figure 1 We denote activators for graph burning by the blue vertices and sources for edge
burning by the red edges. The numbers over the vertices or edges show the number of rounds of an
optimal solution. The graph W5 is an example from [16] in which the graph burning number is less
than the edge burning (b(Ws) = 2 < Eb(Ws) = 3). On the other hand, we give the graph G as an
example that shows the opposite, the edge burning number of G is less than the burning number of
G (BEb(G) =2 < b(G) =3).

at most 1. In addition, we show that the edge burning number of a graph is equal to the
graph burning number of its line graph. The latter result appears to be of broad interest. On
the one hand, we use it to establish new upper bounds for the edge burning number using
known results for the burning number. On the other hand, it allows us to prove also new
results for the burning number, such as the NP-completeness of the graph burning problem
on the restricted class of connected claw-free graphs.

On the computation complexity side, we show that the edge burning problem is NP-
complete on general graphs. This is not surprising, given the tight relationship that we
have proved between the edge burning number and the burning number of a graph. On the
positive side, we show that edge burning can be solved in linear time on paths, split graphs,
and cographs. We next consider the parameterized complexity of the edge burning problem:;
first we show a trivial XP algorithm for the edge burning problem when parameterized by the
diameter of the graph, followed by a linear kernel when parameterized by the neighborhood
diversity.

Next, we focus our attention to two variants of the graph burning problem. The first
variant is defined as follows. Consider a network in which one wishes to spread influence in
the minimum number of rounds by selecting some nodes as activators. The nodes selected as
activators must be operational until the influence reaches every node in the network. Suppose
this requirement forces the nodes selected as activator to be connected to an emergency
service line. Therefore, all the activator nodes in the network must lie in a path which models
the emergency service line. With this motivation, we define a variant of the graph burning
problem in which all the activators must be on a path. We call the problem as Graph burning
with Activators on a Path (GbAP) problem. Our motivation for the GbAP problem resembles
the motivation for studying well-known clustering problems like the k-center problem with
all the centers on a line [6]. Potential applications include setting up kiosks for medical
emergencies, where these kiosks must be connected to an uninterrupted power supply line,
in an event that attracts large gatherings and many stalls. Note that the GbAP problem
reduces to the graph burning problem when we restrict the graph class to paths, which can
be solved optimally in linear time. We show that GbAP problem is NP-complete even for
trees with maximum degree 3; on the positive side, we present a 2-approximation algorithm
for the GbAP problem on trees.

The second variant was defined by Mondal et al. [16], who considered graph burning
with additional advice: more specifically, together with the graph, an (unordered) set of
activators used by an optimal solution is provided as input. In [16] it is shown that finding an

4:3

Grossi's Festschrift

4:4

On Graph Burning and Edge Burning

optimal burning sequence is NP-hard even in this special case. We refer to this variant as the
Graph burning with Activators as Input (GbAI) problem. For the GbAI problem, we present
a deterministic algorithm that guarantees a 2-approximation and a randomized algorithm
that guarantees better than 2-approximation. We also show that the GbAI problem is fixed
parameter tractable when parameterized by the solution size (the burning number). To
put our results in perspective, we recall that for the graph burning problem no better than
3-approximation is known for general graphs [5, 16] and the problem is W[2]-hard when
parameterized by the burning number [12].

Related work. Independently from our work, Antony et al. [1] very recently studied the
relationship between the burning number and the edge burning number and the computational
complexity of the edge burning by showing NP-hardness for it. Also, there are some results
on edge burning number in very restrictive graphs [13, 14].

Organization of the paper. The remainder of the paper is organized as follows. We start
by introducing some preliminary terminology and definitions in Section 2, while in Section 3
we present our new results on the edge burning problem. Next, we consider our two variants
of the graph burning problem: Section 4 deals with graph burning with all activators on a
path (GbAP problem), where all activators must be on a path of the input graph, while
Section 5 deals with graph burning with known activators (GbAI problem), where a set
of activators used by an optimal solution is given as input. Finally, Section 6 lists some
concluding remarks and directions for further research.

2 Preliminaries

All graphs considered throughout the paper are simple, undirected and connected, unless
explicitly stated otherwise. Given an input graph G = (V, E), we denote by n = |V| the
number of vertices, and by m = |F| the number of edges. The neighborhood of a vertex v of
G is N(v) = {z | va € E} and the closed neighborhood of v is N[v] = N(v)U{v}. For S CV,
N(S) =Uyesg N(v) \ S and N[S] = N(S)US. For X C V, the subgraph of G induced by
X, G[X], has vertex set X, and for each vertex pair u,v from X, uv is an edge of G[X] if
and only if u # v and wv is an edge of G. We denote the edge burning number of G by
Eb(G) and the burning number of G by b(G). We use K,, to denote a complete graph with
n vertices and P, to denote a path with n vertices. The complete bipartite graph Kj 3 is
also called as claw and a claw-free graph is a graph in which no induced subgraph is a claw.
A clique of a graph is a set of pairwise adjacent vertices of the graph and an independent set
of a graph is a set of pairwise non-adjacent vertices of the graph. We use the notion of line
graph of a graph.

» Definition 1. The line graph of a graph G is a graph L(G) with the following properties:
1. For every edge in G, there is a corresponding vertex in L(QG).
2. Two vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent.

We define the distance between two edges e; and e, as the minimum number of edges between
the two edges plus 1. The distance between two vertices vi and vy, denoted as dist(vy, v2),
is the length of the shortest path between v; and v, (the minimum number of edges). The
eccentricity of a vertex u, denoted as ecc(u), is ecc(u) = max,ev{dist(u,v)}. The diameter
d of G is the maximum length of a shortest path in G, that is d = max, yev{dist(u,v)} =
maxyev{ecc(v)}. The radius rad of G is minyey{ecc(v)}. For a vertex v, the set Ni[v] denotes
the set of vertices at a distance at most k, that is Ni[v] = {u]dist(u,v) < k}.

G. F. Italiano, A. L. Konstantinidis, and M. J. Kashyop

Problem statements. Next, we formalize the decision version of the graph burning problem.
We recall here that the set of activators selected in every round forms a sequence, which
is called the burning sequence of the graph, and the set of sources selected in every round
forms a sequence called the edge burning sequence of the graph.

Graph Burning

Input: An undirected graph G and an integer k > 1.

Question: Does G have a burning sequence that burns all the vertices
of G in at most k£ rounds?

Similarly, we formalize the decision version of the edge burning problem.

Edge Burning
Input: An undirected graph G and an integer k > 1.
Question: Does G have an edge burning sequence that burns all the edges

of G in at most k rounds?

Finally, we present some concepts from parameterized complexity which are essential for
our results.

Parameterized complexity. A problem with input size n and parameter k is fixed parameter
tractable (FPT), if it can be solved in time f(k)-n°®") for some computable function f. A
kernelization for a parameterized problem is a polynomial time algorithm that maps each
instance (I, k) of a parameterized problem to an instance (I, k") of the same problem such
that (I, k) is a yes-instance if and only if (I’, k") is a yes-instance, and |I’| + k" is bounded by
f (k) for some computable function f. The output (I’,k’) is called a kernel. The function
f is said to be the size of the kernel. It is well-known that every decidable parameterized
problem is FPT if and only if it admits a kernel. The class XP contains all problems that
can be solved in O(|I|7(*)) time for some computable function f. It is common to build an
FPT algorithm or a kernel for a parameterized problem by constructing a series of reduction
rules, that is, polynomial algorithms that either solve the problem or produce instances of
the problem that, typically, have lesser sizes or lesser values of the parameter. Respectively,
it is said that a rule is safe or sound if it either correctly solves the problem or constructs an
equivalent instance.

3 Edge Burning Number

In this section we study the edge burning problem. Since in the edge burning problem edges
are selected as sources in place of vertices with the objective to burn all the edge instead of
the vertices, the immediate question, as posed in [16], that arises is the relationship between
the edge burning number and the burning number for a given graph. The examples in
Figure 1 show that there are graphs in which the difference between the edge burning number
and the burning number is one. In the following theorem we show that the difference between
these two numbers is at most 1 for any graph.

» Theorem 2. For any graph G without isolated vertices |b(G) — Eb(G)| < 1.

Proof. First, we show that Eb(G) < b(G) + 1. Given a graph G we assume a solution for
the graph burning problem of size k. This means that there is a burning sequence A of k
activators that burns all the vertices of G. Based on A we give an edge burning sequence
S of k sources that burns all the edges of G in k + 1 rounds. For the activator v; of A we

4:5

Grossi's Festschrift

4:6

On Graph Burning and Edge Burning

choose an incident edge to v; as a source, let e; be this source. Thus, S contains k edges of G
and every one of them is incident to an activator. Observe that the activator v; burns all the
vertices at distance at most k — 4, denote W all these vertices. Thus, there is a path from v;
to every vertex u € W that contains at most k — ¢ edges. By considering an incident edge
to v; as source for the edge burning problem and by the definition of the distance between
two edges, we get that all the edges of the paths between v; and every vertex u € W will
be burned by the source e; in next k — ¢ rounds. Since this holds for every activator v; and
source e;, in k rounds we have that every vertex of G has at least one burned incident edge.
Hence, in the next round, k£ + 1, all the unburned edges will be burned.

Next, we show that b(G) < Eb(G)+ 1. Assume a solution for the edge burning problem of
size k of a given graph G. This means that there is an edge burning sequence S of k sources
that burns all the edges of G. Based on S we give a burning sequence A of k activators that
burns all the vertices of GG in k + 1 rounds. For the source e; of S we choose one of the two
endpoints as an activator, let v; be this activator. Thus, A contains k vertices of G, each of
them is endpoint of some source of S. Let F' be the set of the edges that are burned by the
source e;. This means that the edges of F' are at distance at most k — 4 from e;. Consider
now the corresponding activator v;. By the definition of the distance between two edges, we
get that v; is at distance at most k — i + 1 from every endpoint of the edges in F'. Thus, we
may need one more round to burn the vertices of F' by using v; as activator. Notice that this
holds for every source e; and activator v;. Since the sources in S burn all the edges of G in k
rounds, we have that all the vertices of G can be burned by A in at most k 4+ 1 rounds. <«

Our next theorem provides another relationship between the edge burning number and the
burning number through the notion of line graph.

» Theorem 3. For any graph G, Eb(G) = b(L(QG)) where L(G) is the line graph of G.

Proof. Assume that (G, k) is a yes-instance for EDGE BURNING and let (e, ea,...,ex) be
the edge burning sequence for G, i.e. Eb(G) = k. Let also A = (A1, As, ..., Ax) be the set
of edges that can be burned by the edges (e, e, ..., ex) respectively. This means that the
edges that belong to the sets of A are exactly all the edges of the graph if we ignore the
edges (e1, e, ..., ex). Without loss of generality, let f be an edge that belongs to A;. By the
definition of edge burning, the distance between the edges e; and f is at most kK — 1. Now
consider the line graph L(G). Then the edges of the edge burning sequence correspond to
some vertices U = {v1, va, ..., v} of L(G). We show that the vertices of U form a burning
sequence with the same order for the graph burning problem, this means b(L(G)) = k. Let
vy be the corresponding vertex in L(G) of the edge f € G. Since there is a path with (at
most) k — 2 edges between the edges e; and f, there is a path with (at most) k — 2 vertices
between the vertices vy and vy. Thus, we get that vy will be burned in at most k& — 1 steps.
Notice that this holds for every edge source e; and edge f € A;. Hence, the burning number
of L(G) is at most the edge burning number of G, i.e., b(L(G)) < Eb(G).

Assume now that (L(G), k) is a yes-instance for graph burning and let U = {v1,va, ..., v }
be the burning sequence for L(G). With the same argumentation, for every vertex vy there is
some source v; that burns it in at most &’ — 47 — 1 steps. In other words, there is a path with
at most k' — ¢ — 2 intermediate vertices in the path from v; to vy. This means, there is a path
that contains &’ — 7 — 2 edges between the corresponding edges, e; and f in G. Therefore, the
edge burning number of G is at most the burning number of L(G), i.e., Eb(G) < b(L(G)).
By combining the above inequalities, we get that Eb(G) = b(L(G)). <

The burning number of a path or a cycle with n vertices is known to be [/n| by [4]. Thus,
using Theorem 3, we get the following bounds.

G. F. Italiano, A. L. Konstantinidis, and M. J. Kashyop

» Corollary 4. If G is a path with m edges and n vertices then Eb(G) = \/m| = (/n—1].
» Corollary 5. If G is a cycle with m edges and n vertices then Eb(G) = [/m| = (/n].

For a complete graph K, n > 2, we have the following cases for the edge burning number:

1 ifn=2
Eb(K,)=¢ 2 ifn=3or 4
3 ifn>5

Observe that K5 is just an edge and so Eb(K,) = 1. For n = 3 or 4, by choosing any edge
as the first source, all other edges will be burned in the second round for n = 3. For n = 4,
only one edge is not incident to the first source, so we choose this edge as the second source.
Thus, Eb(K,) = 2. For n > 5, observe that there are at least 2 non-incident edges to the
first source. Thus, with the same procedure as previously, we need three rounds to burn all
the edges. On the other hand, the burning number of K,, n > 2, is always 2. Note that
a simple algorithm for computing the edge burning number on a path can be obtained by
adapting the corresponding algorithm to find the burning sequence on paths [3]:

Finding an edge burning sequence on paths. Let P, = {ej,es,...,en} denote a path with
m edges and Eb(P,) = k. Let {x1,xa, -+ ,xk} denote an edge burning sequence. We compute
the sources as follows.

for 0 <i<k—2, xk_i = em_i2_i-

if m> (k —1)% +k, we get x; = €m—(k—1)2—(k—1), Otherwise x; = e;.

3.1 NP-Hardness of Edge Burning

In this section, we study the computational complexity of the edge burning problem (EDGE
BURNING). First, observe that given a graph and a sequence of edges as sources we can check
in polynomial time if the sequence is a solution for the edge burning. Thus, EDGE BURNING
is in NP. Next, we show that EDGE BURNING is NP-hard. We obtain our result by using a
reduction from the VERTEX COVER problem, a well-known NP-complete problem. VERTEX
CoVER: Given graph G and an integer k. Is there a subset S of vertices in G of size k or
less such that every edge of G has at least one of its endpoints in S7 Our constructions for
the NP-hardness are based on [16].

» Theorem 6. EDGE BURNING is NP-complete.

Proof. Given an instance (G = (V, E),k) of VERTEX COVER we construct a graph G’
as follows:
for every vertex v of V, we add two adjacent vertices v' and v? in G,
for every edge {u,v} € F,
we add two vertices uv and vu in G, additionally, we add the edges {u!,uv}, {v!, vu}
and {uwv,vu} in G’. We then replace the edge {uv,vu} by a path with 2n + 3 vertices,
where uv and vu are the endpoints of the path. Let w be the middle vertex of the
path.
we add a path T, with n + 1 vertices and make one of its endpoints adjacent to w.
we add 2n + 5 pairs of adjacent vertices. Every pair is isolated with respect to the rest of
the graph.

4:7

Grossi's Festschrift

4:8

On Graph Burning and Edge Burning

Notice that G’ can be constructed in polynomial time.

We claim that (G, k) is a yes-instance for VERTEX COVER if and only if G’ has a burning
sequence of length at most k& + 2n + 5.

Assume that G has a vertex cover C of size at most k. We find an edge burning sequence
F for G'. First, we add to F the edges {v},v?} of G’ that correspond to the vertices of C
in arbitrary order. We denote this set of edges as C’. This means in the first k£ rounds all
the edges of C' are burned. After that we choose the 2n + 5 isolated edges of G’ as burning
sources for F'. Hence, we need k 4 2n 4 5 rounds in order to burn these edges. Now we show
that the rest edges can be burned within k£ 4 2n + 5 rounds. As we said in the first &£ rounds
all the edges of C” are burned. Moreover, for every edge {u',u?} that does not belong to C’
there is an edge of C’ that is in distance 2n + 5 since C is vertex cover of G. This means
all the edges {u!,u?} can be burned in the next (2n + 5) rounds. Observe also that all the
edges between an edge of C’ and an edge {u!,u?} ¢ C’ are in distance at most 2n + 4 from
some edge of C’. Furthermore, the edges of a path T, are in distance at most 2n + 4 from
some edge {v!,v%} € C’. Thus, all the edges of G’ can be burned in k + 2n + 5 rounds.

For the opposite direction, assume that G’ has a burning sequence F of length at most
k + 2n + 5. We show how to build a vertex cover C for G of size at most k. For every
edge {u,v} € E, we define H,, to be a subgraph of G’ that contains the edges {u!,u?} and
{vl, 02}, all the edges in distance at most n + 2 either from {u',u?} or {v!,v?}, all the edges
in the path of u' to v! and the edges of the path T,,. For every H,, and for each burning
source e in it, we check whether the distance between e and {u!,u?} is smaller than the
distance between e and {v',v?}. If the former holds then we put u in C' otherwise we put
v in C. We break ties arbitrarily. Next we prove that C' is a vertex cover of G. Assume
that there is an edge {u,v} € E, where neither u nor v belongs to C. This means that every
burning source e € G’ is closer to some {z,y} € G’ other than {u!,u?} and {v',v?}. Thus,
H,, does not contain any edge burning source. Observe that the distance between an edge
e outside of H,, and the last edge of T}, is at least n + 2n + 5. Hence, we need at least
n + 2n 4 6 rounds in order to burn the edges of H,, which is strictly larger than k + 2n + 5.
This leads to a contradiction, and so C' is a vertex cover since for every edge {u,v} € E at
least one of the endpoints belong to C. Finally, since we need 2n + 5 rounds to burn the
isolated edges, we get that the vertex cover is at most k. |

By construction, the graph G’ in the proof of Theorem 6 is disconnected. Next, we can
adjust the proof of Theorem 6 and show that the EDGE BURNING problem is also NP-hard
on connected graphs. More precisely, let G be a graph and let v be a vertex of G. We extend
this graph by adding a pair of adjacent vertices {z,y} and make the vertex x adjacent to
v of G. Observe that the minimum vertex cover of the new graph, H, is one more than
in G, since we have added the edge {z,y} and so one of the endpoints has to belong to
the vertex cover. Let £ the minimum vertex cover of H. Next, we follow the construction
of Theorem 6 but instead of using the isolated pair of adjacent vertices, we add a path
P=(22,Q,Q e1,Q e2,Q,...,Q eant5), where Q is a sequence of (£ + 2n + 4) vertices,
Q' is a sequence of (2n + 4) vertices, and ey, eq,- - , ean45 are pairs of adjacent vertices that
correspond to the isolated pairs of adjacent vertices of Theorem 6. Notice that the number
of the edges of P\ {z?,Q} is (2n+4)(2n+5) 4+ (2n + 5) = (2n + 5)?. By Corollary 4 we get
that any edge burning sequence for P\ {z2, Q} contains 2n + 5 edges.

Again, we wish to show that the extended graph has a vertex cover of size at most £ if
and only if there is an edge burning sequence with at most £ + 2n 4 5 sources. Observe that
any vertex cover in the extended graph contains either x or y. Without loss of generality
assume that x belong to vertex cover, otherwise we can swap y and z. For one direction,

G. F. Italiano, A. L. Konstantinidis, and M. J. Kashyop

Figure 2 A complete split graph. By choosing the vertex as the first activator for the graph
burning problem in two rounds all the vertices will be burned. On the other hand, by choosing the
edge as the first source for the edge burning problem all the edges will be burned in three rounds.

we can burn all the edges by burning first the edge {z!, 2%}, next the remaining edges that
correspond to the vertices of the vertex cover and finally the edges of the path P\ {22, Q}

by using the algorithm for finding an edge burning sequence on a path previously described.
For the other direction, assume that there is an edge burning sequence of size ¢ + 2n + 5.

Then, since the number of the edges of the path P\ {2?,Q} is (2n + 5)? we need 2n + 5

sources to burn it. Moreover, the distance between these sources and {z!, 2%} is £+ 2n + 5.

Thus, the remaining ¢ sources need to be in H, and so, the corresponding vertices will be
the vertex cover of size /.

Hence, combining Theorems 3 and 6 and since the line graph of a connected graph is a
connected claw-free graph, we get the following result.

» Theorem 7. GRAPH BURNING is NP-hard on connected claw-free graphs.

3.2 Algorithms for edge burning on special graphs

The NP-hardness result for the edge burning problem makes it interesting to look for graph
classes for which the edge burning problem admits a polynomial-time algorithm. In this
section, we provide linear-time algorithms to compute the edge burning number on two graph
classes: split graphs and cographs. We start with the class of split graphs. A graph is a split
graph if its vertices can be partitioned into an independent set I and a clique C, where (C, I)
is called a split partition of the graph. It is known that split graphs are self-complementary,
that is, the complement of a split graph remains a split graph. First, we present the following
observation about the edge burning number on a graph.

» Observation 8. A graph G with at least two edges has Eb(G) > 2. Moreover, G has
Eb(G) =2 if and only if there is an edge e such that all the remaining edges are incident to
e except for at most one of them.

Proof. The first claim is straightforward since in the first round we can burn only one edge.

Assume now that Eb(G) = 2, this means that there are two sources, (e, ez). If G has only
the edges e; and es then we have the claim. Assume that there are more than two edges
in the graph. Since Eb(G) = 2 and ey is the first source, the edges of E(G) \ {e1, ez} are
incident to e; in order to be burned in the second round. Hence, there is at most one edge
non incident to e; and that can be the edge es. In the other direction, we assume first there
is an edge e such that every other edge of the graph is incident to e. Then if we burn e in
the first round then all the other edges will be burned in the second round. Observe that
if there is exactly one edge non-incident to e we can also burn this edge at the end of the
second round. Thus, in both cases the Eb(G) = 2. <

Using Observation 8, we present an algorithm to compute the edge burning number for split
graphs in the following theorem.

4:9

Grossi's Festschrift

4:10

On Graph Burning and Edge Burning

(&) (@ 3

a p e f c qd u

Figure 3 A cograph with its cotree. Observe that by burning the edge {z, u}, all the edges of
the cograph will be burned in three rounds.

» Theorem 9. The edge burning number of a split graph is at most 3 and it can be computed
in linear time.

Proof. Let G = (V, E) be a split graph with clique partition (C,I). Based on Observation 8,
we can check in linear time whether Eb(G) = 2; otherwise, we show that it must be Eb(G) = 3.
In the first round we arbitrarily burn an edge from the clique C. In the second round all
the incident edges will be burned and we burn again one of the remaining unburned edges.
At this point every vertex of the clique has at least one burned incident edge. Thus, in the
third round all the edges of the clique will be burned as well as all the edges between the
vertices of the clique and the vertices of the independent set. Since there is no edge between
the vertices of I, all the edges of the graph have been burned. Hence, Eb(G) = 3. Clearly,
the above procedure can be implemented in linear time. |

Even in the case where the graph is a complete split graph, i.e., every vertex of the
independent set is adjacent to every vertex of the clique, the edge burning number is at most
3, while the burning number of a complete split graph is 2. For example, see Figure 2.

Next, we consider the class of cographs. Let G = (V, E) and H = (U, F') be two undirected
graphs with VNU = 0. The disjoint union of G and H is the graph obtained from the union
of G and H, denoted by G ® H = (VUU,EUF). The complete join of G and H is the
graph obtained from the union of G and H and adding edges between every pair of vertices
that belong to different graphs, denoted by G® H = (VUU,EUF U{vu|v e V,u e U}).
A graph is a cograph if it can be generated from single-vertex graphs and recursively applying
the disjoint union and complete join operations. By definition, the complement of a cograph
is also a cograph. Cographs are exactly the graphs that do not contain chordless paths on
4 vertices, Py, as induced subgraphs [7], and they can be recognized in linear time [§]. In
the following theorem, we present an algorithm to compute the edge burning number for a
cograph.

» Theorem 10. The edge burning number of a cograph is at most 3 and it can be computed
in linear time.

Proof. Let G = (V, E) be a connected cograph, then the last operation need to be complete
join. Let G = Hy; ® Hs. Using Observation 8 in linear time we can determine if Eb(G) = 2;
otherwise we show that the Eb(G) = 3. We consider as a first source an edge vu such that
v € Hy and v € Hs. By definition, v is adjacent to every vertex Hy and u is adjacent to
every vertex Hi, and so, at the end of the second round all the vertices of G have at least
one burned incident edge. Thus, in the third round all the edges will be burned. The above
steps can be implemented in linear time by using a suitable data structure, called cotree [8],
(see for e.g., Figure 3). The construction of the cotree of G takes time O(n + m) [8]. <

G. F. Italiano, A. L. Konstantinidis, and M. J. Kashyop

3.3 Parameterized complexity for edge burning

One way to cope with the NP-hardness of the edge burning problem is to study the problem
in the context of parameterized complexity. We start with the following observation.

» Observation 11. For a graph G with radius rad and diameter d we have that: v/d +1—-1 <
Eb(G) <rad+ 2.

Proof. For any graph G it is known that v/d+1 < b(G) < rad + 1 [4]. Moreover, by
Theorem 2 we have b(G) — 1 < Eb(G) < b(G) + 1. The observation yields from combining
these two results. <

Based on the observation above, we can obtain a trivial XP algorithm for the edge burning
problem parameterized by the diameter d of the graph. We compute all the subsets of edges
of size at most d and for each such subset we check all the permutations. Every permutation
can be considered as a sequence for the edge burning problem. Observe that this can be done
in O(d! - n2@+1)) time. An XP algorithm has also been given in [12] for the graph burning
problem parameterized by the diameter. An interesting direction to explore next is to find

a parameter with respect to which the edge burning problem admits an FPT algorithm.

We consider graphs with bounded neighborhood diversity and show that the edge burning
problem is FPT and admits a linear kernel when parameterized by neighborhood diversity.

The neighborhood diversity has been defined by Lampis [15]. For a graph G(V, E), two
vertices z and y in V have the same type if N(z)\ {y} = N(y) \ {z}.

» Definition 12. A graph G = (V, E) has neighborhood diversity at most nd, if there exists a
partition of V(G) into at most nd sets, such that all vertices in each set have the same type.

Observe that the vertices of a given type not only have the same (closed) neighborhood in G,
but also form either a clique or an independent set in G. Further, there exists a polynomial
time algorithm that finds a minimum partition of V' into neighborhood types [15]. In the
following theorem, we present a linear kernel for the edge burning problem parameterized by

the neighborhood diversity of the input graph, similar to [11] for the graph burning problem.

» Theorem 13. Edge burning admits a 5nd-kernel, where nd is the neighborhood diversity of
the input graph.

Proof. Let G = (V, E) be a graph with neighbohood diversity, nd, and let C1,Ca, -+, Chq
be the type classes of G. We show that edge burning admits a 5nd-kernel. To do that, we
apply one of the following reduction rules for every type class in G:

» Rule 13.1. If a class C; forms a clique in G and |C;| > 5 then we remove all the vertices
apart from 5 vertices.

To show that the rule is sound, observe that if C; forms a clique and contains at least 5

vertices then in at most 3 rounds all the incident edges to the vertices of C; can be burned.

More precisely, if an edge incident to a vertex of C; is burned, then in the next round all
edges of G[C;] that are incident to that vertex will be burned. Thus, in the following round
all the edges of G[C;] will be burned as well as all the incident edges from others classes to
the vertices of C;. On the other hand, if we set fire on an edge of G[C;] then in two rounds
we have that every vertex of G[C;] have at least one burned incident edge, and so, in the next
round all the rest incident edges to C; will be burned. Hence, it is enough to keep 5 vertices
for such a class C; since a clique with 5 vertices needs 3 rounds in order to be burned.

4:11

Grossi's Festschrift

4:12

On Graph Burning and Edge Burning

» Rule 13.2. If a class C; forms an independent set in G and |C;| > 2 then we remove all
the vertices apart from 3 vertices.

To show that the rule is sound, observe that if we pick an edge incident to a vertex of C; as
a source, then in the next round all the vertices of C; will have at least one burned incident
edge. This is because the endpoint of the source edge that is not in C; is adjacent to every
vertex of C;. Thus, in the following round all incident edges to the vertices of C; will be
burned. Now, observe that the same holds even if an edge incident to a neighbor of C;
burned, since the vertices of C; have the same neighborhood. Therefore, it is enough to keep
3 vertices. Finally, Rules 13.1 and 13.2 can be applied in polynomial time and the resulting
graph has nd classes with at most 5 vertices in each class. <

In the following sections, we present our results on graph burning.

4 Graph burning with all the activators on a path

In this section, we consider our first variant of the graph burning problem in which all
activators are on a path in the input graph. We remind the reader that our motivation
for considering this variant comes from the scenario in social networks where a set of high
performing nodes, termed as activators, must be connected to an emergency service line
which enforces all the activators to be on path. Formally, we define the problem as follows.

» Definition 14 (Graph burning with Activators on a Path (GbAP)). The input is a graph G.
The goal is to design an optimal burning sequence such that all the activators are on a path

in G.

Note that if we restrict the graph class to paths, then the GbAP problem reduces to the
graph burning problem and it is solvable optimally in polynomial time. We first prove that
GDbAP problem is NP-complete even for trees with degree at most 3.

4.1 NP-completeness for GbAP

Given a sequence {1, 22,..., x4} of sources for the GbAP problem for trees, in time O(n)
we can compute Ng_i[x] for 1 < i < g and verify if U2 Ng_i[x;] = V. Therefore, GhAP
problem for trees is in NP. To show that GbAP problem is NP-hard, we show that there is a
polynomial time reduction from the DISTINCT 3-PARTITION problem to the GbAP problem
on trees with maximum degree 3. In fact, the reduction presented by Bessy et al. [2] to prove
that graph burning is NP-hard for trees with maximum degree 3 also proves that GbAP
problem is NP-hard for trees with maximum degree 3. To prove the NP-hardness result,
Bessy et al. [2] presented a polynomial time reduction from the DISTINCT 3-PARTITION
problem. An instance of the DISTINCT 3-PARTITION problem consists of the following: a
finite set X = {aq,as,...,as,} of positive distinct integers and a positive integer B where
Z?Zl a; = nB, and B/4 < a; < B/2, for 1 < i < 3n. The goal is to decide if there is
a partition of X into n triples such that the elements in each triple add up to B. Let
m = max{ala € X}. For an instance for the DISTINCT 3-PARTITION problem as mentioned
above, Bessy et al. [2] constructed a tree T consisting of (2m + 1)% + w vertices with
maximum degree 3 and proved that the given instance of the DISTINCT 3-PARTITION problem
is an yes-instance if and only if burning number of 7" is 2m + 1. Further, they proved that
because of the construction of 7', any optimal solution for the graph burning problem must
place all the activators on a path in 7. Therefore, the implication of the reduction in [2] is

G. F. Italiano, A. L. Konstantinidis, and M. J. Kashyop

stronger. It proves that graph burning is NP-hard for trees with maximum degree 3 even in
the restricted case when all the activators must be placed on a path. We get the following
theorem.

» Theorem 15. GbAP problem is NP-complete for trees with maximum degree three.

4.2 A 2-approximation algorithm for GbAP on trees

We present a 2-approximation algorithm for the GbAP problem on trees. To design our
algorithm, we crucially use the properties of a diametral path and center of a graph. Let d be
the diameter of a graph G. Any path P in G is called a diametral path if the length of P is
equal to d. A vertex with minimum eccentricity is called center of G. When the graph G is
a tree, the following theorem is well known.

» Theorem 16 (Jordan theorem [17]). A tree has at most 2 centers. If a tree has 2 centers,
they must be adjacent.

We first prove the following lemma about diametral paths and centers of a tree.
» Lemma 17. Every diametral path in a tree must contain every center.

Proof. Let P be any diametral path in the tree, d be the diameter of the tree, and ¢ be a
center of the tree. Assume by contradiction that ¢ is not contained in P. Let 7 and x5 be
the two endpoints of the path P. Let vmig be a vertex contained in P and is at a distance at
least |d/2] from x; and z3. Therefore, ecc(vmig) < [d/2]. Otherwise, it will contradict that
the length of the diameter of the tree is d. Further, it also implies that the eccentricity of
any center for the tree is < [d/2]. Next, we consider the unique path between vmg and ¢ in
the tree.

1. dist(c,vmig) > 1: Consider the following paths: from ¢ to z; and from ¢ to xz2. At least
one of the two paths must contain vy;q. Without loss of generality, suppose the path
from ¢ to 1 contains vmig. This implies that dist(c,x;) = dist(c, Vmia) + dist(Vmid, x1) >
1+ |d/2] > [d/2]. Therefore, ecc(c) > [d/2]. But this contradicts that c is a center of
the tree because there exists a vertex vpyg with ecc(vimig) < [d/2].

2. dist(c, vmid) = 1: In this case both the paths, from ¢ to 27 and from c¢ to z3, must contain
Vmid- We consider the following two scenarios.

a. Diameter d is even: For z;,7 € {1,2}, we have dist(c,x;) = 1+ dist(vmiq,xi) = 1+d/2 >
[d/2]. Therefore, ecc(c) > [d/2] and it contradicts that c is a center.

b. Diameter d is odd: For z;,i € {1,2}, consider the x; for which dist(x;, vmia) = (1 +d)/2.
Then, dist(c,x;) = 1 + dist(Vmia,x;) = 1 + 4L > [d/2]. Therefore, ecc(c) > [d/2] and
it contradicts that c is a center.

Therefore, if ¢ is a center of the tree and P is any diametral path of the tree, then P must

contain c¢. Hence the lemma. <

Next we make the following observation about two paths on a tree.

» Observation 18. Let P; and P> be two paths in a tree and Py, and P> are not vertex
disjoint. Then all the common vertices between Py and Ps induce a path P and P is a subpath
of Py and P,. Note that P may contain only one vertex.

Proof. The proof follow immediately from the fact that a tree is an acyclic graph. Otherwise,
if the common vertices do not form an induced path, then a subset of vertices belonging to
only Pj, a subset of vertices belonging to only P», and a subset of vertices common to P;
and P, form a cycle. Furthermore, since the common vertices induce a path, it must be a
subpath of the two overlapping paths. <

4:13

Grossi's Festschrift

4:14

On Graph Burning and Edge Burning

Before presenting the algorithm, we prove some useful properties.

» Lemma 19. For the GbAP problem on trees, if the tree has at least two diametral paths
with only the centers as common vertices, then any optimum solution must place the first
activator on one of the centers.

Proof. Suppose not, and there exists an optimum solution that places the first activator on
a vertex other than the centers. Since we are constrained to place all the activators on a
path, a center can be burned only in the second or higher rounds. Since we assumed that the
diametral paths have only centers as the common vertices and at least two diametral paths are
there, the solution would require > 2 + [d/2] rounds to burn the tree completely. However,
from Lemma 17, every diametral path in a tree must contain every center. Therefore, any
solution that places the first activator in a center would require <1+ [d/2] rounds to
completely burn the tree, contradicting that the solution we started with is an optimum
solution. Hence the Lemma. <

» Lemma 20. For trees containing at least two diametral paths with only the centers as
common vertices, an optimum solution for the GbAP problem needs 1 4 [d/2] rounds.

Proof. From Lemma 19, the first activator must be on a center. After that the optimum
may place the remaining activators on one of the diametral paths. But it will take [d/2]
rounds to burn the other diametral paths. Therefore, any optimum solution takes 1 + [d/2]
rounds. <

» Lemma 21. For trees there exists an optimum solution for the GbAP problem that places
all the activators on a diametral path.

Proof. Let P’ be a non diametral path and assume that all the activators in an optimum
solution are on the path P’. Let P be a diametral path and d be the length of the diameter.
Note that any optimum solution takes at most 1 4 [d/2] rounds. We have the following
two cases.

1. P/ and P are edge disjoint: In this case, P’ must contain one of the centers, say ¢, and
the first activator must be on that center. Otherwise, the solution will take > 1 4 [d/2]
rounds contradicting that it is optimal. Placing all the activators on P’ starting with the
first activator on the center ¢ takes 1+ [d/2] rounds. Let x| and x5 be the endpoints of
path P’. Clearly, dist(c,x;) < [d/2] and dist(c,x}) < [d/2]. Therefore, placing all the
activators on P starting with the first activator on the center ¢ yields another optimal
solution.

2. P’ and P are not edge disjoint: From Observation 18, the common vertices between P
and P’ induce a subpath. Let P be that subpath. Let x; and x> be the endpoints of
P. Let x{ be the endpoint of P’ nearest to x; and x, be the endpoint of P’ nearest to
Xp. Similarity, let x; be the endpoint of P nearest to X} and x; be the endpoint of P
nearest to X. Clearly, dist(X1,x1) > dist(X1,x]) and dist(X3,x2) > dist(X2,x5). Therefore,
placing all the activators on P’ will contribute max{dist(x, x1), dist(X1,%2) } many rounds
in addition to burning the subpath P and the rest of the tree. Instead, placing all the
activators on P will contribute max{dist(x1,x]), dist(X2,x5)} many rounds in addition to
burning the subpath P and rest of the tree. Thus, placing all the activators on P is
another optimal solution. <

Based on the above lemmas, we present a simple algorithm (Algorithm 1) for the GbAP prob-
lem on trees. In the following lemma we prove the approximation guarantee of Algorithm 1.

G. F. Italiano, A. L. Konstantinidis, and M. J. Kashyop

Algorithm 1 GbAP for input tree T.
Find a diametral path P, length d of P, and one center ¢ of P
if T has at least two diametral paths with only centers as common vertices then
Output ¢ followed by any arbitrary sequence of [d/2] vertices on P as the sequence of
activators for T

else

Find the sequence activators on P using the optimal algorithm for burning a path and
output that sequence as the sequence of activators for T
end if

» Lemma 22. Algorithm 1 finds a 2-approximation for the GbAP problem on trees.

Proof. From Lemma 19 in the case when the tree has two diametral paths with only the
centers as common vertices, the first activator must be on a center. Furthermore, by
Lemma 20 any optimum solution takes 1 + [d/2] rounds in this case. Therefore, ¢ followed
by any arbitrary sequence of [d/2] vertices on the diametral path P as activators is an
optimal solution. In the other case, the tree has either a unique diametral path or overlapping
diametral paths with length of the common subpath strictly greater than 2. In that case,
Lemma 21 states that there exists an optimum solution that places all the activators on a
diametral path. In this case, Algorithm 1 finds a sequence to optimally burn the diametral
path P and outputs the same sequence as the burning sequence for the GbAP problem on
T. Let ALG be the number rounds required by Algorithm 1 and let OPT be the number of
rounds required by an optimum solution. It is straight forward to argue that after burning

the path P in v/d + 1 rounds, Algorithm 1 will take at most OPT many additional rounds.

Therefore, ALG < v/d 4+ 1 + OPT. But number of rounds required by any optimal solution is
at least the number of rounds required to burn the diametral path. Therefore, OPT > v/d + 1
and é—:gg. < 2. Hence, the lemma follows. <

Finally, in Lemma 23 we prove the running time of Algorithm 1.
» Lemma 23. The running time of Algorithm 1 is O(n)

Proof. In a tree, a diametral path P, the length of P, and the centers of P can be found
using two invocations of a breadth first search algorithm. Any diametral path P’ other
than P must contain at least all the centers. Therefore, the existence of such a path can be
checked using another breadth first search from one of the (at most two) centers. Finally,
finding an optimal burning sequence on a path takes O(n) time. Therefore, the running time
of Algorithm 1 is O(n). <

Combining Lemma 22 and Lemma 23 yields the following theorem.

» Theorem 24. There exists a deterministic 2-approximation algorithm for the GbAP
problem on trees with running time O(n).

5 Graph burning with known activators

In this section, we consider our second variant of the graph burning problem where a set
of activators used by an optimal solution is given as input. We remind the reader that a
motivation to consider this variant is to develop better approximation algorithms or efficient
heuristic based algorithms. We call the set of activators used by an optimal algorithm as
the optimal activator set. Formally, we define the following variant of the graph burning
problem.

4:15

Grossi's Festschrift

4:16

On Graph Burning and Edge Burning

» Definition 25 (Graph burning with Activators as Input (GbAl)). The input is a graph G and
an optimal activator set. The goal is to design an optimal burning sequence.

The GbAI problem is known to be NP-hard [16]. In this section, we present a deterministic
2-approximation and a randomized better than 2-approximation algorithm for the GbAI
problem. We also show that the GbAI problem is fixed parameter tractable parameterized
by the size of the optimal activator set.

5.1 A deterministic 2-approximation algorithm

Let S be the optimal activator set given as input. Our approach is to burn the activators in
the set S in any arbitrary order. A simple argument shows that the above straightforward
deterministic approach results in a 2-approximation for the GbAI problem.

» Theorem 26. GbAI admits a deterministic 2-approximation algorithm.

Proof. Let k = |S|. Let ALG be the number of rounds required by our approach and let OPT
be the number of rounds required by an optimum solution. Clearly, OPT > k. It is easy to
observe that after burning the activators in the set S, our approach will require at most OPT

many additional rounds. Therefore, ALG < k + OPT and % < 2. Hence the theorem. <=

5.2 A randomized better than 2-approximation algorithm

Let S be the optimal activator set given as input. Our approach is to select the activators
one by one uniformly at random from the set & without replacement and burn them.
Again, a simple argument shows that the above randomized approach yields a better than
2-approximation for the GbAI problem.

» Theorem 27. GbAI admits a randomized better than 2-approrimation algorithm.

Proof. Let k = |S|. Among the k! different sequences of the activators in S, at least one
results in the optimal burning sequence. Therefore, probability that we obtain an optimal
burning sequence by sampling uniformly at random without replacements is at least % Let
ALG be the number of rounds required by our approach and let OPT be the number of rounds
required by an optimum solution. Clearly, OPT > k. In the case our sampling does not
obtain an optimal burning sequence, it is easy to observe that after burning the activators,
our approach will require at most OPT many additional rounds. Therefore, In the case our
sampling does not obtain an optimal burning sequence, total rounds required is <2 - OPT.
Hence, ALG < & -OPT + (1 — %) - (2-OPT) and % < 2 — L. Hence the theorem. <

5.3 GbAlI is fixed parameter tractable

Let S be the optimal activator set given as input and k = |S|. Also, let perm(S) denote the
set of all permutations of the elements in S. We present Algorithm 2.

» Lemma 28. Algorithm 2 outputs an optimal burning sequence.

Proof. Let {01,09,...,0r} € perm(S) be an optimal burning sequence. Therefore, such a
sequence satisfies the condition Nk_1[o1]UNk_2[02]UNk_3[03] ... Ng[ok] = V. Since Algorithm 2
uses an exhaustive search on the set perm(S), it must provide an optimal burning sequence. <

» Lemma 29. For an input graph G with n vertices and an optimal activator set of size k,
Algorithm 2 takes O(2F1°8% . n2) time.

G. F. Italiano, A. L. Konstantinidis, and M. J. Kashyop

Algorithm 2 GbAI for input graph G(V,E) and optimal activator set S.

1: for a in S do

2: foriin {0,1,2,..,k — 1} do >k =|S|
3: Compute Nj[a]

4: end for

5. end for

6: for {ay,as,...,ar} in perm(S) do

7 if Nk_l[al] U Nk_g(ag) @] Nk_3[a3] ce No[ak] =V then

8: Output {aj,as,...,ar} as the optimal burning sequence and Stop

9: end if

10: end for

Proof. Let m be the number of edges and n be the number of vertices in graph G. Computing
the N,[v] data structure requires a single breadth first search for vertex v. Therefore, the
first for loop (Line 1 to 5) takes O((m + n) - k) times. Each set N,[v] is of size at most n.
The second for loop (Line 6 to 10 in Algorithm 2) takes O(n) time for every sequence in
the set perm(S). Therefore, total time required by the second for loop is O(n - k¥). Thus,
total running time of Algorithm 2 is O((m +n) -k +n - k*). For m = O(n?), running time is
O(k* - n?) = O(2F1°e* . n2). Hence, the lemma follows. <

Combining Lemma 28 and Lemma 29 yields the following theorem.

» Theorem 30. The GbAI problem is FPT when parameterized by the size of the optimal
activator set.

6 Conclusions

In this paper we have studied the edge burning problem, and provided a collection of
interesting results. After showing that it is NP-complete, we have provided linear-time
algorithms for split graphs and cographs and we have shown that the problem admits a
linear kernel when parameterized by neighborhood diversity. Furthermore, we have shown
that the absolute difference between the edge burning number and the burning number for
a graph is at most 1. We believe that this relationship between the edge burning number
and the burning number for a graph can be of independent interest. We have also proved
another relationship between the edge burning number and the burning number through the
line graph and used this relationship to prove several properties of edge burning and graph
burning on special graph classes. Our work raises some interesting and perhaps intriguing
questions. One interesting direction is to find graph classes for which edge burning and graph
burning have different computational complexities, say one problem is NP-hard and the other
is polynomially solvable. Are there any such problems? Another interesting direction is to
find graph classes for which the edge burning number is exactly the same as the burning
number.

—— References

1 Dhanyamol Antony, Anita Das, Shirish Gosavi, Dalu Jacob, and Shashanka Kulamarva. Graph
burning: Bounds and hardness, 2025. doi:10.48550/arXiv.2402.18984.

2 Stéphane Bessy, Anthony Bonato, Jeannette C. M. Janssen, Dieter Rautenbach, and Elham
Roshanbin. Burning a graph is hard. Discret. Appl. Math., 232:73-87, 2017. doi:10.1016/j.
dam.2017.07.016.

4:17

Grossi's Festschrift

https://doi.org/10.48550/arXiv.2402.18984
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016

4:18

On Graph Burning and Edge Burning

10

11

12

13

14

15

16

17

Anthony Bonato, Jeannette Janssen, and Elham Roshanbin. How to burn a graph. Internet
Mathematics, 12(1-2):85-100, 2016. doi:10.1080/15427951.2015.1103339.

Anthony Bonato, Jeannette C. M. Janssen, and Elham Roshanbin. Burning a graph as a
model of social contagion. In Anthony Bonato, Fan Chung Graham, and Pawel Pralat, editors,
Algorithms and Models for the Web Graph - 11th International Workshop, WAW 2014, Beijing,
China, December 17-18, 2014, Proceedings, volume 8882 of Lecture Notes in Computer Science,
pages 13—22. Springer, 2014. doi:10.1007/978-3-319-13123-8_2.

Anthony Bonato and Shahin Kamali. Approximation algorithms for graph burning. In T. V.
Gopal and Junzo Watada, editors, Theory and Applications of Models of Computation -
15th Annual Conference, TAMC 2019, Kitakyushu, Japan, April 18-16, 2019, Proceedings,
volume 11436 of Lecture Notes in Computer Science, pages 74-92. Springer, 2019. doi:
10.1007/978-3-030-14812-6_6.

Peter Brass, Christian Knauer, Hyeon-Suk Na, Chan-Su Shin, and Antoine Vigneron. The
aligned k-center problem. Int. J. Comput. Geom. Appl., 21(2):157-178, 2011. doi:10.1142/
S0218195911003597.

D.G. Corneil, H. Lerchs, and L.K. Stewart. Complement reducible graphs. Discrete Applied
Mathematics, 3:163-174, 1981. doi:10.1016/0166-218X(81)90013-5.

D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs. SIAM
Journal on Computing, 14:926-934, 1985. doi:10.1137/0214065.

Arya Tanmay Gupta, Swapnil A Lokhande, and Kaushik Mondal. Burning grids and intervals.
In Algorithms and Discrete Applied Mathematics: 7Tth International Conference, CALDAM
2021, Rupnagar, India, February 11-13, 2021, Proceedings 7, pages 66—79. Springer, 2021.
doi:10.1007/978-3-030-67899-9_6.

Michaela Hiller, Arie MCA Koster, and Eberhard Triesch. On the burning number of
p-caterpillars. In Graphs and Combinatorial Optimization: from Theory to Applications:
CTW2020 Proceedings, pages 145-156. Springer, 2020.

Anjeneya Swami Kare and I Vinod Reddy. Parameterized algorithms for graph burning problem.
In Combinatorial Algorithms: 30th International Workshop, IWOCA 2019, Pisa, Italy, July 28—
25, 2019, Proceedings, pages 304—-314. Springer, 2019. doi:10.1007/978-3-030-25005-8_25.
Yasuaki Kobayashi and Yota Otachi. Parameterized complexity of graph burning. Algorithmica,
84(8):2379-2393, 2022. doi:10.1007/S00453-022-00962-8.

S. Komala and U. Mary. Burning, edge burning & chromatic burning classification of some
graph family. Journal of Discrete Mathematical Sciences and Cryptography, 27(2-B):665—674,
2024.

S. Komala and U. Mary. Edge burning: Relationship between edge and vertex burning of grid
graph. Journal of Dynamics and Control, 8:1-12, 2024.

Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19-37, 2012. doi:10.1007/S00453-011-9554-X.

Debajyoti Mondal, Angelin Jemima Rajasingh, N. Parthiban, and Indra Rajasingh. Apx-
hardness and approximation for the k-burning number problem. Theor. Comput. Sci., 932:21-30,
2022. doi:10.1016/j.tcs.2022.08.001.

Douglas B. West. Introduction to Graph Theory, page 72. Prentice Hall, Upper Saddle River,
N.J., second edition, 2001.

https://doi.org/10.1080/15427951.2015.1103339
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-030-14812-6_6
https://doi.org/10.1007/978-3-030-14812-6_6
https://doi.org/10.1142/S0218195911003597
https://doi.org/10.1142/S0218195911003597
https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.1137/0214065
https://doi.org/10.1007/978-3-030-67899-9_6
https://doi.org/10.1007/978-3-030-25005-8_25
https://doi.org/10.1007/S00453-022-00962-8
https://doi.org/10.1007/S00453-011-9554-X
https://doi.org/10.1016/j.tcs.2022.08.001

Generalized Fibonacci Cubes Based on Swap and
Mismatch Distance

Marcella Anselmo &
Dipartimento di Informatica, Universita di Salerno, Italy

Giuseppa Castiglione =

Dipartimento di Matematica e Informatica, Universita di Palermo, Italy

Manuela Flores =
Dipartimento di Bioscienze e Territorio, Universita del Molise, Campobasso, Italy

Dora Giammarresi &
Dipartimento di Matematica, Universita Roma “Tor Vergata”, Italy

Maria Madonia &

Dipartimento di Matematica e Informatica, Universita di Catania, Italy
Sabrina Mantaci &

Dipartimento di Matematica e Informatica, Universita di Palermo, Italy

—— Abstract

The hypercube of dimension n is the graph with 2™ vertices associated to all binary words of length

n and edges connecting pairs of vertices with Hamming distance equal to 1. Here, an edit distance
based on swaps and mismatches is considered and referred to as tilde-distance. Accordingly, the
tilde-hypercube is defined, with edges linking words having tilde-distance equal to 1. The focus is
on the subgraphs of the tilde-hypercube obtained by removing all vertices having a given word
as factor. If the word is 11, then the subgraph is called tilde-Fibonacci cube; in the case of a
generic word, it is called generalized tilde-Fibonacci cube. The paper surveys recent results on the
definition and characterization of those words that define generalized tilde-Fibonacci cubes that are
isometric subgraphs of the tilde-hypercube. Finally, a special attention is given to the study of the
tilde-Fibonacci cubes.

2012 ACM Subject Classification Mathematics of computing — Combinatorics on words; Theory of
computation — Design and analysis of algorithms; Theory of computation — Formal languages and
automata theory

Keywords and phrases Swap and mismatch distance, Isometric words, Hypercube
Digital Object Identifier 10.4230/OASIcs.Grossi.2025.5
Category Research

Funding Partially supported by INAAM-GNCS Project 2025 - CUP E53C24001950001, FARB
Project ORSA240597 of University of Salerno, TEAMS Project and PNRR MUR Project PE0000013-
FAIR University of Catania, FFR fund University of Palermo, MUR Excellence Department Project
MatMod@TOV, CUP E83C23000330006, awarded to the Department of Mathematics, University of
Rome Tor Vergata, “ACoMPA — Algorithmic and Combinatorial Methods for Pangenome Analysis”
(CUP B73C24001050001) funded by the NextGeneration EU programme PNRR ECS00000017

Tuscany Health Ecosystem (Spoke 6).

1 Introduction

The n-dimensional hypercube, Q,, is the well-known graph whose vertices are in corres-
pondence with the 2™ words of length n over the binary alphabet {0,1} and two vertices
are connected by an edge if the corresponding words differ in one position, that is, if their
© Marcella Anselmo, Giuseppa Castiglione, Manuela Flores, Dora Giammarresi, Maria Madonia, and
5v Sabrina Mantaci;
licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 5; pp.5:1-5:14

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:manselmo@unisa.it
https://orcid.org/0000-0002-6487-8619
mailto:giuseppa.castiglione@unipa.it
https://orcid.org/0000-0002-1838-9785
mailto:manuela.flores@unimol.it
https://orcid.org/0000-0001-5676-6900
mailto:giammarr@mat.uniroma2.it
https://orcid.org/0000-0001-6100-9904
mailto:madonia@dmi.unict.it
https://orcid.org/0000-0002-3616-3173
mailto:sabrina.mantaci@unipa.it
https://orcid.org/0000-0002-9200-0520
https://doi.org/10.4230/OASIcs.Grossi.2025.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

5:2

Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

Hamming distance is 1. Hence, the distance (number of edges in a minimal path) between
two vertices in the graph is the Hamming distance of the corresponding words. The notion
of hypercube has been extensively investigated because it is used to design interconnection
networks (cf. [13, 17]) and also finds applications in theoretical chemistry (cf. [27] and
[20, 24] for surveys). However, the critical limitation of the hypercube lies in its exponen-
tial growth in size, specifically in the number of vertices. Exploring some of its isometric
subgraphs can improve efficiency. A subgraph of the n-dimensional hypercube is isometric
to @, if the distance between any pair of vertices in such subgraphs is the same as the
distance in the complete hypercube. With this aim, in 1993, Hsu introduced the Fibonacci
cubes [21], obtained from @, by selecting only those vertices that do not contain 11 as a
factor. They have a Fibonacci number of vertices making them useful in applications to
reduce the complexity and to limit resources. They have many remarkable properties, also
related to Fibonacci numbers (cf. [15]).

In 2012, Generalized Fibonacci cubes have been defined by means of a binary word f;
the graph @, (f) is a subgraphs of @, whose vertices do not contain f as a factor, i.e.
the vertices are f-free binary words [22]. Then, the property of @, (f) being an isometric
subgraph of @, is related to some combinatorial properties of the avoided word f that
in such cases is called isometric. More formally, a binary word f is isometric (or Ham-
isometric) when, for any n > 1, @Q,(f) is an isometric subgraph of @,,, and non-isometric,
otherwise [25]. The definition can also be done without mentioning graphs and only in terms
of the Hamming distance. A word f is Ham-isometric, if for any pair of f-free words u
and v of the same length, u can be transformed into v by a minimal sequence of symbol
replacements that each time produce an f-free word, as well. Binary Ham-isometric words
have been characterized in [23, 25, 35, 38, 39] and research on the topic remains very active
[11, 36, 37, 12, 6, 7, 16, 8, 9, 4, 10].

Over the years, many variations of the hypercube have been introduced to enhance certain
features. For example, folded hypercubes (cf. [18]) and enhanced hypercubes (cf. [32]) have
been defined by adding some edges to the original structure, providing several advantages
in terms of topological properties. Motivated by the same reasons, we introduced a type of
generalized hypercube that employs a different distance, enabling the definition of isometric
subgraphs. The inspiration and motivation came from many applications of computational
biology, where many processes involve complex transformations and it is natural to consider
not only replacement operations but also swap operations that exchange two adjacent different
symbols in a word. The edit distance based on swaps and replacements is worth considering
[1, 19, 29] instead of the Hamming distance. Actually, this distance was defined in the 70s
by Wagner and Fischer [34, 33] who proved that it can be efficiently computed.

In [3] this distance is referred to as tilde-distance, since the ~ symbol somehow evokes the
swap operation. In [2], the tilde-distance is taken as the base to define the tilde-hypercube,
Q,; it has again all the n-binary strings as vertices, but two vertices are adjacent if the
tilde-distance is equal to 1. This implies that Q,, has more edges than Q,; in particular,
since a swap corresponds to two replacements of consecutive characters, some vertices at
distance 2 in Q,,, become adjacent in Q,,.

This paper surveys most of the recent results on tilde-isometric words and generalized tilde-
Fibonacci cubes. In particular, we collect the main definitions to give a recursive construction
of tilde-hypercubes and enumerate their edges and vertices. Then, the subgraphs Q,(f) of the
tilde-hypercubes are considered. They are obtained by selecting the vertices corresponding to
f-free words, for a given word f. It is also reported the characterization of words f such that
Q.(f) is an isometric subgraph of Q,, as proved in [5]. We also exhibit an infinite family of
tilde-isometric words that are not Hamming-isometric and vice versa. Finally, the last part

M. Anselmo et al.

of the paper focuses on the word f = 11, that is both a Hamming- and a tilde-isometric word;
the subgraph Qn(ll) is referred to as the tilde-Fibonacci cube. We describe its recursive
construction and present new simple results on diameter and radius that prove that the
tilde-Fibonacci cubes are self-centered graphs.

2 Basic on Strings and Fibonacci Cubes

In this paper we focus only on the binary alphabet ¥ = {0,1}. A word (or string) w over X
of length |w| = n, is w = ajas - - - a,, where a,aq,...,a, are symbols in . The set of all
words over ¥ is denoted X*. Finally, € denotes the empty word and ¥ = £* — {¢}. For any
word w = ajas - - - ay, the reverse of w is the word w™" = ana,_1---a1. If x € X, T denotes
the opposite of z, i.e T =1 if x = 0 and vice versa. Then we define the complement of w the
word W = ai1as -+ Qp-

Let w[i] denote the symbol of w in position i, i.e. w(i] = a;. Then, wi..j| = a;...q;,
for 1 <i < j < n, denotes a factor u of w of length j —i 4+ 1 placed from the i-th to the

jth position of w. We say that I = [i..j] is the interval where the factor u occurs in w.
The prefix (resp. suffiz) of w of length I, with 1 <1 < n —1 is pre;(w) = w[l..]] (resp.

suf;(w) = w[n — 1 4+ 1..n]). When pre;(w) = suf;(w) = u then wu is here referred to as an

overlap of w of length I; in other frameworks, it is also called the border, or bifix of w (cf. [30]).

A word w avoids a word f if w does not contain f as a factor: we also say that w is f-free.

An edit operation is a function O : ¥* — ¥* that transforms a word into another one.

Let OP be a set of edit operations. The edit distance of words u,v € ¥*, with respect to the
set OP, is the minimum number of edit operations in OP needed to transform u into v.

In this paper, we consider the edit distance that uses only swap and replacement operations.

Note that these operations preserve the length of the word.

» Definition 1. Let w = aja2...a, be a word over X.
The replacement operation (or replacement, for short) on w at position i, with i =1,...,n,
1s defined by

Ri(alaQ Q1A A4 - an) =a1a2...0;—1Q;Qi4+1 - ..0p.

The swap operation (or swap, for short) on w at position i, withi =1,...,n—1 and a; # a;41,
1s defined by

Si(a1a2 ... 0;—1@;G5410i42 ... Ap) = 4102 . . . Gi—10;41Q;Cit2 - - . Q.

Note that one swap corresponds to two replacements of consecutive symbols.
The Hamming distance disty(u,v) of equal-length words u,v € ¥* is defined as the
minimum number of replacements needed to obtain v from u.

Let G = (V(G), E(G)) be a graph, V(G) be the set of its nodes and E(G) be the set
of its edges. The distance of u,v € V(G), distg(u,v), is the length of the shortest path
that connects u and v in G. A subgraph S = (V(S), E(S)) of a (connected) graph G is an
isometric subgraph if for any u,v € V(5), distg(u,v) = distg(u, v).

The n-hypercube, or binary n-cube, @, is a graph with 2" vertices, labeled with the
words of length n and edges connecting two vertices v and v in @, when their labels differ
exactly in 1 position, i.e. when disty(u,v) = 1. Therefore, distq, (u,v) = dist g (u,v).

Denote by f, the n-th Fibonacci number, defined by fi =1, fo =1 and f; = fi—1 + fi—2,
for i > 3. The Fibonacci cube (cf. [22]) F, of order n is the subgraph of Q,, whose vertices
are binary words of length n avoiding the factor 11. It is well known that F}, is an isometric
subgraph of Q,, (cf. [24]).

5:3

Grossi's Festschrift

5:4

Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

One of the main properties of Q,, and Fj, is their recursive structure that have been
extensively studied (cf. [21, 28, 26, 24]).
The following results are well-known, but are hereby stated for future reference.

» Proposition 2. Let Q,, be the hypercube of order n. Then
V(@n)| =27,
|E(Q,)| = n2nL.

» Proposition 3. Let F,, be the Fibonacci cube. Then:

|V(Fn)‘ = fn+27
|B(F,)| = 2ntfntnfues

In other terms, if the number of vertices N = 2" of the hypercube is taken as main
parameter, the number of edges of a hypercube with N vertices is (N log N)/2.

The sequence |E(F,)| is Sequence A001629 in [31]. Hence, the number of edges of a
Fibonacci cube with N vertices, N = f,, 12, is O(N log N), asymptotically equal to the
number of edges of a hypercube with the same number of vertices.

In order to generalize the notion of Fibonacci cube, one can consider the subgraphs of
the n-hypercube whose nodes are f-free, for some word f € ¥*, denoted by Q,(f), called
generalized Fibonacci cubes. Of course, if n < |f|, then Q,(f) = Qn; so it makes sense to
consider n > |f|. Unfortunately, not all the words f make @, (f) an isometric subgraph
of @,. The words having this property have been widely studied (cf. [23, 25, 35, 38, 39]).
These words are in fact called isometric words, because they reflect on this isometry property
on the corresponding graphs.

Under the combinatorial point of view, isometric words are defined as follows. A word
f € X* is Ham-isometric (or simply isometric) if and only if @, (f) is an isometric subgraph
of Q,. A word that is not Ham-isometric is said to be Ham-non-isometric. In terms of
transformations, isometric words can be characterized by the following:

» Proposition 4. A word f is isometric iff for any pair of f-free words u and v, there exists
a sequence of disty (u,v) replacements that transforms u into v where all the intermediate
words are also f-free.

A word w has a 2-error overlap if there exists | < |w| such that pre;(w) and suf;(w) have
Hamming distance 2. Then, the following characterization of Ham-non-isometric words is
proved (cf. [35]).

» Proposition 5 ([35]). A word f is Ham-non-isometric if and only if f has a 2-error

overlap.

3 Tilde-distance and Tilde-hypercube

In this section, the edit distance based on swap and replacement operations is considered.
In [3] it is called tilde-distance and denoted by dist.. . According to this definition one can
define the n-tilde-hypercube. We start with the definition of tilde-distance.

» Definition 6. Let u,v € X* be words of equal length. The tilde-distance dist (u,v) between
u and v is the minimum number of replacements and swaps needed to transform u into v.

Note that for all u,v € ¥*, dist~(u,v) < disty(u,v), since a swap is a shortcut for two
adjacent replacements.

M. Anselmo et al.

» Example 7. The words u = 1011 and v = 0110 have tilde-distance dist~ (u,v) = 2. In fact,
v can be obtained from u with a swap S of the first and the second bits, and a replacement
R, in the fourth position. Note that, in order to compute the Hamming distance, three
replacements are needed in positions 1,2 and 4, therefore disty(u,v) = 3.

In order to describe the sequence of the operations that are used to compute the tilde-
distance of two words, we need the following definition of a tilde-transformation:

» Definition 8. Let u,v € ¥* be words of equal length and dist.(u,v) = d. A tilde-
transformation T from u to v is a sequence of d+ 1 words (wp, w1, ..., wq) such that wy = u,
wg = v, and for any k=0,1,...,d— 1, dist(wg, wgy1) = 1. Further, 7 is f-free if for any
1=0,1,...,d, word w; is f-free.

A tilde-transformation (wq, wy, ..., wq) from u to v with dist..(u,v) = d is associated to a
sequence of d operations (O;,,0;,,...,0;,) such that, for any k =1,...,d, O;, € {R;,,Si.}
and wy, = O;, (wg—1); it can be graphically represented as follows:

_ Oil Oj2 Oih o
u = wWo w1 cee wp = 0.

With a little abuse of notation, in the sequel we will refer to a tilde-transformation both as a
sequence of words and as a sequence of operations. Furthermore, as a consequence of the
definition, in a tilde-transformation, the positions i1, is, ..., ig are all distinct.

In the following we give some examples that show some special features of tilde-
transformations, which never occur when transformations using only replacements are
considered. This highlights, on the one hand, the richness of new situations that arise from
introducing the swap operation, and on the other hand, it anticipates the need for new and
more sophisticated techniques to handle these increasingly complex scenarios. First of all,
we point out that when only replacements are used, the different transformations from u to
v use the same set of operations, possibly applied in a different order. This is not the case
for the different tilde-transformations between two words. The following two examples show
two singular cases of different tilde-transformations which use different sets of operations.

» Example 9. Let v = 100, v = 001. In this case o1 = (S1,52) and o9 = (R1, R2) are two
tilde-transformations from wu to v on different sets of operations. In particular, observe that
o1 flips twice the bit in the second position, whereas in o9 the second bit is not involved.

oy - 100 25 010 22 001 oo - 100 25 000 22 001

» Example 10. Consider v’ = 010 and v' = 101 and the tilde-transformations p; = (S1, R3)
and pg = (S2, Ry) from v’ to v’. Here, different sets of operations are used and, differently
from Example 9 in both transformations each symbol is changed just once:

p1 010 25 100 225 101 po: 010 22 001 £ 101

The variety of situations described above translates into a higher degree of difficulty of the
tilde-transformations (compared to the Hamming transformations) when handling some
property like, for instance, isometricity.

» Remark 11. Let u,v € X" and 7 be a tilde-transformation from u to v. Referring to
Example 9, if 7 contains two swaps, S; and S;41, at consecutive positions ¢ and i + 1 of u,
then such swaps can be substituted by two replacements, namely R; and R; 2, still obtaining
a tilde-transformation from u to v of length equal to their distance. Hence, in particular, if
u = 00u’ and v = 10v’, among all sequences of swaps and replacements of minimal length
that transform u into v there is one starting with the replacement R;.

5:5

Grossi's Festschrift

5:6

Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

0110 1110

011 111 A\ 1111

01 11

® ® bt 101 1 1011
01 1

00 10 000 100

0000

0001 1001

Figure 1 Tilde-hypercubes with n=1,2,3,4 (the colored edges are those added to the traditional
hypercube).

» Remark 12. Let u,v € ¥™ and 7 be a tilde-transformation from u to v. Referring to
Example 10. If 7 contains a swap ;41 and a replacement R; then they can be substituted
by S; and R;1o. As a consequence, if u = 0lu’ and v = 10v" among all sequences of swaps
and replacements of minimal length that transform w into v there is one starting with the
replacement R;.

Based on the definition of tilde-distance, a natural extension of the concept of n-hypercube
is given in [2] as follows:

» Definition 13. The n-tilde-hypercube Q,,, or tilde-hypercube of order n, is a graph with 2"
vertices, labeled with binary words of length n. Two vertices in @y, are adjacent whenever
the tilde-distance of their labels is 1.

Figure 1 shows the tilde-hypercubes of order 1,2, 3, 4.
» Remark 14. Q, is a proper subgraph of Q,. In fact, for u,v € X*, disty(u,v) = 1
implies dist~ (u,v) = 1. Note that @Q,, is not an isometric subgraph of @,,. Indeed, for any
n > 2, there exists a pair of words (uy,,v,) of length n such that dist.(u,,v,) = 1 and
dist g (up,v,) # 1. For instance, for any 0 < k,h <n — 2, h+ k =n — 2, consider the words
u, = 0"010* and v, = 0"100%; then dist.(u,,v,) = 1 and disty (u,,v,) = 2, therefore
(un,vy) is an edge in @, but not in Q.

The following lemma is the main tool for exhibiting a recursive definition of the tilde-
hypercube, in analogy with the classical hypercube.

» Lemma 15. For any u,v € X" 1, dist.(u0,v0) = dist.(u,v) = dist(ul,vl) and
dist~(u0,ul) = 1. Moreover, for any v’ € X"~2, dist.(u'01,4/10) = 1.

» Proposition 16 ([2]). The n-tilde-hypercubes Q,,, with n > 1, can be recursively defined.

Proof. If n = 1, Q; has just two vertices 0 and 1 connected by an edge.

Suppose all the tilde-hypercubes of dimension smaller than n have been defined. The
hypercube Q,, is recursively constructed as follows. Start with a copy of Q,,_1 where every
vertex u is replaced by u0, and denote this copy by Q,_10 and a second copy where every
vertex u is replaced by w1, and denoted by Q,,_11.

By Lemma 15, if (u,v) € E(Qn_1), then (u0,v0), (ul,v1) € E(Q,_1), this means that
Qrn-10 and Q,_11 are subgraphs of Q,. Moreover, for any u € "', there is an edge
(u0,ul) in Q, with u0 € V(Qn_10) and ul € V(Q,_11). Finally, for any v € X"2
(v10,v01) € E(Q,) with v10 € V(Q,,_10) and v01 € V(Q,,_11). In Fig. 1, these latter edges
added in the fourth step of recursion, are depicted with orange edges. For any other pair of
words u,v € {0,1}", dist.(u,v) > 1, then (u,v) is not an edge of Q. <

M. Anselmo et al.

» Corollary 17. Let Q,, be the tilde-hypercube of order n. Then, \E(Q1)| =1 and, for any
n>2|E(Qn)| = 2|E(Qn-1)| + 2" + 2772

By solving the above recurrence, we find the exact formula |E(Q,)| = (3n — 1) - 272
(Sequence A053220 in [31]). Let EQ(N) be the number of edges of the tilde-hypercube with
N vertices, N = 2". Then,

3N(log N — 1)

EQ(N) = —— (1)

4 Tilde-hypercube Avoiding a Word and Tilde-isometric Words

In analogy with the n-hypercube avoiding a word based on the Hamming distance, referred

to as generalized Fibonacci cube in [22], in this section, we consider the n-tilde-hypercube

avoiding a word, based on the tilde-distance, here named generalized tilde-Fibonacci cubes.
In [2] the following definition is given:

» Definition 18. The n-tilde-hypercube avoiding a word f, or the tilde-hypercube of order n
avoiding a word f, denoted Q,(f), is the subgraph of Q,, obtained by removing those vertices
which contain f as a factor.

We are interested in those words f such that Q,, (f) is an isometric subgraph of Qn, ie.
the distance of two vertices of Q,,(f) is equal to the tilde-distance of the corresponding labels.

» Definition 19. A word f € ¥* is tilde-isometric if and only if for all n > |f|, Qn(f) is an
isometric subgraph of Q.

The following proposition characterizes isometric words re-stating the definition of iso-
metric word under a combinatorial point of view.

» Proposition 20. Let f € X* be a word of length n with n > 1. The word f is tilde-
isometric if and only if for any pair of f-free words u and v of equal length m > n, there
exists a tilde-transformation from u to v that is f-free. It is tilde-non-isometric if it is not
tilde-isometric.

In order to show that a word is tilde-non-isometric it is sufficient to exhibit a pair (u,v)
of f-free words such that all the tilde-transformations from w to v are not f-free. Such
pair of words is called a pair of tilde-witnesses. More challenging is to prove that a word is
tilde-isometric.

» Example 21. The word f = 1010 is tilde-non-isometric. In fact, let v = 11000 and v =
10110; then (u,v) is a pair of tilde-witnesses for f. In fact u and v are f-free; moreover there

are only two possible tilde-transformations from v to v, namely 11000 52, 10100 4 10110

and 11000 2 11010 22 10110, and in both cases 1010 appears as factor after the first step.
On the other side, observe that f is Ham-isometric by Proposition 5.

The following straightforward property of tilde-isometric binary words is very helpful to
simplify proofs and computations.
» Remark 22. A word f is tilde-isometric iff f is tilde-isometric iff f7¢? is tilde-isometric.

In view of Remark 22 | we will focus on words starting with 1.

5:7

Grossi's Festschrift

5:8

Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

5 Characterization of Tilde-isometric Words

The characterization of Ham-isometric words given in [38] and here reported as Proposi-
tion 5, uses the notion of 2-error overlap. In this section we introduce the corresponding
definition that refers to the tilde-distance. Tilde-error overlaps will have a main role in the
characterization of tilde-isometric words but the presence of swap operations will force us to
handle them with care.

» Definition 23. Let f € X™. Then, f has a q-tilde-error overlap of length ¢ and shift
r=n—4{ withl<{<n-—1and0<q</{ ifdist.(pre,(f),sufe(f)) = q.

» Example 24. The word f = 1101110101101 has a 2-tilde-error overlap of length 6 and
shift 7. Indeed, preg(f) = 110111, sufg(f) = 101101 and dist,(110111,101101) = 2.

For our proofs, given a word f with a g-tilde-error overlap of length £, we will study the
tilde-transformations 7 from pre,(f) to suf,(f) with g operations. For this reason, it is useful
to refer to the alignment of the two strings pre,(f) to sufy(f). Furthermore, for our purpose,
it is relevant to consider also the bits adjacent to a tilde-error overlap of a word. For this
reason, we introduce the following notation.

Let f be a word in {0,1}* and $ be a symbol different from 0, 1, here used as delimiter of a
word, that by definition “matches” any symbol of the word. Consider f with its delimiters f.
A g-tilde-error overlap of length ¢ is denoted by (2‘;;) where b, ay are a prefix and a suffix,
respectively, of f, a,b € X, x,y € X* with |z| = |y| = ¢, and dist~ ($2b, ay$) = dist(z,y) = q.
This notation makes evident the fact that in f the prefix x is followed by b and the suffix y
is preceded by a. Moreover, a g-tilde-error overlap (fig) is sometimes factorized into blocks
to highlight the significant parts. For example, the 2-tilde-error overlap in Example 24 is

denoted by (31)(3915) (1) because dist.(110111,101101) = 2 = dist~ (1011, 0110).

2% 8 1)

|
s

3 |

1 7 J 1 1 1 1 i 1+1 7 1 |

| | | | | | I

i | i I

TS R TnnnnT R

I f t : 1 I

I r41 r+7 I I I I r4+i r+i+1 r+j I I

¢ S K y K % S N

T b=n—1r T T b=n—1r T

Figure 2 A word f and its 2-tilde-error overlap of shift » and length £ = n — r, with tilde-
transformation (Ol, O]) = (1’21'7 Rj) (left), and (O“ OJ) = (SZ, R]') (right).

In the sequel, we will be interested in the specific case of 1-tilde-error overlap where the
single error in the alignment is a swap and in all the cases of 2-tilde-error overlaps. Consider
a 2-tilde-error overlap of f of shift 7, length £ =n —r, and let (0;,0;),1<i<j </ bea
tilde-transformation from pre,(f) to suf(f). Observe that the positions in pre,(f) modified
by O; are either ¢ or both 7 and i+ 1, following that O; is a replacement or a swap. Hence, the
number of the positions modified by O; and O; may be 2, 3 or 4. Fig. 2 shows a word f with
its 2-tilde-error overlap of shift » and length £ = n — r. With our notation, the 2-tilde-error
overlap is (zzzézéizg) in the figure on the left and (fiié%ﬁig) in the figure on the right,
where b is the first letter of wy and a the last letter of w;. A tilde-transformation from
pre,(f) to sufy(f) is given by (O;,0;) = (R;, R;) in the first case and by (O;, O;) = (S;, R;)
in the second case. We say that a 2-tilde-error overlap has non-adjacent errors when there is
at least one character interleaving the positions modified by O; and those modified by O;.

M. Anselmo et al.

The 2-tilde-error overlap (ﬁi) ((1)8(1)) (yg) is also considered as having non-adjacent errors
y
because it admits the tilde-transformation (O;, O;) = (R;, Ri42), despite it has also the other
tilde-transformation (O;, O;) = (S;, Sit1)-
In all the other cases, we say that the 2-tilde-error overlap has adjacent errors.
Let us state the characterization of tilde-isometric words in terms of special configurations

in their overlap proved in [5].

» Theorem 25. A word f € X" is tilde-non-isometric if and only if one of the following
cases occurs (up to complement, reverse and inversion of rows):

(CO) f has a 1-tilde-error overlap ($x) (10)() with z,y € ¥*, a,b € X;

(C1) f has a 2-tilde-error overlap with non-adjacent errors, different from ($1) ((1)8(1)) (zg) with
T, y€XT, a,beX;

(C2) f has a 2-tilde-error overlap

(ool) ()(0110)() with x,y € ¥*, a,b € ¥;
(C3) f has a 2-tilde-error overlap (3%

(

(

1010)(1001
00 (v8) with z,y € $7, a,b € 3;
(C4) f has a 2-tilde-error overlap (g
)-

(C5) f has a 2-tilde-error overlap

%(1))) with x € ¥*, a € ¥;

V(s

Thanks to Theorem 25, we can classify any word as isometric or non-isometric. In the
following, several examples are given. The following are two examples of words with a
2-tilde-error overlap with adjacent errors; the first one is tilde-isometric, the second one is
tilde-non-isometric.

HOAA/\

» Example 26. The word f = 010110000 is tilde-isometric; indeed its unique 2-tilde-error
overlap has shift 5 and length 4, (fg) ((1)8(1))() Note this is the case of non-adjacent errors

but of the type prohibited by the condition in (C1).

» Example 27. The word f = 1011000 is tilde-non-isometric; indeed it has the 2-tilde-
error overlap, of shift 4 and length 3, (3)(égé) (é), that satisfies (C1). Note that the pair
(u,v) = (10110011000, 10101001000) is a pair of tilde-witnesses for f.

The following example shows an infinite family of words that are tilde-isometric and
Ham-non-isometric.

» Example 28. All the words f = 1™0™ (and their complement f = 0"1™) for n,m > 2 are
Ham-non isometric, by Proposition 5, and tilde-isometric. In fact, for n,m > 2, f = 1"0™
has only two 2-tilde-error overlaps and none of them fall into a case in the statement of
Theorem 25. The first one is the tilde-error overlap with shift 2, ($1n:2) (éé) (8::23), the other

11n—2
one has shift n +m — 2, and it is (g) (é(l)) (é)

Instead, if n = m = 2, f = 1100 is both tilde-non-isometric and Ham-non-isometric. In
fact, f has only one 2 tilde-error overlap () (éé) (g), corresponding to case (C5) of Theorem 25.

Moreover, one can verify that (u,v) = (110100, 101010) is a pair of tilde-witnesses for f.

The next corollary shows that there exist Ham-isometric words that are not tilde-isometric.
This fact, together with Example 5, proves that the families of Ham-isometric and tilde-
isometric words are incomparable.

» Corollary 29. The word f = 1010 is Ham isometric and tilde non-isometric.

Proof. The word 1010 has no 2-error overlap, therefore is isometric. Instead, it has a

2-tilde-error overlap (g) (309) (%) corresponding to case (C'3) of Theorem 25. <

5:9

Grossi's Festschrift

5:10

Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

0010 1010
0 N 01
O—0 010 Z 001 101
0100
00 0 000 100
0101
000055
00011001

Figure 3 Tilde-Fibonacci cubes with n=1,2,3,4 (the colored edges are those added to the
traditional hypercube).

6 Tilde-Fibonacci Cubes

Theorem 25 allows also to give light to isometric subgraphs of Q,, avoiding a word. In fact
they are those avoiding a tilde-isometric word.

In analogy with the definition of Fibonacci cubes introduced by Hsu [21], we give the
following:

» Definition 30. Let n > 1 and Q,, be the tilde-hypercube of dimension n. The n-tilde-
Fibonacci cube, or tilde-Fibonacci cube of dimension n is F,, = Qn(ll),

Figure 3 shows the tilde-Fibonacci cube of order 1, 2, 3, 4.
From Theorem 25 and Proposition 19, the following corollary derives.

» Corollary 31. The tilde-Fibonacci cube F, = Qn(ll) is an isometric subgraph of Q..

Further, about other hypercubes avoiding words of length 2, we have the following:

» Remark 32. For each n > 1, Q,(10) and Q,(10) coincide. In fact, V(Q,(10)) =
{071 h,k > 0, h+k = n} = V(Q,(10)) and E(Q,(10)) = {(0°17,0° 119+ 1 < i <
n,0<j<n-1i+j=n}=E(Q10)).

By complement, also Q,(01) and Q,,(01) coincide (see Remark 22).

Note also that @, (01) is obtained from @, (10) by complementing all the bits in the
vertices labels, i.e. they are isomorphic.

The tilde Fibonacci cube admits also a recursive construction that allows one to enumerate
its edges.

By Proposition 2, |[V(F,)| = [V (F,)| = fni2. Among these vertices, f, 1 end with a 0
and f, end with a 1. Figure 3 shows the tilde-Fibonacci cube of order 4.

» Remark 33. Let u € V(F,_;), z € ¥. If u ends with 1, then uz € V(E,) iff z = 0. If u
ends with 0 then uz € V(F,), for any z € {0,1}.

» Proposition 34. The n-tilde-Fibonacci cubes F,, with n > 1, can be defined recursively.

Proof. If n = 1, F} has two vertices 0 and 1 connected by an edge. If n = 2, F, has three
vertices 00, 01 and 10 and E(F3) = {(00,10), (00,01), (01,10)}.

Let n > 3 and suppose that E; are defined for all i < n. Then, F,, can be constructed
from a copy of F,,_; where each vertex u is replaced by 10, denoted by F,_10, and a copy of
F,,_5, where each vertex v is replaced by v01, and denoted by F,,_501. If there is an edge
(u,v) in F,_1, then there is en edge (u0,v0) F),, i.e. Fj,_10 is a subgraph of F,. For similar
reasons F,,_501 is a subgraph of F,,. Further, for any u0 € V(Fn,l), then there is an edge in

M. Anselmo et al.

ﬁ'n connecting v00 in Fn,lo and u01 in F‘n,QOI and for any ul € V(Fn,l) there is an edge
linking ©10 in F,,_10 and u01 in F,,_501 (see the orange edges in Fig. 3). By Remark 33

and Lemma 15 no further edges exist in F),. |

» Corollary 35. Let F), be the n-tilde-Fibonacci cube. Then, |E(Fy)| = 1,|E(Fy)| = 3 and,
foranymn > 2

|E(F)| = |E(Fam)| + | B(Fu—2)| + fus-
Hence, we can give the following exact formula:

(n + 1)fn+3 + (n B 2)fn+1

IB(F)] = : ,

(Sequence A023610 in [31] for |E(F),11|). Since the number of vertices of F, is f, 12, from
the previous formula it follows that the tilde-Fibonacci cube has O(N log N) edges, where N
is the number of vertices, as for the tilde-hypercube (see Equation (1)). Let us conclude the
section with some structural properties of tilde-Fibonacci cubes such as the diameter and
the radius.

The eccentricity of a vertex v of a connected graph G is defined as

e(v) = . em‘a}}éG) de(u,v),

where dg(u,v) is the length of a shortest path from u to v in G. The diameter and the radius
of G are respectively defined by

d(G)= max e(v) and r(G)= min e(v).

v € V(Q) v e V(Q)

In [21] it is proven that d(F,,) = n and that the maximal distance involves the words
(10)*/2 and (01)™/2 for even n, and (01)L"/2)0 and (10)1/2]1 for odd n. Note that, since
the swap operation adds new edges, it shortens the distances between vertices. Moreover,
the distances can even be halved because a swap replaces two replacement operations. More
precisely, we have the following proposition.

» Proposition 36. Let F,, be the n-tilde-Fibonacci cube. Then, for any n > 1, d(F,) =
r(Fn) = [n/2].

Proof. First, we prove that for any n > 1 and u,v € V(F,), dist~(u,v) < [n/2] by induction
on n.
The case where n = 1 is trivial. If n = 2, then for any u,v # 11, we have dist. (u,v) = 1.
Let now u,v be 11-free words of same length n, with n > 2. Then, u = zyu’ and v = ztv’,
with x,y,z,t € {0,1} and v/,v" € {0,1}*. Recall that dist~ (u,v) is the minimal number of
swaps and replacements to transform v into v. Since zy can be transformed into zt with at
most a single swap or replacement, a possible way to transform w in v is to transform zy into
zt and then v’ into v’. Therefore, dist. (u,v) <1+ dist(u/,v") <14 [(n—2)/2] < [n/2].
Moreover, for each 11-free word u of length n, with n > 1, there exists a 11-free word v
of length n such that dist. (u,v) = [n/2]. In fact, for each word u of length n, the word v is
obtained by replacing in u, from left to right, the blocks 00 with 10, the blocks 10 with 00,
the blocks 01 with 10 and finally, for odd n, the last bit with its complement. Trivially, if u

is 11-free then v is 11-free, as well. We prove that dist.(u,v) = [n/2] by induction on n.

The case n = 1 is trivial. If n = 2 then dist. (01, 10) = dist~(10,00) = dist~(00,10) = 1. If

5:11

Grossi's Festschrift

5:12

Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

n > 2 then either v = 00’ (v =100v") or u = 01v' (v = 10v’). In the first case, by Remark
11, one has dist(u,v) = 1+ [(n—2)/2] = [n/2]. In the second case, by Remark 12, one has
dist(u,v) =14 [(n —2)/2] = [n/2]. In any case, dist.(u,v) = [n/2]. Finally, since F,, is
an isometric subgraph of Q,, then dg, (u,v) = dist.(u,v) and r(E,) =d(F,) = [n/2]. <=

The previous proposition proves that), is a self-centered graph, that is, a graph in which
radius and diameter coincide (cf. [14] for a survey).

7 Conclusions

The paper surveys some recent results on isometric words with respect to the edit distance
that allows swap and replacement operations, here referred to as tilde-distance. Moreover,
the tilde-hypercube and the tilde-Fibonacci cube are presented as a generalization of the
corresponding classical notions, with the tilde-distance in place of the Hamming distance.
Compared with the setting of Hamming distance, all the problems appear to be more
complicated since, when using swaps, the order of performing the operations does matter.
Nevertheless, isometric words and generalized Fibonacci cubes based on this tilde-distance
open up new scenarios and present interesting new situations that surely deserve further
investigation as it can serve as base for string and graph algorithmic developments.

—— References

1 Amihood Amir, Estrella Eisenberg, and Ely Porat. Swap and mismatch edit distance. Al-
gorithmica, 45(1):109-120, 2006. doi:10.1007/978-3-540-30140-0_4.

2 Marcella Anselmo, Giuseppa Castiglione, Manuela Flores, Dora Giammarresi, Maria Madonia,
and Sabrina Mantaci. Hypercubes and isometric words based on swap and mismatch distance.
In Descriptional Complexity of Formal Systems. DCFEFS23, volume 13918 of Lect. Notes Comput.
Sci., pages 21-35. Springer Nature, 2023. doi:10.1007/978-3-031-34326-1_2.

3 Marcella Anselmo, Giuseppa Castiglione, Manuela Flores, Dora Giammarresi, Maria Madonia,
and Sabrina Mantaci. Isometric words based on swap and mismatch distance. In Developments
in Language Theory. DLT23, volume 13911 of Lect. Notes Comput. Sci., pages 23-35. Springer
Nature, 2023. doi:10.1007/978-3-031-33264-7_3.

4 Marcella Anselmo, Giuseppa Castiglione, Manuela Flores, Dora Giammarresi, Maria Madonia,
and Sabrina Mantaci. Isometric sets of words and generalizations of the Fibonacci cubes. In
Computability in Furope. CIE24, volume LNCS 14773 of Lect. Notes Comput. Sci., pages 1-14.
Springer, 2024. doi:10.1007/978-3-031-64309-5_35.

5 Marcella Anselmo, Giuseppa Castiglione, Manuela Flores, Dora Giammarresi, Maria Madonia,
and Sabrina Mantaci. Characterization of isometric words based on swap and mismatch
distance. International Journal of Foundations of Computer Science, 36(03):221-245, 2025.
doi:10.1142/S0129054125430051.

6 Marcella Anselmo, Manuela Flores, and Maria Madonia. Fun slot machines and transformations
of words avoiding factors. In Fun with Algorithms, volume 226 of LIPIcs, pages 4:1-4:15, 2022.
doi:10.4230/LIPIcs.FUN.2022.4.

7 Marcella Anselmo, Manuela Flores, and Maria Madonia. On k-ary n-cubes and isometric
words. Theor. Comput. Sci., 938:50-64, 2022. doi:10.1016/j.tcs.2022.10.007.

8 Marcella Anselmo, Manuela Flores, and Maria Madonia. Density of Ham- and Lee- non-
isometric k-ary words. In ICTCS’23 Italian Conference on Theor. Comput. Sci., volume
3587 of CEUR Workshop Proceedings, pages 116-128, 2023. URL: https://ceur-ws.org/
Vol-3587/3914.pdf.

9 Marcella Anselmo, Manuela Flores, and Maria Madonia. Computing the index of non-isometric
k-ary words with Hamming and Lee distance. Computability, 10S press, 13(3-4):199-222, 2024.
doi:10.3233/COM-230441.

https://doi.org/10.1007/978-3-540-30140-0_4
https://doi.org/10.1007/978-3-031-34326-1_2
https://doi.org/10.1007/978-3-031-33264-7_3
https://doi.org/10.1007/978-3-031-64309-5_35
https://doi.org/10.1142/S0129054125430051
https://doi.org/10.4230/LIPIcs.FUN.2022.4
https://doi.org/10.1016/j.tcs.2022.10.007
https://ceur-ws.org/Vol-3587/3914.pdf
https://ceur-ws.org/Vol-3587/3914.pdf
https://doi.org/10.3233/COM-230441

M

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

. Anselmo et al.

Marcella Anselmo, Manuela Flores, and Maria Madonia. Density of k-ary words with 0, 1, 2 -
error overlaps. Theor. Comput. Sci., 1025:114958, 2025. doi:10.1016/j.tcs.2024.114958.
Jernej Azarija, Sandi Klavzar, Jaechun Lee, Jay Pantone, and Yoomi Rho. On isomorphism

classes of generalized Fibonacci cubes. Eur. J. Comb., 51:372-379, 2016. doi:10.1016/j.ejc.

2015.05.011.

Marie-Pierre Béal and Maxime Crochemore. Checking whether a word is Hamming-isometric
in linear time. Theor. Comput. Sci., 933:55-59, 2022. doi:10.1016/j.tcs.2022.08.032.
Laxmi N. Bhuyan and Dharma P. Agrawal. Generalized hypercube and hyperbus structures
for a computer network. IEEE Transactions on Computers, C-33(4):323-333, 1984. doi:
10.1109/TC.1984.1676437.

Fred Buckley. Self-centered graphs. Ann. New York Acad. Sci, 576:71-78, 1989. doi:
10.1111/3.1749-6632.1989.tb16384.x.

Sergio Cabello, David Eppstein, and Sandi Klavzar. The Fibonacci dimension of a graph.
Electron. J. Comb., 18(1), 2011. doi:10.37236/542.

Giuseppa Castiglione, Manuela Flores, and Dora Giammarresi. Isometric words and edit
distance: Main notions and new variations. In Cellular Automata and Discrete Complex
Systems. AUTOMATA 2023, volume 14152 of Lect. Notes Comput. Sci., pages 6-13. Springer,
2023. doi:10.1007/978-3-031-42250-8_1.

W.J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE Transactions
on Computers, 39(6):775-785, 1990. doi:10.1109/12.53599.

Ahmed El-Amawy and Shaharam Latifi. Properties and performance of folded hypercubes.

IEEE Transactions on Parallel and Distributed Systems, 2(1):31-42, 1991. doi:10.1109/71.

80187.

Simone Faro and Arianna Pavone. An efficient skip-search approach to swap matching. Comput.
J., 61(9):1351-1360, 2018. doi:10.1093/comjnl/bxx123.

Frank Harary, John P. Hayes, and Horng J. Wu. A survey of the theory of hypercube graphs.
Comput. Math. Appl., 15(4):277-289, 1988. doi:10.1016/0898-1221(88)90213-1.

Wen-Jing Hsu. Fibonacci cubes-a new interconnection topology. IEEE Transactions on
Parallel and Distributed Systems, 4(1):3-12, 1993. doi:10.1109/71.205649.

Aleksandar I1i¢, Sandi Klavzar, and Yoomi Rho. Generalized Fibonacci cubes. Discrete Math.,
312(1):2—11, 2012. doi:10.1016/j.disc.2011.02.015.

Aleksandar Ili¢, Sandi Klavzar, and Yoomi Rho. The index of a binary word. Theor. Comput.
Sci., 452:100-106, 2012. doi:10.1016/j.tcs.2012.05.025.

Sandi Klavzar. Structure of Fibonacci cubes: A survey. J. Comb. Optim., 25(4):505-522, 2013.
doi:10.1007/s10878-011-9433-z.

Sandi Klavzar and Sergey V. Shpectorov. Asymptotic number of isometric generalized
Fibonacci cubes. Eur. J. Comb., 33(2):220-226, 2012. doi:10.1016/j.ejc.2011.10.001.
Sandi Klavzar. On median nature and enumerative properties of Fibonacci-like cubes. Discrete
Mathematics, 299(1):145-153, 2005. doi:10.1016/j.disc.2004.02.023.

Sandi Klavzar and Petra Zigert. Fibonacci cubes are the resonance graphs of fibonaccenes.
The Fibonacci Quarterly, 43(3):269-276, 2005. doi:10.1080/00150517.2005.12428368.
Emanuele Munarini and Norma Zagaglia Salvi. Structural and enumerative properties of
the Fibonacci cubes. Discrete Math., 255(1-3):317-324, 2002. doi:10.1016/S0012-365X(01)
00407-1.

Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31-88, 2001. doi:10.1145/375360.375365.

P. Tolstrup Nielsen. A note on bifix-free sequences (corresp.). IEEE Transactions on Informa-
tion Theory, 19(5):704-706, 1973. doi:10.1109/TIT.1973.1055065.

N.J.A. Sloane. On-line encyclopedia of integer sequences. URL: http://oeis.org/.
Nian-Feng Tzeng and Sizheng Wei. Enhanced hypercubes. IEEE Trans. Computers, 40(3):284—
294, 1991. doi:10.1109/12.76405.

5:13

Grossi's Festschrift

https://doi.org/10.1016/j.tcs.2024.114958
https://doi.org/10.1016/j.ejc.2015.05.011
https://doi.org/10.1016/j.ejc.2015.05.011
https://doi.org/10.1016/j.tcs.2022.08.032
https://doi.org/10.1109/TC.1984.1676437
https://doi.org/10.1109/TC.1984.1676437
https://doi.org/10.1111/j.1749-6632.1989.tb16384.x
https://doi.org/10.1111/j.1749-6632.1989.tb16384.x
https://doi.org/10.37236/542
https://doi.org/10.1007/978-3-031-42250-8_1
https://doi.org/10.1109/12.53599
https://doi.org/10.1109/71.80187
https://doi.org/10.1109/71.80187
https://doi.org/10.1093/comjnl/bxx123
https://doi.org/10.1016/0898-1221(88)90213-1
https://doi.org/10.1109/71.205649
https://doi.org/10.1016/j.disc.2011.02.015
https://doi.org/10.1016/j.tcs.2012.05.025
https://doi.org/10.1007/s10878-011-9433-z
https://doi.org/10.1016/j.ejc.2011.10.001
https://doi.org/10.1016/j.disc.2004.02.023
https://doi.org/10.1080/00150517.2005.12428368
https://doi.org/10.1016/S0012-365X(01)00407-1
https://doi.org/10.1016/S0012-365X(01)00407-1
https://doi.org/10.1145/375360.375365
https://doi.org/10.1109/TIT.1973.1055065
http://oeis.org/
https://doi.org/10.1109/12.76405

5:14

Generalized Fibonacci Cubes Based on Swap and Mismatch Distance

33

34

35

36

37

38

39

Robert A. Wagner. On the complexity of the extended string-to-string correction problem. In
Symposium on Theory of Computing, pages 218-223, 1975. doi:10.1145/800116.803771.
Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168—173, 1974. doi:10.1145/321796.321811.

Jianxin Wei. The structures of bad words. Fur. J. Comb., 59:204-214, 2017. doi:10.1016/j.
ejc.2016.05.003.

Jianxin Wei. Proof of a conjecture on 2-isometric words. Theor. Comput. Sci., 855:68—73,
2021. doi:10.1016/j.tcs.2020.11.026.

Jianxin Wei, Yujun Yang, and Guangfu Wang. Circular embeddability of isometric words.
Discret. Math., 343(10):112024, 2020. doi:10.1016/j.disc.2020.112024.

Jianxin Wei, Yujun Yang, and Xuena Zhu. A characterization of non-isometric binary words.
Eur. J. Comb., 78:121-133, 2019. doi:10.1016/j.ejc.2019.02.001.

Jianxin Wei and Heping Zhang. Proofs of two conjectures on generalized Fibonacci cubes.
Eur. J. Comb., 51:419-432, 2016. doi:10.1016/j.ejc.2015.07.018.

https://doi.org/10.1145/800116.803771
https://doi.org/10.1145/321796.321811
https://doi.org/10.1016/j.ejc.2016.05.003
https://doi.org/10.1016/j.ejc.2016.05.003
https://doi.org/10.1016/j.tcs.2020.11.026
https://doi.org/10.1016/j.disc.2020.112024
https://doi.org/10.1016/j.ejc.2019.02.001
https://doi.org/10.1016/j.ejc.2015.07.018

Compact Data Structures for Collections of Sets

Jarno N. Alanko =

Department of Computer Science, University of Helsinki, Finland

Philip Bille =
Technical University of Denmark, Lyngby, Denmark

Inge Li Ggrtz =
Technical University of Denmark, Lyngby, Denmark

Gonzalo Navarro &
Department of Computer Science, University of Chile, Santiago, Chile
Center for Biotechnology and Bioengineering (CeBiB), Santiago, Chile

Simon J. Puglisi &
Department of Computer Science, University of Helsinki, Finland

—— Abstract

We define a new entropy measure L(S), called the containment entropy, for a set S of sets, which
considers the fact that some sets can be contained in others. We show how to represent S within
space close to L(S) so that any element of any set can be retrieved in logarithmic time. We extend
the result to predecessor and successor queries and show how some common set operations can be
implemented efficiently.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis
Keywords and phrases Compressed data structures, entropy of sets, data compression

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.6

Category Research

Funding Jarno N. Alanko: Funded by the Helsinki Institute for Information Technology (HIIT).
Philip Bille: Danish Research Council grant DFF-8021-002498.

Inge Li Gprtz: Danish Research Council grant DFF-8021-002498.

Gonzalo Navarro: Basal Funds FB0001 and AFB240001, ANID, Chile.

Simon J. Puglisi: Academy of Finland grant 339070.

Acknowledgements This work was initiated at the NII Shonan Meeting no. 187 on “Theoretical
Foundations of Nonvolatile Memory.”

1 Introduction

We consider the problem of representing a collection of sets S = {S7,..., 5} from a universe
U of size u while supporting basic queries, including retrieving the kth element and predecessor
and successor queries. The goal is to store the sets compactly while supporting fast queries.
This problem has important applications, including the representation of postings lists in
inverted indexes and adjacency-list representations of graphs.

To measure space, we often consider the worst-case entropy defined as H(S) =
i lg (I ;i‘) as a natural information-theoretic worst-case lower bound on the number
of bits needed to store S. Using standard techniques [6, 5, 9], we can store & within
H(S) + O(n + slogn) bits and support retrieval (i.e., accessing any kth element of any set)
in constant time.

© Jarno N. Alanko, Philip Bille, Inge Li Ggrtz, Gonzalo Navarro, and Simon J. Puglisi;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.

Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 6; pp.6:1-6:7

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jarno.alanko@helsinki.fi
https://orcid.org/0000-0002-8003-9225
mailto:phbi@dtu.dk
https://orcid.org/0000-0002-1120-5154
mailto:inge@dtu.dk
https://orcid.org/0000-0002-8322-4952
mailto:gnavarro@uchile.cl
https://orcid.org/0000-0002-2286-741X
mailto:simon.puglisi@helsinki.fi
https://orcid.org/0000-0001-7668-7636
https://doi.org/10.4230/OASIcs.Grossi.2025.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

6:2

Compact Data Structures for Collections of Sets

In this paper, we propose a finer measure of entropy for S that can take advantage of the
fact that some sets may be subsets of others. If S; C S, we can encode S; using log (‘éq‘)
bits, by indicating which elements in S; are also in S;. We show how to construct a hierarchy
from S such that children are subsets of their parent. This leads to a new notion of entropy
called the containment entropy, defined as

L(s) = glg ("5,

where p(S;) is the parent of S; (see Section 3). It is easy to see that the containment entropy
is a finer notion of entropy since L(S) < H(S). Our main result is that we efficiently represent
S in space close to its containment entropy while supporting queries efficiently.

» Theorem 1. Let S be a set of s sets of total size n, elements of which are drawn from
a universe of size u. We can construct a data structure in O(snlogn) time that uses
L(S) + O(n + slogn) bits of space and supports retrieval, predecessor, and successor queries
on any set S € S in time O(log(u/|S])).

Thus, compared to the above-mentioned standard data structures, we replace the worst-case
entropy H(S) with L(S) in our space bound in Theorem 1.

We also obtain several corollaries of Theorem 1. We show how to implement the common
operations of set intersection, set union, and set difference. By combining Theorem 1 with
techniques from Barbay and Kenyon [2] we obtain fast implementations of these operations
in terms of the alternation bound [2] directly on our representation. We also show how to
apply Theorem 1 to efficiently store a collection of bitvectors while supporting access, rank,
and select queries.

Technically, the result is obtained by constructing a tree structure, where each node
represents a set, and children represent subsets of their parent. We then represent each set as
a sparse bitvector that indicates which of the elements of the parent are present in the child.
This leads to a simple representation that achieves the desired space bound. Unfortunately,
if we directly implement a retrieval query on this representation, we have to traverse the
path from the set S to the root leading to a query time of Q(h), where h is the height of the
tree. We show how to efficiently shortcut paths in the tree without asymptotically increasing
the space, yielding the O(log(u/|S])) time. We then extend these techniques to handle
predecessor and successor queries in the same time, leading to the full result of Theorem 1.

Relation with wavelet trees. We note that the idea is reminiscent of wavelet trees [7],
which represent a sequence of symbols as a binary tree where each node stores a bitvector. In
the root’s bitvector, 0s/1s mark the sequence positions with symbols in the first/second half
of the alphabet, and left/right children recursively represent the subsequences formed by the
symbols in the first/second half of the alphabet. Nodes handling single-symbol subsequences
are wavelet tree leaves. If we define S as the sets of positions in the sequence holding the
symbols of each subalphabet considered in the wavelet tree, then our data structure built on
S has the same shape of the wavelet tree. The wavelet tree uses less space, however, because
it corresponds to a particular case where the maximal subsets of each set partition it into
two: while the wavelet tree can be compressed to the zero-order entropy of the sequence [7],
L(S) doubles that entropy.

J. N. Alanko, P. Bille, I. L. Ggrtz, G. Navarro, and S. J. Puglisi

2 Basic Concepts

A bitvector B[1..u] is a data structure that represents a sequence of u bits and supports the
following operations:
access(B, i) returns Bli], the ith bit of B.
ranky(B, i), where b € {0,1}, returns the number of times bit b occurs in the prefix
BJ1..i] of the bitvector. We assume rank,(B,0) = 0.
selecty(B, j) returns the position in B of the jth occurrence of bit b € {0,1}. We assume
selecty(B,0) = 0 and selecty(B,i) =n+ 1 if b does not occur 7 times in B.

Note that ranko(B,i) = i — rank;(B,). By default we assume b = 1. It is possible to
represent bitvector B using u + o(u) bits and solve all the operations in O(1) time [3, 8]. If
n is the number of 1s in B, it is possible [6, 5, 9] to represent B using

nlgE +2n = lg <u> + O(n + logu)
n n

bits,! so that select; is implemented in constant time, while access and rank, are solved
in time O(1 +log %*). Operation selecty can be solved in time O(logn) by binary search on
selecty. This is called the sparse bitvector representation in this paper.

We note that 1g (Z) is the entropy of the set of positions where B contains n 1s, or
equivalently, the entropy of the sets of n elements in a universe of size u. We will indistinctly
speak of the operations access, rank, and select over sets S on the universe [1..u], referring
to the corresponding bitvector B where B[i] = 1 iff i € S. For example, select(S, k) is the

kth smallest element of S.

3 Containment Entropy

Let S = {S1,5,...,S55} be a set of s distinct sets, and U = S; U Sy U---U S be their union.

For simplicity we assume U = [1..u], so u = [U|. Let n; = |S;] and n = Y ;_, n; be the total
size of all sets; note n > w.
A simple notion of entropy for S is its worst-case entropy

H(S) = ilg (;)

i=1

It is not hard to store S within H(S) + O(n + slogn) bits, by using the sparse bitvector
representation of Section 2, which stores each S; within Ig (71;1) + O(n; +log u) bits, and offers
constant-time retrieval of any element of S; via select(S;, k). We use O(slogn) additional
bits to address the representations of the s sets.

We now propose a finer measure of entropy for S, which exploits the fact that some sets
can be subsets of others. If S; C S, we can describe S; using lg (ZJ) bits, which indicate
which elements of S; are also in S;. We define a tree structure whose nodes are the sets
S;, and the parent of S;, p(S;), is any smallest S; such that S; C S;. If S; is not contained
in any other set, then its parent is the tree root, which represents &/. We then define the
following measure of entropy, which we call the containment entropy.

1 The formula on the left is zero if n = 0.

6:3

Grossi's Festschrift

6:4

Compact Data Structures for Collections of Sets

Algorithm 1 Retrieving the kth element of a set S in a hierarchy.

Input :Set S and rank k of the element to be retrieved, with 1 < k < |S].
Output : The kth smallest element in S.

1 function retrieve (S, k)
2 if S is the root then return k
3 else return retrieve(p(S), select(S,k)) // use ¢(S) on contracted hierarchy

» Definition 2. Let S be a set of sets S;. Its hierarchy has U = U;S; at the root, and
the parent p(S;) of S; is any smallest set containing S; (or U if no such set exists). Let
p; = |p(S;)|. The containment entropy of S is

L) = leg@)

Clearly L(S) < H(S) because p; < u for every i. Note that L(S) is arguably the optimal
space we can achieve by representing sets as subsets of others in S, but we could obtain less
space if other arrangements were possible. For example, if many sets are subsets of both
S; and S;, it could be convenient to introduce a new set S; N.S; in the hierarchy, even if it
is not in S. An advantage of L(S) is that it is easily computed in polynomial time from S,
whereas more general notions like the one that allows the creation of new sets may be not.

4 A Containment Entropy Bounded Representation with Fast Retrieval

It is not hard to represent S within space close to L(S): we can use the sparse bitvector
representation of Section 2 to store each S; relative to its parent p(.S;), within lg (ﬁl) +O0(n; +
log p;) bits, which add up to L(S)+ O(n+ slogu) bits. The problem is that now select(S;, k)
gives the position of the kth element of S; within those of p(S;), not within U, and thus
select(S;, k) is not directly the identity of the kth element of S;. In order to obtain the
identity of the element, we must compute select(p(S;), select(S;, k)) and so on, consecutively
following the chain of ancestors of S; until the root U; see Algorithm 1. This may take time
proportional to the height of the hierarchy, which can be up to O(s). We now show how to
reduce this time to logarithmic, by introducing shortcuts in the hierarchy.

» Definition 3. The contracted hierarchy of S has U as its root, and the parent c(S;) of
S; is the highest ancestor Sy of p(S;) in the hierarchy of S such that ny < 2n;. If no such
ancestor exists, then ¢(S;) = p(S;).

We now prove a couple of relevant properties of this contracted hierarchy.

» Lemma 4. The depth of node S; in the contracted hierarchy of S is O(log(u/n;)). The
height of the contracted hierarchy is O(logu).

Proof. By definition, the grandparent of node S;, if it exists, has size > 2n;; thus the path
towards the root (whose size is u) cannot be longer than 21g(u/n;). An obvious consequence
is that the height of the tree cannot be longer than 21g u. <

If we change p(S) to ¢(S) in Algorithm 1, then, the retrieval time becomes O(log(u/|S])).
We now show that the space is not asymptotically affected by contracting the hierarchy.

» Lemma 5. The contracted hierarchy of S can be represented within L(S) + O(n + slogn)
bits.

J. N. Alanko, P. Bille, I. L. Ggrtz, G. Navarro, and S. J. Puglisi

Algorithm 2 Finding the position of the predecessor of k in the set S of a hierarchy.

Input :Set S and element k of the universe, 1 < k < u.
Output : The position of the predecessor of k in S.

1 function predecessor (S, k)
2 L if S is the root then return k

3 else return rank(S,predecessor(c(S5),k))

Proof. We start from our representation that uses L(S)+ O(n+ slogn) bits, and show how it
changes when we replace p(S;) by ¢(S;). In case p(S;) # ¢(S;), it holds that |c¢(S;)| < 2|p(S:)],
because S; C p(S;) and thus |¢(S;)] < 2]9;] < 2|p(S;)|. Then, changing p(S;) to ¢(S;) increases

the size of the representation from n;lg 2= + 2n; to at most n; lg 20i 4 oy, =, lg 2 4 3n;.

Thus, the total increase produced by changlng all p(S;) to ¢(S;) is bounded by n; we still
use L(S) + O(n + slogn) bits. The parent pointers that allow climbing paths also fit in
O(slogn) bits. <

In summary, we have the following result.

» Lemma 6. A set S of s sets of total size n and universe size u can be represented
within L(S) + O(n + slogn) bits so that any element of any set S can be retrieved in time

O(log(u/]S]))-
5 Other Operations

5.1 Predecessor and Successor in a Set

Given an element identifier £ and a set S;, the predecessor is the largest v < k such that
v € S;. Conversely, the successor is the smallest v > k such that v € S;. We can find the
predecessor in O(logu) time, as follows. We start at the node S; and walk up the path to
the root U, so as to determine the nodes in the path. In the return from the recursion, we
start at the position v < k in U, and whenever returning from a node S to its child S’, we
compute v < rank(S’,v), which gives the number of elements from S’ up to the element v in
S, that is, the predecessor of v among the elements of S’. By the time we return to S; again,
v is the position in S; of the predecessor of k; see Algorithm 2. We then find out the identity
of v in U using Algorithm 1. To find the successor, we use v < 1 + rank(S’,v — 1) instead.

Operation rank takes time O(1 + log(]S|/|S’])) in the sparse bitvector representation of
S’ as seen in Section 2. Therefore, the sum of the times along the path to S; telescopes to
O(log(u/n;)). This yields the following result.

» Lemma 7. On the same representation of Lemma 6, we can compute the predecessor and
successor of any element of any set S in time O(log(u/|S])).
5.2 Set Operations

These operations are useful to compute set operations, by mimicking any standard algorithm
that traverses both ordered sets. In particular, we can implement an intersection algorithm
that is close to the alternation complexity lower bound d [2]: any algorithm that can find

the successor of any element in either list in time ¢, can intersect both lists in time O(dt).

Predecessor and successor on the complement of a set can also be solved in time O(t), by
using rankg instead of rank (and managing the base case accordingly).

6:5

Grossi's Festschrift

6:6

Compact Data Structures for Collections of Sets

» Corollary 8. On the representation of Lemma 6, we can compute the intersection between
any two sets S; and S; in time O(6logu), where § is the alternation complexity of both sets.
We can also compute their union in time O(|S; U Sj|logu). The difference S; \ S; can be
implemented in time O(&'logu), where &' is the alternation complexity of S; and S5.

5.3 Back to Bitvectors

Returning to the bitvector semantics, our results allow us store a set of sparse bitvectors
B;[1..u], representing subsets S; of a universe U of size u, so that operations access(B;, k),
rank(B;, k) and select(B;, k) take time O(log(u/n;)). To implement access(B;, k), we return
1 if the predecessor of k in S; is k, or else 0. To implement rank(B;, k), we compute the
position v of the predecessor of k in the ordered set S; and return rank(S;,v). To implement
select1(B;, k), we retrieve the kth element of S;, and for selecty we do binary search on
selecty.

» Corollary 9. A set of s bitvectors B;[1..u] can be represented in L(S) + O(n + slogu)
bits, where S is the set of sets S; = {k, B;[k] = 1}, n; is the number of 1s in B; and
n=Y_.n;. This representation supports operations access, ranky, and select, on any B; in
time O(log(u/n;)), and selecty in time O(logn; log(u/n;)).

This is to be compared with storing each bitvector directly [9], which gives total space
H(S) + O(n + slogu) and supports access and ranks, in the same time O(log(u/n;)), and
selecty, in the better times O(1) for b =1 and O(logn;) for b = 0.

6 Construction

We can build the hierarchical representation by adding one set S at a time, in decreasing
order of size, to ensure it is correct to insert S as a leaf. To insert S in S, we first find a
smallest set S’ € S such that S C S’. The sets that contain S form a connected subgraph of
the hierarchy that includes the root. So we can traverse the hierarchy from the root, looking
for the lowest nodes that contain S, and retain the smallest of those. For each hierarchy
node S; to check, we take each element of S and verify that it exists in .S; via a predecessor
query, which takes time O(log(u/|S;])) € O(log(u/|S])), because |S| < |S;|. We then find
a smallest set S” containing S in time O(s'|S|log(u/|S])), where s’ < n/|S| is the current
number of sets in S and n is its final sum of set sizes.

We then insert S in the hierarchy by setting p(S) = S’. To find ¢(S), we find the highest
ancestor S” of S” whose size is |S”| < 2|S] (or let S” = S’ if no such ancestor exists), and
set ¢(S) = S”. Finally, we build the representation of S relative to S, in time O(|S|) [9].

Note that, when we find the ancestor S”, we traverse the upward path defined by the
parent function p(-), not ¢(-). We still use ¢(-) during construction to answer the predecessor
queries, to determine inclusion of S, in logarithmic time.

» Lemma 10. The representation of Lemma 6 can be built in time O(snlogn).

Combining Lemmas 6, 7, and 10 we have shown Theorem 1.

7 Concluding Remarks

We have described the containment entropy, a new entropy measure for collections of sets,
which is sensitive to subset relationships between sets. To our knowledge, this idea has not
before been considered in the vast literature on efficient set representations that has emerged

J. N. Alanko, P. Bille, I. L. Ggrtz, G. Navarro, and S. J. Puglisi

primarily from efficiency concerns in information retrieval systems [11]. One could consider
dictionary-based compression of sets (see, e.g., [10, 4]) as implicitly capturing some aspect of
subset relationships, but the representations and analysis we have described here consider
subset relationships explicitly.

An interesting direction for future work is to explore the practicality of these hierarchical
set representations in various application contexts. An immediate concern is that of hierarchy
construction. Our initial experiments with a collection of sets taken from the genomic search
engine Themisto [1] applied to a set of 16 thousand bacterial genomes (over 80GB of data)
indicate that, even for large set collections, hierarchy construction is tractable and scales
almost linearly with the total length of the sets in practice. On a collection of 10.55 million
sets of average size 3,607 (10.52 million of which were subsets of at least one other set) of
more than 38 billion elements in total, we were able to find the smallest super set of every set
in less than 40 hours in total, using just 16 threads of execution. The resulting representation
used just 0.18 bits per element, compared to the 0.32 bits per element used by Themisto’s
representation, which selects between different set representations based on set density.

—— References

1 Jarno N. Alanko, Jaakko Vuohtoniemi, Tommi Méaklin, and Simon J. Puglisi. Themisto:
a scalable colored k-mer index for sensitive pseudoalignment against hundreds of thou-
sands of bacterial genomes. Bioinformatics, 39(Supplement-1):260-269, 2023. doi:10.1093/
BIOINFORMATICS/BTAD233.

2 J. Barbay and C. Kenyon. Alternation and redundancy analysis of the intersection problem.
ACM Transactions on Algorithms, 4(1):1-18, 2008. doi:10.1145/1328911.1328915.

3 D. R. Clark. Compact PAT Trees. PhD thesis, University of Waterloo, Canada, 1996.

4 F. Claude and G. Navarro. Fast and compact web graph representations. ACM Transactions
on the Web, 4(4):article 16, 2010.

5 P. Elias. Efficient storage and retrieval by content and address of static files. Journal of the
ACM, 21:246-260, 1974. doi:10.1145/321812.321820.

6 R. Fano. On the number of bits required to implement an associative memory. Memo 61,
Computer Structures Group, Project MAC, Massachusetts, 1971.

7 R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc.
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841-850, 2003.

8 J. I. Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages 37-42, 1996.

9 D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. In Proc.
9th Workshop on Algorithm Engineering and Ezperiments (ALENEX), pages 60-70, 2007.

10 Giulio Ermanno Pibiri, Matthias Petri, and Alistair Moffat. Fast dictionary-based compression
for inverted indexes. In Proc. 12th ACM International Conference on Web Search and Data
Mining (WSDM), pages 6-14. ACM, 2019. doi:10.1145/3289600.3290962.

11 Giulio Ermanno Pibiri and Rossano Venturini. Techniques for inverted index compression.
ACM Computing Surveys, 53(6):125:1-125:36, 2021. doi:10.1145/3415148.

6:7

Grossi's Festschrift

https://doi.org/10.1093/BIOINFORMATICS/BTAD233
https://doi.org/10.1093/BIOINFORMATICS/BTAD233
https://doi.org/10.1145/1328911.1328915
https://doi.org/10.1145/321812.321820
https://doi.org/10.1145/3289600.3290962
https://doi.org/10.1145/3415148

Conditional Lower Bounds for String Matching in
Labelled Graphs

Massimo Equi 8 4&
Aalto University, Finland

—— Abstract

The problem of String Matching in Labelled Graphs (SMLG) is one possible generalization of the
classic problem of finding a string inside another of greater length. In its most general form,
SMLG asks to find a match for a string into a graph, which can be directed or undirected. As for
string matching, many different variations are possible. For example, the match could be exact
or approximate, and the match could lie on a path or a walk. Some of these variations easily fall
into the NP-hard realm, while other variants are solvable in polynomial time. For the latter ones,
fine-grained complexity has been a game changer in proving quadratic conditional lower bounds,
allowing to finally close the gap with those upper bounds that remained unmatched for almost
two decades.

If the match is allowed to be approximate, SMLG enjoys the same conditional quadratic lower
bounds shown for example for edit distance (Backurs and Indyk, STOC ’15). The case that really
requires ad hoc conditional lower bounds is the one of finding an ezact match that lies on a walk. In
this work, we focus on explaining various conditional lower bounds for this version of SMLG, with
the goal of giving an overall perspective that could help understand which aspects of the problem
make it quadratic. We will introduce the reader to the field of fine-grained complexity and show

how it can successfully provide the exact type of lower bounds needed for polynomial problems such
as SMLG.

2012 ACM Subject Classification Theory of computation — Pattern matching; Theory of computa-
tion — Problems, reductions and completeness

Keywords and phrases conditional lower bounds, strong exponential time hypothesis, fine-grained
complexity, string matching, graphs

Digital Object Identifier 10.4230/0OASIcs.Grossi.2025.7
Category Research

Funding This work was supported in part by the Research Council of Finland, Grant 359104.

1 Introduction

The classic problem of string matching consists in finding a match for a shorter pattern
string P into a longer text string 7. This problem has been extensively studied throughout
the years, but the core fundamental complexity result was already discovered in the '70s,
when the problem was proven to be solvable in linear time [19]. The problem of String
Matching in Labelled Graphs (SMLG) is a generalization of the string matching problem,
where we look for matches of P not in a text but in a graph with nodes labelled by single
characters. The SMLG problem first received attention in the '90s [20, 3, 4] due to potential
applications in network searches and, later on, applications such as bioinformatics [15], graph
databases [5] and heterogeneous networks [24] motivated it anew. Finding quadratic upper
bounds of the form O(]E||P|) was possible for different variations of the problem [4, 21, 25],
and those results were later proven to be optimal under some complexity hypotheses for
other problems [10, 11]. This conditional lower bounds falls into the field of the so-called

© Massimo Equi;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No.7; pp. 7:1-7:13

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:massimo.equi@aalto.fi
https://massimoequi.github.io/
https://orcid.org/0000-0001-8609-0040
https://doi.org/10.4230/OASIcs.Grossi.2025.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

7:2

Lower Bounds for String Matching in Graphs

fine-grained complexity, and in this work we aim to showcase how fine-grained complexity
lower bounds are achieved and why they changed the game for polynomial problems, in
particular for SMLG.

The journey of fine-grained complexity begins in the early 2000s, when Impagliazzo,
Paturi and Zane [17, 18] put forward a hypothesis on the complexity of SAT in conjunctive
normal form (CNF-SAT). The hypothesis was named Strong Ezponential Time Hypothesis
(SETH), and states that no algorithm can solve a CNF-SAT instance over n variables in
time O(2%"), where o < 1. This hypothesis still holds its ground, since no one has been
able to disprove it as of the writing of this work. A few years later, Williams [26] showed
how SETH can be used to prove conditional lower bounds for polynomial problems. Among
others, this work presented a fine-grained reduction from CNF-SAT to the Orthogonal Vectors
(OV) problem, that is a reduction that requires subexponential time, which in this case was
O(2%)!. In the OV problem, we are given sets X and Y of n binary vectors of dimension d,
and we are asked to find a pair (x,y) of orthogonal vectors z € X and y € Y. So far, no
algorithm was able to solve OV in O(n?~cpoly(d)) time, and this fact is referred to as the
Orthogonal Vectors Conjecture (OVC). Thus, the reduction between CNF-SAT and OV shows
that a O(n?~¢poly(d)) time algorithm for OV would disprove SETH, or SETH = OVC, and
this is an important connection between exponential and polynomial complexities. Indeed,
this allows to prove SETH-based lower bounds by reducing from OV instead of CNF-SAT,
a choice that usually makes reductions cleaner and the lower bounds more reliable as, in
principle, OVC might be true even if SETH fails.

After this initial connection, many other lower bounds for polynomial problems conditioned
on SETH have been shown. Among these, one of the most celebrated examples is probably
the lower bound for the problem of computing edit distance (EDIT) between two strings
A and B [6]. The textbook algorithm for EDIT solves the problem in O(n?) time, where
n = |A] = |B|, and has been known for decades, but the first lower bound was achieved only
thanks to a fine-grained reduction from OV. This brings us back to SMLG, as the conditional
lower bound for EDIT has consequences also for matching strings in graphs. Indeed, there
are different variations of SMLG, and one thing to specify is whether the matches for pattern
P in graph G should be exact or approximate, and whether walks are admitted (same nodes
can be matched multiple times) or only paths (every node must be matched ones). To allow
for approximate matches, one has to specify what an approximate match is. We could be
very permissive, and allowing edit operations to occur both in the pattern and in the graph.
This possibility was explored and proven to be an NP-hard problem [4]. If we then ask for
a path spelling a string at minimum edit distance from P, then we incur in the following
problem: if we label every node with character a and we query for pattern of length |P| = |V,
then we are solving the Hamiltonian Path problem, known to be NP-hard. Thus, let us look
for a walk spelling a path at minimum edit distance from P. In this setting, an O(|E||P|)
algorithm exists [21, 25], and since a string can be viewed as a chain of nodes, EDIT is a
special case of this problem, and thus the conditional quadratic lower bound matches the
upper bound.

As previously mentioned, the version of SMLG where we ask for a walk in G spelling an
exact match for P has also received a conditional quadratic lower bound [10, 11]. This result
however could not be achieved as a simple adaptation of other lower bounds, and needed a

! We acknowledge that this use of the term “subexponential” is improper, as a real subexponential

complexity should be of the form 0(2"(")). Nonetheless, we will use this wording for lack of a better
term.

M. Equi

custom fine-grained reduction from OV. Moreover, this highlights also a remarkable difference
between the text and graph case: while the problem is linear for texts, it is quadratic for
graphs, while in the approximate case it is quadratic for both texts and graphs.

At this point, one natural approach to find upper bounds could be to change the setting to
try to play around the lower bound. For example, one could ask if queries to the pattern could
be solved efficiently, that is in subquadratic time, after spending quadratic or even polynomial
time indexing the graph. Unfortunately, also this question was answered negatively, as Equi,
Maékinen and Tomescu [11] proved that superpolynomial indexing time is needed in order to
achieve subquaratic time queries. This result was given as a special case of a more general
technique, which allows to claim that the same type of indexing lower bound holds for any
problem with a fine-grained reduction from OV respecting a certain structure.

All these fine-grained results where further strengthened after the introduction of new
hardness hypotheses [1] believed to be more reliable than SETH. Using this framework,
Gibney, Hoppenworth, and Thankachan [16] showed that the hardness of SMLG can be
based on these hypotheses, and this improved the lower bound proving that even shaving
logarithmic factors from the quadratic time complexity is hard. This enhanced lower bound
is given by reducing from a problem called Formula-SAT, a generalisation of CNF-SAT, and
due to the nature of the problem the design of the reduction had to be modified into a
structure of recursively-defined gadgets.

As a final note, although this work is centred around the quadratic lower bounds for
SMLG, it is important to remember that there are graphs for which the problem is easier
to solve, and even linear time complexity can be achieved. This is the case for instance for
Wheeler graphs [14], certain (Elastic) Founder graphs [23, 13], trees [22] and Funnels [7].
More in general, it is also possible to parametrize the complexity in a parameter expressing
the “sortability” of the graph [9, 8].

In the sections that follow, we will introduce SMLG more formally as well as the fine-
grained complexity hypotheses. As a warm up, we show how to reduce CNF-SAT to OV in
subexponential time, as the reduction is very central to the field and very concise at the same
time. Then, we give an overview of the main ideas behind different fine-grained reductions
for SMLG that were given throughout the years, with the goal of showcasing the different
features among them.

2 Problem Definition

A pattern string P is a string of characters drawn from an alphabet X, has length |P|, and
P[i] is its i-th character. We say that G = (V, E,{) is a labeled graph if V' is a set of nodes,
E a set of edges over V, and ¢ : V — ¥ is a labeling function that associate a character of
alphabet ¥ to every node in V. Moreover, we say that P has a match in G if there is a walk
of nodes vy, ..., v, in G such that P = ¢(vy) - €(vy,). Then, SMLG is formally defined as
follows.

» Problem 1 (String Matching in Labelled Graphs (SMLG)).
INPUT: A labeled graph G = (V, E,¢) and a pattern string P, both over alphabet 3.
OUTPUT: True if and only if P has at least one match in G.

Note that in this definition of SMLG we ask for a walk to exist and not a simple path.
This is because, if we are not allowed to repeat nodes, there is a straightforward reduction
from the Hamiltonian path problem, making the problem NP-Complete. To see this, simply
define ¥ = {A}, P=A A---A, |P| =|V| and ¢(v) = A for every v € V. In other words, we
are asking to find a match for a path as long as the number of nodes, and if we can match
every node only once, we are finding an Hamiltonian path.

7:3

Grossi's Festschrift

7:4

Lower Bounds for String Matching in Graphs

2.1 Some Upper Bounds for SMLG

When faced with an algorithmic problem, one of the first questions we want to answer is
often how bad does the brute force algorithm performs. If by brute force we just mean trying
all possibilities, that is check all paths of length |P|, then we get very poor results, as in
general there are O(|V|I”!) many such paths. However, better alternatives exit, so let us
briefly give a bird’s-eye view of these approaches, without going into details. A quadratic
algorithm for solving SMLG in the exact setting in general graphs has been known since
the "90s [3, 4]. This algorithm constructs the product graph obtained between the graph
and the pattern, which is obtained by repeating every node in the graph as many times
as there are characters in the patterns, and then placing edges according to the original
structure of the graph plus the constraint of having node labels appear in the pattern at
specific positions. Then, the algorithm performs a DFS visit of the graph which, if successful
in reaching a certain target node, reveals a match of P in G. Not long after, a first quadratic
solution [21], which was later refined [25], was found also for the approximate setting, when
we are looking for a walk spelling a string at minimum edit distance from P. Moreover, there
are linear time algorithms for a rooted (thus directed) tree [2], and even when the roots of
many trees are connected in a cycle [11]. This highlights already some important topology
features: SMLG is linear in trees, while in DAGs it is quadratic in general. Non-topological
characterization can also be given. For instance, in Wheeler graphs [14] a node can be sorted
according to the sets of strings that it represents, that is the set of all possible strings spelled
by paths reaching that node. This implies a total order on the nodes, which leads to linear
time matching algorithms. This idea can be generalized and the time complexity can be
parametrized as a function of the sortability of the graph [8].

3 Fine-Grained Complexity

Quadratic algorithms have been the best we could achieve for general formulations of SMLG,
and the reason is because better solutions are unlikely to exist. In order to show that we
have reached the optimum, we of course need lower bound techniques, and here is where
fine-grained complexity comes into play, has it provides us the means of proving such lower
bounds via reductions. Thus, before presenting the conditional lower bounds for SMLG, we
first introduce fine-grained complexity tools and basic notions needed to understand the
later reductions. The central hypothesis in fine-grained complexity is the Strong Ezponential
Time Hypothesis (SETH).

» Definition 2 (SETH). For every € > 0, there exists k > 3 such that no deterministic or
randomized algorithm can solve an instance of CNF-SAT over n variables with clauses of size
at most k in O(20=5)") time.

This hypothesis is called strong to remark that it is a stronger statement when compared
to the more forgiving Exponential Time Hypothesis (ETH), which forbids the existence of
algorithms solving CNF-SAT in O(2°(")) time. To give an example, if an algorithm solves
CNF-SAT in O(2%), SETH is violated but ETH is not.

There are polynomial problems for which hardness conjectures are independently believed,
and for which there also exist efficient reductions from CNF-SAT. When possible, it is preferred
finding a reduction from these problems instead of reducing directly from CNF-SAT. This
way, multiple hypotheses have to fail to invalidate the conditional lower bound, and moreover
we have to deal only with polynomial complexities in the analysis, instead of having both
exponential and polynomial complexities.

M. Equi
c1 C2 C3 Cq
F= (v1V-ws) A (—v1Vove) A (—w1VosV-wg) A (v2Voy)
V1 U2 C1C2C3C4
ax (0 0) (1001 1 x5[h] =0
ag = 01 1000 =T
I
az= (1 0) (0111) =u3 ai = cp
ay (1 1) (0 010) T4
V3 Vg C1C2C3Cy
by= (00) (0101) n yj[h] =0
n | ba= (01) 0110 =v2| YEN
22 9, (1 0) (1101 =u3 b = cn
by (1 1) (1100) =
H/_/ \%/—/
n d
2

Figure 1 An example of the reduction from CNF-SAT to OV. Formula F' has n = 4 variables and
d = 4 clauses, and we construct two sets of m = 2% = 4 vectors of size d = 4.

The polynomial problems most commonly used as a base for reductions to other polynomial
problems are Orthogonal Vectors, All Pairs Shortest Paths, and 3-SUM [27]. In this work,
we focus solely on Orthogonal Vectors (OV) which, intuitively, asks the following: given two
sets of binary vectors, answer whether it is possible to find a vector in the first set and a
vector in the second set so that they are orthogonal.

» Definition 3 (OV). Let X,Y C {0,1}% be two sets of n = |X| = |Y| binary vectors
each of length d = w(logn). Determine whether there exist x € X and y € Y such that
ey =i wli] i =0,

The notation z[i] - y[i] indicates the scalar product when used for two single entries of vectors
z and y, while it refers to the dot product = - y when applied on the vectors themselves.
Currently, it is conjectured that no algorithm can solve OV in truly subquadratic time.

» Definition 4 (OVC). For every constant € > 0, no deterministic or randomized algorithm
can solve OV over two sets of n binary vectors of size d in O(n*>~€poly(d)) time.

One central result in fine-grained complexity is that SETH and OVC are connected via a
subexponential reduction. We give a proof of this result, as we find it easy to follow and
very instructive at the same time.

» Lemma 5. SETH implies OVC.

Proof. We can prove the contrapositive by showing a reduction from CNF-SAT to OV, an
example of which is given in Figure 1. In other words, we prove that a subquadratic-time
algorithm for OV implies a subexponential-time algorithm for CNF-SAT. Consider an instance
of CNF-SAT where formula F' has d clauses over n variables vy, ..., v,. The idea is to generate
two sets of vectors that can represent partial truth assignments of I using only O(2%) space,
imposing the property that finding a pair of orthogonal vectors reveals how to combine two
partial truth assignments into an actual truth assignment satisfying F'.

7:5

Grossi's Festschrift

7:6

Lower Bounds for String Matching in Graphs

To this end, we evenly split the variables into two sets V; = {vy,... ,’U%} and V5 =
{v%+17 ..., Up}t. Then, we define sets A and B as the set of every possible partial truth
assignment for the variables in Vi and Va, respectively. Given that [Vi| = [V2| = §, we have
that |A| = |B| = 2%. Now we can define our two sets of vectors X and Y, consisting of
m = 5 vectors each. For every assignment a; € A, we construct a vector in X as follows.
We evaluate the variables in V4 under a;, and if this is enough to satisfy clause ¢, (i.e. at
least one literal evaluates to 1), then the h-th entry of vector x; shall be x;[h] = 0, otherwise
x;[h] = 1. We perform the same construction for Y using B and V5.

The logic of the reduction is the following. Our goal is to find a truth assignment satisfying
F combining two partial truth assignments a; € A and b; € B encoded as vectors z; € X
and y; € Y. Since the h-th entry of vector x; corresponds to the h-th clause of F', if the
entry is x;[h] = 0 then the clause is satisfied by a;, meaning that whatever value y;[h] is, it
does not change the end result. Conversely, if x;[h] = 1, then a; does not satisfy the h-th
clause, and we need y;[h] = 0 to guarantee that b; satisfies it instead.

Now observe that the reduction takes O(2% poly(d)) time, as there are 2 - 2% of size d,
where d is the number of clauses. At this point, it is easy to see that, if vectors x; and y; are
orthogonal, and thus for every h either z;[h] = 0 or y;[h] = 0, then at least one of the two
partial truth assignments a; € A or b; € B satisfies clause ¢y, and vice versa. Thus, F' is
satisfied if and only if there exist x € X and y € Y such that 2 -y = 0. To conclude the proof,
assume OVC is false, namely there exists an algorithm that solves OV in O(m?~®poly(d))
time, for some a > 0. Then, this would provide an algorithm for CNF-SAT running in time

O(2% = *poly(d)) = O(2""~ Fpoly(d)),
Taking € = § proves SETH false. <

The connection between SETH and OVC shown by Lemma 5 allow us to obtain lower bounds
conditioned on both by only reducing from OV. This is advantageous, because conditional
lower bounds obtained in this way stop being valid only when both SETH and OVC fail.
Moreover, for polynomial problems, reducing from OV makes proofs cleaner as we can reason
only in terms of polynomial time complexities, without having to juggle them together with
exponential-time complexities.

4 The Lower Bound for String Matching in Labelled Graphs

Using fine-grained reductions, we can provide a quadratic lower bound for ezact SMLG
conditioned on SETH and OVC. In this section, we state this lower bound in its simplest
form, focusing on giving the intuition behind the structure of the reduction. In Section 5, we
explain a few different ways of strengthening this result.

The conditional lower bound for exact SMLG is formally stated as follows.

» Theorem 6. The String Matching in Labelled Graphs (SMLG) problem on pattern string
P and graph G = (V, E) cannot be solved neither in O(|E|'=¢ |P|) nor in O(|E||P|*~¢) time
for any constant € > 0, unless SETH fails.

We now sketch the idea of the reduction from OV used to show the lower bound [12, 10].
Starting from sets of vectors X and Y, the reduction builds pattern P and graph G in O(nd)
time, such that P matches in G if and only if there is a pair of orthogonal vectors between
X and Y. We first describe how to construct the pattern, and then the graph.

M. Equi

® ® ®
o) T lo R ot 27 fo R 2o
® ®

A\ AN
@ - ©ke
® ®

Ol O O Q
O, ® 0

Figure 2 A high-level view of graph G constructed by the reduction from OV. The top and
bottom rows consists of universal gadgets, while in the middle rows there are only vector gadgets,
which match only patterns corresponding to orthogonal vectors. Here, we also add an orientation
on the edges, even if it is not explicitly mentioned in the statement of Theorem 6. Indeed, this
is allowed since the b- and e-nodes already force an orientation, as stated in Theorem 10. Figure
adapted from [12].

Patter P is defined over alphabet ¥ = {b, e, 0,1}, has length |P| = O(nd), and can be
built in O(nd) time from the first set of vectors X = {x1,...,2,}. Namely, we define

P =bbP,;, ebP,e...bP, ee

where P,, is a string of length d that is just a copy of z; € X, that is z;[h] = 0= P,,[h] =0
and x;[h] =1 = P,,[h] =1, for 1 <i<nand 1 <h <d. Here we are using characters b
and e to mark the beginning and the end of each subpattern P,,, respectively. Substrings bb
and ee instead respectively mark the beginning and the end of the entire pattern, forcing it
to start and end the match at specific locations in the graph.

Graph G is built on top of the second set of vectors Y = {y1,...,yn}, and consists of
different substructures hierarchically organized: gadgets encoding single entries of the vectors
are combined into gadgets encoding entire vectors, which are further combined to form the
whole graph. At a macroscopic level, we want to structure the graph in three conceptual
rows stacked on top of each other, as exemplified in Figure 2. In the graph, characters b
and e force the subpatterns to correctly align to the gadgets encoding entire vectors, and
thus forcing the entire match to synchronize at the subpattern level. Then, the idea is to
make the top and bottom rows able to match any properly-synchronizing prefix and suffix of
the pattern, respectively, while the middle row shall match only those subpatterns encoding
vectors that are orthogonal to some vector in Y. Thus, if we force a match to start from
the top or middle row, and end in the middle or bottom row, at least one subpattern must
match in the middle row, which will be possible only if the pair of vectors encoded by that
subpattern and the graph gadget it matches in are orthogonal. As shown in Figure 2, we
can force this behaviour by introducing paths of two nodes spelling the string bb in the top
and middle row. In pattern P, this string is present only as a prefix, marking the beginning
of the pattern. The same logic applies to paths of two nodes spelling the string ee in the
middle and bottom row, since that string is present in P only as a suffix.

As already mentioned, the single graph gadgets in the middle row Gy, must provide the
following property.

» Lemma 7. Subpattern bP,, e has a match in Gg,) if and only if x; -y; = 0.

77

Grossi's Festschrift

7:8

Lower Bounds for String Matching in Graphs

= {v1 92, 93,54} = {(110), (011), (100), (001)}

1 1 0 0 1 1 1 0 0 0 0 1

@
G = O, @ @ @ © ® ©
% @/ /o \ / X @X@\@
= 7=

%/—/ %/—/
1 2 3 4
Gy G G el

Figure 3 Vector gadgets matching only patterns corresponding to orthogonal vectors. For
instance, GE,?,) will match 010 or 011, but not 110, as (110) - (100) # 0. Figure adapted from [12].

Let us see how to construct such gadgets. Since ZZ=1 x[h] - y[h] = 0 when every term of the
sum is 0, the idea is to make the graph force the pattern to have character S[h] = 0 when
y[h] = 1, while letting S[h] be either 0 or 1 when y[h] = 0. To achieve this, first we place a
path of A nodes all with label 0, then we add a node with label 1 for those positions such
that y[h] = 0, and finally we fully connect nodes encoding the entry at position i to those
for position h —l— 1 for 1 < h < d. Figure 3 shows an example of the entire middle row Gy,
where gadget G encodes vector y;, for 1 < j < n, using nodes with labels b and e to mark
the beginning and the end of the gadgets. It then holds the following.

» Lemma 8. Subpattern bF., e has a match in Gw if and only if there exists y; €Y such
that z; - y; = 0.

In order to complete the reduction, it remains only to build the universal gadgets for the
top and bottom rows of GG. This is easily achieved by following the same construction scheme
as for gadgets GE,{,), and just placing both a 0-node and a 1-node at every position. Finally,
we remark that in order to make all possible “shifts” of the pattern possible, the top and
bottom rows of G must have 2(n — 1) universal gadgets. We can now claim the following.

» Lemma 9. Pattern P has a match in G if and only if a subpattern bP,, e of P has a
match in subgraph Gyy .

Notice that every gadget Gg/) or universal gadget consists of O(d) nodes and edges, and
there are O(2(n — 1) +n + 2(n — 1)) = O(n) such gadgets, for a total size of O(nd). This
consideration together with Lemma 7, 8 and 9 let us claim Theorem 6.

5 Tighter Lower Bounds

After having established a first quadratic conditional lower bound for SMLG, we now want to
see how far we can push it. What if there are constraints on the graph, or on the alphabet?
Can we make up for the quadratic complexity if we first build an index? Can we condition the
lower bound on other hypotheses to make it even stronger? Let us explore these questions.

5.1 DAGs, Determinism and Bounded Degree

In this section, we study how strong assumptions we can make on the graph while still
having the conditional quadratic lower bound hold. Starting from the graph structure, we
remark that the nodes labelled with b and e already force the pattern to follow a specific
direction, that is the pattern never needs to visit a node twice to make the reduction work.
Indeed, directing the edges from left to right and from top to bottom as in Figure 4 does not
compromise the construction.

M. Equi

Y = A1, . 93,54} = {(110), (011), (100), (001)}

Partial Gﬁ Partial G(L? Partial G(LG}

ORORO) Q-O-0

Partial Gy >@ \ >< @

©-©@

o\ 9
ol ® ©® ® © ®
“o-0-® @0 @/ @X@ @X@\@
& T pe T

Figure 4 New gadget Guiw obtained by merging Gw with part of gadget Gyi. The pattern can
“escape” to the Gy part to match a prefix until it finds a suitable G) where to match a subpattern
encoding an orthogonal vector. Figure adapted from [12].

Nevertheless, there is one major non-trivial limitation to the reduction scheme proposed
in Section 4. Even after making the edges directed, there are nodes that have two out-
neightbours with the same label. For instance, nodes labelled with e in the top row might
have two out-neighbours labelled with e. This might suggest that forcing every out-neighbour
to have different labels could make the graph close enough to a DFA so that the problem
becomes easier. Perhaps surprisingly, there is a way to modify the reduction so that it
covers even this case. The construction is shown in Figure 4. Intuitively, we merge the top
and middle row of G together, with the idea being that the pattern tries to match every
sub-pattern in the underlying Gy as much as possible. When the match cannot be continued,
the pattern will momentarily escape to a partial universal gadget for the remaining of the
current sub-pattern. The non-determinism is removed by the fact that the nodes labelled b
in the top and middle row are now merged together.

One last concern is the degree of the graph. By looking at the graph that we obtain
after merging the top and middle row, we notice that every node is never connected to more
than three other nodes. In a DAG, we can capture this concept by saying that the sum of
outdegree and indegree of any node is at most three.

We are now ready to state the conditional lower bound for SMLG in its strongest form.

» Theorem 10. The String Matching in Labeled Graphs (SMLG) problem on pattern string P
and labelled deterministic directed acyclic graph (DAG) G = (V, E) cannot be solved neither
in O(|E|*=¢|P|) nor in O(|E||P|'~¢) time unless SETH fails, for any constant ¢ > 0. This
holds even if it is restricted to a binary alphabet and to graphs in which the sum of outdegree
and indegree of any node is at most three.

In this statement, we are claiming that the theorem holds also for a binary alphabet. Indeed,
there exists an binary encoding that allows to cover also this case. This requires to take care
of some technicalities that we do not find fitting for this work, and hence we refer the reader
to the literature [12].

5.2 Indexing Lower Bound

Given the results of previous sections, there seems to be no hope of solving SMLG in less
than quadratic time, as long as SETH holds. But rules are made to be broken, or at least
circumvented. In the lower bounds shown so far, we always analyzed the setting in which we

7:9

Grossi's Festschrift

7:10

Lower Bounds for String Matching in Graphs

have to solve the problem from ground zero, without building any data structure to help
us in performing queries. Hence, one question arises: can we break through the quadratic
complexity if we build some kind of index on the graph? In other words, can we pay a
quadratic (or even greater) cost upfront during preprocessing, so that the complexity reduces
at query time? Although tantalizing, this option is also ruled out [11].

» Theorem 11. For any «, 3,9 > 0 such that B+ § < 2, there is no algorithm preprocessing
a labeled graph G = (V,E,{) in time O(|E|*) such that for any pattern string P we can
solve the SMLG problem on G and P in time O(|P| + |E|’|P|?), unless OVC is false. This
holds even if restricted to a binary alphabet, and to deterministic DAGs in which the sum of
out-degree and in-degree of any node is at most three.

For 6 =1 and 8 = 1 this lower bound is tight because there exists a matching online
algorithm [3, 4]. However, this bound does not disprove a hypothetical polynomial indexing
algorithm with query time O(|P| + |E|°|P|?), for some 0 < § < 1. Since in practical
applications graphs are much larger than the pattern, such an algorithm would be quite
significant for small enough §. However, when the graph is allowed to have cycles, we also
show that this is impossible under OVC.

» Theorem 12. For any «,B,6 > 0, with either § < 1 or § < 1, there is no algorithm
preprocessing a labeled graph G = (V, E, £) in time O(|E|*) such that for any pattern string P
we can solve the SMLG problem on G and P in time O(|P| + |E|°|P|?), unless OVC is false.

Theorem 12 is obtained by slightly modifying the reduction of [10] with the introduction
of certain cycles that allow querying patterns of length longer than the graph size. As for
the online SMLG lower bound, it can be proven that this results holds also when restricted
to a binary alphabet, and for graphs in which the sum of out-degree and in-degree of any
node is at most three.

Without diving into technical details, we remark that this result is given as an application
of a more general technique involving linear independent-components reductions [11], combined
with some improvements on folklore knowledge about OV indexability. Intuitively, a linear
independent-components reduction is a reduction from OV performed so that the instance of
the output problem can be separated in two parts, each one depending only on one of the
two sets of vectors. For instance, in the case of SMLG, we observe that that the reduction
builds the pattern using only the first set of vectors, and the graph using only the second.

This independence property of the two components is crucial when combined with the
following fact about OV. Suppose that in a OV instance we partition sets X and Y of n
vectors into many subsets Xi,...,X» and Y1,...,Ys where N = |X;| = |Y}], so that each
(X;,Y;) is a smaller OV instance and, moreover, solving all such instances also solves OV for
the original X and Y. If we claim that we can index all the X; in polynomial time to answer
queries to the Y} in subquadratic time, then we contradict OVC. This is because it is always
possible to choose a small enough N such that both the total indexing time and the total
query time fall below quadratic. For example, assuming we can index X; in time O(N®),
we can take N = O(né). Then, given that we have % instances (X;,Y}), the total indexing
time is O(FN®) = O(n?*~=), and the total query time is bound to be subquadratic in n if
every Y; can be queried in time subquadratic in N.

Using the properties of linear independent-components reductions, we can use indexes for
SMLG to answer queries for OV, and thus we can transfer the indexing lower bounds from
OV to SMLG as in Theorem 11 and 12. Moreover, the consequences of this reduction scheme
can be further strengthened if one considers a generalized version of OV where X and Y can
have different cardinalities [11].

M. Equi
O)
- ™~
\@>4<, >4,<@/
- EEHE

G
C
o @0

Figure 5 The universal gadget of variable length (a), the gadget encoding gate V (b) and the
gadget encoding gate A (c¢). Subgraphs G1 and G2 represent two gadgets encoding two subtree
of the formula, respectively, that are the left and right children of an Vv (b) gate or an A (c¢) gate.
Figure adapted from Gibney et al. [16].

5.3 Lower Bounds from Formula-SAT for shaving Logarithmic Factors

All lower bounds shown for SMLG are conditional, and the strength of a conditional lower
bound comes from the reliability of its hypothesis. It is then desirable to always look for
more believable hypotheses on which we can base our conditional lower bounds. This is what
was done in the work by Abboud et al. [1], where the starting problems of the proposed
reductions are more general versions of the SAT problem, rather than CNF-SAT. This allows
not only to base their conditional lower bounds on more reliable hypotheses, but also to
achieve better complexity bounds. Later, Gibney et al.[16] showed how to use such techniques
to obtain better lower bounds for problems like SMLG.

» Theorem 13. [f SMLG can be solved in time O (10g II;E‘I) or O (115 IP\) for all ¢ > 0,

then NTIME[QO(")] does not have non-uniform polynomial-size log-depth circuits.

This result is achieved by showing a subexponential-time reduction from the Formula-SAT
problem to SMLG. To define the Formula-SAT problem, let us first define a deMorgan formula.
A deMorgan formula is a Boolean formula that can be represented as a binary tree where
the leaves represents a variable or its negation, while internal nodes represent either one
of the logical operators {A, V}. Notice that negation is allowed only at the leaf level. The
Formula-SAT problem is then the satisfiability problem over a deMorgan formula.

We now show the key ideas of the reduction that differ from the one based on OV. First,
here we reduce from a SAT problem over n variables and thus, as for showing SETH = OVC,
we consider two sets of partial truth assignments, each one defined on 4 variables. Next,
since the formula is structured as a tree, the operators A and V can be nested, and hence
the reduction should have a recursive structure. The base case of the recursion are the
gadgets that encode the input gates. Here, some care is needed to avoid having to deal
with negation, but we defer the details to the work of Gibney et al. [16], where they use an
intermediate problem to solve this issue. For building the recursive gadgets, an universal
gadget of variable length U(u) is needed. This has exactly the same structure of the universal
gadgets in the reduction from OV, but with the two rows of 0- and 1-nodes elongated
to accommodate matches for subpatterns of length p. Then, the gadgets encoding gates
g = (g1 *g2), * € {A,V}, can be built by combining previously constructed gadgets for gates
g1 and g, as in Figure 5.

7:11

Grossi's Festschrift

7:12

Lower Bounds for String Matching in Graphs

—— References

1

10

11

12

13

Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 375-388. ACM, 2016. doi:10.1145/2897518.2897653.

Tatsuya Akutsu. A linear time pattern matching algorithm between a string and a tree. In
Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinatorial
Pattern Matching, 4th Annual Symposium, CPM 93, Padova, Italy, June 2-4, 1993, Proceedings,
volume 684 of Lecture Notes in Computer Science, pages 1-10. Springer, 1993. doi:10.1007/
BFb0029792.

Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. Pattern matching in hypertext. In
Frank K. H. A. Dehne, Andrew Rau-Chaplin, Jorg-Riudiger Sack, and Roberto Tamassia,
editors, Algorithms and Data Structures, 5th International Workshop, WADS ’97, Halifax,
Nowa Scotia, Canada, August 6-8, 1997, Proceedings, volume 1272 of Lecture Notes in Computer
Science, pages 160-173. Springer, 1997. doi:10.1007/3-540-63307-3_56.

Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. Pattern matching in hypertext. J.
Algorithms, 35(1):82-99, 2000. doi:10.1006/jagm.1999.1063.

Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput. Surv.,
40(1):1:1-1:39, February 2008. doi:10.1145/1322432.1322433.

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087-1097, 2018. doi:10.1137/
15M1053128.

Manuel Céaceres. Parameterized algorithms for string matching to dags: Funnels and beyond.
In Laurent Bulteau and Zsuzsanna Lipték, editors, 84th Annual Symposium on Combinatorial
Pattern Matching, CPM 2023, June 26-28, 2023, Marne-la-Vallée, France, volume 259 of
LIPIcs, pages 7:1-7:19. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023. doi:
10.4230/LIPICS.CPM.2023.7.

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Co-
lexicographically ordering automata and regular languages - part I. J. ACM, 70(4):27:1-27:73,
2023. doi:10.1145/3607471.

Nicola Cotumaccio and Nicola Prezza. On indexing and compressing finite automata. In
Déaniel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2585-2599. SIAM, 2021.
doi:10.1137/1.9781611976465.153.

Massimo Equi, Roberto Grossi, Veli Mékinen, and Alexandru I. Tomescu. On the complexity
of string matching for graphs. In 46th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 132 of LIPIcs, pages 55:1-55:15, 2019. doi:10.4230/LIPICS.
ICALP.2019.55.

Massimo Equi, Veli Méakinen, and Alexandru I. Tomescu. Graphs cannot be indexed in
polynomial time for sub-quadratic time string matching, unless SETH fails. Theor. Comput.
Sci., 975:114128, 2023. doi:10.1016/J.TCS.2023.114128.

Massimo Equi, Veli Makinen, Alexandru I. Tomescu, and Roberto Grossi. On the complexity
of string matching for graphs. ACM Trans. Algorithms, 19(3):21:1-21:25, 2023. doi:10.1145/
3588334.

Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien Cazaux, Alexandru I. Tomescu, and Veli
Makinen. Algorithms and complexity on indexing elastic founder graphs. In Hee-Kap Ahn and
Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation,
ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 20:1-20:18.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021. doi:10.4230/LIPICS.ISAAC.2021.
20.

https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1007/BFb0029792
https://doi.org/10.1007/BFb0029792
https://doi.org/10.1007/3-540-63307-3_56
https://doi.org/10.1006/jagm.1999.1063
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.4230/LIPICS.CPM.2023.7
https://doi.org/10.4230/LIPICS.CPM.2023.7
https://doi.org/10.1145/3607471
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.4230/LIPICS.ICALP.2019.55
https://doi.org/10.4230/LIPICS.ICALP.2019.55
https://doi.org/10.1016/J.TCS.2023.114128
https://doi.org/10.1145/3588334
https://doi.org/10.1145/3588334
https://doi.org/10.4230/LIPICS.ISAAC.2021.20
https://doi.org/10.4230/LIPICS.ISAAC.2021.20

14

15

16

17

18

19

20

21

22

23

24

25

26

27

. Equi

Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for bwt-based
data structures. Theor. Comput. Sci., 698:67-78, 2017. doi:10.1016/J.TCS.2017.06.016.
Garrison Erik, Sirén Jouni, Novak Adam M, Hickey Glenn, Eizenga Jordan M, Dawson Eric
T, Jones William, Garg Shilpa, Markello Charles, Lin Michael F, Paten Benedict, and Durbin
Richard. Variation graph toolkit improves read mapping by representing genetic variation in
the reference. Nature Biotechnology, 36:875, August 2018. doi:10.1038/nbt.422710.1038/
nbt.4227.

Daniel Gibney, Gary Hoppenworth, and Sharma V. Thankachan. Simple reductions from
formula-sat to pattern matching on labeled graphs and subtree isomorphism. In Hung Viet Le
and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual

Conference, January 11-12, 2021, pages 232-242. STAM, 2021. doi:10.1137/1.9781611976496.

26.

Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367-375, 2001. doi:10.1006/jcss.2000.1727.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. doi:10.1006/JCSS.2001.

1774.

Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323-350, 1977. doi:10.1137/0206024.

Udi Manber and Sun Wu. Approximate string matching with arbitrary costs for text and
hypertext. In Advances In Structural And Syntactic Pattern Recognition, Bern, Switzerland,
26-28 August 1992, pages 22-33. World Scientific, 1992. doi:10.1142/9789812797919_0002.
Gonzalo Navarro. Improved approximate pattern matching on hypertext. Theor. Comput.
Sci., 237(1-2):455-463, 2000. doi:10.1016/S0304-3975(99)00333-3.

Kunsoo Park and Dong Kyue Kim. String matching in hypertext. In Zvi Galil and Esko
Ukkonen, editors, Combinatorial Pattern Matching, 6th Annual Symposium, CPM 95, Espoo,
Finland, July 5-7, 1995, Proceedings, volume 937 of Lecture Notes in Computer Science, pages
318-329. Springer, 1995. doi:10.1007/3-540-60044-2_51.

Nicola Rizzo, Massimo Equi, Tuukka Norri, and Veli Mékinen. Elastic founder graphs improved
and enhanced. Theor. Comput. Sci., 982:114269, 2024. doi:10.1016/J.TCS.2023.1142609.
Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. A survey of heterogeneous
information network analysis. IEEE Trans. Knowl. Data Eng., 29(1):17-37, 2017. doi:
10.1109/TKDE.2016.2598561.

Mikko Rautiainen Tobias and Marschall. Aligning sequences to general graphs in O(V + mE)
time. bioRxiv, 2017. doi:10.1101/216127.

Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357-365, 2005. doi:10.1016/J.TCS.2005.09.023.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.

In Proceedings of the International Congress of Mathematicians (ICM 2018), pages 3447-3487,
2018. doi:10.1142/9789813272880_0188.

7:13

Grossi's Festschrift

https://doi.org/10.1016/J.TCS.2017.06.016
https://doi.org/10.1038/nbt.4227 10.1038/nbt.4227
https://doi.org/10.1038/nbt.4227 10.1038/nbt.4227
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1137/0206024
https://doi.org/10.1142/9789812797919_0002
https://doi.org/10.1016/S0304-3975(99)00333-3
https://doi.org/10.1007/3-540-60044-2_51
https://doi.org/10.1016/J.TCS.2023.114269
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1101/216127
https://doi.org/10.1016/J.TCS.2005.09.023
https://doi.org/10.1142/9789813272880_0188

Enumeration of Ordered Trees with Leaf
Restrictions

Yasuaki Kobayashi &

Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
Dominik Koppl' 24&

Department of Informatics, Yamanashi University, Japan

Yasuko Matsui &

Department of Mathematical Sciences, Tokai University, Japan

Hirotaka Ono' 24
Department of Mathematical Informatics, Nagoya University, Japan

Toshiki Saitoh =
School of Computer Science and Systems Engineering, Kyushu Institute of Technology,
Fukuoka, Japan

Yushi Uno &

Graduate School of Informatics, Osaka Metropolitan University, Japan

—— Abstract

An a-ary tree for a constant o > 2 is a rooted tree in which each node has at most « children.
A node having no children is called a leaf. For a given rooted tree and a node v, the number
of edges from the root to v is called the depth of v. We call a vector w = (w1, w2,...,wq) of
nonnegative integers an (a-ary) distribution if there is an a-ary tree T" such that the number of
leaves at each depth i € [1..d] in T is w;. Although not every vector of nonnegative integers is a
distribution, a distribution can be associated with many a-ary trees. In this paper, we present an
algorithm to enumerate all a-ary trees for a given distribution. Our algorithm reports the first tree
in O(d + 25:1 w;) time, and then each subsequent a-ary tree in O(max?_, w;) time by representing
each tree as the difference from the previous one. The algorithm can be restricted to computing all
trees that are full, i.e., trees whose nodes have exactly a or no children.

2012 ACM Subject Classification Mathematics of computing — Enumeration; Mathematics of
computing — Trees; Theory of computation

Keywords and phrases binary trees, ordered trees, rooted trees, enumeration algorithm, constant-
time delay

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.8
Category Research

Funding Yasuaki Kobayashi: JSPS KAKENHI Grant Numbers JP23K28034, JP24H00686, and
JP24H00697.

Dominik Koppl: JSPS KAKENHI Grant Numbers JP23H04378 and JP25K21150.

Yasuko Matsui: JSPS KAKENHI Grant Numbers JP20H05964 and JP20K04973.

Hirotaka Ono: JSPS KAKENHI Grant Numbers JP20H05967, JP22H00513, JP24K 02898, and
JP25K03077, and JST CRONOS Grant Number JPMJCS24K2.

Toshiki Saitoh: JSPS KAKENHI Grant Number JP21H05857.

Yushi Uno: JSPS KAKENHI Grant Numbers JP20H05964 and JP21K11757.

! Corresponding author

© Yasuaki Kobayashi, Dominik Képpl, Yasuko Matsui, Hirotaka Ono, Toshiki Saitoh, and Yushi Uno;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.

Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 8; pp. 8:1-8:19

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:koba@ist.hokudai.ac.jp
https://orcid.org/0000-0003-3244-6915
mailto:dkppl@yamanashi.ac.jp
https://dkppl.de/
https://orcid.org/0000-0002-8721-4444
mailto:yasuko@tokai.ac.jp
https://orcid.org/0009-0007-0790-1425
mailto:ono@nagoya-u.jp
http://tcs.mi.i.nagoya-u.ac.jp/~ono/index-e.html
https://orcid.org/0000-0003-0845-3947
mailto:toshikis@ai.kyutech.ac.jp
https://orcid.org/0000-0003-4676-5167
mailto:yushi.uno@omu.ac.jp
https://doi.org/10.4230/OASIcs.Grossi.2025.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

8:2

Enumeration of Ordered Trees with Leaf Restrictions

1 Introduction

It is our pleasure to dedicate this work to Roberto Grossi, whose broad enthusiasm for
algorithms and data structure has significantly shaped the landscape of enumeration al-
gorithms [9]. Over the past decades, his contributions made significant impact on structural
and algorithmic aspects of trees, strings, and graphs, inspiring both theoretical advances and
practical applications.

In this spirit, we turn our attention to the enumeration of ordered trees, a topic rooted in
combinatorics with strong connections to data structures, formal languages, and algorithmic
analysis. Ordered trees play a fundamental role in various domains, hierarchical data
representations, and the analysis of recursive algorithms are major examples. Enumerating
ordered trees uncovers rich combinatorial patterns, with which we hope to offer a tiny tribute
to Roberto’s enduring influence, exploring a topic in line with his passion for enumerating
combinatorial structures of mathematical beauty.

We here tackle a problem whose restricted version on binary trees has been posed in 2023
as an open problem presented at IWOCA 2023: The question is to efficiently enumerate all
rooted full binary trees whose number of leaves at each depth is given as an input. This
problem spawned from the research of prefix-free codes in coding theory.

Here, we tackle this enumeration problem in even more general settings: binary (not
necessarily full) trees and a-ary trees of a fixed depth d for a constant a > 2. For any of
these tree types, our algorithm outputs the first solution in O(d + n) time. Subsequently, it
outputs the difference between two successive solutions in O(m) time with constant delay,
where n is the number of leaves and m is the maximum number of leaves at any depth. We
here define delay as the time between the end of the previous output and the start of the
subsequent output.

2 Related Work

With respect to the enumeration of rooted ordered trees, we are aware of an algorithm
with constant delay to output all trees [3], or with restrictions on a specific diameter [12]
or on a fixed number of internal nodes and leaves [17]. Given the number m of internal
nodes, Zaks [18] gave an enumeration algorithm for all a-ary trees having m internal nodes.
This algorithm reports the trees in a lexicographical order based on a bit encoding of the
trees. Recently, an algorithm [5] enumerating AVL trees has been proposed. In addition,
closed formulas have been studied for counting various properties in rooted ordered trees of
unbounded degree [6, 7].

For the enumeration of full binary trees with n leaves, we propose a 2n-bit encoding of a
full binary tree. We use this encoding in the same way as Ruskey and Proskurowski [13] for
the enumeration of binary trees by using Gray codes for enumerating bit encodings. Another
bit encoding variant has been proposed by Baba et al. [1], who however used a depth-first
encoding based on DFUDS |[2], while our encoding is level-wise in the spirit of LOUDS [10].

3 Preliminaries

Given a fixed integer av > 2, an «-ary tree is an ordered rooted tree whose nodes each have at
most « children, which are ordered. In this paper, we only consider trees that have at least
two nodes. Except for the root, the parent of each node is uniquely determined. There is a
left-to-right ordering of the child nodes with respect to the parent. A node is called a leaf if
it has no child, otherwise it is called an internal node. For a given rooted tree and a node v,
the number of edges from the root to v is called the depth of v, which we denote by depth(v).

Y. Kobayashi, D. Koppl, Y. Matsui, H. Ono, T. Saitoh, and Y. Uno 8:3

In particular, the depth of the root is zero. The height of the tree is the depth of the leaf
with the largest depth. A full a-ary tree is an a-ary tree whose nodes are either leaves or
internal nodes with « children. A special case is a = 2, for which we name a 2-ary tree a
binary tree.

In what follows, we start with the enumeration of full binary trees, which is the easiest
case. Then we extend our techniques to arbitrary binary trees, and finally consider a-ary
trees.

4 Properties of Binary Trees

Our input is a so-called binary (tree leaf) distribution, a term coined by Buro [4, Lemma 2.3].
It is defined as follows. We call an integer vector w = (wy,...,wq) a binary distribution
if there is a binary tree T with depth d such that T has w; leaves with depth i for every
i € [1..d]. We say that the binary (tree leaf) distribution of T is w — there can be many trees
that have the same binary distribution. A binary distribution is also called a full-binary
distribution if there is a full binary tree with the same property. Buro [4, Thm. 2.4] showed
that the full-binary distribution of a full binary tree with maximum path length is unique.
Here we study the connection of arbitrary binary distributions and their corresponding trees.
In detail, the first problem we want to tackle in this paper is as follows.

» Problem 1. Given a (full-)binary distribution w, enumerate all (full) binary trees whose
(full-)binary distribution is w.

We first characterize the necessary conditions for an integer vector to be a (full) binary
distribution. For that, we make use of Kraft’s inequality [11].

» Lemma 2 (Kraft's inequality). For a binary tree with leaves vy,...,v,, it holds that
Z?:l 1/2depth(vi) <1.

Let f(w) = Zle w; /2" be the weight of a vector w of nonnegative integers. Then
f(w) <1 is a necessary condition according to Kraft’s inequality. We show that it is also
sufficient.

» Lemma 3. A wvector of nonnegative integers w is a binary distribution if and only if

flw) < 1.

Proof by induction on the depth d. For d = 1, the binary tree can have only one or two
leaves, i.e., w = (1) or w = (2), and in any case wy < 2 holds. For the induction
hypothesis, assume that our claim holds for a depth d. Given a vector of nonnegative integers
w = (wi,...,wgy1) with f(w) < 1, we show that there exists a binary tree whose binary
distribution is w. For that, we define a vector w’ = (w1, ...,wq—1,w)) and distinguish the

following two cases.
If wgyq is even, we set w); = wq + wq+1/2, and thus f(w) = f(w’). By the induction
hypothesis, there is a binary tree T” whose binary distribution is w’. If we expand wg1,/2
leaves with depth d in T to internal nodes with two leaves, we obtain a binary tree whose
binary distribution in w.

If wgy1 is odd, we rewrite the inequality 1 > f(w) = Zf;l w27t as 291 >
Zf;rll w; 29171 Observing that the right summation only consists of even terms ex-

cept for wqy1, the left-hand side is even while the right-hand side is odd. This al-
lows us to increment the right-hand side by one while still retaining validity, i.e., as
2041 > S 4,291~ 4 py0) 4 1. We therefore can apply the even case analysis for the
vector (wy, ..., Wq, Wat1 + 1). <

Grossi's Festschrift

8:4

Enumeration of Ordered Trees with Leaf Restrictions

» Lemma 4. A vector w = (wy,...,wy) with nonnegative integers and wg > 0 is the
full-binary distribution of a full binary tree if and only if f(w) = 1.

Proof. We prove both directions by induction, for which we use d = 1 as the starting point.
For depth 1, on the one hand, there is only one full binary tree with the root having two
leaves as children. On the other hand, there is only one vector w = (wy) = (2) with f(w) =1,
and therefore the claim holds. For the induction hypothesis, let us assume that the claim
holds for d.

Direction =-. Consider a full binary tree T whose full-binary distribution is w =
(w1, ..., w4+1). We can group the wgi1 leaves into wg41/2 pairs, each pair of leaves sharing
the same parent at depth wy. We therefore can contract these pairs with their parents to
a contracted tree T having wg + wgy1/2 leaves at depth wy. Since T” is a full binary tree
and wgq + wg41/2 > 0, according to the induction hypothesis, the full-binary distribution
w' = (wy,...,wq + wgy1/2) of T' satisfies f(w’) = 1. This yields f(w’) = f(w) because

d—1 d+1
w; wd + 'UJd+1/2 Wi
9 T d 20
i=1 i=1
Direction <=. Given a vector w = (wy,...,w44+1) With nonnegative integers such that
flw) =1, ie, Zfill 5+ = 1. Multiplying this equation on both sides by 29+ gives

20wy 4+ 29 Ly 4 -+ 4 2wy + wyr1 = 2971 and hence wg 1 must be even since all other
terms are even. Therefore, w), = wq + wqy1/2 is integer and w’ = (wy, ..., wq_1,w)) is a
vector with f(w’) = 1 because

a1 Al w
i d _ d+1
5t od = Z§+ﬁ+2d+1—1'
i=1 i=1

By the induction hypothesis, w’ is a full-binary distribution of a full binary tree 77. We now
expand wq41/2 leaves of T” at depth d to internal nodes, each having two leaf children. This
gives us a full binary tree whose full-binary distribution is w. |

Let g(i,w) = Z?:i w; /297" for i € [1..d].

» Corollary 5. Given a full-binary tree distribution w = (w1, ..., wy), then g(i,w) is the
number of nodes with depth j, which is even, for every i € [1..d).

Proof. Following the proof of Lemma 4, we iteratively merge the leaves on depth j with
their parent node for j from d to ¢ + 1. At each step, we obtain a full binary tree such that
the number of leaves with the highest depth is always even. |

» Theorem 6. The number of full binary trees having a full-binary distribution w =
(wr,...,wq) with wg >0 and f(w) =1 is

Proof. We show the claim by induction on d. The base case is d = 1, for which we have seen
that w = (2) is uniquely defined. For the induction hypothesis, let us assume that the claim
holds for d.

Y. Kobayashi, D. Koppl, Y. Matsui, H. Ono, T. Saitoh, and Y. Uno

Consider a full-binary distribution w = (wy,...,w4+1) with wgy; > 0 and f(w) = 1.
Then ¢(i,w) is even for all ¢ according to Corollary 5. In particular, the vector w’ :=
(wh,...,w}) defined by w; = w; for i € [1..d — 1] and w); = wq + wa41/2 is an integer vector
with f(w’) = 1. With the induction hypothesis for w’ we obtain

d—1 d w;. d—1 Wit Wg_1 watwi4+1/2 d—1 d+1 w;
H Zj:i 7\ _ H Wi+ 5=+t gy T T ga _ H Zj:i TED

i=1 i=1 =1

Each of these trees has wq + wqy1/2 leaves with depth d. Fix one of them, which we modify
to obtain a tree whose full-binary distribution is w. For that, we select wg;1/2 of those
leaves, for which we have (w(g';i‘i%ﬂ) = (w“:f)j“p) possibilities. By modifying each of the
trees whose full-binary distribution is w’ in all possible ways, we obtain

d—1 d+1 w; d d+1 w;j
H 2t 5 . wq + Wat1/2 _ H dimi s _
w; wq w;

i=1 i=1

By construction, all modifications are distinct by using only expansions. If two expansions
are equal, they must have originated from the same tree we expanded. <

» Example 7. For d = 2, there are two full-binary distributions w; = (0,4) and wy = (1,2).

For wy, (O'g%) = 1, and there is only the perfect full binary tree having w; as full-binary
1+3

1) = 2, there are two full binary trees, as shown in Figure 1.

distribution. For ws, (

Figure 1 Illustration of Example 7, where the left tree has the full-binary distribution (0,4) and
the other trees (1,2). Black nodes are leaves.

5 Enumeration of Full Binary Trees

In what follows, we present an enumeration algorithm for Problem 1 in the case of full binary
trees. Our main idea is to process the trees in a linear order, which we define by a binary
encoding of the trees.

For that, we recall the result of Corollary 5 that g(i, w) gives the number of nodes with
depth ¢ € [1..d], which is common to all full binary trees having the full-binary distribution w.
In short, we define the vector n = (91, ...,nq) with n; := g(¢,w) for i € [1..d]. Then 2?21 7
is the number of all nodes. In particular, we can use an 7;-length bit vector to specify
which nodes on depth i are internal nodes or leaves. The list of bit vectors on all depths
is sufficient to represent a full binary tree. Then Zle 7 = 2?21 Z;’l:i o < 2 Z?Zl W;.
For n = Zle w;, this means that we can represent each full binary tree whose full-binary
distribution is w in 2n bits. We use this bit representation to enumerate these trees. For
that, we build on the algorithm of [14].

» Lemma 8 ([14]). There is an algorithm that enumerates all subsets with m € [1..n] integers
of the integer range [1..n] in ascending lexicographic order with constant delay.

8:5

Grossi's Festschrift

8:6

Enumeration of Ordered Trees with Leaf Restrictions

1:(1,0)
2:(0,1)
3:(1,0)

(1:(1,0)) (1:00,0) [1:(0,1))
2:001) | | 221,0) || 2:01)
(3:000) J (3:001) J3:1,0))

(1:0,1))

2:(0,1)

3:(0,1)

Figure 2 Enumerating all full binary trees whose distribution is w = (1, 1,1, 2) with d = 4. Both
trees on the left and right depict the same enumeration tree of w explained in Section 5, but with a
different representation. A node on the left depicts a full binary tree T' whose encoding Br is given
by a node on the right at the same position in the respective tree. We partition each Br by the
depths [1..d — 1] (depth d contains only zeros). For instance, the root node of the right enumeration
tree F specifies with 10 that there is a left leaf and a right internal node on each depth in [1..3],
while the deepest leaf of E specifies a tree with opposite characteristics.

The connection to our problem is that a bit vector of length n with m “1”s exactly
represents such a subset. Since we can impose the natural lexicographic order on the 2n-
length bit vectors, the missing step is to find, given a 2n-length bit vector representing a full
binary tree, the lexicographic succeeding bit vector that represents a tree we want to output.

To facilitate our starting, we assume that w; > 1 for every ¢ € [1..d]. Suppose that
we have a full-binary tree T whose distribution is w. We deduce from T a bit vector By
representing T'. For explanation, we assume that the least significant bits are on the left.
We start with a bit vector B of length Z‘Ll 7; < 2n to represent the order of the internal
nodes and leaves on each depth. To do this, we partition B by depths By = (b(l) e b(d))
such that @ is a bit vector of length n; with bg-i) = 1 if and only if the j-th node with
depth i is a leaf. In particular, b has w; zeros. As an example, the values of B for the
trees depicted in Figure 1 are 001111 (left), 1011 (middle), and 0111 (right). (Recall that
B does not encode the root node, for which we assume it is always an internal node.) As a
practical optimization, we can omit the highest depth d since it always contains leaves, i.e.,
b'? contains only zeros. Since we can reconstruct 7' from By uniquely, there is a one-to-one
mapping from full binary trees with at least two nodes and a subset of bit strings defined
by the above tree encoding. Consequently, each full binary tree has exactly one specific bit
vector representation.

In what follows, we represent each full binary tree T" having the distribution w with the
bit vector B, which is stored as a node in a so-called enumeration tree . The root of F
represents the full binary tree T obtained by grouping all internal nodes to the left side,
which we expressed by the lexicographic least bit vector, obtained by shifting all “1”s in
every b of Br to the left. An E-node is augmented by a bit vector Bp representing a full
binary tree T and an integer, which we call the change level. The change level of an E-node
v states the depth at which the bit vector of v differs from its parent; as an exception, we

Y. Kobayashi, D. Koppl, Y. Matsui, H. Ono, T. Saitoh, and Y. Uno

3,(1,1,0,1))13,(1,0,1,1))1 3,(0,1,1,1),

Figure 3 An enumeration tree E on an extended example compared to Figure 2, with distribution
w = (0,2,3,2). We here provide a combined view of both trees as illustrated in Figure 2. While the
root node shows its full bit vector, we only depict the bit vector at the change level of each other
node.

stipulate that the change level of the root node is 0. The change level is an invariant we
impose on E in the sense that, when traversing from a node u to of its children v, the tree
represented by u and by v can and must differ only at the change level of v. A consequence
is that E-nodes with change level d are leaves.

We organize the children of an E-node as follows. Fix one F-node v with bit vector
Br = (V... b@) and change level § € [0..d — 1]. Then the children of v correspond to
all possible rearrangements of the bit patterns in one of the vectors b(éﬂ), cee b'D. We
start with the first children of v that enumerate all possible bit patterns of b(® (resulting by
permutations). So they have change level d with a bit vector that differs from v’s bit vector
only at depth d. (In particular, these nodes are leaves by the definition of the change level.)

=1 and change level d — 1, and so on, up

Next, we continue with the group of children for b
until 50+ and change level § + 1. In particular, we arrange each group of children with
the same change level i in lexicographic order of their corresponding bit vector b . This
order of the children and the order of their groups allows us to enumerate all full binary
trees by a pre-order traversal of E in lexicographic order. (In particular, the lexicographic
order imposes the invariant that we never enumerate a full binary tree twice.) This structure
of E warrants the following — see Figure 2 for an example and Figure 3 for a more elaborated

example involving a non-binary choice at one level:

Any subtree rooted at a node of E is an enumeration tree itself. That is because an E-node
with change level § € [1..d] representing a tree T is the root node of an enumeration tree

that considers only the suffix bt .. (D of By for the enumeration. In detail, for an
w; Ni —W;q

E-node with change level § it holds that b = (1---10---0) for every i € [§ + 1..d — 1]

by the construction E — recall that a node with change level § only makes a change on
p+Y) compared to its parent node, and reading the change levels upwards to the root

8:7

Grossi's Festschrift

8:8

Enumeration of Ordered Trees with Leaf Restrictions

gives a monotone decreasing sequence of change levels (so there is no way that any deeper
level has changed with respect to the initial bit vector of the root.) In particular, an
FE-node is the lexicographically least among all its descendants.

Since deeper recursion levels only touch shorter suffixes of the bit vectors, the rightmost leaf
of an E-node v is lexicographically smaller than v’s right sibling (if it exists). Therefore,
all F-nodes represent different vectors, and the sum of all E-nodes is the size of the
output we want to compute.

If we now run the algorithm of Lemma 8 on d nested loops we can traverse the constructed
enumeration tree E in a pre-order traversal and output each node upon visiting it. The
maximum delay happens when moving to the next value in the lowest d — 1 loops. This delay
is O(d), but O(1) amortized because to reach a depth of d’ we have already output d’ nodes.

It is left to argue that we can transform the sequence of outputted E-nodes into the full
binary trees we want to output. For that, we initially build the full binary tree represented
by the root of E from scratch, taking O(n) time. Subsequently, for each E-node visit, it
suffices to change the order of the nodes of the previously computed full binary tree at a
specific depth, costing O(max; g(i, w)) time.

» Lemma 9. Given a full-binary distribution w with w; > 1 for all i € [1..d], we can
enumerate all full binary trees whose full-binary distribution is w in lexicographic order with
constant amortized delay or O(d) worst-case delay. The precomputation takes O(n) time.

We can generalize this approach to full-binary distributions having zero values. The
obstacle is that we cannot guarantee constant delay since we might traverse long paths with
zero weights. As a remedy, we want to skip each depth ¢ with w; = 0. To do that, let us
denote by I = {i € [1..d] | w; > 0} all depths with leaves. Then it suffices to restrict the
values of a change level of a node to values of I U{0}. By construction, the root node has
change level 0, and a node with change level § has children whose augmented value is the
successor of J in I.

» Lemma 10. Given a full-binary distribution w with wy > 1, we can enumerate all full
binary trees whose full-binary distribution is w in lexicographic order with constant amortized
delay or O(d) worst-case delay. The precomputation takes O(n) time.

To obtain worst-case constant delay time, we can drop the requirement to output in
lexicographic order by using a folklore technique, such as the alternating output technique [15].
The idea is to output nodes on odd depths when visiting them the first time, but postpone
the output of nodes on even depths until we backtrack and move outside their respective
subtrees.

» Theorem 11. Given a full-binary distribution w = (wq, ..., wy), the corresponding full
binary tree can be output in O(d+n) time for the first tree and then output all trees in the form
of differences with a size of O(m) with a delay of O(1) in O(m) time, where n = Zle wj
and m = max{w; | i € [1..d]}.

6 Enumeration of Binary Trees

In what follows, we show how to generalize the enumeration of full binary trees to general
binary trees, where internal nodes are allowed to have one or two children.

From Lemmas 3 and 4, the binary distribution w = (wy, ..., wy) of a non-full binary tree
also satisfies f(w) = Z?zl w; /2" < 1. We make the connection to full binary trees by adding
dummy leaves to all internal nodes that have only one child. To this end, we denote the

Y. Kobayashi, D. Koppl, Y. Matsui, H. Ono, T. Saitoh, and Y. Uno

number of dummy leaves added at depth 4 by z;, and construct a vector © = (z1,...,zq).

The sum x + w gives a vector that is the binary distribution of a full binary tree because
Z?Zl(wi +2;)/2" = 1. In what follows, we call & the complement vector of w, and w + x
the completion of w. For such x, a nonnegative integer vector y that satisfies y < x is called
the subcomplement vector of w.

» Lemma 12. For a complement vector of w we have that x; < g(i,w).

Proof. We can only attach a dummy leaf at depth 7 to internal nodes that have exactly one
child on depth i. By the pigeonhole principle, there are at most ¢(, w) many such children
on depth 1. <

From Lemmas 3 and 4, the following immediately holds.

» Lemma 13. If the binary distribution w satisfies f(w) < 1, then there exists a complement
vector for w.

However, the complement vector is not unique, in general. For example, w := (0,2, 2)
is not a full-binary distribution since 2/4 4+ 2/8 = 3/4, while (0, 1,0) and (0,0, 2) are both
complement vectors of w. See Figure 4 for an example.

i, | e

Figure 4 Examples for Lemma 13 with the binary distribution w = (0, 2,2), where two binary
trees exist, which can be complemented by adding dummy leaves. The left tree and the right tree
can be complemented by the vectors (0,0,2) and (0,1,0) to full binary trees, respectively. Black
nodes are leaves, and dummy nodes are rectangles.

Also, even if x satisfies f(w + @) = 1, it does not necessarily mean that x is the
complement vector of w. For example, w := (0,2, 0,2) has (0,0, 2,2) as a complement vector,
but = (0,0,0,6) is not a complement vector: A tree having the binary distribution w
cannot have six dummy leaves on depth 4. However, a necessary condition is given below.

» Lemma 14. A nonnegative integer vector = (0,...,0,yq) is a subcomplement vector of
a complement vector y = (y1,--.,ya) of a binary distribution w = (w1, ..., wq) if and only
if ya = wg (mod 2), ya € [0,wy], and f(w) +ya/2¢ < 1.

Proof. Let = (0,...,0,yq4).

Direction =-. In order for x to be a subcomplement vector of w, a binary tree with y4 + wq
leaves, including dummy leaves, must exist. Therefore, it follows from Corollary 5 that
Yq + wq is even, 80 yg = wg (mod 2). Also, since dummy leaves can only be attached to

internal nodes that have exactly one child (in this case, a leaf), yq < wy by Lemma 12.

Furthermore, in order for & + w to be a binary tree (with dummy leaves), f(w + x) =
S (i +2)/2 = X wi /28 + 24/27 < 1 must hold.

8:9

Grossi's Festschrift

8:10

Enumeration of Ordered Trees with Leaf Restrictions

Direction <=. We show that there exists a complement vector y for w such that x < y.

For depth d = 1, w must be either (1) or (2). In the case of w = (2), w represents
a full binary tree, so the complement vector of w is y = (0), and thus « = (0). In the
case of w = (1), the only complement vector is y = (1), and hence & = (1) is the unique
subcomplement vector of y = (1) satisfying x4 = y4. Thus, in both cases the subcomplement
vectors are uniquely defined by the right-hand side conditions.

In what follows, we assume that d > 2. Given a binary distribution w of a binary tree T', by
assumption wg +yq and wq — ygq are even numbers. Hence, we can apply the contraction trick
like in previous proofs. For that, consider the vector w’ := (wy, ..., wg—2, wg—1+(wWa+ya)/2).
The vector w’ is well-defined: Since wg = yq mod 2 and yg < wy, (wg + ya)/2 = (wg —
yd)/2 + yq is a positive integer. Since

d—2
fw') = Zwi/T + (wa—1 + (wg +ya)/2) /297 = f(w) +ya/2? < 1,

by Lemmas 3 and 13, w’ is a binary distribution of a binary tree T’. The normal leaves (i.e.,
excluding dummy leaves) of depth d — 1 in T” are wg—1 + (wq + ya)/2 in total, of which
wq—1 of them are former leaves of T' unaffected by the contraction,
(wq + ya)/2 internal nodes of T' are changed into leaves on depth d — 1 by contracting
them with their two child leaves (where one may be a dummy leaf).
The resulting binary tree T therefore has wq_1 + (wg + yq)/2 leaves on depth d — 1 in total.
The contraction of T to T” by removing depth d does not affect the number of leaves at
depth d — 2 or less in T. By definition, there is a complement vector z = (z1,...,24-1) of
w'’ that can turn 7’ into a full binary tree. Finally, we turn y4 leaves of 7" on depth d into
internal nodes, each having one child. This restores T' and induces the complement vector
z:(zl,...,zd,hyd) of w. <

For every binary tree, there is only one way to add dummy leaves to internal nodes to make
it a full binary tree. Hence, the complement vector for each binary tree, whose completion
is the binary distribution of the full binary tree, is uniquely determined. Conversely, given
a full binary tree and a configuration classifying leaves in dummy leaves and non-dummy
leaves, we can obtain the original binary tree by removing dummy leaves according to the
configuration to obtain the original binary tree. Based on this observation, we first find the
completion, i.e., the corresponding full binary tree, for w, and then enumerate the binary
trees by considering all ways of adding dummy leaves while enumerating the corresponding
full binary completions. That is, by enumerating all possible complement vectors for w, and
then considering the process of enumerating the different ways of adding dummy leaves while
considering the corresponding full binary completion, we can enumerate all binary trees. In
summarizing the above, the enumeration algorithm is designed in a three-layer structure:
1. enumeration of complement vectors (Section 6.1),

2. enumeration of the way of adding dummy leaves to each complement vector (Section 6.2),
and
3. enumeration of binary trees for each way of adding dummy leaves (Section 6.3).

6.1 Enumeration of Complement Vectors

We enumerate the complement vectors with the insights of Lemmas 13 and 14. In detail,
Lemma 14 gives us a strategy to enumerate the complement vectors by enumerating subcom-
plement vectors. We show the algorithmic steps in Algorithm 1, which is a recursive algorithm

Y. Kobayashi, D. Koppl, Y. Matsui, H. Ono, T. Saitoh, and Y. Uno

w=(0,1,1,4,2,4)
O

)
x =(0,0,1,1,2,0)

Figure 5 Enumeration tree of complement vectors for the binary distribution w = (0,1,1,4,2,4),
where leaves correspond to the complement vectors. A node on depth i determines the value
z[d — ¢ + 1] of the complement vector. The details are described in Section 6.1.

Algorithm 1 Subroutine for enumerating complement vectors for w, cf. Section 6.1.

1: call EnumCompVector with W < f(w), z = (0,...,0),i=dand ¢=0
: procedure ENUMCOMPVECTOR(W, x, 1, ¢) > @: subcomplement vector, i € [1..d]:
depth, ¢: number of conceptional leaves on depth i.

[\

3: > determine all dummy nodes on depth ¢ and recursively on lower depths.
4: x; < (w; +¢) mod 2 > initialization. By Lemma 14 the parity must be the same.
5: while 7; <w; + ¢ and W +z,;/2* <1 do

6: y<«x+(0,...,0,2;0,...) > y meets the requirements of Lemma 14.
7: if W+ 1;/2' =1 then

8: Output y > output a complement vector
9: return

10: else

11: ENUMCOMPVECTOR(W + z;/2%,y,i — 1, (x; + w;)/2) > recurse on depth i — 1
12: end if

13: T —x; +2

14: end while

15: return

16: end procedure

that determines the values of x; in descending order x4, x4_1,... in a depth-first manner.

We initially call ENUMCOMPVECTOR with the arguments (f(w),0,d, 0), for the weight f(w)
of the binary distribution w, 0 the d-dimensional vector with 0 entries, the depth d and
the number of conceptional leaves on depth d. The last argument needs a definition: This
algorithm recursively contracts leaves and dummy leaves at depth ¢ 4+ 1 to the so-called
conceptional leaves on depth i. If we have z;; dummy leaves and w; 1 ordinary leaves on
depth ¢ +1, then the number of conceptional leaves at depth i is ¢; = (2,41 + wit+1)/2, and we

consider from then on the binary distribution (wy,ws, ..., w;—1,w; + ¢;) for a tree of depth i.

Now, in the function ENUMCOMPVECTOR, we enumerate all x; satisfying the conditions
of Lemma 14 at Line 5. We proceed with each such z; at Line 6 with a subcomplement
vector y = &+ (0,...,0,2;). At Line 6, we check if we have obtained a completion with y at
that point. If y is a complement vector of w, we output y at Line 7 and return. If we can
still increase a value in y to add dummy leaves (Line 10), we recursively call the procedure
for the preceding depth ¢ — 1. By Lemma 14, if we recurse, we either continue recursing or

8:11

Grossi's Festschrift

8:12

Enumeration of Ordered Trees with Leaf Restrictions

Enumeration condition Dummy parent vector Gray code (1+1+2=) 4bits

w = (0,1,1,4,2,4)

2-(1000) - (0000) — (0001) — (0011) — (0010)
x = (0,0[L12)) root | 3 10000 S[@110)] (0111) — (0101) — (0100)
z= (234320) 4:(1100000) — (1100) — (1101) — (1111) — (1110)

y=(246864) — (1010) — (1011) — (1001) — (1000)
y—x = [A5714)

2:(1000)

3:/(01000
4:(1100000)

2:(1000)
3:(10000)
4:{(0000011)

2:|(0100) |

3:(10000)
4:(1100000)

2:/(0010
3: (10000

4:(1100000)

2:(0100)

3:(10000
4:1(0000011

2:(0100)
3:(00001)
:((1010000)

2:(1000)

3:(01000
4:(1010000

2:(0100)
3:(00001)

:J(0000011)

2:(0100
3:/(00001

4:(1100000)

2:(0100
3:£01000

4:(1100000)

2:(0100)
3:(01000)

:|(1010000)

2:(0100)
3:(01000)
4:/((0000011)

Figure 6 Enumeration of dummy parent configurations and Gray code, cf. Section 6.2. We
start with w and x defined in Figure 5. The third row in the left upper box is a vector z with
z2i = E?:Z'H (w; + xj)/2j7i such that v; = w; + z; + z;. We only have dummy leaves on the depths
3,4,5 (those depths ¢ for which x; > 0 marked by a red rectangle around the entries of). Therefore,
our dummy parent configuration considers only the depths 2, 3,4, for which we generate bit vectors
for each node in the depicted enumeration tree. The lengths of the bit vectors are determined by
vV — ¥ by the entries i with ;41 > 0, which are 4,5,7 in our case (blue rectangle in the upper left
box). For each node in the enumeration tree we visit, we enumerate all Gray codes on the upper
right box by visiting linearly all depicted nodes in this linked list. The Gray code has length ijl T;
and assigns a dummy parent the role whether it has a left or a right dummy leaf.

turn a subcomplement vector into a complement vector. We can write each recursive call in
the form of a tree, where each node is a call of ENUMCOMPVECTOR: the root is the initial
call, and each leaf is a call that returns a complement vector. See Figure 5 for an example.
Finally, since we can evaluate the checks in the pseudocode in O(1) time, the delay between
the output of two complement vectors is O(d) time.

6.2 Enumeration of Dummy Leaves

Given the complement vector « for w, there can be multiple ways to add the dummy leaves
specified by x to a binary tree whose binary distribution is w. Our task is to enumerate
all these ways. For that, we follow the strategy of Section 5, where we enumerate the
leaf/internal node configurations at depth ¢ for full binary trees. However, unlike normal
leaves, the sibling of a dummy leaf must be a normal leaf or an internal node. To facilitate
checking this condition, we enumerate the internal node one level above the dummy leaf
itself, rather than at the configuration of the dummy leaf. We call such an internal node the
dummy parent of a dummy leaf. For each dummy parent, it suffices to enumerate the two
possibilities of having its dummy leaf as its left or right child.

First, as in Section 5, suppose that we have a full-binary distribution w+. From the proof

of Corollary 5, the number of nodes at depth 4 is v; := g(i,w + x) = Z?:i (wj +x;) /277"

Y. Kobayashi, D. Koppl, Y. Matsui, H. Ono, T. Saitoh, and Y. Uno

Suppose ¢ is the smallest depth at which a dummy leaf appears for the first time. At
depth 9§, there are x5 dummy leaves. By definition, there are x5 dummy parents at depth
0 — 1. We specify these dummy parents by a bit vector of length vs_; with “17s at xzs
positions.

In doing so, at depth § — 1, we have already determined the dummy parents of the dummy
leaves at depth §, regardless of whether they have a dummy leaf as their left or right child,
so the number of nodes that we can freely choose at depth § is v5 — xs. We again specify the
dummy parents at depth § and recurse. Therefore, we can express our selection of dummy
parents by a (vs — x5)-length bit vector with “1”s in x511 positions. By recursing on deeper
levels, we can apply this technique on all depths, generalizing from § to any i € [§..d]. In
what follows, we want to express the configuration of dummy parents on each level by a bit
vector, for which we want to bound the size of v;.

d
» Lemma 15. Each v; is at most 2)" w;.
J=
Proof. From Lemma 14, vy = wg + 4 < 2wg4. So there is an ¢ € [0..d — 1] such that the
induction hypothesis v4_; < 2 Z‘;: d—r w; holds for every k € [0..i]. Then we obtain

d
Vi—(i+1) = Wq—(i+1) T Va—i/2 + Ta—(i+1) < 2Wq_(i41) + Va—i < 2 Z wj ,
j=d—(i+1)
where we used Lemma 12 for z4_(;41) < Va—i/2 + wq—(i41)- <

Therefore, we can specify dummy parents with an O(Zj:i w;)-length bit vector at each
depth. We denote the sequence of bit vectors for specifying the dummy parent configuration
by D.

Furthermore, we express whether a dummy leaf at depth 7 is the left or right child of
its parent by a bit vector of length z; (for each configuration of the dummy parents at
depth i — 1, there are 2% ways for the x; dummy leaves at depth i to be attached). In
total, we can express the dummy leaf configuration by a (Z?Zl x;)-length bit vector. Since
x; <y <2 Z;l:i w; by the above analysis, this bit vector has length O(d Z?Zl w;).

An enumeration of bit vectors are Gray codes [8], which have O(1) delay because two
subsequently output bit vectors differ by one bit. Here we use Gray codes to enumerate the
dummy leaf configuration for each dummy parent configuration with constant delay.

To conclude, we can enumerate the configuration of dummy leaves in the following
manner:

Enumerate the configuration of the dummy parents with constant time delay, and output

this configuration in O(Z?Zl w;).

Generate a Gray code of 25:1 x; = 0(d Z?Zl w;) bits for each configuration of dummy

parents, and enumerate the configuration of dummy leaves.

Figure 6 shows an example of a dummy parent enumeration tree and a Gray code for a
binary distribution w = (0,1, 1,4,2,4) and its complement vector = (0,0, 1,1,2,0).

6.3 Enumeration of the Leaf Configuration

Based on the previous discussions, at this point, we have determined the configuration of
dummy parents D with x; dummy leaves and z;11 dummy parents of v; nodes at each depth
1 of the binary tree. Here, we assign roles to the remaining v; — x; — ;41 nodes as leaves and
internal nodes having no dummy leaves as children. As before, we can specify the roles in

8:13

Grossi's Festschrift

8:14

Enumeration of Ordered Trees with Leaf Restrictions

Enumeration condition | Leaf selection vector

w = (0{1,1,4,2}4) 2:(100)

= root
x=(0,0,1,1,2,0) 3:(1000)

y = (2,46864) 4:(11110)
x' =(0,1,1,2,0,0) 5: (1100)
y— x = (2,4,5,7,4,4) '
y—x—x = (23,454K)

:(010)] 2(001)] 2:(100) 2:(100)
3:(1000) 3:(1000) 30100 30001
4:(11110) 4:(11110) 4:(11110)

4:(11110)

5:(1100) 5:(1100)

2:(010) 2:(010) (2:(010)) (2:(001)) (2:(001)) (2:(001))

3:[000)] | 3:(1000) 3(0100)] 3:(0100) 3:(0001) 3:(0001)

4:(11110) 4:(11110) 4:(11110) 4:|(11101)| 4¢[aon)]| © T | 4fo111D)]

5:(1100) sfoo1)]) \G:(1100) J \5:(1100)) \(5:(1100)) \5:(1100)

(2:(010) \\”2:(010) A (2:(010)) (2:(00D)

3:(0100) 3:(0100) 3:(0100) 3:(0100) ((2:(001)) (2:(001))

af@on]| " " 7| 41110 4[aoD]| | 4:(11101) 3:(0001) | . .. | 3:(0001)

5: (1100) 5:(1100)) \ 5{(1010) 4:(11101) 4:(01111)
1 o~ 5:(1010)] 5:(1010)]

(2:(010)) (2:(010)) 2:(001) (2:(001))

3:(0100) |, . [3:(0100) 3:(0100) 3:(0100)

4: (11101 4:(11101) 4:(11101) 4:(11101)

5.(1010) 5(0011) -

Figure 7 Enumeration of all leaf configurations, cf. Section 6.3. We follow the example of Figure 6.
Here, ' denotes the vector z; = x;+1. The number of leaves and internal nodes having no dummy
leaves at depth i is v; — x; — ;41 = v; — x; — ;. Since all nodes on depth 1 are internal nodes
(w1 = 0) and all nodes on depth d are leaves (vq = w;), the leaf selection vector only addresses the
depths 2,3,4 (red rectangles in the left upper box).

the form of a bit vector of length v; — z; — x;11 with w; “1”s. We call such a vector sequence
a leaf configuration vector sequence and denote it by L. Fixing one configuration of dummy
leaves, we enumerate Hle (”i_”;:‘”’“r ') combinations in the same way as in Section 5 to
obtain all binary trees having that configuration of dummy leaves. We proceed in this order
here despite that once « is determined, the number of dummy parents and leaves at each
depth is fixed, so we can determine the leaf configuration vector independently of the dummy
parent configuration. Figure 7 gives an example of a leaf configuration enumeration tree for

a binary distribution w = (0,1, 1,4,2,4) and its complement vector = (0,0,1,1,2,0).

6.4 Overview of the Algorithm

We combine the above to enumerate binary trees using enumeration trees and Gray codes.
For the sake of explanation, we enumerate the configuration of dummy leaves not directly
after enumerating the configuration of dummy parents — we can take care of the dummy
leaves at any time after we have determined the dummy parents. This also allows us to
postpone the computation of the configuration of dummy leaves to the end.

We visualize our pipeline that ends at the generation of Gray codes following pointers
from three nested enumeration tree traversals in Figure 8. There, we start with a top-down
traversal of the leftmost tree T. Each leaf of T" determines a complement vector x. We
perform the actual traversal by executing ENUMCOMPVECTOR. Fixing x, we move to the
neighboring trees TP () and T*(x) to enumerate all dummy parent configurations and all
leaf configurations D and L, respectively. First, we enter the enumeration tree TP (z). Each
time we visit a new node in T?(z), we jump into T*(z) and traverse this tree. For each

Y. Kobayashi, D. Koppl, Y. Matsui, H. Ono, T. Saitoh, and Y. Uno

Enumeration of completion vectors

(Each leaf corresponds to a completion vector, and vice versa) .
Enumeration tree for leaf arrangements

for a given dummy parent arrangement
for a given completion vector

Enumeration tree for dummy parent configurations,
for a given completion vector

T (x)

Enumeration of how
the dummy leaves are
attached (left and right)
(Gray code)

(D, L)

Output in order

Figure 8 Layout of the algorithm enumerating all binary trees for a given binary distribution,
cf. Section 6.4. An example of the leftmost tree T is given by Figure 5, and for the subsequent trees
TP and T* by Figure 6 and Figure 7, respectively.

T*(x) node we visit, we have determined (D, L). Given |z| = Z?:l x;, for each Gray code
g € {0, 1}l we enumerate, we finally output (D, L, g). From the discussion in Section 5, we
can determine and output the pair (D, L) with constant delay. Since we can also determine
g with constant delay, we can output (D, L, g) for a fixed with constant delay. However,
the delay in outputting @ itself is O(d), but this time bound is dominated by the time bound
to output the first (D, L, g) for . This leads to the following complexities.

» Theorem 16. Given a binary distribution w = (w1, ..., wq), the corresponding binary tree
can be output in O(d + n) time for the first tree and then output all trees in the form of
differences with a size of O(Z?Zl w;) with a delay of O(1).

While the complexities stated in Theorem 16 are in terms of w, we create a full-binary
tree whose binary distribution is w + « for each completion vector . Nevertheless, x; < w;
for all i € [1..d], and therefore the number of nodes of this full-binary tree is asymptotically
equal to the number of leaves of the tree we output.

Finally, an example of the binary tree corresponding our running example is given in
Figure 9.

7 Extension to a-ary trees

In this section, we extend the results of the previous section to general a-ary trees for
a constant o > 2. Like for binary trees (o = 2), we first define the notion of an «-ary
distribution.

7.1 Properties of full a-ary trees and their enumeration

We call a vector of integers w = (wy, ..., wq) a (full) a-ary distribution if there is a (full)
a-ary tree that has w; leaves on depth ¢ for every i € [1..d]. For a nonnegative integer vector
w = (wy,...,wy), we define the function f,(w) = Zle w; /o, which is a generalization of
f with fo = f. The problem we want to tackle in this section can be stated as follows.

8:15

Grossi's Festschrift

8:16

Enumeration of Ordered Trees with Leaf Restrictions

Instance y—x root
w = (0,1,1,4,2,4)
x=(0,0,1,1,2,0)
y = (2,4,6,8,6,4) 4
x' =(0,1,1,2,0,0)

y—x=1(245744)
x—x'"=(2,34,544)

2:(0100)
3:(1000) d

4{(0000011)] l

2:(001)
3:(0001) B
4[(11101)]
5:(1100) QO dummy parent
(6:(1111))) == dummy leaf

@ lcaf 1:left

Gray code (0110)
(1:left O:right)

L:left O:right

Figure 9 Binary tree corresponding to a vector representation returned by the algorithm whose
complexities are stated in Theorem 16. The left box depicts a node of TP (z) (red, cf. Figure 6)
and T*(zx) (blue, cf. Figure 7). Informally, the red node specifies with a “1” the placement of a
dummy parent, and the blue node with a “1” the placement of a (normal) leaf. Finally, a Gray code
determines for each dummy parent whether its normal leaf is a left child or a right child.

» Problem 17. Given a (full) a-ary distribution w, enumerate all (full) a-ary trees whose
a-ary distribution is w.

Like in the case of binary trees, the following holds.

» Lemma 18 (Kraft's inequality). Let o > 2. A nonnegative integer vector w = (wy, ..., wq)
that satisfies wq > 0 is a a-ary distribution if and only if fo(w) < 1.

» Corollary 19. Let w = (wy,...,wq) be a nonnegative integer vector satisfying wq > 0
and is a full a-ary distribution. Then, go(j,w) = Zf:j w; /a9 is a multiple of o, and
represents the number of nodes at depth j of the a-ary tree having w as its a-ary distribution.

» Theorem 20. Let o > 2. Given a full a-ary distribution w = (w1, ..., wy) satisfying
wg > 0, the number of all full a-ary trees that have w as their a-ary distribution is

d—1 d ;
I (Zj—i a“’—)
i=1 Wi

From these properties, the enumeration of full binary trees can be extended to the
enumeration of full a-ary trees. For that, we observe that the approach for enumerating
full binary trees analyzed in Section 5 is independent of the degree of the tree, since the
representation only considers the configuration of internal nodes and leaves per depth.
Therefore, we can generalize this approach in a straightforward manner by replacing f and
g with f, and g,, respectively, and updating the values of 7; := go(j, w). We obtain the
following result based on an extension of Theorem 11:

» Theorem 21. Given a full a-ary distribution w = (w1, ..., wq), the corresponding full
a-ary tree can be output in O(n) time for the first tree and then output all trees in the form
of differences with a size of O(m) with a delay of O(1) in O(m) time, where n = Z;j:l w;
and m = max{w; | ¢ € [1..d]}.

Y. Kobayashi, D. Koppl, Y. Matsui, H. Ono, T. Saitoh, and Y. Uno

7.2 Enumeration of a-ary trees

We can carry out the enumeration of a-ary trees in the same way as binary trees, for which
we had three levels of enumeration: for the complement vectors, the dummy leaves, and the
actual leaves. Here, we proceed in the same way.

7.2.1 Enumeration of full a-ary tree complement vectors

Suppose we have an a-ary distribution w with f,(w) < 1. We fix one a-ary tree corresponding
to w and add dummy leaves to all internal nodes with fewer than « children to make it a
full a-ary tree. In this case, let the number of dummy leaves added at depth i be x;, and

consider the vector = (1, ...,24). By construction, we obtain that Z‘j:l(wi +x;)/at = 1.

We call the vector @ constructed in this way the complement vector of w, and we call w + @
the full a-ary tree complement of w. For such @, a nonnegative integer vector @’ is called a
subcomplement vector of w if & > &’. Similarly to binary trees in Lemma 13, the following
holds.

» Lemma 22. Given an a-ary distribution w with fo(w) < 1, there exists a complement
vector of w.

Generalizing Lemma 14, the following is true.
» Lemma 23. A nonnegative integer vector (0,...,0,y4) is a subcomplement vector of the
complement vector y = (y1,...,y4) of an a-ary distribution w = (w1, ...,wy) if and only if

ya = wq (mod a), yq € [0..(a — Dwy], and fo(w) + ya/ad < 1.

Using these lemmas, we can generalize Algorithm 1 to Algorithm 2 to enumerate the
complement vector of an a-ary distribution.

Algorithm 2 Subroutine for enumerating full a-ary tree complement vectors for w.

1: procedure ENUMCOMPVECTOR-a(W, x, %, ¢) > W: value of f,, x: subcomplement
vector, i: depth 4

2: > Determine the number of dummy leaves to add below depth ¢ (w is a global
variable)

3 x; < w; + cmod « > Initialization. Align with a according to Lemma 23

4 while z; <w; +c¢ and W +2;/a' <1 do > For all z; satisfying x; < w; + ¢

5 y+<x+(0,...,0,2;,0,...) > & meets the requirements of Lemma 23

6: if W+ x;/a’ =1 then

7 Output y > Output as a full c-ary tree complement

8 return

9 else

10 ENUMCOMPVECTOR(W +x;/a,y,i — 1, (z; + w;) /) > recurse on depth i — 1

11: end if

12: Ti < T+«

13: end while

14: return

15: end procedure

8:17

Grossi's Festschrift

8:18

Enumeration of Ordered Trees with Leaf Restrictions

7.2.2 Enumeration of the configuration of dummy leaves

Suppose that we have determined the complement vector & of w. The next step is to
determine the configuration of dummy leaves, which is (like for binary trees) not unique, in
general. However, in the case of a-ary trees, among all siblings of a dummy leaf there must
be at least one nmormal node, i.e., an internal node or a leaf that is not dummy. Therefore,
we cannot infer from a dummy parent its number of dummy leaves, and thus specifying the
configuration of dummy nodes with a Gray code like for binary trees seems not possible.
Instead, we enumerate the number of dummy leaves that each dummy parent has from 0 to
a — 1, and then enumerate the configuration of dummy leaves corresponding to that number.
This strategy is slightly more complicated than in the case of binary trees because of this
additional intermediate step, but the calculation time is asymptotically absorbed by the time
spent for determining one complement vector. Having computed the complement vector, the
following steps are analogous to the case of binary trees, for which we obtain constant time
delay per output.

We enumerate all possible ways to place the dummy leaves at each depth ¢ € [1..d] by
choosing a combination of the configuration of the dummy leaves at depth §. For that, we first
specify how many dummy leaves each parent has at depth § — 1. According to Corollary 19,
in the complemented tree corresponding to the binary distribution w + with the added
dummy leaves, there are 15 = g (J, w) nodes at depth ¢ (i.e., there are 75/« parents at
depth 6 — 1). We assign each parent a rank from [1..7s/a] in order from left to right, and
we say that pgé) is the number of dummy leaves that the i-th parent has. Since each parent
must contain at least one normal node, pg(s) € [0..a — 1], and the number of dummy leaves at

depth ¢ is x5, so p®) = (p(lé), o ,pf}i)/a) satisfies

ns /o
s
> = (1)
i=1
We use a known result for enumerating all distinct integer tuples (pgé), . ,p;i)/a) with

pgé) € [0..a — 1] satisfying Equation (1) with constant delay [16]. For each such integer tuple,
we enumerate the configuration of dummy leaves corresponding to each P. After that, all
a-ary trees can be enumerated with constant time delay as in the case of binary trees.

8 Conclusion

We have addressed the problem to efficiently enumerate trees whose numbers of leaves on each
depth are given by a query vector. Specifically, for any leaf distribution w = (ws,...,wq) of
(full) binary or (full) a-ary trees, we obtain the following time complexities. First, we can
output the first tree in O(d + n) time. We can output every subsequent tree, after constant
delay, in O(m) time by encoding this tree as a difference to a previous one using O(m) words.
Here, n = Zle w; is the total number of nodes and m = max{w; | 7 € [1..d]} is the maximal
number of nodes at any depth. These results hold for both full binary trees and full a-ary
trees with @ > 2, and extend to general binary trees with analogous enumeration guarantees.

As future work, we want to determine the exact number of full binary trees and full a-ary
trees with distribution w by a closed-form product formulas involving binomial coefficients.
We further strive to give practical implementations of our proposed enumeration algorithms.

—— References

1 Masahiro Baba, Hirotaka Ono, Kunihiko Sadakane, and Masafumi Yamashita. A succinct
representation of a full binary tree. Technical Report 0, Record of Joint Conference of Electrical
and Electronics Engineers in Kyushu, 2009. doi:10.11527/jceeek.2009.0.59.0.

https://doi.org/10.11527/jceeek.2009.0.59.0

Y. Kobayashi, D. Koppl, Y. Matsui, H. Ono, T. Saitoh, and Y. Uno

2 David Benoit, Erik D. Demaine, J. Tan Munro, Rajeev Raman, Venkatesh Raman, and
S. Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275-292, 2005.
doi:10.1007/s00453-004-1146-6.

3 Terry Beyer and Sandra Mitchell Hedetniemi. Constant time generation of rooted trees. SIAM
J. Comput., 9(4):706-712, 1980. doi:10.1137/0209055.

4 Michael Buro. On the maximum length of Huffman codes. Inf. Process. Lett., 45(5):219-223,
1993. doi:10.1016/0020-0190(93)90207-P.

5 Jeremy Chizewer, Stephen Melczer, J. lan Munro, and Ava Pun. Enumeration and succinct
encoding of AVL trees. In Proc. AofA, volume 302 of LIPIcs, pages 2:1-2:12, 2024. doi:
10.4230/LIPICS.AOFA.2024.2.

6 Nachum Dershowitz and Shmuel Zaks. Enumerations of ordered trees. Discret. Math.,
31(1):9-28, 1980. doi:10.1016/0012-365X(80)90168-5.

7 Sen-Peng Eu, Seunghyun Seo, and Heesung Shin. Enumerations of vertices among all rooted
ordered trees with levels and degrees. Discret. Math., 340(9):2123-2129, 2017. doi:10.1016/
J.DISC.2017.04.007.

8 Frank Gray. Pulse code communication. US Patent 2632058, 1953.

9 Roberto Grossi. Enumeration of paths, cycles, and spanning trees. In FEncyclopedia of
Algorithms, pages 640—-645. Springer, 2016. doi:10.1007/978-1-4939-2864-4_728.

10 Guy Jacobson. Space-efficient static trees and graphs. In Proc. FOCS, pages 549-554, 1989.
doi:10.1109/SFCS.1989.63533.

11 Leon Gordon Kraft. A device for quantizing, grouping, and coding amplitude-modulated
pulses. Master’s thesis, Massachusetts Institute of Technology, 1949.

12 Shin-Ichi Nakano and Takeaki Uno. Constant time generation of trees with specified diameter.
In Proc. WG, volume 3353 of LNCS, pages 33-45, 2004. doi:10.1007/978-3-540-30559-0_3.

13 Frank Ruskey and Andrzej Proskurowski. Generating binary trees by transpositions. J.
Algorithms, 11(1):68-84, 1990. doi:10.1016/0196-6774(90)90030-1I.

14 Ivan Stojmenovic. A simple systolic algorithm for generating combinations in lexicographic
order. Computers €& Mathematics with Applications, 24(4):61-64, 1992.

15 Takeaki Uno. Two general methods to reduce delay and change of enumeration algorithms.
Technical Report NII-2003-004E, NII Technical Report, 2003. doi:10.20736/0000000385.

16 Timothy R. Walsh. Loop-free sequencing of bounded integer compositions. Journal of
Combinatorial Mathematics and Combinatorial Computing, 33:323-345, 2000.

17 Katsuhisa Yamanaka, Yota Otachi, and Shin-Ichi Nakano. Efficient enumeration of ordered
trees with k leaves. Theor. Comput. Sci., 442:22-27, 2012. doi:10.1016/j.tcs.2011.01.017.

18 Shmuel Zaks. Lexicographic generation of ordered trees. Theor. Comput. Sci., 10:63-82, 1980.
do0i:10.1016/0304-3975(80)90073-0.

Appendix

Table 1 Symbols used in this article.

symbol meaning

w distribution

d maximal depth and dimension of w
n number of leaves

m maximum value in w

T complement vector

Yy subcomplement vector
f(w) Zle w; /2" weight function
U] ni = g(i,w)

Vi g(t,w +x)

g(i,w) Zd w; /27 for i € [1..d]

j=i

8:19

Grossi's Festschrift

https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1137/0209055
https://doi.org/10.1016/0020-0190(93)90207-P
https://doi.org/10.4230/LIPICS.AOFA.2024.2
https://doi.org/10.4230/LIPICS.AOFA.2024.2
https://doi.org/10.1016/0012-365X(80)90168-5
https://doi.org/10.1016/J.DISC.2017.04.007
https://doi.org/10.1016/J.DISC.2017.04.007
https://doi.org/10.1007/978-1-4939-2864-4_728
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1007/978-3-540-30559-0_3
https://doi.org/10.1016/0196-6774(90)90030-I
https://doi.org/10.20736/0000000385
https://doi.org/10.1016/j.tcs.2011.01.017
https://doi.org/10.1016/0304-3975(80)90073-0

On String and Graph Sanitization

Giulia Bernardini &
University of Milan, Italy

Huiping Chen &
University of Birmingham, UK

Grigorios Loukides =
King’s College London, UK

Solon P. Pissis &
CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

—— Abstract
Data sanitization is a process that conceals sensitive patterns from a given dataset. A secondary goal
is to not severely harm the utility of the underlying data along this process. We survey some recent
advancements on two related data sanitization topics: string and graph sanitization. In particular,
we highlight the important contributions of our friend Prof. Roberto Grossi along this journey.

2012 ACM Subject Classification Theory of computation — Pattern matching

Keywords and phrases data privacy, data sanitization, string algorithms, graph algorithms
Digital Object Identifier 10.4230/0OASIcs.Grossi.2025.9

Category Research

Funding Giulia Bernardini: Member of the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale
di Alta Matematica (GNCS-INdAM).

Solon P. Pissis: Supported in part by the PANGATA and ALPACA projects that have received
funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Sktodowska-Curie grant agreements No 872539 and 956229, respectively.

Acknowledgements We want to thank Prof. Roberto Grossi for this journey (and more). We would

also like to thank the editors for providing us with the opportunity and pleasure to write this paper.

1 Introduction

Disseminating string data is often performed to support applications such as location-based
service provision or DNA sequence analysis. However, this dissemination may reveal sensitive
patterns that represent some form of private or confidential knowledge (e.g., trips to STD
clinics from a string representing a user’s visited location or a genetic disorder from a
string representing an individual’s DNA sequence). To prevent sensitive patterns from being
exposed, string data must often undergo sanitization [3, 5], a process that conceals sensitive
patterns from the data, without, however, severely harming the utility of the data.

Another fundamental data type is graphs. Graphs represent data in domains such as
social networks, communication networks, or the Web. In these domains, users form dense
or cohesive groups, referred to as communities. For example, many of the users who belong
to the same political group may also be connected with each other on a social network,
creating a community in the graph representing this social network. There is much work
in the literature on mining communities from a graph [10]. Our work in [8] studied how to
break such communities from a given graph without, however, severely harming the utility
of the graph. This process can also be viewed as sanitization, in the sense that communities
can convey private or confidential information, such as membership in a political group.
? Giulia Bernardini, .Huiping Chen, .Grrigorios Loukides, and Solon P. Pissis;

37 icensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 9; pp. 9:1-9:10

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:giulia.bernardini@unimi.it
https://orcid.org/0000-0001-6647-088X
mailto:h.chen.13@bham.ac.uk
https://orcid.org/0000-0003-1782-667X
mailto:gloukides@acm.org
https://orcid.org/0000-0003-0888-5061
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
https://doi.org/10.4230/OASIcs.Grossi.2025.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

9:2

On String and Graph Sanitization

The authors feel extremely privileged to have worked with Prof. Grossi on string and
graph sanitization. Our collaboration with Prof. Grossi on these two areas started in
December 2018, when the first author was a Ph.D. student at the University of Milano-
Bicocca, the second author was a Ph.D. student supervised by the third author at King’s
College London, and the last author had recently moved from the latter institution to CWI.

Prof. Grossi has made key contributions in the topics of string and graph sanitization.
In addition, he shaped not only the definitions of these problems, the hardness results, and
the algorithms to solve them but also the practical implementations of the algorithms. In
the following, we summarize the most important of these contributions.

In the first step of string sanitization (sanitizing sensitive patterns), Prof. Grossi had
the idea of using a special letter to conceal the occurrences of the sensitive patterns in
the input string. In particular, this led to a novel string transformation that preserves the
order and frequencies of all k-mers of the string. This transformation is very different from
existing approaches that deleted [12] or permuted [13] letters of the string, and led to the first
approach that provided utility guarantees. Prof. Grossi also played a key role in developing
optimal algorithms that employ the aforementioned transformation. In the second step of
string sanitization (replacing the occurrences of the special letter), Prof. Grossi came up
with an ingenious NP-hardness proof of the problem. This constituted an important step
in our work on string sanitization as it opened the way to design efficient fixed-parameter
tractable algorithms to tackle the problem; see Section 2.

In graph sanitization, Prof. Grossi had an innovative idea that helped us evaluate the
effectiveness of our heuristic algorithms on larger datasets compared to those that our exact
algorithm could handle. Specifically, he suggested using a lower bound on the value of the
optimal solution that could also be computed efficiently and then comparing the lower bound
value with the value output by a heuristic. He also devised an algorithm to compute the
lower bound. If the lower bound and the value output by a heuristic are reasonably close,
then the heuristic is good because the optimal value lies between them; see Section 3.

Beyond his inestimable contributions to research, Prof. Grossi set an example with how
he interacts with others; always with respect, kindness, and true interest and willingness to
help. Also, the way Prof. Grossi cheered us up when the results of the work were not as
expected was crucial to continue and improve not only the results, but also ourselves.

2 String Sanitization

2.1 The Model: Combinatorial String Dissemination

The Combinatorial String Dissemination (CSD) model was introduced by Bernardini et al [3].
In this model, we have a string W that we would like to disseminate for analysis. Toward
effective dissemination, a dissemination that achieves a good trade-off between privacy and
utility, we need to specify a set of privacy-related constraints and a set of utility-related
properties, to then determine the best possible sequence of edit operations to be applied to W
so that the utility-related properties are satisfied subject to the privacy-related constraints.

A specific CSD setting that has been considered by Bernardini et al [3] is the following.
The set of constraints (C1) is defined using an integer k£ > 0 and a set of length-k strings,
known as the set of sensitive patterns; in particular, it consists in strictly forbidding the
occurrence of any sensitive pattern in W’, the string to be constructed from W. The set of
properties is defined using two widely used string properties. The first one (P1) says that the
order of occurrence of the length-k non-sensitive patterns is preserved in W’; the second (P2)
says that the frequency of the length-k non-sensitive patterns is also preserved in W',

G. Bernardini, H. Chen, G. Loukides, and S. P. Pissis

This model leads to interesting combinatorial problems on strings [4, 3, 15, 6, 9, 5, 16, 2].
We define a few such problems in the following subsections and briefly describe optimal
algorithms for solving them or solid evidence as to why they are unlikely to be solved exactly.

2.2 Sanitizing Sensitive Patterns

In the TFS (Total order, Frequency, Sanitization) problem, we are given a string W =
W1]...W]n] of length n over an alphabet ¥, and we are asked to output a shortest string
X := W’ that satisfies C1, P1, and P2. The following example shows a TF'S instance.

» Example 1. Let W = aabaaaababbbaab, k = 4, and the set of sensitive patterns be
{aaaa, baaa,bbaa}. Then, X = aabaa#aaababbba#baab, for some letter # ¢ 3.

(Note that since # ¢ X, one could use the occurrences of # in X to learn about potential
occurrences of sensitive patterns in W; see Section 2.3.) The following result is known.

» Theorem 2 ([3]). The length of X is in ©(kn). Given the set of occurrences of sensitive
patterns in W, there exists an algorithm that solves TFS in the optimal O(kn) time.

The algorithm proceeds by reading W from left to right and constructs X, which is
initially empty. When the length-k substring S read is non-sensitive, it merges it with X.
Otherwise, it applies two rules. In the first rule (R1), given S, it constructs the string:

S"=S[1]...S[k —1]#S[2]...S[k].
Note that the letter # is a special letter that does not belong to the alphabet ¥ of W.
» Example 3. For S = baaa and k = 4, R1 constructs string S’ = baa#aaa.

In the second rule (R2), given S’ of length 2(k — 1) 4+ 1 obtained from R1, the algorithm
tries to check if a shorter string S’ is possible. In particular, when the k — 1 letters before #
are the same as the k — 1 letters after it, we remove the # and the & — 1 subsequent letters.
One can easily notice that the above edit operations on S’ will violate neither P1 nor P2.

» Example 4. Let S = aaaa and k = 4. R1 will construct string S’ = aaa#aaa. By applying
R2, we get S’ = aaa, which is a string of length k¥ — 1 = 3.

Instead of S, the string S’, produced by rules R1 and R2, is merged with X.

» Example 5. Consider the fragment F' = baaaa of W = aabaaaababbbaab, with k = 4,
and the set of sensitive patterns {aaaa,baaa,bbaa}. For S = baaa, R1 will construct string
S’ = baa#aaa resulting in fragment F’ = baa#aaaa. We will then need to deal with S = aaaa.
R1 will construct string S’ = aaa#aaa to replace it. However, applying R2, we get S’ = aaa,
which is shorter. Thus F' = baaaa will be replaced by fragment F" = baa#aaa.

By carefully implementing R1 and R2, we can construct string X in O(kn) time. As for
the length of X in the worst case, it suffices to construct the de Bruijn sequence of order
k — 1 as the input string W, and assign every other consecutive length-k substring to be a
sensitive pattern. Recall that a de Bruijn sequence of order k' over an alphabet X is a string
in which every possible length-%k" string over ¥ occurs exactly once as a substring. Thus, for
such an input string W, X must be of length Q(kn) because R2 cannot be applied.

The question that now arises naturally is whether we can hope for a shorter string W’ by
relaxing the constraints of the TFS problem. In response, Bernardini et al. [3] introduced
the following related problem. In the PFS (Partial order, Frequency, Sanitization) problem,

9:3

Grossi's Festschrift

9:4

On String and Graph Sanitization

we are given a string W of length n, and we are asked to output a shortest string Y := W’
that satisfies C1, IT1, and P2, where the II1 property is a relaxation of the P1 property: it
replaces the total order by a partial order saying that the order of occurrence of the length-%
non-sensitive patterns in maximal fragments with no # occurring remains the same.

» Example 6. Let W = aabaaaababbbaab, k = 4, and let the set of sensitive patterns be
{aaaa,baaa,bbaa}. Then, Y = aaababbba#aabaab, for some letter # # a and # # b.

The following result is known.

» Theorem 7 ([3]). Given the set of occurrences of sensitive patterns in W, there exists an
algorithm that solves PFS in the optimal O(n + |Y]) time.

(Note that the |Y| term in Theorem 7 accounts for the fact that Y can be longer than W.)
We briefly explain how we can arrive at Theorem 7. Consider that we have (a representation
of) string X obtained via TFS. If any two maximal #-free fragments of X, called blocks,
overlap by k — 1 letters, then we can further apply R2 while still satisfying I11 and P2.

» Example 8. Recall that for W = aabaaaababbbaab, k = 4, and the set of sensitive patterns
{aaaa,baaa,bbaa}, the TFS problem outputs X = aabaat#aaababbba#baab. Observe that
blocks aabaa and baab overlap by k — 1 letters, so we can apply R2 further.

Now, it might seem that we must solve the famously NP-hard Shortest Common Super-
string (SCS) problem [11] on the set of blocks originating from X to construct Y. Fortunately,
this is not the case as the allowed overlaps are of fized length k — 1. To solve this problem, we
map the prefix and suffix of length & — 1 of every block to an integer identifier. We can then
ignore the middle part of each block, thus transforming every block to a string of length 2.
After this reduction, we can solve SCS on a collection of two-letter strings in linear time [3].

2.3 Hide and Mine

Say we have completed the task in Section 2.2: sanitizing the occurrences of all sensitive
patterns by means of a special letter that we represent by #. Although sensitive patterns
are no longer present in the sanitized sequence, the occurrences of # reveal the locations
where they used to occur. It is not hard to imagine that a malicious adversary could use this
information to try and reconstruct the concealed information from the context surrounding
the #s. This is because, although the adversary cannot know precisely which special letter
has been used in the sanitization process, they know that it is (by definition) not part of the
original alphabet, and thus it can be relatively easily identified. Imagine that the dataset
consists of a sequence of locations: # could be a non-existing location or a location far away
from those in the original sequence. In a sequence of online purchases, # could be an item not
sold in a certain online store; in a genomic sequence, # is a letter that does not correspond
to any nucleotide base. In all such examples, it is not hard for an attacker to identify # with
a simple scan of the database and thus partially retrieve the concealed information.

Therefore, a complete sanitization pipeline should eventually replace the occurrences of #
with letters of the original alphabet. This immediately poses a problem: each replacement
introduces k new “spurious” occurrences of length-k patterns over the original alphabet, which
might influence downstream analysis results based on the frequency of length-k substrings.
This kind of analysis extracts length-k substrings that appear at least 7 times, for some fixed
integer 7, assuming that these 7-frequent patterns carry important information.

G. Bernardini, H. Chen, G. Loukides, and S. P. Pissis

The natural problem arising is to decide whether it is possible to replace every occurrence of
with some letter from the original alphabet such that: (i) no sensitive pattern is reintroduced;

and (ii) the set of 7-frequent non-sensitive patterns before and after sanitization is the same.

We term this problem Hide and Mine (HM). Intuitively, HM is hard because replacements
are not independent of one another: making a choice at one position could prevent feasible
choices from being available at other positions, while this would not have been the case when
making a different choice in the first place. But how does one prove its hardness?

The answer came from a brilliant idea by Prof. Grossi: we should reduce from the famous
Bin Packing [14] problem! More precisely, we should reduce from a variant of the problem
called Unique-Weights Bin Packing (UWBP). The reduction is far from being trivial: we
will provide a friendly, informal description of the proof in the rest of this section.

Reducing UWBP to Hide and Mine

The UWBP problem asks us to decide whether NV items can be packed into M bins, each
bin with a fixed capacity B that cannot be exceeded: each item ¢ has a given weight w;, and
no two items have the same weight.

» Example 9. Consider the instance Z+ of UWBP consisting of M = 3 bins, each with

capacity B =7, and the N =5 items with weights w1 = 2, wo = 3, w3 = 4,wq4 = 5, ws = 6.

The answer to Z7 is positive: it suffices, for instance, to pack item 5 in one bin, items 2
and 3 in another bin, and items 1 and 4 in a third bin. Now consider a second instance
Z~ with the same bins and the same number of items as ZT, but this time the weights are
wy = 3, w2 = 4, w3 = 5,wy = 6,ws = 7. The answer to Z~ is negative: there is no way to
distribute all the 5 items into the 3 bins without exceeding the capacity of any bin.

The problem UWBP is strongly NP-complete, that is, it remains NP-complete even when
all of its parameter values (i.e., the bin capacity and the item weights) are polynomially
bounded in N, the number of items.

Prof. Grossi’s intuition was that bins could be modelled by unique alphabet letters, string
gadgets could be constructed to model the event “item j is packed into bin i” and to force
each item to be packed in at least one bin, the frequency threshold 7 could be tuned to encode
the bin capacity B, and the set of sensitive patterns could be chosen to avoid situations in

the HM instance that do not correspond to any scenario in the original UWBP instance.

Let us now present this idea in detail (but informally) using instance Z* of Example 9. The
alphabet of the HM instance we construct from ZT consists of the three letters z, y, $, and
a unique letter for each bin: we will denote b1, by and b3 the letters corresponding to bin
number 1, 2, and 3, respectively, and use # to denote the special character to be replaced in
the input string. The value of k (length of patterns) of HM is chosen to be the maximum
weight of the input items plus 3: in the case of ZT, we have k =6+ 3 = 9.

Item-in-bin Gadgets

The first class of gadgets consists of a string ¢;; for each bin 7 and each item j, containing a
single occurrence of #. Each of these string gadgets is paired with a set of sensitive patterns
designed in such a way that only two replacements are possible: the first one models the
event “pack item j into bin ¢” by introducing w; occurrences of a length-k substring specific
to bin 7; the second one naturally corresponds to item j not being packed in bin ¢. These
string gadgets each have a length of 2k — 1 and are of the following form:

M e N

k—l-w; w;—1 k—1

9:5

Grossi's Festschrift

9:6

On String and Graph Sanitization

» Example 10. Consider instance ZT of Example 9. The gadget ¢13, modelling the possibility
of packing item 3 in the first bin, is the string t135 = byxxxzb1b1b1#b101b101b1b1b1b1. Four
length-k strings, with k = 9, are added to the set of sensitive patterns to rule out the possib-
ility of replacing # with by, b3, $ or y in t13; namely, bob1b1b1b1b1b1b101, b3b1b1b1b1b1b1b1b1,
b18b1b101b1b1b1b1, and byyb1b1b1b1b1b1b1. It should be clear that there are only two replace-
ment options: replacing # by z, corresponding to the choice not to pack the item 3 in
the first bin, and replacing it by by, corresponding to the opposite choice. Replacement
of # with b; introduces w3z = 4 occurrence of the string b1b1b1b1b1b1b1b1b1, specific to
bin 1. The gadget t11, modelling the possibility of packing item 1 in the first bin, is the
string t11 = bizxxrxxbi#b1b1b1b1b1b1b1b1; the associated sensitive patterns are the same as
t13. Replacing # with by introduces w; = 2 occurrences of b1b1b1b1b1b1b1b1b1. The gadget
ta3, modelling the possibility of packing item 3 in the second bin, has the same form as
t13, except by is replaced by by; the associated sensitive patterns are bibobobabobobobsbs,
bngbengbeQbeQ, b2$b2b2b2b2b2b2b2 and bgbebeQbengbQ, leaving b2 and z as the only
possible replacements.

The other gadgets are obtained similarly to those in Example 10; see [5] for the formal
definitions.

Each-item-in-some-bin Gadgets

The second class of gadgets consists of a string u;; for each bin 7 and each item j: these string
gadgets also contain an occurrence of # each and are paired with some sensitive patterns.
The role of these gadgets is to ensure that each item j is packed in some bin, corresponding
to replacing # with b; in at least one of the gadgets ¢;;. The latter is enforced by designing
u;; and the corresponding sensitive patterns so that: (i) # can only be replaced by either x
or y; (ii) replacing # by z in u,; introduces an occurrence of a length-% string that is also

introduced when replacing # by x in t;7; and choosing the frequency threshold 7 in such a

i7

way that (iii) if # is replaced by z in t;;, then # in u;; must be replaced by y; and (iv) #

cannot be replaced by y in u;; for all 4, as otherwise, the frequency threshold is exceeded.
These string gadgets each have a length of 2k — 1 and are of the following form:

Uj=bxz...xb..bi#y..yz...xyY
k—1—-w; w;—1 w k—w;—2

» Example 11. Consider again instance Z* of Example 9. For bin 1 and item 1 we
have w11 = bhjzzxxzxrrzbi#yyrrrxxy and four associated sensitive patterns: byyyxzzzxy,
boyyxxxrrry, bsyyrrrrry, and by Syyrrrrr, forbidding replacing # with any letter but letters
x or y. Note that replacing # by z in w1; introduces an occurrence of the length-k string
bizzrrxxbx, which is also introduced when replacing # by x in ¢1; (thus not packing item 1
in bin 1: see Example 10). For bin 2 and item 3 we have ugg = boxazazzbobobo#tyyyyxzry and
the associated sensitive patterns: biyyyyzzzy, boyyyyrzzy, bsyyyyrrry, and bySyyyyrrr.

The other gadgets u;; and their associated sensitive patterns can be obtained similarly to
those in Example 11; see [5] for the formal definitions.

G. Bernardini, H. Chen, G. Loukides, and S. P. Pissis

Frequency Threshold and Final Construction

It would be tempting to set the frequency threshold 7 to the bin capacity B, since when
is replaced by b; in a gadget t;; it creates exactly w; occurrences of b; - - - b;; exceeding
the capacity of bin ¢ should correspond to introducing more than B occurrences of b; - - - b;.
However, to ensure that the only feasible solutions to HM correspond to packing each item in
some bin, we need to bound the number of allowed occurrences of other non-sensitive patterns
like those introduced by replacing # in gadgets w;;, which is linked to the number M of bins
rather than to their capacity B. For this reason, in the reduction, we set 7 = max{B, M } +1:
to maintain the correspondence between the number of occurrences of length-k strings b; - - - b;
and bin capacity, we append to the final string constructed by the reduction 7 — B — 1
occurrences of b; - - - b; for each 1.

The final string is obtained by concatenating all gadgets ¢;; and u;; interleaved with
$$, followed by an appropriate number of occurrences of some of the strings introduced by

replacements in the gadgets. For a formal proof of this reduction, we refer the reader to [5].

» Theorem 12 ([5]). The HM problem is strongly NP-complete.

3 Graph Sanitization

3.1 The Community Breaking Problem

The community structure is a fundamental property of a graph, and understanding how
this structure can be maintained or disrupted is crucial. In our graph sanitization work, we
introduced the following general Community Breaking (CB) problem: Given an undirected
graph G(V, E), a set of nodes U C V, and a notion of community, identify a smallest subset
E’ of E, so that no community in G’ = G(V, E \ E’) contains a node in U.

In [8], we considered a specific community notion, namely the k-truss. A k-truss is a
subgraph of a graph in which every edge is part of at least k — 2 triangles formed entirely
within the subgraph; see Fig. 1a for an example.

Building on the CB problem and the k-truss notion, we defined MIN-k-TBS (Minimum
k-Truss Breaking Set): Given an undirected graph G(V, E) and a parameter k, find a smallest
subset E’ of E such that G(V, E'\ E’) contains no k-truss. MIN-k-TBS is obtained from the
CB problem by considering communities based on the notion of k-truss and U = V.

O, @@

(a) 4-truss. (b) 4-truss-free graph.

Figure 1 (a) The subgraph induced by the solid edges is a 4-truss because every edge of the
subgraph is contained in at least 4 — 2 = 2 triangles of the subgraph. (b) The graph obtained after
deleting the set {(0,1),(3,4),(5,6)} of (dashed) edges contains no 4-truss.

» Example 13. An optimal solution to MIN-k-TBS with & = 4 in Fig. 1b is the set of
(dashed) edges E' = {(0,1),(3,4),(5,6)}: deleting these edges leads to a graph with no
4-truss and deleting any fewer edges leads to a graph that contains a 4-truss.

9:7

Grossi's Festschrift

9:8

On String and Graph Sanitization

The MIN-k-TBS problem is intuitively challenging: there are up to 2/Z! edge subsets that
one may consider; and k-trusses have a hierarchical structure. For example, a (k + 4) truss,
for any k£ and 7 > 0, is also a k-truss and contains at least (k?)
minimum set of edges to delete to make a graph triangle-free is known to be NP-hard [17],
and that is exactly the MIN-3-TBS problem. Assuming the Exponential Time Hypothesis,
we cannot even solve this problem in 200D . O time [1]. We proved that MIN-.£-TBS is
also NP-hard for k£ > 3 using a reduction from MIN-3-TBS.

smaller k-trusses. Finding a

» Theorem 14 ([8]). For every k > 3, MIN-k-TBS is NP-hard.

Here is a brief sketch of our proof. We prove that for every k > 3, the MIN-k-TBS problem is
NP-hard by reducing from the known NP-hard MIN-3-TBS problem, which involves making
a graph triangle-free. In our reduction, for each triangle in the original graph, we add k — 3
extra nodes to form a clique with the triangle’s vertices. This construction ensures that a
k-truss exists in the new graph Gy if and only if a triangle exists in the original graph. It
follows that solving MIN-3-TBS for G is equivalent to solving MIN-k-TBS for G. Therefore,
the problem MIN-k-TBS is NP-hard for every k > 3.

We also presented an exact exponential-time algorithm to solve the MIN-k-TBS problem.
The algorithm first enumerates all minimal k-trusses (i.e., a k-truss for which removing any
single edge would destroy the k-truss) and then computes a minimum transversal of the
corresponding hypergraph. Consequently, its overall time complexity is exponential in the
number |E| of edges. To practically improve on the efficiency of this algorithm, we developed
three heuristics, MBHg, MBH¢, and SNH, which run in polynomial time; see [8] for details.

3.2 Lower Bound on the Size of OPT

Due to the exponential-time complexity of our exact algorithm, computing the optimal

solution is a heavy task even for small graphs with a few hundred nodes. Prof. Grossi

designed an algorithm to compute a lower bound on the size of the optimal solution, which
facilitates the evaluation of our heuristic algorithms.

The main idea is to use cliques as a “proxy” for trusses. Since a k-clique (i.e., a complete
subgraph consisting of k vertices, where every pair of vertices is directly connected by an
edge) is a k-truss, we must at the very least make the input graph G free from k-cliques to
solve MIN-£-TBS. The algorithm works in three phases:

1. Computes an edge clique partition of G. We partition the graph into edge-disjoint cliques.
This partitioning ensures that each edge belongs to exactly one clique, allowing us to
analyse dense substructures individually.

2. Applies the best available lower bound on each clique. For each clique, we estimate the
minimum number of edges that must be removed to eliminate all k-trusses within it. We
employ two complementary approaches: (1) a bound derived from Turan’s theorem [7],
which limits the maximum number of edges in a graph that avoids a clique of size k;
and (2) a triangle-based approach, as each edge in a k-truss must belong to at least k -2
triangles — counting the number of triangles gives an estimate of the minimum deletions
required.

3. Outputs a lower bound on the size of the optimal solution by summing the bounds of the
cliques. This is possible because the cliques are all edge-wise disjoint.

The overall time complexity of our LB algorithm is O(qA?|E|), where ¢, A, and |E| are
the size of the largest clique, the highest degree, and the number of edges in G, respectively.

G. Bernardini, H. Chen, G. Loukides, and S. P. Pissis

Interestingly, the lower bound produced by the above algorithm helped us demonstrate

that our heuristics were very competitive to the exact algorithm on large instances in terms
of solution quality, even if we were unable to run the exact algorithm on these instances!

—— References

1

10

11

12

13

14

N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Dichotomy results on the hardness of
H-free edge modification problems. SIAM Journal on Discrete Mathematics, 31(1):542-561,
2017. doi:10.1137/16M1055797.

Giulia Bernardini, Philip Bille, Inge Li Gogrtz, and Teresa Anna Steiner. Differentially
private substring and document counting. Proc. ACM Manag. Data, 3(2):95:1-95:27, 2025.
doi:10.1145/3725232.

Giulia Bernardini, Huiping Chen, Alessio Conte, Roberto Grossi, Grigorios Loukides, Nadia
Pisanti, Solon P. Pissis, Giovanna Rosone, and Michelle Sweering. Combinatorial algorithms
for string sanitization. ACM Trans. Knowl. Discov. Data, 15(1):8:1-8:34, 2021. doi:10.1145/
3418683.

Giulia Bernardini, Huiping Chen, Grigorios Loukides, Nadia Pisanti, Solon P. Pissis, Leen
Stougie, and Michelle Sweering. String sanitization under edit distance. In 31st Annual
Symposium on Combinatorial Pattern Matching (CPM), volume 161 of LIPIcs, pages 7:1-T:14.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPICS.CPM.2020.7.
Giulia Bernardini, Alessio Conte, Garance Gourdel, Roberto Grossi, Grigorios Loukides,
Nadia Pisanti, Solon P. Pissis, Giulia Punzi, Leen Stougie, and Michelle Sweering. Hide and
mine in strings: Hardness, algorithms, and experiments. IEEE Trans. Knowl. Data Eng.,
35(6):5948-5963, 2023. doi:10.1109/TKDE.2022.3158063.

Giulia Bernardini, Alberto Marchetti-Spaccamela, Solon P. Pissis, Leen Stougie, and Michelle
Sweering. Constructing strings avoiding forbidden substrings. In $2nd Annual Symposium
on Combinatorial Pattern Matching (CPM), volume 191 of LIPIcs, pages 9:1-9:18. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021. doi:10.4230/LIPICS.CPM.2021.9.

B. Bollobés. Extremal graph theory. Courier Corporation, 2004.

Huiping Chen, Alessio Conte, Roberto Grossi, Grigorios Loukides, Solon P. Pissis, and Michelle
Sweering. On breaking truss-based and core-based communities. ACM Trans. Knowl. Discov.
Data, 18(6):135:1-135:43, 2024. doi:10.1145/3644077.

Huiping Chen, Changyu Dong, Liyue Fan, Grigorios Loukides, Solon P. Pissis, and Leen
Stougie. Differentially private string sanitization for frequency-based mining tasks. In IEEE
International Conference on Data Mining (ICDM), pages 41-50. IEEE, 2021. doi:10.1109/
ICDM51629.2021.00014.

Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng, and Xuemin
Lin. A survey of community search over big graphs. VLDB J., 29(1):353-392, 2020. doi:
10.1007/S00778-019-00556-X.

John Gallant, David Maier, and James A. Storer. On finding minimal length superstrings. J.
Comput. Syst. Sci., 20(1):50-58, 1980. doi:10.1016/0022-0000(80)90004-5.

Aris Gkoulalas-Divanis and Grigorios Loukides. Revisiting sequential pattern hiding to enhance
utility. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1316-1324, 2011. doi:10.1145/2020408.2020605.

Robert Gwadera, Aris Gkoulalas-Divanis, and Grigorios Loukides. Permutation-based sequen-
tial pattern hiding. In IEEFE 13th International Conference on Data Mining, pages 241250,
2013. doi:10.1109/ICDM.2013.57.

Edward G. Coffman Jr., Gdbor Galambos, Silvano Martello, and Daniele Vigo. Bin packing
approximation algorithms: Combinatorial analysis. In Ding-Zhu Du and Panos M. Pardalos,
editors, Handbook of Combinatorial Optimization, pages 151-207. Springer, 1999. doi:10.
1007/978-1-4757-3023-4_3.

9:9

Grossi's Festschrift

https://doi.org/10.1137/16M1055797
https://doi.org/10.1145/3725232
https://doi.org/10.1145/3418683
https://doi.org/10.1145/3418683
https://doi.org/10.4230/LIPICS.CPM.2020.7
https://doi.org/10.1109/TKDE.2022.3158063
https://doi.org/10.4230/LIPICS.CPM.2021.9
https://doi.org/10.1145/3644077
https://doi.org/10.1109/ICDM51629.2021.00014
https://doi.org/10.1109/ICDM51629.2021.00014
https://doi.org/10.1007/S00778-019-00556-X
https://doi.org/10.1007/S00778-019-00556-X
https://doi.org/10.1016/0022-0000(80)90004-5
https://doi.org/10.1145/2020408.2020605
https://doi.org/10.1109/ICDM.2013.57
https://doi.org/10.1007/978-1-4757-3023-4_3
https://doi.org/10.1007/978-1-4757-3023-4_3

9:10

On String and Graph Sanitization

15

16

17

Takuya Mieno, Solon P. Pissis, Leen Stougie, and Michelle Sweering. String sanitization under
edit distance: Improved and generalized. In 32nd Annual Symposium on Combinatorial Pattern
Matching (CPM), volume 191 of LIPIcs, pages 19:1-19:18. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, 2021. doi:10.4230/LIPICS.CPM.2021.19.

Teresa Anna Steiner. Differentially private approximate pattern matching. In 15th Innovations
in Theoretical Computer Science Conference, (ITCS), volume 287 of LIPIcs, pages 94:1-94:18.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPICS.ITCS.2024.
94.

M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297-309, 1981.
doi:10.1137/0210021.

https://doi.org/10.4230/LIPICS.CPM.2021.19
https://doi.org/10.4230/LIPICS.ITCS.2024.94
https://doi.org/10.4230/LIPICS.ITCS.2024.94
https://doi.org/10.1137/0210021

Faster Run-Length Compressed Suffix Arrays

Nathaniel K. Brown &

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
Travis Gagie! =

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Giovanni Manzini &
Department of Computer Science, University of Pisa, Italy

Gonzalo Navarro &
Department of Computer Science, University of Chile, Santiago, Chile

Marinella Sciortino &
Department of Mathematics and Computer Science, University of Palermo, Italy

—— Abstract

We first review how we can store a run-length compressed suffix array (RLCSA) for a text T of
length n over an alphabet of size o whose Burrows-Wheeler Transform (BWT) consists of r runs in
(0] (r log(n/r) + rlogo + or) bits such that later, given character a and the suffix-array (SA) interval
for P, we can find the SA interval for aP in O(logr, + loglogn) time, where r, is the number of
runs of copies of a in the BWT. We then show how to modify the RLCSA such that we find the SA
interval for aP in only O(logr,) time, without increasing its asymptotic space bound. Our key idea
is applying a result by Nishimoto and Tabei (ICALP 2021) and then replacing rank queries on sparse
bitvectors by a constant number of select queries. We also review two-level indexing and discuss how
our faster RLCSA may be useful in improving it. Finally, we briefly discuss how two-level indexing
may speed up a recent heuristic for finding maximal exact matches of a pattern with respect to an
indexed text.

2012 ACM Subject Classification Theory of computation — Pattern matching

Keywords and phrases Run-length compressed suffix arrays, interpolative coding, two-level indexing
Digital Object Identifier 10.4230/OASIcs.Grossi.2025.10

Category Research

Funding Nathaniel K. Brown: Supported in part by a Johns Hopkins University Computer Science
PhD Fellowship and NIH grants R21HG013433 and RO1HG011392.

Travis Gagie: Funded in part by NSERC grant RGPIN-07185-2020.

Giovanni Manzini: Partially supported by the NextGeneration EU programme PNRR ECS00000017
Tuscany Health Ecosystem (Spoke 6, CUP: 153C22000780001) and by the project PAN-HUB funded
by the Italian Ministry of Health (ID: T4-AN-07, CUP: 153C22001300001).

Gonzalo Navarro: Funded in part by CeBiB under Basal Funds FB0001 and AFB240001, ANID,
Chile.

Marinella Sciortino: Partially supported by the project “ACoMPA” (CUP B73C24001050001) funded
by the NextGeneration EU programme PNRR ECS00000017 Tuscany Health Ecosystem (Spoke 6)
and by MUR PRIN project “PINC” (no. 2022YRB97K).

Acknowledgements Many thanks to the first author’s CSCI 4419 / 6106 students Anas Alhadi,
Nour Allam, Dove Begleiter, Nithin Bharathi Kabilan Karpagavalli, Suchith Sridhar Khajjayam and

Hamza Wahed, and to Christina Boucher, Ben Langmead, Jouni Sirén and Mohsen Zakeri.

! Corresponding author.

© Nathaniel K. Brown, Travis Gagie, Giovanni Manzini, Gonzalo Navarro, and Marinella Sciortino;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.

Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 10; pp. 10:1-10:15

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:nbrown99@jh.edu
https://orcid.org/0000-0002-6201-2301
mailto:travis.gagie@dal.ca
https://orcid.org/0000-0003-3689-327X
mailto:giovanni.manzini@unipi.it
https://orcid.org/0000-0002-5047-0196
mailto:gnavarro@dcc.uchile.cl
https://orcid.org/0000-0002-2286-741X
mailto:marinella.sciortino@unipa.it
https://orcid.org/0000-0001-6928-0168
https://doi.org/10.4230/OASIcs.Grossi.2025.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

10:2

Faster RLCSAs

1 Introduction

Grossi and Vitter’s compressed suffix arrays (CSAs) [11] and Ferragina and Manzini’s FM-
indexes [8] are sometimes treated as almost interchangeable, but their query-time bounds are
quite different. With a CSA for a text T of length n over an alphabet of size o, when given a
character a and the suffix-array (SA) interval for a pattern P we can find the SA interval for
aP in O(logn,) time, where n, is the number of occurrences of a in the text; with an FM-
index we use O(log o) time. This difference carries over to run-length compressed suffix arrays
(RLCSAs) [18, 24] and run-length compressed FM-indexes (RLFM-indexes) [10, 17], with
both taking space proportional to the number r of runs in the Burrows-Wheeler Transform
(BWT) of the text but the former being generally faster for texts over large alphabets
with relatively few runs of each character, and the latter being faster for texts over smaller
alphabets.

In Section 2 we review (with some artistic license) CSAs and RLCSAs. In Subsec-
tion 3.1 we show how to use interpolative coding to build an RLCSA for T that takes
O (rlog(n/r) 4+ rlogo + o) bits and allows us to find the SA interval for aP from that of P
in O(logr, + loglogn) time, where r, is the number of those runs in the BWT containing
copies of a. In Subsection 3.2 we review a result by Nishimoto and Tabei [20] about splitting
the runs in the BWT so that we can evaluate LF in constant time, without increasing the
number of runs by more than a constant factor. In Subsection 3.3 we present our main result:
how to modify the RLCSA from Section 2 such that finding the SA interval for aP takes
only O(logr,) time, without increasing the asymptotic space bound. In Section 4 we discuss
two-level indexing, for which we build one index for the text and another for the parse of
the text, and how our faster RLCSA may be more suitable for indexing parses than current
options. Finally, in Section 5 we briefly discuss how two-level indexing may speed up a recent
heuristic for finding long maximal exact matches (MEMs) of a pattern with respect to an
indexed text.

2 Preliminaries

Suppose we are given a text T[0..n — 1] over an alphabet of size ¢ and asked to index it
such that, given a pattern P[0..m — 1], we can quickly count the number of occurrences
of P in T. More specifically, we want to find the interval in the suffix array (SA) of T
containing the starting positions of occurrences of P. Consider the matrix whose rows are
the lexicographically sorted cyclic shifts of T and let F' and L be the first and last column of
that matrix, respectively; this means F' contains the characters in T in lexicographic order
and L is the BWT of T

2.1 Compressed suffix arrays

The key idea behind compressed suffix arrays (CSAs) is to store ¥[0..n — 1] compactly
while supporting certain searches on it quickly, where ¥[0..n — 1] is the permutation of
{0,...,n —1} such that W[i] is the position of SA entry (SA[i] + 1) mod n in SA[0..n — 1] or,
equivalently, the position in L of F[i]. (This means ¥ is the inverse of the LF mapping used
in FM-indexes.) By the definition, ¥ consists of at most ¢ increasing intervals — one for each
distinct character that occurs in the text, corresponding to the interval of suffixes starting
with that character — and if we can support fast binary searches on these intervals then we
can support fast pattern matching.
For example, consider the text

T = CCTGGGCGATSCTTACACGATSGTTACCAGCTSCTTACGCGCTSCTGACGAATTSCTTACGCGATH#

N. K. Brown, T. Gagie, G. Manzini, G. Navarro, and M. Sciortino

for which SA, ¥, F and L are shown on the left in Figure 1. If we know SA[22..28] is the SA
interval for CG (in the green rectangle) and we want the SA interval for GCG, then we can
search in the increasing interval

W[36..48] = 6,9, 14, 15, 16, 23,24, 28,29, 30, 42, 46, 63

for G (in the red rectangle, with ¥ values between 22 and 28 shown as orange arrows and
the others shown as black arrows) for the successor W[41] = 23 of 22 and the predecessor
U[43] = 28 of 28. We thus learn that the SA interval for GCG is SA[41..43] (in the blue
rectangle). Knowing this, we can continue backward stepping.

2.2 Run-length compressed suffix arrays revisited

Run-length compressed suffix array (RLCSA) were introduced in [24] for indexing highly
repetitive collections. In this section we present an alternative, but functionally equivalent,
description of RLCSAs which is more suitable for describing our improvements.

» Definition 1. For a text T[0..n—1], the array L'[0..r — 1] stores the sequence of r characters
in the runs of the run-length encoding of L.

» Definition 2. For a text T[0..n — 1], the array F'[0..r — 1] stores the r characters in L' in
lexicographic order.

» Definition 3. For a text T[0..n—1], the array W'[0..r —1] is the permutation of {0,...,r—1}
such that U'[i] is the position of F'[i] in L'.

In this paper we view a RLCSA as a data structure storing ¥’[0..r — 1] compactly while
supporting certain searches on it quickly. By the definition of ¥’, it still consists of at most
o increasing intervals — one for each distinct character that occurs in T, corresponding to
the interval of suffixes starting with that character — and if we can still support fast binary
searches on these intervals then we can still support fast pattern matching.

For example, consider

T = CCTGGGCGATSCTTACACGATSGTTACCAGCTSCTTACGCGCTSCTGACGAATTSCTTACGCGAT#

again, for which ', F" and L’ are shown on the right in Figure 1. If we know the SA interval
SA[22..28] for CG starts at offset 0 in the L run of character L'[12] and ends at offset 1 in the
L run of character L'[15] (in the green rectangle) and we want the SA interval for GCG, then
we can search in the increasing interval

U'[25..33] = 1,3,7,13, 15, 22, 25, 39

for G (in the red rectangle, with ¥’ values between 12 and 15 shown as orange arrows and
the others shown as black arrows) for the successor ¥/[28] = 13 of 12 and the predecessor
0'[29] = 15 of 15.

Because L’ and F’ do not have the predecessor-successor relationship of L and F, we
cannot deduce that the SA interval for GCG starts in the L run of character L’[28] and ends
in the L run of character L'[29] (and, in fact, in this example it does not). Instead, we store
two n-bit SD-bitvectors [21], By, and Bp, with r copies of 1 each. The 1s in By, mark the
starting positions of runs in L and the 1s in Br mark the positions in F' of the marked
characters in L. In our example

Br = 111001101110011111111111000101110110111001010011110000010101111000
By = 100000110111011001011111010010011100111000110111111111110001011110.

10:3

Grossi's Festschrift

10:4

Faster RLCSAs

0~ DU =W~ O .
oo

o cclkoccalcncaccacahacccaachacarrrreerrrrrrwnnmny &

C
A
A
G
A
50 ¢
53 $
59 $
60 c C
62 $
64 $ T
(i3 Z 3
3 c c
9 T G
14 C
15 c C
Ll e = A
i1 60 23 cl
12 5 24 /c G
3 28
a0 20 C T
46529 30 G A $
146 R e e
a7 346 G T A
482 63 G $ c
o 64 0T X
50 42 1T c A
51 9 2 T A
52 5 3T T T
3 31 4T c
54 20 5 T A C
5 13 7T T A
%6 24 8 T T
57 57 11 T T T
5 3 12 T T c
9 45 3T T c
60 2 47T T c A
61 52 52 T A
62 12 55 T c C
63 23 56 T G G
61 56 57 T c
65 34 58 T c C

Figure 1 For
T = CCTGGGCGATSCTTACACGATSGTTACCAGCTSCTTACGCGCTSCTGACGAATTSCTTACGCGATH

we show SA, ¥, F and L on the left and the &', F’ and L’ on the right. If we know SA[22..28] is
the SA interval for CG (in the green rectangle on the left) and we want the SA interval for GCG, then
we can search in the increasing interval

W[36..48] = 6,9, 14, 15, 16, 23, 24, 28, 29, 30, 42, 46, 63

for G (in the red rectangle on the left, with ¥ values between 22 and 28 shown as orange arrows and
the others shown as black arrows) for the successor W[41] = 23 of 22 and the predecessor ¥[43] = 28
of 28. We thus learn that the SA interval for GCG is SA[41..43] (in the blue rectangle on the left).

On the other hand, if we know SA[22..28] starts at offset 0 in the L run of character L'[12] — that is,
at offset 0 in the 13th run, counting from 1 — and ends at offset 1 in the L run of character L'[15]
(in the green rectangle on the right), then we can search in the increasing interval

U'[25..32] = 1,3,7,13,15,22, 25,39

for G (in the red rectangle, with ¥’ values between 12 and 15 shown as orange arrows and the others
shown as black arrows) for the successor ¥'[28] = 13 of 12 and the predecessor ¥'[29] = 15 of 15 (in
the blue rectangle on the right). We then use select and rank queries on two n-bit sparse vectors to
find the SA interval for GCG, the L runs containing that interval’s starting and ending positions, and
those positions’ offsets in those runs.

N. K. Brown, T. Gagie, G. Manzini, G. Navarro, and M. Sciortino

The interval Br[41..43] in Bf starting immediately before the bit with offset 0 in the block
whose starting position is marked with the 29th copy of 1 and ending immediately before
the bit with offset 1 in the block whose starting position is marked with the 30th copy of 1,
is shown in blue. (We are interested in the blocks marked with the 29th and 30th copies of 1
because we count from 0 in the j column in Figure 1, so those blocks correspond to ¥’[28]
and U’[29].) We can find this interval with 2 select; queries on By, which take constant
time.

The corresponding interval By, [41..43] in By, is also shown in blue, starting immediately
before the bit with offset 3 in the block whose starting position is marked with the 22nd
copy of 1 and ending immediately before the bit with offset 1 in the block whose starting
position is marked with the 24th copy of 1. We can find the 2 indices 22 and 24 with 2
rank; queries on By, which take O(loglogn) time. This means the SA interval for GCG is
SA[41..43] and it starts at offset 3 in the L run of character L'[21] and ends at offset 1 in the
L run of character L'[23]. Knowing this we can continue backward stepping.

The RLCSA in Sirén’s PhD thesis [24] for a text T'[0..n — 1] with » BWT runs takes
O (rlog(n/r) 4+ rlogo + o logn) bits. Given a character a and the SA interval for P, it can
find the SA interval for aP in O(logn) time.

3 Faster RLCSAs

3.1 Searchable Interpolative coding

Suppose we are given an increasing list £1, .. ., {x of k integers in the range [0..n—1]. To encode
them with interpolative coding [19], we first write {11, /27 using |lg(n—1)] +1 bits (except that
we write 0 using 1 bit). All the numbers /1. .., f[;/21—1 are in the range [0..0r; /21 — 1], so we
can encode them recursively. All the numbers £ /9141, . - -, {x are in the range [([y /o1 +1..n—1],
so we can encode them recursively as €[y /2141 — €rry2) — 1, .+, € — €11 /21 — 1. Each encoding
has O(logn) bits, so we can read them in O(1) time. If we imagine the list stored as keys in
a balanced binary search tree then we encode the keys according to a pre-order traversal:
when we reach each key /¢;, we know #; lies between the numbers shown to the left and right
of £; and we encode ¢; using the maximum number of bits we would need for any key in that
range.

For example, if n = 66, k = 13 and the list is 6,9, 14, 15, 16, 23, 24, 28, 29, 30, 42, 46, 63
then, as illustrated in Figure 2, we start by encoding ¢; = 24 using |lg65] + 1 = 7 bits
as 0011000. We then encode ¢35 = 14 using |lg23| + 1 = 5 bits as 01110. We then
encode f1,{5,05,04,0s = 6,9,16,15,23 as 0110,010,0001, 0,110, and {19, s, {9, 12, 11,413
as 000101,011,0,001111,1011,10000. When we reach 46, say, in a pre-order traversal of the
tree in Figure 2, we know it lies between 31 and 65, so we encode it using |lg(65—31)|+1 =16
bits as (46 — 31)s = 001111.

The binary search tree has height |lgk| and the bottom level contains at most k keys.
By Jensen’s Inequality, we encode those keys using O(klog(n/k) + k) bits. Similarly, there

at most k/?h keys at height A and we encode those keys using O (% log k/% + %) —
0] (2% log(n/k) + %) bits. Since

llgk]

S AEED .

2h
h=0

we use O(klog(n/k) + k) bits in total.

10:5

Grossi's Festschrift

10:6

Faster RLCSAs

110 10 1110 O 1110 11000 11 O 101 1011 1111 10000
100 10 1000 1 1 100 10000 10 1 100 1000 1000 10000

Figure 2 A balanced binary search tree storing the k& = 13 keys from the increasing list
6,9,14,15,16, 23,24, 28,29, 30,42, 46, 63 with each key in the range [0..n — 1 = 65]. When we reach
each key in a pre-order traversal or binary search, we know it lies between the two values shown
to its left and right, so we can encode it as the binary number shown below it, using a total of
O(klog(n/k) + k) bits. If we store a bitvector marking the start of each encoding as visited in an
in-order traversal, as shown below the tree, then we can omit the leading Os from the encodings and
support binary search in time O(log k) without changing our asymptotic space bound.

In this paper we want to perform binary search on the list — the reader may have noticed
that our example is ¥[36..48] from Figure 1 — so we want fast access to the encodings of the
numbers in it in the order we check them in a binary search. We can store the encodings
according to an in-order traversal instead of a pre-order traversal, and store an uncompressed
bitvector with as many bits as there are in the concatenation of the encodings and 1s marking
where the encodings start. Since the bitvector delimits the encodings, however, we can delete
the leading 0Os from each encoding before concatenating them and building the bitvector. The
in-order encodings for our example are shown below the tree in Figure 2, with the leading Os
removed, and the bitvector is shown below them. Since the bitvector uses at most as many
bits as the encodings, we still use O(klog(n/k) + k) bits in total and — although random
access still takes O(log k) time — we can perform binary search in O(log k) total time. This
scheme is similar to Teuhola’s [25] and Claude, Nicholson and Seco’s [5].

To find the successor of 22 in the list, we start at the root knowing n = 66 and k = 13
and perform select;(7) and select; (8) queries on the bitvector to find the starting and ending
positions of the encoding 0011000 of ¢z = 24 in the range [0..65]. Since 22 < 24, we then
perform select; (3) and select; (4) queries to find the starting and ending positions of the
encoding 01110 of 3 = 14 in the range [0..23]. Since 22 > 14, we then perform select; (5) and
selectq(6) queries to find the starting and ending positions of the encoding 0001 of /5 = 16
in the range [15..23]. Since 22 > 16, we then perform select; (6) and select; (7) queries to
find the starting and ending positions of the encoding 110 of g = 23 in the range [17..23].
Since 22 < 23, we know the successor of 22 in L is 23. We can find the predecessor of 28 in
O(log k) time symmetrically.

If we apply interpolative coding with fast binary search to the increasing interval of W
for a character a in a text T of length n, then we use O(n,log(n/n,) + ng) bits and can
support binary search in O(logn,) time, where n,, is the frequency of a in T. If we do this
for all the characters then we use O(n(Hy(T') + 1)) bits, where H is the Oth-order empirical
entropy of T. If we encode the increasing interval of ¥’ for a with interpolative coding, then
we use O(rlog(r/ry) 4+ r4) bits and can support binary search in O(logr,) time, where 7, is

N. K. Brown, T. Gagie, G. Manzini, G. Navarro, and M. Sciortino

the number of runs of copies of a in the BWT of T' (and, equivalently, in L). If we do this
for all the characters then we use O(r(Hy(L') + 1)) bits, where L’ is again the sequence of
r characters in the runs of the run-length encoding of 7. To be able to find the increasing
interval for a in ¥/, we store an r-bit uncompressed bitvector with 1s marking where the
intervals start.

» Theorem 4. We can store U for T in O(r(Ho(L') + 1)) C O(rlogo) bits and support
binary search in the increasing interval for a character a in O(logr,) time, where r, is the
number of runs of copies of a in the BWT of T.

To use Theorem 4 in an RLCSA, we store
an uncompressed bitvector marking which distinct characters occur in 7', in O(o) bits;
the SD-vectors By and By, in O(rlog(n/r)) bits;
an uncompressed bitvector with 1s marking where the intervals for the characters start
in ¥', in O(r) bits;

U’ in O(rlogo) bits.

If we are given a and the SA interval for P then we can find the SA interval for aP by
using a rank query on the first uncompressed bitvector to find a’s rank among the distinct
characters that occur in T, in O(1) time;
using rank queries on By to find the runs in L overlapping the SA interval for P, in
O(loglogn) time;
using select queries on the second uncompressed bitvector to find the interval for a in ¥’,
in O(1) time;
using binary search in the interval for a in ¥’ to find the successor and predecessor of the
ranks of the first and last runs in L overlapping the SA interval for P, in O(logr,) time;
using select queries on B and arithmetic to find the SA interval for aP in O(1) time.

We store O(rlog(n/r) +rlog o+ o) bits in total and find the SA interval for aP in O(logr, +

loglogn) total time. Notice that the O(loglogn) term in the query time comes only from

the rank query on By,.

» Corollary 5. We can store an RLCSA for T in O (rlog(n/r)+rlogo + o) bits such
that, given character a and the SA interval for P, we can find the SA interval for aP in
O(logr, +loglogn) time.

3.2 Splitting Theorem for RLCSAs

Nishimoto and Tabei [20] showed how we can split the runs in L such that no block in Bp
overlaps more than a constant number of blocks in By, without increasing the number of
runs by more than a constant factor, and then store LF in O(rlogn) bits and evaluate it in
constant time. Brown, Gagie and Rossi [4] slightly generalized their key theorem:

» Theorem 6 (Nishimoto and Tabei [20]; Brown, Gagie and Rossi [4]). Let 7 be a permutation
on {0,...,n— 1},

P={0}U{i : 0<i<n—1,7(i)#n(i—1)+1},

and Q@ = {w(i) : i € P}. For any integer d > 2, we can construct P' with P C P’ C
{0,....,n—1} and Q' = {n (i) : i € P'} such that

if q,q' € Q' and q is the predecessor of ¢' in Q', then |[q,q') N P'| < 2d,

1P| < 4B

10:7

Grossi's Festschrift

10:8

Faster RLCSAs

If L[i] = L[i — 1] then LF(i) = LF(i — 1) + 1, so
{0}U{i : 0<i<n—1LF®) #LF@i—1)+1}

has cardinality r. If LF(i) = LF(i — 1) + 1 then, since ¥ and LF are inverse permutations,
Ulj] = ¥[j — 1] + 1 where j = LF(¢). Therefore,

{ojufj - 0<j<n—-19[j]#¥[j-1+1}

also has cardinality r and applying Theorem 6 with d = 2 to ¥ splits the runs in the BWT
such that no block in Bp overlaps more than 3 blocks in By, without increasing the number
of runs by more than a factor of 3/2. In our example, the number of runs increases by only 1,
from 40 to 41, as shown below with the split block — corresponding to the first run of 6 copies
of Tin L — in red:

Br 111001101110011111111111000101110110111001010011110010010101111000
By = 100100110111011001011111010010011100111000110111111111110001011110.

Suppose we apply Theorem 6 with d = 2 to ¥ and then store, for 0 < b < r, the index of
the block in By, containing LF(i;) and LF(i3)’s offset in that block, where i, is the starting
position of block b in Br. Nishimoto and Tabei called this the move table for LF (see
also [4, 26]) and it takes a total of O(rlogn) bits. If we know Bp[j] is in block b in By, with
offset j — i, then, since the block in Bp to which LF maps block b in By, now overlaps at most
the block containing By, [LF(iy)] and the next 2 blocks in By, we can find the index of the
block in By, containing By [LF(j)] = BL[LF(ip)] + j — i» and Br[LF(j)]’s offset in that block
with at most 2 constant-time select queries on By,. We could use at most 2 constant-time
lookups instead if we have the starting positions of the blocks in By, stored explicitly in
another O(rlogn) bits.

3.3 A faster RLCSA without rank queries

Recall that the O(loglogn) term in the query-time bound in Corollary 5 comes only from
the use of rank queries on an SD-vector. Since rank and select queries can be combined to
support predecessor queries and select queries on sparse bitvectors can easily be supported
in constant time and space polynomial in the number of 1s, rank queries on compact sparse
bitvectors inherit lower bounds from predecessor queries [3] — so they cannot be implemented
in constant time. Therefore, to get rid of that O(loglogn) term, we must somehow avoid
rank queries.

We could replace the rank queries with a move table, but that would result in an O(r logn)
term in our space bound. Instead, we introduce an uncompressed 2r-bit bitvector By,
indicating how the starting positions of the blocks in F' and L are interleaved. Specifically,
we scan Br and By, simultaneously — assuming we have already applied Theorem 6 to them
so that no block in F' overlaps more than 3 blocks in L (so r is a constant factor larger than
it was before the application of the theorem) — and

if we see Os in both bitvectors in position ¢ then we write nothing;

if we see a 1 in Bp and a 0 in By, then we write a 1 (indicating that a block starts in F);

if we see a 0 in Br and a 1 in By, then we write a 0 (indicating that a block starts in L);

if we see 1s in both bitvectors then we write a 0 and then a 1 (indicating that blocks

start in both L and F).

N. K. Brown, T. Gagie, G. Manzini, G. Navarro, and M. Sciortino

This way, By, .selecty(j) tells us which at most 3 blocks in L — those corresponding to the 0

preceding the jth copy of 1 in Bgy, and possibly to the next 2 copies of 0 — could overlap

block j in F' (counting from 1). We can then find the starting positions of those blocks in L

using at most 3 select queries on By,.

For our example, taking Br and By, to be as shown just after Theorem 6,

0123456789012345678901234567890123456789012345 67890123456789012345

Br = 111001101110011111111111000101110110111001010011110010010101111000

By, = 100100110111011001011111010010011100111000110111111111110001011110,

(with the grey numbers only to show positions) we have

0123456789012345678901234567890123456789
Bpr = 0111010101010100101110110101010101010110...
012345678901234 567890123456789012345678901
...100110101011001001010101000100011011010100.
In position 38 we see 1s in both Br and By, so we write 01 in Bpy, (in positions 49 and 50,
respectively); in positions 39 and 40 we see Os in both in Br and By, so we write nothing; in
position 41 we see a 1 in Br and a 0 in By, so we write a 1 in Bpy; in position 42 we see a

0 in Br and a 1 in By, so we write a 0 in Bpy; in position 43 we see 1s in both Br and By,
so we write 01 in Bpy; in position 44 we see Os in both Br and By, so we write nothing;

and in position 45 we see a 0 in Br and a 1 in By, so we write a 0 in Bpy, (in position 55).

Admittedly, when n = 66 and after applying Theorem 6 2r = 82, it seems foolish to store
a 2r-bit uncompressed bitvector instead of simply storing By uncompressed. This is due
to the small size of our example, however; for massive and highly repetitive datasets, r can
easily be hundreds of times smaller than n.

Suppose we know the SA interval SA[41..43] for aP starts at offset 0 in block 28 in F' and
ends at offset 1 in block 29 in F' and we want to find which blocks contain its starting and
ending positions in L and the offsets of those positions. In Section 2, we performed 2 rank
queries on By, but now we perform queries Bpy,.select;(29) = 51 and Bpy, .selecty (30) = 54
(with arguments 29 and 30 instead of 28 and 29 because we mark with a 1 the starting of
the first block in F'; which we index with 0; the results 51 and 54 are indexed from 0 as well).
Since the 29th and 30th copies of 1 are Bpp[51] and Bpr[54] (shown in red above), they are
preceded by the 51 — 29 + 1 = 23rd and 54 — 30 + 1 = 25th copies of 0, respectively.

Because we applied Theorem 6, this means the 29th and 30th blocks in F' (shown in red
in B above) overlap the 23rd block in L and possibly the 24th and 25th blocks (shown in
blue in By), and the 25th block and possibly the 26th and 27th blocks (also shown in blue in
By,). Notice that, because we split the 34th block in F' but the first block in L for Theorem 6,
the block numbers we find in F' are the same as in Section 2 but the block numbers we find
in L will be incremented. Although in general we need 6 select queries on Bp, in this case
we can use only 5 — By .select1(23), ..., Br.select(27) — to find where these blocks begin
in constant time, and determine which contain the starting and ending positions of the SA
interval SA[41..43]: the 23rd and the 25th, respectively.

In short, we replace a rank query on SD-bitvector By by queries on uncompressed
bitvector By, and constant-time select queries on By. This gives us the following theorem:

» Theorem 7. We can store an RLCSA for T in O (rlog(n/r) + rlogo + o) bits such that,
given character a and the SA interval for P, we can find the SA interval for aP in O(logr,)
time, where 4 is the number of runs of copies of a in the BWT of T.

10:9

Grossi's Festschrift

10:10

Faster RLCSAs

Instead of viewing Bpy, as replacing slow rank queries while using the overall same space,
we can also view it (and B and Byr) as replacing an O(rlogn)-bit move table while using
the same overall query time. Brown, Gagie and Rossi [4] implemented a similar approach
to speeding up LF computations in an RLFM-index, but only alluded to it briefly in their
paper — the path to Bitvector in their Figure 3 — and gave no analysis nor bounds. We
conjecture that a similar approach can also be applied to reduce the size of fast move tables
for ¢ and ¢! [13], which return SA[i — 1] and SA[i + 1] when given SA[i].

4 Two-level indexing

Corollary 5 and Theorem 7 suggest that RLCSAs should perform well compared to FM-
indexes and RLFM-indexes when the BWT is over a fairly large alphabet and the number of
runs of each character is fairly small; Ordéiiez, Navarro and Brisaboa [23] have confirmed
this experimentally. When indexing a highly repetitive text over a small alphabet, we can
make RLCSAs more practical by storing a table of k-tuples that tells us in which range of
U’ to search based on which character we are trying to match and which k — 1 characters we
have just matched. (This table can be represented with a bitvector to save space.) The table
for our example from Figure 1 and k = 2 is shown below:

#C 0 AG 8 CT 20..24 T# 33
$c 1.2 AT 9.12 GA 25..27 T$ 33
$ 3 CA 13..14 GC 28..29 TA 34.35
AN 4 cC 15..16 GG 30..31 TG 36..37
AC 4.7 cG 17..19 GT 32 TT 38..39

This says that if we want the SA interval for GCG and we have just matched the suffix CG,
then we should search in the range ¥’[28..29]. On the other hand, notice that the largest
range of ¥/ in which we will ever search is now ¥’[20..24] — of length 5 — when we are trying
to match a C after just matching a T; without such a table, the largest range we search is
U’[13..24] — of length 12 — when trying to match a C.

There are interesting cases in which we want to index highly repetitive texts over large
alphabets, however. For example, consider indexing a minimizer digest of a pangenome —
considering minimizers as meta-characters from a large alphabet instead of tuples of characters
from a small alphabet [1, 2, 7, 27] — or two-level indexing such a text. For two-level indexing
we build one index for the text and another for a parse of the text; the alphabet of the parse
is the dictionary of distinct phrases, which is usually large, but the parse itself is usually
much smaller than the text and its BWT is usually still run-length compressible (albeit less
than the BWT of the text) when the text is highly repetitive.

Something like two-level indexing was proposed by Deng, Hon, Képpl and Sadakane [6]
but they did not use an index for the text and its absence made their implementation quite
slow for all but very long patterns. Hong, Oliva, Koppl, Bannai, Boucher and Gagie [12]
described another approach, which we will review here, but they used standard FM-indexes
for the text and the parse instead of RLFM-indexes, so their two-level index was noticeably
faster but hundreds of times larger than its competitors.

Consider the 50 similar toy genomes of length 50 each in Figure 3. Suppose we parse
their concatenation similarly to rsync, by inserting a phrase break whenever we see a trigger
string — ACA, ACG, CGC, CGG, GAC, GAG, GAT, GTG, GTT, TCG or TCT — or when we reach the TA#
at the end of the text. (Considering # =$=0,A=1,C=2,G=3 and T =4 and viewing
triples as 3-digit numbers in base 5, the trigger strings are the triples in the concatenation
whose values are congruent to 0 modulo 6.) If we replace each phrase in the parse by its

CTTCCGCGGTGATAAAGGGGGCGGTAATGTCGCGAAACAGTCTTTTCTA$
CTTACGCGGTGATACAGGGGGCCGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGACGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTATGCGATGATCCTGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACACTCTTCTCTA$
CTTACGCGATGATCCAGTGGGCGGTCTTTTCGCGGAACAGTCTTTTCGA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGCAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCTCGGAACAGTCTTTTCTA$
CTTATGCGGTGATCCACGGGGCGGAAGTATCGCGGAACAGTCTTTTTTAS
CTTACGCGATGATCCAGGGGGCGGTAACTTCGCGGAACAGTCTTTTCTA$
CTTACGCGACGATCCAGGGGGCAGTAATTTCGCGGAACAGTCTTTTCTA$
CATACGCGGGGATCCAAGGGGCGGTAATTTCGCGGAACAGTCTTTGACAS
CTTTCACGGTGATCCAGGGGTGGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAATCTTTTCTA$
CTTACGCGATGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGCTAATTTCGCGAAACAGTCTTTTCTA$
CTTACGTGGTGATCCAGGGGGCGGTAATTTCGAGGAACAGTCTTTAATAS
CTTACGCGGTGATCCAGGGCGCGGTAATTTCGCGGAACAATCTTTTCTAS
CTTACGCGATGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTAATCTAS
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAATCTTTTCTA$
CTTACGCGATGATCCAGGGGGCGGTAATTGCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGGGGAACAGTCTTTTCTA$
CTTACGCGATCTTCCAGGGGGCCGAAATTTCGCGTAACAGTCTTTTCTA$

N. K. Brown, T. Gagie, G. Manzini, G. Navarro, and M. Sciortino

CTTACGCGGTGATTCAGGGGGCGGTAATTTCGCGGATCAGTCTTTTCTA$
CTTACGCGGTTATCCAGGGGGTGGTACTTTCGGTGAACAGTCTGTTCTA$
CTTACGCGGTGATCCAGGGGGCAGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGATGATCCAGGGGGCGGTAATTTCGCTGAACAGTCTTTTCTA$
CTTACGCGATGATCCATTGGGCGGTAATTCCGCGGAACAGTCTTTTCTA$
CTTACGCGATGATCCATGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGATGATCCAGGGGGCTGTATTTTCGCGGAACAGTCTTTTCTA$
CTTACGCGCTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGAGATGAGCTAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGATGCTCCAGGGGGCGGTGATTTCGCGGAACAGTCTTTTCTA$
CTTTCGCGATGATCCAGGGGGCGGTCATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGCACAGTCCTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACTCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTT$
CTTACGCGATGATCCAGAGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTCCGCGGAACAGTCTTTTCTA$
CTTACGCGGGGATCCAGGGGGCGGTAATTTCGCGGAACAATCTTTTCTA$
CTTACGCGGTGATCCAGGGGTCGGTAATTTCGCGGAACAGTCTTTTCTA$
CATACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CTTACGCGGTGATCCAGGGGGCGGTAATTTCGCGGAACAGTCTTTTCTA$
CCTACGCGATGATGCAGGGGGCGGTAATTTCGCGGAACAGTCTTTCCTA$
CTTACGCGATGTTCCAGGGGGCGGTAATTTCGCGGAATAGTTTTTTCTA$
CTTACGCGGTGATCCAGCGGGCGGTAATTTCGCGGAATAGTCTTTTCTA$
CTTACGCGGTAATCCAGGGGGCGGTAATGTCGCGGAACAGTCTTTTCTA#

Figure 3 A set of 50 similar toy genomes of length 50 each, with the first 49 separated by copies
of $ and the last one terminated by #.

lexicographic rank in the dictionary of distinct phrases, counting from 1, and terminate
the sequence with a 0, we get the 562-number sequence shown in Figure 4. With a larger
example, of course, we obtain longer phrases on average and better compression from the
parsing.

Run-length compression naturally works better on the BWT of the concatenation of the
genomes than on the BWT of the parse, as shown in Figures 5 and 6. Again, with a larger
example we would achieve better compression, also from the run-length compressed BWT
(RLBWT) of the parse. Even this small example, however, gives some intuition how the
dictionary of distinct phrases in the parse is usually large, but the parse is usually much
smaller than the text and its BWT is usually still run-length compressible. In this case there
are 90 distinct phrases in the dictionary, the parse is less than a quarter as long as the text,
and the average run length in its RLBWT is slightly more than 2. An FM-index based on
the RLBWT of the parse would generally use at least about [lg90] = 7 rank queries on
bitvectors for each backward step. The most common value in the runs, 19, occurs in only
16 runs, so we should spend at most about 1g 16 = 4 steps in each binary search.

To search for a pattern, we start by backward stepping in the index for the text until
we reach the left end of the rightmost trigger string in the pattern. We keep count of how
often each trigger string occurs in the text and an n-bit sparse bitvector with 1s marking the

lexicographic ranks of the lexicographically least suffixes starting with each trigger string.

This way, when we reach the left end of the rightmost trigger string, with a rank query on
that bitvector we can compute the lexicographic ranks of the suffixes starting with the suffix
of the pattern we have processed so far among all the suffixes starting with trigger strings,
and map from the index of the text into the index for the parse. The width of the BWT
interval stays the same and may span several lexicographically consecutive phrases in the
dictionary — all those starting with the suffix of the pattern we have processed so far — but it
is possible to start a backward search in the index for the parse with a lexicographic range of
phrases rather than with a single phrase.

When we reach the left end of the leftmost trigger string in the pattern, we can use
the same bitvector to map back into the index for the text and match the remaining prefix
of the pattern with that. While matching the pattern phrase by phrase against the index

10:11

Grossi's Festschrift

10:12

Faster RLCSAs

44, 55, 79, 19, 11, 70, 22, 46, 64, 88, 6, 22 55 79, 19, 17, 59, 22, 55 12,
64, 88, 6, 22, 48, 45, 19, 32, 73, 22, 55 12, 64, 88, 8 50, 39, 73, 22, 55,
12, 64, 88, 6, 22, 55 79, 19, 32, 73, 22, 55 12, 43, 78, 41, 6, 622, 50, 50,
36, 58, 78, 87, 22, 55 12, 64, 87, 6, 22, 55 79, 19, 32, 73, 22, 51, 12, 64,
88, 6, 22, 55 79, 19, 32, 74, 40, 45, 12, 64, 88, 9, 79, 19, 26, 45 58, 13,
22, 55, 12, 64, 90, 22, 50, 50, 32, 68, 22, 55 12, 64, 88, 6, 22, 48, 45, 19,
30, 22, 55, 12, 64, 88, 4, 22, 55 57, 25 73, 22, 55 12, 64, 86, 2, 1, 45,
79, 19, 35, 60, 22, 55 12, 64, 88, 6, 22 55 79, 19, 32, 73, 22, 55, 12, 2I,
88, 6, 22, 50, 50, 32, 73, 22, 55 12, 64, 88, 6, 22, 55 79, 19, 31, 73, 22,
46, 64, 88, 6, 79, 65 19, 32, 73, 18, 47, 64, 83, 22, 55 79, 19, 29, 55 73,
22, 55, 12, 21, 88, 6, 22, 50, 50, 32, 73, 22 55 12, 64, 16, 6, 22, 55 79,
19, 32, 73, 22, 55 12, 64, 88, 6, 22, 55 79, 19, 32, 73, 22, 55 12, 64, 88,
6, 22, 55, 79, 19, 32, 73, 22, 55, 12, 21, 8, 6, 22, 50, 50, 32, 72, 55 12,
64, 88, 6, 22, 55 79, 19, 32, 73, 45 56, 64, 88, 6, 22, 50, 41, 77, 22, 61,
64, 88, 6, 22, 55 79, 19, 75, 73, 22, 55 19, 24, 88, 6, 22, 55 82, 20, 62,
45, 79, 12, 64, 66, 41, 6, 22, 55 79, 19, 30, 22, 55, 12, 64, 88, 6, 22, 50,
50, 32, 73, 22, 80, 64, 88, 6, 22, 50, 50, 38, 71, 55 12, 64, 88, 6, 22, 50,
50, 37, 73, 22, 55, 12, 64, 8, 6, 22, 50, 50, 33, 22, 55 12, 64, 88, 6, 22,
51, 81, 32, 73, 22, 55 12, 64, 88, 6, 18, 19, 49, 42, 73, 22, 55 12, 64, 88,
6, 22, 50, 54, 79, 19, 85, 22, 55, 12, 64, 88, 10, 22, 50, 50, 32, 76, 22, 55,
12, 64, 88, 6, 22, 55 79, 19, 32, 73, 22, 55 23, 63, 6, 22, 55 79, 19, 32,
73, 22, 55, 12, 64, 88, 6, 22, 55 79, 19, 32, 73, 22, 55 12, 64, 88, 7, 45,
79, 19, 32, 73, 22, 55 12, 64, 88, 67, 22, 50, 50, 27, 58, 73, 22, 55, 12, 64,
88, 6, 22, 55 79, 19, 32, 71, 55 12, 64, 88, 6, 22, 55 57, 32, 73, 22, 55,
12, 21, 88, 6, 22, 55 79, 19, 34, 45 73, 22, 55 12, 64, 88, 4, 22, 55 79,
19, 32, 73, 22, 55 12, 64, 88, 6, 22, 55 79, 19, 32, 73, 22, 55 12, 64, 88,
5, 22, 50, 50, 52, 73, 22, 55, 12, 64, 84, 22, 50, 66, 32, 73, 22, 55, 15, 89,
6, 22, 55, 79, 19, 28, 53, 73, 22, 55 14, 88, 6, 22, 55 69, 70, 22, 55 12,
64, 8, 3, 0

Figure 4 The 563-number sequence (20 numbers per line) over the alphabet {0,...,90} we get
from the concatenation of the toy genomes in Figure 3 by parsing, replacing each phrase by its rank
in the dictionary (counting from 1) and appending a 0.

for the parse, we can either compare against phrases in the stored dictionary or just use
Karp-Rabin hashes (allowing some probability of false-positive matches). We still have to
parse the pattern, but that requires a single sequential pass, while FM-indexes in particular
are known for poor memory locality. They key idea is that, ideally, we match most of the
pattern phrase by phrase instead of character by character, reducing the number of cache
misses.

We plan to reimplement two-level indexes for collections of similar genomes with RLFM-
indexes for the collections themselves and CSAs, standard RLCSAs and our sped-up RLCSAs
for the parses from Theorem 7 of those collections, and compare them experimentally. We
also plan to try indexing minimizer digests with CSAs and RLCSAs.

5 Boyer-Moore-Li with two-level indexing

Olbrich, Biichler and Ohlebusch [22] recently showed how working with rsync-like parses
of genomes instead of the genomes themselves can speed up multiple alignment. More
specfically, they find and use as anchors finding maximal substrings (call multi-MUMs) of
the parses that occur exactly once in each parse. In this section we speculate about how
two-level indexing may similarly speed up searches for long maximal exact matches (MEMs).
A MEM of a pattern P[0..m — 1] with respect to a text T' is a substring P[i..j] of P such that

Pli..j] occurs in T,

i =0 or P[i — 1..5] does not occur in T,

j=m—1or P[i..j + 1] does not occur in T.
Finding long MEMs is an important task in bioinformatics and there are many tools for it.

N. K. Brown, T. Gagie, G. Manzini, G. Navarro, and M. Sciortino

Figure 5 The RLBWT of the concatenation of the toy genomes shown in Figure 3, consisting of

AS

Al
GQ
A27

cl(]

Tl
CZO

449 runs (20 runs per line).

Figure 6 The RLBWT of the sequence shown in Figure 6, consisting of 226 runs (15 runs per

line).

555,
792,
90,
59,
83,
193,
74,
22,
71,
20,
50,
45,
41,
55,

64

2,
79,
45,
63,
30,
68,
57,
78,
18,

228
23,
64,
32,
43,
64,

86,
5525
792,

72,

8812
51,
65,
63
33,
68
50,
50,
19,

2211,
47,
32,
42,
45,

64,

TIB cl
C4 T39
¢
G25 Tl
T !
¢t ¢
AT Tt
T @2
T A
¢ T
Al C13
¢t e
G54 Al
Tl AIS
Al GQI
Tl C15
¢t ¢t
™ gt
T A
¢t At
T2 C42
T8 A%
CZO TZ

41,

5010

Tl
Al
Gl
GS
Gl
CQ
Al
Al
Tl
G]S
Tl
Cl
GS
Gl
Al
Al
A2
TI‘Z
Cl
G’?
Gl
cl
Cl

2212
2221

Tl G27
¢t oAb
c® At
At @t
At 6t
¢t T3
¢t T2
Tl G23
¢z ¢t
G22 Tl
T2 !
¢z T
Glb Al
G3 c25
¢t Al
At @
¢t T2
T23 Al
A3 G20
6z A%
b Al
Tt A8

41
58,
18,
73,
76,
19,

19,
40,
50,
45,
80,
38,
39,

45,

87, 884,
64, 19,
82, 12%,
737, 87,
85, 73,
19, 50,
19, 50,
73, 26,
50, 28,
45, 27,
46, 129
31, 32,
53, 32,
45, 55,
6411, 21,

63,
73,
73,
30,

733,
50,
50,
62,

22177
17,
46,

323,

323,

24

™ !
¢z 12
c22 Tl
¢z A3
Gl C]l
¢z At
Cl A22
¢t At
T ¢t
™ !
T @2
¢t
¢
Tl CIS
Al @?
Al T14
A22 Tl
T13 cl
At ¢t
™ !
T47 Gl
At Tt

88“,
79,
62,

732,
4,
19,
19,
7,
71,
35,
125,
52,
19,
22,
64°,

19,
55,
67,
68,
62,
50,

503,

1,
22,
22,
79,
25,
32,
51,

15,

10:13

Grossi's Festschrift

10:14

Faster RLCSAs

Li [14] gave a practical algorithm, called forward-backward, for finding all the MEMs of
P with respect to T using FM- or RLFM-indexes for T" and its reverse T"¢V. Assume all the
distinct characters in P occur in T'; otherwise, we split P into maximal substrings consisting
only of copies of characters occurring in 7" and find the MEMs of those with respect to T'.
We first use the index for 77" to find the longest prefix P[0..e1] of P that occurs in T, which
is the leftmost MEM. If e; = m — 1 then we are done; otherwise, Ple; + 1] is in the next
MEM, so we use the index for T to find the longest suffix P[sy..e; + 1] of P[0..e; + 1] that
occurs in T. The next MEM starts at s2, so conceptually we recurse on P[sy..m — 1]. The
total number of backward steps in the two indexes is proportional to the total length of all
the MEMs.

Gagie [9] proposed a heuristic for speeding up forward-backward when we are interested
only in MEMs of length at least L. We call this heuristic Boyer-Moore-Li, following a
suggestion from Finlay Maguire [16]. Since any MEM of length at least L starting in
P[0..L — 1] includes P[L — 1], we first use the index for T to find the longest suffix P[s..L —1]
of P[0..L — 1] that occurs in T. If s = 0 then we fall back on forward-backward to find
the leftmost MEM and the starting position of the next MEM. Otherwise, since we know
there are no MEMs of length at least L starting in P[0..s — 1], conceptually we recurse on
P[s..m —1]. Li [15] tested Boyer-Moore-Li and found it practical enough that he incorporated
it into his tool ropebwt3.

Suppose we build an rsync-like parse of T'[0..n — 1] and two-level indexes for T and
TV based on that parse and parse P when we get it. With a naive two-level version of
Boyer-Moore-Li, we would simply use the two-level indexes in place of the normal FM- or
RLFM-indexes for T" and T"¢V. We conjecture, however, that we can do better in practice.

Let P[k| be the last character of the last phrase that ends strictly before P[L], let P[j]
be the first character of the first phrase such that P[j..k] occurs in T, and let P[i] be the
second character of the phrase preceding the one containing P[j]. Notice we can find i, j
and k by matching phrase by phrase using only the top level (for the parse) of the two-level
index for 7. If ¢ > 0 then we can immediately discard P[0.. — 1] and conceptually recurse
on P[i..m — 1]; otherwise, we proceed normally.

Of course, the value 7 is at most the value s found by regular Boyer-Moore-Li and could
be much smaller, in which case discarding P[0..i — 1] benefits us much less than discarding
PJ[0..s—1]. We hope this is usually not the case and we look forward to testing Boyer-Moore-Li
with two-level indexing.

—— References

1 Omar Y Ahmed, Massimiliano Rossi, Travis Gagie, Christina Boucher, and Ben Langmead.
SPUMONTI 2: improved classification using a pangenome index of minimizer digests. Genome
Biology, 24:122, 2023.

2 Lorraine AK Ayad, Gabriele Fici, Ragnar Groot Koerkamp, Grigorios Loukides, Rob Patro,
Giulio Ermanno Pibiri, and Solon P Pissis. U-index: A universal indexing framework for
matching long patterns. arXiv, 2025. arXiv:2502.14488.

3 Paul Beame and Faith E Fich. Optimal bounds for the predecessor problem and related
problems. Journal of Computer and System Sciences, 65:38—72, 2002. doi:10.1006/JCSS.
2002.1822.

4 Nathaniel K Brown, Travis Gagie, and Massimiliano Rossi. RLBWT tricks. In Proceedings of
the 20th International Symposium on Experimental Algorithms (SEA), 2022.

5 Francisco Claude, Patrick K Nicholson, and Diego Seco. On the compression of search trees.
Information Processing & Management, 50:272—-283, 2014. doi:10.1016/J.IPM.2013.11.002.

6 Jin-Jie Deng, Wing-Kai Hon, Dominik K&éppl, and Kunihiko Sadakane. FM-indexing grammars
induced by suffix sorting for long patterns. In Proceedings of the Data Compression Conference
(DCC), 2022.

https://arxiv.org/abs/2502.14488
https://doi.org/10.1006/JCSS.2002.1822
https://doi.org/10.1006/JCSS.2002.1822
https://doi.org/10.1016/J.IPM.2013.11.002

N. K. Brown, T. Gagie, G. Manzini, G. Navarro, and M. Sciortino

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

Barig Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de Bruijn graphs: Whole-
genome assembly of long reads in minutes on a personal computer. Cell Systems, 12:958-968,
2021.

Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM,
52:552-581, 2005. doi:10.1145/1082036.1082039.

Travis Gagie. How to find long maximal exact matches and ignore short ones. In Proceedings
of the 28th Conference on Developments in Language Theory (DLT), 2024.

Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal
text searching in BWT-runs bounded space. Journal of the ACM, 67:1-54, 2020. doi:
10.1145/3375890.

Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on Computing, 35:378-407,
2005. doi:10.1137/50097539702402354.

Aaron Hong, Marco Oliva, Dominik Képpl, Hideo Bannai, Christina Boucher, and Travis
Gagie. PFP-FM: an accelerated FM-index. Algorithms for Molecular Biology, 19:15, 2024.
doi:10.1186/S13015-024-00260-8.

Juha Karkkéainen, Giovanni Manzini, and Simon J Puglisi. Permuted longest-common-prefix
array. In Proceedings of the 20th Symposium on Combinatorial Pattern Matching (CPM),
2009.

Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly.
Bioinformatics, 28:1838-1844, 2012. doi:10.1093/BIOINFORMATICS/BTS280.

Heng Li. BWT construction and search at the terabase scale. Bioinformatics, 40:btae717,
2024.

Finlay Maguire. Personal communication, 2024.

Veli Mékinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12:40-66, 2005.

Veli Makinen, Gonzalo Navarro, Jouni Sirén, and Niko Valiméki. Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology, 17:281-308, 2010.
doi:10.1089/CMB.2009.0169.

Alistair Moffat and Lang Stuiver. Binary interpolative coding for effective index compression.
Information Retrieval, 3:25-47, 2000. doi:10.1023/A:1013002601898.

Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on BWT-runs compressed indexes.
In Proceedings of the 48th International Colloguium on Automata, Languages, and Programming
(ICALP), 2021.

Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/select dic-
tionary. In Proceedings of the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX), 2007.

Jannik Olbrich, Thomas Biichler, and Enno Ohlebusch. Generating multiple alignments on a
pangenomic scale. Bioinformatics, 41(3):btafl04, 2025.

Alberto Ordénez, Gonzalo Navarro, and Nieves R Brisaboa. Grammar compressed sequences

with rank/select support. Journal of Discrete Algorithms, 43:54-71, 2017. doi:10.1016/J.

JDA.2016.10.001.

Jouni Sirén. Compressed Full-Text Indexes for Highly Repetitive Collections. PhD thesis,
University of Helsinki, 2012.

Jukka Teuhola. Interpolative coding of integer sequences supporting log-time random access.
Information Processing €& Management, 47:742-761, 2011. doi:10.1016/J.IPM.2010.11.006.
Mohsen Zakeri, Nathaniel K Brown, Omar Y Ahmed, Travis Gagie, and Ben Langmead. Movi:
a fast and cache-efficient full-text pangenome index. #Science, 27, 2024.

Alan Zheng, Ishmeal Lee, Vikram S. Shivakumar, Omar Y. Ahmed, and Ben Langmead. Fast
and flexible minimizer digestion with digest. bioRziv, 2025. URL: https://www.biorxiv.org/
content/early/2025/01/08/2025.01.02.631161.

10:15

Grossi's Festschrift

https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/3375890
https://doi.org/10.1145/3375890
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1186/S13015-024-00260-8
https://doi.org/10.1093/BIOINFORMATICS/BTS280
https://doi.org/10.1089/CMB.2009.0169
https://doi.org/10.1023/A:1013002601898
https://doi.org/10.1016/J.JDA.2016.10.001
https://doi.org/10.1016/J.JDA.2016.10.001
https://doi.org/10.1016/J.IPM.2010.11.006
https://www.biorxiv.org/content/early/2025/01/08/2025.01.02.631161
https://www.biorxiv.org/content/early/2025/01/08/2025.01.02.631161

Turing Arena Light: Enhancing Programming
Education Through Competitive Environments

Giorgio Audrito =
University of Turin, Italy

Luigi Laura &
International Telematic University Uninettuno, Rome, Italy

Alessio Orlandi &
Google, Zirich, Switzerland

Dario Ostuni &
Universita degli Studi di Milano, Italy

Romeo Rizzi &
Universita di Verona, Italy

Luca Versari &2
Google, Zirich, Switzerland

—— Abstract

Turing Arena light, the spiritual successor of Turing Arena, is a contest management system that

is designed to be more geared towards the needs of classroom teaching, rather than competitive
programming contests. It strives to be as simple as possible, while being very flexible and extensible.

The fundamental idea behind Turing Arena light is to have two programs that talk to each other
through the standard input and output channels. One of the two programs is the problem manager,
which is a program that interacts with a solution to give it the input and evaluate its output, and
eventually give a verdict. The other program is the solution, which is the program written by the
contestant that is meant to solve the problem.

In this paper we describe the architecture and the design of Turing Arena light.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms;
Software and its engineering — Development frameworks and environments; Social and professional
topics — Computing education

Keywords and phrases Competitive Programming, Contest Management Systems, Online Judges
Digital Object Identifier 10.4230/OASIcs.Grossi.2025.11
Category Education

Supplementary Material Software (Source Code): https://github.com/romeorizzi/TALight [32]
archived at swh:1:dir:7e06febf4432bbcf7ce6301cd4de80837£a094d4

Acknowledgements All the authors of this contribution first met thanks to Roberto Grossi and
his dedicated work with the Italian (and International) Olympiads in Informatics. TALight is also
a successor of the Fully Integrated Contest Analyzer that Roberto and some of the authors were
planning a few years ago that evolved into the CMS [19]. This paper, like the entire volume, is
dedicated to Roberto.

1 Introduction

Programming contest management systems are the backbone of competitive programming
events, handling everything from problem distribution and solution submission to automated
judging and live scoreboarding [28, 19, 20]. Over the years, these systems have evolved

from ad-hoc scripts and manual procedures into sophisticated platforms that emphasize
© Giorgio Audrito, Luigi Laura, Alessio Orlandi, Dario Ostuni, Romeo Rizzi, and Luca Versari;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 11; pp.11:1-11:14

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:giorgio.audrito@unito.it
https://orcid.org/0000-0002-2319-0375
mailto:luigi.laura@uninettunouniversity.net
https://orcid.org/0000-0001-6880-8477
mailto:orlandi.a@gmail.com
https://orcid.org/0009-0001-1501-7986
mailto:dario.ostuni@unimi.it
https://orcid.org/0000-0002-7275-8123
mailto:romeo.rizzi@univr.it
https://orcid.org/0000-0002-2387-0952
mailto:veluca@google.com
https://orcid.org/0000-0003-3495-1325
https://doi.org/10.4230/OASIcs.Grossi.2025.11
https://github.com/romeorizzi/TALight
https://archive.softwareheritage.org/swh:1:dir:7e06febf4432bbcf7ce6301cd4de80837fa094d4;origin=https://github.com/romeorizzi/TALight;visit=swh:1:snp:04213622891387d8b03dce35d89b2b9b44550982;anchor=swh:1:rev:1fc91092cae200a75a2e3919ae39c7b37a17c361
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

11:2

Turing Arena Light

security, scalability, and fairness [18]. Traditional contest systems like the Programming
Contest Control System (PC?), used in ACM ICPC since the 1990s, enabled basic
contest operations (login, submissions, judging interface) and were reliable for on-site contests.
However, many early systems required judges to manually run solutions or provided limited
automation.

Turing Arena light (TALight) is a new contest management system that distinguishes
itself by focusing on simplicity, interactivity, and flexibility. It was conceived as a lightweight
platform geared toward educational use and practice environments rather than large-scale
contests [31]. TALight’s design philosophy is to keep the core system minimal and conceptually
simple, delegating most functionality to problem-specific modules. Uniquely, all problems in
TALight are treated as interactive by default, meaning a contestant’s solution interacts in
real-time with a problem manager program that provides inputs and checks outputs.

2 Turing Arena light

In this chapter we introduce Turing Arena light, the successor of Turing Arena [31]. Turing
Arena light is a contest management system that is designed to be more geared towards the
needs of classroom teaching, rather than competitive programming contests. It strives to be
as simple! as possible, while being very flexible and extensible.
While we will discuss each point in more detail later, as an overview the design of Turing
Arena light focuses on the following aspects:
Simplicity: the design of Turing Arena light tries to keep things as simple as possible,
while achieving the desired functionalities. While a meaningful objective metric for
simplicity is hard to define, the current implementation of Turing Arena light consists
of only 2197 lines of code, with an average of 39 chars per line and an overall of 85666
bytes [32].
Interactivity: in Turing Arena light all problems are interactive by default. This means
the contestant’s solution for a problem always interacts in real-time with the problem. In
particular, a problem in Turing Arena light is defined by the problem manager, which is
a program that interacts with the contestant’s solution and gives a verdict at the end
of the interaction. By being interactive by default, Turing Arena light allows a wider
range of problems to be implemented with less effort, while not causing much overhead
for non-interactive problems.
Flexibility: Turing Arena light is designed to be able to run on all major operating systems,
and allow solutions and problem managers to be written in any programming language,
while still being able to guarantee a certain level of security. To achieve this, Turing
Arena light only consists of a small core written in Rust [21], whose main purpose is to
spawn the process of the problem manager on the server, to spawn the process of the
contestant’s solution on its own machine, and to connect the standard input and output
of the two processes. Thus, the contestants’ code is never run on the server, and the
problem manager can run without a sandbox, being trusted code written by the problem
setter.
Extensibility: as stated in the previous point, Turing Arena light only consists of a small
core that has the fundamental role of spawning to processes and connecting their standard
input and output. All the other functionalities are implemented by the problem manager
itself, possibly using a common library of utilities. This allows the problem setter to
implement any kind of problem, while still being able to use the same contest management
system.

! Simple might mean very different things, in this context it is conceptual simplicity.

G. Audrito, L. Laura, A. Orlandi, D. Ostuni, R. Rizzi, and L. Versari

3 Related Work

Competitive programming systems can be classified into three main categories, i.e. Contest
Management Systems (CMS), Online Judges and Classroom Ad-hoc Tools, each serving
distinct purposes while sharing some overlapping features.

Contest Management Systems (CMS) are sophisticated platforms specifically de-
signed for formal competitions like the International Olympiad in Informatics (I0I), ACM-
ICPC, or national olympiads. Systems like DOMjudge [26], CMS [19, 20], and Kattis [6]
provide robust infrastructure for high-stakes, in-person events. They focus on security,
reliability, and scalability to handle numerous concurrent submissions while maintaining fair
evaluation conditions. These systems typically include features like real-time scoreboards,
detailed analytics for judges, and stringent sandboxing mechanisms to ensure solution integ-
rity. CMS platforms prioritize standardized evaluation environments where all participants
compete under identical conditions with controlled resource limitations.

Online Judges serve a broader educational purpose by providing continuous access
to problem-solving opportunities outside formal competitions. Platforms like Codeforces,
LeetCode, and SPOJ host extensive problem libraries that users can attempt at their own
pace. Unlike Contest Management Systems, they emphasize learning progression through
difficulty-ranked challenges, detailed performance statistics, and community engagement
via discussion forums and editorials. While they can host virtual contests, their primary
value lies in self-directed practice. Many online judges incorporate gamification elements like
ratings, badges, and streaks to motivate continued participation. Furthermore, since these
systems have, in some cases, order of thousands of different tasks, there is a vast literature
related to the development of recommender systems able to suggest a suitable task depending
on the learner’s abilities [1, 7, 9, 8]; also the problem of plagiarism is addressed [17]. We
refer the interested reader to the surveys of Wasik et al. [37] and Watanobe et al. [38].

Classroom Ad-hoc Tools like Turing Arena Light are specifically tailored for educational
settings where pedagogical considerations outweigh competitive rigor. These systems prioritize
ease of use, interactive problem types, and flexibility to accommodate diverse learning
objectives. Unlike the standardized environments of CMS platforms, classroom tools often
allow students to work in familiar development environments on their own machines. They
typically feature simplified interfaces, immediate feedback mechanisms, and support for
interactive problems that engage students through real-time interactions. While less suited
for large-scale competitions, these tools excel at reinforcing classroom concepts and providing
instructors with meaningful insights into student progress.

4 Architecture and design

This section explores the technical architecture and design principles that form the foundation
of Turing Arena Light. We begin by explaining the core interaction model between problem
managers and solutions, which differentiates TALight from traditional contest management
systems. Then, we examine each primary component in detail: the problem manager
that defines and evaluates tasks, the server that orchestrates communication, the client
that runs on contestants’ machines, and the user interface that contestants interact with.
Throughout this section, we highlight how TALight’s design choices support its goals of
simplicity, interactivity, flexibility, and extensibility while maintaining a lightweight yet
powerful infrastructure for educational programming environments.

11:3

Grossi's Festschrift

11:4

Turing Arena Light

The fundamental idea behind Turing Arena light is to have two programs that talk to
each other through the standard input and output channels. One of the two programs is the
problem manager, which is a program that interacts with a solution to give it the input and
evaluate its output, and eventually give a verdict. The other program is the solution, which
is the program written by the contestant that is meant to solve the problem.

While this is not too far off from what other contest management systems do, the
two main differences are that in Turing Arena light these two programs run on different
machines, and the interaction between them is done in real-time. This is unlike mainstream
contest management systems, where the two programs run on the same machine (like in
DOMjudge [5], CMS [19] and Codeforces [3]), or where the interaction is not done in real-time
(like in the old Google Code Jam [12] and Meta Hacker Cup [23]).

In the following subsections we will discuss the components of Turing Arena light and
how they interact with each other. We will start from the problem manager, going through
the server and the client, and finally discussing the user interface.

4.1 Problem manager

AYAML 1.2
public_folder: public
services:
free_sum:
evaluator: [python, free_sum_manager.py]
args:
numbers :
regex: ~(onedigit|twodigits|big)$
default: twodigits
obj:
regex: ~(any|max_product)$
default: any
num_questions:
regex: ~([1-911[1-2]1[0-91130)%
default: 10
lang:
regex: ~(hardcoded|hardcoded_ext|en|it)$
default: it

help:
evaluator: [python, help.pyl]
args:
page:
regex: ~(free_sum|help)$
default: help
lang:

regex: “(en|it)$
default: it

Figure 1 Description file for a problem in Turing Arena light.

G. Audrito, L. Laura, A. Orlandi, D. Ostuni, R. Rizzi, and L. Versari

solution

S
Figure 2 Architecture of Turing Arena light.

A problem in Turing Arena light is defined as a set of services and a set of attachments. A
service is a program that can be spawned with a set of well-defined parameters, and that will
ultimately interact with the solution. An attachment is a generic file that can be attached to
the problem and downloaded by the contestant, such as the statement of the problem, or a
library that the contestant can use in their solution.

A service defines which parameters it accepts, and the accepted values for each parameter.

Parameters can be either strings or files. Each string parameter has a regular expression
that defines the set of accepted values and a default value. Furthermore, a service defines
which program will be invoked with the given parameters: the problem manager (also called
the evaluator). The attachments are just regular files in a folder on the file system.

The description of a problem is contained in a file called meta.yaml, which is a YAML [2]
file. The file contains the description of all the services, and their parameters, and the
directory of the attachments. An example of a meta.yaml file is shown in Figure 1. Thus, a
problem in Turing Arena light is represented by a folder containing a meta.yaml file, and all
the files and subdirectories needed for services and attachments.

4.2 Server

After the problem manager, there is the server. The server is the beating heart of Turing Arena
light: its role is to accept incoming connections from the clients, spawn the problem manager
corresponding to the client requested problem and service, passing to it the parameters
specified by the client, and finally connect the standard input and output of the problem
manager to the client.

Note that up to this point, Turing Arena light is merely a specification of how the
problem is defined and how the interaction between the problem manager and the solution
should happen. This opens up the possibility of having multiple implementations of the
Turing Arena light framework, since the specification is very simple and does not require any
particular technology, such as sandboxing.

Currently, there is only one implementation of the Turing Arena light framework, which
is rtal (Rust Turing Arena light). Tt is written in Rust [21], and it is the reference
implementation of Turing Arena light. The server component, rtald, is a small program
that, given a folder containing problems, listens for incoming connections from the clients,
and spawns the correct problem manager, and relays the standard input and output of the
problem manager to the client via a protocol based on WebSockets [10].

11:5

Grossi's Festschrift

11:6

Turing Arena Light

4.3 Client

On the other side of the network? there is the client. The client is the program that the
contestant runs on their machine to connect to the server and interact with the problem
manager. Its role is to connect to the server, send the request for a problem and a service,
send the string and file parameters for the service, and finally spawn and attach itself to the
standard input and output of the solution running on the local machine of the contestant.

Once everything is up and running, the client will send the standard output of the solution
to the server, which will relay it to the problem manager, and forward on the standard input
of the solution all the incoming data from the server. Basically, the client is a proxy that
connects the standard input and output of the solution to the server.

Like the server, there is also a rtal component for the client, also called rtal. This
client component is a command line program that takes as parameters the address of the
server, the problem and the service, and the parameters for the service. It also takes the
command to run the solution. The client will then connect to the server, send the request
for the problem and service, and spawn the solution with the given command, proxying the
data between the solution and the server.

4.4 User interface

As far as the contestant is concerned, what they must do is to write a solution to the problem
in their favourite programming language. The only requirement is that it reads from the
standard input and writes to the standard output. To read the problem statement, the
contestant can download the attachments of the problem using the client. The client will
download the attachments and save them on the local machine of the contestant.

Once the solution is ready, the contestant can run the client passing the right parameters,
including the command to run their solution. The client will then connect to the server, send
the request for the problem and service, and spawn the solution with the given command.
Note that the solution is spawned and run on the local machine of the contestant, which
means that the contestant has full freedom on which files it can read and write, which
resources it can use, and so on. This is unlike other contest management systems that
support real-time interaction, where the solution is run on a sandboxed environment on the
server.

The ability to run the solution on the local machine opens to many possibilities. For
example, the contestant can precompute some large set of data, save it on their machine, and
then use it during the interaction with the problem manager to speed up the computation.
Another example is the potential to use external libraries, multithreading, or even GPU
computation. All of this is possible because the solution is run on the local machine of the
contestant, where they have full control, and not on the server.

5 Implementation details

As mentioned in the previous section, Turing Arena light currently has only one full imple-
mentation, which is Rust Turing Arena light (rtal). Like the name suggests, it is written
in Rust [21]. The choice of language was motivated by the fact that Rust is a systems
programming language, and thus it is well suited for writing low-level programs that need

2 Which might even be on the same machine, if both the server and the client are running on the same
machine.

G. Audrito, L. Laura, A. Orlandi, D. Ostuni, R. Rizzi, and L. Versari

pub const META: &str = 5

#[derive (Debug, Clone, Serialize, Deserialize)]
pub struct Problem {

pub name: String,

pub root: PathBuf,

pub meta: Meta,

#[derive (Debug, Default, Serialize, Deserialize, Clone)]
pub struct Meta {

pub public_folder: PathBuf,

pub services: HashMap<String, Service>,

#[derive (Debug, Default, Serialize, Deserialize, Clone)]
pub struct Service {

pub evaluator: Vec<String>,

pub args: Option<HashMap<String, Arg>>,

pub files: Option<Vec<String>>,

#[derive (Debug, Serialize, Deserialize, Clone)]
pub struct Arg {

#[serde(with =)]

pub regex: Regex,

pub default: Option<String>,

Figure 3 Problem description definition in Rust Turing Arena light.

to interact with the operating system and other programs. Furthermore, one key factor
is portability: Rust is a compiled language whose compiled binaries require only minimal
external dependencies to run, which makes it ideal to produce distributable binaries. This is
important because Turing Arena light is meant to be used by students, which might not have
the technical knowledge to install and configure a complex system. Having a single binary
that can be downloaded and run without any configuration is a big advantage.

The implementation of Turing Arena light is split into three components: the server
(rtald), the client (rtal), and the checker (rtalc). All three components share some
common parts. The main one is the problem description definition, also known as the
meta.yaml file. The definition can be found in Figure 3. The definition is written using
Rust structures which are then serialized to and deserialized from YAML using serde [29], a
serialization framework for Rust. rtalc is a small independent command-line program that
takes as input a directory containing the problem description, and checks that the description
is valid and matches the content of the directory. This is useful to check that the problem
description is correct before uploading it to the server.

The two main jobs of the client and the server are process spawning and networking.

For both of these tasks, rtal and rtald use the tokio [30] library, which is a framework for
writing asynchronous programs in Rust. For the process spawning part, there is nothing
particularly interesting: the server spawns the problem manager, and the client spawns the

11:7

Grossi's Festschrift

11:8

Turing Arena Light

pub const MAGIC: &str = 8
pub const VERSION: u64 = 4;

#[derive (Serialize, Deserialize, Debug)]
pub enum Request {
Handshake {
magic: String,
version: u64,
P
MetalList {},
Attachment {
problem: String,
P
ConnectBegin {
problem: String,
service: String,
args: HashMap<String, String>,
tty: bool,
token: Option<String>,
files: Vec<String>,
b
ConnectStop {},

#[derive (Serialize, Deserialize, Debug)]

pub enum Reply {
Handshake { magic: String, version: u64 1},
MetalList { meta: HashMap<String, Meta> 1},
Attachment { status: Result<(), String> 1},
ConnectBegin { status: Result<Vec<String>, String> },
ConnectStart { status: Result<(), String> 1},
ConnectStop { status: Result<Vec<String>, String> 1},

Figure 4 Network protocol definition in Rust Turing Arena light.

solution. They then, through tokio, manage the channels of the standard input and output
of the spawned processes. All the internal communication within the server and the client is
done using the actor threading model [15, 16].

For the networking part, the communication protocol between the server and the client
is based on WebSockets [10]. The protocol definition is shown in Figure 4. The protocol
is based on JSON [4] messages, which are serialized and deserialized using serde. These
messages are then exchanged between the server and the client using WebSockets. The
interaction between the server and the client is shown in Figure 2. Using WebSockets enables
a client of Turing Arena light to be implemented as a web application.

Both rtal and rtald run their spawned processes in an unsandboxed environment. This
is done to avoid the complexity of sandboxing, but we argue that it does not pose a major
security risk. The reason is that, for the client, the program being run is the contestant’s own
written solution, which is run on their local machine. Thus, the contestant has full control
over the program, and can do whatever they want with it. For the server, the program being
run is the problem manager, which is written by the problem setter. Thus, as long as the

G. Audrito, L. Laura, A. Orlandi, D. Ostuni, R. Rizzi, and L. Versari

class TC:
def __init__(self, data, time_limit=1):
self.data = data
self.tl = time_limit

def run(self, gen_tc, check_tc):

output = open(join(environ|[1,
),)

total_tc = sum(map(lambda x: x[0], self.data))

print (total_tc, flush=True)

tc_ok = 0

tcn = 1

for subtask in range(len(self.data)):

for tc in range(self.datal[subtask][0]):

tc_data = gen_tc(*self.datal[subtask][1])
stdout . flush ()

start = time ()

try:
ret = check_tc(xtc_data)
msg = None

if isinstance(ret, tuple):
result = ret[0]
msg = ret [1]
else:
result = ret
if time() - start > self.tl:
print (£ , file=output)
elif result:
print (f , file=output)
tc_ok += 1
else:
print (£ , file=output)
if msg is not None:
print (file=output)
print (msg, file=output)
print (file=output)
except Exception as e:

print (£ , file=output)
print (file=stderr)
print ("".join(traceback.format_tb(e.__traceback__)), e,
file=stderr)
tcn += 1
print (file=output)
print (f , file=output)

output.close ()

Figure 5 Snippet of the python version of the competitive-programming like problem manager
library for Turing Arena light.

problem setter is trusted, there is no need to sandbox the problem manager. This is usually
the case, as the problem setter is the one who also is responsible for the server where the
rtald program is running. If this is not the case, then rtald can be run in a virtualized
environment, such as a Docker container [22], to mitigate the risk of a bug in the problem
manager that could cause unauthorized access to the server.

11:9

Grossi's Festschrift

11:10

Turing Arena Light

5.1 Problem manager libraries

So far we have discussed the architecture, the design and the implementation of Turing Arena
light. However, we have not yet discussed how the problem manager is implemented. As
mentioned in the previous sections, the problem manager is a program that interacts with
the solution, and gives a verdict at the end of the interaction. The problem manager, just
like the solution, has to communicate with its counterpart, which is the solution, using the
standard input and output channels. Thus, the problem manager has full freedom on how to
interact with the solution, as long as it does so using the aforementioned channels.

While this grants the problem maker a great deal of freedom, it also means that the
problem maker has to potentially write a lot of boilerplate code each time they want to
implement a new problem. To mitigate this problem, a problem maker can create a library
of utilities that can be used to implement the problem manager. This library can be based
on a particular style of problems, so that the problem maker can offer a consistent experience
to the contestants.

In our case, we wrote a library called tc.py. A snippet of the library is shown in Figure 5.
This library allows to write a old-Google-Code-Jam like problem by only writing the code
essential to the problem, and leaving all the boilerplate code to the library. What the
manager has to implement is a function that generates a test case, and a function that
evaluates the solution given by the contestant on a test case. The library will then take care
of the rest, including enforcing the time limit, generating the right number of test cases, and
assigning and storing the score for the solution. Note that with the Turing Arena light there
is no way to enforce the memory limit, as the solution is run on the local machine of the
contestant. However, the time limit can be enforced by measuring how much time passes
between the sending of the input and the receiving of the output. While this is not a very
precise measurement, it is good enough for distinguishing between solutions that have very
different computational complexities.

CREATE TABLE users (
id TEXT PRIMARY KEY,
name TEXT NOT NULL,
other TEXT

)5

CREATE TABLE problems (
name TEXT PRIMARY KEY
) §

CREATE TABLE submissions (

id INTEGER PRIMARY KEY,

user_id TEXT NOT NULL,

problem TEXT NOT NULL,

score INTEGER NOT NULL,

source BLOB NOT NULL,

address TEXT,

FOREIGN KEY (user_id) REFERENCES users(id),

FOREIGN KEY (problem) REFERENCES problems (name)
)

Figure 6 SQLite schema for database used by tc.py and tc.rs.

G. Audrito, L. Laura, A. Orlandi, D. Ostuni, R. Rizzi, and L. Versari

As the name suggests, the tc.py library is written in Python [36], and it is meant to be
used with problem managers written in Python. This works great for problems where the
optimal solution plays well with Python, however in problems where the performance of the
solution is critical, having the problem manager written in Python may make the evaluation
of the contestant’s output too slow. To mitigate this problem, we ported the tc.py library
to Rust, thus creating the tc.rs library [34]. By using Rust as the programming language
for the problem manager, the whole execution of the problem manager is much faster. The
functionality of the two libraries is the same, and they are interoperable with each other.
This means that in a single contest, the problem maker can use both Python and Rust
problem managers.

Turing Arena light has no built-in support for saving the results of the contest, as this job
is left to the problem manager. This is done to allow the problem maker to have full control
over how the results are saved. In tc.py and tc.rs we implemented a simple database that
saves the results of the contest in a SQLite [25] database. The schema of the database is
shown in Figure 6. The database provides a way to save the results of the contest, and it
enables contestants to see their position in the ranking during the contest, using a service
defined in Turing Arena light.

6 Graphical user interface

The Rust implementation of Turing Arena light only comes with a command line interface for
the client. While this is enough to run the contest, it is not very user friendly. Contestants
have to remember the right parameters to pass to the client, and the less experienced ones
might have trouble working with a terminal. To mitigate this problem, a graphical user
interface for the client was developed.

A web application was developed as a new client for Turing Arena light [33]. A screenshot
of the application is shown in Figure 7. It was developed using the Angular framework [14],
and it is written in TypeScript [35]. The peculiar thing about this application is that aside

TALight Desktop @ wssi/tadiuniveit/sfide
E m testo.md m u Rotori v
Ddat testo.md X > Solve o
Grotori Arguments Files
testo.md e ——
testo.pdf " @size huge E
Rotori
Gexamples s - ’] - eien i dadioara A 1
Andrea si & stufato di risolvere cubi di Rubik, e ha quindi deciso di dedicarsi a risolvere
freesum.py rotori di stringhe. Un rotore di stringhe & una matrice di m righe ed n colonne di

input.py caratteri, dove ogni carattere & una lettera minuscola dell'alfabeto inglese. L'operazione
h consentita su un rotore di stringhe & la rotazione di una riga. La rotazione di una riga
sum.py consiste nel spostare tutti i caratteri di una riga di una posizione a destra, e il carattere che CJ Output = Log API <> Terminal
. si trova all'estremita destra della riga viene spostato all'estremita sinistra della riga. _—

LY La sfide del rotore consiste nel trovare una sequenza di rotazioni tale che, allineata sulle
colonne, appaia la pili lunga stringa di caratteri uguali. Ad esempio, se la matrice & la
seguente: ()
nforwbananabtoubrt
nanagonws jugobwrba
hgnrwghwbananagbiu
& possibile ruotare le righe in modo tale the appaia allineata sulle colonne la stringa
banana.

Aiuta Andrea a determinare la lunghezza della stringa pili lunga che puo essere ottenuta
dalla rotazione delle righe di un rotore di stringhe in modo che appaia allineata sulle
colonne.

Assunzioni

Sono presenti le seguenti size, dove il default & huge:

» tiny [30 punti]: $n \leg 58, Sm \leq 5$

» small [30 punti]: $n \leq 508, $m \leq 50

+ big [20 punti]: $n \leq 1258, $m \leq 125$

+ huge [20 punti]: $n \leq 2508, $m \leq 2508
1l tempo limite per testcase & di 5 secondi.

Input

Figure 7 Graphical user interface of Turing Arena light.

11:11

Grossi's Festschrift

11:12

Turing Arena Light

from offering all the functionalities of the command line client, it also offers a way to write
the solution directly in the browser. Not only that, but the solution is run directly in the
browser, without the need to install any additional software. This functionality is currently
only available for Python solutions, but it could be extended to other languages as well. To
do this, the Python interpreter has been compiled to JavaScript, using Pyodide [27]. This
allows to run Python code directly in the browser. Thus, the contestant can do everything
from an integrated environment in its browser.

Aside from running the solution in the browser, the web application also implements an
emulated file system within the browser. This allows the contestant to send file parameters
and receive file attachments and file outputs, all from the browser. Another useful feature that
derives from having a file system is the ability to save and restore the working environment.
This is useful for example when the contestant is working on a problem, and they want to
save their progress and continue working on it later. Another scenario is when a template is
provided to the contestant, and they can start working directly on it. The file system can be
exported as a tar archive, or can be stored in the cloud using either GitHub [11], Google
Drive [13], or OneDrive [24]. They can be later imported back from a tar archive or from
the cloud, specifically from GitHub.

7 Future directions

Turing Arena light has been developed enough to be used in a real-world classroom setting,
and it has been used in the course of Competitive Programming at the University of Verona.
It has been used for both the laboratory lessons and the exams, and it has been well received
by the students. However, there is still a debate to be had in which direction Turing Arena
light should move forward.

While the extreme flexibility of Turing Arena light made it possible to experiment a lot
with different kinds of problems, it also made it difficult to find a common ground on which
to standardize some common features, without having all of the problem manager libraries
reimplement them. One such feature is the ability to save the results of the contest. While
Turing Arena light does not have any built-in support for saving the results of the contest, it
is possible to implement it in the problem manager. However, this means that each problem
manager has to reimplement the same functionality, which is not ideal.

Moreover, some feature are implementable only by standardizing them at the core of
Turing Arena light. One such feature is the ability of accurately measuring the time consumed
by the solution. Right now, the time used by the solution is measured by measuring the time
between the sending of the input and the receiving of the output. However, this is not a very
accurate measurement, as it does not take into account the time spent sending and receiving
the packets over the network. This is not a problem when the server and the client are on
the same local network, as it happened in the course of Competitive Programming, but it
becomes a problem when the server and the client are on different networks, such as when
the server is on the Internet.

There is a solution to mitigate this problem, which is to encrypt the data, send it, then
start the clock and send the decryption key. Doing it this way, one can eliminate the time
spent sending the data, which can be a significant amount of time when the input is big.
However, to implement such a solution, it would require to have some mechanism to make
the problem manager and the core communicate on a meta-level to require this functionality
from the core. However, such mechanism could cause a narrowing of the flexibility of Turing
Arena light.

G.

Audrito, L. Laura, A. Orlandi, D. Ostuni, R. Rizzi, and L. Versari

We currently offer client implementations in Rust and a web-based interface, educators

and users may prefer clients in other programming languages. Implementing new RTAL
clients is relatively straightforward through two approaches:

Binding Generation: The recommended approach involves generating language bindings
from the core Rust library. This method ensures automatic compatibility with future
protocol updates and requires minimal maintenance. Our Python implementation already
follows this pattern, with the complete binding implementation available in our repository
(py.rs?®).

Protocol Reimplementation: Alternatively, developers can independently implement the
WebSocket-based communication protocol used between server and client. This is feasible
due to the protocol’s simplicity — it consists of only 11 distinct message types as defined in
our protocol specification (proto.rs*). However, this approach requires manual updates
to each client implementation whenever the protocol evolves.

Finally, while the command-line interface has worked great for the course of Compet-

itive Programming, it is not very probable that it would be fine for other courses with
less programming-focused students. Thus, the development of the graphical user interface
continues, and it is planned to be tested in the next iteration of the course of Competitive
Programming, and possibly in other courses with more less specialized students.

—— References

1

10
11

Giorgio Audrito, Tania Di Mascio, Paolo Fantozzi, Luigi Laura, Gemma Martini, Umberto
Nanni, and Marco Temperini. Recommending tasks in online judges. In Advances in Intelligent
Systems and Computing, pages 129-136. Springer International Publishing, Cham, 2020.
doi:10.1007/978-3-030-23990-9_16.

Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup language (yaml™)
version 1.1. Working Draft 2008-05, 11, 2009.

Codeforces. URL: https://codeforces.com/.

Douglas Crockford. The application/json media type for javascript object notation (json).
Technical report, IETF, 2006. doi:10.17487/RFC4627.

Jaap Eldering, Thijs Kinkhorst, and Peter van de Warken. Dom judge—programming contest
jury system. 2020, 2010.

Emma Enstrom, Gunnar Kreitz, Fredrik Niemela, Pehr Soderman, and Viggo Kann. Five
years with kattis — using an automated assessment system in teaching. In 2011 Frontiers in
Education Conference (FIE), pages T3J-1-T3J-6. IEEE, October 2011. doi:10.1109/FIE.
2011.6142931.

P Fantozzi and L Laura. Recommending tasks in online judges using autoencoder neural
networks. Olymp. Inform., December 2020. doi:10.15388/i0i.2020.05.

Paolo Fantozzi and Luigi Laura. Collaborative recommendations in online judges using
autoencoder neural networks. In Advances in Intelligent Systems and Computing, pages 113—
123. Springer International Publishing, Cham, 2021. doi:10.1007/978-3-030-53036-5_12.
Paolo Fantozzi and Luigi Laura. A dynamic recommender system for online judges based
on autoencoder neural networks. In Methodologies and Intelligent Systems for Technology
Enhanced Learning, 10th International Conference. Workshops, pages 197—205. Springer
International Publishing, Cham, 2021. doi:10.1007/978-3-030-52287-2_20.

Tan Fette and Alexey Melnikov. The websocket protocol, 2011. doi:10.17487/RFC6455.
Github. URL: https://github.com/.

3 https://github.com/romeorizzi/TALight/blob/v0.2.5/rtal/src/py.rs
4 https://github.com/romeorizzi/TALight/blob/v0.2.5/rtal/src/proto.rs

11:13

Grossi's Festschrift

https://doi.org/10.1007/978-3-030-23990-9_16
https://codeforces.com/
https://doi.org/10.17487/RFC4627
https://doi.org/10.1109/FIE.2011.6142931
https://doi.org/10.1109/FIE.2011.6142931
https://doi.org/10.15388/ioi.2020.05
https://doi.org/10.1007/978-3-030-53036-5_12
https://doi.org/10.1007/978-3-030-52287-2_20
https://doi.org/10.17487/RFC6455
https://github.com/
https://github.com/romeorizzi/TALight/blob/v0.2.5/rtal/src/py.rs
https://github.com/romeorizzi/TALight/blob/v0.2.5/rtal/src/proto.rs

11:14

Turing Arena Light

12
13
14
15

16

17

18

19

20

21

22

23
24
25
26

27
28

29
30
31
32
33
34
35
36

37

38

Google code jam. URL: https://codingcompetitionsonair.withgoogle.com/#code-jam.
Google drive. URL: https://drive.google.com/.

Brad Green and Shyam Seshadri. AngularJS. O’Reilly Media, Inc., 2013.

Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for
artificial intelligence. In Proceedings of the 3rd international joint conference on Artificial
intelligence, pages 235-245, 1973. URL: http://ijcai.org/Proceedings/73/Papers/027B.
pdf.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666-677, 1978.
doi:10.1145/359576.359585.

Fariha Iffath, A. S. M. Kayes, Md. Tahsin Rahman, Jannatul Ferdows, Mohammad Shamsul
Arefin, and Md. Sabir Hossain. Online judging platform utilizing dynamic plagiarism detection
facilities. Comput., 10(4):47, April 2021. doi:10.3390/computers10040047.

José Paulo Leal and Fernando M. A. Silva. Mooshak: a web-based multi-site programming
contest system. Softw. Pract. Ezp., 33(6):567-581, 2003. doi:10.1002/spe.522.

Stefano Maggiolo and Giovanni Mascellani. Introducing CMS: A contest management system.
Olympiads in Informatics, 6, 2012.

Stefano Maggiolo, Giovanni Mascellani, and Luca Wehrstedt. Cms: a growing grading system.
Olympiads in Informatics, page 123, 2014.

Nicholas D Matsakis and Felix S Klock. The rust language. ACM SIGAda Ada Letters,
34(3):103-104, 2014. doi:10.1145/2663171.2663188.

Dirk Merkel et al. Docker: lightweight linux containers for consistent development and
deployment. Linux j, 239(2):2, 2014.

Meta hacker cup. URL: https://www.facebook.com/codingcompetitions/hacker-cup.
Onedrive. URL: https://onedrive.live.com/.

Michael Owens. The definitive guide to SQLite. Springer, 2006.

Minh Tuan Pham and Tan Bao Nguyen. The domjudge based online judge system with
plagiarism detection. In 2019 IEEE-RIVF International Conference on Computing and
Communication Technologies, RIVF 2019, Danang, Vietnam, March 20-22, 2019, pages 1-6.
IEEE, March 2019. doi:10.1109/RIVF.2019.8713763.

Pyodide. URL: https://pyodide.org/.

Miguel A Revilla, Shahriar Manzoor, and Rujia Liu. Competitive learning in informatics: The
uva online judge experience. Olympiads in Informatics, 2:131-148, 2008.

Serde. URL: https://serde.rs/.

Tokio. URL: https://tokio.rs/.

Turing arena. URL: https://github.com/turingarena/turingarena.

Turing arena light. URL: https://github.com/romeorizzi/TALight.

Turing arena light desktop. URL: https://talco-team.github.io/TALightDesktop/.
Turing arena light rust utilities. URL: https://github.com/dariost/tal-utils-rs.
Typescript. URL: https://www.typescriptlang.org/.

Guido Van Rossum et al. Python programming language. In USENIX annual technical
conference, volume 41, pages 1-36. Santa Clara, CA, 2007.

Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. A survey
on online judge systems and their applications. ACM Comput. Surv., 51(1):3:1-3:34, January
2018. doi:10.1145/3143560.

Yutaka Watanobe, Md. Mostafizer Rahman, Taku Matsumoto, Rage Uday Kiran, and Pen-
ugonda Ravikumar. Online judge system: Requirements, architecture, and experiences. Int. J.
Softw. Eng. Knowl. Eng., 32(6):917-946, June 2022. doi:10.1142/50218194022500346.

https://codingcompetitionsonair.withgoogle.com/#code-jam
https://drive.google.com/
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/359576.359585
https://doi.org/10.3390/computers10040047
https://doi.org/10.1002/spe.522
https://doi.org/10.1145/2663171.2663188
https://www.facebook.com/codingcompetitions/hacker-cup
https://onedrive.live.com/
https://doi.org/10.1109/RIVF.2019.8713763
https://pyodide.org/
https://serde.rs/
https://tokio.rs/
https://github.com/turingarena/turingarena
https://github.com/romeorizzi/TALight
https://talco-team.github.io/TALightDesktop/
https://github.com/dariost/tal-utils-rs
https://www.typescriptlang.org/
https://doi.org/10.1145/3143560
https://doi.org/10.1142/S0218194022500346

Encoding Data Structures for Range Queries on
Arrays

Seungbum Jo &

Chungnam National University, Daejeon, South Korea

Srinivasa Rao Satti &
Norwegian University of Science and Technology, Trondheim, Norway

——— Abstract

Efficiently processing range queries on arrays is a fundamental problem in computer science, with
applications spanning diverse domains such as database management, computational biology, and
geographic information systems. A range query retrieves information about a specific segment of
an array, such as the sum, minimum, maximum, or median of elements within a given range. The
challenge lies in designing data structures that allow such queries to be answered quickly, often in
constant or logarithmic time, while keeping space overhead (and preprocessing time) small. Encoding
data structures for range queries has emerged as a pivotal area of research due to the increasing
demand for high-performance systems handling massive datasets. These structures consider the
data together with the queries and aim to store only as much information about the data as is
needed to answer the queries. The data structure does not need to access the original data to
answer the queries. Encoding-based solutions often leverage techniques from succinct data structures,
bit manipulation, and combinatorial optimization to achieve both space and time efficiency. By
encoding the array in a manner that preserves critical information, these methods strike a balance
between query time and space usage. In this survey article, we explore the landscape of encoding
data structures for range queries on arrays, providing a comprehensive overview of some important
results on space-efficient encodings for various types of range query.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis

Keywords and phrases range queries, RMQ, Cartesian tree, top-k queries, range median, range
mode

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.12

Category Research

1 Introduction

Efficiently processing range queries on arrays is a fundamental problem in computer science,
with applications spanning diverse domains such as database management, computational
biology, geographic information systems, and data analytics. A range query retrieves specific
information about a contiguous segment of an array, such as the sum, minimum, maximum,
or median of elements within a given range. Designing data structures to process such queries
efficiently is critical, especially as datasets grow in size and complexity. The challenge lies
in enabling fast query responses — often aiming for constant or logarithmic time — while
minimizing the space overhead and preprocessing time required by the data structures.

Encoding data structures for range queries have emerged as a crucial area of research
to address these challenges. Unlike traditional approaches that rely on augmenting the
array with auxiliary structures or preprocessing, encoding-based methods focus on storing a
compact representation of the data tailored specifically to the types of queries to be answered.
These structures are designed to store only the information necessary for query resolution,
eliminating the need to access the original array during query processing. The encoding
data structures typically combine techniques from succinct/compressed data structures,
combinatorial optimization and algorithmic design.
? Seungbum Jo and Srinivasa Rao S.atti;

37 icensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 12; pp. 12:1-12:12

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sbjo@cnu.ac.kr
https://orcid.org/0000-0002-8644-3691
mailto:srinivasa.r.satti@ntnu.no
https://orcid.org/0000-0003-0636-9880
https://doi.org/10.4230/OASIcs.Grossi.2025.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

12:2

Encoding Data Structures for Range Queries on Arrays

This survey aims to provide a comprehensive and structured overview of the key develop-
ments in the field of encoding data structures for range queries on arrays. We categorize
the encoding solutions based on the specific types of range queries they support, such as
range minimum/maximum queries, range top-k queries, range mode queries, and range
majority /minority queries. The survey article by Skala [51] from 2013 gives a detailed
summary of various results for “range queries on arrays”. Thus we mainly focus on the new
results since 2013, briefly summarizing the previous results.

Data structures can be classified into two categories: indexing and encoding data structures.
For an indexing data structure, we preprocess the data and build an index so that subsequent
queries can be answered efficiently by probing the index and the input data. On the other
hand, for an encoding data structure, we preprocess the input data and build an encoding of
the input so that subsequent queries can be answered by probing only the encoding (i.e.,
with no access to the input at query time). In this survey, we mainly focus on the results on
encoding data structures, but occasionally mention a few results on indexing data structures
for comparison. For many problems, the size of an encoding can be smaller than the size of
the input, which is in fact the case for many range queries that we consider.

For example, given a query range, a range minimum query returns the minimum element
within the query range. Range median, range mode, range selection and top-k, range mode
and majority /minority queries are defined analogously. With this definition of range queries,
one can reconstruct the input array by asking point queries with range that contains a single
element, and hence the size of an encoding is at least the size of the input, and storing the
input explicitly gives an optimal space encoding. To avoid this, we define the range queries
as follows. For a query range, the range minimum query returns a position of the minimum
element within the query range (and analogously for other range queries), instead of the
value at the position. With this definition, one can obtain an encoding of size linear in bits
for range minimum queries, which is asymptotically less than the space required to store the
input array in the word RAM model.

In this article, we consider the encoding data structures for a 1D array A[l,n], and a 2D
array A[l,m][1,n], where m < n. We assume that the array indices start from 1. For 2D
arrays, we use the term range to mean an rectangular range which is defined as a Cartesian
product of a given set of intervals in each dimension. We assume a word RAM model with
word-size O(logn) bits. For the encoding structures where we do not mention the query times,
queries can be supported in polynomial time by essentially decoding the entire structure.

2 Range minimum queries

Given an input array and a query range, a range minimum query (RMQ) returns the
position of the minimum element within the query range. From its wide applications (e.g.,
constructing an indexing structure on a string [15]), designing a data structure to answer
RMQ has intensive attention from the community. For the 1D case, any encoding for RMQ
requires at least 2n — o(n) bits due to its bijective relationship with the Cartesian tree of the
input [53]. The best-known result for a worst-case input is the (2n + o(n))-bit data structure
by Fisher and Heun that supports O(1) query time!. For earlier results, see [51].

When the input is highly compressible, there are some results whose space usages are
parameterized based on the compressed size of the input while still supporting efficient
query time. Here, compressibility is considered in two ways: (1) The compressibility of the

L considering the o(n)-term, the current best result is Navarro and Sadakane’s (2n + O(n/(lo%)t))—bit

data structure that supports queries in O(¢) time [45].

S. Jo and S. R. Satti

input [2,18,21,49], and (2) the compressibility of the Cartesian tree of the input [21,43].
Note that data structures in (1) can access the input, as they maintain the input array in a
compressed form. In contrast, the results in (2) cannot access to the input as they maintain
the compressed Cartesian tree with some auxiliary structures for the query support.

There also has been progress on space-query time trade-off lower bounds for the problem
under the cell-probe model, which measures query time by counting the number of memory
cell accesses only. Liu and Yu showed that any data structure answering RMQ in O(t) time
requires at least 2n + O(n/(log n)o(t2 log® %)) bits of space [42]. Later, Liu improved the space
lower bound to 2n + O(n/(log n)C(t1°e”) bits [41].

2.1 Range minimum and maximum queries

To address range minimum and maximum queries on 1D array simultaneously, a straightfor-
ward approach is to use separate data structures for each query. Since any data structure
designed for range minimum queries can be easily adapted for range maximum queries, the
data structure of Fischer and Heun [17] provide a (4n + o(n))-bit data structure that can
answer both queries in O(1) time. Gawrychowski and Nicolson [26] showed that if an array
contains no consecutive equal values, there exists a data structure that uses 3n + o(n) bits
and supports both queries in O(1) time. Furthermore, they proved that any encoding data
structure for answering both queries requires at least 3n — ©(logn) bits, as any Baxter
permutation can be fully reconstructed using only range minimum and maximum queries.

When the input array contains consecutive equal values, a straightforward solution is to
use two separate data structures proposed by Fischer [14] for range minimum and maximum
queries. This approach uses 5.08n + o(n) bits of space and supports both queries in O(1)
time. Additionally, for any given p, the data structure also can answer the position of
the p-th leftmost minimum or maximum value within a query range in O(1) time [35]. Jo
and Satti [35] improved the space usage of the data structure to 4.585n + o(n) bits while
maintaining the same O(1) query time. Subsequently, Tsur [52] further reduced the space to
3.701n bits with O(n) time for queries. Recently, Jo and Kim [33] proposed a data structure
that uses 3.701n + o(n) bits while supporting all queries in O(log(e) n) time for any positive
integer ¢ (here 1og(z) denotes logarithm iterated ¢ times for any constant ¢ > 1). They also
showed that any data structure for answering these queries requires at least 3.16n — ©(logn)
bits when the input contains consecutive equal values.

2.2 Range minimum queries on non-permutation input

Consider a 1D array with duplicate entries. In this case, some ranges may have multiple
answers for RMQ. The data structures discussed in Skala’s survey [51] return either the
leftmost or rightmost position among the possible answers. Motivated by the efficient
construction of compressed suffix trees [50], Fischer and Heun [16] considered the problem of
finding the position of an approximated median among all positions of minimums within a
given range. Specifically, for any constant 1 < ¢ < 1/2, they proposed a (log (3 4 2v/2)n +
o(n/c) = 2.54n + o(n/c))-bit data structure that can answer the position of the r-th leftmost
minimum in O(1/c) time, where 7 € [$(1/2—c¢), 3(1/2+ ¢)]. The data structure uses a super
Cartesian tree, a Cartesian tree in which each edge is colored either red or blue.

2.3 Range minimum queries on 2D array

When the input is an m x n 2D array with m < n, Demaine et al. [11] showed that there
is no Cartesian tree-like structure for the 2D case. Specifically, no structure exists that
fully encodes the answer to all queries and can be constructed in linear time. They further

12:3

Grossi's Festschrift

12:4

Encoding Data Structures for Range Queries on Arrays

showed that when m = n, any encoding data structure for answering RMQ queries requires
Q(n?logn) bits. Since the input array can be stored using O(n?logn) bits, this implies
that any encoding data structure uses asymptotically the same space as indexing data
structures [1,5,54] when m = ©(n). In this survey, we focus on the case where m = o(n).

Brodal et al. [5] proposed an O(nm - min(m,logn))-bit data structure with O(1) query
time. The O(nm?)-bit data structure is achieved by maintaining O(m?) 1D RMQ structures
to support queries over the range [i,j] x [1,n] for all 1 < i < j < m along with the 1D
RMQ structures on the columns. Additionally, they proved that any encoding for answering
RMQ requires at least Q(nmlogm) bits. When m is 2 or 3, Golin et al. [29] improved the
encoding space of the result in [5] (see Table 1) by introducing the joint Cartesian tree of
the input. This structure is used to compare two minimum elements in ranges where the
row ranges are [1,m — 1] and m, respectively. Furthermore, when m = 2, they proposed a
data structure that answers queries in O(t) time using 5n + O(nlogt/t) bits of space, for
any t = (logn)°W.

Table 1 Encoding space for RMQ queries on m x n 2D array with m = 2 or 3.

Input Space (in bits) ref

2% n Tn — O(logn) [5]
5n — O(log n) [29]

3xn (12 +1log5)n — O(logn) [5]
(6 + log5)n + o(n) [29]

Also for the 2D array case with 1 < i < mand 1 < j < n, the query range can be restricted
as follows: (1) 1-sided: [1,m] x [1, 7], (2) 2-sided: [1,4] x [1, 7], (3) 3-sided: [1,%] x [j1, j2] for
1 <j; <jo <, and (4) 4-sided: any rectangular range. Golin et al.[29] provided upper
bounds and matching lower bounds for the encoding space required to answer RMQ under
these four restricted query cases (see Table 2). Here the encoding space is expressed as an
expected value, assuming that the input is arranged in row- or column-major order, uniformly
chosen from all permutations of size mn.

Table 2 Expected encoding space (in bits) for RMQ with restricted query ranges [29].

1-sided 2-sided 3-sided 4-sided
O(log®n) ©O(log>nlogm) ©O(nlog?m) ©(mn)

For general m and query ranges, Brodal et al. [6] proposed an O(nm logm)-bit encoding
for answering RMQ. Based on the their lower bound result of [6], this encoding is asymptot-
ically optimal. For m = o(n), the problem of designing a o(nm logn)-bit data structure for a
2D array that answers queries in sublinear time remains an open problem.

RMQ on (partial) Monge Matrices. A 2D matrix (array) M is called Monge if M[iq, j1] +
MTia, j2] = Mliy, jo] + Miz, j1] for any 1 <43 <is < mand 1 < j; < jo < n (it is more
common to define a Monge matrix with < rather than >. In this case, a matrix defined with
> is referred to as an inverse Monge matrix. All the results presented in this survey can
be easily adapted for inverse Monge matrices [38]). Solving RMQ on Monge matrices is of
interest due to their various applications in combinatorial optimization and computational
geometry [38]. Due to the property of Monge matrices, it is possible to design encoding
data structures for RMQ that are more space-efficient than those for general 2D arrays.

S. Jo and S. R. Satti

Table 3 Data structures on n x n Monge and partial Monge matrices. Here a(n) denotes the
inverse Ackermann function.

Input Space (in bits) Query time ref
O(nlog®n) O(log®n) [37]
O(nlogn O(logn

Monge OEnH‘)) Ogl)) [22]
O(nlogn) O(loglogn) [23]
O(nlog®n-a(n)) O(log®n) [37]

Partial Monge O(nlogn) O(logn - a(n)) [22]
O(nlogn) O(loglogn) [23]

The first non-trivial result was proposed by Kaplan et al. [37] (the journal version of the
paper published in 2017 [38]). They showed that for an n x n Monge matrix, there exists an
O(nlog? n)-bit data structure that can answer RMQ in O(log® n) time.

The result was later improved by Gawrychowski et al. [22] who proposed a data structure
using O(nlogn) bits while supporting the query in O(logn) time. Furthermore, they showed

that with O(n'*€) bits of space for any 0 < € < 1, the query can be answered in O(1) time.

This was further improved in a subsequent work by Gawrychowski et al. [23], where they
presented a data structure using O(nlogn) bits of space while supporting O(loglogn) query
time. Additionally, they provided a lower bound of the data structure by showing that any
data structure of size O(n - polylog(n)) bits requires Q(loglogn) time to answer RMQ on an
n X n Monge matrix. This lower bound was derived by reducing the predecessor problem to
RMQ, implying that their data structure is asymptotically optimal (the journal version of
the results in [22] and [23] was published in 2020 [24]).

Monge matrices can be generalized to partial Monge matrices, which are Monge matrices
with some undefined entries, and the defined entries in each row and column form a contiguous
interval. Solving RMQ on partial Monge matrices has applications in areas such as algorithms
for maximum flow in planar graphs [38]. In [37], as well as in subsequent works [22] and [23],
data structures for partial Monge matrices were proposed by extending those designed for
Monge matrices. A summary of these results is presented in Table 3.

3 Range top-k queries

Range selection and range top-k queries are natural extensions of the RMQ, defined as
follows: Given a positive integer k and a query range, a range selection query (denoted as
sel-k) returns the position of the k-th largest value within the range of the input. Similarly, a
range top-k query (denoted as top-k) returns the positions of the k’-largest values within the
range for all k¥’ < k. From these definitions, RMQ can be considered a special case of sel-k or
top-k with k£ = 1. There are two variations of top-k: (1) sorted top-k reports the answers in
sorted order, based on the corresponding values in the input, and (2) unsorted top-k reports
the answers in an arbitrary order. For 1D array, Gawrychowski and Nicholson [25] showed
that the space lower bound for answering sorted and unsorted top-k are the same within
additive lower order terms when k = o(n). Throughout this survey, we use top-k to refer to
the sorted one.

For k = 2, Davoodi et al. [10] proposed a (3.272n + o(n))-bit data structure that can
answer top-2 in O(1) time. Their solution is based on the Cartesian tree of the input,
combined with additional information to support the queries. Furthermore, they showed
that at least 2.656n — O(logn) bits are required to answer top-2.

12:5

Grossi's Festschrift

12:6

Encoding Data Structures for Range Queries on Arrays

Table 4 Data structures for top-k on a 1D array.

Query Space (in bits) Query time ref

Upper bounds

top-2 3.272n + o(n) o(1) [10]
2.755n 4 o(n) [26]
O(nlogk) O(k) [31]

top-k nlogk + n(k + 1) log(1 4+ 1/k) + o(nlogk) O(logn) [26]
1.5nlogk — ©(n) poly(klogn) [25]

Lower bounds

top-2 2.656n — O(logn) [10]
2.755n — o(n) [26]

top-k nlogk — O(n + klogk) [31]
nlogk + n(k + 1)log(1 + 1/k) — o(nlogk) [26]

For general k, the first non-trivial result was introduced by Grossi et al.[31]. This work
is an extended journal version of two earlier conference papers published in 2013 [32] and
2014 [44]. They first gave a space lower bound result that at least nlog k — O(n + klog k) bits
are necessary to answer sel-k or top-k, even when the query range is restricted to being 1-sided
(i.e., a prefix of the input). Then using the concept of shallow cuttings [9], they design two
O(nlogk)-bit data structures. These structures support: (1) sel-k in O(1 + log &’/ loglogn)
time, and (2) top-k in O(K’) time, for any 1 < &’ < k. Hence, both data structures use
asymptotically optimal space. Moreover, the query time for (1) is also optimal for any data
structures using O(n - polylog(n)) space, as shown by the lower bound result of Jorgensen
and Larsen [36]. However, when the query range is 1-sided, they show that the time lower
bound on range selection queries can be circumvented. Specifically, for 1-sided sel-k, they
proposed two data structures that (1) uses nlogk + o(nlogk) + n bits and supports queries
in any w(1) time, or (2) uses (1 + €)nlogk bits and supports queries in O(1/¢) time, for any
constant 0 < € < 1.

The space upper and lower bounds for answering top-k from [31] were later improved by
Gawrychowski and Nicholson [23]. They showed that at least nlogk + n(k + 1)log(1 + 1/k)
bits are necessary to answer top-k and proposed an encoding scheme whose space usage is
optimal up to lower-order additive terms. For instance, when k = 2, their encoding uses
2.755n + o(n) bits of space, improving upon the result of Davoodi et al.[10]. In the extended
version of their paper [25], they also presented a (1.5nlogk — ©(n))-bit data structure that
can answer top-k in poly(klogn) time. See Table 4 for a summary of the results on data
structures for top-k in a 1D array.

The approximated selection query is to find the position of an element whose rank lies
between k — as and k + as for a constant 0 < o < 1/2, where s denotes the length of the
query range. In the special case where k = 1/2, the query is referred to as an approximate
range median query. Bose et al. [4] introduced a data structure that uses O(nlogn/a) bits
of space, which can answer approximate range median queries in O(1) time. For general k,
El-Zein et al. [13] proposed a data structure with size O(n/a?) bits that also supports O(1)
query time. When £ is fixed, they showed that the size of the data structure can be reduced
to O(n/a?) bits while maintaining the same query time. Therefore, the result improves the
space usage of [4] for approximated range median queries. Additionally, they showed that
both data structures use asymptotically optimal space for constant « by proving an Q(n)-bit
encoding lower bound for approximate range median queries.

S. Jo and S. R. Satti

Jo et al. [34] studied the top-k on an m x n 2D array with m < n. For queries restricted
to the range [1,m] X [1, j], they proposed an O(min nklgm,nmlgk)-bit encoding for sorted
top-k and an O(minnklg(m/k),nmlg(k/m))-bit encoding for unsorted top-k. This result
implies a space gap between the encodings for sorted and unsorted top-k in 2D, unlike the
1D case, even when k = o(mn). For arbitrary rectangular query ranges, they presented
an (mlog ((ktll)”) + 2nm(m — 1) + o(n))-bit encoding to answer top-k. Compared to the
O(nmlogn)-bit trivial encoding, which explicitly stores the input, their encoding uses less
space when m = o(logn).

4 Range mode

A mode of a multiset S is an element of S that occurs at least as frequently as any other
element in S. In the range mode problem, we are given an array A of n elements which we
can preprocess so as to answer range mode queries efficiently. Given a query range (4,7),
the range mode query returns any position, between ¢ and j, of a mode of the multiset
{A[i], A[i+1],--- , A[§]}. Krizanc et al. [40] were the first to consider the data structure version
of the range mode problem. They proposed two structures achieving different time-space
tradeoffs: (i) a data structure that takes O(n?~2¢) words and supports queries in O(n¢logn)
time, for any 0 < € < 1/2, and (ii) a data structures that takes O(n?loglogn/logn) words
and supports range mode queries in O(1) time. The space bound of the second structure was
improved to O(n?/logn) words by Petersen [47]. Subsequently, Petersen and Grabowski [48]
improved both the tradeoffs to shave-off a log factor, to obtain the following results: (i) an
O(n?72¢) space structure that supports queries in O(n¢) time, for any 0 < € < 1/2, and (ii)
an O(n?loglogn/log? n) space structure that supports the queries in O(1) time.

Greve et al. [30] showed that any data structure that uses S memory cells of w bits needs
Q(logl&%) time to answer range mode queries. Chan et al. [7] designed a data structure
that uses O(n) words of space and answers range mode queries in O(y/n/logn) time. Also,
by reducing the Boolean matrix multiplication problem to the range mode problem, they
showed that any data structure for range mode must have either Q(n“/?) preprocessing
time or Q(n“/?~1) query time in the worst case, where w denotes the matrix multiplication
exponent.

As all the above data structures use at least linear space, they can store the input as
part of the data structure. One can improve the space usage significantly by considering
approximate versions of the query as described in the next subsection.

4.1 Approximate range mode

In the approximate range mode problem, given a query range (i,) and a parameter ¢ > 1,
we are interested in returning a position k such that the element A[k] occurs at least 1/c
times the number of occurrences of the mode of the query range.

Bose et al. [4] were the first to consider this problem whose proposed data structures
achieve constant query time for ¢ = 2,3 and 4, using storage space of O(nlogn), O(nloglogn)
and O(n) words, respectively. They also give another data structure that takes O(n/e) words
and answers (1 + €)-approximate range mode queries in O(loglog, . n) time. This gives a
linear space data structure that answers c-approximate range mode queries in O(loglogn)
time, for constant c. Greve et al. [30] propose an improved data structure that uses linear
space and answers 3-approximate range mode queries in O(1) time. Using this data structure,

12:7

Grossi's Festschrift

12:8

Encoding Data Structures for Range Queries on Arrays

they design another data structure that takes O(n/e) words and answers (1 + €)-approximate
range mode queries in O(log(1/¢)) time. This gives a linear space data structure that answers
c-approximate range mode queries in O(1) time, for constant c.

Finally, El-Zein et al. [13] designed an encoding data structure for approximate range
mode queries that occupies O(n/e) bits of space and answers (1 + €)-approximate range
mode queries in O(log(1/¢€)) time. This improves the space usage of Greve et al. [30] by a
factor of log n while maintaining the query time. They also show that the space usage of
their structure is asymptotically optimal for constant € by proving a matching lower bound.

5 Range majority and minority

Range majority and range minority queries are fundamental problems in data mining and
theoretical computer science. They involve preprocessing a sequence such that, given a range
(i,7), one can efficiently determine elements that occur frequently (majority) or infrequently
(minority) within the range. These problems are closely related to range mode queries, which
aim to find the most frequent element but are computationally harder.

Range majority. Range majority problems are mainly studied under the assumption that
one can access either the original or a compressed version of the input array. For the case
when 7 is fixed at preprocessing time, Karpinski and Nekrich [39] gave a data structure that
takes O(n/7) words and supports 7-majority queries in O((loglogn)?/7) time. Durocher
et al. [12] independently considered the same problem and obtained an improved result
which takes O(nlog(1/7)) words and supports queries in optimal O(1/7) time. For the
case when 7 is not fixed at preprocessing time, Chan et al. [8] gave a structure that uses
O(nlogn) words and supports queries in optimal O(1/7) time. Gagie et al. [19] gave another
structure for this case that takes O(n(Hgy + 1)) words while supporting queries in optimal
time (here Hy denotes the k-th order empirical entropy of the input). Belazzougui et al. [3]
designed two improved structures: one that takes nHy 4 o(n)(Hp + 1) bits and supports
queries in (1/7)-w(1) time, for any slowly growing function, and another structure that takes
(14 €)nHy + o(n) bits, for any constant € > 0 and supports queries in O(1/7) time. For the
case when the alphabet size o satisfies logo = O(logw), they also gave another structure
that uses nHy + o(n) bits and supports queries in O(1/7) time.

For encoding data structures, Navarro and Thankachan [46] were the first to consider
the encoding version of the T-majority problem They obtained an encoding for range 7-
majority queries that takes O(n[log(1/7)] bits and supports range 7'-majority queries, for
any 7 < 7' < 1, in time O((1/7)loglog,,(1/7)logn), where w = Q(logn) is the word size.
Moreover, they showed that the space usage is optimal by showing that any encoding
for range T-majority queries must use Q(n[log(1/7)]) bits. They also propose another
structure that takes O(n[log(1/7)] + nloglogn) bits and answers range 7/-majority queries
in O((1/7)loglog,,(1/7)) time. Finally, Gawrychowski and Nicholson [27] improved the
query time of the first structure above of Navarro and Thankachan to obtain a structure
that uses O(nlog(1/7)) bits and supports queries in O(1/7) time. Moreover they showed
that the space bound is optimal even for a weaker query in which one must decide whether
the query range contains at least one 7-majority element. Gawrychowski and Nicholson [28]
also showed that for an array of size 2nlog®n, for a large constant ¢, any data structure
for checking an existence of element with 1/log®n-majority either needs 2(n?) space or
Q(log® ' n) query time, through a reduction from the set intersection problem. This implies
that it is unlikely that one can improve the query time to the output sensitive bound of
O(occ + 1) when returning occ = o(1/7) positions for range 7-majority queries.

S. Jo and S. R. Satti

Range minority. Parameterized range minority problem was introduced by Chan et al. [8].
In this problem, we need to preprocess a given array such that given a parameter 7 and a
range (7, j), we need to return an element within the range that is not one of its 7-majorities,
if there exists one. Currently, there are no encoding results for range minority queries.
Also encoding data structure for minority queries are likely harder than the encoding data
structures for majority queries. This is because at most 1/7 elements can be candidates for
T-majority, whereas such a lower bound doesn’t exist for minority queries. Here, we mention
some indexing data structures for range T-minority queries.

Chan et al. gave a structure that takes O(n) words and supports queries in O(1/7) time.
By exploiting the duality of this problem with range T-majorities problem, Belazzougui et
al. [3] obtain exactly the same tradeoffs they obtained for the T-majority problem, mentioned
above. Also, analogous to their range majority structure, Gagie et al. [20] propose a data
structure that takes nHy + 2n + o(nlogo) bits for any k = o(log, n), and answers range
T-minority queries in O((loglog,, o)/7) time, where w = Q(logn) is the word size.

—— References

1 Amihood Amir, Johannes Fischer, and Moshe Lewenstein. Two-dimensional range minimum
queries. In CPM, volume 4580 of LNCS, pages 286—294. Springer, 2007. doi:10.1007/
978-3-540-73437-6_29.

2 Jérémy Barbay, Johannes Fischer, and Gonzalo Navarro. LRM-trees: Compressed indices,
adaptive sorting, and compressed permutations. Theor. Comput. Sci., 459:26-41, 2012.
do0i:10.1016/J.TCS.2012.08.010.

3 Djamal Belazzougui, Travis Gagie, J. lan Munro, Gonzalo Navarro, and Yakov Nekrich. Range
majorities and minorities in arrays. Algorithmica, 83(6):1707-1733, 2021. doi:10.1007/
S00453-021-00799-7.

4 Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Approximate range mode
and range median queries. In STACS, volume 3404 of LNCS, pages 377—-388. Springer, 2005.
d0i:10.1007/978-3-540-31856-9_31.

5 Gerth Stglting Brodal, Pooya Davoodi, Moshe Lewenstein, Rajeev Raman, and Srinivasa Rao
Satti. Two dimensional range minimum queries and fibonacci lattices. Theor. Comput. Sci.,
638:33-43, 2016. doi:10.1016/J.TCS.2016.02.016.

6 Gerth Stglting Brodal, Pooya Davoodi, and S. Srinivasa Rao. On space efficient two
dimensional range minimum data structures. Algorithmica, 63(4):815-830, 2012. doi:
10.1007/S00453-011-9499-0.

7 Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T.
Wilkinson. Linear-space data structures for range mode query in arrays. Theory Comput.
Syst., 55(4):719-741, 2014. doi:10.1007/S00224-013-9455-2.

8 Timothy M. Chan, Stephane Durocher, Matthew Skala, and Bryan T. Wilkinson. Linear-
space data structures for range minority query in arrays. Algorithmica, 72(4):901-913, 2015.
doi:10.1007/S00453-014-9881-9.

9 Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal range
counting. ACM Trans. Algorithms, 12(4):45:1-45:15, 2016. doi:10.1145/2830567.

10 Pooya Davoodi, Gonzalo Navarro, Rajeev Raman, and S. Srinivasa Rao. Encoding range minima
and range top-2 queries. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 372(2016):20130131, 2014. doi:10.1098/rsta.2013.0131.

11 Erik D. Demaine, Gad M. Landau, and Oren Weimann. On cartesian trees and range
minimum queries. In Automata, Languages and Programming, 36th International Colloguium,
ICALP Proceedings, Part I, volume 5555 of LNCS, pages 341-353. Springer, 2009. doi:
10.1007/978-3-642-02927-1_29.

12:9

Grossi's Festschrift

https://doi.org/10.1007/978-3-540-73437-6_29
https://doi.org/10.1007/978-3-540-73437-6_29
https://doi.org/10.1016/J.TCS.2012.08.010
https://doi.org/10.1007/S00453-021-00799-7
https://doi.org/10.1007/S00453-021-00799-7
https://doi.org/10.1007/978-3-540-31856-9_31
https://doi.org/10.1016/J.TCS.2016.02.016
https://doi.org/10.1007/S00453-011-9499-0
https://doi.org/10.1007/S00453-011-9499-0
https://doi.org/10.1007/S00224-013-9455-2
https://doi.org/10.1007/S00453-014-9881-9
https://doi.org/10.1145/2830567
https://doi.org/10.1098/rsta.2013.0131
https://doi.org/10.1007/978-3-642-02927-1_29
https://doi.org/10.1007/978-3-642-02927-1_29

12:10

Encoding Data Structures for Range Queries on Arrays

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Stephane Durocher, Meng He, J. Ian Munro, Patrick K. Nicholson, and Matthew Skala.
Range majority in constant time and linear space. Inf. Comput., 222:169-179, 2013. doi:
10.1016/J.1C.2012.10.011.

Hicham El-Zein, Meng He, J. lan Munro, Yakov Nekrich, and Bryce Sandlund. On approximate
range mode and range selection. In ISAAC, volume 149 of LIPIcs, pages 57:1-57:14. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPICS.ISAAC.2019.57.
Johannes Fischer. Combined data structure for previous- and next-smaller-values. Theor.
Comput. Sci., 412(22):2451-2456, 2011. doi:10.1016/J.TCS.2011.01.036.

Johannes Fischer and Volker Heun. Theoretical and practical improvements on the rmqg-
problem, with applications to LCA and LCE. In Combinatorial Pattern Matching, 17th Annual
Symposium, CPM 2006, Barcelona, Spain, July 5-7, 2006, Proceedings, volume 4009 of LNCS,
pages 36—48. Springer, 2006. doi:10.1007/11780441_5.

Johannes Fischer and Volker Heun. Finding range minima in the middle: Approximations
and applications. Math. Comput. Sci., 3(1):17-30, 2010. doi:10.1007/S11786-009-0007-8.
Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput., 40(2):465-492, 2011. doi:10.1137/090779759.
Johannes Fischer, Veli Mékinen, and Gonzalo Navarro. An(other) entropy-bounded compressed
suffix tree. In CPM, volume 5029 of LNCS, pages 152—-165. Springer, 2008. doi:10.1007/
978-3-540-69068-9_16.

Travis Gagie, Meng He, J. Ian Munro, and Patrick K. Nicholson. Finding frequent elements in
compressed 2d arrays and strings. In SPIRE, volume 7024 of LNCS, pages 295-300. Springer,
2011. doi:10.1007/978-3-642-24583-1_29.

Travis Gagie, Meng He, and Gonzalo Navarro. Compressed dynamic range majority and minor-
ity data structures. Algorithmica, 82(7):2063-2086, 2020. doi:10.1007/S00453-020-00687-6.
Pawel Gawrychowski, Seungbum Jo, Shay Mozes, and Oren Weimann. Compressed range
minimum queries. Theor. Comput. Sci., 812:39-48, 2020. doi:10.1016/J.TCS.2019.07.002.
Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Improved submatrix maximum queries
in monge matrices. In ICALP (1), volume 8572 of LNCS, pages 525-537. Springer, 2014.
doi:10.1007/978-3-662-43948-7_44.

Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Submatrix maximum queries in monge
matrices are equivalent to predecessor search. In Automata, Languages, and Programming
— 42nd International Colloquium, ICALP Proceedings, Part I, volume 9134 of LNCS, pages
580-592. Springer, 2015. doi:10.1007/978-3-662-47672-7_4T.

Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Submatrix maximum queries in monge
and partial monge matrices are equivalent to predecessor search. ACM Trans. Algorithms,
16(2):16:1-16:24, 2020. doi:10.1145/3381416.

Pawel Gawrychowski and Patrick K. Nicholson. Optimal encodings for range min-max and
top-k. CoRR, abs/1411.6581, 2014. arXiv:1411.6581.

Pawel Gawrychowski and Patrick K. Nicholson. Optimal encodings for range top-k , selection,
and min-max. In ICALP (1), volume 9134 of LNCS, pages 593—604. Springer, 2015. doi:
10.1007/978-3-662-47672-7_48.

Pawel Gawrychowski and Patrick K. Nicholson. Optimal query time for encoding range majority.
In Algorithms and Data Structures — 15th International Symposium, WADS Proceedings, volume
10389 of LNCS, pages 409-420. Springer, 2017. doi:10.1007/978-3-319-62127-2_35.
Pawel Gawrychowski and Patrick K. Nicholson. Optimal query time for encoding range
majority. CoRR, abs/1704.06149, 2017. arXiv:1704.06149.

Mordecai J. Golin, John Iacono, Danny Krizanc, Rajeev Raman, Srinivasa Rao Satti, and
Sunil M. Shende. Encoding 2d range maximum queries. Theor. Comput. Sci., 609:316-327,
2016. doi:10.1016/J.TCS.2015.10.012.

Mark Greve, Allan Grgnlund Jgrgensen, Kasper Dalgaard Larsen, and Jakob Truelsen. Cell
probe lower bounds and approximations for range mode. In ICALP (1), volume 6198 of LNCS,
pages 605-616. Springer, 2010. doi:10.1007/978-3-642-14165-2_51.

https://doi.org/10.1016/J.IC.2012.10.011
https://doi.org/10.1016/J.IC.2012.10.011
https://doi.org/10.4230/LIPICS.ISAAC.2019.57
https://doi.org/10.1016/J.TCS.2011.01.036
https://doi.org/10.1007/11780441_5
https://doi.org/10.1007/S11786-009-0007-8
https://doi.org/10.1137/090779759
https://doi.org/10.1007/978-3-540-69068-9_16
https://doi.org/10.1007/978-3-540-69068-9_16
https://doi.org/10.1007/978-3-642-24583-1_29
https://doi.org/10.1007/S00453-020-00687-6
https://doi.org/10.1016/J.TCS.2019.07.002
https://doi.org/10.1007/978-3-662-43948-7_44
https://doi.org/10.1007/978-3-662-47672-7_47
https://doi.org/10.1145/3381416
https://arxiv.org/abs/1411.6581
https://doi.org/10.1007/978-3-662-47672-7_48
https://doi.org/10.1007/978-3-662-47672-7_48
https://doi.org/10.1007/978-3-319-62127-2_35
https://arxiv.org/abs/1704.06149
https://doi.org/10.1016/J.TCS.2015.10.012
https://doi.org/10.1007/978-3-642-14165-2_51

S. Jo and S. R. Satti

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Roberto Grossi, John Iacono, Gonzalo Navarro, Rajeev Raman, and S. Srinivasa Rao. Asymp-
totically optimal encodings of range data structures for selection and top-k queries. ACM
Trans. Algorithms, 13(2):28:1-28:31, 2017. doi:10.1145/3012939.

Roberto Grossi, John Tacono, Gonzalo Navarro, Rajeev Raman, and Srinivasa Rao Satti.
Encodings for range selection and top-k queries. In Algorithms — ESA 2013 — 21st Annual
FEuropean Symposium, Proceedings, volume 8125 of LNCS, pages 553—-564. Springer, 2013.
doi:10.1007/978-3-642-40450-4_47.

Seungbum Jo and Geunho Kim. Space-efficient data structure for next/previous larger-
/smaller value queries. In LATIN 2022: Theoretical Informatics — 15th Latin Amer-
ican Symposium, Proceedings, volume 13568 of LNCS, pages 71-87. Springer, 2022. doi:
10.1007/978-3-031-20624-5_5.

Seungbum Jo, Rahul Lingala, and Srinivasa Rao Satti. Encoding two-dimensional range top-k
queries. Algorithmica, 83(11):3379-3402, 2021. doi:10.1007/S00453-021-00856-1.
Seungbum Jo and Srinivasa Rao Satti. Simultaneous encodings for range and next/previous
larger /smaller value queries. Theor. Comput. Sci., 654:80-91, 2016. doi:10.1016/J.TCS.2016.
01.043.

Allan Grgnlund Jgrgensen and Kasper Green Larsen. Range selection and median: Tight
cell probe lower bounds and adaptive data structures. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 805-813. STAM, 2011.
do0i:10.1137/1.9781611973082.63.

Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum queries
in monge matrices and monge partial matrices, and their applications. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 338-355.
SIAM, 2012. doi:10.1137/1.9781611973099.31.

Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum queries
in monge matrices and partial monge matrices, and their applications. ACM Trans. Algorithms,
13(2):26:1-26:42, 2017. doi:10.1145/3039873.

Marek Karpinski and Yakov Nekrich. Searching for frequent colors in rectangles. In CCCG,
2008.

Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range mode and range median queries
on lists and trees. Nord. J. Comput., 12(1):1-17, 2005.

Mingmou Liu. Nearly tight lower bounds for succinct range minimum query. CoRR,
abs/2111.02318, 2021. arXiv:2111.02318.

Mingmou Liu and Huacheng Yu. Lower bound for succinct range minimum query. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC,
pages 1402-1415. ACM, 2020. doi:10.1145/3357713.3384260.

J. Ian Munro, Patrick K. Nicholson, Louisa Seelbach Benkner, and Sebastian Wild. Hyper-
succinct trees — New universal tree source codes for optimal compressed tree data structures
and range minima. In ESA, volume 204 of LIPIcs, pages 70:1-70:18. Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik, 2021. doi:10.4230/LIPICS.ESA.2021.70.

Gonzalo Navarro, Rajeev Raman, and Srinivasa Rao Satti. Asymptotically optimal encodings
for range selection. In 34/th International Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS, volume 29 of LIPIcs, pages 291-301. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2014. doi:10.4230/LIPICS.FSTTCS.2014.291.
Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.
ACM Trans. Algorithms, 10(3):16:1-16:39, 2014. doi:10.1145/2601073.

Gonzalo Navarro and Sharma V. Thankachan. Optimal encodings for range majority queries.
Algorithmica, 74(3):108271098, 2016. doi:10.1007/S00453-015-9987-8.

Holger Petersen. Improved bounds for range mode and range median queries. In SOFSEM 2008:
84th Conference on Current Trends in Theory and Practice of Computer Science, Proceedings,
volume 4910 of LNCS, pages 418-423. Springer, 2008. doi:10.1007/978-3-540-77566-9_36.

12:11

Grossi's Festschrift

https://doi.org/10.1145/3012939
https://doi.org/10.1007/978-3-642-40450-4_47
https://doi.org/10.1007/978-3-031-20624-5_5
https://doi.org/10.1007/978-3-031-20624-5_5
https://doi.org/10.1007/S00453-021-00856-1
https://doi.org/10.1016/J.TCS.2016.01.043
https://doi.org/10.1016/J.TCS.2016.01.043
https://doi.org/10.1137/1.9781611973082.63
https://doi.org/10.1137/1.9781611973099.31
https://doi.org/10.1145/3039873
https://arxiv.org/abs/2111.02318
https://doi.org/10.1145/3357713.3384260
https://doi.org/10.4230/LIPICS.ESA.2021.70
https://doi.org/10.4230/LIPICS.FSTTCS.2014.291
https://doi.org/10.1145/2601073
https://doi.org/10.1007/S00453-015-9987-8
https://doi.org/10.1007/978-3-540-77566-9_36

12:12

Encoding Data Structures for Range Queries on Arrays

48

49

50

51

52

53

54

Holger Petersen and Szymon Grabowski. Range mode and range median queries in constant
time and sub-quadratic space. Inf. Process. Lett., 109(4):225-228, 2009. doi:10.1016/J.IPL.
2008.10.007.

Luis M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully compressed suffix trees.
ACM Trans. Algorithms, 7(4):53:1-53:34, 2011. doi:10.1145/2000807.2000821.

Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):58976077 2007. doi:10.1007/S00224-006-1198-X.

Matthew Skala. Array range queries. In Space-Efficient Data Structures, Streams,
and Algorithms, volume 8066 of LNCS, pages 333-350. Springer, 2013. doi:10.1007/
978-3-642-40273-9_21.

Dekel Tsur. The effective entropy of next/previous larger /smaller value queries. Inf. Process.
Lett., 145:39-43, 2019. doi:10.1016/J.IPL.2019.01.011.

Jean Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229-239, 1980.
doi:10.1145/358841.358852.

Hao Yuan and Mikhail J. Atallah. Data structures for range minimum queries in multidimen-
sional arrays. In SODA, pages 150-160. STAM, 2010. doi:10.1137/1.9781611973075. 14.

https://doi.org/10.1016/J.IPL.2008.10.007
https://doi.org/10.1016/J.IPL.2008.10.007
https://doi.org/10.1145/2000807.2000821
https://doi.org/10.1007/S00224-006-1198-X
https://doi.org/10.1007/978-3-642-40273-9_21
https://doi.org/10.1007/978-3-642-40273-9_21
https://doi.org/10.1016/J.IPL.2019.01.011
https://doi.org/10.1145/358841.358852
https://doi.org/10.1137/1.9781611973075.14

Secure Compressed Suffix Arrays

Kunihiko Sadakane &
The University of Tokyo, Japan

—— Abstract

This paper proposes a secure compressed suffiz array, which is a data oblivious and compressed
version of the suffix array used for finding substrings of a large string. Secure compressed suffix
arrays can be used for indexing a large collection of strings containing personal information such as
DNA data.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis
Keywords and phrases suffix array, compression, encryption, oblivious algorithm, secure computation
Digital Object Identifier 10.4230/OASIcs.Grossi.2025.13

Category Research

1 Introduction

As the amount of data increases, the following points are becoming more problematic.
Processing time for analyzing the data increases. We need efficient algorithms and data
structures.

We need to care about the use of sensitive data such as personal information.

For the former problem, many researches on algorithms for compressed data have been

conducted. Seminal results on this topic are succinct bit-vectors [6, 11], succinct ordered

trees [9], and compressed suffix arrays [4, 2]. For the latter problem, data anonymization [16)

and secure computation [17] have been proposed. Because data anonymization modifies input

data, some information will be lost. We focus on secure computation, which is a technique
to process encrypted data without decryption.
There are two main schemes for secure computation: secret sharing [13] and fully

homomorphic encryption [3].

Assume that there are a client and a server. There are two main scenarios.

1. A client has private data and wants to use a cloud service to process the data. Data
are stored in the cloud server in an encrypted form. The client runs a program on itself.
When some data are necessary, the client asks the server to obtain the data. Then the
client decrypts the data, does some computation, encrypts the data and sends back to
the server. In this scenario, the task of the server is to store the data and give accesses to
a part of the data to the client. The data must be stored as an encrypted form on the
server, but computation on encrypted data is not necessary. Therefore it is enough to
hide the access pattern to the data on the server.

2. The server stores encrypted data and the secret key is not known to the server. The
client asks the server to run a program. The server does some computation and returns
the answer to the client. The client decrypts the answer using the secret key. In this
scenario, algorithms executed on the server must be data oblivious and the computation
must be done on encrypted data.

The second scenario is preferable because the client does not require computation power for

analyzing big data. However, we need to design special algorithms for the server which are

data oblivious and which run on encrypted data. We call such algorithms secure algorithms.
This paper proposes secure compressed suffix array, which is a data oblivious and encrypted
version of the compressed suffix array [4].

© Kunihiko Sadakane;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 13; pp. 13:1-13:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sada@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-8212-3682
https://doi.org/10.4230/OASIcs.Grossi.2025.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

13:2

Secure Compressed Suffix Arrays

2 Preliminaries

2.1 Suffix arrays

Let T be a string of length n on alphabet A of size o. The j-th character of T" is denoted
by T[j] (j =0,1,...,n — 1) and it belongs to .A. We assume that a unique terminator $,
which is smaller than any character in A, is appended to T. That is, T[n] = $. A substring
T[)T[i + 1] ---T[j] of T is denoted by T'i, j]. The substring T[j,n] is called the j-th suffix
of T" and denoted by T}.

The suffix array [8] of the string T is an integer array SA[0,n] defined as SA[i] = j
(¢t =0,1,...,n) if T} is the lexicographically the i-th suffix of T. It always holds that
SA[0] = n, which corresponds to the shortest suffix consisting of only the terminator.

If we have T and SA, we can support the following queries:

Count(P,T): returns the number of occurrences of P in T in O(|P|logn) time

Locate(P,T'): returns the positions of occurrences of P in T in O(|P|logn + occ) time

where occ = Count(P,T)

To support these queries, we use the following query:

Range(P,T): returns the maximal range [s,e] C [0,n] so that for any i € [s,e] the

substring T[S A[i], SA[i] + |P| — 1] is equal to P.

Let [s,e] = Range(P,T). Then it holds Count(P,T) = e — s + 1 and Locate(P,T) =
{SA[s],SA[s +1],...,SAle]}.

The size of the suffix array SA is nlogn bits. We also need to store the string T itself,
which occupies nlog o bits. The suffix array requires a huge space compared with the string
itself, especially for strings on small alphabets, such as DNA strings. For human DNA, ¢ = 4,
whereas n > 23!, Then logn is more than 15 times larger than logo.

2.2 Succinct bit-vectors

Succinct data structures are data structures storing objects in minimum number of bits.
More precisely, consider storing an element = of a set S. Then the information-theoretic
lower bound of the number of bits to represent x is defined as [log, z]. Hereafter we omit
the base 2 of logarithm. Let Z denote this value. Then a data structure for storing x is
called succinct if it uses Z + o(Z) bits, and compact if it uses O(Z) bits.

The most fundamental succinct data structure is a bit-vector supporting rank and select
queries. A bit-vector is a string B[1,n] on the binary alphabet {0,1} and rank and select are
defined as follows.

rank.(B,?) returns the number of ¢’s in B[0,i]. We define rank.(B,0) = 0 and

rank.(B, 1) = rank.(B,n) if i > n.

select.(B, j) returns the position of the j-th ¢ in B. We define select.(B,0) = 0 and

select(B,j) =n+11if j > rank.(B,n).

For a bit-vector of length n, rankand selectare computed in constant time using the bit-vector
itself and an O(nloglogn/logn) bit auxiliary data structure [11].

We briefly review the rank data structure. The bit-vector B is partitioned into super-
blocks of length L, each, and each super-block is further partitioned into blocks of length Lo
each. We store rank values for all super-block boundaries in array Ry using O((nlogn)/L1)
bits, and rank values for all block boundaries in array Ry using O((nlog L1)/Ls) bits. Inside
a block, we count the number of ¢’s using table lookups for every 1/2logn bits. The size of
the table is O(y/nlognloglogn) = o(n) and the time complexity is O(Lzs/logn). If we set
L) = @(log2 n) and Lo = %log n, we obtain the desired bound.

K. Sadakane

Table 1 Oblivious RAM data structures for storing n bits. Bits are grouped into blocks of
b > logn bits each. Bandwidh blowup is the number of blocks to be accessed to obtain one block
obliviously.

Server space (#bits) ‘ Bandwidth blowup ‘ User space (#blocks) ‘ Reference
O(n) O(log? n/ loglog n) 0(1) Kushilevitz et al. [7]
O(n) O(log? n) w(logn) Stefanov et al. [15]
n(l1+06(1/logn)) O(log? n) O(lognloglogn) Onodera, Shibuya [10]

2.3 Secure algorithms

If we forget about time efficiency, any computation can be done on encrypted data if we
can support additions and multiplications on two encrypted integers. There exist two such
schemes.

Secret Sharing [13]. Data are distributed into two or more servers and for each server
the stored data look like random values and no information is leaked. Additions can be
done locally in each server, whereas for multiplications the servers must comminicate
each other.

Fully Homomorphic Encryption (FHE) [3, 1]. Any number of additions and multiplications

on encrypted numbers can be done.
Both schemes have a drawback that the computation is much slower than plain (unencrypted)
data. In Secret Sharing schemes the servers communicate each other for computing multipli-
cations. This takes much more time than the computation on plain data in a single server.
In FHE schemes, there are no communication because there is only one server. However
multiplications are extremely slow. Therefore it is important to develop efficient secure
algorithms.

In this paper, we assume that in both schemes, integer addition, multiplication, division,
less-than comparison are done efficiently in unit time. Then our algorithm runs in both
schemes.

2.4 Oblivious RAM

Oblivious RAMs [7, 15, 10], or ORAMs for short, are data structures supporting oblivious
read and write to an array. Without loss of generality we can assume the array stores a
binary string S of length n. S can be regarded as an array of length n/w storing w-bit
integers. An ORAM has a parameter b called the block size. S is partitioned into blocks of
length b each, and a block is accessed as a unit. To achieve oblivious access, more than one
blocks are accessed to obtain one block. The ratio is called bandwidth blowup.

Obliviousness is defined as follows. Let ¥ = ((opy, a1, d1), (0py,a1,di), ..., (0Pass anr, dar))
be a sequence of accesses to an ORAM where op, is either read or write, a; is the address
of the i-th access, and d; is the content to be written in the a;-th block when op, is write.
Let A(%) be denote the sequence of accesses to the server given ¢. Then the ORAM is said
to be oblivious if two any access sequences ¢ and Z of the same length, A(7) and A(Z) are
computationally indistinguishable by anyone but the client, and if the failure probability is
negligible [15].

Table 1 shows existing oblivious RAM data structures. Onodera and Shibuya [10] give
a succinct oblivious RAM, that is, the server space is n 4+ o(n) bits. The other two data
structures are compact, that is, the server space is O(n) bits.

13:3

Grossi's Festschrift

13:4

Secure Compressed Suffix Arrays

3 Compressed Suffix Arrays

3.1 The original structure

Grossi and Vitter [5, 4] have proposed compressed suffiz arrays, which are a compressed
version of suffix arrays. Let SA be the suffix array of string T' of length n on alphabet A
of size 0. The compressed suffix array is a data structure which efficiently supports the
following operation:

Lookup(4): returns SA[i].

Inverse(j): returns 4 such that j = SA[i] (the inverse suffix array).

The core component of the compressed suffix arrays is the ¥ function, defined as follows.
W[i] = SAT[SAJ] + 1]

if i > 0, and ¥[0] = SA™'[1]. The ¥ function has a good property that it is piecewise
monotone. Precisely, let [s., e.] be the range of the suffix array such that T[SA[i]] = ¢ for
any i € [s¢,e.] where ¢ € A. Then if 4,5 € [s., e.] and i < j, it holds ¥[i] < ¥[j]. Then the
following function is strictly increasing.

W'[i] = T[SA[{]] - (n + 1) + ¥[i]

We can compress ¥’ in n(2 + log o) + o(n) bits so that any ¥’[i] is computed in constant
time. From W’[i], we can obtain T[SA[i]] and ¥[i] easily in constant time.

The encoding of ¥’ is as follows. each entry of ¥’ is a (log o + logn)-bit integer. We
partition it into higher part and lower part. The higher part has logn bits and the lower
part has the rest (logo bits). The lower parts for all entries are stored in an integer array
L[0,n] in nlog o bits. The upper parts for all entries are represented by a bit-vector H[0, 2n)
as follows. Let d; = (¥'[i] +0) — (V' [i — 1] = 0) for i =0,1,...,n (we assume ¥'[—1] = 0).
Because WU’ is increasing, d; > 0 for any i. We encode d;’s by unary codes. That is, we write
d; many zeros followed by a one, to H. Then, H|[i] can be computed in constant time as

H{[i] = selecty (H,i) — 1

From the definition of U, if SA[i] = j, it holds SA[¥[i]] = j + 1. That is, if we know the
lexicographic order ¢ of a suffix T);, we can obtain that of the next suffix T} by computing
U[i]. We sample the values of the suffix array for every Lj entries and stores them in an
array A. We also store a bit-vector F'[0,n] such that F[i] = 1 iff SA[i] is sampled. Then
Lookup(4) is computed as follows.

Alrank; (F,)] if F[i] =

1
Lookup(¥[i]) —1 if F[i{j=0

Lookup(i) = {

The array A uses O((nlogn)/L3) bits and F uses n 4 o(n) bits. If we set Ly = O(logn), the
space for A is O(n) bits and Lookup(i) is computed in O(logn) time. See Figure 1 for an
example of

3.2 Self-indexes

The original compressed suffix array is a compressed representation of the suffix array and
used together with the string itself. We can change it to a self-index, that is, a data structure
for string matching which does not use the string. It is enough to add n + o(n) + O(o logn)
bits. We use a bit-vector D0, n] showing that if D[i] = 1 then ¢ = 0 or T[S A[i]] # T[SA[i—1]].

K. Sadakane

T: agagat$
H L Y]
00001 1
01011 11
01100 12
01101 13
10000 16
10001 17

10101 21

&5

agagat$
agat$
at$
gagat$
gat$

H 1,01,01,1,01,1,01 <j
L 01,11, 00,01, 00,01, 01

S W NN A

AN BN =S ~
]mu»—n-hmcc\\gf

—
&2

Figure 1 An example of compressed suffix arrays.

That is, D[i] = 1 iff lexicographically the i-th suffix has a different head character from the
(i — 1)-st suffix. We use an array C of length o such that C[rank;(D,)] = T[SA[i]]. We

define Head (i) = Clrank; (D, ¢)]. The array uses ologo = O(o logn) bits (we assume o < n).

We use another array C~1[1, 0] storing in C|c] the range [s., e.] C [0,n] such that for any
i € [S¢, ec) it holds T[S A[i]] = ¢. This array uses O(ologn) bits.

Using C, we can recover a substring of 7. Assume the lexicographic order ¢ of a suffix T}
is known (SA[i] = j). Then the character T[j + k] is equal to Head(¥*[i]). The substring
T[4,7 + £ — 1] is computed in O(¢) time by iteratively computing ¢ := ¥[i]. Computing the
lexicographic order i of T} is equivalent to computing Inverse(j), and it is done similarly to
computing an entry of the suffix array using ¥ and the sampled suffix array [12].

To support Range(P, T), we use what we call backward search. Let m be the length of P.

First we obtain the range for the shortest suffix P[m,m] by [s, €] := C~1[P[m]]. Then, given

the range [s, e] for a suffix P[j + 1, m], we compute the range [s, e’] for the suffix P[j, m].

This is done as follows.

s' = argminec-ppy { P[] > s}

(& = al‘gmaXichl[p[j” {\IJ[’L] S 6}

By a simple binary search, the new range is obtained in O(logn) time, and therefore
Range(P,T') is done in O(|P|logn) time, which is the same as the suffix array [12].

We can simplify the algorithm as follows.

s’ = argminggp) {9'[i] > P[j]- (n +1) + s}

>
¢ = argmax;c o n) {\PI[Z] < P[j] : (TL + 1) + 6}

Now we do not need the array C~!. This has another merit that it is easier to make it
oblivious, which will be shown in the next section.

13:5

Grossi's Festschrift

13:6

Secure Compressed Suffix Arrays

4 Secure Compressed Suffix Arrays

We show that the compressed suffix arrays can be modified so that all the operations ¥,
Range, Lookup, and Inverse. First we show that Range, Lookup, and Inverse can be done
obliviously if ¥’ is computed obliviously. We assume that the lengths of the string T and
the pattern P, and the alphabet size o are public.

4.1 Computing Range

As shown in Section 3.2, Range(P,T') is done by |P| many binary searches on ¥'. Given
the range [s, €] for P[j + 1,m|, we compute the range [s', '] for P[j, m]. To do so, we first
compute P[j]-(n+1)+ s and P[j]- (n+ 1)+ e, which can be done obliviously. Then using a
binary search on ¥’ we compute s’. The initial range is [0,n], and in each step we update
the range based on the result of a less-than comparison. Using ¥’ is easier than using ¥
because we do not need the array C'~! that must support oblivious accesses. We can compute
Range(P,T') using O(]P|logn) many oblivious accesses to ¥'.

4.2 Computing Lookup and Inverse

Lookup(i) can be done using the sampled array A, the bit-vector F', and ¥. The original
algorithm repeats computing ¢ := ¥[¢] until F[i] = 1. This is not oblivious because the
number k of iteration depends on i. Precisely, it holds Lookup(i) = Afrank, (F, ¥*[i])] — k
where k > 0 is the smallest number such that F[U*[i]] = 1.

To change the algorithm oblivious, we fix the number of iterations to Ls. Because the
suffix array entries are sampled every L3 entries in text order, for exactly one entry it holds
F[¥*[i]] = 1 among those for k = 0,1,..., L3 — 1. Therefore we change the algorithm as
follows.

1. 2:=0

2. fork=0,1,...,L3—1

3. x:=x+ F[i] - (A[rank,(F,7)] — k)
4, 1 := Wi

5. return x
Here we need oblivious accesses to F' and A, and oblivious computation of rank; (F,).

For A, we use the Path ORAM [15] with block size b = log® n. Then the space usage is
O(n) bits and an entry of A is obtained in O(log® n) many accesses to blocks, which can be
done in O(log® n) time.

For F, we use the succinct ORAM [10] with block size b = log? n. Then a block of F is
obtained in in O(log® n) many accesses to blocks, which can be also done in O(log®n) time.
For computing a rank on F', we use the array R; defined in Section 2.2. This is stored using
the Path ORAM. The space usage is O(n/logn) bits. The rank inside a block is computed
by logical operations in O(logn) time. Therefore a rank value is computed in O(log®n) time.

The computation of Inverse(j) is similar.

4.3 Computing ¥

Finally, we show how to compute ¥[i]. As shown in Section 3.1, ¥’ is represented by a
bit-vector H|[0,2n] and an array L[0,n] of log o-bit integers. The array L is stored using the
succinct ORAMs. The bit-vector H is stored similarly to F', but here we also need to store
the auxiliary data structure for select;. This can be stored using the Path ORAM.

K. Sadakane

To sum up, ¥[i] is computed in O(log®n) time and the space usage is n(2 + logo) +
o(n)log o bits.

4.4 Summary

W[i] takes O(log® n) time. A step of a backward search is a binary search on ¥, and therefore
it is done in O(log* n) time. Then Range(P, T takes O(|P|log* n) time. For Lookup(i), we
set Ly = O(logn). Then it takes O(log* n) time. The space usage is (n 4 o(n))logo + O(n)
bits in total.

5 Concluding Remarks

We have proposed secure compressed suffix arrays. For a string of length n on an alphabet
of size o, It uses (n + o(n))logo + O(n) bits of space and the Count(P,T) query is done in
O(|P|log* n) time, and the Lookup(i) query is done in O(log* n) time. Therefore there is an
O(log® n) multiplicative overhead compared with the original compressed suffix arrays [4].
To improve the running time, we need more efficient succinct ORAM [10] and standard
ORAMs [14]. Future work will be developing such oblivious RAM data structures and giving
efficient implementions.

—— References

1 Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. Tfhe: Fast fully
homomorphic encryption over the torus. J. Cryptol., 33(1):34-91, January 2020. doi:
10.1007/s00145-019-09319-x.

2 P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM, 52(4):552-581,
2005. doi:10.1145/1082036.1082039.

3 Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09, pages 169-178, New
York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1536414.1536440.

4 R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applications
to Text Indexing and String Matching. SIAM Journal on Computing, 35(2):378-407, 2005.
d0i:10.1137/50097539702402354.

5 Roberto Grossi and Jeffrey S. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching (extended abstract). In Proceedings of the Thirty-Second
Annual ACM Symposium on the Theory of Computing, pages 397406, Portland, OR, 2000.

6 G. Jacobson. Space-efficient Static Trees and Graphs. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 549-554, 1989.

7 Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious
ram and a new balancing scheme. In Proceedings of the 2012 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 143-156, 2012. doi:10.1137/1.9781611973099.13.

8 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5):935-948, 1993. doi:10.1137/0222058.

9 J. L. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static Trees.
SIAM Journal on Computing, 31(3):762-776, 2001. doi:10.1137/S80097539799364092.

10 Taku Onodera and Tetsuo Shibuya. Succinct Oblivious RAM. In Rolf Niedermeier and
Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science (STACS
2018), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages 52:1—
52:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:
10.4230/LIPIcs.STACS.2018.52.

13:7

Grossi's Festschrift

https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1137/1.9781611973099.13
https://doi.org/10.1137/0222058
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.4230/LIPIcs.STACS.2018.52
https://doi.org/10.4230/LIPIcs.STACS.2018.52

13:8

Secure Compressed Suffix Arrays

11

12

13

14

15

16

17

R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4), 2007.
doi:10.1145/1290672.1290680.

Kunihiko Sadakane. New text indexing functionalities of the compressed suffix arrays. J.
Algorithms, 48(2):294-313, 2003. doi:10.1016/S0196-6774(03)00087-7.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, November 1979.
doi:10.1145/359168.359176.

Elaine Shi, T. H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious ram with o((logn)3)
worst-case cost. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology
— ASTIACRYPT 2011, pages 197-214, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-25385-0_11.

Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path oram: an extremely simple oblivious ram protocol. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer & Communications Security,
CCS ’13, pages 299-310, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2508859.2516660.

Latanya Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst., 10(5):557-570, October 2002. doi:10.1142/50218488502001648.
Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162-167, 1986. doi:10.1109/SFCS.1986.
25.

https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1016/S0196-6774(03)00087-7
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

Specific Patterns Against Reference Sequences
Marie-Pierre Béal' =
Univ. Gustave Eiffel, CNRS, LIGM, Champs-sur-Marne, France

Maxime Crochemore &
Univ. Gustave Eiffel, CNRS, LIGM, Champs-sur-Marne, France
King’s College London, UK

—— Abstract

We design alignment-free techniques for comparing a set of sequences or just a word, called a target,
against another set of words, called a reference. This is done with the detection of factor patterns that
distinguish the target from the reference. A target-specific factor of a target T" against a reference R
is then a factor w of a word in T that is not a factor of a word in R but whose proper factors of w
are factors of a word in R. The strategy is based on the notion of minimal absent/forbidden words.

We first address the computation of the set of target-specific factors of a target T against
a reference R, where T and R are finite sets of sequences. The result is the construction of an
automaton accepting the set of all considered target-specific factors. The construction algorithm
runs in linear time according to the size of T'U R.

The second result is the design of an algorithm to compute all the occurrences in a single sequence
T of its target-specific factors against a reference R. The algorithm runs in real-time on the target
sequence, independently of the number of occurrences of target-specific factors.

2012 ACM Subject Classification Theory of computation — Regular languages; Theory of compu-
tation — Pattern matching

Keywords and phrases Specific pattern, Minimal absent word, Minimal forbidden word, Directed
Acyclic Word Graph (DAWG), Suffix automaton

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.14

Category Research

1 Introduction

The goal of this article is to design an alignment-free technique for comparing a set of
sequences or words, called a target, against a set of words, called a reference.

The motivation comes from the analysis of genomic sequences as done, for example, by
Khorsand et al. in [23] in which the authors introduce the notion of sample-specific strings.
To avoid alignments but to extract interesting elements that differentiate the target from the
reference, or in general two words, the chosen specific fragments are minimal absent words,
also called minimal forbidden words. Target-specific words are factors of the target that are
minimal absent words of the reference.

These types of factors associated with absent patterns are rather commonly used to
efficiently compare sequences by avoiding complete alignments of full sequences, see, for
example, [11] and references therein. In bioinformatics, target-specific words serve as
signatures for newly sequenced biological molecules, helping to identify their characteristics.
In the domain of molecular biology they allow the discovery of remarkable patterns in some
genomic sequences, such as persitent patterns in the analysis of SARS-CoV-2 genomes that
are absent in the human genome [31] and minimal sequences in Ebola virus also absent in
the human genome [33]), or to build phylogenies of biological molecular sequences using a

1 Corresponding Author

© Marie-Pierre Béal and Maxime Crochemore;
37 licensed under Creative Commons License CC-BY 4.0
From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 14; pp. 14:1-14:12

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:marie-pierre.beal@univ-eiffel.fr
https://orcid.org/0000-0002-0089-1486
mailto:maxime.crochemore@univ-eiffel.fr
https://orcid.org/0000-0003-1087-1419
https://doi.org/10.4230/OASIcs.Grossi.2025.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

14:2

Specific Patterns

distance based on absent words (see [10, 32]). These patterns are also helpful to improve both
pattern matching methods (see [15]) and text compression with the concept of antidictionaries
(see for example [17, 1]). They are also central in some approaches related to the sanitisation
of data, that is, the process of hiding confidential information [5, 6], to quote only a few
applications.

The notion of a minimal absent word was introduced by Mignosi et al. [27] (see also [4])
in relation to combinatorial aspects of certain sequences. The first linear-time computation
of the minimal absent words of the factors of a single sequence is described in [16] (see
also [14]). Its time complexity is O(n) on a fixed-size alphabet for a sequence of size n. The
algorithm uses the computation of the directed acyclic word graph (DAWG), also called
suffix automaton (see [8, 14]), of a single sequence. The same time complexity holds for an
integer alphabet of polynomial size (see [19], [20]). This result is obtained using the O(n)
time complexity for computing the DAWG of a single sequence, in the case of an integer
alphabet of polynomial size. For a general ordered alphabet A, the running time becomes
O(nlog |A|).

These algorithms extend to the computation of the minimal absent words of the set of
factors of a finite set of sequences of total size n. This is done in [3] in O(n) for a fixed-size
alphabet. It becomes O(nlog|A|) for a general ordered alphabet. It is done in O(n) in [29]
for an integer alphabet of polynomial size, extending the linear time computation of the
DAWG in [19] and [20] to a finite set of sequences. It is also mentioned in [2] that the DAWG
of a finite set of sequences can be computed in O(n) time using sparse matrices for an integer
alphabet of polynomial size.

Due to the significant role of the notion, the efficient computation of minimal absent
words has attracted considerable attention (see, for example, [30] and references therein).

In this article, we continue exploring the approach of target-specific words as in [23] by
introducing new algorithmic techniques to detect them. A more general view of the usefulness
of formal languages in analyzing a series of genomes using pangenomic graphs is described
by Bonizzoni et al. in [9].

A preliminary version of this paper was presented at the DLT 2023 conference [2]. In the
present article, the motivation is strengthened due to additional references, the presentation
of algorithms has been improved and complete proofs have been added. In addition, Section 5
reveals a surprising phenomenon on the tight link between DAWG matching and the search
for minimal absent words, a technique at the core of our solution in Section 4.

The results

We design two algorithms that use intensively the notion of suffix links of indexing data
structures, such as suffix trees (see [21, 14]) and DAWGs. The links can also be simulated
using suffix arrays [26] and their implementations, such as the FM-index [18]. The algorithm
in [23] uses the FMD index of Li [25]. All these data structures can accommodate the
sequences and their reverse complements.

First, we address the computation of the set of target-specific factors of a target T against
a reference R, where T and R are finite sets of sequences over an alphabet A. The result
is the construction of an automaton that accepts the set of all the target-specific factors
considered. This automaton is a digital tree whose leaves correspond to the specific words.
The construction algorithm runs in linear time according to the size n of T'U R, when A has
a fixed size. The time complexity is O(nlog|A|) when A is an ordered alphabet. Further,
using the result of [29], the running time becomes O(n) when A is an integer alphabet of

M.-P. Béal and M. Crochemore

polynomial size according to n. Our algorithm uses a marking technique of the DAWG of a
finite set of sequences, very close to the skip links used in [29], to compute minimal absent
words using a DAWG.

The second result shows the design of an algorithm to compute all the occurrences in a
single sequence T of its target-specific factors against a reference R. The algorithm runs in
real-time on the target sequence over a fixed-size alphabet and independently of the number
of occurrences of target-specific factors. This is obtained after standard processing of the
DAWG of the reference, similarly as above. This improves on the result in [23], where the

running time of the main algorithm depends on the number of occurrences of sought factors.

Definitions

Let A be a finite alphabet and A* be the set of finite words drawn from the alphabet A,
including the empty word . A language is a set of finite words. The concatenation of two
words u, v is denoted by wwv, and, if z = uv, v is also denoted by u~'z. A factor of a word
x € A* is a word v € A* that satisfies x = uvw for some words u,w € A*. A proper factor
of z is a factor distinct from the whole word. If P is a set of words, we denote by Fact(P)
the set of factors of words in P, and, if P is finite, size(P) denotes the sum of lengths of the
words in P. A language L is factorial is each factor of a word of L belongs to L.

A minimal absent word (also called a minimal forbidden word) for a given factorial
language L C A* with respect to a given alphabet B containing A is a word of B* that does
not belong to L but whose all proper factors do.

Let R, T be two sets of finite words. A T'-specific word with respect to R is a word u such
that: v is a factor of a word in T, w is not a factor of a word in R and any proper factor of u

is a factor of a word in R. The set R is called the reference and T the target of the problem.

Note that a word is a T-specific word with respect to R if and only if it is a minimal
absent word of Fact(R), with respect to the alphabet of letters occurring in RU T, and is
also in Fact(T'). As a consequence, the set of T-specific words with respect to R is both
prefix-free (i.e., no word of the set is a prefix of another word of the set) and suffix-free (i.e.,
no word of the set is a suffix of another word of the set).

It follows from the definition that the set S of T-specific words with respect to R is:

Fact(T) N (A* — Fact(R)) N AFact(R) N Fact(R)A,

where A is the alphabet of letters of words R and T. It is thus a regular language when R
and T are regular, in particular, when R and T are finite.

A finite deterministic automaton is denoted by A = (Q, 4,1, F,J), where A is a finite
alphabet, @ is its finite set of states, ¢ € @ is the unique initial state, F' C @ is the set of
final states and ¢ is the partial function from @ x A to) representing the transitions of the
automaton. The partial function ¢ extends naturally to @ x A* and a word u is accepted by
A if and only if §(4,u) is defined and belongs to F'.

2 Background: directed acyclic word graph

In this section, we recall the definition and sketch the construction of the directed acyclic
word graph of a finite set of words. This description already appears in [3].

Let P = {x1,%2,...,2,} be a finite set of r finite words. A linear-time construction of a
deterministic finite state automaton recognizing Fact(P) has been obtained by Blumer et al.
in [8, 7] (see also [28]). Their construction is an extension of the well-known incremental

14:3

Grossi's Festschrift

14:4

Specific Patterns

construction of the suffix automaton of a single word (see for instance [12, 14]). The words
are added one by one to the automaton. In the sequel, we call this algorithm the DAawG
algorithm since it outputs a deterministic automaton called a directed acyclic word graph.
Let us denote it by DAWG(P) = (Q, A,4,Q,). Let Suff(v) denote the set of suffixes of a
word v and Suff(P) the union of all Suff(v) for v € P.

The states of DAWG(P) are the equivalence classes of the right invariant equival-
ence =gy (py defined as follows. For u,v € Fact(P),

U =gy ey v il Vi € [1,7r] w tSuff(z;) = v Suff (x;).

There is a transition labelled by a from the class of a word u to the class of ua. The
automaton DAWG(P) has a unique initial state, which is the class of the empty word, and all
its states are final. Note that the (syntactic) congruence ~ defining the minimal automaton
of the language is

u ~ v iff U u” Suff (z;) = U v Suff (24),

i=1 i=1
and is not the same as the below equivalence. In other words, DAWG(P) is not always a
minimal automaton.

The construction of DAWG(P) is performed in time O(size(P) x log|A|) in [8]. A time
complexity of O(size(P)) can be obtained for an integer alphabet of polynomial size in [19]
and [20]. It can also be obtained with an implementation of automata with sparse matrices
(see [14, Exercise 1.15]).

An essential element of the efficient construction is the notion of suffix links between
states, denoted by s. We first define the function s’ from Fact(P) \ {e} to Fact(P) as follows:
for any v € Fact(P) \ {e},

s'(v) is the longest suffix of v that satisfies u ?_éSuﬁ’(P) v.

Then, we define the partial function s from @ to @ as follows. When p = §(4,v) for v # ¢,
s(p) is the state §(i, s'(v)). The function s is not defined on the initial state i.

Figure 1 Automaton DAWG(P) for P = {abbab, abaab}.

» Example 1. The DAWG obtained with the DAWG algorithm applied to P = {abbab, abaab}
is displayed in Figure 1. Dashed edges represent the suffix links and marks r, ¢ on states relate
to the reference word abbab and the target abaab. Note that this deterministic automaton
is not minimal, as the states 6 and 10, 5 and 9, and 3 and 7, respectively, can be merged
pairwise.

M.-P. Béal and M. Crochemore

3 Computing the set of T-specific words

In this section, we assume that the reference R and the target T are two finite sets of words
and our goal is to compute the set of T-specific factors of T" against R. To do so, we first
compute the directed acyclic word graph DAWG(RUT) = (Q, A,4,Q,0) of RUT. Further,
we compute a table, called mark, indexed by the set of states @ and that satisfies: for each
state p in @, mark[p] is one of the three values r, ¢ or both r, ¢ according to the fact that
each word labeling a path from 7 to p is a factor of some word in R, in 7" or in both. This
information can be obtained during the construction of the directed acyclic word graph
without increasing the running time.

The following algorithm outputs the set of T-specific words occurring in 7" with respect
to R in the form of a trie (digital tree, see [14]).

SPECIFIC-TRIE((Q, A, i, @,) DAWG of (RUT), s its suffix link)
1 for each p € Q with mark[p] = r,t in width-first search from 7 do
for each a € A do
if §(p,a) = g with mark[g] = r,¢ not reached yet then
§'(p,a) < q
elseif (6(p,a) defined with mark[d(p,a)] =t) and
(p =1 or §(s(p),a) defined with mark[d(s(p),a)] = r or r,t) then
6 8’ (p,a) + new sink
7 return (Q, A, i, {sinks}, §’)

Tt s W N

» Proposition 2. Let DAWG(RUT) be the output of Algorithm DAWG on the finite set of
words RUT, let s be its suffiz function, and let mark be the table defined as above. Algorithm
SPECIFIC-TRIE builds the trie recognizing the set of T-specific words with respect to R.

Proof. Let S be the set of T-specific words with respect to R.

Consider a word ua (a € A) accepted by the automaton A = (Q, A, i, {sinks}, ') returned
by the algorithm. Note that A accepts only nonempty words. Let p = §'(,u). Since the
DAWG automaton is processed with a width-first search, u is the shortest word for which
d(i,u) = p. Therefore, if u = bv with b € A, we have 0(i,v) = s(p) by definition of the suffix
function s. When the test “(0(p, a) defined and mark[d(p, a)] = t) and (6(s(p), a) defined and
mark[d(s(p),a)] = r or r,t)” is satisfied, this implies that va € Fact(R). Thus, bva ¢ Fact(R),
while bv,va € Fact(R) and bva € Fact(T). So, ua is a T-specific word with respect to R. If
u is the empty word, then p = i. The transition from 7 to the sink labeled by a is created

under the condition “§(p, a) defined and mark[d(p, a)] = ¢”, which means that a € Fact(T).

The word «a is again a T-specific word with respect to R. Thus the words accepted by A are
T-specific words with respect to R.

Conversely, let ua € S. If u is the empty word, this means that a does not occur in Fact(R)
and occurs in Fact(T') therefore there is a transition labeled by a from i in DAWG(RUT) to
a state marked ¢. Thus, a transition from ¢ to a sink state in A is created in line 6, and a is
accepted by A. Now assume that u = bv. The word w is in Fact(R). So let p = 6(i,u). Note
that u is the shortest word for which p = §(i, u), because all such words are suffixes of each
other in the DAWG automaton. The word wua is not in Fact(R) and is in Fact(T), so the
condition “0(p, a) defined and mark[p, a] = t” is satisfied. Let ¢ = s(p). We have ¢ = §(i,v)
because of the minimality of the length of u and the definition of s. Since va is in Fact(R),
the condition “§(s(p), a) defined and mark[d(s(p),a)] = r or r,t” at line 5 is satisfied. This
results in the creation of a transition at line 6, enabling A to accept ua as desired. <

14:5

Grossi's Festschrift

14:6

Specific Patterns

» Example 3. The automaton DAWG(RUT), where R = {abbab} and T' = {abaab} is shown
in Figure 1. The output of Algorithm SPECIFIC-TRIE applied to it is shown in Figure 2,
where the black squares are the accepting sink states of the trie. The set of T-specific words
with respect to R is {aa, aba}.

Figure 2 The trie of T-specific words with respect to R.

A main point in algorithm SPECIFIC-TRIE is that it uses the function s defined on states
of the input DAWG. It is not possible to proceed similarly when considering the minimal
factor automaton of Fact(R UT') because there is no analogue function s. However, it is
possible to reduce the automaton DAWG(R UT) by merging states having the same future
(right context) and the same image by s. For example, on the DAWG of Figure 1, states 6
and 10 can be merged because s(6) = s(10) = 2. States 3 and 7, nor states 5 and 9 cannot
be merged with the same argument.

» Proposition 4. Algorithms DAWG and SPECIFIC-TRIE together run in time O(size(R U
T) x |A|) when applied to reference R and target T, two finite sets of words, if the transition
functions are implemented by transition matrices. This complexity is O(size(RUT) x log|A|)
for an ordered alphabet, and O(size(RUT)) for an integer alphabet of polynomial size.

Proof. The running time depends on the time for computing the DAWG of RUT'. The relies
on the time for computing the transitions of the DAWG, that is (g, a), which is constant for
an integer alphabet of polynomial size, due to [29]. <

For P a set of words, we denote by Ap the set of letters occurring in P.

» Proposition 5. Let R, T be two finite sets of words. The number of T-specific words with
respect to R is no more than (2size(R) —2)(|Ar| —1) +|Ar \ Ar| — |Ag| +m, if size(R) > 1,
where m the number of words in R. The bound becomes |Ar \ Agr| when size(R) < 1.

Proof. We let S denote the set of T-specific words with respect to R. Since S is included in
the set of minimal absent words of Fact(R) with respect to the alphabet A = Ar U A, the
bound comes from [3, Corollary 4.1]. <

In conclusion, the algorithm generates a trie of minimal absent words, which represent
potentially interesting patterns. This trie can be used to explore the set of patterns that
align with the application’s objectives.

M.-P. Béal and M. Crochemore

4 Computing occurrences of target-specific factors: the T-specific
table

In this section, we consider that T is a single word and R is a finite set of words as before.
The goal of the section is to design an algorithm that computes all the occurrences in T’
of words that are T-specific with respect to R. To do so, we define the T-specific table
associated with the pair R,T of words of the problem.

A letter of T at position k is denoted by T[k] and T'[i .. j] denotes the factor T[i|T[i +
1]---T[j] of T. Then, the T-specific table Ts is defined, for ¢ = 0,...,|T| — 1, by

. Js if T[i..j] is T-specific,i < j,
Tslil = { -1 else.[|

Note that the set of T-specific factors is prefix-free, that is, no proper prefix of an element
of the set is also in the set. (The set of T-specific factors is also suffix-free.) Therefore, for
each position k on T', there is at most one T-specific factor of T starting at k (and for each
position j on T there is at most one T-specific factor of 7' ending at j).

Instead of computing the T-specific table Ts, in a straightforward way, the algorithm
below can be transformed to compute the list of pairs (i,5) of positions on T for which
Ts[i] = j and j # —1.

To compute the table we use R, the Suffix automaton or rather the DAWG of R. The
former is the minimal automaton accepting the suffixes of R (see [14, Section[5.4]) and the
latter has the same structure but with all states as terminal states instead (see [8]). As such,
it accepts Fact(R) the set of factors of R.

The automaton is given with its transition function J, its initial state ¢ and and is equipped
with both the suffix link s (used here as a failure link) and the length function ¢ defined on
states. The function ¢ is defined by: ¢[p] = max{|z| € A* | §(i,z) = p}. The functions s and
¢ transform the automaton into a search machine (see [14, Section 6.6]).

0 k j—1Ld]—1 Ji T -1
T | . u b

0 2 j T -1
T | ‘ u : \

Figure 3 A T-specific word found: when u € Fact(R) and ub ¢ Fact(R), either avb or b is a
T-specific factor with respect to R (a,b are letters). The gray bottom displays the situation, and
specifically the variables ¢ and j used in Algorithm TSTABLE, after processing letter b.

Figure 3 illustrates the principle of Algorithm TSTABLE. Let us assume that the factor
u="TI[k..j—1] is a factor of R but ub is not for some letter b. Then, let v be the longest
suffix of u for which vb is a factor of R. If it exists, then clearly avb, with the letter a
preceding v, is T-specific. Indeed, av,vb € Fact(R) and avb ¢ Fact(R), which means that
avb is a minimal absent word of R while occurring in T. Therefore, setting ¢’ = §(4,v) and
since |v| = £[¢'], the minimal absent word awvb is identified by setting T5[j — ¢[¢'] — 1] = j. If
there is no suffix of u satisfying the condition, the letter b alone is T-specific and is identified
by setting Ts[j] = j.

14:7

Grossi's Festschrift

14:8 Specific Patterns

TSTABLE(T target word, R DAWG(R), ¢ initial(R))
1 (g,7) « (4,0)

2 while j < |T| do
3 Ts[j] < —1
4 if §(g, T'[j]) undefined then
5 while g # ¢ and 6(q, T'[j]) undefined do
6 q < sld]
7 if 0(q,T[j]) undefined then >g=1
8 Ts[j] 4
9 else Ts[j —{[q] — 1]+ j
10 q < (g, T[4])
11 else ¢ < (g, T[j])
12 jej+1
13 return Ts

» Theorem 6. Algorithm TSTABLE computes the T-specific table with respect to R and runs
in linear time, that is, O(|T|) on a fived-size alphabet.

Proof. The algorithm implements the ideas detailed above and illustrated by Figure 3. The
formal proof relies on the following invariant condition of the main while loop: let u be a
factor of R and ¢ be a state of R that satisfies ¢ = d(¢,u), and let j be the current position
on T, then wu is the longest factor of R ending at position j — 1 on T'. Before the first pass in
the main while loop starts, u is the empty word, ¢ = ¢, j = 0, and the condition is satisfied.
During each pass in the main while loop, by default Ts[j] is first set to —1 (line 3) to
cover the possibility that no minimal absent word ends at position j. Let us examine what is
done during a pass in the while loop after the instruction at line 3.
If 6(q,T[j]) is defined at line 4, the next value of ¢ is set at line 11, followed by the
increment of j at line 12. Therefore, uT'[j] is the longest factor of R ending at j — 1, as
required for the invariant to hold.
The case where d(g, T'[j]) is undefined at line 4 is illustrated on Figure 3. Then, the loop
at lines 5-6 uses the suffix link s to finds the longest suffix v of u for which vb = vT[j] is
a factor of R by the definition of s in the DAWG.
If the execution of the loop terminates with §(g, T'[j]) still undefined, this indicates
that ¢ is the initial state and that v is the empty word. Consequently, the letter T[j]
is the minimal absent word at position j.
Otherwise, first note that v is shorter than u because ub is not a factor of R. Thus,
there exists a letter a such that av is a suffix of u. Therefore, avb is the minimal
absent word ending at position j because av,vb € Fact(R) but avb ¢ Fact(R). This is
established at line 9 because the position of letter a is j — £[q] — 1. The subsequent
execution of lines 9 and 10 ensures that the invariant condition holds in this case as
well.

As for the running time, note that the instructions at lines 3 and 7-12 execute in constant
time for each value of j. All the executions of the instruction at line 6 execute in time O(|T|)
because the link s reduces strictly the potential length of the T-specific word ending at 7,
incrementing the starting position j — ¢[¢] — 1 of v in the picture.

Moreover, each computation of a transition §(q, T[j]) executes in constant time on a
fixed-size alphabet if, for example, the DAWG is implemented with a sparse matrix technique.

Thus, the entire execution is completed in time O(|T). <

M.-P. Béal and M. Crochemore

Algorithm TSTABLE can be improved to run in real-time on a fixed-size alphabet. This
is done by optimising the suffix link s defined on the automaton R. To do so, let us define,
for each state g of R,

out(q) = {a | é(q, a) defined for letter a}.

Then, the optimised suffix link G is defined by G[initial(R)] = nil and, for any other state ¢
of R, by

_ [sld, if out(g) C out(s[g]),
Glal = { G[s[q]], else.

Note that, since we always have out(q) C out(s[g]), the definition of G can be reformulated as

_ [sldl, if deg(q) < deg(s[q]),
Glal = { G[s[q]], else,

where deg is the outgoing degree of a state. Therefore, its computation can be performed
in linear time with respect to the number of states of R. After substituting G for s in
Algorithm TSTABLE, when the alphabet is of size « the instruction at line 6 executes no

more than « times for each value of ¢q. So the time to process a given state ¢ is constant.

This is summarized in the next corollary.

» Corollary 7. When using the optimised suffix link, Algorithm TSTABLE runs in real time
on a fized-size alphabet.

On a more general alphabet of size «, processing a given state of the automaton can be
done in time O(log a).

5 Absent word searching vs string matching

Searching for absent factor occurrences as done in the previous section is based on the
DAWG matching technique [13] (see also [14, Section 6.6]) in the domain of string matching
algorithms. As such, Algorithm TSTABLE looks like a side product of string matching.

The goal of string matching algorithms is to locate a given pattern p in a longer text T'.
Figure 3 displays the generic situation when a part u of the pattern has been found in 7" and
is about to be appended with the letter b. The extension of w is successful if b matches its
aligned letter of the pattern, which eventually can lead to the detection of an occurrence of
the whole pattern.

The situation in Figure 3 is also the generic situation when searching for minimal absent
words. However, in contrast, this is an unsuccessful match of the letter b that immediately
yields the detection in T of a minimal absent word of p.

The role of the DAWG matching technique is essential here to detect minimal absent
words of p occurring in T because the DAWG of p stores and provides direct access to
all factors of p. Instead, if an online string matching algorithm is used, like KMP [24] or
Simon-Hancart [34, 22] algorithms (see also [14, Chapter 2]), the algorithm will detect only
some absent words. That is, those of the form aub in which au is a factor of p but ub is only
a prefix of it. This does not produce all the minimal absent words. However, other types of
string matching based on text indexes can certainly be used for the same purpose.

As a conclusion, the algorithm designed in the previous section reveals a surprising
phenomenon: the very tight link between the existence of minimal absent words that pop up
naturally in the analysis of pattern searching based on a Suffix automaton or a DAWG.

14:9

Grossi's Festschrift

14:10

Specific Patterns

—— References

1

10

11

12

13

14

15

16

Lorraine A. K. Ayad, Golnaz Badkobeh, Gabriele Fici, Alice Héliou, and Solon P. Pissis.
Constructing antidictionaries of long texts in output-sensitive space. Theory Comput. Syst.,
65(5):777-797, 2021. doi:10.1007/S00224-020-10018-5.

Marie-Pierre Béal and Maxime Crochemore. Fast detection of specific fragments against a
set of sequences. In 27th International Conference on Developments in Language Theory,
DLT 2023, volume 13911 of Lecture Notes in Computer Science, pages 51—-60, 2023. doi:
10.1007/978-3-031-33264-7_5.

Marie-Pierre Béal, Maxime Crochemore, Filippo Mignosi, Antonio Restivo, and Marinella
Sciortino. Computing forbidden words of regular languages. Fundam. Informaticae, 56(1-2):121—
135, 2003. URL: http://content.iospress.com/articles/fundamenta-informaticae/
£ib6-1-2-08.

Marie-Pierre Béal, Filippo Mignosi, Antonio Restivo, and Marinella Sciortino. Forbidden words
in symbolic dynamics. Adv. Appl. Math., 25(2):163-193, 2000. doi:10.1006/aama.2000.0682.
G. Bernardini, C. Liu, G. Loukides, A. Marchetti-Spaccamela, S.P. Pissis, L. Stougie, and
M. Sweering. Missing value replacement in strings and applications. Data Mining and
Knowledge Discovery, 39(12), 2025. doi:10.1007/s10618-024-01074-3.

Giulia Bernardini, Alessio Conte, Garance Gourdel, Roberto Grossi, Grigorios Loukides, Nadia
Pisanti, Solon P. Pissis, Giulia Punzi, Leen Stougie, and Michelle Sweering. Hide and Mine
in Strings: Hardness, Algorithms, and Experiments . IFEE Transactions on Knowledge &
Data Engineering, 35(06):5948-5963, June 2023. doi:10.1109/TKDE.2022.3158063.

A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Complete inverted
files for efficient text retrieval and analysis. Journal of the ACM, 34(3):578-595, 1987.
doi:10.1145/28869.28873.

Anselm Blumer, J. Blumer, Andrzej Ehrenfeucht, David Haussler, and Ross M. McConnell.
Building the minimal DFA for the set of all subwords of a word on-line in linear time. In
Jan Paredaens, editor, Automata, Languages and Programming, 11th Colloguium, Antwerp,
Belgium, July 16-20, 1984, Proceedings, volume 172 of Lecture Notes in Computer Science,
pages 109-118. Springer, 1984. doi:10.1007/3-540-13345-3_9.

Paola Bonizzoni, Clelia De Felice, Yuri Pirola, Raffaella Rizzi, Rocco Zaccagnino, and Rosalba
Zizza. Can formal languages help pangenomics to represent and analyze multiple genomes?
In Volker Diekert and Mikhail V. Volkov, editors, Developments in Language Theory - 26th
International Conference, DLT 2022, Tampa, FL, USA, May 9-13, 2022, Proceedings, volume
13257 of Lecture Notes in Computer Science, pages 3—12. Springer, 2022. doi:10.1007/
978-3-031-05578-2_1.

Supaporn Chairungsee and Maxime Crochemore. Using minimal absent words to build
phylogeny. Theor. Comput. Sci., 450:109-116, 2012. doi:10.1016/J.TCS.2012.04.031.
Panagiotis Charalampopoulos, Maxime Crochemore, Gabriele Fici, Robert Mercas, and Solon P.
Pissis. Alignment-free sequence comparison using absent words. Inf. Comput., 262:57-68,
2018. doi:10.1016/j.ic.2018.06.002.

Maxime Crochemore. Transducers and repetitions. Theoretical Computer Science, 45(1):63-86,
1986. doi:10.1016/0304-3975(86)90041-1.

Maxime Crochemore. Longest common factor of two words. In Ehrig, Kowalski, Levi, and
Montanari, editors, TAPSOFT’87 (Pisa, 1987), number 249 in LNCS, pages 26-36. Springer-
Verlag, 1987. doi:10.1007/3-540-17660-8_45.

Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings.
Cambridge University Press, 2007. 392 pages.

Maxime Crochemore, Alice Héliou, Gregory Kucherov, Laurent Mouchard, Solon P. Pissis,
and Yann Ramusat. Absent words in a sliding window with applications. Inf. Comput., 270,
2020. doi:10.1016/j.ic.2019.104461.

Maxime Crochemore, Filippo Mignosi, and Antonio Restivo. Automata and forbidden words.
Inf. Process. Lett., 67(3):111-117, 1998. doi:10.1016/S0020-0190(98)00104-5.

https://doi.org/10.1007/S00224-020-10018-5
https://doi.org/10.1007/978-3-031-33264-7_5
https://doi.org/10.1007/978-3-031-33264-7_5
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-08
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-08
https://doi.org/10.1006/aama.2000.0682
https://doi.org/10.1007/s10618-024-01074-3
https://doi.org/10.1109/TKDE.2022.3158063
https://doi.org/10.1145/28869.28873
https://doi.org/10.1007/3-540-13345-3_9
https://doi.org/10.1007/978-3-031-05578-2_1
https://doi.org/10.1007/978-3-031-05578-2_1
https://doi.org/10.1016/J.TCS.2012.04.031
https://doi.org/10.1016/j.ic.2018.06.002
https://doi.org/10.1016/0304-3975(86)90041-1
https://doi.org/10.1007/3-540-17660-8_45
https://doi.org/10.1016/j.ic.2019.104461
https://doi.org/10.1016/S0020-0190(98)00104-5

M.-P. Béal and M. Crochemore

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Maxime Crochemore, Filippo Mignosi, Antonio Restivo, and Sergio Salemi. Data compression
using antidictionaries. Proc. IEEFE, 88(11):1756-1768, 2000. doi:10.1109/5.892711.

Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390-398. IEEE Computer Society, 2000. doi:
10.1109/SFCS.2000.892127.

Yuta Fujishige, Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing dawgs and minimal absent words in linear time for integer alphabets. In Piotr
Faliszewski, Anca Muscholl, and Rolf Niedermeier, editors, 41st International Symposium on
Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, 2016 - Krakow,
Poland, volume 58 of LIPIcs, pages 38:1-38:14. Schloss Dagstuhl — Leibniz-Zentrum fir
Informatik, 2016. doi:10.4230/LIPICS.MFCS.2016.38.

Yuta Fujishige, Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Linear-time computation of dawgs, symmetric indexing structures, and maws for integer
alphabets. Theor. Comput. Sci., 973:114093, 2023. doi:10.1016/J.TCS.2023.114093.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.
Christophe Hancart. On simon’s string searching algorithm. Inf. Process. Lett., 47(2):95-99,
1993. doi:10.1016/0020-0190(93)90231-W.

Parsoa Khorsand, Luca Denti, Human Genome Structural Variant Consortium, Paola Bonizzoni,
Rayan Chikhi, and Fereydoun Hormozdiari. Comparative genome analysis using sample-
specific string detection in accurate long reads. Bioinformatics Advances, 1(1), May 2021.
doi:10.1093/bioadv/vbab005.

Donald E. Knuth, J. H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in strings.
SIAM J. Comput., 6(2):323-350, 1977. doi:10.1137/0206024.

Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly.
Bioinformatics, 28(14):1838-1844, May 2012. doi:10.1093/bioinformatics/bts280.

Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935-948, 1993. doi:10.1137/0222058.

Filippo Mignosi, Antonio Restivo, and Marinella Sciortino. Forbidden factors in finite and
infinite words. In Juhani Karhuméki, Hermann A. Maurer, Gheorghe Paun, and Grzegorz
Rozenberg, editors, Jewels are Forever, Contributions on Theoretical Computer Science in
Honor of Arto Salomaa, pages 339-350. Springer, 1999.

Gonzalo Navarro and Mathieu Raffinot. Flexible pattern matching in strings—practical on-line
search algorithms for texts and biological sequences. Cambridge University Press, 2002. 232
pages. doi:10.1017/CB09781316135228.

Kouta Okabe, Takuya Mieno, Yuto Nakashima, Shunsuke Inenaga, and Hideo Bannai. Linear-
time computation of generalized minimal absent words for multiple strings. In Franco Maria
Nardini, Nadia Pisanti, and Rossano Venturini, editors, String Processing and Information
Retrieval - 80th International Symposium, SPIRE 2023, Pisa, Italy, September 26-28, 2023,
Proceedings, volume 14240 of Lecture Notes in Computer Science, pages 331-344. Springer,
2023. doi:10.1007/978-3-031-43980-3_27.

Armando J. Pinho, Paulo Jorge S. G. Ferreira, Sara P. Garcia, and Joao M. O. S. Rodrigues. On
finding minimal absent words. BMC' Bioinform., 10, 2009. doi:10.1186/1471-2105-10-137.
Diogo Pratas and Jorge M Silva. Persistent minimal sequences of sars-cov-2. Bioinformatics,
36(21):5129-5132, July 2020. doi:10.1093/bioinformatics/btaa686.

Mohammad Saifur Rahman, Ali Alatabbi, Tanver Athar, Maxime Crochemore, and M. Sohel
Rahman. Absent words and the (dis)similarity analysis of dna sequences: an experimental
study. BMC Research Notes, 9(186):1-8, 2016. doi:10.1186/s513104-016-1972-z.

Raquel M. Silva, Diogo Pratas, Luisa Castro, Armando J. Pinho, and Paulo Jorge S. G.
Ferreira. Three minimal sequences found in ebola virus genomes and absent from human DNA.
Bioinform., 31(15):2421-2425, 2015. doi:10.1093/bioinformatics/btv189.

14:11

Grossi's Festschrift

https://doi.org/10.1109/5.892711
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.4230/LIPICS.MFCS.2016.38
https://doi.org/10.1016/J.TCS.2023.114093
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1016/0020-0190(93)90231-W
https://doi.org/10.1093/bioadv/vbab005
https://doi.org/10.1137/0206024
https://doi.org/10.1093/bioinformatics/bts280
https://doi.org/10.1137/0222058
https://doi.org/10.1017/CBO9781316135228
https://doi.org/10.1007/978-3-031-43980-3_27
https://doi.org/10.1186/1471-2105-10-137
https://doi.org/10.1093/bioinformatics/btaa686
https://doi.org/10.1186/s13104-016-1972-z
https://doi.org/10.1093/bioinformatics/btv189

14:12 Specific Patterns

34 Imre Simon. String matching algorithms and automata. In Juhani Karhuméki, Hermann A.
Maurer, and Grzegorz Rozenberg, editors, Results and Trends in Theoretical Computer
Science, Colloguium in Honor of Arto Salomaa, Graz, Austria, June 10-11, 1994, Proceedings,
volume 812 of Lecture Notes in Computer Science, pages 386—395. Springer, 1994. doi:
10.1007/3-540-58131-6_61.

https://doi.org/10.1007/3-540-58131-6_61
https://doi.org/10.1007/3-540-58131-6_61

Wavelet Tree, Part |: A Brief History

Paolo Ferragina =
Department L’EMbeDS, Sant’Anna School of Advanced Studies, Pisa, Italy
Department of Computer Science, University of Pisa, Italy

Raffaele Giancarlo &
Department of Mathematics and Computer Science, University of Palermo, Italy

Giovanni Manzini &
Department of Computer Science, University of Pisa, Italy

Giovanna Rosone &
Department of Computer Science, University of Pisa, Italy

Rossano Venturini &
Department of Computer Science, University of Pisa, Italy

Jeffrey Scott Vitter =

Department of Computer Science, Tulane University, New Orleans, LA, USA
Department of Computer and Information Science, The University of Mississippi, MS, USA

—— Abstract

The Wavelet Tree data structure introduced in Grossi, Gupta, and Vitter [16] is a space-efficient
technique for rank and select queries that generalizes from binary symbols to an arbitrary multisymbol
alphabet. Over the last two decades, it has become a pivotal tool in modern full-text indexing
and data compression because of its properties and capabilities in compressing and indexing data,
with many applications to information retrieval, genome analysis, data mining, and web search. In
this paper, we survey the fascinating history and impact of Wavelet Trees; no doubt many more
developments are yet to come. Our survey borrows some content from the authors’ earlier works.

This paper is divided into two parts: one (this one) giving a brief history of Wavelet Trees,
including its varieties and practical implementations, dedicated to this Festschrift’s honoree Roberto
Grossi; the second part deals with Wavelet Tree-based text indexing and is included in the Festschrift
dedicated to Giovanni Manzini [10].

2012 ACM Subject Classification Theory of computation — Data structures design and analysis;
Theory of computation — Data compression

Keywords and phrases Wavelet tree, data compression, text indexing, compressed suffix array,
Burrows-Wheeler transform, rank and select

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.15
Category Research

Acknowledgements The authors would like to thank Hongwei Huo for helpful comments and figures.

1 Introduction

The field of compressed full-text indexing [29] involves the design of data structures (aka,
indexes) that support fast substring matching using small amounts of space. For a text
string T[1,n] over an arbitrary alphabet ¥ of size o and a pattern P[1,m], the goal of text
indexing is to preprocess 7T using succinct space so that queries like the following can be
quickly answered: (1) count the number occ of occurrences of P in T; (2) locate the occ
positions in T where P occurs; and (3) starting at text position start, extract the length-¢
substring T [start, start + ¢ — 1].

© Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, Giovanna Rosone, Rossano Venturini, and
5v Jeffrey Scott Vitter;

licensed under Creative Commons License CC-BY 4.0
From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 15; pp. 15:1-15:11

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:paolo.ferragina@santannapisa.it
https://orcid.org/0000-0003-1353-360X
mailto:raffaele.giancarlo@unipa.it
https://orcid.org/0000-0002-6286-8871
mailto:giovanni.manzini@unipi.it
https://orcid.org/0000-0002-5047-0196
mailto:giovanna.rosone@unipi.it
https://orcid.org/0000-0001-5075-1214
mailto:rossano.venturini@unipi.it
https://orcid.org/0000-0002-9830-3936
mailto:jsv@vitter.org
https://orcid.org/0000-0001-7970-6118
https://doi.org/10.4230/OASIcs.Grossi.2025.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

15:2

Wavelet Tree, Part I: A Brief History

A main goal is to create an index whose size is roughly equal to the size of the text
in compressed format, with search performance comparable to the well-known indexes on
uncompressed text, such as suffix trees and suffix arrays. Some compressed data structures
are in addition self-indezes in that the data structure encapsulates the original text and,
thus, can quickly recreate any portion of it. As a result, the original text is not needed, it
can be discarded and replaced by only the (self-)index.

Most compressed indexing techniques developed in the last two decades make use of the
powerful Wavelet Tree data structure, developed by Grossi, Gupta, and Vitter [16], with
many applications to information retrieval, genome analysis, data mining, and web search. A
Wavelet Tree supports fast rank and select queries on any string from a general multisymbol
alphabet Y. As such, it provides an elegant extension of rank-select data structures for
binary sequences [31, 29] to the general case of alphabets of arbitrary size.

The Wavelet Tree represents a string of symbols from an arbitrary alphabet ¥ as a
hierarchical set (or tree) of binary strings. It has the following key compression property: If
each such binary string is compressed according to its information-theoretic minimum size,
then the original string is compressed to its information-theoretic minimum size.

The Wavelet Tree tree structure can be thought of as a generalization in the context of
computational geometry of the two-dimensional range search data structure of Chazelle [4]
in which the two-dimensional points stored in a binary tree node are initially sorted in one
dimension and then recursively partitioned into children based upon the second dimension.
Kérkkéinen [21] used a similar data structure in a very different way and purpose in the
context of highly repetitive texts.

Why the name “Wavelet Tree”? One of the codevelopers suggested the name based upon
his research interests in the fields of image compression and database query optimizaton,
where he used wavelet transforms and their hierarchical decompositions to approximate
multiresolution data [33].

In this paper (PART I), we give a brief history of Wavelet Trees, including its varieties
and practical implementations. We refer the reader to PART II, included in the Festschrift
dedicated to Giovanni Manzini, for a discussion about the important role of Wavelet Trees in
text indexing, particularly for compressed suffix arrays and the FM-index, which can produce
self-indexes with size related to the higher-order entropy of the text.

2 Preliminaries

Let ¥ = {0,1,...,0 — 1} be a finite ordered alphabet of size o. Let T = T[0,n — 1] be a
text string consisting of n symbols from alphabet . For simplicity, we assume that 7[n — 1]
is a special end-of-text symbol # that is the lexicographically smallest symbol in ¥. We use
T1i, j] to denote the substring of 7 consisting of the symbols T[i]T[i +1]... T[j]. A prefix
of T is a substring of the form 7710, 4], and a suffix is a substring of the form 7[j,n — 1].

Two key operations we will need for accessing and traversing Wavelet Trees are rank and
select:

» Definition 1 (rank and select). Let B[1,m] be a bit array of length m and let bit b € {0,1}.
We define the rank and select operations as follows:
ranky(B,1): return the number of occurrences of bit b in B[1,1] for any 1 <i <m;

selecty (B, j): return the position in B of the jth occurrence of bit b for any 1 < j <
ranky (B, m).

P. Ferragina, R. Giancarlo, G. Manzini, G. Rosone, R. Venturini, and J.S. Vitter

» Definition 2 ((Oth-order) empirical entropy). Let T be a text string of length n over an
alphabet ¥ = {0,1,...,0 — 1} of size 0. The Oth-order empirical entropy of T is defined as

1
7‘[0 :Ho(T) = ﬁ anlogn£

where ny, is the number of occurrences in T of symbol w € X.

A more stringent notion of entropy is the information-theoretic minimum (or Oth-order
finite-set entropy), given by

)
— log .
n ny,N2,..., Ny

It is always less than or equal to the Oth-order empirical entropy.
Higher orders of entropy can be defined readily if we encode symbols based upon their
frequencies of occurrence when grouped into common contexts.

» Definition 3 (kth-order empirical entropy). Let T be a text string of length n over an
alphabet ¥ = {0,1,...,0 — 1} of size 0. The kth-order empirical entropy of T is defined as

e = He(T) = = 3" e Ho(T)

xeXk

where x € ¥F designates a string (context) of length k and Ty denotes the string of length ny
formed by taking the symbol immediately preceding each occurrence of x in T and concatenating
all these symbols together.

In a like manner, we can define the kth-order finite-set entropy by

1 Ny
— E log ,
nx . M1xyN2xy+ -+ Mo x

where n, for y € X is the number of occurrences of yx as a substring in 7. The kth-order
finite-set entropy is always less than or equal to the kth-order empirical entropy.

In other words, the key point of the kth-order entropy definition is that we can achieve
it by encoding the relevant parts of 7 using Oth-order entropy. (This property was later
appropriately dubbed “boosting.”) In particular, if we form the substrings 7. for each
relevant k-context x and compress each 7T, to achieve space of n, times its Oth-order empirical
entropy Ho(7x), then the resulting compression for the full text string 7 will be n times
the kth-order empirical entropy Hi (7). Wavelet Trees are a natural and elegant way to
compress each substring Ty to ny Ho(7x) bits plus lower-order terms, and thus the resulting
cumulative encoding of 7 has size in bits bounded by n H(7) plus lower-order terms. This
fact is exploited in PART II to show how Wavelet Trees can be used to create text indexes
that use space related to the high-order entropy of 7.

For two strings S and T, we define the lexicographic order S < T (and say that S is
smaller than T') if S is a proper prefix of T, or if there exists an index 1 < ¢ < min{|S|, |T|}
such that S[i] < T'[i] and for all j < ¢, S[j] = T[j]-

We use SA[0,n — 1] to denote the suffix array (SA) of 7. It consists of the positions
of all the suffixes of T in lexicographical order. For example, in the text string T =
tcaaaatatatgcaacatatagtattagattgtat# in Table 1, the smallest suffix begins at position
SA[0] = 35, and the next smallest suffix begins at position SA[1] = 2. The ordered suffixes

15:3

Grossi's Festschrift

15:4

Wavelet Tree, Part I: A Brief History

Table 1 For text 7 = tcaaaatatatgcaacatatagtattagattgtat# containing symbols from the al-
phabet ¥ = {#,a,c,g,t} shown in the first column, the subsequent columns show the suffix array SA4,
its neighbor function ¥, and the LF function of the BWT. The (wide) second-to-last column shows
the suffixes in sorted order; each suffix starts at the symbol under F' (first) and ends at the symbol un-
der L (last). The BWT of T is the string of symbols L = tcacaattttcatttgtgaattaatagaaag#ataa.
The last column B is the bit array for the root node of the Wavelet Tree of L; symbols #, a, and ¢
(for the left subtree) are designated by a 0, and symbols g and t (for the right subtree) are designated
by a 1. The Wavelet Tree for L is pictured in Figure 1.

i | T |SA| ¥ | LF | F L| B
0 t 35 | 31 23 | #t c a ...a t| 1
1 c 2 2 16 |a a a a ...t ¢| O
2 a 3 4 llaaat ...calO0
3 a 13 5 17| a a c a ...g ¢| O
4 a 4] 11 2laat a ...a a0
5 a 14 | 18 3]lacat ...c al] 0
6 t 26 | 19 24 la g at ...t t| 1
7| a 20 | 22 25 |a gt a ...a t| 1
8 t 33 | 23 26 |[a t #t ...g t| 1
9 a 18 | 25 27 |a t a g ...a t| 1
10 t 16 | 27 18|at at ...ac| O
11 g 5| 28 4]lat at ...a al 0
12 c 7129 28lat at ...a t| 1
13 a 9 | 32 29 |at gc ...a t| 1
14 a 23 | 34 30 at t a...g t| 1
15 c 28 | 35 19]at t g ...a g| 1
16 a 1 1 31| c aaa ...#t| 1
17 t 12 3 200 c a ac ...t g| 1
18 a 15 | 10 5|c at a ...a a| 0
19 t 27 | 15 6|gat t ...t a| 0
20 a 11 | 17 32| gcaa...at|l
21 g 31 | 26 33|gt at ...t t| 1
22 t 21 | 30 7lgt at ...t a|] 0
23 a 34 0 8|t #t ¢ ...t a| O
24 t 25 6 3|t aga ...a t| 1l
25 t 19 7 9|1t a gt ...t a|] 0O
26 a 32 8 21 |t a t # ...t g| 1
27 | g 17 9 10|t at a ...c a|] O
28 a 6 | 12 11|t at a ...a a| 0
29 t 8 | 13 12|t at g ...t a|] O
30 t 22 | 14 22 |t at t ...a g| 1
31| g 0| 16 Ot caa ...t # 0
32 t 10 | 20 13|t gca ...t a|] 0
33 a 30 | 21 3|t gt a ...at| 1l
34 t 24 | 24 41t t ag ...t a| 0
35 | # 29 | 33 15t t gt ...g a|] O

are pictured in the (wide) second-to-last column of the table. For convenience, we regard
text 7 as a circular string and implicitly use modular arithmetic base n for the indices of T .
In other words, references to a symbol T [i] actually refer to 7 [i mod n].

Further development of suffix arrays that leads to the notion of compressed suffix arrays
is discussed in PART II. Compressed suffix arrays are self-indexes that use space proportional
to the high-order entropy of the text and provide fast pattern-matching queries. The key

P. Ferragina, R. Giancarlo, G. Manzini, G. Rosone, R. Venturini, and J.S. Vitter

notion that leads to the compression of suffix arrays is the important neighbor function,
which for each ¢ € [0,n — 1] maps 7 to the lexicographic order of the suffix formed by taking
the ith smallest suffix of 7 and rotating it to the left by one symbol.

The Burrows-Wheeler Transform (BWT) is another reversible transformation of a text
string T that rearranges the symbols of 7 in a way that groups together the same symbols
from similar contexts, thus resulting in high compressibility [2, 26]. In terms of Table 1, the
BWT is represented by the last subcolumn (designated by L). PART II provides further
development of the BWT that leads to the FM-index, which like the compressed suffix array,
uses space proportional to the high-order entropy of the text and provides fast pattern-
matching queries. The key notion behind the FM-index and its compression is the LF
function, which is the inverse of the neighbor function for compressed suffix arrays mentioned
above. That is, the LF function maps each ¢ to the lexicographic order of the suffix formed
by taking the ith smallest suffix of T and rotating it to the right (rather than to the left) by
one symbol. The symbol under L in row i is the same symbol under F' in row LF(i).

3 Wavelet trees

Wavelet Trees provide an elegant and efficient implementation of rank-select data structures
for strings of symbols from an arbitrary multisymbol alphabet. They generalize the well-
known rank-select data structures such as RRR [31] that handle binary strings.

Conceptually, the Wavelet Tree is most simply described as a full (and often balanced)
binary tree (see the example in Figure 1). The root node is a bit array B of the same length
as the input text 7 and partitions the text’s alphabet into two sets, where a 0-bit indicates
that the corresponding text symbol is in the left set and a 1-bit indicates that the text
symbol is in the right set. (See Table 1 for the bit array B applied to the string L.) Such a
bit array representation happens recursively at each internal node, where the text at the
internal node is of the symbols dispatched from the parent node with their order in the text
preserved. Each leaf node represents a distinct symbol of the alphabet of the input text,
with its multiplicity preserved.

Operations of rank and select on binary strings, as defined in Definition 1, are used to
navigate up and down the Wavelet Tree. For example, in the root node of the Wavelet Tree
of Figure 1, consider the symbol a in the sixth position of L, which is represented by a 0,
which means that its corresponding entry on the next level is in the left subtree. To find
that entry, we compute ranko(L,6) = 5 using a data structure such as RRR; we thus find
that the corresponding entry is entry 5 in the left subtree. To go from that entry on level 2
back to the position of the corresponding entry in root node, we compute selecto(L,5) = 6.

Of course, extra data structures are needed in order to support the needed query operations
and functionality in an efficient way. Those details are not given here in this survey. Instead
we focus on the main ideas that make wavelet trees such an elegant and powerful method.

The key aspect of Wavelet Trees is that they cleverly decompose the text into a hierarchy
of bit arrays without introducing any redundancy, so that the total size of the raw bit arrays
in the Wavelet Tree is exactly the same as the size (in bits) of the input text, regardless of
the shape of the Wavelet Tree. If the bit array at each node is Oth-order entropy compressed,
the resulting cumulative space usage of the Wavelet Tree is equal to n times the Oth-order
entropy-compressed size of the input text, again regardless of the shape of the tree [16, 11].

15:5

Grossi's Festschrift

15:6

Wavelet Tree, Part I: A Brief History

a ggegeg ttttttttttttt

Figure 1 The Wavelet Tree for string L = tcacaattttcatttgtgaattaatagaaag#ataa of Table 1.

4 Properties of Wavelet Trees

The Wavelet Tree pictured in Figure 1 is a balanced binary tree, in which the number of
symbols at each internal node are partitioned as evenly as possible for the level below. As
such it has at most log o levels, and each level (in raw uncompressed form) consists of a bit
array of length n. Using RRR [31] to encode each internal node allows fast rank and select
queries for general alphabets on the overall tree.

For an internal node of m bits with ¢ 1-bits and m — ¢ 0-bits, the RRR encoding [31] uses
log (7}) + o(£) + O(log log m) bits, where log (") is the information theoretic minimum. This
form of entropy is called Oth-order finite-set entropy; it is always less than or equal to the
empirical entropy of Definition 2, since it removes dependence from the statistical model.
Summing the log (”;) terms over all the internal nodes of the Wavelet Tree cascades into the
multinomial coefficient (nhn;__mg) [17], which is less than or equal n times the Oth-order
empirical entropy of the text 7.

There is much interesting work on efficient ways to construct Wavelet Trees. For example,
Munro et al. [27] show that construction can be done in O(n(logo)//logn) time.

5 Varieties of Wavelet Trees and Their Characteristics

There are several variants of Wavelet Trees. In this section, we focus on Huffman Wavelet
Trees, Pruned Wavelet Trees, and Wavelet Trees with multiway branching.

In [24, 28] the authors propose giving the Wavelet Tree the Huffman shape of the
frequencies with which the symbols appear in the text string 7. It has been shown that the
total number of bits stored in the Huffman Wavelet Tree is exactly the number of bits output
by a Huffman compressor that takes the symbol frequencies in 7, which is upper-bounded
by n(Ho(T) + 1). Moreover, the accesses to the leaves in the Huffman Wavelet Tree can be
obtained with frequency proportional to their number of occurrences in 1. Huffman shapes
can be combined with multiway Wavelet Trees and entropy compression of the bitmaps [1]. In
this case, one can achieve space nH(7) + o(n) bits, worst-case time O(1 + (log o)/ loglogn),
and average case time O(1 4+ Ho(7)/loglogn) for both rank and select queries.

Ferragina, Giancarlo, and Manzini [11] addressed the impact of the Wavelet Tree data
structure on data compression by providing a theoretical analysis of a wide class of compression
algorithms based upon Wavelet Trees, and proposing a novel framework, called pruned Wavelet
Trees, that aims for the best combination of Wavelet Trees of properly-designed shapes and
compressors either binary (like, run-length encoders) or non-binary (like, Huffman and
arithmetic encoders). There were three main contributions in that paper.

P. Ferragina, R. Giancarlo, G. Manzini, G. Rosone, R. Venturini, and J.S. Vitter

First, they proposed a thorough analysis of Wavelet Trees as stand-alone general-purpose
compressor, by considering two specific cases (extending [13]) in which either the binary
strings associated to their nodes are compressed via RLE (referred to as the Rle Wavelet
Tree) or via Gap Encoding (referred to as the Ge Wavelet Tree). These analyses provided
compression bounds that depended on the features of these prefix-free encoders and the
Oth-order entropy of the input string. As a result, the authors were able to prove that Rle
Wavelet Trees can achieve a compression bound in terms of the kth order empirical entropy,
whereas Ge Wavelet Trees cannot. This result has been then strengthened in [25] where the
authors showed that Rle can be replaced by the succinct dictionaries of [31].

Ferragina et al. [11] introduced the pruned Wavelet Trees that generalize and improve
Wavelet Trees by working on (C.1) the shape (or topology) of the binary tree underlying their
structure; and on (C.2) the assignment of alphabet symbols to the binary-tree leaves. The
authors showed that it is possible to exhibit an infinite family of strings over an alphabet %
for which changing the Wavelet Tree shape influences the coding cost by a factor ©(log o),
and changing the assignment of symbols to leaves influences the coding cost by a factor
©(0). Moreover, they showed that (C.3) Wavelet Trees commit to binary compressors, losing
the potential advantage that might come from a mixed strategy in which only some strings
are binary and the others are defined on an arbitrary alphabet (and can be compressed via
general-purpose Oth-order compressors, such as arithmetic and Huffman coding). Again, that
paper showed that it is possible to exhibit an infinite family of strings for which a mixed
strategy yields a constant multiplicative factor improvement over standard Wavelet Trees.

It is exactly to address these questions that Ferragina et al. [11] introduced the pruned
Wavelet Trees where only a subset of their nodes is binary, and then developed a combinatorial
optimization strategy addressing (C1)—(C3) simultaneously. As a corollary, they specialized
that strategy to design a polynomial-time algorithm for finding the optimal pruned Wavelet
Tree of fixed shape and assignment of alphabet symbols to its leaves; or, for selecting the
optimal tree shape when only the assignment of symbols to the leaves of the tree is fixed.

Ferragina et al. [12] showed that increasing the branching factor in the wavelet tree nodes
can reduce the time for rank and select queries to constant time, assuming that the alphabet
size satisfies 0 = O(polylogn).

6 Practical Implementations of Wavelet Trees

In this section, we review some approaches for designing fast and compact implementations
of Wavelet Trees. Grossi, Vitter, and Xu [18] provided a full generic package of Wavelet
Trees for a wide range of options on the dimensions of coding schemes and tree shapes. Their
experimental study reveals the practical performance of the various modifications. It provides
potential users a rationale for how to implement a Wavelet Tree based upon the particular
characteristics of the underlying datat.

The authors[18] considered three styles of Wavelet Trees:

Normal: Each node is partitioned by alphabetically dividing the symbols represented in

the node into two nearly equal-sized halves;

Alphabetic weight-balanced: Each node is partitioned by alphabetically dividing the

symbols represented in the node into two nearly equal-weighted halves, where the weights

are designated by the frequencies of the symbols; and

Huffman: Each node is partitioned as in Huffman compression.

15:7

Grossi's Festschrift

15:8 Wavelet Tree, Part I: A Brief History

They also considered several styles of encoding the conceptual bit array in each node, the
main ones being

None: The raw bit array is used at each node; support for member, rank, and select

queries is provided by o(n)-space auxiliary structures using superblocks and lookup-table

based popcount operations [15];

RRR: The practical implementation of the RRR method [31] given in [6];

RLE+~: Run-length encoding with Elias v encoding [8] for the runs; queries are supported

using the o(n)-space auxiliary structures [15];

RLE+4: Same as RLE++, but using Elias § encoding [8] instead of ~;

SC: Small-integer t-subset encoding [22];

AC: Arithmetic coding [19]; and

LP/«: Bit arrays are compressed by a specified method iff there are at most three distinct

symbols represented in the node, since nodes close to the leaf level are typically highly

compressible.

The overall results of experiments on 33 Wavelet Tree options on texts from English,
Protein, and Genome sources (several with very low entropy) suggest that RLE-encoded
Wavelet Trees are the best in space efficiency when coding BWTs or sequences with very
low Oth-order entropy, but are slower in query performance. RLE+{ is especially space-
efficient for low-entropy sequences. AAWT and Huffman-shaped Wavelet Trees have similar
performance, with the latter more space efficient for low-entropy sequences. When used with
RRR encoding, both offer good all-around space and query time performance. AAWT+None
is generally the fastest in all the experiments for queries and construction time.

Many existing implementations construct the Wavelet Matrix [7], which is an alternat-
ive representation for the Wavelet Tree, dropping its structure and thus achieving faster
performance in practice. It is especially effective for large alphabets.

At the first level of the Wavelet Matrix, the most significant bits (MSBs) of the symbols
are stored, analogous to the first level of the Wavelet Tree. Then, to construct the next
level ¢, starting with the second, the text is stably sorted using the (¢ — 1)th MSB as key.
Just as with the Wavelet Tree, the symbols are represented using their /th MSB on each
level . However, the order of the symbols on each level is given by the stably sorted text.
This removes the tree structure of the Wavelet Tree. However, the same intervals as in the
Wavelet Tree occur on each level, just in a bit-reversal permutation order !. The number of Os
in each level is stored in an array. This information is needed to answer queries using one less
binary rank and/or select query per level compared to Wavelet Trees. In the following, we
use Wavelet Tree to refer to both Wavelet Tree and Wavelet Matrix, and refer the interested
reader to [7] for more details.

Practical Binary Rank and Select Data Structures

As we mentioned before, rank and select data structures with constant query time can be
constructed in linear time requiring o(n) extra space for a binary vector of size n [5, 20]. The
currently most space-efficient rank and select support for a size-n binary array that contains
m ones requires only log () + n/logn + O(n®/*) bits (including the bit vector) [30], which
however is not of practical interest.

Almost all practical data structures to support rank queries follow the same layout. The
main idea is to split the binary array into blocks of b bits each and superblocks of B blocks

each. This way, every bit belongs to a block and every block belongs to a superblock. Then

! See https://oeis.org/A030109, last accessed 2025-02-24.

https://oeis.org/A030109

P. Ferragina, R. Giancarlo, G. Manzini, G. Rosone, R. Venturini, and J.S. Vitter

rank queries are supported by storing a counter for each superblock and block. For each
superblock, we store the number of ones in the binary array up to the beginning of the
superblock. Similarly, for each block, we store the number of ones from the beginning of its
superblock to the beginning of the block. This hierarchy of counters is used to limit the
number of bits to be used for each counter. The counter of a superblock is stored in ©(logn)
bits, while the counter of a block is stored in ©(logb + log B) bits.

A rank query at a certain position is computed by summing up the counter of the
superblock and the counter of the block that contains the queried position, and the rank
intra-block. The latter is computed with a popcount operation, which is supported by any
modern CPU (see e.g. [9]).

Different superblock and block sizes are chosen by different implementations. For example,

many implementations [32, 14] use superblocks of size B = 8 and blocks of size b = 64 bits.

Wider block sizes B =4 and b = 512 are chosen by the most recent implementations [34, 23]

and computations intra-block with such a large block size are done with SIMD operations.

These implementations have a smaller space overhead than the ones with smaller block sizes,
but they require more time to answer rank queries. However, when the binary vector is large,
the query time is dominated by the cost of accessing the block content from memory rather
than the CPU time to perform the operations within the block. Thus, the disadvantage of
having larger block sizes becomes almost negligible, and these solutions should be preferred
because of their smaller space overhead.

The support for select queries is more involved. There exist two possible approaches:
rank-based and position-based. Rank-based select structures rely on the rank data structure
that is augmented by a lightweight index storing sampled positions for every kth occurrence
of a1 or 0. To answer a select query, the first step is to locate the nearest block using
the sampled positions. Subsequently, consecutive blocks are examined until the basic block
containing the target bit (with the specified rank) is found. The exact position within
the basic block can then be determined directly. Although this method typically does not
guarantee constant query time, it is efficient in practice. On the other hand, position-based
select structures split the binary vector into blocks and sample positions of the block based
on its density [32]. For example, if the block is sparse, we can store the answer of every select
query directly. The main advantage of position-based select data structures is their constant
worst-case query time. However, this comes at the cost of higher space usage.

Faster Wavelet Tree Implementations

When answering queries using a Wavelet Tree, the query is translated to ©(log o) binary rank
or select queries as described above. Most of the time to answer a query on the Wavelet Tree
is spent answering these binary rank and select queries. Additionally, on each level of the
Wavelet Tree, the binary rank and select queries will result in at least one cache miss, which
again is the dominant cost of these binary queries. The currently fastest implementation [3]
reduces the number of cache misses by reducing the number of levels. This is done by making
use of a 4-ary Wavelet Tree. By doubling the number of children, it (roughly) halves the
number of levels. A 4-ary Wavelet Tree represents the symbols on each level using two
bits stored in a quad vector, i.e., a vector over the alphabet {0,1,2,3} with access, rank,
and select support. The rank and select support for the quad vector is implemented using
strategies similar to the ones of rank and select data structures for binary vectors.

The speed-up of this implementation over the other existing ones is approximately a
factor 2 for all the queries. The rank queries can be further improved using a small prediction
model designed to anticipate and pre-fetch the cache lines required for rank queries. This
could give a further improvement up to a factor of 1.6 for rank query [3].

15:9

Grossi's Festschrift

15:10

Wavelet Tree, Part I: A Brief History

—— References

1

10

11

12

13

14

15

16

17

18

19

Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive sorting.
Theoretical Computer Science, 513:109-123, 2013. doi:10.1016/j.tcs.2013.10.019.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm, 1994.
Matteo Ceregini, Florian Kurpicz, and Rossano Venturini. Faster wavelet tree queries. In Data
Compression Conference, pages 223-232. IEEE, 2024. doi:10.1109/DCC58796.2024.00030.
Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing, 17(3):427-462, 1988. doi:10.1137/0217026.

David Clark and J. Ian Munro. Efficicent suffix trees on secondary storage. In Proceedings
of the 7th ACM-SIAM Symposium on Discrete Algorithms (SODA’96), pages 383-391, New
York, NY, 1996. Association for Computing Machinery.

Francisco Claude and Gonzalo Navarro. Practical rank/select queries over arbitrary sequences.
In Proceedings of the 15th International Symposium on String Processing and Information
Retrieval (SPIRE 08), pages 176-187, November 2008. doi:10.1007/978-3-540-89097-3_18.
Francisco Claude, Gonzalo Navarro, and Alberto Ordoénez Pereira. The wavelet matrix: An
efficient wavelet tree for large alphabets. Inf. Syst., 47:15-32, 2015. doi:10.1016/j.is.2014.
06.002.

Peter Elias. Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, 21(2):194-203, 1975. doi:10.1109/TIT.1975.1055349.

Paolo Ferragina. Pearls of Algorithm Engineering. Cambridge University Press, 2023.

Paolo Ferragina, Raffaecle Giancarlo, Roberto Grossi, Giovanna Rosone, Rossano Venturini,
and Jeffrey Scott Vitter. Wavelet Tree, Part II: Text indexing. submitted to Festschrift’s
honoree Giovanni Manzini.

Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The myriad virtues of Wavelet
Trees. Information and Computation, 207(8):849-866, 2009. doi:10.1016/j.ic.2008.12.010.
Paolo Ferragina, Giovanni Manzini, Veli Mékinen, and Gonzalo Navarro. Compressed repres-
entations of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):Article
20, 2007.

Luca Foschini, Roberto Grossi, Ankur Gupta, and Jeffrey S. Vitter. When indexing equals
compression: Experiments with compressing suffix arrays and applications. ACM Transactions
on Algorithms, 2(4):611-639, 2006. This work combined earlier versions from SIAM Symposium
on Discrete Algorithms (SODA), January 2004, and “Fast compression with a static model
in high-order entropy,” Data Compression Conference (DCC), March 2004. doi:10.1145/
1198513.1198521.

Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In SEA, volume 8504 of Lecture Notes in Computer
Science, pages 326-337. Springer, 2014. doi:10.1007/978-3-319-07959-2_28.

Rodrigo Gonzélez, Szymon Grabowski, Veli Mékinen, and Gonzalo Navarro. Practical imple-
mentation of rank and select queries. In WEA, pages 27-38, 2005.

Roberto Grossi, Ankur Gupta, and Jeffrey S. Vitter. High-order entropy-compressed text
indexes. In Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA’03),
pages 841-850, New York, NY, 2003. Association for Computing Machinery.

Roberto Grossi and Jeffrey S. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing, 35(2):378-407, 2005. An
earlier version appeared in Proceedings of the 32nd ACM Symposium on Theory of Computing
(STOC’00), May 2000. doi:10.1137/S0097539702402354.

Roberto Grossi, Jeffrey S. Vitter, and Bojian Xu. Wavelet trees: From theory to practice. In
2011 First International Conference on Data Compression, Communications and Processing,
pages 210221, 2011. doi:10.1109/CCP.2011.16.

P. G. Howard and Jeffrey S. Vitter. Arithmetic coding for data compression. Proceedings of
the IEEE, 82(6):857-865, June 1994. doi:10.1109/5.286189.

https://doi.org/10.1016/j.tcs.2013.10.019
https://doi.org/10.1109/DCC58796.2024.00030
https://doi.org/10.1137/0217026
https://doi.org/10.1007/978-3-540-89097-3_18
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1016/j.ic.2008.12.010
https://doi.org/10.1145/1198513.1198521
https://doi.org/10.1145/1198513.1198521
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1109/CCP.2011.16
https://doi.org/10.1109/5.286189

P. Ferragina, R. Giancarlo, G. Manzini, G. Rosone, R. Venturini, and J.S. Vitter

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Guy Jacobson. Space-efficient static trees and graphs. In Proceedings of the 80th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’89), pages 549-554, Washington, DC,
1989. IEEE Computer Society. doi:10.1109/SFCS.1989.63533.

Juha Karkkéinen. Repetition-based Text Indexixng. Ph.d., University of Helsinki, Finland,
1999.

Donald E. Knuth. The Art of Computer Programming, volume Volumg 3: Sorting and
Searching. Addison-Welsey, 2nd edition edition, 1998.

Florian Kurpicz. Engineering compact data structures for rank and select queries on bit vectors.
In SPIRE, volume 13617 of Lecture Notes in Computer Science, pages 257-272. Springer, 2022.

d0i:10.1007/978-3-031-20643-6_19.

Veli Mékinen and Gonzalo Navarro. New search algorithms and time/space tradeoffs for
succinct suffix arrays. Technical Report Tech. Rep. C-2004-20, University of Helsinki, April
2004.

Veli Mékinen and Gonzalo Navarro. Implicit compression boosting with applications to
self-indexing. In Proceedings of the 14th International Symposium on String Processing and
Information Retrieval (SPIRE’07), pages 229-241, Heidelberg, Germany, 2007. Springer-Verlag
Berlin. doi:10.1007/978-3-540-75530-2_21.

Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407-430, 2001. An earlier version appeared in Proceedings of the 10th Symposium on
Discrete Algorithms (SODA ’99), January 1999, 669-677. doi:10.1145/382780.382782.

J. Tan Munro, Yakov Nekrich, and Jeffrey S. Vitter. Fast construction of wavelet trees.

Theoretical Computer Science, 638:91-97, 2016. doi:10.1016/j.tcs.2015.11.011.

Gonzalo Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2-20, 2014.

doi:10.1016/3.jda.2013.07.004.

Gonzalo Navarro and Veli Mékinen. Compressed full-text indexes. ACM Computing Surveys,
39(1):Article 2, 2007.

Mihai Patrascu. Succincter. In FOCS, pages 305-313. IEEE Computer Society, 2008. doi:
10.1109/F0CS.2008.83.

Rajeev Raman, Venkatesh Raman, and S.Srinivasa Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms, 3(4):Article 43, 2007. doi:10.1145/1290672.1290680.

Sebastiano Vigna. Broadword implementation of rank/select queries. In WEA, volume
5038 of Lecture Notes in Computer Science, pages 154—168. Springer, 2008. doi:10.1007/
978-3-540-68552-4_12.

J. S. Vitter and M. Wang. Approximate computation of multidimensional aggregates of
sparse data using wavelets. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 193-204, Philadelphia, PA, June 1999. Awarded
the 2009 SIGMOD Test of Time Award for the most impactful paper from the SIGMOD
conference 10 years earlier.

Dong Zhou, David G. Andersen, and Michael Kaminsky. Space-efficient, high-performance rank
and select structures on uncompressed bit sequences. In SEA, volume 7933 of Lecture Notes
in Computer Science, pages 151-163. Springer, 2013. doi:10.1007/978-3-642-38527-8_15.

15:11

Grossi's Festschrift

https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.1007/978-3-540-75530-2_21
https://doi.org/10.1145/382780.382782
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1016/j.jda.2013.07.004
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1007/978-3-642-38527-8_15

Faster Range LCP Queries in Linear Space
Yakov Nekirch £
Michigan Technological University, Houghton, MI, USA

Sharma V. Thankachan &
North Carolina State University, Raleigh, NC, USA

—— Abstract

A range LCP query rlcp(a, 8) on a text T'[1..n] asks to return the length of the longest common
prefix of any two suffixes of T' with starting positions in a range [a, 8]. In this paper we describe
a data structure that uses O(n) space and supports range LCP queries in time O(log® n) for any
constant € > 0. Our result is the fastest currently known linear-space solution for this problem.

2012 ACM Subject Classification Theory of computation — Pattern matching
Keywords and phrases Data Structures, String Algorithms, Longest Common Prefix
Digital Object Identifier 10.4230/OASIcs.Grossi.2025.16

Category Research

Funding Yakov Nekirch: Supported by the National Science Foundation under NSF grant 2203278.
Sharma V. Thankachan: Supported by the National Science Foundation under NSF grant 2315822.

Problem Definition and Previous Work

In this note we consider a variant of the longest common prefix (LCP) problem, called the
range LCP problem. In this problem we store a text T[1..n] in a data structure so that range
LCP queries can be answered efficiently. A range LCP query [a, 8] asks to return the length
of the longest common prefix of any two suffixes with starting positions in a range [«, 3],

rlep(ar,) = max{LCP(i,) | i # j and i, € [a,]},

where LCP(i, j) denotes the length of the longest common prefix of T'[i..n] and T'[j..n].

This problem and its variants were considered in several papers, see e.g., [5, 9, 2, 3, 1, 10, 7].
The currently fastest data structure by Amir et al. [2] uses O(nlogn) words of space and
answers range LCP queries in O(loglogn) time. Henceforth we assume that a word of space
consists of logn bits. The data structure with O(n) space usage by Abedin et al. [1] supports
queries in O(log" ™ n) time for any constant ¢ > 0. The data structure of Matsuda et al. [10]
uses O(nHy) bits of space where Hy is the 0-order entropy of the text T; however this space
usage is achieved at a cost of significantly higher query time as their data structure supports
queries in time O(n®).

In this note we describe a new trade-off between the space usage and the query time:
Our data structure uses linear space and supports queries in time O(log® n) for any constant
¢ > 0. Thus we achieve the same space usage as in [1] and query time that is close to [2].
Our solution combines the techniques from some previous papers with some new ideas.
The compact data structure for predecessor queries by Grossi et al. [8] is also used in our
construction.

© Yakov Nekirch and Sharma V. Thankachan;
37 licensed under Creative Commons License CC-BY 4.0
From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 16; pp. 16:1-16:6

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:yakov@mtu.edu
mailto:svalliy@ncsu.edu
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.4230/OASIcs.Grossi.2025.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

16:2

Faster Range LCP Queries in Linear Space

Notation

We will say that a triple (4,7, k) is a bridge if 1 < i < j < n and LCP(4,j) = h. The total
number of bridges is O(n?). However in order to answer a range LCP query it is sufficient to
consider a subset of all bridges of size O(nlogn) [2, 1]. Following the method of Abedin et
al. [1], we consider special bridges that are defined below.

We consider the suffix tree of the text T" and divide its nodes into heavy and light
nodes [11]. Let size(u) denote the number of leaves in the subtree rooted at u. The root is
a light node. Exactly one child «’ of every internal node u is designated as a heavy node,
specifically one with the largest size(u’) (ties are broken arbitrarily). All other nodes are
light. Let ¢; and ¢; denote the leaves in the suffix tree that hold suffixes T'[i..n] and T'[j..n]
respectively. Let v denote the lowest common ancestor of ¢; and ¢; and let u; and u; denote
the children of u that are ancestors of ¢; and ¢; respectively. A bridge (4, j, h) is a special
bridge if one of the following conditions is satisfied:

1. w; is a light node and j = min{x | (¢, 2, h) is a bridge}
2. u; is a light node and ¢ = max{z | (z, j, h) is a bridge}

» Lemma 1 ([1]). There are O(nlogn) special bridges. For any o and B such that 1 < a <
B <n, we have rlep(a, B) = max{ h | (i,5,h) is a special bridge and o < i,57 <}

In the rest of this paper a bridge will denote a special bridge.

Bridge Classification

Let A =logn. For a bridge (i, j, h) we will say that ¢ is its left leg, j is its right leg, and h is
its height. We will say that a bridge (4, j, h) is in the interval [a,b] if a < i < j < b. Let B,
denote the set of all bridges of height t.

By pigeonhole principle, there exists some value 7, 1 < 7 < A such that the total number
of bridges in Ug>0Br+ka is bounded by O(’”Z—g”) = O(n); see also [1, Section 5.1] We will
say that all bridges in By U (Ux>0Br+ka) are base bridges. All other bridges are implicit
bridges. Data structures for different categories of bridges are described below.

Base bridges

The total number of base bridges is O(n). Furthermore we can find the maximum height
base bridge in a query range by answering a variant of an orthogonal range searching query.
Our data structure for base bridges is summarized in the following lemma.

» Lemma 2. There exists an O(n)-word data structure that finds, for any interval (o, 0],
the base bridge with maximal height in [, B]. The query time is O(loglogn).

Proof. There is at most one bridge (i,7,1) for every value of i, 1 < ¢ < n and the total
number of bridges in B; is O(n). Hence the total number of base bridges is O(n). In order
to answer a query, we must find the largest A such that a <i < 8, o <j < 3, and there
is a base bridge (i,7,h). Since i < j, this is equivalent to finding the triple (4,7,) such
that i > «, j < B, and h is maximized. The latter query is equivalent to a two-dimensional
dominance maxima query. Using a data structure for top-k dominance queries with k = 1,
such a query can be answered in O(loglogn) time using O(n) space, see [4, Theorem 7]. <

Y. Nekirch and S.V. Thankachan

Implicit Bridges

Using Lemma 2, we can find the largest hg such that there is a base bridge of height hg in
the query range [, 8]. Now we explain how to find the largest h, hg < h < ho + A, such
that there is (an implicit) bridge of height A in [, 8 — Al.

The following properties of special bridges will be used.

» Lemma 3 ([1], Lemma 6). If there is a special bridge (i,7,h), then for any d < h there is
a special bridge (i +d,j' + d,h — d) for some j' < j and a special bridge (i' + d,j + d, h — d)
for some i’ > 1.

» Lemma 4 ([1], Lemma 5). There exists a data structure that uses O(n) space and supports
the following queries in O(log®n) time:
find the right leg j of a special bridge (i, 7, h) if its left leg i and its height h are known
find the left leg i of a special bridge (i, 7, h) if its right leg j and its height h are known

Let Hy denote the set of heights of base bridges. For every hy € Hy we consider all
bridges of height hy and construct the list of their left legs sorted in increasing order
L(ho) = { 81,82, -, Sng }, where ng is the number of special bridges with height hq. For each
k, 1 <k <A, we also construct an array Ry, k[1..no] so that Ry, x[i] = min{j|LCP(s; —
k,j) > ho + k }. Finally let

Min(hg, k,a) = min{ Ry, x[i] | iq < i},

where s;, is the successor of (a 4+ k) in L(hg) and i, is the position of s;, in L(hg).

» Lemma 5. If Min(hg, k,a) < b, then there is a bridge of height hg + k in [a, b].
If Min(hg, k,a) > b, then there is no bridge (i,4,h’') in [a,b — A] such that b’ > ho + k

Proof. The first statement directly follows from the definition of Min: if Min(hg, k,a) < b,
then there is an index i,,, such that s; , > a + k and a position j, such that s;, —k <j <b
and LCP(s;, —k,j) > ho + k. Hence there is also a special bridge (s;,, — k, j’, ho + k) where
j<j<banda<s;, —k<b.

To prove the second part of the lemma, suppose that there is a bridge (¢,j, h’) where
a<i<b-—A,a<j<b-—Aand h = hg+k+ f for some f, 0 < f < A —k. Then
LCP(i,j) = ho + k+ f and LCP(i + k + f,j + k + f) = ho. Hence there is a base bridge
(i +k+ f,40, ho) for some j) < j+ k+ f. Let t denote the position of (i + k + f, 4}, ho) in
L(hgp). Furthermore LCP(i+ f, j+ f) = ho+ k and there is an implicit bridge (i + f, ji, ho + k)
for some ji < j+ f. Since j + f < b, Ry, k[t] <band Min(hg, k,a) < b. <

» Lemma 6. For any hg € Hy, there exists a data structure that uses O(nglogn) bits and
determines whether Min(hg, k,a) < b in O(log® n) time for any 1 < a < b <n and for any
1<k<A.

Proof. For every k, 1 < k < A, we store a compact data structure that supports range
minimum queries on Ry, in O(1) time and uses O(ng) bits of space. We can use the
data structure from [6] for this purpose. All compact range minima data structures use
O(npA) = O(nglogn) bits. Arrays Ry, are not stored. Additionally we store L(hg) in
a data structure that uses O(nglogn) bits and supports successor queries in O(loglogn)
time [12].

16:3

Grossi's Festschrift

16:4

Faster Range LCP Queries in Linear Space

To compute Min(hg, k,a), we find the smallest s € L(hg) such that s > a + k. Then
we use the range minimum data structure and find the index i,, such that i,, > s and
Rio klim] < Rngykli] for any ¢ > s. Finally we compute the right leg j,, of the bridge
(tms Jms ho + k) using Lemma 4. If j, > b, then Min(ho,k,a) > b. If j,, < b, then
Min(hg, k,a) <. <

We keep a data structure from Lemma 6 for every hg € Hy. The total space usage of
these data structures is O(nlogn) bits. Using Lemma 6 and binary search, we find the
largest k such that Min(hg, k,a) < b. By Lemma 5, there is a bridge of height hg + & in [a, b];
hence LCP(a,b) > h. Also, by Lemma 5 there is no bridge (¢, , k) in [a,b — A], such that
h > ho 4+ k + 1. The total time is O(log® nloglogn). We thus proved the following lemma.

» Lemma 7. There exists an O(n)-word data structure that finds, for any interval [a,],
the implicit bridge with height h; in [a, 8], so that there is no bridge of height h > h; in
[a, B — A]. The query time is O(log® nloglogn).

Block Bridges

It remains to consider the case of bridges with right leg in the interval [— A, 5] and of height
h, ho < h < hg + A. We apply the pigeonhole principle again. Let A; = loglogn. There
exists some value 7, 1 < m < Ay, such that the total number of bridges in Ug>0Bx, 414, is
bounded by O(%%") = O(nlog’lgogn). Let HH={m + kA1 | 1<k<(n—m)/A1}. We
will say that all bridges B; where t € Hy U Hy are good bridges. All other bridges are bad
bridges.

We will denote by Blocky 5, the set of all bridges (¢,r, h) such that (a) h € Hy U Hy and
ho < h < ho+ A for some hg € H and (b) tA+1<r < (t+1)A for some k, 0 <k < %.

» Lemma 8. Let m denote the number of bridges in Block: n,. There exists a data structure
that finds, for any interval [, 5], the bridge from Block: 5, with mazimal height such that
its right and left legs are in [a, B]. This data structure uses O(logn + mloglogn) bits and
supports queries in O(log® n) time.

Proof. Let I;, denote the set that contains left legs of all bridges in Block; ,. Every
bridge (i,7,h) from Block: p, is represented as follows: We replace the right leg j with
d(j) = j —tA and the height h with d(h) = h — hg. We replace the left leg ¢ with (), where
r(i) = {x <i|x € Iin, }| is the rank of ¢ in I j,. Thus a bridge (4, j, h) € Blocky p, is
represented by a triple (r(¢),d(j),d(h)). Since r(i), d(j), and d(h) are bounded by A we can
store each triple (r(i),d(j),d(h)) using O(loglogn) bits. For each (r(i),d(j),d(h)), we can
retrieve the corresponding values of j and h with one addition. If j and h of some bridge
(i,7,h) are known, we can obtain the value of its left leg ¢ in O(log® n) time using the data
structure from Lemma 4.

In addition, we store all elements of I; 5, in a compact data structure that is described
by Grossi et al. in [8, Lemma 3.3]. This data structure supports successor queries on a set of
integers S; provided that we can access an arbitrary element of S in time t,.., a successor
query can be answered in time O(logm/loglogn + tac.) where m is the number of elements
in S. The data structure uses O(loglogu) bits per element, where u is the size of the universe
(in addition to the space required to store S). In our case, I; », has O(A?) elements and the
size of the universe is n. Hence for every left leg i € I, 5, the data structure uses O(loglogn)
bits. We can obtain the value of any left leg in time O(log® n). Hence successor queries are
answered in O((log A?)/loglogn + log®n) = O(log® n) time. That is, we can find for any «
the smallest i, € It p, such that i, > a.

Y. Nekirch and S.V. Thankachan

Finally all triples (r(i),d(j),d(h)) are stored in the data structure described in [4, The-
orem 7] 1. This data structure uses O(mlogm) = O(mloglogn) bits and supports the
following range maxima queries in O(loglogn) time: for any r, and dg, find the highest
d(h), among all tuples (r(2),d(j), d(h)) satisfying r(i) > ro and d(j) > dg.

In order to find the maximum-height bridge in [o, 8] from Block p,, we find the successor
of a and its rank r(a), using the compact successor data structure. We also compute
d(B) = B —tA. Then we find the highest value d(hmax) among all (r(¢),d(j),d(h)) satisfying
(i) > 7o and d(j) < dg. The maximum height of a bridge in [a, 5] iS Amax = d(hmax) + ho-
The total time required to answer a query is O(log® n + loglogn) = O(log® n). <

» Lemma 9. There are O(n) non-empty blocks.

Proof. Suppose that there is at least one implicit bridge (4, j, h) in Blocky p,. Let k = h — ho.
Then by Lemma 3 there is a special bridge (¢',j + k, ho) such that i + k <4’ < j + k. Since
1<k<AandtA<j<(t+1)A, we have tA < j+k < t+2A. Thus for every base bridge
(¢',7', hg) where hg € Hy there are at most two non-empty blocks. Since there are O(n) base
bridges, the number of non-empty blocks is O(n). <

» Lemma 10. There exists a data structure that finds, for any a < 8, and any hg € Hy, the
highest good bridge (i,4,h) in o, 8] such that its right leg j is in [— A, 8] and its height
h is in [ho, ho + A]. The data structure uses O(n) words of space and supports queries in
O(log® n) time.

Proof. We store a block data structure from Lemma 8 for each non-empty block Blocks p,, .
The total number of bridges in all blocks is equal to the total number of good bridges. By
Lemma 9, the total number of non-empty blocks is O(n). Hence the total space usage of
all block data structures is O(nlogn + (nlol‘;ﬁ)gn) loglogn) = O(nlogn) bits. The range
[— A,] intersects with at most two blocks. Hence we can find the highest bridge satisfying
the conditions of this lemma in time O(log®n) by answering two queries to block data

structures. <

Putting All Parts Together

In order to answer a range LCP query [«, 3] we need to identify the largest h such that there

is a bridge (4,4, h) in [, 8]. Our algorithm works in four stages:

1. First, we find the largest hg such that there is a base bridge of height hg in [, 3]. This
step takes O(loglogn) time by Lemma 2.

2. Then we find the largest h;, where hg < h; < hg+ A, such that there is an implicit bridge
of height h; in [«, 8 — A]. This can be done in O(log® nloglogn) time by Lemma 7

3. We find the largest h,, such that there is a good bridge of height h, > hy with right leg
in [8 — A, 5]. This step takes O(log® n) time by Lemma 10.

4. Let hy = max(hg, hi, hy). We check if there is a bridge of height A in [«, 8] for each h,
h1 < h < h; + Ay. By Lemma 5 we can check each candidate value of h in O(log® n)
time. Hence this step takes O(log® A1) = O(log® nloglogn) time.

The total query time is O(log® nloglogn). By replacing ¢ with a constant &’ < ¢ in the
above construction, we obtain our final result.

» Theorem 11. There exists a data structure that uses O(n) words of space and answers
range LCP queries in time O(log® n) time.

1 The same data structure was also used in Lemma 2.

16:5

Grossi's Festschrift

16:6

Faster Range LCP Queries in Linear Space

—— References

1

10

11

12

Paniz Abedin, Arnab Ganguly, Wing-Kai Hon, Kotaro Matsuda, Yakov Nekrich, Kunihiko
Sadakane, Rahul Shah, and Sharma V. Thankachan. A linear-space data structure for
range-lcp queries in poly-logarithmic time. Theor. Comput. Sci., 822:15-22, 2020. doi:
10.1016/J.TCS.2020.04.009.

Amihood Amir, Alberto Apostolico, Gad M. Landau, Avivit Levy, Moshe Lewenstein, and
Ely Porat. Range LCP. J. Comput. Syst. Sci., 80(7):1245-1253, 2014. doi:10.1016/J.JCSS.
2014.02.010.

Amihood Amir, Moshe Lewenstein, and Sharma V. Thankachan. Range LCP queries revisited.
In 22nd International Symposium String Processing and Information Retrieval (SPIRE), pages
350-361, 2015. doi:10.1007/978-3-319-23826-5_33.

Timothy M. Chan, Yakov Nekrich, Saladi Rahul, and Konstantinos Tsakalidis. Orthogonal
point location and rectangle stabbing queries in 3-d. J. Comput. Geom., 13(1):399-428, 2022.
doi:10.20382/J0CG.V13I1A15.

Graham Cormode and S. Muthukrishnan. Substring compression problems. In 16th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 321-330, 2005. URL: http:
//dl.acm.org/citation.cfm?id=1070432.1070478.

Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput., 40(2):465-492, 2011. doi:10.1137/090779759.
Arnab Ganguly, Manish Patil, Rahul Shah, and Sharma V. Thankachan. A linear space
data structure for range LCP queries. Fundam. Informaticae, 163(3):245-251, 2018. doi:
10.3233/FI-2018-1741.

Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. More haste, less waste:
Lowering the redundancy in fully indexable dictionaries. In 26th International Symposium
on Theoretical Aspects of Computer Science (STACS), pages 517-528, 2009. doi:10.4230/
LIPICS.STACS.2009.1847.

Orgad Keller, Tsvi Kopelowitz, Shir Landau Feibish, and Moshe Lewenstein. Generalized
substring compression. Theor. Comput. Sci., 525:42-54, 2014. doi:10.1016/j.tcs.2013.10.
010.

Kotaro Matsuda, Kunihiko Sadakane, Tatiana Starikovskaya, and Masakazu Tateshita.
Compressed orthogonal search on suffix arrays with applications to range LCP. In 31st
Annual Symposium on Combinatorial Pattern Matching (CPM), pages 23:1-23:13, 2020.
doi:10.4230/LIPICS.CPM.2020.23.

Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362-391, 1983. doi:10.1016/0022-0000(83)90006-5.

Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inf. Process. Lett., 6(3):80-82, 1977. doi:10.1016/0020-0190(77)90031-X.

https://doi.org/10.1016/J.TCS.2020.04.009
https://doi.org/10.1016/J.TCS.2020.04.009
https://doi.org/10.1016/J.JCSS.2014.02.010
https://doi.org/10.1016/J.JCSS.2014.02.010
https://doi.org/10.1007/978-3-319-23826-5_33
https://doi.org/10.20382/JOCG.V13I1A15
http://dl.acm.org/citation.cfm?id=1070432.1070478
http://dl.acm.org/citation.cfm?id=1070432.1070478
https://doi.org/10.1137/090779759
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.4230/LIPICS.STACS.2009.1847
https://doi.org/10.4230/LIPICS.STACS.2009.1847
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.4230/LIPICS.CPM.2020.23
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0020-0190(77)90031-X

On Inverting the Burrows-Wheeler Transform

Nicola Cotumaccio &
University of Helsinki, Finland

—— Abstract

We study the relationship between four fundamental problems: sorting, suffix sorting, element

distinctness and BWT inversion. Our main contribution is an Q(nlogn) lower bound for BWT
inversion in the comparison model. As a corollary, we obtain a new proof of the classical Q(nlogn)
lower bound for sorting, which we believe to be of didactic interest for those who are not familiar
with the Burrows-Wheeler transform.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms;
Theory of computation — Models of computation

Keywords and phrases Burrows-Wheeler transform, sorting, suffix array, element distinctness
Digital Object Identifier 10.4230/OASIcs.Grossi.2025.17
Category Research

Funding Funded by the Helsinki Institute for Information Technology (HIIT).

1 Introduction

Sorting is typically one of the introductory topics in a first course on algorithms and data
structures. Knuth devotes almost four hundred pages to the problem in the The Art of
Computer Programming [12] and Cormen et al. use insertion sort as a first example of an
algorithm [3].

Consider a sorted alphabet (i.e., an alphabet endowed with a total order). The problem
of sorting can be stated as follows.

» Problem 1 (Sorting). Given a string T = ajaz...an, compute a permutation v of
{1,2,...,n} such that ayiy < ayvr) for every 1 <i <n—1.

For example, if T = cdba, then the output of Problem 1 is the permutation ¢ of {1,2,3,4}
such that (1) = 4, ¥(2) = 3, ¥(3) = 1 and (4) = 2. Note that the permutation ¢ of
Problem 1 is uniquely defined if and only the a;’s are pairwise distinct. More generally, 1
becomes uniquely defined if we add the additional requirement that, for every 1 <i <n —1,
if ay)y = ayp@v1), then (i) < (i +1). The permutation ¢ that satisfies this additional
requirement is the stable sort of T.

Both Knuth and Cormen at al’s consider the comparison model, in which no restriction
on the (possibly infinite) sorted alphabet is assumed, and the only way to obtain information
on the mutual order between the characters in T is by solving queries ¢(i, j) of the following
type: given 1 <14,j < n, decide whether a; < a;. We assume that each query c(i, j) takes
O(1) time.

In the comparison model, the (worst-case) complexity of Problem 1 is ©(nlogn): there
exist algorithms (e.g., merge sort, which computes the stable sort of T') solving Problem 1
in O(nlogn) time, and any algorithm solving Problem 1 has complexity (nlogn). The
(classical) proof of the (n logn) lower bound [12, 3] shows a stronger result: to solve Problem
1, in the worst case we need Q(nlogn) queries ¢(4,7)’s, and this is true even if we know that
the a;’s are pairwise distinct. In other words, Q(nlogn) is not only an algorithmic lower
bound, but it also captures the minimum number of operations required to have enough
information for solving Problem 1.

© Nicola Cotumaccio;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No.17; pp. 17:1-17:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:nicola.cotumaccio@helsinki.fi
https://orcid.org/0000-0002-1402-5298
https://doi.org/10.4230/OASIcs.Grossi.2025.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

17:2

On Inverting the Burrows-Wheeler Transform

The comparison model yields a simple, informative, and mathematically appealing
setting for studying the complexity of sorting, but it can hardly be considered a realistic
computational model. For example, if the a;’s are known to be integers in a polynomial
range, Problem 1 can be solved in O(n) time via radix sort, which also computes the stable
sort of T [10].

The landscape becomes more complex if one considers alternative models of computations.
On the one hand, it is possible to obtain models that are more flexible than the comparison
model by allowing more complex queries in O(1) time. Assume that the alphabet is the set of
all real numbers, and consider the function f(z,y) = x —y. In the comparison model, in O(1)
time we can test whether f(x,y) < 0 for any choice of z,y € {a1,az,...,a,}. In the linear
decision tree model, one is allowed more general tests of the type f(x1,x2,...,%,) ; 0, where
we consider a linear function f(x1,xo,...,x,) = co+c121+coxa+- -+ cpxy. In the algebraic
decision tree model, we can choose f(x1,xa,...,%,) to be an arbitrary polynomial. Even if
the linear decision tree model and the algebraic decision tree model are more general than the
comparison model, the complexity of Problem 1 in all these models is still ©(nlogn) [4, 1].
On the other hand, it is possible to consider (realistic) variants of the RAM model. In the
word-RAM model with word size w > log N, where N is the size of the input, the complexity
of Problem 1 is still open, even though it is known to be o(nlogn) [8, 9]. Other variants
of these models are possible, but we will focus only on the comparison model and the case
of integers in a polynomial range, which are arguably the most common settings in the
literature.

In this paper, we show that the complexity of Problem 1 (Sorting) is the same as the
complexity of other fundamental problems: suffix sorting, element distinctness and BWT
inversion. The complexity of these problems in ©(nlogn) in the comparison model and ©(n)
in the case of integers in a polynomial range. Our main contribution is an (nlogn) lower
bound for BWT inversion in the comparison model (Theorem 1). We also show that Theorem
1 implies a new proof of the classical Q(nlogn) lower bound for sorting (Corollary 2), which
we believe to be of didactic interest for those who are not familiar with the Burrows-Wheeler
transform.

2 Sorting, BWT Inversion and Related Problems

Problem 1 is closely related to several fundamental problems. Here are some examples.

» Problem 2 (Suffix sorting). Given a string T = ajaz .. .ay, compute the permutation v of
{1,2,...,n} such that a)ay(+1 - - - an—1ay, s the i-th lexicographically smallest suffiz of
T for every 1 <i <mn.

For example, if T = banana, then the output of Problem 2 is the permutation v of
{1,2,3,4,5,6} such that /(1) = 6, ¥(2) = 4, ¥(3) =2, ¥(4) =1, ¥(5) = 5 and (6) = 3.
Note that v is uniquely defined because the suffixes of a string are pairwise distinct.

» Problem 3 (Element distinctness). Given a string T = ajas . ..a,, decide whether there
exvist 1 <1i < j < n such that a; = a;.

For example, if T' = cdba, then the output of Problem 3 is “no”.

The complexity of Problems 2 and 3 is ©(n) in the case of integers in a polynomial
range, and ©(nlogn) in the comparison model. Let us show how to obtain these bounds by
reducing these problems to Problem 1 (Sorting).

N. Cotumaccio

Let us consider the case of integers in a polynomial range.

Problem 2 can be solved in O(n) time by using any linear-time algorithm for building
the suffix array (see [15] for a survey). Historically, the linear time complexity was first
proved by Farach, who solved the more general problem of building the suffix tree of a
string in linear time [5]. Conceptually, the easiest algorithm is probably Kéarkkéinen et
al’s algorithm [11].

Problem 3 can be solved in O(n) time by first computing a permutation 1 as in Problem
1 (Sorting) and then checking in O(n) time if there exists 1 < ¢ < n — 1 such that

(i) = Qyp(it1)-

Let us consider the comparison model.

On the one hand, Problem 2 can be solved in O(nlogn) time by (i) sorting the a;’s via any
O(nlogn) comparison-based algorithm, (ii) replacing each a; with its rank in the sorted
list of all a;’s (which does not affect the mutual order of the suffixes) and (iii) applying any
O(n) suffix sorting algorithm mentioned earlier. On the other hand, to solve Problem 2 we
need Q(nlogn) queries ¢(i, 7)’s in the worst case, and the same lower bound is true even if
we know that the a;’s are pairwise distinct. Indeed, given the permutation 1) of Problem 2,
we have ay ;) < ayiq1) for every 1 <i <n—1 (because the suffix a,;)ayiy11 - Gn-1an
is lexicographically smaller than the suffix ay(i+1)@y@i+1)41 - - - @n—10,), s0 ¢ is also a
correct output for Problem 1, and the conclusion follows from the lower bound for
Problem 1 mentioned earlier.

On the one hand, Problem 3 has complexity O(nlogn): we can argue as in the case of
integers in a polynomial range, but we use any O(nlogn) comparison-based algorithm
to compute a permutation ¢ as in Problem 1. On the other hand, to solve Problem 3
we need Q(nlogn) queries ¢(i, j)’s in the worst case, as we show next. Fix an integer n,
and consider an algorithm that solves Problem 3 for every string T' = ajas...a,. Let
f(n) be the number of queries ¢(i, j)’s solved by the algorithm in the worst case. If the
a;'s are pairwise distinct, the permutation v of Problem 1 is uniquely defined, and the
algorithm for Problem 3 must return “no”. To this end, the algorithm must solve the
query c(¢(i+ 1),%(i)) for every 1 <i <n — 1 because otherwise the algorithm could not
infer that a,;) # ay(i+1) from the other queries that it solves and so it would not have
enough information to solve Problem 3 correctly on input 7. Consequently, if for every
query c(i,) solved by the algorithm we also consider the query c(j,4), we obtain at most
2f(n) queries. In particular, we consider both the query c(¢(i + 1),1(7)) and the query
c((i),¥(i + 1)) for every 1 < i < n — 1, from which we can infer that a, ;) < ay(i41) for
every 1 <i <n—1. We conclude that at most 2f(n) queries ¢(¢, j)’s are sufficient in the
worst case to compute ¥ and so solve Problem 1 for every T = ajas ... a, in which the
a;’s are pairwise distinct. Hence, we obtain f(n) = Q(nlogn) from the lower bound for
Problem 1 mentioned earlier.

Let us show that Problem 1 is related to another fundamental problem in string processing
and compression. To this end, we need to introduce the Burrows- Wheeler transform (BWT)
of a string [2]. Let S = bybs...b, be a string such that b,, = $, where § is a special character
such that (i) $ does not occur anywhere else in the string and (ii) $ is smaller than all the
other characters. For example, we can consider the string S = banana$ (where n = 7). For
1 <i<n,let S; =0bbig1...0,01b2...b;—1 be the i-th circular suffix of S. For example,
if S = banana$, we have S; = banana$, So = anana$b, S3 = nana$ba, Sy = ana$ban,
S5 = na$bana, S¢ = a$banan and S; = $banana. Note that the circular suffixes of S are
pairwise distinct because $ occurs in a different position in each of them.

17:3

Grossi's Festschrift

17:4

On Inverting the Burrows-Wheeler Transform

Table 1 The Burrows-Wheeler transform of banana$.

i F[i] L[7]
1 $ b a n a n a
2 a $ b a n a n
3 a n a $ b a n
4 a n a n a $ b
5 b a n a n a $
6 n a $ b a n a
7 n a n a $ b a

We build the square matrix M of size n X n such that, for every 1 < i < n, the i-th row
R;i[1,n] is equal to i-th (lexicograhically) smallest circular suffix of S (see Table 1 for the
matrix M of size 7 x 7 obtained from S = banana$). Note that Ry = b,b1bs...b,—1 = S,
because b, = $ is the smallest character.

For 1 < i < n, let C;[1,n] be the i-th column of M from left to right. Notice that
every C; is a rearrangement of the characters in S. Let F = C7 and L = C,, be the first
column and the last column of M, respectively. In Table 1, we have F' = $aaabnn and
L = annb$aa. Note that F' can be obtained by sorting the characters of S. By definition,
the Burrows-Wheeler transform BWTI[S] of S is the column F, that is, BWT[S] = F' = C,,.
In Table 1, we have BWTI[S] = annb$aa.

Crucially, the Burrows-Wheeler transform BWTI[S] of a string S is an encoding of the
string: given BWT[S], we can retrieve the string S. In Table 1, given BWTI[S] = annb$aa,
we can retrieve S = banana$. To prove this, we only need to show that from BWT[S] we
can retrieve the matrix M, because then the unique row of the matrix ending with $ yields
the original string S. We can retrieve M by computing all columns C;’s. We know that
C,, = BWT(S), and we can retrieve C; by sorting all characters in C),. Let us show how to
retrieve Cy. We know C,, and C7, so we know all pairs of consecutive characters in S. If
we sort these pairs lexicographically and we pick the last element of each pair, we retrieve
Cs. In Table 1, all pairs of consecutive characters in S are a$, na, na, ba, $b, an, an. By
sorting these pairs, we obtain b, a, an, an, ba, na, na, and by picking the last element of
each pair, we can infer that Co = b$nnaaa. Let us show how to retrieve C3. We know C,,
C and (5, so we know all triples of consecutive characters in S. If we sort these triples
lexicographically and we pick the last element of each triple, we retrieve C's. In Table 1, all
triples of consecutive characters in S are ab, na, nan, ban, $ba, ana, ana. By sorting these
triples, we obtain ba, ab, ana, ana, ban, na$, nan, and by picking the last element of each
triple, we can infer that C3 = abaan$n. In the same way, we can retrieve Cy,Cs, ..., Cy_1.

Since BWT(S) is an encoding of S, we can store BWT(S) instead of S without losing
information. The reason why storing BWT(S) may be more beneficial than storing S is that
the string BWT(.S) tends to be repetitive if in S several substrings have multiple occurrences,
so we can exploit the repetitiveness of S to compress BWT(S). This property motivated the
introduction of the Burrows-Wheeler transform in the original paper [2] and can be stated in
precise mathematical terms via the notion of entropy [13]. Surprisingly, it is also possible to
solve pattern matching on the original string by augmenting the compressed representation
of the Burrows-Wheeler transform with space-efficient data structures, thus obtaining the
FM-index [6].

We described an (inefficient) algorithm to invert the Burrows-Wheeler transform. Let us
state the problem formally.

N. Cotumaccio

» Problem 4 (BWT inversion). Given a string T = ajas . ..a, such that T = BWT(S) for
some ($-terminated) string S, compute S.

For example, if T' = annb$aa, then S = banana$ (see Table 1).

3 Our Results

In this section, we show that the complexity of Problem 4 in ©(nlogn) in the comparison
model and O(n) in the case of integers in a polynomial range. The only bound that cannot
be inferred from the original paper on the Burrows-Wheeler transform [2] is the Q(nlogn)
lower bound in the comparison model. Notice that the four problems considered in this
paper have the same complexity.

To prove the Q(nlogn) bound for Problem 4, we will proceed differently from Problems 2
and 3. We will prove the lower bound directly, without relying on the lower bound for
Problem 1 (Sorting). Then, we will use the lower bound for Problem 4 (BWT inversion)
to infer the lower bound for Problem 1 (Sorting). In addition to establishing interesting
relationships between fundamental problems, our approach yields a new proof of the celebrated
Q(nlogn) bound for sorting, which we believe to be of didactic interest.

Let us start with the lower bound for BWT inversion.

» Theorem 1. In the comparison model, to solve Problem 4 we need Q(nlogn) queries
c(i,4)’s in the worst case. The same lower bound holds even if we know that the a;’s are
pairwise distinct.

Proof. Fix an integer n. Consider n — 1 distinct characters by,b2,...,b,—1 such that
$ <by <by <---<by_1. Then, the set:

S = {bs1)bg(2) - - - bp(n—1)3 | ¢ is a permutation of {1,2,...,n —1}}
has size (n — 1)!. For every S € S, the string BWT(.S) is an encoding of S, so the set:
T ={BWT(S) | S €S}

has also size (n — 1)!. Notice that for every string T' = ajasg . ..ay,, if T € T, then the a;’s
are pairwise distinct.

Consider any algorithm solving Problem 4 for every input 7' = ajas...a, € 7. The
algorithm can gather information on the mutual order between the a;’s only by solving
queries ¢(4, j)’s. The decision on the next query ¢(¢,j) can depend on the outcome of the
previous queries ¢(i,j)’s, so we can describe the behavior of the algorithm on all inputs
T € T through a decision tree (see Figure 1 for the case n = 4). Since the algorithm correctly
solves Problem 4 for every input T = ajas ... a, € T, then the outcome of all queries ¢(i, j)’s
on a path from the leaf to a roof cannot be consistent with two distinct elements of T,
otherwise the algorithm would not have enough information to compute S . For example,
in Figure 1, if the output of “a; < a3” is “no” and then the output “a; < as” is “yes”,
then the algorithm must necessarily solve an additional query (%, j): both T} = b1b3$by and
Ty = bobsbhy$ are strings in 7 for which —(a; < a3) A (a1 < az), and we have Ty = BWT(.54)
and Tp = BWT(S3) for two distinct Sy, S2 € S, where S1 = bobsb1$ and So = b3b1b8$.

Assume that the longest path in the tree consists of k edges. Then, the number of paths
from the root to a leaf is upper bounded by 2%, so we must have 2* > (n — 1)!, which implies
k = Q(nlogn). This means that there exists T' € T for which the algorithm needs to solve
Q(nlogn) queries c(i,7)’s. <

i

17:5

Grossi's Festschrift

17:6

On Inverting the Burrows-Wheeler Transform

no
yes

no no
yes yes
ba$b3by b1bobs$
no no
yes yes

b1b3$b2 babsbi $ b3$b1 b2 b3ba$by

Figure 1 The decision tree of a possible algorithm solving Problem 4 (see the proof of Theorem 1)
for n = 4. We have |S| = |T| = (4 — 1)! = 6. The tree describes the sequence of all queries
c(i,7)’s for every input T' = aiazasas € T. Recall that we assume § < b1 < b2 < b3. We have
BWT (b1b2b33) = b3$b1ba, BWT (b1b3ba$) = ba$bsbr, BWT (bab1b3$) = bsba$b1, BWT (b2b3b:$) =
b1b3$b2, BWT(b3b1b2$) = b2b3b1$ and BWT(b3b2b1 $) = b1b2b3$. Every element Of 7' COI‘I"GSpOIldS to
a path from the root to a leaf.

The proof of Theorem 1 is similar to the classical proof of the Q(nlogn) lower bound
for sorting [12, 3]. In the classical proof, one typically uses the fact that a binary tree with
n! leaves must have height at least log(n!). Here we used a slightly more direct pigeonhole
argument to prove the inequality 28 > (n — 1)!. The worst-case entropy of a set S is log|S|
by a similar pigeonhole argument [14], so one may argue that in the proof of Theorem 1 we
used an entropy-based argument. This appears to establish an interesting analogy because
we have already mentioned that the compressibility of the Burrows-Wheeler transform can
be described through the notion of entropy [13].

Now, let us describe an efficient algorithm to solve Problem 4. The original paper by
Burrows and Wheeler [2] follows an approach based on a permutation called LF-mapping.
Here we will use a different approach based on the permutation 1, which is the inverse of the
LF-mapping. The permutation 1 plays a crucial role in compressed suffix arrays [7], and it
captures the connection between Problem 4 (BWT inversion) and Problem 1 (Sorting) more
explicitly. We are given T' = ajas...a, such that T = BWT(S) for some S = b1by...by,
where b, = $, and we need to compute S. By definition, T' = L, where L is the last column
of the matrix M, so we know that L = ajas...a, and we must retrieve S.

Let 9 be the stable sort of L (see Problem 1 and Table 1). Since $ is the smallest character,
we have L[(1)] = $ = b,. We will prove that b; = L[**1(1)] for every 1 <i < n — 1.
For example, in Table 1 we have by = L[¢?(1)] = L[4] = b, by = L[v3(1)] = L[7] = a,
by = LIGH(1)] = LI3] = n, by = LES(1)] = L6] = a, b = LS(1)] = L[2] = n and
bs = L[¢"(1)] = L[1] = a, so S = banana$. After computing v, we can retrieve all the b;’s in
O(n) time by computing all the powers 1)+1(1)’s. In the comparison model, we can compute
¥ in O(nlogn) time, and in the case of integers in a polynomial range we can compute 1 in
O(n) time, so the complexity of Problem 4 is O(nlogn) in the comparison model and O(n)
in the case of integers in a polynomial range. We are left with proving that b; = L[y*T1(1)]
forevery 1 <i<n-—1.

N. Cotumaccio

Let A[l,n] be the array such that, for every 1 < i < n, the row R; of the matrix M
is equal to the circular suffix Syp; (see Table 1). Then, A[l,7n] yields a permutation of
{1,2,...,n}. Moreover, we have F[i] = bap;) and L[i| = ba;—1 for every 1 <14 <n, where
we assume by = b,. In particular, bapyy—1 = L[¢(1)] = §, so we have A[y(1)] = 1 and
2 < A[Y(i)] < n for 2 < i <n. Notice that A yields a permutation of {1,2,...,n}. From
Ry = S, we obtain A[l] =

Let us prove that A[i(i)] = A[i] + 1 for every 2 < i < n (for example, in Table 1 we
have A[y(2)] = A[l] =7 =6+ 1 = A[2] +1). Fix a character ¢ # $ that occurs in S.
Let 1 < i3 < n be the smallest integer such that F[i;] = ¢, and let 1 < is < n be the
largest integer such that F[iz] = ¢. We only have to prove that A (i)] = A[i] + 1 for every
i1 <1 <9, because by picking all possible values ¢ # $ from smallest to largest we cover
every i between 2 and n (i = 1 corresponds to $). Let us prove that A[y(i)] = A[i] + 1 for
every i1 < i < 7. From the definitions of i; and i, we obtain that in every row of M and
in every column of M there are exactly i — i1 + 1 characters equal to ¢, and in particular
Li(in)] = LY(in + 1)] = -+ = L[Y(ia — 1)] = L[(i2)] = c¢. Since ¢ is the stable sort
of L, we obtain ¢(i1) < (i1 +1) < --- < (i — 1) < ¢(42). This implies that Sy,)]
is lexicographically smaller than Sapy(i,+1)], Sajp(i,+1)) 18 lexicographically smaller than
Sl (ir+2)]s - -5 SApp(ia—1)) is lexicographically smaller than Sy i,))- We have byjyiy—1 =
L[y (i)] = c for every iy < i < iy, so we conclude that Sap,y—1 is lexicographically
smaller than Sy (i, +1))—1, Sa[y(ii+1)]—1 is lexicographically smaller than Sy, +2)-15 - - - 5
S A (is—1))—1 is lexicographically smaller than Sapy(i,)—1, where bapy -1 = c for every
i1 < i < iy. At the same time, for every 1 < ¢ < n we have ba) = c if and only if i; <14 < s,
and Sy(;,) is lexicographically smaller than Sp;, 41), Sapi,+1) is lexicographically smaller than
SAfi4+2) > Safis—1 is lexicographically smaller than S4p;,). We obtain A[y(i)] — 1 = A[i]
for every i1 <1 < g, so A[)(i)] = A[i] + 1 for every i1 < i < iy, as claimed.

Let us prove that A[%(1)] = i for every 1 < i < n (for example, in Table 1 we have
[¥2(1)] = A[(5)] = A[4] = 2). We proceed by induction on i. For i = 1, we know that
[1/)()} = 1. Now assume that 2 < i < n. By the inductive hypothesis, we know that
[¢i=1(1)] = i — 1. In particular, A[p'=(1)] # n, so 2 < ~1(1) < n and we obtain
W' Q)] = A1 Q)] = AT+ 1= (- 1) +1=1.

We are now ready to prove the main claim. We have b; = b(;y1)—1 = bapyiti(1))-1 =
L[yt (1)] for every 1 <i <mn — 1.

We conclude our paper by showing that Theorem 1 implies a new proof of the lower
bound for sorting.

2>2>D>D>

» Corollary 2. In the comparison model, to solve Problem 1 we need Q(nlogn) queries
c(i,7)’s in the worst case. The same lower bound holds even if we know that the a;’s are
pairwise distinct.

Proof. Consider any algorithm solving Problem 4 for every input T' = ajas ... a, such that
the a;’s are pairwise distinct. Since the a;’s are pairwise distinct, the permutation v of
Problem 1 is uniquely defined, and 4 is also the stable sort of T. Let f(n) be the number
of queries ¢(i,7)’s solved by the algorithm in the worst case to compute 1. Assume that
T = BWT(S), where S = b1by...b,. After computing ¢, we can compute S in O(n) time
(because b; = T[p*+1(1)] for every 1 <i < n — 1, as we have seen before) without solving
any additional query c¢(i,7). Consequently, f(n) queries are sufficient in the worst case to
solve Problem 4 for every input 7' = ajas . .. a, such that the a;’s are pairwise distinct. By
Theorem 1, we conclude f(n) = Q(nlogn). <

17:7

Grossi's Festschrift

17:8

On Inverting the Burrows-Wheeler Transform

4

Conclusions

In this paper, we have shown that, in the comparison model, inverting the Burrows-Wheeler
transform has complexity ©(nlogn). As a corollary, we have obtained a new proof of the
Q(nlogn) sorting lower bound. Our main goal was to highlight how the ideas behind the
Burrows-Wheeler transform are deeply intertwined with the most fundamental results in
Computer Science.

—— References

1

10

11

12

13

14

15

Michael Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the fifteenth
Annual ACM Symposium on Theory of Computing, pages 80-86, 1983.

Michael Burrows and David J. Wheeler. A block-sorting lossless data compression algorithm.
Technical report, Systems Research Center, 1994.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

David P Dobkin and Richard J Lipton. On the complexity of computations under varying
sets of primitives. Journal of Computer and System Sciences, 18(1):86-91, 1979. doi:
10.1016/0022-0000(79)90054-0.

Martin Farach. Optimal suffix tree construction with large alphabets. In Proceedings 38th
Annual Symposium on Foundations of Computer Science, pages 137-143. IEEE, 1997. doi:
10.1109/SFCS.1997.646102.

Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 390-398.
IEEE, 2000. doi:10.1109/SFCS.2000.892127.

Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. In Proceedings of the thirty-second Annual
ACM Symposium on Theory of Computing, pages 397-406, 2000.

Torben Hagerup. Sorting and searching on the word RAM. In STACS 98: 15th Annual
Symposium on Theoretical Aspects of Computer Science Paris, France, February 25-27, 1998
Proceedings 15, pages 366—398. Springer, 1998. doi:10.1007/BFB0028575.

Yijie Han. Deterministic sorting in O(nloglogn) time and linear space. Journal of Algorithms,
50(1):96-105, 2004. doi:10.1016/J.JALGOR.2003.09.001.

John E Hopcroft, Jeffrey D Ullman, and Alfred Vaino Aho. Data structures and algorithms,
volume 175. Addison-wesley Boston, MA, USA:, 1983.

Juha Kérkkéinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
Journal of the ACM (JACM), 53(6):918-936, 2006. doi:10.1145/1217856.1217858.

Donald E Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley Professional, 1998.

Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM
(JACM), 48(3):407-430, 2001. doi:10.1145/382780.382782.

Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press,
2016.

Simon J Puglisi, William F Smyth, and Andrew H Turpin. A taxonomy of suffix array
construction algorithms. ACM Computing Surveys (CSUR), 39(2):4-es, 2007.

https://doi.org/10.1016/0022-0000(79)90054-0
https://doi.org/10.1016/0022-0000(79)90054-0
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1007/BFB0028575
https://doi.org/10.1016/J.JALGOR.2003.09.001
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/382780.382782

DNA Is a Puzzle Enthusiast

Roberto Marangoni &
Department of Biology, University of Pisa, Italy

—— Abstract
This article presents a concise summary of research projects in which Roberto Grossi participated,
yielding interesting results that were never previously published in research papers. At the time, these
studies were deemed too limited and in need of further extensions and generalizations, which were
never realized due to a lack of resources. The researches focused on methods for inferring possible
three-dimensional DNA conformations based on nucleotide sequence characteristics. Specifically, two
key approaches were investigated: the identification of structured motifs for detecting Transcription
Factor Binding Sites (TFBS) and the study of nested permutations using PQ-trees. This article
describes the obtained results in selected case studies, their potential implications, and the current
state of the art in these research areas.

2012 ACM Subject Classification Applied computing — Bioinformatics; Theory of computation —
Design and analysis of algorithms

Keywords and phrases DNA, 3D structure, PQ trees, structural motifs

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.18

Category Research

1 Introduction

From a biochemical perspective, DNA is a polymeric macromolecule composed of four
fundamental nucleotides: Adenine, Cytosine, Guanine, and Thymine. The genetic information
encoded in DNA is determined by the specific sequence of these nucleotides. A well-known
characteristic of DNA is its bilinear structure, consisting of two antiparallel strands. The
chemical bonds linking the nucleotides are directional, giving each strand a specific orientation.
Complementary base pairing follows strict rules: Adenine pairs with Thymine, while Cytosine
pairs with Guanine.

The structural organization of DNA was first described in 1953 through the “double helix”
model proposed by Watson and Crick, based on Rosalind Franklin’s X-ray diffraction data.
This model, referred to as the “B-form double helix,” represents one of several possible DNA
conformations. In fact, in living cells, DNA can assume more complex three-dimensional
conformations, including single-, double-, triple-, and even quadruple-stranded regions [19].
Additionally, local complex structures, such as single-hairpin loops, cruciform DNA (double-
hairpin structures), and other intricate conformations, have been observed [20].

Double-helix conformations result from the planar pairing of complementary bases between
the two strands. More complex structures emerge from non-trivial base pairings within the
same strand or between different strands. For example, if two sequences on the same strand
are mutually inverted complemented, their pairing may generate cruciform (double-hairpin)
structure (see Figure 1 for a schematic representation).

The study of DNA’s three-dimensional structures is crucial because, while the primary
sequence encodes genetic information, its expression is mediated by proteins such as poly-
merases, transcription factors, and gene inhibitors and others. These proteins recognize
specific DNA conformations rather than nucleotide sequences themselves. Molecular inter-
actions, in fact, rely on “tactile” recognition, requiring precise surface contact to explicate
biological functions. For example, a transcription factor may specifically recognize a hairpin
structure with a defined size and folding pattern, and such a 3D structure is generated by a
specific paring pattern of the nucleotides.

© Roberto Marangoni;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 18; pp. 18:1-18:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:roberto.marangoni@unipi.it
https://orcid.org/0000-0002-6603-6984
https://doi.org/10.4230/OASIcs.Grossi.2025.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

18:2

DNA Is a Puzzle Enthusiast

Figure 1 An example of a DNA region containing two sequences that are mutually inverted
complemented. At room temperature, this region can oscillate between a linear conformation (A)
and a double-hairpin (cruciform) conformation (B). Modified from [12].

In bioinformatics applications, DNA is often represented as a string in the alphabet {A, T,
C, G}, corresponding to the primary sequence of one strand, from which the complementary
strand can be inferred relying on pairing rules. This representation is primarily used to
characterize the informational content of DNA, but it is also indirectly linked to possible
local geometries, given that these geometries arise from non-trivial base pairings within the
same strand or between different strands.

Bioinformatics research has frequently focused on comparing DNA sequences, identifying
similarities, character substitutions, insertions, deletions, and even more significant modi-
fications at the chromosomal level. Various algorithms have been proposed (and continue
to be developed) for comparing genomic sequences to detect differences between healthy
individuals and those affected by specific diseases, reconstruct the phylogenetic history of
evolutionarily related species, and support numerous other applications that have become
common with the rise of omics sciences.

Attempts to investigate possible local structures based on the arrangement of letters
within DNA sequences have been relatively more limited. Identifying repetitions, palindromes,
inversions, and complementations with translocations, for example, provides a means to infer
structures with probable functional significance. Roberto Grossi and Nadia Pisanti have
made a significant contribution to this type of investigation, along with their collaborators. In
particular, two biologically important directions of research have emerged: the identification
of structured motifs [15, 10, 9, 4, 16, 17] and the representation of DNA’s primary sequence
using PQ-trees, an efficient data structure that can identify sequences derived from each
another through character permutations [3, 5, 7, 11].

2 Structured motifs in the DNA

A case study of structural investigation by motifs search concerned the heat-shock genes
activation in Tetrahymena termophila. Heat shock genes are a class of genes that are usually
activated when a thermal stress might damage the structure of cellular proteins. This class
of genes includes functionally different molecular tools (mainly chaperonins: i.e. proteins

R. Marangoni

_GAA_TTC_GAA_
5 o | | o Transcription 3
HSE GATA start

Figure 2 Schematic representation of the T. thermophila hsp70 promoter region including among
others, the HSE and GATA regulatory motifs involved in the hsp70 gene activation as shown by
experimental analysis. The structure of HSE sequence is reported above the corresponding box
(underscore character = an interval ranging from 2 up to 8 of any nucleotides).

that help other proteins to assume the correct folding), usually named after the molecular
weight of their protein product. For example, the hsp70 genes refer to the heat shock gene
subclass, the protein products of which weight about 70 kD. T. thermophila genome presents
several (about 30) hsp70 genes, called isoforms, which are very similar each other, but not
perfectly identical, and they may have a different regulation mechanism. The firstly studied
copy, named hsp70__1 appears to be regulated through a complex mechanism involving two
seemingly unrelated sequences [1]. The first regulatory element is a simple GATA tetra-
nucleotide, while the second, named HSE (heat-shock enhancer), exhibiting a relatively more
intricate structure. The HSE is composed of three blocks: the first block contains the GAA
three-nucleotide, separated from the second block by an interval of two arbitrary nucleotides.
The second block features the TTC three-nucleotide, which is the inverted complement of
the first block. Following an interval of approximately eight arbitrary nucleotides, the third
block contains again the same three-nucleotide of the first block (see Figure 2 for a schematic
representation). This arrangement allows the second block to pair with both the first and
third blocks, leading to the formation of two distinct double-hairpin structures: one in which
the first and second blocks pair within the same strand, and another in which the pairing is
established between the second and third block [1]. The HSE sequence can oscillate between
three distinct conformations: (i) a linear conformation with no intra-strand base pairing,
and (ii) two alternative conformations featuring double-hairpin structures. The proposed
mechanism for gene expression regulation involves structural stabilization: the transcription
factor is likely to bind to one of the double-hairpin conformations, thereby stabilizing the
proximal DNA structure and facilitating RNA polymerase access to the operator site. The
functional role of the HSE sequence has been experimentally validated [1]: site-directed
mutagenesis studies have demonstrated a significant reduction in HSP70 gene expression
upon disruption of the HSE motif. A key biological question arising from this discovery was
whether other hsp70 gene copies exhibited analogous regulatory sequences. To address this,
we developed a variant of the SMILE algorithm, named BioMotif [2], specifically designed for
the identification and statistical assessment of structured sequences based on grammatical
properties of the DNA sequence itself (an evolution of SMILE algorithm has been published
thereafter with the name RISOTTO [15]). We systematically searched for sequences located
within 500 nucleotides upstream of gene start sites, structured into three distinct boxes,
each three nucleotides long, with the central box containing an inverted complement of the
sequence found in both the first and third boxes. In essence, the objective was to identify
sequences capable of forming double-hairpin structures within close genomic proximity, a
key structural characteristic identified in the experimentally studied sequence. The search
yielded statistically significant results, with identified sequences located near the transcription
start sites of each hsp70 isoform. The Figure 3 illustrates the localization of all detected
sequences. Notably, the experimentally validated sequence was also identified, despite not

18:3

Grossi's Festschrift

18:4

DNA Is a Puzzle Enthusiast

Motif Score
ACA_TGT_ACA 1.01
ATG_CAT ATG 0.70 I ACA_TGT_ACA I GIT_AAC_GTT
GTT_AAC_GTT 0.70 1 ATG_CAT ATG I ATC_GAT_ATC
ATC_GAT_ATC 055 GAA_TTC_GAA (HSE motif)
TGA_TCA_TGA 0.44 - = R
CTA_TAG_CTA 0.38 —H-—— 3> hsp70*
TAG_CTA TAG 0.34 . . o)
TTG_CAA_TTG 0.25 == - hsp70 div1
CAATTG_CAA 0.22 H——F— > hsp70div2
AGA_TCT_AGA 0.22)
TCT_AGA_TCT 0.21 —+—+—H —> fhsp70div3
GAA_TTC_GAA 0.12 n-]) hsp70 divd
TTC_GAA_TTC 0.11
CTT_AAG_CTT 0.10 *
Gene characterized by experimental analysis
(a) Top significant motifs (the experimentally found (b) Localization of top-score significant motifs on
one is highlighted). the upstream region of various hsp70 isoforms.

Figure 3 Significant motifs found by BioMotif.

Tl T AC TTAC

AT" <A L5 IC T AT L

a4 4 8 4 7 a8 omom o E

Figure 4 Picture of the consensus matrix MA2009.2 in A. thaliana; its whole Jaspar entry can
be accessed at: https://jaspar.elixir.no/matrix/MA2009.2/.

being explicitly provided to the search algorithm. This finding strengthens the hypothesis
that these sequences may also play functional roles, potentially acting as regulatory elements
for the expression of hsp70 isoforms.

At this stage, the investigation was handed over to experimental biologists for site-directed
mutagenesis studies to assess the involvement of additional candidate regulatory sequences.
However, the termination of the research project and the disbanding of the experimental
team indefinitely postponed this experimental validation, which is the primary reason why
these findings were never published.

Nonetheless, we emphasize that this type of investigation, though relatively underutilized
in biological research, can provide far more informative and effective insights than usual
consensus sequence searches, which rely on conservation of bases rather than structural and
functional properties. The largest (and regularly updated: the last version is v.10, 2024)
database of TFBS (Transcription Factor Binding Sites), Jaspar ([8], [18]), still encode the
TFBS regions as consensus matrices. Jaspar does not include T. thermophila in its species’
collection, therefore it is not possible to use it for validating BioMotif output. We anyhow
performed a search of them, to investigate their presence in other organisms. We firstly
transformed the most significant BioMotif results into consensus matrices following two
simple criteria: a) conserved nucleotides get 100% of the consensus column, the other bases
get 0; b) in “don’t care” positions, each nucleotide gets 25%. We assign a length of 3 to
each “don’t care” spacer between conserved sequences. These matrices have been assigned to
Jaspar for searching.

https://jaspar.elixir.no/matrix/MA2009.2/

R. Marangoni

Figure 5 Example of a PQ tree, that, in an alphabet of five letters A={ a, b, ¢, d, e}, describes
any of the following strings S={ abcde, abced, cbade, cbaed, edabc, deabc, edcba, edabc.

We have found no exact results in any taxonomic category, even when we searched for
the experimentally discovered HSE motif, but this is not surprising, given that the Jaspar
database does not contain 7. thermopila, nor any evolutionary affine organism. But the
search found several consensus sequences containing sub-strings of BioMotif results. For
example, the search for the motif “CTT_AAG_CTT” (score = 0.10), returns a result in
Arabidopsis thaliana, the consensus sequence of which is displayed in Figure 4. This is a
TFBS of a NAC-gene family, involved in stress-responses [13], then with analogous function
of hsp70 genes. The first two boxes of the query sequence, "CTT__AAG”, are clearly present
in it, but looking more in the detail, we find that the middle position of the first box shows
the ”T” nucleotide with about 80% of conservation, while the other letter is an ”C”, with
about 20%. A symmetric situation takes place for the second position in the second box:
80% 7A” and 20% ”G”. Jaspar does not give more details in summarized results, but this
situation is compatible with the existence of 80% "CTT_AAG”, and 20% "CGT_ACG”:
it is noticeable that both sequences are configuring the same structural motif: the second
box is the complemented inverted of the first, thus probably giving rise to the same 3D
conformation. In other words, it is reasonable to think that the 3D structure has been more
preserved than the sequence itself: describing TFBS as structured motifs instead of consensus
sequences could make this situation more explicit, with a significant improvement of the
biological knowledge.

3 Searching for permutations using PQ trees

A further generalization beyond structured motifs consists of considering all possible per-
mutations contained within, and often nested in, a DNA sequence. We regard this as a
generalization because we do not predefine either a consensus sequence or a structured motif
but instead investigate potential internal organizations within the sequence.

Permutations occurring at variable distances may give rise to a wide variety of 3D
DNA conformations, which are probably not experimentally described but likely have
functional significance. The primary data structure used in this research was the PQ tree,
a notation introduced in the 1970s to represent maximal permutative structures within a
sequence [6]. A PQ tree possesses two kind of nodes: type-P nodes (graphically represented
by a circle), whose children can be permutated in any order, and type-Q nodes (graphically
represented by a rectangle), whose chilren can occur only in the given order or in the
reverse one, but not in other orders: Figure 5 presents an example of a PQ tree. A PQ
tree is a natural way to represent a sequence containing substrings which are permutated
each other, a very common situation for genomic DNA sequences. The application of

18:5

Grossi's Festschrift

18:6 DNA Is a Puzzle Enthusiast

Table 1 Distribution of PQ tree heights and their frequency.

PQ tree height | # trees
1 18018
2 13583
3 10897
4 3412
5 3513
6 514
7 281
8 8
9 5
10 3
11 5
12 1
13 1
14 0
15 1
16 0

this approach to biological sequences was the subject of two master’s theses, for which
Roberto Grossi was among the advisors [7, 11]. From a computational perspective, these
theses focused on the problem of efficiently generating the PQ tree representation of a
given input sequence, minimizing both execution time and memory usage. The research
led to the development of algorithms and procedures capable of extracting PQ trees in
nearly linear time. Biological applications were implemented as simple test cases of the
procedure. However, they yielded promising results that, unfortunately, were never further
developed. These preliminary analyses were conducted on the gene encoding the principal
glutamate receptor in Rattus norvegicus, called mGluR1, and accessible at ENA Nucleotide
database at: https://www.ebi.ac.uk/ena/browser/view/M61099. The study did not aim
to characterizing the generated PQ trees (they are too many, accounting for a huge number
of permutations) but rather to examine the distribution of their height. The height of a PQ
tree is, in practice, proportional by the degree of nesting of the permuted sequences, i.e. the
number of times by which permutations of long regions contain, within them, permutations
of shorter regions. One more nesting level increases the height of the relative PQ tree by 1;
for example, the PQ tree in Figure 5 has height = 2. The Table 1 reports the number of PQ
trees generated for each height. There are no trees with height > 16, but there are several
trees with height > 7, thus showing a high-degree of nested permutations. This situation
probably has functional significance, as a random shuffling of the sequence leads to a very
different distribution, with a maximum height = 6 and not 15. In other words, the high level
of permutation nesting is not random, but reasonably it is linked to some local arrangement
of the DNA conformation. Most of the studies on PQ-trees and their potential applications in
computational molecular biology were published between 2005 and 2012. In more recent years,
only a few works have been published, with those exploring applications in biology being
particularly scarce and almost exclusively focused on comparative genomics. Even recently,
a PQ-tree structure has been proposed to address the problem of identifying and comparing
gene clusters in bacterial genomes of strains/species closely related to already annotated
genomes [14]. However, searches in SCOPUS bibliographic database have not retrieved
any publication that investigates the height of PQ-trees to test its potential association to
functional properties of genomic sequences.

https://www.ebi.ac.uk/ena/browser/view/M61099

R. Marangoni

4

Conclusions

We can conclude that there is an intriguing and still poorly investigated link between the

various arrangements in the letters composing the DNA, when it is represented as a string, and
the local conformation assumed by the DNA as a biological macromolecule. The presented
approaches, structural motifs search and PQ-trees representation, are still valid and promising
even though they have been proposed around 15-20 years ago. It is clear that DNA loves to
play word games: it is surely a puzzle enthusiast and any approach that is able to establish

a link between a peculiar arrangement of its letters and a biological function can produce
very useful biological insights.

—— References

1

10

11

Sabrina Barchetta, Antonietta La Terza, Patrizia Ballarini, Sandra Pucciarelli, and Cristina
Miceli. Combination of two regulatory elements in the tetrahymena thermophila HSP70-1
gene controls heat shock activation. Fukaryotic cell, 7(2):379-386, 2008.

Alessandro Bartolomei. BioMotif: un metodo per la ricerca di motivi altamente strutturati in
sequenze genomiche. Master’s thesis, University of Pisa, IT, June 2007. Available at https:
//etd.adm.unipi.it/theses/available/etd-09252007-092605/unrestricted/Tesi.pdf.

Giovanni Battaglia. Discovery of unconventional patterns for sequence analysis: the-
ory and algorithms. Phd thesis, University of Pisa, Italy, June 2011. Available at
https://tesidottorato.depositolegale.it/handle/20.500.14242/128506. URL: https:
//etd.adm.unipi.it/theses/available/etd-12052011-215104/.

Giovanni Battaglia, Davide Cangelosi, Roberto Grossi, and Nadia Pisanti. Masking patterns
in sequences: A new class of motif discovery with don’t cares. Theoretical Computer Science,
410(43):4327-4340, 2009. doi:10.1016/J.TCS.2009.07.014.

Giovanni Battaglia, Roberto Grossi, and Noemi Scutella. Consecutive ones property and
PQ-trees for multisets: Hardness of counting their orderings. Information and Computation,
219:58-70, 2012. doi:10.1016/J.I1C.2012.08.005.

Kellogg S Booth and George S Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using pqg-tree algorithms. Journal of computer and system sciences,
13(3):335-379, 1976. doi:10.1016/S0022-0000(76)80045-1.

Giuseppe Camposeo. Scoperta di pattern ripetuti mediante 'uso di alberi pq. Master’s
thesis, University of Pisa, IT, June 2007. Available at https://etd.adm.unipi.it/theses/
available/etd-03132008-103339/unrestricted/Tesi.pdf.

Jaime A Castro-Mondragon, Rafael Riudavets-Puig, Ieva Rauluseviciute, Roza Ber-
hanu Lemma, Laura Turchi, Romain Blanc-Mathieu, Jeremy Lucas, Paul Boddie, Aziz
Khan, Nicolds Manosalva Pérez, et al. JASPAR 2022: the 9th release of the open-access
database of transcription factor binding profiles. Nucleic acids research, 50(D1):D165-D173,
2022.

Roberto Grossi, Giulia Menconi, Nadia Pisanti, Roberto Trani, and Sgren Vind. Motif trie:
An efficient text index for pattern discovery with don’t cares. Theoretical Computer Science,
710:74-87, 2018. doi:10.1016/J.TCS.2017.04.012.

Roberto Grossi, Andrea Pietracaprina, Nadia Pisanti, Geppino Pucci, Eli Upfal, and Fabio
Vandin. MADMX: A strategy for maximal dense motif extraction. Journal of Computational
Biology, 18(4):535-545, 2011. doi:10.1089/CMB.2010.0177.

Rosario Lombardo. Algoritmi efficienti per la scoperta di pattern ripetuti a
intervalli. Master’s thesis, University of Pisa, IT, June 2008. Available at
https://etd.adm.unipi.it/theses/available/etd-06182008-085952/unrestricted/

Lombardo_2008__Laurea_Magistrale_in_Informatica.pdf.

18:7

Grossi's Festschrift

https://etd.adm.unipi.it/theses/available/etd-09252007-092605/unrestricted/Tesi.pdf
https://etd.adm.unipi.it/theses/available/etd-09252007-092605/unrestricted/Tesi.pdf
https://tesidottorato.depositolegale.it/handle/20.500.14242/128506
https://etd.adm.unipi.it/theses/available/etd-12052011-215104/
https://etd.adm.unipi.it/theses/available/etd-12052011-215104/
https://doi.org/10.1016/J.TCS.2009.07.014
https://doi.org/10.1016/J.IC.2012.08.005
https://doi.org/10.1016/S0022-0000(76)80045-1
https://etd.adm.unipi.it/theses/available/etd-03132008-103339/unrestricted/Tesi.pdf
https://etd.adm.unipi.it/theses/available/etd-03132008-103339/unrestricted/Tesi.pdf
https://doi.org/10.1016/J.TCS.2017.04.012
https://doi.org/10.1089/CMB.2010.0177
https://etd.adm.unipi.it/theses/available/etd-06182008-085952/unrestricted/Lombardo_2008__Laurea_Magistrale_in_Informatica.pdf
https://etd.adm.unipi.it/theses/available/etd-06182008-085952/unrestricted/Lombardo_2008__Laurea_Magistrale_in_Informatica.pdf

18:8

DNA Is a Puzzle Enthusiast

12

13

14

15

16

17

18

19
20

SG Lushnikov, AV Dmitriev, Alexander Ivanovich Fedoseev, Gennady Aleksandrovich Za-
kharov, AV Zhuravlev, Anna Vladimirovna Medvedeva, BF Schegolev, and EV Savvateeva-
Popova. Low-frequency dynamics of DNA in Brillouin light scattering spectra. JETP letters,
98:735-741, 2014.

Hisako Ooka, Kouji Satoh, Koji Doi, Toshifumi Nagata, Yasuhiro Otomo, Kazuo Murakami,
Kenichi Matsubara, Naoki Osato, Jun Kawai, Piero Carninci, et al. Comprehensive analysis
of NAC family genes in oryza sativa and arabidopsis thaliana. DNA research, 10(6):239-247,
2003.

Eden Ogzeri, Meirav Zehavi, and Michal Ziv-Ukelson. New algorithms for structure informed
genome rearrangement. Algorithms for Molecular Biology, 18(1):17, 2023. doi:10.1186/
S13015-023-00239-X.

Nadia Pisanti, Alexandra M Carvalho, Laurent Marsan, and Marie-France Sagot. RISOTTO:
fast extraction of motifs with mismatches. In LATIN 2006: Theoretical Informatics: Tth
Latin American Symposium, Valdivia, Chile, March 20-24, 2006. Proceedings 7, pages 757-768.
Springer, 2006. doi:10.1007/11682462_69.

Nadia Pisanti, Maxime Crochemore, Roberto Grossi, and M F Sagot. A basis of tiling motifs
for generating repeated patterns and its complexity for higher quorum. In Mathematical
Foundations of Computer Science 2003: 28th International Symposium, MFCS 2003, Bratislava,
Slovakia, August 25-29, 2003. Proceedings 28, pages 622-631. Springer, 2003. doi:10.1007/
978-3-540-45138-9_56.

Nadia Pisanti, Maxime Crochemore, Roberto Grossi, and Marie-France Sagot. Bases of motifs
for generating repeated patterns with wild cards. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2(1):40-50, 2005. doi:10.1109/TCBB.2005.5.

Ieva Rauluseviciute, Rafael Riudavets-Puig, Romain Blanc-Mathieu, Jaime A Castro-
Mondragon, Katalin Ferenc, Vipin Kumar, Roza Berhanu Lemma, Jérémy Lucas, Jeanne
Chéneby, Damir Baranasic, et al. JASPAR 2024: 20th anniversary of the open-access database
of transcription factor binding profiles. Nucleic acids research, 52(D1):D174-D182, 2024.
Alexander Rich. DNA comes in many forms. Gene, 135(1-2):99-109, 1993.

Andrew Travers and Georgi Muskhelishvili. DNA structure and function. The FEBS journal,
282(12):2279-2295, 2015.

https://doi.org/10.1186/S13015-023-00239-X
https://doi.org/10.1186/S13015-023-00239-X
https://doi.org/10.1007/11682462_69
https://doi.org/10.1007/978-3-540-45138-9_56
https://doi.org/10.1007/978-3-540-45138-9_56
https://doi.org/10.1109/TCBB.2005.5

Designing Output Sensitive Algorithms for
Subgraph Enumeration

Alessio Conte =
University of Pisa, Italy

Kazuhiro Kurita &
Nagoya University, Japan
Andrea Marino &
University of Florence, Italy
Giulia Punzi =
University of Pisa, Italy
Takeaki Uno &

National Institute of Informatics, Tokyo, Japan

Kunihiro Wasa &4
Hosei University, Tokyo, Japan

—— Abstract

The enumeration of all subgraphs respecting some structural property is a fundamental task in

theoretical computer science, with practical applications in many branches of data mining and
network analysis. It is often of interest to only consider solutions (subgraphs) that are maximal under
inclusion, and to achieve output-sensitive complexity, i.e., bounding the running time with respect
to the number of subgraphs produced. In this paper, we provide a survey of techniques for designing
output-sensitive algorithms for subgraph enumeration, including partition-based approaches such as
flashlight search, solution-graph traversal methods such as reverse search, and cost amortization
strategies such as push-out amortization. We also briefly discuss classes of efficiency, hardness of
enumeration, and variants such as approximate enumeration. The paper is meant as an accessible
handbook for learning the basics of the field and as a practical reference for selecting state-of-the-art
subgraph enumeration strategies fitting to one’s needs.

2012 ACM Subject Classification Mathematics of computing — Graph enumeration; Mathematics
of computing — Graph algorithms

Keywords and phrases Graph algorithms, Graph enumeration, Output sensitive enumeration
Digital Object Identifier 10.4230/0OASIcs.Grossi.2025.19
Category Research

Funding Alessio Conte: Partially supported by MUR PRIN 2022 project EXPAND: scalable al-
gorithms for EXPloratory Analyses of heterogeneous and dynamic Networked Data (#2022TS4Y3N).
Kazuhiro Kurita: Partially supported by Kakenhi JP23K24806, JP25K00136, JP25K21273, and
JP25K03080.

Andrea Marino: Partially supported by Italian PNRR CN4 Centro Nazionale per la Mobilita Sos-
tenibile, NextGeneration EU — CUP, B13C22001000001. MUR of Italy, under PRIN Project n.
2022ME9Z78 — NextGRAAL: Next-generation algorithms for constrained GRAph visuALization,
PRIN PNRR Project n. P2022NZPJA — DLT-FRUIT: A user centered framework for facilitating
DLTs FRUITion.

Giulia Punzi: Supported by the Italian Ministry of Research, under the complementary actions to
the NRRP “Fit4dMedRob — Fit for Medical Robotics” Grant (#PNC0000007).

© Alessio Conte, Kazuhiro Kurita, Andrea Marino, Giulia Punzi, Takeaki Uno, and Kunihiro Wasa;
37 licensed under Creative Commons License CC-BY 4.0

From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 19; pp. 19:1-19:40

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:alessio.conte@unipi.it
https://orcid.org/0000-0003-0770-2235
mailto:kurita@i.nagoya-u.ac.jp
https://orcid.org/0000-0002-7638-3322
mailto:andrea.marino@unifi.it
https://orcid.org/0000-0002-9854-7885
mailto:giulia.punzi@unipi.it
https://orcid.org/0000-0001-8738-1595
mailto:uno@nii.jp
https://orcid.org/0000-0001-7274-279X
mailto:wasa@hosei.ac.jp
https://orcid.org/0000-0001-9822-6283
https://doi.org/10.4230/OASIcs.Grossi.2025.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

19:2

Designing Output Sensitive Algorithms for Subgraph Enumeration

1 Introduction

The goal of enumeration is to systematically list all feasible solutions to a given problem.
Unlike optimization problems, which seek to find a single best solution according to an
objective function — i.e., an extreme case — enumeration problems aim to identify all solutions
that satisfy given constraints, representing local extreme cases.

A well-constructed enumeration model strikes a balance between the size and the number
of solutions. When solutions are large, it is preferable to have fewer solutions. To achieve
this, models often incorporate parameters such as solution size, frequency, and weight, or
they unify similar solutions to manage complexity. Also, in order to limit the number of
solutions, we are often interested in listing only minimal or maximal solutions, i.e., solutions
that cannot be reduced or enlarged. It is important to note that the number of solutions
grows with the size of the input. When dealing with small input sizes, brute-force algorithms
and simple implementations can effectively solve the problem. However, for large-scale data,
more sophisticated algorithmic techniques are required to ensure computation time increases
in a controlled manner as the input size grows.

The development of algorithms for enumerating all possible solutions to a specific com-
binatorial problem has a long history, dating back at least to the 1960s. During this period,
researchers began tackling the problem of enumerating specific graph-theoretic structures,
such as shortest paths and cycles. As noted by David Eppstein [27], enumeration problems
have numerous applications, including;:

1. Identifying structures that satisfy additional constraints that are difficult to optimize,

2. Evaluating the quality of a model for a given problem by assessing the number of incorrect
structures,

3. Analyzing the sensitivity of structures to variations in problem parameters,

4. Exploring a broader class of structures beyond just the optimal ones to gain deeper insight
into the problem.

Over the past fifty years, a wide range of enumeration problems have been studied in the
literature, spanning various domains such as geometry, graph and hypergraph theory, order
and permutation problems, logic, set theory, and string problems. A recent compendium
compiled by part of the authors of this paper includes more than 500 combinatorial problems
along with more than 300 references, highlighting the depth and breadth of research in this
field.

1.1 OQur Contribution

Despite significant progress, the field of enumeration algorithms remains highly active, with
many intriguing open problems still under investigation. This paper seeks to contribute to
this ongoing research by first providing an overview of the key computational challenges
in designing and analyzing enumeration algorithms, and then presenting some of the most
effective techniques for developing efficient enumeration methods.

In particular, this paper serves as an introductory survey for newcomers interested in the
design of efficient output-sensitive enumeration algorithms. At the same time, it may also
serve as a valuable reference for experienced researchers, offering insights into state-of-the-art
techniques and pointers to relevant literature on well-established concepts in the field.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

1.2 Structure of the paper and roadmap

In Section 2, we discuss the general algorithmic challenges of enumeration and briefly examine
brute-force approaches. While these methods do not require sophisticated algorithmic design,
they provide the basis for understanding enumeration tasks, independently of efficiency
considerations. On this latter note, Section 3 presents the various ways efficiency is defined
in the context of listing algorithms.

Section 4 focuses on partition-based approaches for enumeration. We fist introduce a
backtracking technique based on recursively partitioning the set of solutions. Depending
on how duplication is managed, this approach can either be straightforward, or leverage
forbidden sets. To improve efficiency, we present enhancements using the so-called flashlight
method and the extension problem. As a byproduct of these techniques, we present their
implications for assessment. Section 5 introduces strategies that intuitively navigate the
space of solutions, often modeled as a solution graph. These include reverse search, the
input-restricted problem approach, and proximity search.

In Section 6, we introduce amortization techniques, which are frequently used to refine
partition-based methods and achieve (sub)linear average delay. We cover several such
techniques, including amortization by children and grandchildren, push-out amortization,
and geometric amortization.

Finally, in Section 7, we discuss approaches for determining the inherent difficulty of an
enumeration problem. These arguments rely on the complexity of enumerating hypergraph
transversals or employ suitable reductions from NP-hard problems. We also highlight here
parameterized and approximate enumeration as promising directions for future research.

1.3 Preliminaries

This paper focuses on enumeration problems on graphs, so let us first give some preliminaries
on the topic. A graph is a pair G = (V(G), E(G)), where V(G) is its set of nodes or vertices,
and E(G) C V(G) x V(G) is the set of edges. When the graph G is clear from the context,
we just write V = V(G) and E = E(V). For an edge (u,v) € E(G), we refer to nodes u and
v as its endpoints. A self-loop is an edge with equal endpoints. When multiple edges are
allowed with the same endpoints, we call the graph a multigraph, and we call multiplicity of
an edge the number of times it occurs.

We say that H is a subgraph of G, and we write H C G, if both V(H) C V(G) and
E(H) C E(G). A subgraph H of G is said to be induced by the set of nodes V(H), and
denoted by G[V(H)] if E(H) is formed by all edges of G that connect nodes of V(H):
E(H)=E(G)N(V(H)xV(H)). Given a node v € V(G), we denote with G \ v the subgraph
GV \ {0},

There are two main types of graphs: undirected or directed. A graph is undirected if its
edges are represented as non-ordered pairs. In other words, two edges are equal if they have
the same endpoints, i.e., (u,v) = (v,u). In this case, the degree of a node u is the number of
edges incident to u, d(u) = [{(u,v) € E}|, and its neighbors are the set of nodes connected
to it with an edge: N(u) = {v € V(G)|(u,v) € E(G)}. A graph is instead said to be directed
if the edges of E are ordered pairs, that is, edge (u,v) is different from edge (v, u). In this
case, we say that edge (u,v) is directed from node u to node v. Given a node u € V(G),
we define its out-neighbors as N (u) = {v € V(G) | (u,v) € E(G)}, and symmetrically its
in-neighbors as N (u) = {v € V(G) | (v,u) € E(G)}. We have now two forms of degree for
a node u: the outdegree df,(u) is the number of out-neighbors, while the indegree dg(u) is
the number of in-neighbors. We note that, in the case of multigraphs (both directed and
undirected), the degrees also account for the multiplicity of the incident edges.

19:3

Grossi's Festschrift

19:4

Designing Output Sensitive Algorithms for Subgraph Enumeration

A clique K of an undirected graph G is a subgraph such that every pair of distinct nodes
of K is connected by an edge. A matching of a graph is a set of (non-loop) edges that share
no endpoints.

Paths and Cycles

A sequence of distinct adjacent nodes of G is called a path: P = ujug - --uy is a path if u; € V
for all i = 1,..., k, where u; # u; for any ¢ # j, and (u;,u;41) € Eforalli=1,...,k — 1.
Note that this definition is independent of whether G is directed or not. In this case we say
that P traverses nodes uq, ..., u, has endpoints u; and ug, and has length |P| = k. A path
with endpoints v and v is sometimes called an uv-path. Given two nodes s,t € V, the set of
all st-paths of G is denoted by P; (G), where P; +(G) only contains the trivial path from ¢
to itself. A cycle is a path P whose endpoints coincide: in the previous notation, we have
u1 = ug. A graph with no cycles is called acyclic; if it also is directed, it is referred to as a
directed acyclic graph, or DAG.

Connectivity

We give here some connectivity notions which slightly differ according to whether the graph is
directed or not. An undirected graph G is called connected if there is a path connecting every
pair of nodes. A graph is biconnected if for any u € V' the graph G \ u is still connected. On
the contrary, an articulation point is a node u such that G\ u is not connected. The maximal
biconnected subgraphs of G are called its biconnected components (BCCs). Analogously, a
graph is 2-edge-connected if G \ e is connected for each ¢ € E, and edges whose removal
disconnect the graph are called bridges. For directed graphs, we have two main notions of
connectivity. A directed graph G is weakly connected if the underlying undirected graph, that
is, the graph obtained by replacing all directed edges with undirected ones, is connected.
Graph G is strongly connected if for each pair u,v € V there are both a uv-path and a
vu-path.

Trees

A tree is a connected acyclic undirected graph. A spanning tree of a graph G is a subgraph T
of G such that (i) T is a tree and (i¢) V(T) = V(G). Except for a single vertex, called root
and denoted as r, every node u of the tree has a unique parent, defined as the only neighbor
of u on the ru-path. The neighbors of a node that are not its parent are called its children.
A node with no children is called a leaf. For a node u, we define its rooted subtree as the
subgraph formed by node u, and all nodes (and edges) that it can reach without traversing
its parent.

2 Algorithmic Challenges and Brute Force Approaches

The design of enumeration algorithms involves several crucial aspects that must be considered
to ensure both correctness and efficiency. Specifically, an enumeration algorithm must
guarantee that each solution is output exactly once, thereby avoiding duplication. A
straightforward approach to achieve this is to store all previously found solutions in memory
and, upon encountering a new solution, check whether it has already been output. However,
this approach can be highly memory-inefficient when solutions are relatively large wrt
the available memory. Addressing this issue would require dynamic memory allocation
mechanisms and efficient search structures, such as hash functions. Consequently, a more
practical strategy employed by many enumeration algorithms is to determine whether a
solution has already been output without explicitly storing all generated solutions.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

Algorithm 1 BRUTEFORCE(4, X). The notion of valid and feasible depends on the problem
at hand. For instance, if all the valid sequences to be enumerated are the ones without
repetition having prefix X and formed by even numbers in a set IV, feasible may refer to the
even numbers in N not in X.

Input: An integer ¢ > 1, a sequence of values X = (zg,...,z;—1), eventually empty
Output: All the valid sequences of length n whose prefix is X

if no solution includes X then return;

if i > n then

‘ if X is a solution then output X;

else

L foreach feasible value e of x; do

o ok W N -

| BRUTEFORCE(i + 1, (X, €))

Algorithm 2 BRUTEFORCE(X, D).

Input: A set X, a reference to a global database D
Output: All the distinct solutions containing X not contained in D
D+ Du{X}
if no solution includes X then return;
if X is a solution then output X;
foreach X' obtained by adding an element to X do
if AZ € D such that Z = X’ then
L | BrUTEFORCE(X', D)

o LA W N

In addition to direct duplication, implicit forms of redundancy should also be avoided —
for instance, ensuring that isomorphic solutions are not redundantly output. To achieve
this, it is often beneficial to define a canonical representation for solutions, enabling efficient
comparisons. An ideal canonical form establishes a one-to-one mapping between objects and
their representations without significantly increasing their size. This transformation allows
the enumeration of certain objects to be reframed as the enumeration of their canonical forms.
However, for structures such as graphs, sequence data, and matrices, determining isomorphism
remains computationally challenging, even when using canonical forms. Nonetheless, in such
cases, isomorphism can still be checked using exponential-time algorithms, which, in practice,
often perform efficiently when the number of solutions is relatively small.

Simple structures, such as cliques and paths, are generally easy to enumerate. Cliques can
be constructed by iteratively adding vertices, while the set of paths can be easily partitioned.
However, more complex structures — such as maximal structures (where no additional element
can be added without violating a required property), minimal structures (where no element
can be removed without violating a required property), or constrained structures — are
significantly more challenging to enumerate. In these cases, even if finding a single solution
is feasible in polynomial time, the main challenge lies in devising a method to generate
additional solutions from a given one, i.e., defining a solution neighborhood, to enable traversal
through all solutions by iteratively exploring these neighborhoods.

Using an exponential-time approach to identify each neighboring solution or having
an exponential number of neighbors can lead to inefficiency. When a solution requires
exponentially many modifications to generate potential neighbors, the enumeration process
may take exponential time per solution, as there is no guarantee that any given modification

19:5

Grossi's Festschrift

19:6

Designing Output Sensitive Algorithms for Subgraph Enumeration

will yield a valid solution. This issue frequently arises in maximal solution enumeration:
iteratively removing and adding elements to obtain maximality can allow traversal between
solutions, but when the number of such modifications is exponential, the computational cost
per solution also becomes exponential. In such cases, reducing the number of neighbors or
employing pruning strategies to eliminate redundant computations can significantly improve
efficiency.

Even more complex scenarios involve problems where finding a single solution is NP-
complete, such as SAT or the Hamiltonian cycle problem. Despite this, heuristics often prove
effective, particularly when the problem is usually easy (as in SAT), the solutions are not
excessively large (as in maximal and minimal structure enumeration), and the size of the
solution space is bounded.

For small instance sizes, brute-force algorithms can be a viable approach. These methods
include using a divide-and-conquer strategy to generate candidate solutions and selecting
feasible ones, or iteratively constructing solutions while removing isomorphic duplicates.
Two fundamental brute-force algorithmic schemas are outlined in Algorithms 1 and 2. In
Algorithm 1, each solution is represented as an ordered sequence of values. By invoking
BRUTEFORCE(1,()), feasible values are recursively determined by extending the current solu-
tion, requiring only a check to determine whether X constitutes a valid solution. Conversely,
Algorithm 2 also attempts to extend the current solution but incorporates a check at each
step to determine whether the solution has been previously encountered, storing results in a
database D.

For both algorithms, it is crucial to establish a method for transforming a candidate
solution X into another candidate X’. Additionally, in both cases, performing an accurate
preliminary check to determine whether X belongs to any feasible solution set can prevent
unnecessary computations, thereby enhancing efficiency.

3 Classes of Efficiency

For many enumeration problems, the number of solutions is often exponential in the size
of the input instance, which inherently leads to enumeration algorithms requiring at least
exponential time. In other words, for enumeration algorithms, the worst case overall time,
which bounds the total time to end with a function depending on the input size, is often
exponential.

However, when the number of solutions is polynomially bounded, it is natural to seek
a polynomial-time algorithm. Hence, the most natural approach to enhance the analysis
of enumeration algorithms is to assess how the total computation time for generating all
solutions correlates with both the input size and the output size. Algorithms analyzed in
this manner are commonly referred to as output-sensitive, in contrast to input-sensitive
algorithms [32]. In this context, the complexity classes of enumeration problems defined in
this section are based on the number of solutions, ensuring that if the solution set is small,
an efficient algorithm terminates in polynomial time, while larger solution spaces permit
longer runtimes [37]. For more formal definitions, we refer the reader to the recent survey
in [60]. We adopt the same notation as [60], noting that the same notions have been referred
to by the literature with different names.

1 These types of bounds can be found by applying measure & conquer approaches [31], but a discussion
of these is outside the scope of this paper.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

We are interested only in problems whose number of solutions is finite and which are
polynomially balanced, i.e., the size of each solution is polynomial in the input size [60].

» Definition 1. EnumP is the class of problems whose solutions can be checked in polynomial
time.

The problems in EnumP can be seen as the task of listing the solutions (or witnesses) of NP
problems [60]. This is referred to as £LP in [56]. In this paper, we will only consider problems
in EnumP.

» Definition 2 (Output-polynomial time). An enumeration algorithm operates in output-
polynomial time if the time required to output all solutions is bounded by a polynomial in the
size of the input and the number of solutions.

This notion has been referred to as polynomial total time by Johnson, Yannakakis, and
Papadimitriou [37], and implicitly used before, for instance by Tarjan [63], and by Paull
and Unger [53]. As pointed out by Goldberg [34], we can ask for output-polynomial time
algorithms only if the decision problem is not NP-complete. More precisely, the listing version
of an NP-complete problem cannot admit an output-polynomial time unless P = NP. Indeed,
suppose that we have an output-polynomial time algorithm for the listing version running
within some polynomial time-bound. We can use this listing algorithm to answer whether
there is at least a solution, by waiting the time bound and checking whether there has been
output at least a solution or not.

When generating all solutions is impractical due to excessive runtime, it becomes important
to generate at least a subset of them efficiently. Therefore, we should evaluate and limit the
total time required to produce a specified number of solutions.

» Definition 3 (Incremental polynomial time). An algorithm is incremental polynomial time
if it generates the i distinct solutions in time polynomial in i and the input size.

» Definition 4 (Average polynomial time). A listing algorithm takes average polynomial time
if the time required to output all the solutions is bounded by O(n*a), where n is the input
size, k is a constant, « is the number of solutions.

In other words, if the average cost per solution is polynomial. This notion has been
previously referred by Valiant [71] using the name P-ENUMERABLE. It is worth remarking
that the average time per solution has been the subject of a lot of research, which focused on
constant amortized time. An algorithm has a constant amortized time (CAT) if its total
time divided by the number of solutions is constant (see the book [57]).

The following measure concerns the delay between consecutive solutions, i.e., bounding
not the average time between two consecutive solutions but the worst-case time bound
between them.

» Definition 5 (Polynomial Delay). An enumeration algorithm operates with polynomial delay
if it generates solutions sequentially, ensuring that the time before outputting the first solution,
the time between any two consecutive solutions, and the time between the last solution and
the end of the algorithm is bounded by a polynomial in the input size.

Also, it is worth remarking that a lot of research on enumeration algorithms has focused
on constant delay. Concerning this we mention the gray coding technique exposed in “The
Art of Computer Programming”, Volume 4 Fascicle 2A, by Knuth [43]. In this context, in
order to go from one solution to the next one in constant time, two consecutive solutions
must only differ by a fixed number of elements.

19:7

Grossi's Festschrift

19:8

Designing Output Sensitive Algorithms for Subgraph Enumeration

Algorithm 3 BACKTRACK(S). We denote as m(x) the index associated to an element
zeU.

Input: S C U a set (eventually empty)
Output: All the solutions containing S
1 output S
2 foreach e > max,cg m(z) do
3 if SU{e} is a solution then
4 L | BACKTRACK(S U {e})

It is worth noting that having a polynomial delay implies having an average polynomial
time. Having an average polynomial time implies having incremental polynomial time.
Having incremental polynomial time implies being output-polynomial. The converse of each
of these implications is not true.

4 Partition Techniques for Enumeration

In this section, we detail the first main enumeration technique. The partition technique
is a powerful approach for enumeration problems that systematically divides the solution
space into two or more disjoint subsets, ensuring complete coverage of all the solutions while
avoiding redundancy. In general, it is based on recursive decomposition, where the solution
space is divided into smaller, non-overlapping subsets, allowing each subset to be processed
independently. Moreover, each partition is distinct, ensuring that no solution is counted
multiple times.

This can be realized by using a backtracking strategy, where partial solutions are incre-
mentally constructed and extended until a complete solution is found or determined to be
infeasible. A typical backtracking enumeration algorithm follows these steps:

1. Start with an empty or partial solution S.
Extend the solution S by making a choice from available candidates cy, ..., ¢j for some k.
If the extended solution satisfies some constraints, recursively explore further.

If a valid complete solution is found, output it.

LA B

If constraints are violated or no further extensions are possible, backtrack by undoing the
last choice and exploring other possibilities.

From a partition perspective, in Item 2 the set of all the solutions extending S is
partitioned into the subsets of solutions extending S U {c1},...,SU{cx}. The constraints in
Item 3 help guarantee that such subsets do not overlap, i.e., the corresponding subproblems
do not contain the same solutions.

For the sake of explanation, we start by describing plain backtracking where the indexing
of the elements is used to get non-overlapping subproblems. In this case, we enlarge solutions
only guided by the candidates’ indexes. We then introduce backtracking with forbidden sets,
where while recurring, still trying to avoid duplication, we more carefully reduce the sets
of candidates, explicitly specifying to the recursive calls which candidates should not be
considered. We then introduce the flashlight method, which introduces suitable checks before
recurring, solving the so-called extension problem, in order to improve efficiency.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

4.1 Plain Backtracking

A set F C 2V (of subsets of U) satisfies downward closure if for any X € F and for any
X' C X, we have X’ € F'; in other words, for any X belonging to F' we have that any subset
of X also belongs to F. Given a set U and an oracle to decide whether X C U belongs
to F, an unknown set of 2V satisfying the downward closure, we consider the problem of
enumerating all (eventually maximal) elements of F. The backtracking technique is often
applied to problems of this type.

In this approach we start from an empty set, and the elements are recursively added to
a solution. The elements are usually indexed, so that in each iteration, in order to avoid
duplication, only an element whose index is greater than the one of the current maximum
element is added. After performing all examinations concerning one element, by backtracking,
all the other possibilities are explored. The basic schema of backtracking algorithms is
shown in Algorithm 3. Note that, whenever it is possible to apply this schema, we obtain
a polynomial delay algorithm whose space complexity is also polynomial. The technique
proposed relies on a depth-first search approach. However, it is worth observing that in
some cases of enumeration of families of subsets exhibiting the downward closure property,
arising in the mining of frequent patterns (e.g., mining of frequent itemsets), a breadth-first
approach can also be successfully used instead of depth-first backtracking. For instance, this
is the case of the Apriori algorithm for discovering frequent itemsets [62].

4.1.1 Enumeration of Subsets of Bounded Sum: Backtracking

Consider the problem of enumerating all the subsets of a collection U = {ay,...,a,} whose
sum is less than a certain threshold b. By using the backtracking schema, it is possible to
solve the problem as shown in Algorithm 4. Each iteration outputs a solution, and takes
O(n) time, so that we have O(n) time per solution. It is worth observing that if we sort the
elements of U, then each recursive call can generate a solution in O(1) time, yielding O(1)
time per solution.

4.2 Backtracking with Forbidden Set

In the previous section, namely Section 4.1, the elements’ indexing was helpful to get non-
overlapping subproblems, by enlarging solutions only guided by the candidates’ indexes. In
the case of backtracking with forbidden sets, while recurring we try to avoid duplication
by more carefully reducing the sets of candidates. We do so by explicitly specifying to the
recursive calls which candidates should not be considered, through a forbidden set. We
showcase this approach through an example, the Bron-Kerbosch algorithm for maximal clique
enumeration.

Algorithm 4 SUBSETSUM(S).

Input: S a set (eventually empty) of integers belonging to the collection
U={ai,...,a,}, a threshold b

Output: All the subsets of U containing S whose sum is less than b.

output S

Let m(x) be the index associated to an element x

foreach i > max,cs 7(z) do

L if a; + 3,52 < b then

13, T VI I

L SUBSETSUM(S U {a;})

19:9

Grossi's Festschrift

19:10

Designing Output Sensitive Algorithms for Subgraph Enumeration

4.2.1 Bron-Kerbosch Algorithm for Maximal Clique Enumeration

The Bron-Kerbosch algorithm is a recursive backtracking algorithm used to enumerate all
maximal cliques in an undirected graph. Given a graph G = (V, E), the algorithm maintains
three sets:

R: The current clique being constructed.

P: The set of potential candidates that can be added to R, meaning that all the vertices

in P are connected to all the vertices in R.

X: The set of already processed vertices to avoid redundant solutions.

A recursive call aims to produce all the maximal cliques containing R, some vertices in P,
and no vertices in X. Hence, we partition the set of maximal cliques satisfying this property
by analysing all the possible candidates in P. When considering a candidate v € P, v is
added to the partial solution R, while P and X are reduced to include only neighbors of v.

We output solutions only if P and X are empty. If indeed P contains some element, it
means we can still do further recursion to enlarge R, as R is not maximal. If X is non-empty,
it also means that R is not maximal, as to be maximal, it should include elements of X.
Whenever P = () and X # 0, no further addition is possible to R, but the clique is still
not maximal, and the algorithm thus backtracks without performing any output. This is
typically called a dead-end, and the presence of such events is the main reason why this
algorithm is not output-sensitive.

Algorithm 5 Bron-Kerbosch Algorithm.

Input: Graph G = (V, E), sets R, P, X C V, where all vertices in P are connected to
all the vertices in R.

Output: All maximal cliques containing R, some vertices in P, no vertices in X

if P=0 and X = () then
‘ Output R as a maximal clique
end
else
foreach v € P do
BRON-KERBOSCH(R U {v}, PN N(v), X N N(v))
P+ P\ {v}
X+ X U{v}
end

© o N 6 A W N =

end

o
(=)

The algorithm recursively explores the search space, ensuring that each maximal clique is
output exactly once. The basic Bron-Kerbosch algorithm (Algorithm 5) recursively builds
cliques and removes processed vertices to avoid duplicates. A more efficient version of the
algorithm introduces a pivoting strategy [66]. Choosing a pivot vertex u from P U X helps
reduce the number of recursive calls by limiting the number of candidates that need to be
processed. To obtain this algorithm it is sufficient to replace line 5 with the following two
lines: “Choose a pivot vertex u from P U X” and “for each v € P\ N(u) do”. The idea of
this pivoting strategy is to avoid iterating at each expansion on the P set. The results will
have to contain either the pivot or one of its non-neighbors, since if none of the non-neighbors
of the pivot is included, then we can add the pivot itself to the result. Hence we can avoid
iterating on the neighbors of the pivot at this step.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

An alternative approach to enhancing the basic Bron—Kerbosch algorithm involves omit-
ting pivoting at the outermost recursion level and instead carefully selecting the order of
recursive calls to minimize the size of the candidate vertex set P within each call [28]. The
degeneracy of a graph G is defined as the smallest integer d such that every subgraph of G
contains at least one vertex with a degree of at most d. Every graph admits a degeneracy
ordering, where each vertex has at most d later neighbors in the sequence. This ordering can
be computed in linear time by repeatedly removing the vertex with the smallest degree among
the remaining ones. By processing the vertices in the Bron—Kerbosch algorithm according to
a degeneracy ordering, the candidate set P (i.e., the neighbors of the current vertex that
appear later in the ordering) is guaranteed to have at most d elements. Conversely, the
exclusion set X, which consists of previously processed neighbors, may be significantly larger.
Although pivoting is omitted at the outermost recursion level, it can still be employed in
deeper recursive calls to further optimize performance.

Time Bounds

The Bron—Kerbosch algorithm is not output-sensitive — unlike some other algorithms for the
same task (as shown later), it does not run in polynomial time per maximal clique generated.
However, it remains efficient in the worst-case sense. By a result by Moon and Moser (1965),
any n-vertex graph has at most 3"/% maximal cliques [52]. When using a pivot strategy
that minimizes recursive calls, the Bron-Kerbosch algorithm runs in O(3"/3), matching
this bound [66]. For sparse graphs, tighter bounds apply. Specifically, the degeneracy-
ordering variant of the algorithm runs in O(dnSd/ 3). Some d-degenerate graphs contain up
to (n — d)3%/3 maximal cliques, making this bound nearly tight [28].

4.3 Flashlight Search

In the following, for the sake of simplicity, we use the binary partition approach, which is a
backtracking strategy where each recursive node has at most two children as explained next,
in order to easily introduce a more refined backtracking strategy, called flashlight. The idea
can be easily extended to the case where recursive nodes have more than two children.

Let X be a subset of F, the set of solutions, such that all elements of X satisfy a
property P. The binary partition method outputs X only if the set is a singleton, otherwise,
it partitions X into two sets X; and X5, whose solutions are characterized by the disjoint
properties P; and P, respectively. This procedure is repeated until the current set of
solutions is a singleton. The bipartition schema can be successfully applied to the problem of
enumeration of paths of a graph connecting two vertices s and ¢ (as we will see in this section),
of the perfect matchings of a bipartite graph [68], of the spanning trees of a graph [59]. The
flashlight method relies on checking whether there is at least a solution before recurring,
i.e., checking whether there is at least a solution in X; (resp. Xs2) satisfying Py (resp. P»).
This is usually called an extension problem, as we are checking while enlarging a partial
solution whether this can be extended/completed to a final solution. This check is crucial
for efficiency as if every partition is non-empty, i.e., all the internal nodes of the recursion
tree are binary, then the number of internal nodes is bounded by the number of leaves. In
addition, if we have that solving the extension problem takes polynomial time, since every
leaf outputs a solution, we have that the resulting algorithm is output-polynomial. On the
other hand, even if there are empty partitions, i.e., internal unary nodes in the recursion tree,
if the height of tree is bounded by a polynomial in the size of the input and the partition
oracle takes polynomial time, then the resulting algorithm is polynomial delay.

We will discuss more about extension problems in Section 4.5.

19:11

Grossi's Festschrift

19:12

Designing Output Sensitive Algorithms for Subgraph Enumeration

4.3.1 Enumerating all st-paths in a graph

We showcase the flashlight strategy through a binary partition algorithm for the problem of
st-path enumeration in an undirected graph G = (V, E). The partition schema chooses an
arc e = (s,r) incident to s, and partitions the set of all the st-paths into the ones including
e and the ones not including e. The st-paths including e are obtained by removing all the
arcs incident to s, and enumerating the rt-paths in this new graph, denoted by G \ s. The
st-paths not including e are obtained by removing e and enumerating the st-paths in the new
graph, denoted by G\ e. The corresponding pseudocode is shown by Algorithm 6. It is worth
observing that if the arc e is badly chosen, a subproblem could not generate any solution;
in particular, the set of the rt-paths in the graph G\ s is empty if ¢ is not reachable from
r, while the set of the st-paths in G\ e is empty if ¢ is not reachable from s. Thus, before
performing the recursive call to the subproblems it could be useful to test the validity of e, by
testing the reachability of ¢ in these modified graphs. This will be our “flashlight” indicating
which partitions lead to at least one solution. Note that the height of the corresponding
recursion tree is bounded by O(|E|), since at every level the size of the graph is reduced by
at least one arc. The cost per iteration amounts to the reachability test, so O(|E|) time.
Therefore, the algorithm has O(|E|?) delay.

This problem has been studied in [55,63,65], and in [38], guaranteeing a linear delay.
In [5], the latter algorithm has been modified in order to enumerate bubbles. In the particular
case of undirected graphs, in Section 4.3.2 we will show an algorithm based on this bipartition
approach having an output sensitive amortized complexity, as shown in [6]. In the particular
case of shortest paths, the enumeration problem has been studied in [27]. It is worth observing
that the problem of enumerating all the st-paths in a graph is equivalent to the problem of
enumerating all the cycles passing through a vertex.

Algorithm 6 PATHS(G, s,t,5).

Input: A graph G, the vertices s and ¢, a sequence of vertices S (potentially empty)
Output: All the paths from s to ¢ in G

1 if s =1t then
L output §

return
4 choose an arc e = (s,7)
5 if there is a (r,t)-path in G \ s then
6 L PATHS(G \ s,7,t,5 - 1)
7 if there is a (s,t)-path in G\ e then
| Patns(G\ e, s,t,5)

®

4.3.2 Improving st-paths Enumeration: Dynamic Certificate

We can improve the st-path enumeration algorithm proposed in the previous section to achieve
optimal complexity, by using a dynamic certificate based on the biconnected components of
the graph [6]. Let Ps;(G) denote the set of st-paths in G and, for an st-path m € Ps:(G), let
|| be the number of it edges. We note that the problem of st-path enumeration necessarily
requires Q(3_ ¢ p_, () |7]) time to just list the output. The algorithm we present here is
then optimal, as it lists all the st-paths of G in O(m + - cp , () I7|) time, where m is the
number of edges of the input graph.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

BCCs and Bead Strings

Recall that the biconnected components (BCCs) of G are the inclusion-maximal biconnected
subgraphs of G. A BCC is called non-trivial if it is made up of at least three nodes. It is
known that the BCCs of a connected graph form a tree:

» Definition 6. Let G be a connected graph, and consider the following graph: add a vertex
for each BCC of G, and a vertex for each articulation point of G. Then, add an edge between
an articulation point a and a BCC B if and only if a € B. The resulting graph Bg is a tree,
called the block-cut tree, or BC-tree, of G.

The vertices of the BC-tree that correspond to BCCs are called graph-vertices, while the
ones that correspond to articulation points are called node-vertices. By construction, the
tree alternates levels of node-vertices to levels of graph-vertices. We observe that, given any
two nodes z,y of G, there is a unique corresponding shortest path in the BC-tree, which we
call the bead string from = to y, and we denote with B, ,. If the path is trivial, then x and y
belong to the same BCC. Otherwise, the two endpoints of B, , are distinct BCCs: one of
them contains z, and the other y. Given B, ,, we define its head H, as the first biconnected
component along the bead string (in other words, the component of B, , that contains x).

In the following, we give a characterization of how st-paths behave with respect to the
BCCs of G. Consider the bead string B, ; in the BC-tree of G: its extremities By = Hy, By
(possibly equal) must contain s and ¢, respectively. Keeping this notation in mind, we can
restate the following result by Birmelé et al.:

» Lemma 7 (Lemma 3.2 from [6]). All the st-paths in Ps(G) are contained in the subgraph
of G corresponding to B, . Moreover, all the articulation points in Bs; are traversed by each
of these paths.

Thus, when looking for st-paths, we are actually only concerned with the subgraph of G
formed by the BCCs along the bead string B, ; from B to B; in the BC-tree.

Validity Check with Bead Strings

Our aim is to improve the partition schema introduced in the previous section, by employing
the structure and properties of the bead strings to perform an efficient validity test for the
edge e that is chosen at partition time (line 4 of Algorithm 6). More specifically, let G, s, ¢
be the instance at the current iteration; we wish to avoid choosing e = (s,r) such that ¢ is
not reachable from r in G\ s (that is, P, (G \ s) = (), and not reachable from s in G \ e

(Ps(G\ e) = 0). Indeed, for such a bad choice both partition subproblems yield no solution.

In the previous section, we checked both of these conditions by performing a linear time
reachability test at each iteration. We can avoid this computation by retaining a dynamic
certificate based on the bead strings.

Indeed, by Lemma 7 we can immediately see that edges e = (s,r) with » ¢ H, are
bad choices, leading to no solutions in their subproblems. On the other hand, any choice
with r € H, will lead to at least a solution, since by definition of the bead string, each

e = (s,r) € Hy is such that P, ;(G \ s) # 0. We call this branch of the partition the left child.

Furthermore, if the head Hy is non-trivial (that is, s has at least two neighbors), then there
is also always a solution in G \ e. Indeed, since H; is biconnected, there are always at least
two st-paths in the bead string. Thus, there is always an st-path that traverses e (which
is the left child from before), and one that does not (which we call the right child): thus
Psi(G\ e) # 0.

19:13

Grossi's Festschrift

19:14

Designing Output Sensitive Algorithms for Subgraph Enumeration

The downside of the bead string approach is that maintaining this information can be
costly if done naively: computing the bead string at each step would require linear time in
the worst case, giving us no advantage with respect to the previous algorithm. It is for this
reason that the notion of certificate is introduced. By employing such certificates, coupled
with an amortized analysis based on the fact that only the BCCs of the head Hy need to
be updated at each step, the authors of [6] were able to provide the optimal amortized
complexity.

Certificate

The certificate C is a compacted and augmented DFS tree of B ; rooted at s, which changes
over time along with the corresponding bead string. Edges of the bead string are classified
according to the tree as either tree edges (the ones belonging to the DFS tree), or back edges?,
and this information is used by the certificate for making certain choices. The certificate is
able to perform the following operations:

1. cHOOSE(C, s): returns an edge e = (s,r) with r € H (leading to the left child). As
mentioned before, there always exists one such edge. This function chooses r as the last
such neighbor of s in DFS postorder. This will ensure that, the (only) tree edge leaving s
is returned last.

2. LEFT_UPDATE(C, e): given e = (s,r), it computes B, in G \ s from B, in G. This
also updates Hs and C, and returns bookkeeping information I so that everything can
be reverted to the status before this operation when exiting the recursive call.

3. RIGHT UPDATE(C,e): given e = (s,r), it computes B;; in graph G \ e from B, in
G. As before, it updates H; and C, and returns bookkeeping information I like LEFT
UPDATE(C, e).

4. RESTORE(C, I): reverts all information (bead string, head, certificate) to their status
before the corresponding operation I (left or right update).

With these notions, we can rewrite the pseudocode for st-path enumeration as in
PATHS__CERTIFICATE (Algorithm 7). Note that, since the tree edge incident to s is the last
one to be returned by CHOOSE(C, s), then all remaining st-paths must traverse this edge,
and the recursive call at line 7 would yield no solutions. Therefore, the check at line 5 is the
only necessary one to ensure that all recursive calls produce solutions.

With a careful implementation and amortized analysis, it can be shown that a certificate
to retain bead strings using DFS tree information achieves optimal O(m + - cp () [7])
time for the enumeration of st-paths of an input graph with m edges.

4.4 Assessment of st-paths

The same BCC structure highlighed in the previous section can also be used to perform the
assessment task for st-paths.

In an assessment problem, we are asked to determine whether the number of solutions
exceeds a given input threshold z. Assessment algorithms are positioned between counting
and enumeration: their performance is akin to counting (the output is only related to the
number of solutions, with no listing required), while their structure is often similar to a
truncated enumeration procedure. Not only can assessment be helpful in applications where
we only need to guarantee a certain amount of solutions, and thus full counting is redundant

2 Note that there are no cross edges, as the graph is undirected.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

Algorithm 7 PATHS_ CERTIFICATE(G, s, t,.S).

Input: A graph G, the vertices s and ¢, a sequence of vertices S (potentially empty)
Output: All the paths from s to t in G
1 if s =1¢ then

2 output S

3 return

4 e = CHOOSE(C, s); let e = (s,7)

5 if e is back edge then

6 I = RIGHT UPDATE(C, ¢)

7 PATHS__CERTIFICATE(G \ e, s, t,.5)
8 RESTORE(C, I)

9 I = LEFT__UPDATE(C, e)
10 PATHS CERTIFICATE(G \ s,7,t,5 - r)
11 RESTORE(C, I)

(e.g., z-reverse safe data structures [4,17]), but it can be even more useful for devising efficient
algorithms for #P-complete counting problems. Such problems have no polynomial-time
counting algorithm unless P= NP [71], but they can still have assessment algorithms running
in time polynomial in the input size and the value of the threshold z. An example of this
is the problem of counting the number of st-paths in an undirected graph [72], which will
be the topic of this section. For this problem, an assessment algorithm running in O(|E|z)
time and O(|E||V|) space was proposed in [54]. This algorithm decomposes and arranges
the st-paths in a tree-like structure (based on the BCCs), which is in turn used to maintain
and update a combinatorial lower bound.

We start again from Lemma 7, further noting that the paths inside each of the components
of Bs; can be combined independently, thus obtaining:

» Corollary 8 (Corollary 2.1 of [54]). Let Bs; = BsagBiai1Bs--- BrapB: be the path in
Bg between By and By, where ag, ..., ar are node-vertices, and By, ..., By are graph-vertices.
Then:

k
Ps,t(G) = Ps,a0(Bs) x <H Paihai(Bi)) X Pay,t(Bt). (1)

4.4.1 Main ldea: Expanding a Structural Lower Bound

Assume that we are given a structural lower bounding function L, .(-): that is, for any
biconnected graph G with s,t € V(G), we have L, :(G) < |Ps+(G)|. Then, if we take

k
IbP = Ly 4, (Bs) x (H La, ,.a (Bi)> X La, +(By), (2)
=1

we obtain that, by Corollary 8, [bP is a lower bound on the total number of st-paths. At

this point, if IbP > z, we can output Y ES. Otherwise, we need some way to expand (1).

We can do so by exploiting the following disjoint union:

Ps,t (G) - U S - Pu,t(G \ 5)) (3)

u€ENpB, ()

19:15

Grossi's Festschrift

19:16

Designing Output Sensitive Algorithms for Subgraph Enumeration

where Np_(s) = {u € By | (s,u) € E} is the set of neighbors of node s inside B,. Note that
this can be seen as exploring the binary partition tree of the previous section in a different
way: given a current source s, we only consider what we called its “left children”, and we
explore all of them at the same step (by considering all the neighbors of s that lead to t).
Note that this leads us to conceptually create “new sources” whose disjoint union covers all
paths from the original source, as we now focus on ut-paths for each u neighbor of s.

The latter formula, when the lower bound is applied, is translated to

L,+(G) = Z Lyt (G\ s).

u€ENpB,(s)

We can plug this lower bound expansion in (2), improving the total bound lbP:
k
IbP = Ly q, (BS) X (H La'ihai(Bi)) X Lak,t(Bt) =
i=1

k
Z Luﬂo(BS \ S) X (H Lai—hai (Bl)> X Lak,t(Bt)'

u€ENp, (s)

This refinement can be recursively applied again and again, by taking the reduced graph
B; \ s, recomputing its bead string, and applying Corollary 8 to the new bead string. In
this way, we can proceed until either [bP reaches z, or when we have effectively counted all
st-paths, and their total number does not reach z: here we can safely output NO.
To be employed in such a procedure, we need a structural lower bounding function,
meaning that it must satisfy the following:
1. Given a biconnected graph G’ and two nodes s',t' € V(G'), we have 1 < Ly ¢(G’) <
st’t/ (G’)
2. If G’ is trivial (size 2), then Ly ¢ (G') = 1.
In [54], the authors prove that the function C(G) := |E| — |V/| + 2 satisfies such properties,
and they employ it in the subsequent implementation.

Multi Source Tree Data Structure

To efficiently retain the information concerning the nested lower bounds, the authors use a
tree structure called the Multi Source Tree Data Structure (MSTDS). Such a tree has one
node for each of the BCCs currently contributing to the global lower bound (0P (that is, the
ones appearing in the formula expanded so far).

The starting tree will consist of a path, given by the bead string By ; of the original
graph G. The root of the tree is the BCC B, containing ¢, and there is one leaf for each
BCC containing a current source (that is, a node u that was expanded as per (3)). Each
root-to-leaf path is a bead string for one of the current sources, and their disjoint union
covers all st-paths of the original graph. We note that, since we start from B, ;, the structure
obtained by repeatedly expanding the BCC corresponding to a source will always be a tree.

Given the tree at a current step, the global bound [bP can be computed as the sum, over
all root-to-leaf paths, of the product of the components along each path.

3 Some care must be taken to avoid repetition of BCCs, as the same node can become source multiple
times, but it can be easily handled by keeping multiplicities for each current source.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

4.4.2 The Assessment Algorithm

The assessment algorithm can now follow quite immediately: start from a single bead string,
and the MSTDS 7T given by the corresponding path. At each step, choose a leaf B, of T
with source u, and expand it as per (3). Recompute the BCCs of By, \ u, and add them in
T as a subtree in place of B,. Then, update the total lower bound [bP accordingly. By
keeping some information in the MSTDS nodes concerning the lower bounds of the paths,
such bound update can be performed in O(1) time.

The lower bound [bP is improved by at least one every time a source with at least two
neighbors is considered. We can find a source with this property in at most linear time (we
traverse its unique neighbor, and thus trivial BCC, for at most |V| steps). Once we find
such a source, and we expand the lower bound following (3), we need O(|E|) time to update
the BCCs after the source removal. Thus, we spend linear time per non-trivial step where
we update [bP. Since we stop when the lower bound reaches z, we do no more than z such
steps, leading to a time complexity of O(|E|z).

4.5 More about the Extension Problem

In Section 4.3, we introduced the so-called extension problem, which consists of determining
whether a partial solution can be extended into a complete one. We have seen that this check
is fundamental for the flashlight method, which ensures polynomial delay by verifying the
existence of at least one solution before making a recursive call. This mechanism effectively
avoids dead-ends, such as those encountered in the Bron-Kerbosch algorithm when listing
maximal cliques (see Section 4.2.1).

Since these dead-ends prevent the Bron-Kerbosch algorithm from being output-sensitive,
one might consider defining an extension problem to guide its recursion. Specifically, in
Algorithm 5, before making the recursive call at line 6, it would be desirable to check whether
there exists a maximal clique containing RU{v}, using some vertices from PN N (v) and none
from X N N(v). However, this problem has been proven to be NP-complete [22], implying
that such a check would make each recursive step intractable unless P = NP. Consequently,
the Bron-Kerbosch algorithm has exponential delay, even when different pivoting strategies
are considered [22].

It is important to note that the hardness of the extension problem for maximal cliques
is not an isolated case [9]. In fact, Brosse et al. have shown that the extension problem is
NP-complete for every “interesting” hereditary property. Notable examples include maximal
k-degenerate induced subgraphs of a chordal graph [21] and maximal Steiner subgraphs [16],
the latter of which remains hard even for just three terminals.

Furthermore, it is worth emphasizing that the hardness of the extension problem does
not preclude the existence of output-sensitive algorithms. In some cases, two possible
approaches can be considered. First, we may focus on restricted versions of the extension
problem; for instance, in the case of maximal Steiner subgraphs with three terminals, if the
partial solution is already connected, the extension problem becomes polynomial. Second,
alternative techniques can be employed, such as reverse search for maximal clique enumeration,
as discussed later.

19:17

Grossi's Festschrift

19:18

Designing Output Sensitive Algorithms for Subgraph Enumeration

5 Solution Graph Techniques for Enumeration

In Section 4, we introduced partition-type enumeration algorithms. This type of algorithm
simply explores a solution space by dividing it into smaller subspaces. However, when
enumerating only maximal or minimal solutions, this approach usually faces hard subproblems,
like extension problems. Hence, we need to study the “structure” of the solution space to
obtain an efficient enumeration algorithm.

In this section, we present another approach, called the solution graph technique. Intuit-
ively, algorithms based on this technique traverse a graph, called the solution graph, defined
on the set of solutions. The vertex set of the solution graph is the set of solutions. The main
difficulty of this technique concerns how to define a good edge set for the solution graph, that
is, how to define the neighbourhood of each solution. Fortunately, we have several standard
strategies to do so. In the following, we will introduce some popular techniques such as the
reverse search method, the input restricted problem method, and proximity search.

5.1 Reverse Search

The reverse search method [3] is one of the most common ways to define a solution graph G.
When we enumerate all the solutions from G, we perform a depth-first search on G. However,
if G is disconnected, then we need to enumerate all connected components in G. Moreover,
if G is cyclic, then we may need an exponential-size stack to avoid outputting duplicate
solutions. Hence, to achieve space-efficient enumeration, it is desirable for G to be connected
and acyclic, that is, G forms a tree.

A solution graph defined by the reverse search method is called the family tree. As its
name suggests, the family tree is connected and acyclic. To define the tree, it is important to
define the “root” and a good “parent rule” in the tree. When we traverse the tree, performing
enumeration, we will start from the root and go downwards, traversing the tree edges in
reverse direction from parents to children (hence, the name reverse search). Therefore, for
obtaining an efficient algorithm we also need to provide an efficient procedure for finding
all the “children” of each solution. In the following subsections, we will give two examples
of constructing a family tree for enumeration problems. We will start by re-considering
the problem of enumerating all subsets of bounded sum (as seen in Section 4.1.1) with this
new approach. Then, we will move to a more involved example concerning maximal clique
enumeration, finally achieving output-sensitive time complexity for this problem, contrarily
to the previous algorithm of Section 4.2.1.

5.1.1 Enumeration of Subsets of Bounded Sum: Reverse Search

In Section 4.1.1, we gave an enumeration algorithm based on a partition approach (Al-
gorithm 4). Interestingly, this algorithm can be interpreted as a reverse search-based
algorithm. Let SOL(U) be the set of solutions on U. The root of the family tree is the
empty set. Let S be a non-root solution S = {sf1,...,5fux)} € U with cardinality k. Here,
fAL,... k} = {1,...,n} is an injection such that f(i) < f(j) for each ¢ < j. Then, we
can define the parent Par(S) of S as the set obtained by removing the element with largest
index in S: that is, Par(S) = {s¢1),...,S¢®k—1)}- Note that Par(S) is clearly in SorL(U).
Now, we define the family tree F(U) as follows:

F(U) = (Sor(U),E(U)), (4)

where £(U) = {(Par(S),S) | S #0}.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

We first show that the family tree is connected and acyclic. A typical approach to show
this is to use a function ¢ : SOL(U) — R such that
1. For the root R, g(R) has the minimum value among the solutions, and
2. For any non-root solutions S, S’ = Par(S), we have g(5) > g(5").
Here, a candidate such function is the cardinality of a solution. By using such a g, we can
then easily obtain the following lemma:

» Lemma 9. For any solution S € SoL(U), there is a path from S to O in F(U). Moreover,
F(U) is acyclic.

Proof. For any non-root solution S, |S| > |Par(S)|. Hence, by recursively obtaining the
parent of S, we can find the empty set, that is, the root. Thus, there is a path from S to
the root. Moreover, if there is a cycle in F(U), then there must be an edge (S, 5’) in F(U)
such that | S| > |S’|. However, this contradicts that S is the parent of S’. Thus, the lemma
holds. <

Next, we show the definition of the children. Suppose that for an element x € U, 1DX(x)
is the index of = in U. Then, we define the children of S is as follows:

Ch(S) = {s U {u}

IDX (u) > max IDX(z) and w + gsx < b} (5)

This definition is reasonable by the following lemma:
» Lemma 10. For any solution S, Ch(S) = {S" | Par(S’) = S}.

Proof. Let S and S’ be any pair of solutions. Then, first we show that if Par(S’) = S then
S’ € Ch(S). Since S’ is a child of S, for some u € U, S’ = S U {u}. Moreover, u has the

maximum index in S’. Thus, from the definition of the parent relationship, the lemma holds.

Next, we show the other direction. Assume that S’ € Ch(S). Then, from the definition
of Ch(-), S’ contains an element u that has a larger index than any element in S. Thus,
from the definition of the parent, Par(S’) = S. <

From the above discussion, we can give another proof for the existence of an enumeration
algorithm for this problem with O(1) time per solution, given by the traversal of this family
tree.

5.1.2 Maximal Clique Enumeration via Reverse Search

Next, we give a (slightly) more complicated example. Recall that a clique of a graph
G = (V, E) is a vertex subset C' of the graph such that for any pair of vertices in C, there is

an edge in G. Moreover, a clique C' is mazimal if there is no clique C’ such that C' C C’.
Several enumeration algorithms for maximal cliques can be found in the literature (2,40, 50].
In this section, we explain the algorithm based on reverse search by Makino and Uno [50].

As in the previous section, we need to define the root and the parent-child relation of the
family tree.

First, we define the root of the family tree. Suppose that V = {v1,...,v,} is a totally
ordered set such that for any ¢ < j, v; < v;. For two maximal cliques C;, Cy, we say that C;
is lexicographically smaller than Cs if the vertex with minimum index in (C; \ C2) U (Ca\ C4)
belongs to C4, and write C; < C5. Then, let Ky be the maximal clique such that it is the
lexicographically smallest among all the maximal cliques in G. We say a maximal clique is
the root if the clique is equal to Kj.

19:19

Grossi's Festschrift

19:20

Designing Output Sensitive Algorithms for Subgraph Enumeration

Next, we define the parent of a clique K # K. For an integer ¢, let K<; = KN{v; | j < i},
and let C(K<;) be the lexicographically smallest maximal clique containing K<,. Note that
C(K<;) may be equal to K.

Thus, we define the parent index i of a maximal clique K as the maximum index such
that C'(K<;—1) # K. Consequently we define the parent Par(K) of K as C(K<;—_1), where
1 is the parent index of K.

Clearly, Par(K) < K holds, and there can be no cycles. It also follows that every
maximal clique will have a parent index, and thus a parent, other than Ky = C(()). Thus,
the parent-child relationship derives a tree structure rooted at K.

Computing the parent of a maximal clique is easy. However, obtaining all the children of
a clique K is not obvious. The crucial observation for child enumeration is the following: Let
K’ be a child of K; then, for any j larger than or equal to the parent index, C(KZ;) = K'.
Hence, children can be found by removing from K a vertex v and vertices having larger
indices than v, then adding a vertex u (possibly u = v) to the remaining of K, and greedily
adding vertices to obtain a maximal clique. By this construction, u is the vertex with the
parent index in the resultant clique. In the following, we give more details. Given a maximal
clique K and an index i, let

Kli] = C((K<i N N(vi)) U {vi}).

Ki] can be interpreted as follows: we first pick the vertices adjacent to v; in K, and then
greedily add vertices to K. Therefore, the following lemma holds.

» Lemma 11 ([50, Lemma 2]). Let K and K’ be mazimal cliques in G. Then K' is a child
of K if and only if K' = K[i] hold for some i such that

1. v, ¢ K

2. i is larger than the parent index of K

3. Klil<i—1 = K<; N N(v;)

4. K<; = C(K<;NN(v:))<i

Moreover, if an index i satisfies the above four conditions, then i is the parent index of KJi].

From the above lemma, we can obtain the children of K in polynomial time, yielding a
polynomial delay enumeration algorithm for maximal cliques.

5.2 Input-restricted Problem

While reverse search is a powerful tool, one of its drawbacks is the complexity involved in
defining a working “parent-child” relationship. However, there actually exists a simple and
general way to obtain a solution graph for a large class of problems, which in some cases
immediately yields efficient enumeration algorithms for maximal solutions. This method is
typically referred to as the Input-Restricted Problem, or hereafter IRP.

5.2.1 Designing the algorithm

The key intuition can be already found in Lawler et al. [49], generalizing algorithms by Paull
and Unger [53] and by Tsukiyama et al. [67]. The idea given is the following: given a maximal
solution S of a given enumeration problem and some element = ¢ S, the hardness of listing
solutions maximal within S'U {z} is linked to the hardness of listing maximal solutions of
the general problem.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

This has been then formalized as the Input-Restricted problem by Cohen et al. [15], who
also restrict their attention to the enumeration of maximal solutions in graphs (although
the technique can potentially be applied to any enumeration problem where solutions are
maximal sets of elements). Formally:

» Definition 12 (Input-Restricted Problem). Let G = (V, E) be a graph and P a property (such
as being a clique, or a path). Let S CV be a mazximal solution, i.e., an inclusion-mazimal
set of nodes respecting P, and v any node in V' \ S.

The Input-Restricted Problem IRP(S,v) asks to enumerate all mazimal solutions of P
in the induced subgraph G[S U {v}].*

Intuitively, we can use a maximal solution X of G[S U {v}] to generate a new maximal
solution X’ of G. Whenever this happens, we say there is an edge from S to X’ in the
solution graph (optionally labelled with v). Another significant upside of the technique is
that X’ can be any arbitrary solution that includes X. Observe that S itself is always a
maximal solution of IRP(S,v), but we typically avoid returning it as it would only add a
futile edge from S to S.

The catch is the following: this technique assumes that the property P at hand is
hereditary, i.e., if S is a solution, then any subset of S must itself be a solution. Even if many
properties respect this condition (e.g., cliques and most of their relaxations, independent
sets, forests), not all properties do, and the IRP technique may not be the most suitable for
the latter (e.g., cycles and spanning trees).

If the property P is hereditary, then we can easily define a simple maximalization
procedure COMPLETE (X), which iteratively adds an arbitrary element of V' \ X to X until it
is no longer possible to do so without breaking P. With this, we have all the elements for
building an enumeration algorithm, which is a DFS-like traversal of the solution graph (see
Algorithm 8).

Algorithm 8 Enumeration via the Input-Restricted Problem [15].

Input: A graph G = (V| E), a property P
Output: All the maximal subgraphs of G respecting P.
1 Let S < COMPLETE(D) // An arbitrary solution
REC(S)
Function REc(S):
output S
foreach v € (V'\ S) do
foreach X € rP(S,v) do
X' + COMPLETE(X)
L if X’ was not already found then REC(X’)

o 9 O oA WN

Function IrRP(S,v): // Input-Restricted Problem
10 foreach Mazximal solution X of P in G[S U {v}] do
11 L yield X

©

4 The definition is identical for problems where solutions are sets of edges, simply requiring S to be a set
of edges and v to be an edge.

19:21

Grossi's Festschrift

19:22

Designing Output Sensitive Algorithms for Subgraph Enumeration

The main advantage of the technique is now clear: if we simply plug in a solver for the
input-restricted problem IRP(S,v), the algorithm will enumerate all maximal solutions to
the general problem.

The completeness of this algorithm for hereditary properties relies on the idea that the
solution graph generated with the IRP is strongly connected, thus a traversal from any
starting point will visit every solution. Proving this is actually quite simple. It relies on
showing that if you start at S and want to reach T', there is always a v € T" and a solution
X of IRP(S,v), such that X has a larger intersection with 7" than S had: applying this
repeatedly must inevitably yield T in a finite amount of steps. More detailed proofs can be
found in [15].

Let us then discuss the drawbacks of this approach, and how some of them can be solved.

Firstly, checking that “X’ was not already found” is necessary to avoid duplication, but
it is no trivial task. A way to do this is to store every solution found so far in a dictionary,
and use it to check whether X’ is new. This is efficient time-wise (a trie or a block tree
can answer the query in linear time), but as there can be exponentially many solutions, it
makes the space usage exponential. However, Cohen et al. [15] show that, for hereditary
properties, we can avoid a dictionary and induce a tree-like structure based on solving the
problem incrementally. Essentially, they use the solutions of G[{v1,...,v;—1}] to generate
those of G[{v1, ..., v;}], much like Tsukiyama et al. [67], in a DFS-like fashion. This alternative
algorithm has the advantage of reducing space usage, but does not operate anymore on the
solution graph, as the actual maximal solutions of G correspond only to the leaves of this
tree-like structure.

It is thus worth noting that Algorithm 8 has a striking similarity to reverse search, and
indeed it is also possible to achieve polynomial space by inducing a parent-child relationship,
identifying a parent and a parent index for X’ in the same way as Section 5.1, and turning
the condition in Line 8 to “if the parent of X’ is S, and the parent index is v”. In this light,
the Input-Restricted Problem becomes a powerful and general tool for building reverse search
algorithms.

5.2.2 Supported classes of properties

As discussed above, the Input-Restricted Problem is easy to deal with if the property P
at hand is hereditary (i.e., subsets of solutions are solutions). However, Cohen et al. [15]
generalizes the proof of correctness of Algorithm 8 to the more general class of connected-
hereditary graph properties, i.e., properties for which any connected subgraph of a solution is
itself a solution.

To give an example, induced forests are a hereditary property: if a set of nodes S induces a
forest, any subset of .S induces a forest. A connected-hereditary property are instead induced
trees: if S induces a tree, a subset of S induces a forest, but a subset of S that induces a
connected subgraph will induce a tree. Inducing a parent-child relationship in this class is
more challenging, and Cohen et al. [15] rely on a solution dictionary for avoiding duplication.
However, Conte et al. [20] proposes a general technique that allows the definition of a
parent-child relationship within the structure of Algorithm 8 even for connected-hereditary
properties,® thus allowing enumeration in polynomial space.

5 Technically the class is the more general set of “strongly accessible and commutable” properties, whose
definition can be found in [20], although most naturally defined properties in the class will typically fall
inside connected-hereditary.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

Finally, note that properties like induced cycles are neither hereditary nor connected-
hereditary, as a subset of a cycle will never be a cycle; properties of this kind cannot be
solved directly by Algorithm 8.

5.2.3 Complexity of the Algorithm and the IRP

The final piece of the puzzle is the Input-Restricted Problem itself.

It is relatively easy to see that, in Algorithm 8, the complexity of the IRP(S,v) essentially
corresponds to the amount of work done per solution: every time a new solution is found, we
perform IRP(S,v) up to |V] times (for each different v), and for each solutions returned we
just need to apply COMPLETE(). This means that the cost-per-solution of the algorithm is
just a polynomial multiplied by the cost of the IRPS. While intuitively a simpler task, the
IRP it does not always allow efficient resolution: the number of maximal solutions within
the IRP can greatly vary from problem to problem, leading to different complexities.

One of the simpler cases are maximal cliques. Given a maximal clique S and a node v,
G[S U {v}] has just two maximal cliques:

S itself (v cannot be added to it, as S was already maximal in G)

{v}U (SN N(v)),ie., vand all its neighbors in S (any other element of S not adjacent

to v cannot extend the clique)

As it has only two solutions (and only one we care about, since S was already known),
ITRP(S,v) for maximal cliques can be solved in polynomial time. This means the total
amount of work done by Algorithm 8 per solution is polynomial, i.e., we achieve polynomial
amortized time.”

This is not always the case: the Input-Restricted Problem may have an exponentially high
number of solutions, meaning it cannot be solved in polynomial time. Even in this case, not
all hope is lost: some properties, like Mazimal Connected Induced Bipartite Subgraphs [73] or
Mazximal Temporal Cliques in a restricted class of temporal graphs [11] allow the IRP to be
solved in polynomial delay.

More in general, we can say that whenever the IRP can be solved in Incremental
Polynomial Time (which includes polynomial delay), then Algorithm 8 also runs in Incremental
Polynomial Time. Intuitively, this can be proved by the fact that, if ¢ solutions were found so
far, the time used by the IRP to find solutions that we already knew is polynomial in ¢ and
the input size (e.g., O(n®-i°)), and since we can apply the IRP only to the ¢ solutions found
so far, the time required until a new solution is found is bounded by O(i - n® - i¢), which is
also polynomial in ¢ and n.

Finally, there are cases where even the IRP simply cannot be solved efficiently: Lawler [49],
for example, shows how to reduce an instance of SAT to a simple hereditary property on a
set of n elements, where O(n) maximal solutions can be easily identified in polynomial time,
and another solution exists if-and-only-if the input formula is satisfiable. It follows that no
output-sensitive algorithm may exist for this problem, unless P = NP. This tells us that even
an efficient solution to the IRP would imply P = NP, as we could use it in Algorithm 8 to
obtain an efficient algorithm for the problem.

The polynomial of course varies according to whether we can limit the number of v considered and
the cost of COMPLETE, but it is always polynomial for hereditary and connected-hereditary properties,
as long as we can identify in polynomial time wherher S is a solution or not, as we can then simply
iteratively test every node for addition until none is possible.

In fact, we can turn this into polynomial delay with alternative output [69], that simply makes us output
S at the beginning of REC(S) if the recursion depth is even, and at the end of REC(S) if the recursion
depth is odd. This avoids long chains of recursive calls being closed (or opened) without new outputs
being produced.

19:23

Grossi's Festschrift

19:24

Designing Output Sensitive Algorithms for Subgraph Enumeration

5.3 Proximity Search

We have seen above how the Input-Restricted Problem is a powerful tool for designing
enumeration algorithms, but sometimes it cannot provide an efficient solution. It is natural to
ask: can we go beyond it, and obtain polynomial delay even when the IRP has exponentially
many solutions?

The answer is “sometimes yes”, and one of the techniques to do this is called Prozximity
Search [23]. The basic idea is simple: if the number of solutions to the input-restricted
problem IRP(S,v) is exponential, this corresponds to S having an exponential out-degree
in the solution graph; we then want to ignore some of the edges, and still prove that the
solution graph is strongly connected.

The resulting algorithm is identical in structure to Algorithm 8, with the only difference
being some specific function NEIGHBORS(SS) in place of IRP(S,v) to produce new solutions
(i.e., out-neighbors of S). The complexity relies on finding an efficient NEIGHBORS(.S) function
and proving that the resulting solution graph is strongly connected.

5.3.1 Completeness

To prove strong connectivity we want to say that, starting from any solution .S, and traversing
edges of the solution graph, we will eventually find a path to any other solution S*. The
Input-Restricted Problem strategy, on hereditary properties, relies on intersection: for any
pair S, 5™, there exists a v for which IRP(S,v) finds an S’ such that [S' N S*| > |SNS*|, and
this tells us S’ is the next step in the path towards S*.

A key step of proximity search is replacing the monotone increase in intersection with a
weaker, more general, and possibly problem-specific condition, that is called proximity, and
denoted as SNS*. In essence, a proximity search algorithm requires:

An arbitrary starting solution S

A function SNT to determine proximity that, for any fixed T, is maximized when and

only when S = T8

A function NEIGHBORS(S) such that, for any other solution S*, there is S’ €

NEIGHBORS(SS) for which |S’NS*| > |SNS*|.

The completeness then follows from the same logic above, as NEIGHBORS(S) always has
an S’ that gets “one step closer” to T. By the same logic as Algorithm 8, if NEIGHBORS(.S)
takes only polynomial time, then the enumeration has polynomial delay.

Just like Algorithm 8, we also need to check whether any solution was already found,
to ignore duplicates, and that means again storing all solutions in a dictionary and use
exponential space. We'll see later how it is sometimes possible to overcome this.

However, rather than solving the problem, we now simply formalized the requirement.
Next we introduce a useful technique to actually design proximity search algorithms.

5.3.2 Canonical reconstruction

Canonical reconstruction, formalized in [19], is an effective method to implement proximity
search.

8 Note that we don’t care about the efficiency of this function, as it is used in the proofs and never in the
algorithm!

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

The key ingredient is defining, for each solution S, a solution order si,ss,...,s|s. This
order will be problem-specific, and ideally allows us to exploit the problems’ structure to our
advantage. Then, canonical reconstruction defines proximity as follows:

» Definition 13 (Proximity in canonical reconstruction). Given two solutions S and T, let
t1,...,t 7| be the solution order of T'. Then SAT is defined as the elements in the longest
prefix t1,...,t; of this order that is fully contained in S.

A couple observations are in order:

SNS = 9, as S contains all elements in its own solution order.

SAT # SNT, and in particular if ¢; € S, then SNT = (). Indeed S may contain several
elements of T', but we only care about those who align into a prefix of the solution order
of T.

SAT # TNS, since by definition TNS will instead consider the longest prefix of the
solution order of S that is fully contained in 7'

Finally, given S and T with SOT = {¢1,...,t;_1}, we call ¢; the canonical extender for

the pair S, T, that is, the earliest element in the solution order of T' that is missing from S.

The directive, in canonical reconstruction, is finding a maximal solution S’ in G[S U {¢;}]
that contains {t1,...,t;—1,t;}. S’ may very well have a smaller intersection with 7' than S,
but its proximity will have increased by at least one.

This is by no means a conclusive guide as, again, canonical reconstruction relies on
finding a problem-specific solution order and exploiting its structure. However, many graph
properties are associated with specific decompositions that induce an order, and this often
turns out to be a powerful way to exploit these decompositions.

For completeness, to showcase the technique, we give here the example of Mazimal
Induced Chordal Subgraphs. More examples can be found in [19].

5.3.3 Maximal Induced Chordal Subgraphs

A graph is chordal if it has no induced cycle longer than 3, i.e., any longer cycle has a shortcut
edge (chord). Here we want to use canonical reconstruction to enumerate all maximal S C V
such that G[S] is chordal.

Observe that this is a hereditary property, since any induced subgraph of a chordal
subgraph graph S cannot introduce a new induced cycle: any shortcut edge in .S would be
preserved in the induced subgraph. Moreover, as shown in [19], the Input-Restricted Problem
for this property can have exponentially many solutions, so it cannot be used to achieve
polynomial delay.

We will use two key properties of chordal graphs:

A chordal graph G = (V, E) has O(|V]) maximal cliques.

A graph is chordal if and only if it allows a perfect elimination order.

A perfect elimination order is an elimination order of the vertices obtained by iteratively
removing simplicial vertices, where a vertex is simplicial if its neighbors form a clique.

Given a graph S, we define its solution order as a reversed perfect elimination order,
that is, an order s1,. .., s|g where, for each s;, the neighbors of s; preceding it in the order
(N(s;)N{s1,...,8-1}) form a clique.

Now, take any pair of solutions S, T, where t1,...,tp| is the solution order of 7', and let
SAT = {t1,...,t;—1}. As described above, we call ¢; the canonical extender for S, T, and our
goal will be, given S, to produce a solution S’ containing {t1,...,¢;—1,%;}. It is crucial to
observe that we do not know T. The NEIGHBORS(S) function must be able to satisfy such a

19:25

Grossi's Festschrift

19:26

Designing Output Sensitive Algorithms for Subgraph Enumeration

condition for any of the (exponentially many) other solutions 7', even though NEIGHBORS(S)
must take polynomial time, so it is only allowed to compute polynomially many solutions.
The good news is that we can simply try to use every vertex in V' as canonical extender, so
eventually we will always consider the correct ¢;.

This is where the structure of the problem unravels: we know that {¢;,...,t,_1} € .S, and
crucially, we designed the solution order so that {t1,...,t;_1} N N(¢;) is a clique, meaning
that {t1,...,t;—1} N N(¢;) is contained in a maximal clique of S; let this clique be Q. With
knowledge of ¢; and @), we can produce a suitable S’ as follows:

S’ + cOMPLETE((S \ N(t;)) UQ U {¢;})

Observe that S” must contain all of SOT = {#1,...,t;_1} because the vertices that were
not neighbors of ¢; were never removed from S, and the vertices that were neighbors of ¢;
were added by including @. Finally, applying the COMPLETE function gives us a maximal
solution, but does not remove any vertex.

Moreover, observe that S’ is chordal: (S\ N(¢;)) U@ is a subset of S, so it is chordal
because this is a hereditary property, and the further addition of ¢; does not break chordality,
because t; is simplicial, so (S\ N(t;))UQU {t;} allows a perfect elimination ordering starting
from t;. By definition, applying the COMPLETE function does not break chordality.

The final piece of the puzzle is the fact that, while we do not know (), we know that S
has only O(]S|) maximal cliques, so we can indeed try all possible combinations of ¢; and Q,
obtaining just O(|V] - |S|) solutions.

Specifically, NEIGHBORS(.S) will produce these solutions:

For each v € V'\ S

For each maximal clique Q of S

Return COMPLETE((S \ N(¢;)) UQ U {t;})

From what observed above, for any possible choice of T', there will be one correct choice
of v and @ such that the S’ obtained has |S'NT| > |SAT|. Again, observe how there are
exponentially many possible T, and yet a polynomial number of S’ is sufficient to satisfy the
condition.

The result is a polynomial-delay algorithm for enumerating Maximal Induced Chordal
Subgraphs.

5.3.4 Extensions and alternatives

Canonical reconstruction has one more advantage: [19] shows that it is sometimes possible to
induce a parent-child relationship by adapting the parent-child relationship designed in [20]
on connected-hereditary (commutable) properties. We remind the reader to [19] for the
details, but it is remarkably easy to determine when this is applicable: as a rule-of-thumb, it
is possible to induce a parent-child relationship and perform proximity search in polynomial
space when the solution order of canonical reconstruction is defined via a breadth-first search.

This is not the case for the example shown above of chordal subgraphs, which used a
reversed perfect elimination order. However, [19] shows how to apply it to several other
problems such as bipartite subgraphs, induced trees, and connected acyclic subgraphs.

Moreover, [10] actually showed how to compute a suitable solution order for chordal
subgraphs in a BFS-like fashion, and thus produced a proximity search algorithm for maximal
chordal subgraphs with polynomial delay and polynomial space.

Finally, we remark how techniques for navigating a solution graph can get arbitrarily
interesting and more complex. A great example are retaliation-free paths by Cao [12]: in
essence, while canonical reconstruction finds a path from S to T' by adding the canonical

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

extender t; without losing {¢i,...,t;_1}, retaliation-free paths work on a similar logic but
with a key difference: they consider a solution order for 7', but allow the addition of t;
to remove elements from {¢1,...,¢;_1}, as long as we can prove that, along the path, the

elements sacrificed will be added again without “retaliation”, i.e., without removing ¢; again.
Proving the existence of retaliation-free paths is not straightforward, but [12] successfully
uses them to achieve polynomial delay on multiple enumeration problems for which the
input-restricted problem is not solvable in polynomial time.

6 Amortization analysis

In Section 4, we presented techniques for designing efficient enumeration algorithms, based on
the partition technique. Algorithms designed using this approach typically achieve polynomial
delay and polynomial space. However, when aiming for more efficient algorithms, such as
those with (sub-)linear delay or average (sub-)linear delay, a more refined algorithm design
is required. In algorithms based on the partition technique, the bottleneck is often the
procedure of dividing the problem into subproblems. A straightforward way to improve
efficiency is to reduce the cost of this partition procedure. However, achieving (sub-)linear
time improvements is challenging.

One example is enumeration problems related to connectivity, such as st-path enumeration.
In this problem, partition often involves vertex or edge deletions. After deleting some vertices
or edges, determining whether s and ¢ remain in the same connected component is known
as the dynamic connectivity problem. Solving this problem in o(n 4+ m) time is non-trivial,
where n and m are the number of vertices and edges, respectively.

To reduce the cost of partitioning, amortized analysis can be effectively applied in al-
gorithm design [18,46,47]. Typically, the partition method generates at most two subproblems.
However, for certain problems, it is possible to generate more subproblems with nearly the
same cost. In such cases, if it can be shown that the cost is proportional to the number
of generated subproblems, the average delay can be improved. In enumeration algorithms,
rather than focusing solely on reducing the cost for each partition, designing algorithms that
consider the relationship between the number of solutions and the cost often leads to simple
and efficient algorithms. In this section, we give several such examples.

When discussing algorithms with o(n + m) delay or average o(n + m) delay, as in this
section, it is common to consider preprocessing time separately. This is because, for many
problems, achieving o(n + m) delay is impossible for inputs with no solutions, leading to
special treatment of preprocessing time. In the following algorithms, it is easy to show
that the preprocessing time is bounded by poly(n) time. Thus, we omit the analysis of the
preprocessing time.

The correctness of the algorithms presented in this section immediately follows from the
partition technique. Thus, we also omit the proof of correctness of the algorithms.

6.1 Amortization by Children and Grandchildren

A typical technique in amortized analysis is to analyze computation time based on the
number of children or grandchildren. If the computation time at each recursive call X is
O(Jch(X)|-f(X)) time, where ch(X) is the set of children of X and f is some function, then the
total computation time can be bounded by O(f(X)) time. Therefore, designing an algorithm
such that its computation time depends on the number of children and grandchildren can
often lead to improvements in overall efficiency.

19:27

Grossi's Festschrift

19:28

Designing Output Sensitive Algorithms for Subgraph Enumeration

6.1.1 Enumerating all paths starting from s

We consider the problem of enumerating paths with a specified starting vertex but no specified
end vertex. For this problem, we can obtain an average constant-time algorithm by using a
simple partition approach. We give our algorithm in Algorithm 9. Since Algorithm 9 is a
recursive algorithm, it generates a tree structure. Hereafter, we denote it as 7 and we call a
vertex in 7 a recursive call.

In this algorithm, each recursive call runs in O(A) time and outputs one path starting
from s, where A is the maximum degree of the graph. Therefore, an immediate analysis
shows that the average time complexity is O(A) time. However, using amortized analysis,
we can show that this algorithm actually achieves average constant delay.

For each recursive call X, the running time of X is O(A). More precisely, X runs in
O(|N(px)|) time, where py, is the other endpoint of a current path P. On the other hand, the
number of children of X is also |N(p)|. Using this observation, we analyze the total running
time 7" of the algorithm as follows: O(}_ ycy (7 [ch(X)]) = O([V(T)]), where ch(X) is the
set of children of a recursive call X. Since the number of recursive calls and the number of
paths starting from s are equivalent, the average time complexity is thus average constant
delay.

Algorithm 9 s-PATH(G, P). By running s-PATH(G, (s)), all paths starting from s can be
enumerated.
Input: A graph G = (V, E) and a path P = (p1 = s,...,pk)
Output: All paths starting from py
1 Output P.
2 foreach v € N(pi) do s-PATH(G[V \ {pt}], (D1, Pk, V)) ;

6.1.2 Enumerating all trees containing s

As a next example, we propose the enumeration of all trees containing a specified vertex s, as
shown in Algorithm 10. In this algorithm, the time complexity of each recursive call is O(A?)
time. More precisely, the running time is O(}_,,c np,) [V (w)]) time. Although the notation
G/e is used in the algorithm, its definition is as follows. For an edge e = (u,v), we denote
with G/e the graph obtained by contracting edge e, that is, by unifying vertices u and v
into one. For a set of edges F' = {ey, ..., ex}, we write G/F' to denote in short G/e;y - - - /ek.
Since the number of recursive calls and the number of solutions are equivalent, the average
time complexity boils down to O(A?2) time in a straightforward analysis.

We again improve the average time complexity using an amortized analysis. In Al-
gorithm 10, the number of children of a recursive call X is the degree of a given vertex
s. Let Yi,...,Y|n(s) be the set of children of X. When we generate Y;, contracting
an edge {s,u}, we need O(|N(u)|) time. On the other hand, the number of children of
Y; is at least |N(u)|. In other words, the computation time required to generate Y; is
bounded by the number of children of Y;. The time complexity of each recursive call X is
bounded by O(|ch(X)| + |gch(X)|), where gch(X) is the set of grandchildren of X. Hence,
> xev(r lch(X)] + |geh(X)| = O(|V(T)]) holds and the average time complexity is average
constant delay.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

Algorithm 10 TRreE(G,s,T).

Input: A graph G = (V, E), a vertex s, a tree T
Output: All trees containing s and T
1 Output 7.
2 foreach u € N(s) do
3 Let w be a new vertex in G/{s,u} with incident edges §(s) U d(u), where d(v) is
the set of edges incident to v.
TREE(G/{s,u},w, T U {s,u})
G + G[E\ {s,u}]

[S SN

6.2 Push out amortization

In the previous subsections, we improved the average delay of some algorithms by considering
the relationship between the number of children and grandchildren, and the computation
time of each recursive call. In principle, this method can be generalized to account for all
descendants. However, analyzing the total number of descendants and their computation
time makes the analysis extremely complex. To address this, we introduce a technique called
push out amortization [70]. In push out amortization, if all recursive calls satisfy a condition
known as the PO condition, we can distribute the computational cost proportionately across
all descendants. As a result, a better upper bound can be given. The definition of the PO
condition is as follows: aT'(X) < > yc px) T(Y) + B(lch(X)| + 1)T™, where T(X) is the
computational time of a recursive call X, T* is an upper bound of the computation time of
a leaf recursive call, and o > 1 and [> 0 are constants that do not depend on the input. If
all recursive calls satisfy the PO condition, the average delay of the algorithm is O(T™).

Intuitively, if the PO condition holds at every internal node, it indicates that the
computation time for the entire recursion tree is dominated by the computation time of its
leaves. Typically, the number of leaves and the number of solutions is equivalent, and thus
the average delay is bounded by O(T™*) time.

Informally speaking, one of the advantages of push out amortization is that, when aiming
for constant average-delay, a linear time computation in each recursive call is often not a
concern. In contrast, when using amortized analysis based on the number of children or
grandchildren, proving constant average-delay becomes challenging if each recursive call takes
linear time.

In the following, we provide analysis using push out amortization while examining several
concrete examples.

6.2.1 Matching Enumeration

Algorithm 11 shows a simple partition-based matching enumeration algorithm. In this
algorithm, each recursive call requires O(m) time. We note that, if the maximum degree
is at most 2, each recursive call can be done in constant time. Thus, in what follows, we
consider recursive calls with the maximum degree more than 2.

From the definition of the big O notation, for each recursive call X, the computation
time T'(X) is at most e¢m for some constant c. Hereafter, we assume that T(X) = cm.
This modification does not increase the time complexity of Algorithm 11. The purpose of
this assumption is to simplify the analysis of a lower bound computation time. In push
out amortization, a lower bound of computation time is crucial in the context of the PO
condition.

19:29

Grossi's Festschrift

19:30

Designing Output Sensitive Algorithms for Subgraph Enumeration

We show that the tree structure T generated by Algorithm 11 satisfies the PO condition.
Let X be a recursive call and ch(X) be the set of children of X. Since each recursive call
demands Q(m) time, the sum of the computation time of children is ¢- (m — |N(u)]|) for
some constant ¢. We denote the child that receives G[V \ {u}] as the input graph as Yj.
Since the number of children is |N(u)| + 1, we obtain T'(Yy) + B(|ch(X)| + 1)T* > ¢c-m
for some constant ¢ by setting 8 = ¢ since T'(Yy) > ¢- (m — |[N(u)|) and T* > 1. We
consider the remaining part of the PO condition, >y ¢ jx)\ vo3 I'(Y). We show that
Yveenxnvor L(Y) = c(m —[N(u)]). Let e be an edge in £\ §(u). Since [6(u)| = 3, 6(u)
has an edge f such that {e, f} is a matching. This implies that ch(X) \ {Yo} has a child Y’
that receives a graph that has e. Therefore, > 3¢ . x)\ (o3 T(X) = ¢(m — [N(u)|) holds and
the PO condition holds for all recursive calls. Since T™* is constant, push out amortization
proves that Algorithm 11 runs in constant average delay.

Algorithm 11 MATCHINGS(G, M).

Input: A graph G = (V, E) and a matching M
Output: All matchings in G containing M

1 Output M

2 Let u be a vertex in V' with maximum degree

3 Let 0(u) be the set of edges incident to u
a
5

foreach e = {u,v} € §(u) do MATCHINGS(G[V \ {u,v}], M U{e}) ;
MATcHINGS(G[V \ {u}], M)

6.2.2 Enumerating connectivity elimination orders

In the previous example, we were able to enumerate matchings in average constant delay,
even when each recursive call required linear time. By using push out amortization, we can
show that an algorithm can still run in constant average delay even when the computation
time of each recursive call exceeds linear time, as long as the instance size received by the
children is sufficiently large.

An order of vertices (vy,...,v,) is a connected elimination ordering if for any 1 < i < n,
G[{vit1,--.,vn}] is connected. Let us consider the connected elimination order algorithm
presented in Algorithm 12. We note that, for any connected graph, there are at least two
vertices u and w such that G[V'\ {u}] and G[V \ {w}] are connected (as chosen in Line 2).
This can be shown using the BC-tree (as defined in Section 4.3.2): indeed, for any tree,
removing a leaf does not break the connectivity.

Each recursive call of Algorithm 12 can be performed in linear time, using a linear time
biconnected component decomposition algorithm. Still, such a simple algorithm demands
O(nm) = O(n?) time for each recursive call. We show that even if each recursion takes O(n?)
time, Algorithm 12 runs in constant average delay using push out amortization.

Let X be a recursive call and Y; and Y5 be the children of X. From the definition
of Y1 and Y3, these recursive calls receive a graph with n — 1 vertices. Thus, T(Y1) +
T(Y3) = 2¢(n — 1)3 = 2cn® — 6¢n? + 6¢n + 2¢ for some constant c. Since T(X) = en?,
T(Y1) +T(Y2) — aT(X) = ¢(2 — a)n® — 6en(n — 1) + 2¢. By setting o = 3/2 and assuming
n>12 T(Y1) + T(Ye) > 3T(X)/2 and the PO condition hold. Therefore, this algorithm
runs in constant average delay as well.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

Algorithm 12 ConN(G,).

Input: A graph G = (V, E) and a vertex ordering 7 = (vy, ..., vg)
Output: All connected elimination orderings.

1 if V =0 then Output 7. ;

2 Let U be the set of vertices {u € V' | G[V \ {u}] is connected}.

3 foreach u € U do CoN(G[V \ {u}], (v1,...,v%,u)) ;

6.2.3 Enumerating all perfect elimination orderings

As another example of an enumeration problem related to ordering, we consider the Perfect
Elimination Ordering (PEO) enumeration problem (for fundamental facts about chordal
graphs, we refer the reader to [7]). As mentioned in Section 5.3.3, if a graph G = (V, E) is
chordal, that is, G has no induced cycle with length at least four, then V = {vq,...,v,} has
an ordering (v1,...,v,) such that for any 1 <14 < n, v; is simplicial in G[{v;, ..., v,}], called
a perfect elimination ordering. It is known that a chordal graph has at least two simplicial
vertices [7]. Therefore, the procedure shown in Algorithm 13 correctly works.

Enumeration of simplicial vertices can be done in O(n?®) time. Since the number of
simplicial vertices (and thus of children of a recursive call) is at least 2, we can again achieve
average constant delay by using push out amortization. Indeed, in each recursive call the
computational cost equals ¢ - n?, given by simplicial vertices enumeration, where ¢ is some
constant; since 2¢(n — 1)2 — cn® > 0 holds, the PO condition holds as well.

Algorithm 13 PEO(G,«).

Input: A chordal graph G = (V, E) and a vertex ordering m = (v1,...,vx)
Output: All perfect elimination orderings

1 if V =0 then Output 7 ;

2 Let S be the set of simplicial vertices in G

3 foreach v € S do PEO(G[V \ {u}], (v1,...,vk,u)) ;

6.2.4 Spanning tree enumeration

Finally, we introduce an algorithm that takes advantage of the ability to use linear time
in each recursive call. Specifically, we present an amortized constant-time algorithm for
enumerating spanning trees.

In spanning tree enumeration, we partition the spanning trees into the ones containing an
edge e, and the ones that do not contain e. Note that if e is a bridge of G (i.e., its removal
disconnects the graph), then all spanning trees contain e. In such a case, the number of
subproblems is just one, and it is thus not easy to satisfy the PO condition.

Since we want to avoid this situation, we can enumerate all bridges, which takes linear
time using Tarjan’s bridge enumeration algorithm [64], and contract them. Moreover, to
further simplify the algorithm, hereafter, we assume that G can have parallel edges due to
edge contraction (that is, it is a multigraph), and we keep as an invariant that it has no
bridges, that is, it is two-edge connected. Additionally, when G has edges parallel to e, we
can generate subproblems easily. We denote that the set of edges between u and v as E, ,.

In our algorithm, to ensure a sufficient number of children, if B is the set of all bridges of
G[E \ {e}], we generate |B| children. For each edge f € B U {e}, we consider the following
subproblem: enumerating all spanning trees in G[E \ {f}]/((BU {e})\ {f}). That is, we

19:31

Grossi's Festschrift

19:32

Designing Output Sensitive Algorithms for Subgraph Enumeration

consider the graph where edge f was removed, and here contract all the edges in B U {e}
except for f. Such subproblems can be generated in linear time; see Algorithm 14 for the
details. Thus, the time complexity of each recursive call is O(n + m) time. Finally, we show
that this algorithm satisfies the PO condition. When we contract an edge e, the number of
edges in G is reduced by |E, ,|. However, since the number of children is at least |E, ,|, we
can amortize this cost using the factor S(ch(X) + 1) in the PO condition. Similarly, each
recursive call has at least | B| children. Finally, since each edge in G is not contained in E,, ,
and B is contained in at least two subproblems, this algorithm satisfies the PO condition
and runs in constant average delay.

Algorithm 14 SPANNING(G, F)).

Input: A two-edge connected multigraph G = (V| E) with no self-loops and a
forest F'
Output: All spanning trees containing F'.
1 if F is a spanning tree of G then Output F. ;
2 Let u and v be vertices such that an edge {u, v} is non-bridge
3 Let E, , be the set of non-bridge edges in G between v and v and B be the set of
bridges in G[E \ {e}]
4 if B # () then
SPANNING(G/ {e} , FFU{e})
foreach f € BU{e} do

SPANNING(G[E\ {f}/((BU{e}) \ {f}), FU((BU{e})\{f});

7 else

8 foreach f € E,, do SPANNING(G[E\ (E,, \{f}D)]/{f}, FU{f});
9 | SPANNING(G[E\ By, F)

6.3 Geometric amortization: The gap between delay and average delay

In the analysis of average delay, we often encounter unintuitive results due to the exponential
number of solutions compared to the input size. This arises because the majority of the
recursive calls are performed over inputs of constant size. When improving the average delay,
focusing on the relationship between the number of solutions and the computation time often
leads to tighter upper bounds on the overall time complexity. However, this approach does
not easily extend to delay. Indeed, the class of polynomial delay solvable problems and the
class of average polynomial delay solvable problems are distinct under P # NP, although the
separation is slightly artificial. For more about this, see Proposition 3.10 from [58].

To bridge the gap between these two classes, the class of problems solvable with linear
incremental delay is proposed as an intermediate complexity class. An algorithm runs in
linear incremental delay if the time required to output the i-th solution is bounded by
O(i - poly(n)). We introduce here geometric amortization [14], which allows us to prove an
important result: The class of problems that can be solved with incremental polynomial
delay and polynomial space is equivalent to the class of problems solvable with polynomial
delay and polynomial space. The key idea behind geometric amortization is to run multiple
instances of the incremental polynomial delay algorithm in parallel on multiple machines. By
carefully scheduling these machines, we can ensure that solutions are output in polynomial
delay and polynomial space. Capelli and Strozecki published a demo illustrating this idea,

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

which may help in understanding the core concept [13,14]. Since the space usage only
increases proportionally to the number of parallel machines, we can achieve polynomial delay
while maintaining polynomial space complexity.

One of the applications of geometric amortization is converting enumeration algorithms
with cardinality constraints to k-best or ranked enumeration. Ranked enumeration is the
problem of outputting solutions in order of their objective function values from best to
worst [35]. A typical technique to design ranked enumeration algorithms is to combine
partition techniques with optimization algorithms [48]. This approach typically demands
exponential space. However, by using geometric amortization, we can obtain polynomial-
delay and polynomial-space ranked enumeration algorithms, if we have an incremental
polynomial-delay enumeration algorithm with cardinality constraints [45].

7 Hardness of Enumeration Problems

In the previous sections, we have focused on methods for constructing efficient enumeration
algorithms. However, just as with ordinary search problems, there is no guarantee that an
efficient algorithm always exists. In this section, we give a brief introduction to how to deal
with the “hardness” of enumeration algorithms. Moreover, we also discuss fixed-parameter
tractability and approximation. This topic is currently an active area of research [30].

One of the most important open questions in the enumeration field is whether there
exists an output polynomial time algorithm for all minimal dominating set enumeration
(Dom-ENuM for short). A dominating set of a graph is a set of vertices D such that each
node of the graph is either in D, or is a neighbor of a node of D. Although such algorithms
have been proven to exist for many special cases, including bipartite graphs, the problem
remains open for general graphs, comparability graphs, and unit-disk graphs. As in the
case of showing the NP-completeness of a decision problem, if we can solve an enumeration
problem that is “equivalent” to DoM-ENUM, then we can also solve DOM-ENUM. In that
sense, introducing the notion of reduction is crucial. Currently, the following notion is
adopted:

» Definition 14 (E.g. [61]). Let A and B be two enumeration problems. We say that there is
a polynomial-time delay reduction from A to B if there exist polynomial-time computable
functions f and g such that:
1. f is a mapping from an instance of A to a set of instances of B.
2. g is a mapping from a solution of B to a set of solutions of A.
3. U gs) = A@).
s€B(f(x))
4. [{s e BU@) | g(s) = 0}| = p(lal)-
5. For any s,s' € B(f(x)), g(s) N g(s') = 0.

By using such reductions, it has been shown that DOM-ENUM is equivalent to the
enumeration of minimal transversals? (HYPER-TRANS, for short) in the sense that if one
can be solved in polynomial delay, then the other also can be also solved in polynomial
delay [39]. Furthermore, it is also known that the dualization of monotone boolean functions
(DUALIZATION, for short) is equivalent to HYPER-TRANS. In other words, problems that
arise in different contexts — such as graphs, set families, and logical formulas — turn out to
be equivalent to each other.

9 A hypergraph transversal is a set of vertices that intersects every hyperedge

19:33

Grossi's Festschrift

19:34

Designing Output Sensitive Algorithms for Subgraph Enumeration

7.1 NP-hard Enumeration Problems

Although it is unknown whether DUALIZATION can be solved in output polynomial time,
there is a quasi-polynomial time algorithm for DUALIZATION [33]. Do harder enumeration
problems exist? One obvious example is enumeration of the solutions of an NP-hard problem,
e.g., the enumeration of minimum solutions of VERTEX COVER.

Another example is the problem of enumerating all minimal dicuts (DicuTs, for short).
Let D be a strongly connected directed graph. A set of edges F' is called a directed cut or
dicut if removing F' from D destroys its strong connectivity. A dicut F' is minimal if there
is no proper subset F’ of F' such that F’ is a dicut. It is obvious that finding one minimal
dicut is easy. However, enumerating more minimal dicuts is not trivial. Indeed, DICUTS is
known to be NP-hard [41]. More precisely, given a family F of minimal dicuts for D, deciding
whether there is a minimal dicut not contained in F is NP-complete. Similarly to DicuTs,
enumeration of inclusion-wise minimal separators, a minimal set of edges that satisfies a
certain connectivity requirement, in a directed graph is also NP-hard [8].

Techniques for proving NP-hardness of an enumeration problem A often involve construct-
ing an instance I of A that corresponds to an instance I’ of some NP-complete problem.
Typically, obtaining several solutions of I is easy. Thus, we design I such that it contains
only a polynomial number of “trivial” solutions, and if an enumeration algorithm finds
a non-trivial solution, then this implies that I’ has a feasible solution. With this setup,
NP-hardness can often be established.

7.2 Introduction to parameterized enumeration

In the previous section, we talked about problems for which finding a single solution is
easy, but enumerating all solutions is difficult. In this section and the next, we introduce
two approaches to deal with problems for which it is difficult even to obtain one solution:
parameterized enumeration and approrimate enumeration.

Parameterized enumeration is an approach where, in addition to the usual enumeration
problem, we also take into account a parameter related to the problem. An example is the
following: output all minimal vertex covers (i.e., an inclusion-minimal set of vertices such
that all edges of the graph have at least one endpoint in the cover) of size at most k, treating
k as a parameter. As shown in later, we can “efficiently” solve this problem. Now, we first
need to define the efficiency of enumeration for a problem with a parameter. In the same
way that we define the FPT class for parameterized search problems, we define DelayFPT for
parameterized enumeration problems, as follows:

» Definition 15 (DelayFPT, [26]). Let IT be an enumeration problem with parameter k. Then,
an enumeration algorithm A for Il is a DelayFPT-algorithm if there exists a computable
function t : N — N and a polynomial p such that for every instance x, A outputs all the
solutions of x with delay at most t(k)p(|x]|).

In the same work, we can also find the definitions of IncFPT and OutputFPT [26].

Meier’s Habilitation thesis [51] studies the topic of parameterized enumeration in detail.
Subsequently, Golovach et al. [36] introduced the notion of a fully-polynomial enumeration
kernel. Intuitively, an enumeration kernel is a framework in which, given an instance of a
parameterized enumeration problem, we transform it into a smaller instance with respect to
the parameter, enumerate the solutions of this smaller instance, and then reconstruct the
solutions for the original instance from those solutions. The algorithm that performs the
transformation is called the kernelization algorithm IC, and the algorithm that reconstructs
solutions for the original instance is called the solution-lift algorithm L.

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

» Definition 16. For an enumeration problem I1 with parameter k, if K and L satisfy the

following conditions (1) and (2), the pair is called a fully-polynomial enumeration kernel.

1. For every instance I, K outputs in time polynomial in |I| + k an instance J of I with
parameter k' such that |J| + k' < f(k) for some computable function f.

2. For every solution s of J, L outputs with delay polynomial in |I|+ |J| +k + k' a set of
solutions Ss C SOL(I) such that {Ss | s € SOL(J)} is a partition of SOL(I).

Interestingly, the concept of a fully-polynomial enumeration kernel characterizes the
existence of a polynomial-delay algorithm. More specifically, Golovach et al. [36] proved that
there is a polynomial-delay algorithm for an enumeration problem if and only if there is a
fully-polynomial enumeration kernel for the problem whose the size of the output instance is
constant.

7.3 Introduction to approximate enumeration

Among NP-hard enumeration problems, the most obviously NP-hard ones are the problems
where even finding one solution is already NP-hard, for instance the enumeration of subgraphs
with cardinality constraints, such as k-best or ranked enumeration problems. For this
problems, enumeration is trivially NP-hard.

In the field of optimization algorithms, in such cases, we often develop algorithms that
allow for some error in the output, or permit an exponential computation time with respect
to a certain parameter. As mentioned in the previous section, several approaches, such as
FPT delay algorithms, have been proposed [24,25]. In this section, we introduce approzimate
enumeration algorithms, which constitute an alternative approach for addressing NP-hard
enumeration problems. To the best of authors’ knowledge, the paper [29] is the first to
apply an approximation algorithm approach to enumeration problems, including those
involving NP-hard optimization problems. This approach is an approximate version of ranked
enumeration. Let f be an objective function, and let us consider a minimization problem:
that is, we want to enumerate all solutions in order (Si,...,Sy) such that f(S;) < f(S;)
for any 1 < i < j < N. An order of solutions (57, ...S}) is called 0-approzimate order if
forany 1 <i < j <N, f(S;) <0 f(S}). Additionally, Kobayashi et al. have proposed a
relaxation based on an objective value rather than on an ordering [44]. These algorithms are
called @-approzimation algorithms. If we allow such a relaxation, we can find one solution in
polynomial time.

Research on algorithms in this area is also largely based on two approaches: partition
techniques and solution graph-based algorithms [1,42]. In solution graph-based algorithms,
enumeration problems that add objective function constraints to input-restricted problems
play a crucial role, similar to maximal solution enumeration algorithms [44].

8 Conclusions

In this work, we provided a survey of the relatively recent but ever growing topic of output-
sensitive enumeration algorithm design for graph problems. We have presented the most
common techniques of the area, mostly divided between partition-type algorithms and
solution graph-based techniques. We have also provided notions of amortization analysis,
showing how a careful study of the structure of the algorithm can lead to low average delay.
Finally, we have introduced the concept of hardness for enumeration problems, with some
preliminary notions of parameterized and approximate enumeration.

19:35

Grossi's Festschrift

19:36

Designing Output Sensitive Algorithms for Subgraph Enumeration

—— References

1

10

11

12

13

14

15

Zahi Ajami and Sara Cohen. Enumerating minimal weight set covers. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 518529, 2019. doi:10.1109/
ICDE.2019.00053.

Eralp A. Akkoyunlu. The enumeration of maximal cliques of large graphs. SIAM J. Comput.,
2(1):1-6, 1973. doi:10.1137/0202001.

David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied Mathematics,
65(1-3):21-46, March 1996. doi:10.1016/0166-218x(95)00026-n.

Giulia Bernardini, Huiping Chen, Gabriele Fici, Grigorios Loukides, and Solon P. Pissis.
Reverse-safe data structures for text indexing. In 2020 Proceedings of the Twenty-Second
Workshop on Algorithm Engineering and Ezperiments (ALENEX), pages 199-213. STAM, 2020.
do0i:10.1137/1.9781611976007. 16.

Etienne Birmelé, Pierluigi Crescenzi, Rui A. Ferreira, Roberto Grossi, Vincent Lacroix,
Andrea Marino, Nadia Pisanti, Gustavo Akio Tominaga Sacomoto, and Marie-France Sagot.
Efficient bubble enumeration in directed graphs. In String Processing and Information
Retrieval - 19th International Symposium, SPIRE 2012, pages 118-129, 2012. doi:10.1007/
978-3-642-34109-0_13.

Etienne Birmelé, Rui A. Ferreira, Roberto Grossi, Andrea Marino, Nadia Pisanti, Romeo
Rizzi, and Gustavo Sacomoto. Optimal listing of cycles and st-paths in undirected graphs. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, pages 1884—1896, 2013. doi:10.1137/1.9781611973105.134.

Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In
Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse
Matrixz Computation, pages 1-29, New York, NY, 1993. Springer New York.

Caroline Brosse, Oscar Defrain, Kazuhiro Kurita, Vincent Limouzy, Takeaki Uno, and Kunihiro
Wasa. On the hardness of inclusion-wise minimal separators enumeration. Inf. Process. Lett.,
185:106469, March 2024. doi:10.1016/j.ipl.2023.1064609.

Caroline Brosse, Aurélie Lagoutte, Vincent Limouzy, Arnaud Mary, and Lucas Pastor. Efficient
enumeration of maximal split subgraphs and induced sub-cographs and related classes. Discrete
Applied Mathematics, 345:34-51, 2024. doi:10.1016/J.DAM.2023.10.025.

Caroline Brosse, Vincent Limouzy, and Arnaud Mary. Polynomial Delay Algorithm for
Minimal Chordal Completions. In Mikotaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloguium on Automata, Languages, and Programming
(ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages
33:1-33:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik.
doi:10.4230/LIPIcs.ICALP.2022.33.

Filippo Brunelli, Alessio Conte, Roberto Grossi, and Andrea Marino. Output-sensitive
enumeration of maximal cliques in temporal graphs. Discrete Applied Mathematics, 369:66—77,
2025. doi:10.1016/j.dam.2025.02.025.

Yixin Cao. Enumerating maximal induced subgraphs, 2020. arXiv:2004.09885.

Florent Capelli and Yann Strozecki. https://florent.capelli.me/coussinet/. Accessed:
2025-02-20.

Florent Capelli and Yann Strozecki. Geometric Amortization of Enumeration Algorithms. In
Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors,
40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023),
volume 254 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1-18:22,
Dagstuhl, Germany, 2023. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/
LIPIcs.STACS.2023.18.

Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Generating all maximal induced subgraphs
for hereditary and connected-hereditary graph properties. J. Comput. Syst. Sci., 74(7):1147—
1159, 2008. doi:10.1016/J.JCSS.2008.04.003.

https://doi.org/10.1109/ICDE.2019.00053
https://doi.org/10.1109/ICDE.2019.00053
https://doi.org/10.1137/0202001
https://doi.org/10.1016/0166-218x(95)00026-n
https://doi.org/10.1137/1.9781611976007.16
https://doi.org/10.1007/978-3-642-34109-0_13
https://doi.org/10.1007/978-3-642-34109-0_13
https://doi.org/10.1137/1.9781611973105.134
https://doi.org/10.1016/j.ipl.2023.106469
https://doi.org/10.1016/J.DAM.2023.10.025
https://doi.org/10.4230/LIPIcs.ICALP.2022.33
https://doi.org/10.1016/j.dam.2025.02.025
https://arxiv.org/abs/2004.09885
https://florent.capelli.me/coussinet/
https://doi.org/10.4230/LIPIcs.STACS.2023.18
https://doi.org/10.4230/LIPIcs.STACS.2023.18
https://doi.org/10.1016/J.JCSS.2008.04.003

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino, Takeaki Uno,
and Kunihiro Wasa. Listing induced steiner subgraphs as a compact way to discover steiner
trees in graphs. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors,
44th International Symposium on Mathematical Foundations of Computer Science, MFCS
2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 73:1-73:14. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPICS.MFCS.2019.73.
Alessio Conte, Roberto Grossi, Grigorios Loukides, Nadia Pisanti, Solon P. Pissis, and Giulia
Punzi. Beyond the best theorem: Fast assessment of eulerian trails. In Fundamentals of
Computation Theory: 23rd International Symposium, FCT 2021, Athens, Greece, September 12—
15, 2021, Proceedings 23, pages 162-175. Springer, 2021. doi:10.1007/978-3-030-86593-1_
11.

Alessio Conte, Roberto Grossi, Andrea Marino, and Romeo Rizzi. Enumerating cyclic
orientations of a graph. In Zsuzsanna Liptdk and William F. Smyth, editors, Combinatorial
Algorithms - 26th International Workshop, IWOCA 2015, Verona, Italy, October 5-7, 2015,
Revised Selected Papers, volume 9538 of Lecture Notes in Computer Science, pages 88—99.
Springer, 2015. doi:10.1007/978-3-319-29516-9_8.

Alessio Conte, Roberto Grossi, Andrea Marino, Takeaki Uno, and Luca Versari. Proximity
search for maximal subgraph enumeration. SIAM Journal on Computing, 51(5):1580-1625,
2022. doi:10.1137/20M1375048.

Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. Listing maximal subgraphs
satisfying strongly accessible properties. SIAM J. Discrete Math., 33(2):587-613, 2019.
doi:10.1137/17M1152206.

Alessio Conte, Mamadou Moustapha Kanté, Yota Otachi, Takeaki Uno, and Kunihiro Wasa. Ef-
ficient enumeration of maximal k-degenerate induced subgraphs of a chordal graph. Theoretical
Computer Science, 818:2—11, 2020. doi:10.1016/J.TCS.2018.08.009.

Alessio Conte and Etsuji Tomita. On the overall and delay complexity of the CLIQUES and
bron-kerbosch algorithms. Theor. Comput. Sci., 899:1-24, 2022. doi:10.1016/J.TCS.2021.
11.005.

Alessio Conte and Takeaki Uno. New polynomial delay bounds for maximal subgraph
enumeration by proximity search. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, pages 1179-1190, New York, NY, USA, 2019. ACM.
doi:10.1145/3313276.3316402.

Nadia Creignou, Raida Ktari, Arne Meier, Julian-Steffen Miiller, Frédéric Olive, and Heribert
Vollmer. Parameterized enumeration for modification problems. In Adrian-Horia Dediu,
Enrico Formenti, Carlos Martin-Vide, and Bianca Truthe, editors, Language and Automata
Theory and Applications, pages 524-536, Cham, 2015. Springer International Publishing.
d0i:10.1007/978-3-319-15579-1_41.

Nadia Creignou, Raida Ktari, Arne Meier, Julian-Steffen Miiller, Frédéric Olive, and Heribert
Vollmer. Parameterised enumeration for modification problems. Algorithms, 12(9):189, 2019.
doi:10.3390/A12090189.

Nadia Creignou, Arne Meier, Julian-Steffen Miiller, Johannes Schmidt, and Heribert Vollmer.
Paradigms for Parameterized Enumeration. Theory Comput. Syst., 60(4):737-758, May 2017.
do0i:10.1007/s00224-016-9702-4.

David Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652—-673, 1998.
doi:10.1137/80097539795290477.

David Eppstein, Maarten Loffler, and Darren Strash. Listing all maximal cliques in sparse
graphs in near-optimal time. In Algorithms and Computation: 21st International Symposium,
ISAAC 2010, Jeju Island, Korea, December 15-17, 2010, Proceedings, Part I 21, pages 403-414.
Springer, 2010. doi:10.1007/978-3-642-17517-6_36.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware.
In Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 01, pages 102-113, New York, NY, USA, 2001. Association for
Computing Machinery. doi:10.1145/375551.375567.

19:37

Grossi's Festschrift

https://doi.org/10.4230/LIPICS.MFCS.2019.73
https://doi.org/10.1007/978-3-030-86593-1_11
https://doi.org/10.1007/978-3-030-86593-1_11
https://doi.org/10.1007/978-3-319-29516-9_8
https://doi.org/10.1137/20M1375048
https://doi.org/10.1137/17M1152206
https://doi.org/10.1016/J.TCS.2018.08.009
https://doi.org/10.1016/J.TCS.2021.11.005
https://doi.org/10.1016/J.TCS.2021.11.005
https://doi.org/10.1145/3313276.3316402
https://doi.org/10.1007/978-3-319-15579-1_41
https://doi.org/10.3390/A12090189
https://doi.org/10.1007/s00224-016-9702-4
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1007/978-3-642-17517-6_36
https://doi.org/10.1145/375551.375567

19:38

Designing Output Sensitive Algorithms for Subgraph Enumeration

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Henning Fernau, Petr Golovach, Marie-France Sagot, et al. Algorithmic enumeration: Output-
sensitive, input-sensitive, parameterized, approximative (dagstuhl seminar 18421). Dagstuhl
Reports, 8(10):63-86, 2019. doi:10.4230/DAGREP.8.10.63.

Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for
the analysis of exact algorithms. Journal of the ACM (JACM), 56(5):25, 2009.

Fedor V. Fomin and Dieter Kratsch. Ezact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010. doi:10.1007/978-3-642-16533-7.

Michael L. Fredman and Leonid Khachiyan. On the Complexity of Dualization of Monotone
Disjunctive Normal Forms. J. Algorithm. Comput. Technol., 21(3):618-628, November 1996.
doi:10.1006/jagm.1996.0062.

Leslie Ann Goldberg. Efficient algorithms for listing combinatorial structures, 1992. PhD
dissertation thesis.
Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Optimizing and parallelizing
ranked enumeration. Proc. VLDB Endow., 4(11):1028-1039, August 2011. doi:10.14778/
3402707 .3402739

Petr A Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Refined notions
of parameterized enumeration kernels with applications to matching cut enumeration. J.
Comput. System Sci., 123:76-102, February 2022. doi:10.1016/j.jcss.2021.07.005.

David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating all max-
imal independent sets. Inf. Process. Lett., 27(3):119-123, 1988. doi:10.1016/0020-0190(88)
90065-8.

Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J. Comput.,
4(1):77-84, 1975. doi:10.1137/0204007.

Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the
Enumeration of Minimal Dominating Sets and Related Notions. SIAM J. Discrete Math.,
28(4):1916-1929, January 2014. doi:10.1137/120862612.

Toshinobu Kashiwabara, Sumio Masuda, Kazuo Nakajima, and Toshio Fujisawa. Generation
of maximum independent sets of a bipartite graph and maximum cliques of a circular-arc
graph. J. Algorithms, 13(1):161-174, 1992. doi:10.1016/0196-6774(92)90012-2.

Leonid Khachiyan, Endre Boros, Khaled Elbassioni, and Vladimir Gurvich. On Enumerating
Minimal Dicuts and Strongly Connected Subgraphs. Algorithmica, 50(1):159, October 2007.
doi:10.1007/s00453-007-9074-x.

Benny Kimelfeld and Yehoshua Sagiv. Finding and approximating top-k answers in keyword
proximity search. In Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’06, pages 173-182, New York, NY,
USA, 2006. Association for Computing Machinery. doi:10.1145/1142351.1142377.

Donald E. Knuth. The art of computer programming, volume 4, pre-fascicle 2a: A draft of
section 7.2. 1.1: Generating all n-tuples, 2001.

Yasuaki Kobayashi, Kazuhiro Kurita, and Kunihiro Wasa. Efficient constant-factor approximate
enumeration of minimal subsets for monotone properties with weight constraints. Discret.
Appl. Math., 361:258-275, 2025. doi:10.1016/J.DAM.2024.10.014.

Yasuaki Kobayashi, Kazuhiro Kurita, and Kunihiro Wasa. Polynomial-delay enumeration
of large maximal common independent sets in two matroids and beyond. Information and
Computation, 304:105282, 2025. doi:10.1016/j.ic.2025.105282.

Kazuhiro Kurita, Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno. Efficient enumeration of
dominating sets for sparse graphs. Discret. Appl. Math., 303:283—295, 2021. doi:10.1016/7J.
DAM.2021.06.004.

Kazuhiro Kurita, Kunihiro Wasa, Takeaki Uno, and Hiroki Arimura. A constant amortized

time enumeration algorithm for independent sets in graphs with bounded clique number.
Theor. Comput. Sci., 874:32-41, 2021. doi:10.1016/J.TCS.2021.05.008.

https://doi.org/10.4230/DAGREP.8.10.63
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1006/jagm.1996.0062
https://doi.org/10.14778/3402707.3402739
https://doi.org/10.14778/3402707.3402739
https://doi.org/10.1016/j.jcss.2021.07.005
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1137/0204007
https://doi.org/10.1137/120862612
https://doi.org/10.1016/0196-6774(92)90012-2
https://doi.org/10.1007/s00453-007-9074-x
https://doi.org/10.1145/1142351.1142377
https://doi.org/10.1016/J.DAM.2024.10.014
https://doi.org/10.1016/j.ic.2025.105282
https://doi.org/10.1016/J.DAM.2021.06.004
https://doi.org/10.1016/J.DAM.2021.06.004
https://doi.org/10.1016/J.TCS.2021.05.008

A. Conte, K. Kurita, A. Marino, G. Punzi, T. Uno, and K. Wasa

48

49

50

51

52

53

54

55

56

57
58

59

60

61

62

63

64

65

66

67

68

Eugene L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science, 18(7):401-405,
1972. URL: http://wuw. jstor.org/stable/2629357.

Eugene L. Lawler, Jan Karel Lenstra, and Alexander H.G. Rinnooy Kan. Generating all
maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM Journal on
Computing, 9(3):558-565, 1980. doi:10.1137/0209042.

Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all maximal cliques. In
Proceedings of the 9th Scandinavian Workshop on Algorithm Algorithm Theory (SWAT 2004),
volume 3111 of Lecture Notes in Computer Science, pages 260-272, Humlebaek, Denmark, July
2004. Springer Berlin Heidelberg. doi:10.1007/978-3-540-27810-8_23.

Arne Meier. Parametrised enumeration. Habilitation thesis, Leibniz Universitat Hannover,
2020. doi:10.15488/9427.

John W. Moon and Leo Moser. On cliques in graphs. Israel journal of Mathematics, 3:23—-28,
1965.

M. C. Paull and S. H. Unger. Minimizing the number of states in incompletely specified
sequential switching functions. IRE Transactions on Electronic Computers, EC-8(3):356-367,
1959. doi:10.1109/TEC.1959.5222697.

Giulia Punzi, Alessio Conte, Roberto Grossi, and Andrea Marino. An efficient algorithm
for assessing the number of st-paths in large graphs. In Proceedings of the 2023 SIAM
International Conference on Data Mining (SDM), pages 289-297. STAM, 2023. doi:10.1137/
1.9781611977653.CH33.

Ronald C. Read and Robert E. Tarjan. Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees. Networks, 5(3):237-252, 1975. doi:10.1002/NET.1975.5.3.237.
Marco Rospocher. On the computational complexity of enumerating certificates of np problems,
2006. PhD dissertation thesis.

Frank Ruskey. Combinatorial generation. Working version (1j-CSC 425/520), 2003.
Johannes Schmidt. Enumeration: Algorithms and complexity. Preprint, available at https:
//www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/schmidt-da.pdf, 2009.
Akiyoshi Shioura, Akihisa Tamura, and Takeaki Uno. An optimal algorithm for scanning
all spanning trees of undirected graphs. SIAM J. Comput., 26(3):678-692, 1997. doi:
10.1137/80097539794270881.

Yann Strozecki. Enumeration complexity. Bull. EATCS, 129, 2019. URL: http://bulletin.

eatcs.org/index.php/beatcs/article/view/596/605.

Yann Strozecki. Enumeration complexity: Incremental time, delay and space. CoRR,
abs/2309.17042, 2023. doi:10.48550/arXiv.2309.17042.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining, (First
Edition). Addison-Wesley Longman Publishing Co., Inc., 2005.

Robert E. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM J.
Comput., 2(3):211-216, 1973. doi:10.1137/0202017.

Robert E. Tarjan. A note on finding the bridges of a graph. Information Processing Letters,
2(6):160-161, 1974. doi:10.1016/0020-0190(74)90003-9.

James C. Tiernan. An efficient search algorithm to find the elementary circuits of a graph.
Communications ACM, 13:722-726, 1970. doi:10.1145/362814.362819.

Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complexity for
generating all maximal cliques and computational experiments. Theoretical computer science,
363(1):28-42, 2006. doi:10.1016/J.TCS.2006.06.015.

Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algorithm for
generating all the maximal independent sets. SIAM Journal on Computing, 6(3):505-517,
1977. d0i:10.1137/0206036.

Takeaki Uno. A fast algorithm for enumerating bipartite perfect matchings. In Algorithms
and Computation, 12th International Symposium, ISAAC, pages 367-379, 2001. doi:10.1007/
3-540-45678-3_32.

19:39

Grossi's Festschrift

http://www.jstor.org/stable/2629357
https://doi.org/10.1137/0209042
https://doi.org/10.1007/978-3-540-27810-8_23
https://doi.org/10.15488/9427
https://doi.org/10.1109/TEC.1959.5222697
https://doi.org/10.1137/1.9781611977653.CH33
https://doi.org/10.1137/1.9781611977653.CH33
https://doi.org/10.1002/NET.1975.5.3.237
https://www. thi. uni-hannover. de/fileadmin/forschung/arbeiten/schmidt-da.pdf
https://www. thi. uni-hannover. de/fileadmin/forschung/arbeiten/schmidt-da.pdf
https://doi.org/10.1137/S0097539794270881
https://doi.org/10.1137/S0097539794270881
http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605
http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605
https://doi.org/10.48550/arXiv.2309.17042
https://doi.org/10.1137/0202017
https://doi.org/10.1016/0020-0190(74)90003-9
https://doi.org/10.1145/362814.362819
https://doi.org/10.1016/J.TCS.2006.06.015
https://doi.org/10.1137/0206036
https://doi.org/10.1007/3-540-45678-3_32
https://doi.org/10.1007/3-540-45678-3_32

19:40

Designing Output Sensitive Algorithms for Subgraph Enumeration

69

70

71

72

73

Takeaki Uno. Two general methods to reduce delay and change of enumeration algorithms.
National Institute of Informatics (in Japan) Technical Report E, 4:2003, 2003.

Takeaki Uno. Constant time enumeration by amortization. In Frank Dehne, Jorg-Ridiger Sack,
and Ulrike Stege, editors, Algorithms and Data Structures - 14th International Symposium,
WADS 2015, Victoria, BC, Canada, August 5-7, 2015. Proceedings, volume 9214 of Lecture
Notes in Computer Science, pages 593—-605. Springer, 2015. doi:10.1007/978-3-319-21840-3_
49.

Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189-201,
1979. d0i:10.1016/0304-3975(79)90044-6.

Leslie G. Valiant. The complexity of enumeration and reliability problems. SICOMP, 8(3):410—
421, 1979. doi:10.1137/0208032.

Luca Versari. A new algorithmic framework for enumerating commutable set properties, 2017.
Master Thesis, University of Pisa.

https://doi.org/10.1007/978-3-319-21840-3_49
https://doi.org/10.1007/978-3-319-21840-3_49
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/0208032

Subsequence-Based Indices for Genome Sequence
Analysis

Giovanni Buzzega' &
Department of Computer Science, University of Pisa, Italy

Alessio Conte &
Department of Computer Science, University of Pisa, Italy

Veronica Guerrini &
Department of Computer Science, University of Pisa, Italy

Giulia Punzi =
Department of Computer Science, University of Pisa, Italy

Giovanna Rosone &
Department of Computer Science, University of Pisa, Italy

Lorenzo Tattini &
EURECOM, Biot, France
CNRS UMR 7284, INSERM U 1081, Université Coéte d’Azur, Nice, France

—— Abstract

Compact indices are a fundamental tool in string analysis, even more so in bioinformatics, where
genomic sequences can reach billions in length. This paper presents some recent results in which
Roberto Grossi has been involved, showing how some of these indices do more than just efficiently
represent data, but rather are able to bring out salient information within it, which can be exploited
for their downstream analysis. Specifically, we first review a recently-introduced method [Guerrini et
al., 2023] that employs the Burrows- Wheeler Transform to build reasonably accurate phylogenetic
trees in an assembly-free scenario. We then describe a recent practical tool [Buzzega et al., 2025] for
indexing Maximal Common Subsequences between strings, which can enable analysis of genomic
sequence similarity. Experimentally, we show that the results produced by the one index are
consistent with the expectations about the results of the other index.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms;
Theory of computation — Data structures design and analysis

Keywords and phrases String Indices, Burrows-Wheeler Transform, Maximal Common Subsequences,
Sequence Analysis, Phylogeny

Digital Object Identifier 10.4230/OASIcs.Grossi.2025.20
Category Research

Related Version The algorithmic techniques shown in this paper are summarized from [13, 26].
Full Version: https://doi.org/10.1186/s13015-025-00271-z [13]
Full Version: https://doi.org/10.1186/s13015-023-00232-4 [26]

Supplementary Material
Software (Source Code of PHYBWT): https://github.com/veronicaguerrini/phyBWT2 [26]
Software (Source Code of MCDAG): https://github.com/giovanni-buzzega/McDag [13]

Funding Giovanni Buzzega: Partially supported by MUR PRIN 2022 project EXPAND: scalable al-
gorithms for EXPloratory Analyses of heterogeneous and dynamic Networked Data (#2022TS4Y3N),
and received funding from the European Union’s Horizon 2020 Research and Innovation Staff
Exchange programme under the Marie Sktodowska-Curie grant agreement No. 872539.

b corresponding author

© Giovanni Buzzega, Alessio Conte, Veronica Guerrini, Giulia Punzi, Giovanna Rosone, and
B Lorenzo Tattini;

licensed under Creative Commons License CC-BY 4.0
From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi’s 60th Birthday.
Editors: Alessio Conte, Andrea Marino, Giovanna Rosone, and Jeffrey Scott Vitter; Article No. 20; pp. 20:1-20:21

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:giovanni.buzzega@phd.unipi.it
https://orcid.org/0000-0002-4117-5312
mailto:alessio.conte@unipi.it
https://orcid.org/0000-0003-0770-2235
mailto:veronica.guerrini@unipi.it
https://orcid.org/0000-0001-8888-9243
mailto:giulia.punzi@unipi.it
https://orcid.org/0000-0001-8738-1595
mailto:giovanna.rosone@unipi.it
https://orcid.org/0000-0001-5075-1214
mailto:lorenzo.tattini@eurecom.fr
https://orcid.org/0000-0002-5477-084X
https://doi.org/10.4230/OASIcs.Grossi.2025.20
https://doi.org/10.1186/s13015-025-00271-z
https://doi.org/10.1186/s13015-023-00232-4
https://github.com/veronicaguerrini/phyBWT2
https://github.com/giovanni-buzzega/McDag
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

20:2

Subsequence-Based Indices for Genome Sequence Analysis

Alessio Conte: Partially supported by MUR PRIN 2022 project EXPAND: scalable algorithms for
EXPloratory Analyses of heterogeneous and dynamic Networked Data (#2022TS4Y3N).

Veronica Guerrini: Supported by the Next Generation EU PNRR MUR M4 C2 Inv 1.5 project
ECS00000017 Tuscany Health Ecosystem Spoke 6 CUP B63C2200068007 and 153C22000780001.
Giulia Punzi: Supported by the Italian Ministry of Research, under the complementary actions to
the NRRP “FitdMedRob - Fit for Medical Robotics” Grant (#PNC0000007), and received funding
from the European Union’s Horizon 2020 Research and Innovation Staff Exchange programme under
the Marie Sktodowska-Curie grant agreement No. 872539.

Giovanna Rosone: Partially supported by the Next Generation EU PNRR MUR M4 C2 Inv 1.5 pro-
ject ECS00000017 Tuscany Health Ecosystem Spoke 6 CUP B63C2200068007 and 153C22000780001,
and by project “Hub multidisciplinare e interregionale di ricerca e sperimentazione clinica per il
contrasto alle pandemie e all’antibioticoresistenza (PAN-HUB)” funded by the Italian Ministry of
Health (POS 2014-2020, project ID: T4-AN-07, CUP: 153C22001300001).

1 Introduction

Sequence analysis is one of the core branches of bioinformatics, and it is arguably one of the
most fundamental tasks due to the abundance of genomic sequences enabled by advancements
in sequencing technologies. Sequence analysis methods have a huge advantage compared to
“in vitro” methods: once a dataset is available, it can be instantly and easily shared with
anyone, it does not deteriorate or deplete, and can be analysed repeatedly with just regular
computers, without the need of expensive ad-hoc machines. This is one of the reasons why
much effort is dedicated to quickly produce new and more powerful sequencers, resulting in
larger datasets available to the scientific community, ranging from bacteria and viruses to
humans.

The size of genomic data can be daunting, as the length of genomic sequences ranges
from thousands (for some viruses, or proteins) to millions (e.g., E. Coli genome) or billions
(e.g., human genome). An important trade-off is immediately evident: more complex and
refined approaches can extract better-quality information from the data, but require more
computational resources to be executed, and may be not be applicable to complex organisms.
The research community has been advancing in two main directions: developing more
sophisticated algorithms, and extending their applicability to increasingly complex data.
A key task in the latter direction is optimizing the way data is represented and handled,
since just storing sequences in an uncompressed format may already require tens of GB of
space. In this scenario, compact indices are extremely valuable tools, that typically employ
algorithmic tricks to provide a good trade-off between the size of the index, and ease of
access to the data (as well as support for specific queries).

In this paper, our aim is to give an overview of two recent research results concerning
subsequence-based indices in bioinformatics, which involve Roberto Grossi both in their
past development and in their current investigation of future directions. We experimentally
highlight how these indices do more than just represent genomic data: their clever processing
of the input enables the extraction of salient information that can be used for sequence
analysis application tasks.

Specifically, the first research result we review is a method, called PHYBW'T [25, 26], that
addresses the problem of phylogenetic inference employing the Burrows-Wheeler Transform
(BWT) [11]. The BWT is a text transformation with the remarkable feature of clustering
together repeated sequences, a property originally intended to enhance compression, but
now widely used in genome indexing algorithms [32]. Phylogenetic inference refers to the

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

process of reconstructing the evolutionary relationships among species, or more generally,
among taxa. The PHYBWT methodology for phylogeny reconstruction uses the BWT of a
string collection [7, 35], precisely of a group of sequences representing different taxa, to group
related taxa together and to suggest evolutionary relationships. The main features of the
PHYBWT tool are its ability to work directly on raw sequencing data in an assembly-free
scenario, and the fact that it does not rely on pairwise sequence comparisons, and thus on a
distance matrix, but rather compares all the sequences simultaneously and efficiently.

The subsequent research result reviewed in this paper concerns the construction of a
deterministic finite automaton (DFA) to efficiently index all mazimal common subsequences
(MCS) of two (or more) input strings. A common subsequence is a sequence of characters
that occurs in the same order in all input strings, albeit not necessarily consecutively. An
MCS is a common subsequence that is not a subsequence of any other common subsequence.
The DFA, implemented as a labelled directed acyclic graph (DAG), is called McDAG, and
was presented in [12, 13]. Even if some previous works provide indices with better worst-case
bounds [18, 28], the McDAG index has been experimentally shown to be more efficient in
practice for real-world genomic data, as it is significantly faster to build and typically smaller
in size. Preliminary experiments (see Figure 3 from [12]) showed that the distribution of MCS
lengths appears to behave differently when comparing very similar or dissimilar genomes.

Aiming to illustrate the potential of the two methods for genomic data analysis, we
experimentally observe the MCS lengths distributions on genomic sequences within the same
taxonomic group, to get a picture of how these distributions behave on closely related taxa
versus more distant ones, using the phylogeny produced by PHYBWT as a guide.

Outline of the paper

The paper is organized as follows. In the rest of the introduction, we will provide a review of
the state of the art on both PHYBWT and MCSs. Then, in Section 2 we will provide some
technical preliminaries needed for the rest of the paper. Sections 3 and 4 will briefly review
the main ideas behind the PHYBWT [26] and McDAG [13] works, respectively. Finally,
Section 5 will present experiments on MCS lengths distributions for sequences from the same
phylogenetic trees produced by PHYBWT. The experimental comparison of PHYBWT and
McDAG with their relative state of the art is out of the scope of the present work, and the
interested reader can find it in their respective papers.

Related Work: Phylogenetic inference and PhyBWT

Sequence-based phylogeny aims to reconstruct evolutionary relationships between species,
or more generally taxa, by comparing their DNA (or protein) sequences. The relationships
among taxa are traditionally displayed in a tree-shaped diagram called phylogenetic tree,
which can be rooted or unrooted. The leaves of the tree represent the contemporary organisms,
while internal nodes represent common ancestors from which descendant lineages diverged.

The development of next-generation sequencing technologies in the early 2000s revolution-
ized this field, enabling researchers to sequence entire genomes quickly and cost-effectively.
Such an amount of whole-genome sequencing data has lead to the need of advanced compu-
tational algorithms and tools for efficient phylogenetic inference.

Numerous sequence-based methods have emerged and evolved over time in this research
field [43]. Most of them rely on a distance matrix by computing the pairwise evolutionary
distances between every pair of input sequences representing the taxa. Distance measures are
typically based on sequence alignment, and once the distances are obtained, the sequences
are no longer utilized in the analysis.

20:3

Grossi's Festschrift

20:4

Subsequence-Based Indices for Genome Sequence Analysis

X0 ®0 0 0n00M000

- -

- - -
- -

- - -
- .-

- - -

Y OO Do e e 0 e

Figure 1 The two strings X, Y shown in the figure have as only LCS the string TATATA of length 6,
shown with matching dashed edges. The MCS set is instead composed of three strings: TATATA, GGGG,
and CG. In LCS-based analysis, the longer LCS prevents us from considering the second-longest
MCS, GGGG (shaded), as a possible meaningful common pattern.

=
- - -7 _ -
- - -
- _- -
-

In 1992, Bandelt and Dress [4] introduced a technique called split decomposition that was
shown to enhance phylogenetic analysis [5]. Based on a solid mathematical ground [4, 6],
the split decomposition involves constructing a set of splits (binary partitions of the set of
taxa) from a given dissimilarity matrix, each split being weighted by an isolation index that
intuitively quantifies the strength of the split on the basis of the dissimilarity values. Given
a distance matrix for ¢ taxa, the list of splits is computable in polynomial time (of order £°).
Phylogenies in a tree-shaped form can be constructed by greedily selecting the splits with
the highest isolation indices, as long as they are compatible?. Compatible splits correspond
to a tree structure and, conversely, any tree can be represented by a set of compatible splits.
Thus, ideal data gives rise to a phylogenetic tree, whereas phylogenetic networks, which
generalize phylogenetic trees, are reconstructed when the splits are weakly compatible (see
the tool SPLITSTREE [29)]).

The increasing cost of the alignment task has led to the development of alignment-free
approaches to efficiently quantify the dissimilarity between pairs of sequences [46]. Starting
from the split decomposition idea, the authors of [44] introduced an alignment-free method
called SANS that builds a list of splits and, from that, it infers the phylogeny by using
SPLITSTREE. However, differently from the split decomposition theory, SANS builds the
list of splits without relying on a distance matrix, and assigns weights to splits by counting
fixed-length substrings shared among the sequences. According to [44], for ¢ taxa represented
by sequences of length O(n) each, SANS runs in O(nflog(nf)) time.

The method PHYBWT proposed in [26] and reviewed in this paper also belongs to the
class of alignment-free approaches that infer phylogenetic relationships without relying on
pairwise sequence comparisons. It differs from SANS as it does not build a list of splits, but
rather defines a new strategy to draw a phylogenetic tree. Moreover, PHYBW'T evaluates
sequence similarity/dissimilarity considering shared strings of varying length, without fixing
a-priori the length of the common substrings. The interested reader can find a direct
comparison between SANS and PHYBWT in [26].

Related Work: Maximal Common Subsequences

Maximal common subsequences are a generalization of the well-known Longest Common
Subsequences (LCSs), that is, common subsequences of maximum length: indeed, each LCS is,
by definition, an MCS as well. LCSs are well-established in the context of genome sequence
alignment [41], and the value of the length of an LCS can be used as a string similarity
measure [8]. Still, by only considering the longest such sequences, (slightly) shorter but still
relevant alignments might be discarded (see Figure 1). At the same time, going instead
to the opposite extreme and considering all common subsequences would create too much

2 A set of splits is compatible if, for every pair of splits, at least one of the four possible intersections
between their parts is empty.

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

redundancy. A reasonable middle ground is thereby provided by MCSs, which can still be
exponential in number (as LCSs can be too [24]), but are significantly fewer than all common
subsequences.

The (shortest) MCS problem on strings® was proposed in [22], where the authors provided

a dynamic programming algorithm for finding the shortest MCS, and other related problems.

Sakai later provided the first (almost) linear-time algorithm to extract one MCS between
two strings [39, 40]. This highlights a key difference from LCS computation, for which
there exists a SETH-based quadratic conditional lower bound [1, 9]. When increasing the
number of strings, this difference becomes even more pronounced: finding an LCS among an
arbitrary number of strings is NP-hard [33], while there is a polynomial-time algorithm for
extracting one MCS in the same setting [28]. MCSs were also recently employed as a tool for
a parameterized LCS algorithm [10].

In the past years, several works have appeared on the topic of MCSs, more specifically
in the direction of MCS enumeration and indexing, with Roberto Grossi contributing to
many of them. Indeed, he took part in the first results concerning efficient MCS enumeration
between two strings [16, 17], as well as in one of the two independent works that produced
the first polynomial-sized indices for MCSs [18, 27]. Finally, as previously mentioned,
he was involved in the development of the practical tool described and employed in the
present paper [12]. While providing no formal theoretical bounds on the space complexity,
experiments on genomic data have shown this algorithm to be more efficient in practice with
respect to [18] (see the Experimental Analysis in [12, 13]). Worst-case complexity bounds
for constructing MCDAG, and, more in general, for the minimum size of a DFA representing
all MCSs, remain an open problem [13, Conclusions].

MCS problems have been studied for an arbitrary number m of input strings as well.

Hirota and Sakai proposed a O(nmlogn)-time algorithm for computing one such MCS,
where n is the total length of the input strings [28]. The practical indexing tool of Buzzega
et al. [12] was also extended to deal with m > 2 strings in [13]. Moreover, the problem of
efficiently indexing MCSs of an arbitrary number of strings, as well as their enumeration, has

recently been shown to be unfeasible in time polynomial in the output size, unless P=NP [14].

2 Preliminaries

We consider a string X = X[1]... X[|X]|] as a sequence of characters from a finite and ordered
alphabet 3, where X[i] € ¥ denotes the character at position ¢ in X and | X | denotes the total
number of characters in X. Let X[i, j] denote the substring X[i]... X[j], for 1 <i < j <|X]|:

a substring X|[i, | X]|] (resp. X[1,4]) is called suffiz (resp. prefiz) of X, for any 1 <i < |X]|.

We use special characters {#,$} as markers delimiting input strings.

We say that string Z is a subsequence of X if there exist indices 1 <y < --- <ijz < |X]|
such that X[ix] = Z[k] for 0 < k < |Z|. If a subsequence can be mapped on X contiguously,
ie, forall0 < k <|Z|,ix =i1+k — 1, then Z is a substring of X. Moreover, Z is a common
subsequence of strings X and Y if Z is a subsequence of both X and Y (see Figure 1). More
specifically, let us call a pair (4, j) a match when X[i] = Y[j]: letting 1 < j; < --- < jjz <|Y]
be the indices such that Y[ji] = Z[k] for 0 < k < |Z|, then each pair (i, jx) is a match (as
X[ix] = Y[jx]) and we say that the pairs (i1, 1), ..., (iz,7z|) form a matching in X and
Y, whose corresponding string is Z. We observe that matches induce a partial order, defined

3 The concept of MCS in a more general form actually first appeared in data mining applications [3],
where they were defined over ordered sequences of itemsets, instead of over strings. The string setting
we consider for MCS can be seen as a special case of this framework, where each itemset is a singleton.

20:5

Grossi's Festschrift

20:6

Subsequence-Based Indices for Genome Sequence Analysis

as (i,7) < (¢/,4") iff i <4 and j < j’, which is total if the pairs belong to the same matching;
(i,7) < (¢, 4') is analogously defined. A string Z is a mazimal common subsequence (MCS)
of X and Y if there is no string W # Z that satisfies both conditions: (i) W is a common
subsequence of X and Y, and (4) Z is a subsequence of W. The set of all strings that are
maximal common subsequences is denoted by MCS(X,Y).

We next introduce some graph notions. A directed graph G = (V, E) consists of a set of
nodes V and a set of edges F C V x V', where each edge (u,v) is an ordered pair of nodes
that specifies a direction from u to v. Two edges (u,v) and (w, z) are said to be adjacent
if v = w. A path in G is a sequence of distinct edges, each adjacent to the next. If the
path starts at node s and ends at node t, it is called an st-path; it is a cycle when s =¢. A
DAG is a directed acyclic graph. Given a node u, the set N (u) indicates the out-neighbor
nodes v such that (u,v) € E, and the set N~ (u) indicates the in-neighbor nodes v such that
(v,u) € E. The out-degree of u is d*(u) = |[NT(u)|, and its in-degree is d~ (u) = [N~ (u)|; u
is a source if d~(u) = 0, and a sink if d*(u) = 0. In a labeled DAG G = (V, E, 1) each node u
is associated with a character I(u) € ¥ U {#,$}. In Section 4 we also consider labeled DAGs
in which each node u is associated with a match m(u) = (iy, ju)-

3 BWT-based Phylogenetic Inference

In this section we review PHYBWT, a methodology first introduced in [25] and subsequently
refined in [26], for reconstructing a phylogenetic tree bypassing the standard computationally
expensive steps of sequence alignment and de novo assembly. It can take as input any type
of sequence data representing taxa, such as whole-genome sequences and raw sequencing
reads.

The approach exploits the inherent combinatorial properties of the extended Burrows-
Wheeler Transform (eBWT) [7, 35] to index and detect relevant common substrings of
varying length. The common substrings then play a crucial role in building partition trees
without performing pairwise comparisons between sequences. This is the primary feature of
PHYBWT: the tree structure is inferred by comparing all the sequences simultaneously and
efficiently, without resorting to a distance matrix.

The second remarkable feature of PHYBWTT is that, to the best of our knowledge, it is
the first approach to apply the properties of the eBWT to the idea of decomposition for
phylogenetic inference. By indexing the sequences in the e BWT, we can identify maximal
common substrings of varying lengths that are used to group sequences together and to
partition groups of taxa based on their shared substrings.

Finally, the worst-case running time of PHYBWT is O(NY), where £ is the number of
taxa and N is the total length of all the taxa sequences, using O(N + ¢?) space.

In the following, we first provide an overview of the preliminary notions. These include
the extended Burrows-Wheeler Transform employed for detecting common substrings and the
positional clustering framework, which overcomes the limitation of a priori fixing the length
of the common substrings. Subsequently, we delineate the tree reconstruction methodology
of PHYBWT according to [26].

3.1 Burrows-Wheeler transform and Common Substrings

The Burrows-Wheeler Transform (BWT) [11] is a well-known reversible transformation that
permutes the symbols of a string in such a way that, as a result, the runs of equal symbols
tend to increase. In addition to enhancing the performance of memoryless compressors,
the BWT plays a crucial role in the development of efficient self-indexing compressed data
structures.

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

The BWT was first extended to a string collection in [35] (eBWT) by sorting cyclic
rotations of all the strings in the collection according to a special order, called w-order. In
order to use the lexicographic order rather then the w-order, in [7], a variant of the eBWT
was defined by appending a distinct end-marker symbol to each string and lexicographically
sorting the suffixes of all the strings in the collection. In the following, we call ebwt the
output string? defined in [7], and introduce some auxiliary data structures that allow to
detect common substrings in a string collection.

Let S = {s1,82,...,8m} be a collection of m strings. We assume that each string s; € S
is a sequence of n; — 1 characters from X followed by a special end-marker symbol $;, i.e.
si[ni] = $;, which is lexicographically smaller than any other symbol in ¥ and $; < §;, if
i < j. The total number of characters in S is N = Y " n;. The ebwt(S) string is defined
by concatenating the symbols preceding each suffix of the lexicographically sorted list of
suffixes of all the strings s1,..., s, where each s; is circular. The longest common prefix
(LCP) array [34] of S (denoted by lcp(S)) is the array of length N storing the length of the
longest common prefix between any two consecutive suffixes in lexicographically sorted list

of suffixes of s1,..., sy, using the convention that lcp(S)[1] = 0.
Finally, if S comes in £ parts, namely S = S;US;U. ..U Sy, where each S; is a non-empty
subset of {s1,...,sm}, and all the subsets are pairwise disjoint, then the color document

array of S (denoted by cda(S)) is the array of length N storing the indices of the subsets to
which the ebwt(S) symbols belong. The set S is omitted if it is clear from the context.

» Remark 1. Let R C §. The data structures ebwt(R), lcp(R), and cda(R) can be deduced
through a linear scan of the larger ebwt(S), lcp(S), and cda(S), as the relative order of
suffixes holds (see [7], cf. also [15]).

One technique to find common substrings of fixed length k£ in S is based on the use
of LCP-intervals. An LCP-interval of Icp-value k is a maximal interval [i, j] such that
lep[r] > k for ¢ < r < j (defined slightly differently from [2]); in other words, the interval
[, 7] corresponds to suffixes in the lexicographically sorted list that share at least the first
k characters. Nevertheless, the length of the common prefix in any LCP-interval could be
longer than k, possibly revealing common substrings of greater length.

To overcome the limitation of a priori fixing the length of common substrings in S,
the authors of [37] introduced a framework called positional clustering. According to this
framework, the boundaries of the intervals in the LCP array are data-driven, and not
established a-priori by a fixed k. Specifically, the intervals of interest are those enclosed
between two “local minima” in the LCP array. In fact, intuitively, a local minimum in the
LCP array indicates a shortening of the common prefix. Moreover, to exclude intervals
associated with short random prefixes, a minimum prefix length k,, can be established.
Formally, an eBWT positional cluster is a maximal substring ebwt[i, j] such that lep[r] > kq,
for all i < r < j, and none of the indices i < r < j is a local minimum of the LCP array®.
By definition, we have that any two different e BWT positional clusters are disjoint.

» Remark 2. Each e BWT positional cluster ebwt[é, j] corresponds to suffixes in the lexico-
graphically sorted list that have a common prefix (i.e., a common substring) of length given
by the minimum between lcp[i + 1] and lcp[j] (see [37, Theorem 3.3]). Thus, each e BWT
positional cluster ebwt[é, j] corresponds to a substring in S, and the values in cdali, j] provides
the information about the strings that contain it.

* In the literature, the extended transform of [7] is also called multi-string BWT [21] or mdolEBWT [15].

5 According to [26], an index r is said a local minimum if lcp[r — 1] > lcp[r] and lep[r] < lep[r + s], where
s> 1 is the number of adjacent occurrences of lep[r] from position r. For instance, the local minima of
lep =[2,1,3,5,4,4,2,2,7] are indices 2 and 7, corresponding to LCP values of 1 and 2, respectively.

20:7

Grossi's Festschrift

20:8

Subsequence-Based Indices for Genome Sequence Analysis

Remarks 1 and 2 are key to the PHYBW'T method, which detects common variable-length
substrings of a subset of taxa and uses this information to reconstruct a phylogenetic tree.

3.2 Tree Reconstruction Method

The methodology proposed in [26] reconstructs a tree T' through a series of refinement steps
performed on groups of taxa.

Formally, we denote the set of leaves as S = {51, Sa, ..., S¢} where each S; corresponds
to a taxon, which could be represented by a single sequence (e.g., genome sequence) or a
string collection (e.g., sequencing reads).

The tree T is defined as a partition tree of the set S:

each node of T corresponds to a non-empty set of taxa S’ C S;

the root of T' corresponds to S;

each leaf of T' corresponds to a distinct taxon S; € S, and vice-versa,;

for each node corresponding to S, its children form a partition of 5.

We define the operation of adding a node to T by a set: a set S’ C S can be added to T
only if it is compatible, i.e., if every other node of T corresponds to a set S” that satisfies
one of these conditions: S” C S/, 8” D S5, or §” NS’ = (i.e. no partial overlap between
S and S’). If this is the case, there is only one way to add S’ to T, namely, S’ becomes a
child of the smallest set P D S’ of T' (by cardinality), and all the other children of P that
are contained in S’ become the children of S’. The resulting T is still a partition tree.

We describe the method by first explaining the tree reconstruction procedure, which applies
a REFINEMENT procedure iteratively, and then by briefly sketching the inner REFINEMENT
algorithm. The rationale of the REFINEMENT algorithm is to group together nodes of T'
whose associated sequences share variable-length substrings not found in other sequences,
and to interpret this fact as a common feature of the group that differentiates it from the
others.

Tree reconstruction via the refinement procedure. The key idea is to refine an intermediate
partition tree by taking one of its internal nodes and applying the REFINEMENT procedure
to the groups of taxa corresponding to its children. Here, we consider REFINEMENT as a
blackbox that uses the e BWT and its related data structures to produce a list of compatible
subsets, which are new nodes that can be added to the partition tree. This process allows for
fine-grained node clustering, by restricting the input data to the sequences of the relevant
subtree. This is repeated until all internal nodes in the partition tree have only two children,
or no more refinements are possible. We report the pseudocode in Algorithm 1.

The tree produced is an unrooted tree, but for the sake of simplicity, we describe it as
rooted. At the beginning the unrefined partition tree 7' (Line 1 in Algorithm 1) is a rooted
star that has £ + 1 nodes: root S (non-final) and children Si,...,S; marked as final. The
mark final for a node indicates that no more refinement is possible at that node.

The algorithm iteratively processes any non-final node X of T' (Line 3): given the list of
nodes C1,...,C}, that are children of X, REFINEMENT (Line 6) returns a list L = Ly, ..., L,
with s < h, of compatible subsets of Uk (). The DRAW__AND MARK function adds the
nodes (possibly non-final) listed in L to T' (Line 7).

To mark the node X as final, the DRAW__AND_ MARK function checks if L is empty
(Line 10). If L is not empty, a new internal node of T is created for each L; € L. Any
inserted node, as well as X, is marked final, if it has only two children; otherwise, it needs
to be further refined and is added to the queue (Lines 14-16). One possible iteration of
Algorithm 1 can be found in [26, Figure 2].

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

Algorithm 1 Tterative refinement of the partition tree (Algorithm 1 from [26]).

input :/{,ebwt(S),lcp(S),cda(S)
output : A tree whose leaves are colored with 1.../¢, each color being a taxon of S

1 Let T < Rooted star with a non-final root S, and final leaves colored 1.../¢
2 Queue.push(S)

3 while Queue is not empty do

4 X + Queue.pop()

5 Cy,...,Ch + X.children()

6 L < REFINEMENT (ebwt(S), lep(S), cda(S), {C1,...,Cr})

7 DRAW__AND_ MARK(T, L, X, Queue)

8 Function DRAW _AND MARK (T, L, X, Queue)

9 if L is empty then

10 ‘ Mark X in T as final // cannot further refine X
11 else

12 foreach set L; of L do

13 L Add L; as a node in T if not already present

14 Mark as final every new node with two children in T'

15 Add to Queue all new nodes not marked final

16 Mark X as final if it has two children, otherwise add it to Queue
17 Return T'

The refinement procedure. The inner REFINEMENT function returns a list L of compatible
subsets starting from a set of sibling nodes C1,...,Cy of T, which correspond to some (not
necessarily all) taxa. Specifically, if C; is a leaf, then C; corresponds to one taxon (represented
by a single sequence or a string collection), otherwise C; is an internal node and corresponds
to the subset R; C S comprising all the taxa associated with the leaves of the subtree rooted
at C;. Let R = U?Zl R; be the set of all the taxa corresponding to nodes Cfi,...,Ch.

To quantify the similarity of a subset of taxa in R in terms of their common substrings,
the e BWT positional clustering framework is employed and scores are assigned to some of the
eBWT positional clusters detected. More precisely, given R C S, by Remark 1, we linearly
scan the data structures ebwt(S), lep(S) and cda(S) to detect and analyse eBWT positional
clusters in ebwt(R). Among all the e BWT positional clusters detected, by Remark 2, we
consider relevant the ones associated with common substrings that are shared by a sufficiently
large number of taxa in R (but not by all of them) and cannot be extended on the left —
the reader can find details in [26, Definition 3.5]. Since any relevant positional cluster is
associated with a unique subset R C R of taxa sharing a common substring of variable
length, we assign the length of that common substring as the cluster’s score for subset R (see
also Remark 2). After analysing all the relevant positional clusters, we have a weighted list
L of subsets of R. Each subset R in L corresponds to at least one relevant positional cluster,
and its weight is the sum of all the scores for R over all the relevant positional clusters.

Finally, to build up the output list L, we sort the subsets in £ by their weight and greedily
select those with the highest weight that are compatible with each other. For computational
efficiency, we stop the greedy procedure after a certain number of consecutive unsuccessful
attempts to add elements to L (more details in [26]).

20:9

Grossi's Festschrift

20:10

Subsequence-Based Indices for Genome Sequence Analysis

4 The McDag Compact Index for Maximal Common Subsequences

In this section we describe the main ideas of the practically efficient compact index McDAG
introduced in [12]. In the present paper, for the sake of simplicity, we describe the results for
two input strings, even if they have also been extended to handle an arbitrary number of
strings in [13].

Let us first formalize the definition of an MCS index as follows:

» Definition 3 ([12], Section 2.2). Given two strings X and Y of length O(n), a labeled DAG

G = (V,E,l) is an index for MCS(X,Y) if the following conditions hold:

1. Each node u (other than source or sink) is associated with a match denoted as m(u) = (4, 7),
and has label l(u) = X[i]| = Y[j], where 1 <i < |X| and 1< j <|Y].

2. There exist a single source s and a single sink t, with special values m(s) = (0,0), I(s) = #,
and m(t) = (| X+ 1,|Y|+1), I(¢t) = 8.

3. Each st-path P = s,x1,...,xp,t is associated with unique string Z = l(x1),...,1(zp) €
MCS(X,Y), and the associated matching for P must satisfy m(x1) < -+ < m(zp).

4. For each Z € MCS(X,Y) there is a corresponding st-path P = s,21,...,xp,t such that
Z = l(l’l), ceey l(l‘h)

Let us note that a naive construction of such an MCS index (e.g., through a trie) could
potentially require exponential time and space, as the number of nodes may be proportional
to the number of MCS, which can in turn be exponential in the input size. Constructing
such a compact MCS index in an efficient way is therefore not trivial.

We start by giving a high-level idea of how this problem is solved by MCDAG in Section 4.1,
and then, in Section 4.2, we focus on explaining how to efficiently compute the frequency
distribution of MCS lengths from the MCDAG index.

4.1 Overview of McDag Construction

The best way to define MCDAG is to employ a two-phase scheme. In the first phase, an
approzimate rightmost co-deterministic index A= (Va, E4,l4) for the set of MCSs is built.
Approximate, rightmost, and co-deterministic respectively mean that (i) A indexes both
the whole set of MCSs as well as some non-maximal common subsequences; (i) for each
edge (v,u) no character l4(v) appears between the positions defined by matches m(v) and
m(u); and (i74) each node of A has at most one in-neighbor labeled with any character ¢ € X.
Then, the second phase builds a deterministic version of A (i.e., where each node has no
more than one out-neighbor per character) that does not contain any non-maximal common
subsequence, yielding the final McDAG. This latter procedure is called McCONSTRUCT, and
its pseudocode is reported in Algorithm 2.

Empirical results show that the size of the initial approximate index A plays an important
role in determining the size of the output MCS index. For this reason, we here review a
method to construct A that tries to include few non-maximal common subsequences to
begin with. Nevertheless, MCCONSTRUCT correctly produces an MCS index for any input
approximate rightmost co-deterministic index. For example, one could use a variant of the
Common Subsequence Automaton [19, 20, 42], which models all common subsequences of a
set of input strings.

First phase. We start by building a deterministic approximate MCS index D = (Vp, Ep,lp):
we first add a source sp with associated match m(sp) = (0,0), corresponding to character
l(sp) = #; then, we start to visit all nodes u in Vp. Throughout construction we ensure

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

that all nodes have distinct matches: if m(u) = m(v) then u = v. When visiting node u, we
consider for each character ¢ € ¥ the closest match (i, j.) > m(u). If there exists a match
m’ such that m(u) < m’ < (i, j), then we discard (i, j.). Otherwise, we identify node v
with match m(v) = (i, jc), or create v if it is not present. Then, we connect node u to node
v. If we are not able to connect u to any node, we connect it to the sink ¢p, which has match
m(tp) = (|X|+1,|Y|+ 1) and label I(¢tp) = 3.

To build A, we repeat the same process in the opposite direction, reading the input
strings right-to-left while using D as a guide: for each node u, we define a corresponding set
of nodes F(u) C Vp as the nodes that share a suffix with u. We start by adding ¢4, with
F(ta) = {tp} and match m(t4) = m(¢tp). To ensure that F(u) is completely defined, we
visit u only after we have visited all its potential out-neighbors, i.e., all nodes w that have
match m(u) < m(w). When processing a node u, we add its in-neighbors and enrich their
F(-) sets as follows. We consider each node = € Vp such that (z,y) € Ep for some y € F(u),
and if there is a match m’ such that m(z) < m’ < m(u), we discard x. For each character c
associated with the non-discarded nodes x, we select node v with match m(v) = (i, j.) such
that ¢ does not appear in X[i. +1]... X[i, — 1] and Y[j. +1]...Y[j, — 1], or create it if not
present, and add it as an in-neighbor of u. We then add all non-discarded nodes x to F(v).

Algorithm 2 McCoONSTRUCT (Algorithm 1 from [12]).

Data: Input A = (Va, Fa,la): rightmost approximate co-deterministic MCS index with
source s
Result: A deterministic MCS index G = (V, E, 1)
1 Initialize G = (V, E, 1), where V = {s}, E =0, m(s) = m(sa), l(s) = #
// F(u) is the set of nodes in A corresponding to w in G
2 F(s) « {sa}
3 while there exists u € V with no out-neighbors and l(u) # $ do

4 Initialize N. =) for all c € £ U {$}
5 forall (z,y) € Ea such that x € F(u) do
6 L Add y to N., where ¢ = [(y)
Initialize P = ()
forall N, # () do
9 ic < min{i. | (iz,J.) = m(z) Az € Nc}
10 Je + min{j. | (iz,7:) =m(z) Az € N}
11 Add match (i, j.) to P
12 forall N. # (0 and p € P do
13 L Remove all y from N, such that p < m(y)
14 forall N. # () do
15 if no node w € V has F(w) = N, then
16 Add new node w to V'
17 Set F'(w) = N¢, m(w) = (ic, je), l(w) = ¢
18 else Let w € V be the node such that F(w) = N,
19 Add edge (u,w) to E

20 return G = (V, E,l)

Second phase. Given A = (V4, E4,la) with source s from the first phase, we apply
Algorithm 2 (McCONSTRUCT) to obtain a graph G = (V, E,l) that becomes our McDaG
with source s. Again, we associate each node u € V with a set F(u) of nodes from Vy,
all having the same label as u (initially, F'(s) = {sa} with label #). This time, a node

20:11

Grossi's Festschrift

20:12

Subsequence-Based Indices for Genome Sequence Analysis

(a) The first deterministic approximate index (b) The co-deterministic approximate index A,
D, with |[Vp| =15 and |Ep| = 21. with [Va| = 15, and |E| = 19.

Figure 2 First phase of MCDAG construction for input strings X = TACCATGCG and Y =
CCTTCTGAA.

x € F(u) must share at least one prefix with u. At each step we take a node u # ¢ and
add its out-neighbors. To do so, we take the out-neighbors of z in A and filter-out the ones
whose matches are to the right of some match (i, j.) > m(u), as they cannot lead to an
MCS: (i, j.) is a witness to defy their maximality. Then, we identify a node v with that
same associated set of filtered out-neighbors F'(v), or we add it if not present, and add edge
(u,v) to G. The key difference is that in the first phase each node w is uniquely identified by
match m(u), while in the second phase it is uniquely identified by the set F(u). We end up
having a single sink ¢, corresponding to $, only occurring at the end of both strings.

In the rest of this section we illustrate the described method with an example, and we
highlight the key features that make MCCONSTRUCT work. Consider the two input strings
X = TACCATGCG and Y = CCTTCTGAA. Figure 2 depicts the indices constructed during the
first phase. More specifically, Figure 2a depicts the deterministic approximate index D, built
by reading both strings left-to-right, while Figure 2b shows the co-deterministic approximate
index A which is constructed using D. Upon careful inspection, one can observe that A
does not contain the non-maximal sequence TTG as a source-to-sink path, whereas D does.
However, A still contains CCTG, which is also not maximal because of CCTCG.

Non-maximal common subsequences such as TTG or CCTG can be characterized in both of
these data structures by using the concept of subsequence bubbles. A subsequence bubble
is formed by a pair of paths that start and end at common nodes but are otherwise node-
distinct, with the added condition that the shorter path spells a subsequence of the longer
one. If a non-maximal common subsequence is contained in the index, the corresponding
st-path must pass through the shorter path of at least one subsequence bubble. For instance,
in Figure 2a a subsequence bubble is given by the pair of paths (1,3),(6,4),(7,7) and
(1,3),(3,5),(6,6),(7,7), in which the short path spells TTG and the long path spells TCTG,
thus witnessing the non-maximality of TTG. The main goal of MCCONSTRUCT is to ensure
that the resulting DAG contains no such subsequence bubbles. We refer the interested reader
to [12] for the proof of correctness.

Figure 3 finally shows the MCDAG index, resulting from using the index A as input for
McConsTrRUCT. Empirically, MCDAG has been shown to usually produce smaller indices
with respect to the provably polinomially-bounded index of [18]. Despite this, finding
a polynomial theoretical bound on the size of MCDAG remains an open problem. Note
that here we are comparing the size of the indices as output by the respective construction
methods, without applying any node removal. Otherwise, a simple automaton minimization

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

Figure 3 The McDAG index for input strings X = TACCATGCG and Y = CCTTCTGAA has |V| = 13,
|E| =17 (F(-) sets omitted for compactness). Note that there are two nodes for match (6,4): this
necessarily means that the two nodes have different F'(-) sets.

algorithm (such as Revuz’s algorithm [38] for acyclic deterministic finite automata) could
reduce the number of nodes to a minimum, independently of the starting MCS index. Finding
a tight bound on the size of the resulting minimal index also remains an open problem.

4.2 Generation of MCS Lengths Distribution

Building a deterministic index for MCSs allows us to perform a number of interesting
operations such as enumeration, counting, and random access. One particular operation
we might be interested in is related to counting: in Section 5 we will show experiments

comparing the distribution of the MCS lengths for different pairs of genomic sequences.

Here, we explain how one can generate such a distribution, by counting the number of paths
for each path-length inside a DAG, using dynamic programming. The code for generating
this distribution has been made available with the original paper [12], but the underlying
algorithm was not detailed therein. We give a brief description here.

Consider a DAG G = (V, E) and a generic node u € V. Let d(u); be the number of
paths of length 7 that start from node u and end in a sink. These values can be computed as
follows. For any sink ¢ we define d(t)o = 1. Then, for the remaining nodes we can compute
d(w)it1 = 2 (yv)ep A(v)i, for all i > 0. Indeed, if all out-neighbors v of u have already
computed their d(v); values, node u can gather the sum of paths of length ¢ and set the
result as the number of paths of length ¢ + 1 starting from w. At the end of the procedure,
the distribution of the path lengths will be stored at the sources of the DAG.

The main problem of the procedure we just described is that every counter d(u); can
take non-negligible space and may not fit into a machine word. As previously mentioned,
the number of MCSs can be exponential in the length of the input strings. This in turn

means that the space required to store the number of paths of a given length is O(n) bits.

Since for our purposes we are interested in the qualitative distribution of the MCS lengths,
we can use a trick (commonly known as log-sum-exp) to ensure that each d(u); value can
fit into a machine word. Namely, instead of storing the number of paths in d(u);, we store
the logarithm of that number, as d*(u); = log(d(u);) = O(n) for all u and i. To directly
compute the value d*(u);+1 we do the following: first, we find the maximum number of
paths of length i among all out-neighbors as a; = max(, ,ep d*(v)s; then we compute

d*(u)iy1 = a; + log (Z(%U)EE 2(d*(’0)i*ai)).

20:13

Grossi's Festschrift

20:14

Subsequence-Based Indices for Genome Sequence Analysis

5 Experiments

In this section, we experimentally review that the BWT-based tool PHYBWT can achieve
benchmark-level accuracy in phylogenetic reconstruction by exploiting the common substrings
among taxa. Furthermore, we provide experimental evidence suggesting that the tool for
MCSs indexing could offer valuable insights for inferring evolutionary relationships.
Specifically, the plots showing the distribution of the MCS lengths reveal a notable
correlation between sequences associated with taxa that are close in the phylogenetic tree.

Datasets. For this study, we selected two datasets from two well-known viruses: the Human
immunodeficiency virus (HIV) and the Ebola virus. Since viruses can evolve rapidly, viral
phylogenies are challenging and often look very different. However, clade classification plays
a crucial role in virology, since each clade (or subtype) represents a group with shared genetic
similarities.

The HIV dataset comprises 43 HIV-1 complete genomes that have been used in the
literature [45]. Thirty-five sequences belong to the major group (Group M) which is divided
into subtypes A, B, C, D, F, G, H, J, K; seven sequences are from the minor Groups N
and O, and one CPZ sequence (CIV strain AF447763) is an outgroup. The average length
of the sequences is 9267 base pairs. The reference sequences have been carefully selected
in [31] according to several criteria, and can be downloaded from the Los Alamos National
Laboratory HIV Sequence Database.

The Ebola dataset comprises 20 published sequences from [23] selected in [30]. The
Ebolavirus genus includes five viral species: Ebola virus (Zaire ebolavirus, EBOV), Sudan
virus (SUDV), Tai Forest virus (TAFV), Bundibugyo virus (BDBV), and Reston wvirus
(RESTV). The average length of the sequences is 18900 base pairs.

Phylogeny reconstruction. For the HIV dataset, Figure 4 depicts the phylogeny produced
by PHYBWT in [26]. Resembling the benchmark phylogeny depicted in [45, Fig. 2], subtypes
are distinctly grouped together in different branches: subtypes B and D (resp. C and H) are
closer to each other than to the others, and subtype F (resp. A) contains two distinguishable
sub-subtypes F1 and F2 (resp. Al and A2) that are closely related to subtypes K and J
(resp. G), while subtypes N and O are external.

For the Ebola dataset, Figure 5 depicts the phylogeny produced by PHYBWT in [26].
According to the benchmark phylogeny depicted in [30, Fig. 4], PHYBWT exactly separated
the five species. The EBOV sequences are clustered into a monophyletic clade, and BDBV
and TAFV viruses are positioned close and then clustered with the EBOV branch. The
SUDV clade is placed as sister to the EBOV, TAFV and BDBV clade, like in [30, Fig. 4E].

Given the required data structures, PHYBWT reconstructs the proposed phylogeny for
each dataset in less than one second by performing only two iterations of Algorithm 1 for the
Ebola dataset and three iterations for the HIV dataset, with a RAM usage of approximately
8.5 MB.

MCS length distribution. We report in Figures 6 and 7 the logarithmic distribution of the
MCS lengths of different viruses taken from the HIV and Ebola datasets. On the z-axis we
find the various lengths of the MCSs, while on the y-axis the logarithm of their quantity.
Specifically, Figure 6 considers the four taxa AF286238 A2, AF286237 A2, U51190 Al,

5 http://www.hiv.lanl.gov/

http://www.hiv.lanl.gov/

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

AF447763 CPZ
AJ006022 N

—
\—: AY532635 N

AJ271370N
‘ L20571 0

AY169812 O
L E L20587 O

AJ302647 O

usss24 D
AY371157 D

AY331295 B
AY423387 B
K03455 B

AY173951 B

AF190127 H
AF005496 H

AY772699 C
AF067155 C
U52953 C
U46016 C
AF061641 G

—
_: AF084936 G
AF061642 G
[AF286238 A2
L Ar286237 A2

AF484509 AL
AF004885 AL
U51190 Al
AF069670 AL
AJ249239 K
]—: AJ249235 K
_: AF082395 J
AF082394 J

AJ249236 F2
AJ249237 F2
AY371158 F2

AF377956 F2

AJ249238 F1
AF075703 F1
AF077336 F1

AF005494 F1

Figure 4 The phylogenetic tree on the 43 HIV sequences by PHYBW'T [26, Figure 11]. Re-root
the tree in CIV strain AF447763, as it is set outgroup in the reference tree in [45]. We highlight the
strains that are used in the following experiments.

AJ006022 N of the HIV virus dataset, and Figure 7 considers the four taxa BDBV 2012
KC545393, BDBV 2007 FJ217161, TAFV 199 FJ217162, RESTV 1996 AB050936 of the
Ebola virus dataset. For both datasets, we selected two taxa that are very similar (AF286238
A2 and AF286237 A2 for HIV, and BDBV 2012 KC545393 and BDBV 2007 FJ217161 for
Ebola), one that is not too far from the first two (U51190 A1 for HIV, and TAFV 199/
FJ217162 for Ebola), and one last taxon that is far from every other considered taxon in the
phylogeny (AJ006022 N for HIV, and RESTV 1996 AB050936 for Ebola).

The algorithms for building McDAG and computing the distributions were implemented
in C++, compiled with g++ 11.4.0 using the -03 and -march=native flags. The source
code is available at https://github.com/giovanni-buzzega/McDag [12]. We carried out
the experiments on a DELL PowerEdge R750 machine in a non-exclusive mode, featuring 24
cores with 2 Intel(R) Xeon(R) Gold 5318Y CPUs at 2.10 GHz, and 989 GB of RAM. The
operating system is Ubuntu 22.04.2 LTS.

20:15

Grossi's Festschrift

https://github.com/giovanni-buzzega/McDag

20:16 Subsequence-Based Indices for Genome Sequence Analysis

RESTV 2008 FJ621584

‘ RESTV 1990 AF522874
RESTV 2008 FJ621583
RESTV 2008 FJ621585
RESTV 1996 AB050936

SUDV 1976 FJ968794

SUDV 2012 KC589025
SUDV 2012 KC545389
SUDV 2011 JN638998
SUDV 2000 AY729654

— TAFV 1994 EJ217162
\—: BDBV 2012 KC545393
BDBV 2007 FJ217161
—— EBOV 1996 KC242794
L EBOV 1994 KC242792
EBOV 1995 AY354458
EBOV 1976 KC242801
EBOV 2014 EM095
EBOV 2002 KC242800
EBOV 2007 HQ613403

Figure 5 The phylogenetic tree on Ebolavirus dataset by PHYBWT [26, Figure 13]. We highlight
the strains that are used in the following experiments.

—— AF286238 vs AF286237
AF286238 vs U51190
U51190 vs AF286237
200 4 AF286238 vs AJ006022
. AJ006022 vs AF286237
8 - U51190 vs AJ006022
= AB050936 vs AJ006022
*
100+
0 -
1000 1500 2000 2500
MCS length

Figure 6 Length distribution of MCSs among the selected pairs of DNA sequences from the HIV
dataset. The black line is the distribution of MCSs between HIV and Ebola virus taxa. The y-axis
is logarithmic (base 10).

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

KC545393 vs FJ217161
KC545393 vs FJ217162
FJ217161 vs FJ217162

KC545393 vs AB050936
FJ217161 vs AB050936
- AB050936 vs FJ217162
AB050936 vs AJ006022

200

log(#MCS)

100

1000 1500 2000 2500
MCS length

Figure 7 Length distribution of MCSs among different pairs of DNA sequences from the Ebola
dataset. The black line is the distribution of MCSs between HIV and Ebola virus taxa. The y-axis
is logarithmic (base 10).

For all strings we considered the substring between position 2500 and 5200 (chosen
arbitrarily), and we built McDAG. On average, index construction took 13.675 + 0.673
seconds, followed by 15.763 4+ 0.95 seconds to compute the MCS length distribution. As
shown on the y-axis on both Figure 6 and Figure 7, the number of paths (and hence MCSs)
in McDAG is quite large, reaching values on the order of 1027, Since such large numbers
still remain within the representable range of a double, we did not use the the log-sum-exp
trick in Section 4.2. However, when dealing with larger numbers of MCSs, we may have to
resort to this technique to avoid overflow errors. In this case, the execution time may grow
by a constant factor, due to the additional computational cost of the log and exp functions:
in some preliminary testing on our data, we saw that the execution time increased to an
average of 108.186 + 10.973 seconds.

We now briefly discuss the outcome of the experiments. Since the LCS length is known
to correlate well with string similarity [36], we see in both Figure 6 and 7, as expected, that
the two strings considered most similar have the far right tail of their distribution ending at
higher values on the z-axis. The most evident behaviour of the plots is that all lines, from
left to right, start with a bell shape and, after the peak, decrease following a straight line
before curving down again. This feature is more evident in the line that plots the distribution
of MCSs between the taxa considered most similar.

Interestingly, we see that the two lines (in blue and green) that correspond to the MCS
distribution between the taxon of medium distance and the first two taxa, are slightly
detached from the first red line. For instance, in the case of HIV, Figure 6 shows an almost-
perfect overlap up to lengths of 2100 on the z-axis; after that the lower similarity translates
to a smaller number of long MCSs, with the straight part of the bell shape decaying earlier
than in the red line. In the case of Ebola (Figure 7), there is again a gradual difference in
where the lines drop on the right side (more similar pairs drop further right), but also a
stark difference of the red line, representing the two closest taxa, in the left side of the graph:
the start of the line is shifted right compared to the others, meaning that every MCS is
longer than about 800. This behaviour suggests a particularly strong similarity, and further
investigation into how it arises is an interesting direction of work.

20:17

Grossi's Festschrift

20:18

Subsequence-Based Indices for Genome Sequence Analysis

The next three lines, in yellow, magenta, and cyan, represent the relations with the more
dissimilar taxon. We see in both figures that the three lines again overlap, and the right side
detaches from the other lines on lower values on the z-axis.

Finally, in both figures we added a black line that depicts the distribution of two completely
unrelated string: in both plots, we used taxon RESTV 1996 AB050936 of Ebola and taxon
AJ006022 N of HIV. In both cases we have that the black line closely follows a bell shape,
with no part of it showing a straight line behavior; moreover, on a large portion of the left
side, it overlaps with the yellow, magenta and cyan lines.

This suggests that there is some baseline set of MCSs of any unrelated strings that acts
as a background noise; after a given threshold length, the number of “non-noisy” MCSs seems
to be a good indicator of string similarity, and, as an extension, of taxon similarity.

6 Conclusions

We have reviewed two recent results that use compact string indices to naturally highlight
relevant information in a genomic context. The BWT-based approach PHYBWT infers
evolutionary links by clustering similar substrings, and the DAG-based index MCDAG can be
used to show the distribution of Maximal Common Subsequences, which exposes similarities
among strings. We have also shown experimentally that MCS length distributions vary
among closely related and more distantly related taxa, using the phylogeny generated by
PHYBWT as a reference. Further work in visualizing and analysing the information emerging
from these indices, as well as extending the analysis to new indices, is an interesting direction
to explore and may yield positive results in phylogeny and, more generally, in the analysis of
genomic sequences.

—— References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for
LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 59-78. IEEE, IEEE Computer Society, 2015. doi:10.1109/F0CS.
2015.14.

2 M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix
arrays. Journal of Discrete Algorithms, 2(1):53-86, 2004. doi:10.1016/S1570-8667(03)
00065-0.

3 Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Proceedings
of the eleventh international conference on data engineering, pages 3—14. IEEE, 1995. doi:
10.1109/ICDE. 1995.380415.

4 H.-J. Bandelt and A. W. M. Dress. A canonical decomposition theory for metrics on a finite
set. Advances in mathematics, 92(1):47-105, 1992.

5 H.-J. Bandelt and A. W. M. Dress. Split decomposition: A new and useful approach to
phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution, 1(3):242-252,
1992. doi:10.1016/1055-7903(92)90021-8.

6 H.-J. Bandelt, K. T. Huber, J. H. Koolen, V. Moulton, and A. Spillner. Basic Phylogenetic
Combinatorics. Cambridge University Press, 2012. URL: http://www.cambridge.org/de/
knowledge/isbn/item6439332/.

7 M.J. Bauer, A.J. Cox, and G. Rosone. Lightweight algorithms for constructing and inverting
the BWT of string collections. Theor. Comput. Sci., 483(0):134-148, 2013. doi:10.1016/j.
tcs.2012.02.002.

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1016/1055-7903(92)90021-8
http://www.cambridge.org/de/knowledge/isbn/item6439332/
http://www.cambridge.org/de/knowledge/isbn/item6439332/
https://doi.org/10.1016/j.tcs.2012.02.002
https://doi.org/10.1016/j.tcs.2012.02.002

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

10

11

12

13

14

15

16

17

18

19

20

21

22

Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence
algorithms. In Proceedings Seventh International Symposium on String Processing and Inform-
ation Retrieval. SPIRE 2000, pages 39-48. IEEE, 2000. doi:10.1109/SPIRE.2000.878178.

Karl Bringmann and Marvin Kiinnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of the 56th Annual IEEE Symposium

on Foundations of Computer Science (FOCS), pages 79-97. IEEE, 2015. doi:10.1109/F0CS.

2015.15.

Laurent Bulteau, Mark Jones, Rolf Niedermeier, and Till Tantau. An FPT-algorithm for
longest common subsequence parameterized by the maximum number of deletions. In Hideo
Bannai and Jan Holub, editors, 33rd Annual Symposium on Combinatorial Pattern Matching,
CPM 2022, June 27-29, 2022, Prague, Czech Republic, volume 223 of LIPIcs, pages 6:1-6:11.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/LIPIcs.CPM.2022.6.
M. Burrows and D.J. Wheeler. A Block Sorting data Compression Algorithm. Technical
report, DIGITAL System Research Center, 1994.

Giovanni Buzzega, Alessio Conte, Roberto Grossi, and Giulia Punzi. Mcdag: Indexing
maximal common subsequences in practice. In 24th International Workshop on Algorithms in
Bioinformatics (WABI 2024), pages 21-1. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2024.

Giovanni Buzzega, Alessio Conte, Roberto Grossi, and Giulia Punzi. MCDAG: indexing
maximal common subsequences for k strings. Algorithms for Molecular Biology, 20(1):6, 2025.
d0i:10.1186/s13015-025-00271~-z.

Giovanni Buzzega, Alessio Conte, Yasuaki Kobayashi, Kazuhiro Kurita, and Giulia Punzi.
The complexity of maximal common subsequence enumeration. Proc. ACM Manag. Data, to
appear, 2025.

Davide Cenzato, Zsuzsanna Liptak, Nadia Pisanti, Giovanna Rosone, and Marinella Sciortino.
BWT for string collections. Accepted to Festschrift’s honoree Giovanni Manzini, 2025. arXiv:
2506.01092.

Alessio Conte, Roberto Grossi, Giulia Punzi, and Takeaki Uno. Polynomial-delay enumeration
of maximal common subsequences. In Nieves R. Brisaboa and Simon J. Puglisi, editors, String
Processing and Information Retrieval, pages 189—202, Cham, 2019. Springer International
Publishing. doi:10.1007/978-3-030-32686-9_14.

Alessio Conte, Roberto Grossi, Giulia Punzi, and Takeaki Uno. Enumeration of maximal
common subsequences between two strings. Algorithmica, 84(3):757-783, 2022. doi:10.1007/
s00453-021-00898-5.

Alessio Conte, Roberto Grossi, Giulia Punzi, and Takeaki Uno. A compact DAG for storing
and searching maximal common subsequences. In Satoru Iwata and Naonori Kakimura, editors,
84th International Symposium on Algorithms and Computation, ISAAC 2023, December 3-
6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 21:1-21:15. Schloss-Dagstuhl-Leibniz
Zentrum fiir Informatik, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023. doi:
10.4230/LIPIcs.ISAAC.2023.21.

Maxime Crochemore, Borivoj Melichar, and Zdenek Tronicek. Directed acyclic subsequence
graph - overview. J. Discrete Algorithms, 1(3-4):255-280, 2003. doi:10.1016/S1570-8667(03)
00029-7.

Maxime Crochemore and Zdenék Tronic¢ek. Directed acyclic subsequence graph for multiple
texts. Rapport IGM, pages 99-13, 1999.

L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles. External memory BWT and LCP
computation for sequence collections with applications. Algorithms for Molecular Biology,
14(1):6:1-6:15, 2019. doi:10.1186/s13015-019-0140-0.

Campbell Fraser, Robert W. Irving, and Martin Middendorf. Maximal common subsequences
and minimal common supersequences. Inf. Comput., 124(2):145-153, 1996. doi:10.1006/
inco.1996.0011.

20:19

Grossi's Festschrift

https://doi.org/10.1109/SPIRE.2000.878178
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.4230/LIPIcs.CPM.2022.6
https://doi.org/10.1186/s13015-025-00271-z
https://arxiv.org/abs/2506.01092
https://arxiv.org/abs/2506.01092
https://doi.org/10.1007/978-3-030-32686-9_14
https://doi.org/10.1007/s00453-021-00898-5
https://doi.org/10.1007/s00453-021-00898-5
https://doi.org/10.4230/LIPIcs.ISAAC.2023.21
https://doi.org/10.4230/LIPIcs.ISAAC.2023.21
https://doi.org/10.1016/S1570-8667(03)00029-7
https://doi.org/10.1016/S1570-8667(03)00029-7
https://doi.org/10.1186/s13015-019-0140-0
https://doi.org/10.1006/inco.1996.0011
https://doi.org/10.1006/inco.1996.0011

20:20

Subsequence-Based Indices for Genome Sequence Analysis

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Stephen K. Gire, Augustine Goba, Kristian G. Andersen, Rachel S. G. Sealfon, Daniel J.
Park, Lansana Kanneh, Simbirie Jalloh, Mambu Momoh, Mohamed Fullah, Gytis Dudas,
Shirlee Wohl, Lina M. Moses, Nathan L. Yozwiak, Sarah Winnicki, Christian B. Matranga,
Christine M. Malboeuf, James Qu, Adrianne D. Gladden, Stephen F. Schaffner, Xiao Yang,
Pan-Pan Jiang, Mahan Nekoui, Andres Colubri, Moinya Ruth Coomber, Mbalu Fonnie, Alex
Moigboi, Michael Gbakie, Fatima K. Kamara, Veronica Tucker, Edwin Konuwa, Sidiki Saffa,
Josephine Sellu, Abdul Azziz Jalloh, Alice Kovoma, James Koninga, Ibrahim Mustapha,
Kandeh Kargbo, Momoh Foday, Mohamed Yillah, Franklyn Kanneh, Willie Robert, James
L. B. Massally, Sinéad B. Chapman, James Bochicchio, Cheryl Murphy, Chad Nusbaum, Sarah
Young, Bruce W. Birren, Donald S. Grant, John S. Scheiffelin, Eric S. Lander, Christian Happi,
Sahr M. Gevao, Andreas Gnirke, Andrew Rambaut, Robert F. Garry, S. Humarr Khan, and
Pardis C. Sabeti. Genomic surveillance elucidates ebola virus origin and transmission during
the 2014 outbreak. Science, 345(6202):1369-1372, 2014. doi:10.1126/science.1259657.
Ronald I. Greenberg. Bounds on the number of longest common subsequences. CoRR,
¢s.DM /0301030, 2003. arXiv:cs/0301030.

Veronica Guerrini, Alessio Conte, Roberto Grossi, Gianni Liti, Giovanna Rosone, and Lorenzo
Tattini. phyBWT: Alignment-Free Phylogeny via e BWT Positional Clustering. In Christina
Boucher and Sven Rahmann, editors, 22nd International Workshop on Algorithms in Bioin-
formatics (WABI 2022), volume 242 of LIPIcs, pages 23:1-23:19, Dagstuhl, Germany, 2022.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.WABI.2022.23.
Veronica Guerrini, Alessio Conte, Roberto Grossi, Gianni Liti, Giovanna Rosone, and Lorenzo
Tattini. phyBWT2: phylogeny reconstruction via eBWT positional clustering. Algorithms
Mol. Biol., 18(1):11, 2023. doi:10.1186/313015-023-00232-4.

Miyuji Hirota and Yoshifumi Sakai. Efficient algorithms for enumerating maximal common
subsequences of two strings. CoRR, abs/2307.10552, 2023. doi:10.48550/arXiv.2307.10552.
Miyuji Hirota and Yoshifumi Sakai. A fast algorithm for finding a maximal common subsequence
of multiple strings. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 106(9):1191-1194,
2023. doi:10.1587/transfun.2022dm10002.

D. H. Huson and D. Bryant. Application of Phylogenetic Networks in Evolutionary Studies.
Molecular Biology and Evolution, 23(2):254-267, October 2005.

Michelle Kendall and Caroline Colijn. Mapping Phylogenetic Trees to Reveal Distinct Patterns
of Evolution. Molecular Biology and Evolution, 33(10):2735-2743, 2016. doi:10.1093/molbev/
mswil24.

Thomas Leitner, Bette Korber, Marcus Daniels, Charles Calef, and Brian Foley. HIV-
1 Subtype and Circulating Recombinant Form (CRF) Reference Sequences, 2005. URL:
https://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/LEITNER2005/1eitner .html.
Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows—Wheeler
transform. Bioinformatics, 26(5):589-595, 2010. doi:10.1093/bioinformatics/btp698.
David Maier. The complexity of some problems on subsequences and supersequences. Journal
of the ACM (JACM), 25(2):322-336, 1978. doi:10.1145/322063.322075.

Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches.
In ACM-SIAM SODA, pages 319-327, 1990. URL: http://dl.acm.org/citation.cfm?id=
320176.320218.

S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of the Burrows-Wheeler
Transform. Theoret. Comput. Sci., 387(3):298-312, 2007. doi:10.1016/J.TCS.2007.07.014.
Mike Paterson and Vlado Dancik. Longest common subsequences. In International symposium
on mathematical foundations of computer science, pages 127-142. Springer, 1994.

N. Prezza, N. Pisanti, M. Sciortino, and G. Rosone. Variable-order reference-free variant
discovery with the Burrows-Wheeler transform. BMC' Bioinformatics, 21, 2020. doi:10.1186/
$12859-020-03586-3.

Dominique Revuz. Minimisation of acyclic deterministic automata in linear time. Theoretical
Computer Science, 92(1):181-189, 1992. doi:10.1016/0304-3975(92)90142-3.

https://doi.org/10.1126/science.1259657
https://arxiv.org/abs/cs/0301030
https://doi.org/10.4230/LIPIcs.WABI.2022.23
https://doi.org/10.1186/S13015-023-00232-4
https://doi.org/10.48550/arXiv.2307.10552
https://doi.org/10.1587/transfun.2022dml0002
https://doi.org/10.1093/molbev/msw124
https://doi.org/10.1093/molbev/msw124
https://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/LEITNER2005/leitner.html
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1145/322063.322075
http://dl.acm.org/citation.cfm?id=320176.320218
http://dl.acm.org/citation.cfm?id=320176.320218
https://doi.org/10.1016/J.TCS.2007.07.014
https://doi.org/10.1186/s12859-020-03586-3
https://doi.org/10.1186/s12859-020-03586-3
https://doi.org/10.1016/0304-3975(92)90142-3

G. Buzzega, A. Conte, V. Guerrini, G. Punzi, G. Rosone, and L. Tattini

39

40

41

42

43

44

45

46

Yoshifumi Sakai. Maximal Common Subsequence Algorithms. In Gonzalo Navarro, David
Sankoff, and Binhai Zhu, editors, 29th Annual Symposium on Combinatorial Pattern Matching
(CPM 2018), volume 105 of Leibniz International Proceedings in Informatics (LIPIcs), pages
1:1-1:10, Dagstuhl, Germany, 2018. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
d0i:10.4230/LIPIcs.CPM.2018.1.

Yoshifumi Sakai. Maximal common subsequence algorithms. Theor. Comput. Sci., 793:132—-139,
2019. doi:10.1016/j.tcs.2019.06.020.

Temple F Smith, Michael S Waterman, et al. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195-197, 1981.

Zdenek Tronicek. Common subsequence automaton. In Jean-Marc Champarnaud and Denis
Maurel, editors, Implementation and Application of Automata, 7th International Conference,
CIAA 2002, Tours, France, July 3-5, 2002, Revised Papers, volume 2608 of Lecture Notes in
Computer Science, pages 270-275. Springer, Springer, 2002. doi:10.1007/3-540-44977-9_28.
Tandy Warnow. Computational Phylogenetics: An Introduction to Designing Methods for
Phylogeny Estimation. Cambridge University Press, 2017.

R. Wittler. Alignment- and Reference-Free Phylogenomics with Colored de Bruijn Graphs.
In 19th International Workshop on Algorithms in Bioinformatics (WABI 2019), volume 143,
pages 2:1-2:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
do0i:10.4230/LIPIcs.WABI.2019.2.

Xiaomeng Wu, Zhipeng Cai, Xiu-Feng Wan, Tin Hoang, Randy Goebel, and Guohui Lin. Nuc-
leotide composition string selection in HIV-1 subtyping using whole genomes. Bioinformatics,
23(14):1744-1752, May 2007. doi:10.1093/bioinformatics/btm248.

Andrzej Zielezinski, Hani Z Girgis, Guillaume Bernard, Chris-Andre Leimeister, Kujin Tang,
Thomas Dencker, Anna Katharina Lau, Sophie Rohling, Jae Jin Choi, Michael S Waterman,
Matteo Comin, Sung-Hou Kim, Susana Vinga, Jonas S Almeida, Cheong Xin Chan, Benjamin T
James, Fengzhu Sun, Burkhard Morgenstern, and Wojciech M Karlowski. Benchmarking of
alignment-free sequence comparison methods. Genome Biology, 20:144, 2019. doi:10.1186/
s13059-019-1755-7.

20:21

Grossi's Festschrift

https://doi.org/10.4230/LIPIcs.CPM.2018.1
https://doi.org/10.1016/j.tcs.2019.06.020
https://doi.org/10.1007/3-540-44977-9_28
https://doi.org/10.4230/LIPIcs.WABI.2019.2
https://doi.org/10.1093/bioinformatics/btm248
https://doi.org/10.1186/s13059-019-1755-7
https://doi.org/10.1186/s13059-019-1755-7

	p000-Frontmatter
	Preface

	p001-Chen
	1 Introduction
	2 Graph edit distance
	2.1 State-of-the-art GED lower bounds

	3 Tightness analysis
	3.1 Relation of LED and BED
	3.2 Relation of HED and BED

	4 Tree-based search algorithm
	4.1 Search tree
	4.2 Heuristic cost estimation
	4.2.1 Heuristic function

	4.3 Algorithm

	5 Experiments
	5.1 Datasets and settings
	5.2 Evaluation metrics
	5.3 Experimental results
	5.3.1 Tightness of LED, HED and BED
	5.3.2 Effect of heuristic

	6 Conclusion and future works
	A Proof of Lemma 8
	B Examples of computing LED, HED and BED
	C Successor generation

	p002-Rizzo
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Solutions
	4.1 Basic properties and non-trivial settings
	4.2 Minimizing the cardinality
	4.3 Minimizing the size

	5 Future work

	p003-Bernasconi
	p004-Italiano
	1 Introduction
	2 Preliminaries
	3 Edge Burning Number
	3.1 NP-Hardness of Edge Burning
	3.2 Algorithms for edge burning on special graphs
	3.3 Parameterized complexity for edge burning

	4 Graph burning with all the activators on a path
	4.1 NP-completeness for GbAP
	4.2 A 2-approximation algorithm for GbAP on trees

	5 Graph burning with known activators
	5.1 A deterministic 2-approximation algorithm
	5.2 A randomized better than 2-approximation algorithm
	5.3 GbAI is fixed parameter tractable

	6 Conclusions

	p005-Anselmo
	1 Introduction
	2 Basic on Strings and Fibonacci Cubes
	3 Tilde-distance and Tilde-hypercube
	4 Tilde-hypercube Avoiding a Word and Tilde-isometric Words
	5 Characterization of Tilde-isometric Words
	6 Tilde-Fibonacci Cubes
	7 Conclusions

	p006-Alanko
	1 Introduction
	2 Basic Concepts
	3 Containment Entropy
	4 A Containment Entropy Bounded Representation with Fast Retrieval
	5 Other Operations
	5.1 Predecessor and Successor in a Set
	5.2 Set Operations
	5.3 Back to Bitvectors

	6 Construction
	7 Concluding Remarks

	p007-Equi
	1 Introduction
	2 Problem Definition
	2.1 Some Upper Bounds for SMLG

	3 Fine-Grained Complexity
	4 The Lower Bound for String Matching in Labelled Graphs
	5 Tighter Lower Bounds
	5.1 DAGs, Determinism and Bounded Degree
	5.2 Indexing Lower Bound
	5.3 Lower Bounds from Formula-SAT for shaving Logarithmic Factors

	p008-Kobayashi
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Properties of Binary Trees
	5 Enumeration of Full Binary Trees
	6 Enumeration of Binary Trees
	6.1 Enumeration of Complement Vectors
	6.2 Enumeration of Dummy Leaves
	6.3 Enumeration of the Leaf Configuration
	6.4 Overview of the Algorithm

	7 Extension to alpha-ary trees
	7.1 Properties of full alpha-ary trees and their enumeration
	7.2 Enumeration of alpha-ary trees
	7.2.1 Enumeration of full alpha-ary tree complement vectors
	7.2.2 Enumeration of the configuration of dummy leaves

	8 Conclusion

	p009-Bernardini
	1 Introduction
	2 String Sanitization
	2.1 The Model: Combinatorial String Dissemination
	2.2 Sanitizing Sensitive Patterns
	2.3 Hide and Mine

	3 Graph Sanitization
	3.1 The Community Breaking Problem
	3.2 Lower Bound on the Size of OPT

	p010-Brown
	1 Introduction
	2 Preliminaries
	2.1 Compressed suffix arrays
	2.2 Run-length compressed suffix arrays revisited

	3 Faster RLCSAs
	3.1 Searchable Interpolative coding
	3.2 Splitting Theorem for RLCSAs
	3.3 A faster RLCSA without rank queries

	4 Two-level indexing
	5 Boyer-Moore-Li with two-level indexing

	p011-Audrito
	1 Introduction
	2 Turing Arena light
	3 Related Work
	4 Architecture and design
	4.1 Problem manager
	4.2 Server
	4.3 Client
	4.4 User interface

	5 Implementation details
	5.1 Problem manager libraries

	6 Graphical user interface
	7 Future directions

	p012-Jo
	1 Introduction
	2 Range minimum queries
	2.1 Range minimum and maximum queries
	2.2 Range minimum queries on non-permutation input
	2.3 Range minimum queries on 2D array

	3 Range top-k queries
	4 Range mode
	4.1 Approximate range mode

	5 Range majority and minority

	p013-Sadakane
	1 Introduction
	2 Preliminaries
	2.1 Suffix arrays
	2.2 Succinct bit-vectors
	2.3 Secure algorithms
	2.4 Oblivious RAM

	3 Compressed Suffix Arrays
	3.1 The original structure
	3.2 Self-indexes

	4 Secure Compressed Suffix Arrays
	4.1 Computing Range
	4.2 Computing Lookup and Inverse
	4.3 Computing Psi
	4.4 Summary

	5 Concluding Remarks

	p014-Beal
	1 Introduction
	2 Background: directed acyclic word graph
	3 Computing the set of T-specific words
	4 Computing occurrences of target-specific factors: the T-specific table
	5 Absent word searching vs string matching

	p015-Ferragina
	1 Introduction
	2 Preliminaries
	3 Wavelet trees
	4 Properties of Wavelet Trees
	5 Varieties of Wavelet Trees and Their Characteristics
	6 Practical Implementations of Wavelet Trees

	p016-Nekirch
	p017-Cotumaccio
	1 Introduction
	2 Sorting, BWT Inversion and Related Problems
	3 Our Results
	4 Conclusions

	p018-Marangoni
	1 Introduction
	2 Structured motifs in the DNA
	3 Searching for permutations using PQ trees
	4 Conclusions

	p019-Conte
	1 Introduction
	1.1 Our Contribution
	1.2 Structure of the paper and roadmap
	1.3 Preliminaries

	2 Algorithmic Challenges and Brute Force Approaches
	3 Classes of Efficiency
	4 Partition Techniques for Enumeration
	4.1 Plain Backtracking
	4.1.1 Enumeration of Subsets of Bounded Sum: Backtracking

	4.2 Backtracking with Forbidden Set
	4.2.1 Bron-Kerbosch Algorithm for Maximal Clique Enumeration

	4.3 Flashlight Search
	4.3.1 Enumerating all st-paths in a graph
	4.3.2 Improving st-paths Enumeration: Dynamic Certificate

	4.4 Assessment of st-paths
	4.4.1 Main Idea: Expanding a Structural Lower Bound
	4.4.2 The Assessment Algorithm

	4.5 More about the Extension Problem

	5 Solution Graph Techniques for Enumeration
	5.1 Reverse Search
	5.1.1 Enumeration of Subsets of Bounded Sum: Reverse Search
	5.1.2 Maximal Clique Enumeration via Reverse Search

	5.2 Input-restricted Problem
	5.2.1 Designing the algorithm
	5.2.2 Supported classes of properties
	5.2.3 Complexity of the Algorithm and the IRP

	5.3 Proximity Search
	5.3.1 Completeness
	5.3.2 Canonical reconstruction
	5.3.3 Maximal Induced Chordal Subgraphs
	5.3.4 Extensions and alternatives

	6 Amortization analysis
	6.1 Amortization by Children and Grandchildren
	6.1.1 Enumerating all paths starting from s
	6.1.2 Enumerating all trees containing s

	6.2 Push out amortization
	6.2.1 Matching Enumeration
	6.2.2 Enumerating connectivity elimination orders
	6.2.3 Enumerating all perfect elimination orderings
	6.2.4 Spanning tree enumeration

	6.3 Geometric amortization: The gap between delay and average delay

	7 Hardness of Enumeration Problems
	7.1 NP-hard Enumeration Problems
	7.2 Introduction to parameterized enumeration
	7.3 Introduction to approximate enumeration

	8 Conclusions

	p020-Buzzega
	1 Introduction
	2 Preliminaries
	3 BWT-based Phylogenetic Inference
	3.1 Burrows-Wheeler transform and Common Substrings
	3.2 Tree Reconstruction Method

	4 The McDag Compact Index for Maximal Common Subsequences
	4.1 Overview of McDag Construction
	4.2 Generation of MCS Lengths Distribution

	5 Experiments
	6 Conclusions

