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Abstract
The paper presents a browser native C++ interpreter integrated into an AI-assisted educational
platform designed to enhance programming learning in formal education. The interpreter leverages
Parsing Expression Grammars (PEG) to generate Abstract Syntax Trees (AST) and executes C++
code using a TypeScript-based runtime. The system supports key C++ features, including pointer
arithmetic, function overloading, and namespace resolution, and emulates memory management
via reference-counted JavaScript objects. Integrated within a web-based learning environment, it
provides automated feedback, error explanations, and code quality evaluations. The evaluation
involved 4582 students in three difficulty levels and feedback from 14 teachers. The results include
high system usability scale (SUS) scores (avg. 83.5) and WBLT learning effectiveness scores (avg.
4.58/5). Interpreter performance testing in 65 cases averaged under 10 ms per task, confirming its
practical applicability to school curricula. The system supports SCORM and PWA deployment,
enabling LMS-independent usage. The work introduces a technical innovation in browser-based
C++ execution and a scalable framework for LLM-enhanced programming pedagogy.

2012 ACM Subject Classification Software and its engineering → General programming languages

Keywords and phrases C++ interpreter, browser-based execution, programming education, LLM-
assisted learning, PEG, AST, TypeScript runtime

Digital Object Identifier 10.4230/OASIcs.ICPEC.2025.14

Funding This research was funded by the Erasmus programme under the grant number 2023-1-
PL01-KA220-HED-000164696.

Acknowledgements We want to thank Renata Burbaitė and KTU students for the creation of
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1 Introduction

The integration of artificial intelligence (AI) and especially the rapid progress in the cap-
abilities of large language models (LLMs) in educational technologies has revolutionized
programming pedagogy, allowing automated error detection, code correction, and real-time
feedback mechanisms [26]. Recent advancements in browser-based interpreters, such as
Brython for Python and JS-Interpreter for JavaScript, have demonstrated the feasibility
of executing lightweight, interpreted languages in web environments, fostering interactive
coding platforms. However, extending such capabilities to compiled languages like C++
remains a significant challenge. Our work addresses the critical gap in existing frameworks
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by proposing a novel execution and evaluation environment featuring a C++ interpreter
engine designed for serverless execution in browsers, in particular, to be coupled with the
FGPE platform [25].

Current approaches to web-based C++ execution, such as WebAssembly-based compilers
(e.g., Emscripten) or transpilers like Cheerp, prioritize complete compilation over interactive
interpretation, limiting their utility for real-time feedback in educational settings. Further-
more, AI integration in programming education has focused predominantly on high-level
languages, with fewer efforts addressing the idiosyncrasies of systems programming paradigms.
Our research uses a hybrid approach: we use Parsing Expression Grammars (PEG) via
peg.js to parse C++ source code into an Abstract Syntax Tree (AST), which is evaluated in
a TypeScript runtime. By implementing core C++ features, including pointer arithmetic,
function overloading, and namespace resolution, within a browser environment, the proposed
engine bridges the divide between traditional desktop development and modern web-native
tooling.

Integration into the FGPE framework [25] further extends this infrastructure by providing
access to gamified programming exercises and their automatic evaluation with meaningful
feedback to students. We believe this well aligns with trends in intelligent tutoring systems
(ITS) that use static and dynamic analysis to personalize learning [19]. However, unlike
ITS platforms targeting Python or Java, our solution uniquely accommodates the dual
role of C++ as both a teaching language and a systems programming tool. By decoupling
exercise generation from Learning Management Systems (LMS) and embracing serverless
execution, the framework ensures scalability and accessibility, critical for widespread adoption
in educational ecosystems.

2 State of the art review

The execution of compiled languages like C++ in browser environments remains a niche yet
critical domain, contrasting sharply with the maturity of interpreted language implementa-
tions (e.g., Python via Pyodide or Brython). Contemporary research focuses primarily on two
paradigms: WebAssembly (Wasm) based compilation [36] and AST-driven interpreters [15].
Wasm frameworks such as Emscripten [8] excel in performance, allowing for near-native exe-
cution by translating C++ binaries into Wasm modules. However, their sandboxed runtime
obscures runtime introspection (ability of a program to examine its own state, structure, and
execution flow while it is running), limiting its utility in pedagogical contexts that require
granular error tracking or step-by-step debugging [27]. In contrast, AST-based interpreters,
such as those that underpin JavaScript-in-JavaScript systems (e.g., JS-Interpreter), prioritize
transparency over speed, allowing real-time code behavior analysis [1].

A second frontier lies in runtime variable management and type simulation [31], par-
ticularly for low-level languages like C++. Systems such as Pyodide [24] use Python’s
dynamic typing to abstract memory management, bypassing the complexities inherent in
C++. In contrast, C++ interpreters must deal with manual memory allocation, pointer
arithmetic, and implicit type conversions [32]. Other approaches, including Grasp.js [35]
AST analyzer and Microsoft SAL annotations, employ type-checking frameworks to enforce
safety guarantees in JavaScript-hosted runtimes.

Finally, integrating AI-driven code evaluation and exercise generation represents a nascent
but transformative direction [7, 6]. While tools like GitHub Copilot [10] and DeepCode [29]
focus on code suggestion in IDEs, browser-hosted systems face stricter latency and sandboxing
constraints. Intelligent tutoring systems (ITS) use static analysis for feedback, but lack a
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dynamic context-aware error explanation [20]. Transformer-based models (e.g., Codex [16] or
AlphaCode [18]) hint at possibilities for autonomous exercise generation, yet their deployment
in browser environments remains unexplored.

Beyond solving exercises, LLMs have been applied to the automatic creation of program-
ming exercises. Approaches involving autonomous agents [13, 21] show that these models
can generate high-fidelity content by capturing probabilistic links between programming
constructs and their associated natural language instructions. The underlying transformer-
based architectures [12] excel at modeling both contextual depth and long-term dependencies,
allowing the generation of exercises that are both technically precise and pedagogically
targeted [17]. Modern implementations often involve model fine-tuning with narrowly focused
datasets, such as annotated educational repositories or competition-grade coding challenges.
This process improves both content relevance and difficulty regulation. Advances in quick-fire
learning techniques and prompt optimization further enable these systems to accommodate
various instructional scenarios [5]. Their applicability spans from beginner programming
education to niche areas like machine learning algorithms and distributed computing. Some
architectures have also been customized to support gamified learning platforms, such as
FGPE [22].

However, despite the promising progress, several unresolved issues remain. One major
challenge is the presence of inherent bias in LLM training data [33], which can lead to unequal
representation between topics, fluctuating difficulty levels, and a lack of cultural inclusion.
Mitigating these biases will require the development of algorithmic correction techniques [34]
and the creation of diversified training corpora through collaborative and interdisciplinary
input. Another concern is randomness in LLM outputs [23], which can cause variability in
exercise quality and assessment accuracy, thus affecting consistency and repeatability in
educational applications.

3 Materials and methods

3.1 Dataset

To validate the proposed solution, we use open-access courses created by our team and
provided at open.ktu.edu. The courses contain materials for three different difficulty levels:
Programming Lessons, level 1 (C++), Programming Lessons, level 2 (C++), and Program-
ming Lessons, level 3 (C++). During the last school year (2024-2025), the courses were used
by 4582 learners (3443 in course 1, 731 in course 2, and 408 in course 3).

The first course contains 67 programming exercises grouped into the following topics:
linear algorithms, branched algorithms, loops with known iteration number, loops with
unknown iteration number, calculation of element quantity, sum, and average, nested loops,
and frequently encountered programming exercises. In addition to programming exercises, the
course contains 90 executable code snippets to support the theory material. The executable
snippets are created with the tool used to develop programming exercises. The example of
executable snippets is shown in Fig. 1.

The second course contains 44 exercises grouped into the following topics: reading from
and writing to files; a function that returns a computed value via the function name; a
function with reference parameters; static arrays (calculation of quantity, sum, and average);
static arrays (minimal and maximal elements); static arrays (search, insertion, and removal);
sorting algorithms; and dynamic arrays using the vector library. This course contains 74
executable code snippets to support the theory material.

ICPEC 2025
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Figure 1 The example of the executable snippet to support theory.

The third course contains 20 exercises. The third course contains considerably fewer
programming exercises because only a few new programming concepts were introduced to
learners in the last school year. The course includes the following topics: advanced string
usage and char arrays; structures. There is also testing material, but it does not contain
programming exercises (just executable snippets to support theory). In total, there are 23
executable snippets.

3.2 Implementation

The FGPE Lite environment is sketched in Fig. 2. Compared to the original FGPE envir-
onment [25], it uses a lightweight server only to store gamified programming exercises and
student progress. On the client side, the FGPE web app downloads gamified exercises and
student progress from a web server. It also communicates with a web server to store student
progress. The minimal communication can be postponed until the internet connection is
available. Besides UI, which implements a code editor, result and achievement visualization,
the client side also includes a gamification engine to monitor the students’ actions and gener-
ate instant feedback without a need to consult the server [30]. The execution environment
runs student code in a browser environment. The web server also communicates with the
learning management system to store student progress in a course. The LTI (Learning Tool
Interoperability) standard is used for that purpose.

Figure 2 FGPE Lite environment.
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Although the FGPE framework features the AuthorKit exercise editor, deeply embedded
in the original FGPE software stack [25], with a recently added layer of automatic gamified
exercise generation based on LLM [22], for the sake of this research, we decided to develop
and use an autonomous light-weight programming exercise creation, execution and testing
tool. In later development stages, we consider fully integrating it with the FGPE ecosystem
as a lighter alternative to AuthorKit. The composition of the programming exercise creation
tool is shown in Fig. 3. The main component is a Programming task builder. It uses Task
creation form to collect information about the programming task. The creation tool can
export SCORM (Sharable Content Object Reference Model) and PWA (Progressive Web
App) packages. The SCORM package is a .zip archive designed for use with leaA printable
version of an exercise can also SCORM template directory is updated using information
from the Task creation form to produce the final programming_task.zip. The PWA template
includes additional files to facilitate the creation of an installable web application, but
the resulting archive remains the same programming_task.zip. Both templates use the
cpp_interpreter.js file, which implements C++ code interpretation. Additionally, a printable
version of an exercise can be generated as a PDF document (programming_task.pdf ). It is
also possible to publish the programming task as a link; for that purpose, the tool creates a
programming_task_dir directory, uniquely identified by the task ID.

Figure 3 Programming task creation tool composition.

The execution and evaluation environment is produced by the programming task creation
tool. It is downloaded as a programming_task.zip. It can be extracted and executed on a
local machine or uploaded to a SCORM standard-supported learning management system.

The Hello, world! programming task is shown in Fig. 4.
The composition of the execution and evaluation environment is shown in Fig. 5. This

scenario is as if the generated solution is used as a PWA (Progressive Web App). The
index.html file contains the structure of the execution and evaluation environment. It uses
style.css for element design and utilities for various supporting functionality. For example,
it includes the ACE code editor for editing program code. The cpp_ide.js is a wrapper for
cpp_interpreter.js. It handles the input from and output to the console. It handles writing
to and reading from files. We use the virtual (in-memory) file system for that purpose. Each
file is created as a separate node in the DOM (Document Object Model). Also, it handles

ICPEC 2025
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Figure 4 Execution and evaluation environment.

exceptions thrown by the interpreter. The wrapper also prepares test cases (from the file
test.xml for evaluation. Finally, cppinterpreter.js is the C++ interpreter that interprets the
code provided by cppide.js, taken from the index.html code editor.

3.2.1 C++ interpreter implementation
Initially, we started the implementation of the interpreter from the Felix Hao open source
project [11]. This project has a very good foundation, although it lacks the functionality
required for school curricula. We extended this engine to cover most language features
required for school curricula. The forked and extended engine is located here [9]. We added
support for structures and file operations. Also, we implemented vector, algorithm, string,
sstream libraries. Finally, we rewrote the interpreter to enable advanced C++ features such
as function overloading and dynamic memory management.

The CPP interpreter engine implements the runtime to execute the C++ source code
in a web browser environment. The given C++ source code is parsed and then passed to
the Abstract Syntax Tree (AST). The parser and pre-processor are created using the peg.js
Parsing Expression Grammars (PEG) parser generator. The AST walker exports the function
definitions, including the entry point, main(), to the runtime, and then evaluates the main
function. The execution of the code ends after the AST walker approaches the end of the
main function or a run-time error.
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Figure 5 Execution and evaluation environment components.

The interpretation workflow is presented in Fig. 6. The C++ interpreter traverses and
evaluates the Abstract Syntax Tree (AST) during the program’s execution. The evaluation
begins with the initialization of an AST walker, starting from the root node of the tree, which
is typically the compound statement node that contains all the instructions of the function.
The interpreter enters a recursive depth-first-search traversal of the AST, implemented as a
JavaScript generator function.

Each node encountered’s type is identified and handled accordingly through a type-
specific dispatch mechanism. For instance, when encountering a function or operator call, the
interpreter attempts to match it with a defined function signature, pushes a new value scope
onto the stack to isolate local variables, and invokes the generator function associated with
the defined function. Literal values create non-lvalue (temporary) variables, while variable
declarations lead to the allocation of lvalue variables within the current scope. Return
statements are handled by bringing the returned value to the top of the evaluation context
and ignoring the evaluation of further statements.

The given list of node types is not exhaustive and consists of other node types that
correspond to certain expressions of the C++ programming language. The execution of the
global event loop can be paused when user input is required (e.g., reading a line from the
standard input), terminated when approaching a runtime error, or triggered by the user to
stop the execution. This traversal continues iteratively until the stack of nodes becomes
empty, at which point the AST evaluation concludes and the interpreter exits.

The C++ standard library functions are implemented internally in TypeScript code.
However, sufficient progress has been made to limit the number of functions that can only be
implemented internally to a minimum. Every include library contains the loading function,
which registers the data structures and functions. Partial support for the C++ namespaces
is implemented.

The complex nature of C++ introduces several technical challenges when writing a
compiler or an interpreter. These include implicit cast of a structure type to a boolean,
function parameter overloads, and multiple variable value types. They also include the
heritage from the C programming language, such as manual memory management, unsafe
pointer casts, and implicit conversions between arithmetic types. Several of these issues
are addressed in the runtime to ensure the correctness of the input C++ code and detect
commonly made mistakes. Runtime variables are implemented as JavaScript objects holding
a value object and a type object, allowing multiple variables to borrow and modify the same
l-value, as in standard C++. Of all possible C++ types, the engine supports arithmetic

ICPEC 2025
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Figure 6 Code interpretation loop.

types, pointers, compound struct/class types, and function types. Functions are not variables
but can be pointed to by a pointer variable, as in standard C++. A type object may contain
a member of another type, as with pointer types.

4 Experimental evaluation

To evaluate the tool as a learning object, a WBLT scale (Web-Based Learning Tools) scale [14]
was used to assess the constructs of learning, design, and participation. The SUS (System
Usability Scales) scales [4] were used to evaluate the tool’s usability. In addition to these
standard metrics, specific questions related to the tool’s functionality, AI-assisted support,
and the programming task-solving process were included. In addition, interpreter performance
was evaluated by testing its execution speed with real C++ programming exercises. Fourteen
school teachers participated in a survey using open-access courses at open.ktu.edu (see
section 3.1 for detailed description).

4.1 Evaluation of a solution as a learning tool
The evaluation scores for the WBLT components were obtained from survey data by cal-
culating the average of the ratings for the corresponding items. As shown in Fig. 7, the
average scores for the WBLT subscales were high. It was expected, as the tool was developed
intensively with the close collaboration of Lithuanian teachers. Internal consistency was eval-
uated using Cronbach’s Alpha. The Learning (α = 0.873) and Design (α = 0.883) subscales
demonstrated good reliability, while the Engagement subscale showed acceptable reliability
(α = 0.714).

The Learning subscale received a high average score of 4.58 (standard deviation: 0.62),
indicating that most teachers positively evaluated the tool’s contribution to the learning
process. The scores ranged from 3.2 to 5, while more than half of the respondents gave the
highest possible rating in this category. The Design subscale had a slightly lower average of
4.25, with a standard deviation of 0.88 - higher than for the other subscales. This suggests a
greater variation in user opinions about the design. The scores ranged from 2 to 5, but the



T. Blažauskas, A. Rauba, J. Swacha, R. Montella, and R. Maskeliunas 14:9

Figure 7 WBLT evaluation results.

median was still high at 4.5, and 75% of the respondents gave a score of 5. The Engagement
subscale was highly positively rated, with an average score of 4.5 (standard deviation: 0.51),
and all scores fell within a relatively narrow range of 3.5 to 5. This indicates that users felt
engaged while using the tool and had a positive learning experience.

Consistently high scores across all WBLT subscales have shown the pedagogical robustness
of the tool and its alignment with evidence-based instructional design principles. In particular,
the strong performance in the learning dimension (M = 4.58, SD = 0.62) indicates that the
tool effectively supports cognitive engagement and knowledge construction, fulfilling its core
educational function. The narrow range and high-rated concentration further reflect a shared
perception among educators that the tool contributes meaningfully to learning outcomes. Its
co-development with Lithuanian teachers ensured curricular alignment, contextual relevance,
and the integration of pedagogical advantages tailored to local instructional needs. Such
collaborative development practices are aligned with the participatory design framework
used in programming engineering courses and have been shown to enhance the adoption and
sustainability of digital learning tools in formal education settings.

4.2 Tool usability evaluation

Figure 8 SUS evaluation results.

ICPEC 2025
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The System Usability Scale (SUS) score of 83.5 places the tool within the upper echelon of
user-centered design performance, reflecting a strong consensus among users on its usability
and intuitiveness. When normalized against benchmark SUS datasets, this score corresponds
to approximately the 90th percentile, indicating that the system outperforms comparable
tools 90% in perceived usability. This percentile rank not only confirms the technical adequacy
of the system but also suggests that its interface, workflow logic, and interaction design are
closely aligned with user expectations and established human-computer interaction (HCI)
heuristics. This level of usability is particularly noteworthy given the diversity of users
typically involved in educational settings, where tools must accommodate a wide range of
digital competencies. The internal consistency of the SUS scale, measured using Cronbach’s
alpha, was 0.745, indicating an acceptable level of reliability. This shows that the 10 SUS
elements coherently reflect a unidimensional construct of perceived usability and that the
resulting composite scores can be interpreted as valid usability indicators.

From a psychometric and interpretative point of view, the SUS score of 83.5 corresponds
to an “A” grade within the curved grading framework proposed by Sauro and Lewis [28],
which indicates good usability relative to industry norms. The grading system accounts for
the nonlinear nature of user satisfaction and offers a nuanced classification of usability levels
based on normalized score distributions. Furthermore, the tool’s SUS score is located in
the upper bound of the “Good” adjective rating and approaches the “Excellent” category
established by Bangor et al. [2], reinforcing the validity of its favorable reception. The
acceptability framework, which designates scores above 70 as unequivocally acceptable,
further underscores the system’s readiness for wide-scale adoption in formal educational
contexts.

4.3 Evaluation of interpreter and AI features

To evaluate the C++ interpreter and AI features used in our tool, specific questions were
constructed aimed at the coverage and performance of the C++ language (questions Q1-Q4)
and the three AI functions we use within our tool: error explanation, code correction, and
code quality evaluation (questions Q5-Q9).

Table 1 summarizes the teacher responses to nine survey items on the C++ interpreter
and AI-assisted features in the programming environment. The first four questions focus on
interpreter capabilities. The results indicate that the programming tasks align well with the
national school curriculum (Q1), receiving a strong normalized average of 0.86. In particular,
all teachers positively rated the execution speed (Q2, normalized to 1.00), confirming that
performance is sufficient for educational purposes. Although Q3 results suggest minimal
perceived discrepancies with full C++ implementations (average: 0.92), it is crucial to
note that this perception may stem from the limited subset of language features used in
schools: Our interpreter remains substantially less compliant with the complete standard.
The relatively lower score for Q4 (0.78) reflects concerns about the informativeness of native
error messages, probably motivated by the integration of AI for improved feedback clarity.

The remaining five questions relate to the AI assistant’s error support and code evaluation
role. Teachers strongly believed in the necessity of AI-assisted error explanations (Q5, score:
0.96), and they generally agreed on their usefulness (Q6: 0.89), although some variation in
perceived quality was noted. Opinions diverged more significantly regarding the AI’s role
in automated code correction (Q7: 0.76), with some educators cautioning that excessive
automation may hinder student learning. Based on this feedback, the feature was made
optional and is currently disabled by default for learners. Finally, most respondents endorsed
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Table 1 Survey results for C++ interpreter and AI assistant features.

ID Survey Question Normalized
Avg. Score

Q1 The programming tasks cover the school curriculum. 0.86
Q2 The program code for the given tasks runs fast enough. 1.00
Q3 There are discrepancies between the “real” C++ language and this imple-

mentation.
0.92

Q4 The error messages (without AI assistance) are sufficiently informative. 0.78
Q5 I believe that AI assistance explaining the error messages is necessary. 0.96
Q6 The AI-generated explanations of error messages are appropriate. 0.89
Q7 I believe that the AI-based code correction feature is necessary. 0.76
Q8 I believe that the AI-based code quality assessment feature is necessary. 0.89
Q9 I believe that the code quality assessment is informative and appropriate. 0.82

AI-driven code quality evaluation in terms of necessity (Q8: 0.89) and informativeness (Q9:
0.82), although some variance suggests a need for refinement in feedback granularity and
pedagogical tone.

4.4 Evaluation of C++ interpreter performance
One of the most remarkable properties of interpreters is their speed or performance. In an
educational context, performance is not as important; therefore, our idea was to evaluate
how this interpreter performs with the code required to solve various programming tasks. We
decided to use our automated integration tests because these tests are based on programming
tasks designed to cover most of the interpreter functionality. The integration tests are
available in this repository [3].

There are 17 integration tests to test 17 programming tasks. Each programming task has
up to six testing cases (inputs and appropriate outputs to check on the same problem). In
total, 65 test cases were used for the evaluation. Each test case was run 50 times to avoid
possible result dissipation due to side processes. The performance of the given test cases was
measured on an Intel i7-1260P CPU, 16 GB of RAM, on a 64-bit Linux 6.11.0-114024-tuxedo
kernel, using Node.js version v22.14.0. The results are summarized in Table 2. Some names
of the problems in Lithuania were left to match those in the provided repository. The average
duration for all problems is less than 10 milliseconds. The maximum execution time was 48
milliseconds. This test showed that the interpreter’s performance is good enough for many
school-level programming tasks. It supports the subjective evaluation of teachers’ perceived
performance. Still, our future work includes optimizing our interpreter to solve more complex
problems that can be encountered in various programming competitions.

5 Discussion and Conclusions

The intersection of AI-driven code interpretation and browser-based execution environments
has emerged as a critical domain in computational education, particularly for languages such
as C++ that pose unique implementation challenges in web contexts. Traditional approaches
for interpreted languages (e.g., Python via Brython, Skulpt, or Pyodide) leverage existing
JavaScript engines and transpilation techniques to achieve browser compatibility. However,
compiled languages such as C++ require fundamentally different strategies due to their
reliance on static typing, manual memory management, and low-level constructs. Recent
advancements in WebAssembly (Wasm) have enabled near-native execution of compiled
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Table 2 Execution times of C++ integration tests.

Nr. Problem name Average duration (ms) max Duration (ms)

1 atom 17.10 48
2 dalelė 6.85 15
3 detalės 10.08 17
4 dėžės 4.09 8
5 gyventojai 6.98 13
6 kopija 1.59 3
7 melaginga-zinia 7.90 45
8 muziejus 30.35 43
9 rudeninė_mugė 4.18 6

10 sodinukai 6.34 9
11 sort_by_comparator 9.04 13
12 sort_static_array 1.74 3
13 stod_stof_stol_stoi 2.55 4
14 string_preprocessing 1.44 2
15 subjects 7.00 10
16 vector_subjects 7.62 12
17 vėlavimas 10.35 19

code via tools like Emscripten, which compiles C++ to Wasm for sandboxed execution
in browsers. Although effective, these methods often sacrifice run-time introspection and
dynamic error analysis, key requirements for educational frameworks. The proposed FGPE
C++ interpreter engine addresses this gap by combining Parsing Expression Grammars
(PEG) with Abstract Syntax Tree (AST) traversal, enabling real-time code evaluation and
error diagnosis without relying on external compilation pipelines and whole FGPE approach
aligns with emerging trends in pedagogical tools that prioritize interactive feedback over raw
performance. However, it introduces trade-offs in handling complex C++ features like pointer
arithmetic and template meta-programming, which remain poorly supported in existing
browser-based interpreters.

Integrating explainable AI in the feedback loop – through symbolic execution, AST
diffing, and constrained natural language explanations – shifts the paradigm from correction
to conceptual clarity. Unlike IDE-based LLM integrations prioritizing productivity, this
system foregrounds learning outcomes by deliberately limiting automation (for example, code
correction is optional) in favor of scaffolded reasoning. The strong correlation between high
engagement scores and the perceived necessity of error explanation (Q5: 0.96) underscores
that learners value interpretability over mere correctness.

Perhaps most importantly, the findings challenge a common assumption in programming
education: only interpreted or high-level languages are suitable for LLM-supported interactive
environments. By demonstrating sub-10ms execution latency for real C++ tasks and
delivering a SUS score in the 90th percentile, this work reveals that performance–observability
trade-offs are surmountable for systems languages when architectural decisions privilege
pedagogical alignment over raw throughput.

The results position the interpreter not only as a technical artifact but as a bridge between
formal semantics, instructional design, and AI-enhanced learning ecosystems. Future exten-
sions, such as deeper template support, richer namespace modeling, and formal verification
backends, could refine this framework to scale from high-school instruction to undergraduate
systems programming and competitive coding education. Its SCORM/PWA-compatible
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deployment also opens avenues for integration into decentralized, learner-owned educational
infrastructures, a prospect aligned with the growing push for open, explainable, and portable
EdTech tools.

However, while the current implementation demonstrates feasibility, future work will
further address interoperability with established LMS ecosystems (e.g., Moodle, Canvas) and
validate pedagogical efficacy through longitudinal studies. In these areas, Python-centric
platforms like JupyterHub have set precedents.
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