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—— Abstract

Generative language models present significant advancements in artificial intelligence with increasing
applications in software engineering education. This paper explores the potential of customized
generative dialogue models for automated assessment of programming assignments. The research
introduces KP Assistant, a tailored implementation based on GPT-40 developed for a Component
Programming university course. The research evaluated the effectiveness of this approach in generating
relevant questions about source code, assessing student understanding, and providing objective
feedback through a series of experiments with various game implementations and student testing.
The findings demonstrate the feasibility of integrating such models into educational workflows while
also acknowledging their present limitations. The study provides a framework for implementing
similar systems in programming education, showing how generative Al can augment traditional
assessment methods while maintaining pedagogical integrity.

2012 ACM Subject Classification General and reference — Empirical studies; Software and its engin-
eering — Empirical software validation; Computing methodologies — Natural language generation;
Social and professional topics — Student assessment

Keywords and phrases Artificial Intelligence, Generative Models, Programming Assessment, Software
Engineering Education

Digital Object Identifier 10.4230/0OASIcs.ICPEC.2025.13

Funding This work was supported by project KEGA No. 061TUKE-4/2025 Building Bridges between
University and High School ICT Education.

1 Introduction

The emergence of large language models (LLMs) recently has transformed various domains,
including software engineering and education. These models, trained on vast amounts of
textual data, demonstrate remarkable capabilities in understanding and generating human-
like text, including programming codes. With the introduction of conversational interfaces
like ChatGPT, Claude, and others, a new paradigm of human-AI interaction has emerged —
generative dialogue.

In software engineering education, the assessment of programming assignments has
traditionally been a time-consuming and sometimes subjective process. Instructors must
evaluate not only the functionality of student-submitted code but also assess the student’s
understanding of underlying concepts, design choices, and implementation details. This
multifaceted evaluation process presents an opportunity for generative dialogue models to
assist, potentially reducing faculty workload while maintaining or even enhancing assessment
quality.
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The findings presented in this paper contribute to the growing body of knowledge about
AT applications in education, particularly in the context of programming assessment. The
study demonstrates both the promising capabilities and current limitations of this approach,
offering helpful feedback to educators and researchers interested in leveraging generative Al
for educational purposes.

2 Generative Language Models in Education

Recent studies have demonstrated the potential of generative Al in educational contexts. In
their 2023 study, Yilmaz and Karaoglan Yilmaz [8] examined the impact of generative Al
tools on students’ computational thinking skills, programming self-efficacy, and motivation
in an object-oriented programming course. Their experiment involved 45 undergraduate
computer science students divided into experimental and control groups. The results showed
significant improvements in computational thinking, particularly in creativity (f = 0.427)%,
algorithmic thinking (f = 0.163), collaboration (f = 0.102), critical thinking (f = 0.102), and
problem-solving abilities (f = 0.151). Students in the experimental group also demonstrated
higher programming self-efficacy (f = 0.265) and overall motivation (f = 0.214).

Gouia-Zarrad and Gunn [4] explored the use of ChatGPT in a differential equations
course. Their research involved 90 engineering students who used ChatGPT for numerical
implementations of differential equations. The findings revealed that 91% of students reported
improved programming skills, 72% noted better understanding of numerical implementations,
and 70% indicated that ChatGPT helped them solve specific challenges. The study highlighted
ChatGPT’s effectiveness as a programming assistant, particularly in providing personalised
help tailored to each student’s knowledge level.

Our department is focusing on the evaluation of source codes extensively, whether it is
at non-LLM automated solutions or whole systems designed to test whole projects written
in different languages. Omne of our researchers, Marek Horvath, focuses on the analysis
and detection of LLM-generated source codes and has created several works that help us
significantly. Even though his work is not focused on the evaluation of source codes using
LLMs, various information can be learned about how source code is understood by LLMs
and what their limitations are. His work regarding variants of C programs generated by
ChatGPT][6] demonstrated to us how LLMs approach each prompt and what the results are.
On the contrary, he also explores possibilities to compare resulting source codes, recently
by binary decomposition of resulting solutions[7]. Naturally, there are more researchers
available at our department, but they focus mainly on standard evaluation methods based
on algorithms and comparative analysis.

2.1 Code Generation and Analysis

The capabilities of LLMs in code generation and analysis have been explored extensively.
Several systems like GitHub Copilot, which utilizes OpenAI’s Codex and GPT-4 models,
have demonstrated impressive performance in generating functional code blocks based on
natural language prompts or existing project context [2]. These systems integrate into
popular development environments and assist programmers in various tasks, including code
generation, refactoring, error identification, and documentation.

1 Cohen’s f ratio — measure of the strength of the relationship between variables
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Research by Ziegler et al. [9] on productivity assessment of neural code completion
tools found significant improvements in developer performance, particularly for routine
programming tasks. The integration of these tools into programming workflows has shown
potential for enhancing both efficiency and code quality.

3 Methodology

3.1 Design and Implementation

KP Assistant was developed as a customised GPT (Generative Pre-trained Transformer)
using OpenAT’s GPT Builder platform. This approach allowed for precise configuration of the
model’s behaviour through specialised instructions, knowledge base integration, and capability
settings. The underlying model selected was GPT-40 due to its superior performance in code
understanding and analysis during preliminary testing compared to alternative models.

An important characteristic of KP Assistant is that it was fully configured to operate in
the Slovak language, with all instructions, prompts, and interactions designed specifically for
Slovak-speaking students. This language specification was critical for seamless integration
into the Technical University of Kosice’s curriculum, where Slovak is the primary language of
instruction. However, some leeway was provided in terms of in-code comments or technical
terms, which are by industry best practices in the English language.

Based on previous research at our department and other universities, we were able to
design clear instructions for the GPT model in terms of expected answer structure and overall
GPT’s persona. Numerous sources provide recommendations for teachers and instructors in
undergraduate and graduate study programmes. These are usually based on the observed
behaviour and work results of students. One of the largest and more recent studies with well
documented results is written by Garcia et al.[3], where they conclude that informal and
more open behaviour leads to better results. Ozdag [10] came to a similar conclusion, along
with a list of key characteristics of a positively viewed educator, which were easy to convert
to character traits of our GPT. Configuring our GPT’s behaviour based on these and other
relevant findings created a hypothetically ideal persona for our assistant.

The assistant was configured with specific instructions divided into three main categories:

Basic Instructions: Defined the overall purpose, interaction style, and operational

parameters.

Conversation Start Instructions: Established fixed prompts for initiating different

types of assessment sessions.

Question Generation Instructions: Detailed guidelines for analysing student code,

generating relevant questions, and evaluating responses.

These instructions were not provided all at once to the assistant but were served behind
the scenes at predetermined phases of conversation. The whole conversation flow is visualized
in the provided diagram (Fig. 1), which shows expected input and action based on it. Simply
said, these instructions were served if previous input was deemed valid and sufficient for
further processing, which streamlined the process of the whole conversation. Additionally, in
this case we personally witnessed that hallucinations from GPT were more scarce, since it
was validating itself. Naturally, this more complex design made conversation slightly slower,
mainly after users uploaded their assignment. However, delay after this step was previously
present as well, and the time difference was deemed insignificant (approx. 10 seconds longer
in 10 testing runs).
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Figure 1 Flow of interaction with KP Assistant with valid inputs from user/student.

The assistant’s knowledge base was populated with course materials, including lecture
presentations and descriptions of game assignments that students could implement. This
provided essential context about the course structure, learning objectives, and assignment
requirements. Web search and code interpretation capabilities were enabled to allow access
to the course website and facilitate source code analysis.

Three conversation starters were defined corresponding to the three assignment submission
phases in the Component Programming course:

Submission 1: Game logic and JDBC

Submission 2: JPA + REST

Submission 3: Web browser game with GUI

For each submission type, the assistant was configured to generate and assess five questions
based on the submitted code: two easy questions (3 points each), two medium-difficulty
questions (5 points each), and one difficult question (6 points). Additionally, the assistant
was programmed to evaluate specific aspects of the implementation based on course criteria,
such as game functionality, service component integration, code quality, and testing.

3.2 Testing with Diverse Game Implementations

Six different game implementations were used to assess the assistant’s performance across
various code structures and quality levels: Battleships, Lights Off, Color Sudoku, NumberLink,
Reversi, and Connect Four. These implementations varied in complexity, code organization,
and overall quality, providing a comprehensive test bed for the system.

For each game, a structured testing procedure was designed and conducted:

Initiating a conversation using one of the submission options

Uploading the game’s source code as a ZIP archive

Answering the generated questions

Analysing the final assessment and score

Testing various edge cases and unexpected behaviours
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3.3 Student Evaluation

A total of 16 students from the Component Programming course participated in testing the
system, with 12 providing valid feedback. Students were instructed to follow provided steps
in this order:

1. Access KP Assistant using a provided link

Select the appropriate submission — in this case, first submission option

Upload their own game implementation

Answer the generated questions

Lol o\

Complete a feedback survey evaluating their experience

The survey collected both quantitative assessments (on a 5-point scale) of conversation
flow, question relevance, clarity, and evaluation objectivity, as well as qualitative feedback on
perceived strengths and weaknesses of the system.

3.4 Data Collection and Analysis

Data was collected from both experimental phases, encompassing conversation logs from
the system tests with the six reference games, student-assistant interaction transcripts, and
comprehensive survey responses from student participants.

The analysis methodology centred on identifying recurring patterns in three critical areas:
the quality of question generation, the accuracy of assessment procedures, and any usability
challenges that emerged during testing. Evaluation criteria were specifically designed to
measure the relevance of generated questions to the actual submitted code, verify assessment
consistency against expected scoring benchmarks, evaluate the natural flow and clarity
of conversations, detect instances of hallucination where questions referenced nonexistent
code elements and gauge overall student perception of the system through their qualitative
feedback.

4  Evaluation of Results

We have decided to evaluate results for each game individually since the output of LLMs is
based on how well they are trained, so it is likely that the original training data contained
different amounts of information about each game, which can affect results. Evaluation from
the student’s point of view is also needed since their grades are going to be affected by this
system.

4.1 Performance with Reference Games

Testing with the six reference game implementations revealed several key insights about KP
Assistant’s performance:
Battleships: The assistant performed well with this well-structured implementation,
correctly analysing the code structure and generating relevant questions. The final
assessment (33/34 points) aligned with the expected score based on code quality and
response accuracy.
Lights Off: During this test, the system was deliberately challenged by first uploading
incorrect file formats and then a valid but unrelated ZIP file. The assistant correctly
identified these issues and prompted for a proper submission. When the actual game code
was uploaded, one hallucination occurred where the assistant asked about a nonexistent
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method. After being informed of this error, it generated a replacement question, but
failed to maintain the correct question sequence, skipping directly to the fifth question.
The final score (24/34) appropriately reflected the code quality and response accuracy.
Color Sudoku: The assistant generated generally relevant questions, but one hallu-
cination occurred. Interestingly, when provided with a response that pointed out the
hallucination, the assistant accepted the answer as correct and awarded full points. This
behaviour indicates a potential evaluation vulnerability when students identify system
errors. During further testing, we were not able to replicate this behaviour in 50 attempts
with the same input, but its singular occurrence proves that even when analysing a fairly
common game, the LLM cannot be completely trusted.

NumberLink: When testing different submission types, the assistant could successfully
transition between them upon request. However, when challenged about point deduc-
tions, the assistant occasionally displayed flexibility in scoring that could potentially be
manipulated, suggesting the need for stricter evaluation protocols.

Reversi: This test involved a large codebase (42MB ZIP archive), which revealed
limitations in the assistant’s code analysis capability. Examination of the code analysis
logs showed that the assistant only processed the first ten files in the archive, leading to
incomplete understanding of the codebase and subsequent hallucinations in questions.
Connect Four: This implementation was intentionally minimal and low quality. The
assistant correctly awarded low scores (3 points) for the basic aspects, reflecting the poor
implementation. When asked to generate a complete working implementation of the
game, the assistant appropriately refused and instead offered guidance on resources and
documentation that would help improve the implementation.

4.2 Student Evaluation

The student evaluation provided valuable insights into the practical application of KP
Assistant in an educational setting. The distribution of game implementations among the 12
valid student responses. We had additional games available among our submitted assignments,
which allowed us to test the versatility of KP Assistant in scenarios that were not mentioned
in the provided materials. Additional games included Boulder Dash, Pipes, Nonogram, Bricks
Breaking, Dots, Kakuro, Checkers, and Slitherlink. Two of these games, Dots and Kakuro,
were made by two individual students, which allowed us to observe grading differences among
students with the same assignment but slightly varying results.

Students rated the conversation flow and clarity highly, with an average score of
4.42/5. Eight students gave the highest rating (5 — excellent), one rated it as excellent (4),
and three rated it as good (3). This suggests that the assistant’s communication style and
instructions were generally clear and easy to follow. The relevance of generated questions
to the actual code submitted received a moderate average rating of 3.42/5. Distribution was
more varied, with three excellent ratings, three very good, three good, two below average, and
one poor. This metric correlates with the hallucination issues observed in the reference game
testing, indicating that question generation based on code analysis remains a challenging
aspect of the system. Clarity and unambiguity aspect received an average rating of
3.58/5, with two excellent ratings, six very good, two good, one below average, and one poor.
The assistant’s ability to formulate clear, grammatically correct questions in Slovak was
generally successful. Students perceived the final assessment as relatively objective,
with an average rating of 4/5. Five students rated it as excellent, four as , one as good, and
two as below average. This indicates that despite some issues with question generation, the
overall evaluation framework generally aligned with student expectations of fair assessment.



T. Kormanik, V. Lukacova, and J. Porubdn

4.3 Key Takeaways and Potential Applications

Among many takeaways, most obvious was the conversational approach which allowed for a
more engaging and natural assessment experience compared to traditional automated testing
systems. Students appreciated the clear communication style and the opportunity to explain
their implementation decisions. KP Assistant demonstrated the ability to analyze various
game implementations and generate relevant questions about their specific structures and
features. This adaptability represents a significant advantage over rule-based assessment
systems that typically require separate configuration for each assignment type.

The system successfully integrated both question-based assessment of student under-
standing and automated evaluation of code quality and functionality aspects. This holistic
approach aligns well with educational best practices that emphasize both product and pro-
cess evaluation. Unlike traditional office hours or scheduled defenses, the assistant remains
available 24/7, allowing students to practice and prepare for formal assessments at their
convenience. This could be particularly valuable for distance learning scenarios or courses
with large student populations. Well structured prompts allowed for relatively straightfor-
ward adaptation to different courses, programming languages, and assessment criteria. This
versatility suggests potential for broader application across the computer science curriculum.

4.4 Limitations and Challenges

Despite its promising capabilities, several limitations emerged during the evaluation of KP
Assistant. The most significant technical limitation observed was the assistant’s restricted
ability to process and understand large codebases comprehensively. The processing of
only the first ten files in larger projects led to incomplete code understanding and subsequent
hallucinations. This suggests that improvements in code indexing and analysis are necessary
for handling complex projects. The occurrence of questions about nonexistent code
elements represents a critical challenge for educational applications. Such hallucinations
could confuse students and potentially undermine their confidence in both their code and the
assessment system. The assistant’s tendency to accept explanations about hallucinated
questions as correct answers indicates a potential vulnerability that could be exploited. A
more robust verification mechanism is needed to maintain assessment integrity. The most
effective mitigation of this issue was the implementation of carefully crafted assignments
which were designed for this use case. To utilise LLM assistant with the best results, we
tailored specific assignments (games in our case) specifically with future analysis by LLM
assistant in mind. We suggest creating these assignments with a maximum of 8 files in mind,
since students can potentially create their own documentation or environment files.

From architectural perspective, the observed behaviour changes following an OpenAl
platform update highlighted the potential instability of systems built on third-party Al
services. Educational applications require consistency and reliability that may be challenging
to maintain with rapidly evolving commercial Al platforms. The current implementation also
requires manual ZIP file uploads rather than direct integration with development tools
or submission systems, creating friction in the assessment workflow. This can be eliminated
by switching to locally deployed models, which can be integrated into complex pipelines, but
at the cost of convenience for both user and developer.

While students can freely access and use the custom GPT without a paid subscription,
creating and maintaining such customized assistants requires a paid OpenAlI subscription
for developer. This introduces an ongoing cost consideration for educational institutions
looking to implement and maintain similar systems long-term.
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4.5 Integration into Educational Practice

KP Assistant and similar systems should serve as supplements to, rather than replacements
for, instructor evaluation. Their primary value lies in providing additional practice
opportunities and preliminary feedback before formal assessment. For the Component
Programming course specifically, the assistant could be utilized as a pre-defense preparation
tool, allowing students to identify potential weaknesses in their implementation before
the official submission. Implementation should include mechanisms for instructor
oversight, such as conversation logging and the ability to review and override automated
assessments when necessary. In the context of Technical University of Kosice’s curriculum,
such features could be implemented through the existing GitLab system, where conversation
logs could be stored alongside student submissions for reference during final evaluation.

We should inform students about the system’s limitations to set appropriate expectations
and encourage critical evaluation of the assistant’s feedback. The documentation for the
Component Programming course could include specific guidance on how to interpret and
critically evaluate KP Assistant’s responses, particularly regarding the known hallucination
issues with complex codebases. Regular updates to the system’s knowledge base and
instructions based on observed performance and student feedback are essential for maintaining
relevance and accuracy. We should refresh lecture materials and game descriptions in the
assistant’s knowledge base for each semester to ensure alignment with current course content.
The experience from one academic year could inform improvements for the next.

Combining dialogue-based assessment with traditional automated testing could leverage
the strengths of both approaches while mitigating their respective weaknesses. The Java-
based projects in the Component Programming course already include unit tests, which
could be complemented by KP Assistant’s understanding-focused questions to provide a
comprehensive assessment of both code functionality and student comprehension. This
implementation enhances comprehension by providing Slovak language support. Maintaining
proper localization is crucial for educational applications targeted at large groups of students.
Future iterations could strengthen the Slovak technical vocabulary used in programming
contexts, ensuring that terminology is consistent with that used in lectures and course
materials at Slovak universities.

Ideally, phased implementation beginning with lower-stakes assignments before expanding
to critical assessments would allow both students and faculty to adjust to this new assessment
paradigm. For example, KP Assistant could first be used only for the initial submission
in the Component Programming course before potentially expanding to later submissions.
Because of the adaptable design shown with KP Assistant, we could create similar tools
for other programming classes, ensuring a uniform assessment experience throughout the
computer science program while still meeting the unique needs of each class. This claim is
supported by the fact that our assistant was able to analyze the source codes of games that
were not included in the provided materials but had similar mechanisms and components
inside.

We utilised our previously existing bundle of solutions to evaluate student assignments —
ARENA. This system has been developed over the last 5 years, and it has become part of half
a dozen subjects in our department. Further details can be viewed in the previous volume
of ICPEC|[5], which also refers to the previous versions of the system. One component of
this system in particular, ORACLE, provides personalised feedback to the students, based
on the runtime of their solutions, their coding practices and their way of designing the
algorithms. Along with KP Assistant, it helps provide regular and relevant feedback to the
students, which, as proven before, causes noticeable improvement in their performance. In
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the future, we aim to create a self-hosted variant of KP Assistant, which can be deployed
and implemented into the ARENA system. This will provide us valuable data about learning
patterns, common issues, misunderstandings and mistakes. Adding KP Assistant to the
ARENA system will allow the LLM to access student and reference source codes on the
department’s version control system, which will speed up the process of evaluation and
simplify the process from the side of the students.

5 Future Work

Our focus will shift to improving code analysis capabilities. Hallucination issues can be
addressed by creating assignments that are evaluated by KP Assistant and provided in various
states of resolution. Developing tighter integration with existing educational technologies,
either external or internal (such as ARENA), will provide more detailed insight into the
education process for educators and researchers. As LLMs continue to advance, their
application in programming education represents a promising frontier for enhancing both
teaching efficiency and learning outcomes.

Furthermore, we see the potential of LLM Assistant when used on courses that are not
focusing on evaluation of source code but on analysis of students approach to the successful
solution of the problem. We performed pilot experiments with some assignments from the
Security of Computers and Computer Networks course, where we supplied LLM with available
log files, packet dumps (from either tepdump or Wireshark), machine codes of software, and
student evaluations of these indicators. LLM has processed these inputs and provided us
with a grade and a worded evaluation of our approach.

Barath and Turancik[1] are detecting select attacks with the MATLAB environment,
which is effective in a production environment, but in an educational setting we can verify a
larger sample of attacks and their preventions crafted by students at the cost of effectiveness,
which is not relevant for us. Finally, this approach allows us to verify whether students
understood the resources they mentioned, such as the previously discussed solution utilising
ANN and classifiers, or if they misunderstood it, resulting in incorrect outcomes.

6 Conclusion

This study demonstrates the potential of customized generative dialogue models for automated
assessment of programming assignments in software engineering education. KP Assistant,
implemented using GPT-40 and tailored for a Component Programming course, showed
promising capabilities in generating relevant questions, providing feedback, and evaluating
student understanding across various game implementations.

The evaluation revealed both strengths and limitations of this approach. Key advantages
include the interactive assessment format, flexibility across different implementations, and
continuous availability. However, significant challenges remain, particularly regarding limited
code analysis depth, hallucination issues, and evaluation vulnerabilities. The conversational
nature of the LLM encouraged students to submit their assignments using this method or
simply ask questions about their progress.

Our findings suggest that while generative dialogue models can serve as valuable edu-
cational tools, they are best positioned as supplements to, rather than replacements for,
traditional assessment methods. With appropriate integration, oversight, and continuous
refinement, such systems have the potential to enhance programming education by providing
additional practice opportunities, reducing instructor workload for routine assessments, and
offering students more immediate and comprehensive feedback.
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