
Enabling Secure Coding: Exploring GenAI for
Developer Training and Education
Sathwik Amburi #

Siemens AG, Munich, Germany
Universität der Bundeswehr München, Germany

Tiago Espinha Gasiba #

Siemens AG, Munich, Germany

Ulrike Lechner #

Universität der Bundeswehr München, Germany

Maria Pinto-Albuquerque #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Abstract
The rapid adoption of GenAI for code generation presents unprecedented opportunities and significant
security challenges. Raising awareness about secure coding is critical for preventing software
vulnerabilities. To investigate how Generative AI can best support secure coding, we built an AI
Secure Coding platform, an interactive training environment that embeds a GPT-4 based chatbot
directly into a structured challenge workflow. The platform comprises a landing page, a challenges
page with three AI-generated tasks, and a challenge page where participants work with code snippets.
In each challenge, developers (1) identify vulnerabilities by reviewing code and adding comments,
(2) ask the AI for help via a chat based interface, (3) review and refine comments based on AI
feedback, and (4) fix vulnerabilities by submitting secure patches. The study involved 18 industry
developers tackling three challenges. Participants used the AI Secure Coding Platform to detect and
remediate vulnerabilities and then completed a survey to capture their opinions and comfort level
with AI assisted platform for secure coding. Results show that AI assistance can boost productivity,
reduce errors, and uncover more defects when treated as a “second pair of eyes,” but it can also foster
over-reliance. This study introduces the AI Secure Coding platform, presents preliminary results
from a initial study, and shows that embedding GenAI into a structured secure-coding workflow
can both enable and challenge developers. This work also opens the door to a new research field:
leveraging GenAI to enable secure software development.

2012 ACM Subject Classification Applied computing → Learning management systems; Security
and privacy → Software security engineering; Applied computing → Distance learning; Applied
computing → E-learning

Keywords and phrases Secure Coding, Industry, Software Development, Generative AI, Large
Language Models, Teaching

Digital Object Identifier 10.4230/OASIcs.ICPEC.2025.2

Funding Ulrike Lechner : Ulrike Lechner acknowledges funding from the European Union’s Next-
GenerationEU program for the LIONS project as part of dtec.bw.
Maria Pinto-Albuquerque: This work is partially financed by national funds through FCT - Fundação
para a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and UIDP/04466/2020.
Furthermore, Maria Pinto-Albuquerque acknowledges and thanks the Instituto Universitário de
Lisboa and ISTAR, for their support.

© Sathwik Amburi, Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque;
licensed under Creative Commons License CC-BY 4.0

6th International Computer Programming Education Conference (ICPEC 2025).
Editors: Ricardo Queirós, Mário Pinto, Filipe Portela, and Alberto Simões; Article No. 2; pp. 2:1–2:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sathwik.amburi@siemens.com
https://orcid.org/0000-0002-6139-5048
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
mailto:ulrike.lechner@unibw.de
https://orcid.org/0000-0002-4286-3184
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
https://doi.org/10.4230/OASIcs.ICPEC.2025.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de


2:2 Enabling Secure Coding: Exploring GenAI for Developer Training and Education

1 Introduction

Secure coding is the practice of writing code in a way that proactively mitigates security
vulnerabilities in software. It is essential because a large share of security incidents stem from
flaws in software code. In fact, according to the U.S. Department of Homeland Security, 90%
of reported security incidents result from exploits against defects in the design or code of
software [5]. Secure software development is crucial in industrial settings because neglecting
it can lead to safety issues or significant financial and reputational damage. Educating
developers about secure coding practices has therefore become a priority for reducing the
risk of breaches and costly fixes. Organizations recognize that educating developers about
security can dramatically improve outcomes [24, 3, 14].

Artificial intelligence (AI) is rapidly transforming software development, forcing software
teams to balance rapid feature delivery with security considerations. While AI’s impressive
code-generation capabilities accelerate development, they also introduce a wave of new
security risks [17]. Because Generative AI (GenAI) is so effective at generating code, some
AI model providers and AI evangelists claim that AI will soon write almost all software [23].
However, an empirical study by Fu et al. analyzed Copilot-generated snippets drawn from
public GitHub projects and found that 29.5% of Python and 24.2% of JavaScript samples
contained at least one Common Weakness Enumeration (CWE) vulnerability [8]. Although
AI coding assistants have impressive capabilities, security remains a concern in the code they
produce. As AI increasingly generates code, developers’ roles are shifting toward supervising
AI systems rather than manually writing every line. This transition requires developers to
maintain strong security awareness to guide AI-generated code toward secure outcomes.

To keep pace with GenAI-augmented development, developers must learn not only clas-
sical secure-coding principles but also new skills for using GenAI responsibly. Prompt
engineering and understanding of limitations of GenAI are becoming as important as tradi-
tional secure-coding checklists. Without explicit guidance, developers may over-rely on AI
suggestions, unknowingly propagating subtle vulnerabilities.

To investigate how GenAI can best support secure coding, we built an AI Secure Coding
platform, an interactive training environment that embeds a chatbot directly into the
challenge workflow. The AI Secure Coding platform was inspired by the Sifu platform [10].
The chatbot has access to participants’ source code and review comments. It can suggest
mitigations, generate secure patches, and explain underlying principles. The platform logs
all interactions, allowing us to observe usage patterns while participants solve secure-coding
challenges.

Using the AI Secure Coding platform with industry developers, we aim to answer the
following research questions:

RQ1: How do developers use GenAI to identify and remediate security vulnerabilities
during secure coding challenges?
RQ2: What are developers’ opinions about GenAI and how do they feel about using
GenAI for secure coding?

Insights from the above research questions would help inform a curriculum that enables
developers to leverage GenAI efficiently without over-reliance while prioritizing security when
coding. This study introduces the AI Secure Coding platform and presents preliminary
results from the initial study. The platform is being developed iteratively following Hevner’s
Design Science Research (DSR) methodology [12].



S. Amburi, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 2:3

This paper reports one DSR cycle [12] with a focus on problem understanding, it outlines
the initial design of the AI Secure Coding platform, and shares initial findings from the
initial study. By focusing on developers in the industry, this study delivers industry-relevant
guidance on weaving GenAI into secure-coding training while ensuring that security remains
an uncompromised top priority.

In Section 2, we review the related work for our research. In Section 3, we describe the
experimental setup of the initial study used to address our research question. Section 4
presents the results of the initial study. In Section 5, we discuss and reflect on the obtained
findings. Finally, Section 6 concludes the paper and outlines directions for future work.

This paper also opens the door and provides a first step toward a new and rich field of
research: how to leverage GenAI to enable secure software development.

2 Related Work

In this section, we discuss several studies that highlight recent research about large language
models, GenAI techniques and review their role in security, education and secure software
development. Since the advent of Github Copilot, use of GenAI for code generation has been
increasing at an alarming rate. Perry et al. [19] found that users produced more insecure
code, yet remained confident in its security when using AI assistants. The study included
47 participants: 33 assigned to the “AI-assistant” experiment group and 14 to the “no-
assistant” control group. Participants each solved five security-focused coding tasks (Python:
encryption/decryption, ECDSA signing, sandboxed file access; JavaScript: SQL insertion; C:
formatted integer-to-string) under a two-hour time limit. The authors concluded that AI
code assistants can inadvertently erode security by fostering overconfidence and automating
flawed coding patterns. Participants who actively structured prompts, verified outputs,
and understood security APIs performed better, suggesting that future assistants should
integrate security-aware prompting, library-usage warnings, and automated vulnerability
checks in-tool.

Belzner et al. [4] in their study argue that LLM-assisted software engineering holds
immense potential and if key challenges are addressed, it would revolutionize the software
engineering process. One such challenge they discuss is maintaining accountability for
generated content. This issue is also prevalent in the code that is generated by these LLMs.
It is essential that developers who use LLMs to generate code remain accountable for security
of the code LLMs generate. Belzner et al. also emphasize the need for robust evaluation of
generative outputs to guard against hallucinations and ensure factuality and coherence in
generated code. They further highlight challenges in integrating LLMs into large development
contexts and the importance of defining structured interfaces and knowledge-graph–based
approaches to maintain contextual continuity. Sallou et al. [22] also echo similar concerns
about the threats of using LLMs in software engineering and provide guidelines for software
engineering researchers on using LLMs. One such concern they discuss is reproducibility. It
is well known that LLMs generate variable texts for the same questions, making it difficult
to address issues if one cannot reproduce the same output. They recommend assessing
output variability and providing execution metadata to address reproducibility concerns. The
guidelines, concerns, and challenges outlined by Belzner et al. and Sallou et al. make clear
that developers leveraging LLMs must recognize their limitations and remain accountable for
the code these models produce. Another study by Kharma et al. [15] examines the security and
quality of LLM-generated code, revealing that while LLMs can automate code creation, their
effectiveness varies by language. Many models neglect modern security features introduced
in recent compiler and toolkit updates (for example, Java 17), and outdated practices persist,

ICPEC 2025



2:4 Enabling Secure Coding: Exploring GenAI for Developer Training and Education

especially in C++. Their study also uncovers stark discrepancies in semantic evaluation
success rates, averaging just 8.5% across models, with Gemini-1.5 peaking at 13.5%. These
gaps suggest that training data and model design heavily influence code-logic processing.
Such studies help both the software engineering and security communities understand these
constraints and incorporate corresponding guidelines into their workflows.

GenAI and LLMs can also enhance programming education and secure-coding training.
Gasiba et al. [9, 6] demonstrate in their studies how ChatGPT can raise secure-coding
awareness. They note that although models like GPT-3.5 and GPT-4 are not 100% accurate
at finding vulnerabilities, they serve as a helpful initial tool for spotting security issues.
However, excessive dependence on LLMs may discourage critical thinking. Balaz et al. [2]
illustrate this in an empirical study with computer-science students, showing that while
AI tools increase efficiency, they can also hinder the development of critical thinking and
problem-solving skills. A larger Microsoft study by Lee et al. [16] reaches similar conclusions.
The study finds that although GenAI can boost productivity, it may reduce deep engagement
and foster long-term reliance, eroding independent problem-solving abilities.

One way to enable developers to learn these guidelines, best practices, and limitations
is through targeted training and education programs in the industry; where, conveniently,
LLMs themselves can be employed to deliver interactive, hands-on exercises and personalized
learning experiences. Wang et al. [25] present a literature survey on the role of large
language models (LLMs) in education. The survey provides a comprehensive review of LLM
applications across various educational scenarios and envisions LLMs aiding in question
solving (QS), in error correction (EC), as confusion helper (CH), in question generation (QG),
in automatic grading (AG), in material creation (MC), at knowledge training (KT), and
at content personalization (CP). Huber et al. [13] state that LLMs in education may pose
some risk of over-reliance, potentially and unintentionally limiting the development of
domain expertise, and argue that challenges such as bias, misinformation, and deskilling
might be addressed through playful and game-based learning. They argue that effective
human–AI collaboration depends on deliberate practice through three interrelated learning
processes. First, learners apply abstract concepts to real-world tasks to gain hands-on
experience. Second, they analyse those experiences to develop a clear understanding of the
underlying ideas. Third, they critically reflect on both their actions and their newly formed
understanding to refine and improve their problem-solving strategies. Together, this cycle of
doing, understanding, and reflecting builds the deep expertise needed to work effectively with
LLMs. Routine educational tasks often demand effortful practice, but the convenience of
LLMs can undermine this struggle, leading novices to engage superficially, accept AI-generated
content uncritically, and miss critical opportunities to develop judgment competence. To
counter these risks, the authors propose playful approaches, including prompt engineering
as a form of playful interaction with LLMs, which invites experimentation, role-play, and
iterative refinement of prompts. Huber et al. [13] further advocate game-based learning to
harness human–AI interaction by embedding LLMs within well-designed game environments
that foster motivation, reflection, and sustained practice. They highlight gamifying learning
materials using generative AI to create game-like educational experiences, as a promising
pathway to deepen engagement and preserve essential expertise development.

Focusing on GenAI for computer programming education, Bauer et al. [3] present the chal-
lenges and opportunities in automating the creation of programming exercises for automated
assessment. Ultimately, a refined feature to assist teachers in generating such exercises was
integrated into Agni [21], a web-based computer programming learning playground. Similar
work by Ricardo Queirós [20] and by Freitas et al. [7] demonstrates exercise generation using
GenAI.



S. Amburi, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 2:5

In summary, this related work shows that GenAI and LLMs can dramatically speed up
code generation, strengthen security analysis, and enrich developer education but also raise
serious challenges in accountability, reproducibility and overreliance on automated outputs.
Addressing these issues requires robust evaluation methods, thoughtful integration strategies
and targeted training programs that reinforce developers’ secure coding skills.

To build on prior studies, we investigate real-world developer usage to reveal how GenAI
tools influence secure coding practices. Our results will inform practical guidelines and
educational interventions designed to help developers leverage GenAI advantages while
maintaining rigorous security standards.

3 Experiment

To set up our experiment, we created an AI powered secure coding platform. The platform was
developed in February 2025 and debuted at a Secure Coding Workshop in March 2025. The
platform consisted of a simple landing page, a challenges page containing three AI-generated
challenges, and a challenge page where users interacted with a code snippet.

Figure 1 Challenge Page: Step 1 - Identify Vulnerabilities.

The challenge page comprised a problem section, a code editor featuring a vulnerable
code snippet, and a floating chat widget (as shown in Figure 1). The code editor component
consisted of a Monaco code editor [18] displaying a vulnerable code snippet, a review section
where users could identify vulnerabilities and leave code comments, and finally, a terminal
section that was included to simulate a realistic development environment but remained
non-functional as a mock interface element.

Each challenge followed a structured workflow (see Figure 2) consisting of the following
steps:

Step 1: Identify Vulnerabilities: Review the code and identify security vulnerabilities
by adding comments.
Step 2: Ask AI for Help: Ask the AI assistant for help understanding the vulnerabilities
you found.

ICPEC 2025



2:6 Enabling Secure Coding: Exploring GenAI for Developer Training and Education

Figure 2 Challenge Workflow.

Step 3: Review Comments: Review and refine your vulnerability comments based on
AI feedback.
Step 4: Fix Vulnerabilities: Fix the vulnerabilities in the code. Use Edit Mode to
make your changes.

This workflow was designed to highlight independent thinking without overreliance on
the AI chat. In the first step, participants were asked to identify vulnerabilities to ensure
they applied their learnings from the workshop. Users were only allowed to access the AI
chat from Step 2 to enable developers to understand and identify vulnerabilities on their
own without any assistance. They could then interact with the AI chat and ask questions
about the code snippet and their comments on the snippet (as shown in Figure 3). For the
AI chat, we used the GPT-4o-mini model via the Azure OpenAI API endpoint. We explicitly
selected this model because it serves as the base model for ChatGPT’s free tier, and Microsoft
Copilot’s Model is likewise built on the GPT-4 architecture. The system prompt for the
AI chat specified its role as a security assistant, responsible for helping users understand
security vulnerabilities, suggest best coding practices, and address security-related questions.

In Step 3, users were allowed to go back to change their review comments and were given
one last chance to identify all vulnerabilities in the code.

Finally, in Step 4, users were given the opportunity to edit the code snippet, fix the
vulnerabilities they had identified, and submit the updated snippet for evaluation.

After the participants had interacted with the platform, they were asked to fill out a
survey using Microsoft Forms. The survey had fourteen questions in total, questions ranging
from professional coding experience to how much they can trust LLMs [1]. Some questions
included Likert scale responses. The goal of this survey was to understand where developers
in the industry stand on LLMs and how to better enhance secure software development using
LLMs.

In summary, this experiment setup provided a controlled evaluation of our AI powered
secure coding platform, allowing industry developers to identify, discuss, and remediate vul-
nerabilities in the challenges with real-time GenAI guidance. The purpose of this experiment
was to assess the platform’s usability, effectiveness, and impact on developers’ secure-coding
practices.

4 Results

The experiment was conducted at a Secure Coding Workshop in March 2025, which provided
a controlled setting for the initial study. The initial study evaluates an AI secure coding
platform designed to provide developers with real-time secure coding guidance. The workshop
was held for three days; the first two days presented secure coding principles and security
pitfalls in secure software development, and the third day was reserved for cybersecurity
challenges from the Sifu platform [10]. The initial study took place at the end of the second
day after presenting all the topics for secure coding and secure software development.



S. Amburi, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 2:7

Figure 3 Challenge Page: Step 2 - Ask AI for Help.

Participants voluntarily interacted with the platform and completed a survey based on
their interaction with the platform while also answering some general questions about LLMs
and GenAI. Of the 19 participants in the workshop, 18 people decided to interact with the
platform and participate in the survey, and 14 interacted with the platform and submitted at
least one challenge. As depicted in Figure 4, the majority of survey participants have more
than 10 years of experience.

Figure 4 Professional Coding Experience Among Participants.

ICPEC 2025



2:8 Enabling Secure Coding: Exploring GenAI for Developer Training and Education

Figures 5a and 5b depict the LLM usage frequency graphs. At least 50% of the participants
use LLMs always or frequently. Specifically, 44.4% of respondents reported using LLMs
frequently and an additional 5.6% indicated they always rely on them for coding support,
while the remaining participants fell into the occasional (22.2%), rare (11.1%), or never
(16.7%) usage categories (Figure 5a). Developers with ten or fewer years of experience show
the highest proportion of frequent LLM use, whereas the most experienced professionals
exhibit a wider range of usage patterns and this includes the lone “always” user in our sample.
Moreover, when broken down by experience level, 7 of 11 high experience developers (63%)
perceived themselves at least “somewhat confident” in spotting vulnerabilities, including the
only two “very confident” responses and 3 remained neutral and one was not confident at all,
whereas in the low experience level, 5 of 7 (71%) felt somewhat confident, two participants
expressed some level of doubt, and none claimed very high confidence. This is shown in
Figure 6a. In parallel, roughly three quarters of the high experience level (8 of 11; 72%)
completed each code review within 5–10 minutes, and only one person exceeded that window,
compared with two people (nearly 30%) in the low experience level who spent over 10 minutes
per review, hinting that more seasoned engineers may work more efficiently on vulnerability
detection. This is shown in Figure 6b.

Figure 7a shows the quality of feedback provided by the LLMs compared to the manual
review (by experience level). High-experience participants tend to rate LLM feedback more
positively (as shown in Figure 7a). In detail, 3 of 11 senior developers (27%) judged the
platform’s suggestions as “good” and another 2 (18%) as “very good,” with only one “poor”
and two “fair” ratings, whereas in the low experience level, 4 of 7 (57%) found the feedback
“good,” one was “average,” and two rated it “fair,” and none called it “very good.” Figure 7b
depicts the willingness of developers by experience levels to adopt LLMs in code reviews.
Both experience levels show a moderate to high willingness to adopt LLM-based code reviews
(Figure 7b): among high experience users, 4 of 11 (36%) were “somewhat likely” and 4 (36%)
“very likely” to integrate the tool (the remainder neutral), while the low experience cohort
was even more enthusiastic; 5 of 7 (71%) said “very likely,” 1 “somewhat likely,” and only
one remained neutral indicating towards broad acceptance across experience levels.

Figure 8 shows us opinions of developers on LLMs and GenAI in Software Development.
When asked whether “Generative AI increases productivity,” a strong majority backed the
proposition: 12 of 18 respondents (67%) agreed or strongly agreed, while only three (17%)
remained neutral and three (17%) voiced disagreement (including one strong dissenter).

(a) LLM usage frequency among users. (b) LLM usage by experience level.

Figure 5 LLM Usage Frequency Graphs.



S. Amburi, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 2:9

(a) Confidence in identifying vulnerabilities by ex-
perience level.

(b) Time spent reviewing code snippets by experi-
ence level.

Figure 6 Impact of Experience on Vulnerability Identification and Code Review Time.

(a) Quality of feedback provided by the LLM com-
pared to manual review? (By experience level).

(b) Likelihood to incorporate LLM-Assisted code
reviews by experience level.

Figure 7 Quality and Adoption of LLM-Assisted Code Reviews by Experience Level.

Figure 8 Opinions on LLMs and Generative AI in Software Development.

ICPEC 2025



2:10 Enabling Secure Coding: Exploring GenAI for Developer Training and Education

Figure 9 Trust in LLMs.

Similarly, on the statement “LLM-assisted reviews reduce human error,” 11 participants
(61%) registered agreement or strong agreement, with four (22%) neutral and three (17%)
in partial or full dissent. Finally, regarding “LLMs enhance vulnerability detection,” again
12 respondents (67%) agreed or strongly agreed and the remaining six split evenly between
neutrality and disagreement. Taken together, these results reveal clear enthusiasm for AI-
powered tools in productivity, error reduction, and vulnerability spotting, but the presence
of up to one quarter neutral or dissenting responses highlights ongoing concerns about
trust, reliability, and the necessity of human oversight when integrating LLMs into security
workflows (Figure 8). Building on these mixed sentiments, the trust level breakdown (as
depicted in Figure 9) reveals that while no participant in either experience levels “does not
trust at all,” the majority across both experience levels adopt a “trust but verify” stance,
with 5 of 11 high experience developers (45%) and 4 of 7 low experience developers (57%)
falling into this category. Only one senior engineer express full confidence(9%) and “trusts
completely” and another one (9%) “somewhat trusts”, whereas none of the less experienced
cohort do so, and uncertainty persists (36% of seniors vs. 43% of juniors “not sure”).

We recorded a total of 74 submissions from 14 unique users. Some users submitted the
same challenge multiple times. For each submission, we recorded challenge details, user
review comments, chat history, and the final code submission. We then cleaned the data by
deduplicating entries and removing submissions with no chat history or those that primarily
used other AI services (users were allowed to use services like Copilot or ChatGPT). After
cleaning, we salvaged 28 submissions from 13 unique users that had valid chat history for
analysis. The majority of submissions began with user messages such as “Have I found all
vulnerabilities?” and “Find all vulnerabilities,” showing that users expected the AI to give
correct answers even though it did not have access to the vulnerabilities in the code.

Taken together, these findings demonstrate that seasoned developers not only engage
readily with LLM-based secure coding tools but also report high confidence and efficiency
gains when reviewing code. Although usage patterns vary by experience; junior developers
lean more heavily on AI support while veterans show broader adoption; both cohorts express
strong productivity and error-reduction benefits. Feedback quality and adoption willingness
are likewise high across the board, yet the pervasive “trust but verify” mindset and a notable
minority of neutral or dissenting opinions point to an enduring need for transparent model
behavior and human oversight.



S. Amburi, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 2:11

Finally, we observe risky interaction patterns: User submission patterns beginning with
prompts like “Have I found all vulnerabilities?” reveal a clear expectation that the AI will
identify every vulnerability. In practice, GenAI models tend to respond with hallucinations
when prompted in such a way. This underscores the importance of setting appropriate tool
limitations and educating users on AI capabilities. These insights motivate our subsequent
discussion of design guidelines, deployment strategies, and future validation studies.

5 Discussion

The initial study reveals that embedding GenAI into a structured secure-coding workflow
can both empower and challenge experienced developers. The strong uptake and positive
ratings for feedback quality (Figure 7a) and adoption likelihood (Figure 7b) demonstrate
that developers see real value in LLM-assisted reviews. Yet the persistent “trust but verify”
stance (Figure 9) and the appearance of neutral or dissenting voices in our productivity and
error-reduction measures (Figure 8) underscore that no matter how polished an AI interface
becomes, human expertise and oversight remain indispensable.

Figures 10 and 10a depict user feedback on the platform. It affirms that the four-step
challenge workflow: identify vulnerabilities manually, ask AI for help, review comments, and
fixing vulnerabilities strike an effective balance between independent problem solving and
AI support. Participants reported that forcing an initial round of manual review sharpened
their mental model of the code, while the subsequent AI interaction helped them catch subtle
issues they might otherwise have missed.

Our analysis of submission patterns and chat logs further highlights a critical user
expectation: many participants opened each challenge with prompts like “Have I found all
vulnerabilities?” reflecting an assumption that the AI “knows everything” in the snippet. This
over-reliance risk points to the need for clearer in-tool guidance and just-in-time reminders
about the model’s knowledge limitations and inability to access hidden or out-of-scope code.
Introducing lightweight static analysis hints or confidence indicators alongside AI suggestions
could help calibrate trust and prevent blind acceptance of flawed recommendations [22]. In
short, AI assistance can boost productivity, reduce errors, and uncover more defects when
treated as a “second pair of eyes,” but it can also foster over-reliance highlighting the need
for confidence indicators and static-analysis cues.

Although generative models can accelerate secure-coding workflows, developers often fall
into familiar traps. A widespread misbelief is that “AI = secure by default,” leading users to
accept generated code without scrutinizing its security properties. Under-specifying prompts
exacerbates this risk: vague requests can yield insecure defaults or omit critical checks such
as input validation and boundary enforcement. Over-reliance on AI suggestions can erode
developers’ own vulnerability-hunting skills, creating a feedback loop where the model’s
omissions become blind spots in human review. Despite impressive fluency, LLMs lack true
code understanding and reasoning [11]. Their knowledge is frozen at the training cut-off and
does not reflect emergent threats or zero-day exploits, so they cannot guarantee coverage
of evolving vulnerabilities. Moreover, biases in training data may skew recommendations
toward popular but insecure libraries or design patterns. Because LLMs do not produce
provably correct solutions, they offer no formal assurance of completeness; unseen edge cases
and logic flaws can persist. Performance constraints both in latency and computational cost
may limit real-time integration for large codebases. Finally, ethical and licensing implications
of repurposing copyrighted code snippets demand careful governance, and ultimately the
human remains accountable for all production code.

ICPEC 2025



2:12 Enabling Secure Coding: Exploring GenAI for Developer Training and Education

(a) Overall satisfaction. (b) Evaluation of Multi-step workflow of a challenge.

Figure 10 User feedback on the AI-powered secure coding platform.

5.1 Threats to Validity
Several factors may temper the internal validity and generalizability of our findings. First, our
sample of 14 active users and 18 survey participants is modest and self-selected from volunteers
at a secure-coding workshop in a single industrial context, introducing participation bias
toward security-minded professionals. Second, the controlled three-day setting and curated
Sifu challenges may not reflect real-world pressures, team dynamics, or code complexity.
Third, we excluded submissions that lacked chat history or used alternate AI services, which
could skew results toward more thorough or AI-reliant users. Finally, the short duration of
the initial study precludes assessment of long-term learning effects or skill retention, and our
focus on industry developers may not apply to less experienced developers or other domains.

6 Conclusion and Future Work

This paper presents an experiment where developers engaged with GenAI in a structured,
four-step workflow: they first identified vulnerabilities, then used the AI chat to validate their
findings, refined their comments based on AI feedback, and finally fixed the vulnerabilities.
Analysis of 28 cleaned challenge submissions from 13 participants shows that the vast
majority of interactions began with prompts like “Have I found all vulnerabilities?” or
“Find all vulnerabilities,” indicating a strong tendency to rely on the AI for comprehensive
vulnerability discovery even though the model lacks full contextual awareness of hidden
code paths. Developers completed manual reviews more efficiently, 72% of high-experience
participants finished each review in 5–10 minutes versus nearly 30% of their less-experienced
peers taking over 10 minutes. Across all levels, GenAI served primarily as a second pair of
eyes, helping users catch subtle issues that manual inspection alone might miss (e.g., nuanced
input-validation flaws), and then proposing remediation code snippets that aligned with secure-
coding best practices. However, this pattern also surfaced a risk of over-reliance: by expecting
the model to “know everything,” some developers accepted its suggestions uncritically, which
in practice can lead to hallucinated fixes or overlooked edge-case vulnerabilities.

The study also presents results from the survey taken during the experiment. They
reveal a broadly positive yet cautious stance toward GenAI in security workflows. A strong
majority agreed that generative AI increases productivity (67%), reduces human error (61%),
and enhances vulnerability detection (67%). When asked about the quality of AI feedback
compared to manual review, 45% of high-experience developers rated it “good” or “very good,”
and 57% of low-experience developers found it “good,” underscoring broad satisfaction across
experience levels. Adoption intent was equally high: 72% of high-experienced developers
and 86% of low-experience developers indicated they were “somewhat” or “very likely” to
integrate LLM-assisted reviews into their workflow. Yet, trust remained tempered, no



S. Amburi, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 2:13

participants endorsed blind confidence, and the dominant mindset was “trust but verify,”
with 45% of high-experience developers and 57% of low-experience developers falling into
this category. Only one high-experience developer (9%) “trusted completely,” while 36% of
high-experienced developers and 43% of low-experience developers were “not sure,” reflecting
persistent concerns about model limitations and the necessity of human oversight. These
insights suggest developers value GenAI as an efficiency and quality booster but insist on
maintaining critical review practices to guard against the model’s blind spots.

The consistent “trust but verify” stance we observed underscores the need for transparent
model explanations and robust human-in-the-loop safeguards in any production tool in the
software development lifecycle.

In future iterations, we plan to integrate deterministic static-analysis results alongside
LLM feedback in a multi-agent architecture: one agent will possess ground-truth challenge
solutions while another engages developers in a conversational review, better simulating
real-life collaboration and surfacing both provable and learned vulnerabilities. We will also
enrich the platform with real-time code evaluation and terminal access so that users can
compile snippets, execute test cases, and immediately validate AI suggestions within the
same interface.

Complementing these platform enhancements, our research will explore safe prompting
techniques to shore up security. By embedding explicit security requirements in prompts: such
as requiring OWASP-compliant input validation and providing full contextual information,
developers can guide the model toward more robust suggestions. Encouraging step-by-step
reasoning prompts and having the AI review and improve its own output will foster deeper
critical thinking. Assigning a security-savvy persona to the model can further align its
responses with best practices. Together, these refinements aim to balance the productivity
gains of GenAI with the rigors of secure software development and drive broader developer
adoption.

References

1 Sathwik Amburi. Enabling Secure Coding: Exploring GenAI for Developer Training and
Education: Survey + Submission Data. https://github.com/Sathwik-Amburi/ascend-pilot-
study, May 2025. commit 997596879e8acd1251cef457d19aa50c4e9a547e.

2 Norbert Baláž, Jaroslav Porubän, Marek Horváth, and Tomáš Kormaník. Using ChatGPT
During Implementation of Programs in Education. In André L. Santos and Maria Pinto-
Albuquerque, editors, 5th International Computer Programming Education Conference (ICPEC
2024), volume 122 of Open Access Series in Informatics (OASIcs), pages 18:1–18:9, Dagstuhl,
Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.
ICPEC.2024.18.

3 Yannik Bauer, José Paulo Leal, and Ricardo Queirós. Authoring Programming Exercises
for Automated Assessment Assisted by Generative AI. In André L. Santos and Maria
Pinto-Albuquerque, editors, 5th International Computer Programming Education Conference
(ICPEC 2024), volume 122 of Open Access Series in Informatics (OASIcs), pages 21:1–
21:8, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/OASIcs.ICPEC.2024.21.

4 Lenz Belzner, Thomas Gabor, and Martin Wirsing. Large language model assisted software en-
gineering: Prospects, challenges, and a case study. In Bernhard Steffen, editor, Bridging the Gap
Between AI and Reality, volume 14380 of Lecture Notes in Computer Science, pages 355–374,
Cham, Switzerland, 2024. Springer Nature Switzerland. doi:10.1007/978-3-031-46002-9.

ICPEC 2025

https://doi.org/10.4230/OASIcs.ICPEC.2024.18
https://doi.org/10.4230/OASIcs.ICPEC.2024.18
https://doi.org/10.4230/OASIcs.ICPEC.2024.21
https://doi.org/10.4230/OASIcs.ICPEC.2024.21
https://doi.org/10.1007/978-3-031-46002-9


2:14 Enabling Secure Coding: Exploring GenAI for Developer Training and Education

5 DHS Cybersecurity. Software assurance. Technical report, U.S. Department of Homeland
Security, 2012. Accessed: 2025-04-20. URL: https://www.cisa.gov/sites/default/files/
publications/infosheet_SoftwareAssurance.pdf.

6 Tiago Espinha Gasiba, Kaan Oguzhan, Ibrahim Kessba, Ulrike Lechner, and Maria Pinto-
Albuquerque. I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code: On ChatGPT, CyberSecurity,
and Secure Coding. In Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto,
editors, 4th International Computer Programming Education Conference (ICPEC 2023),
volume 112 of Open Access Series in Informatics (OASIcs), pages 2:1–2:12, Dagstuhl, Germany,
2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ICPEC.2023.
2.

7 Tiago Carvalho Freitas, Alvaro Costa Neto, Maria João Varanda Pereira, and Pedro Rangel
Henriques. NLP/AI Based Techniques for Programming Exercises Generation. In Ricardo Alex-
andre Peixoto de Queirós and Mário Paulo Teixeira Pinto, editors, 4th International Computer
Programming Education Conference (ICPEC 2023), volume 112 of Open Access Series in
Informatics (OASIcs), pages 9:1–9:12, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/OASIcs.ICPEC.2023.9.

8 Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, Jiaxin Yu, and Jinfu Chen.
Security weaknesses of copilot-generated code in github projects: An empirical study. ACM
Trans. Softw. Eng. Methodol., February 2025. doi:10.1145/3716848.

9 Tiago Espinha Gasiba, Andrei-Cristian Iosif, Ibrahim Kessba, Sathwik Amburi, Ulrike Lechner,
and Maria Pinto-Albuquerque. May the source be with you: On ChatGPT, cybersecurity, and
secure coding. Information, 15(9):572, 2024. doi:10.3390/info15090572.

10 Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Sifu - a cybersecurity
awareness platform with challenge assessment and intelligent coach. Cybersecurity, 3(1):24,
2020. doi:10.1186/s42400-020-00064-4.

11 Sabaat Haroon, Ahmad Faraz Khan, Ahmad Humayun, Waris Gill, Abdul Haddi Amjad,
Ali R. Butt, Mohammad Taha Khan, and Muhammad Ali Gulzar. How accurately do large
language models understand code?, 2025. arXiv:2504.04372.

12 Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS Q., 28(1):75–105, March 2004.

13 Stefan E. Huber, Kristian Kiili, Steve Nebel, Richard M. Ryan, Michael Sailer, and Manuel
Ninaus. Leveraging the potential of large language models in education through playful and
game-based learning. Educational Psychology Review, 36(1):25, 2024. Published online 27
February 2024, accepted 9 February 2024. doi:10.1007/s10648-024-09868-z.

14 International Information System Security Certification Consortium (ISC)2. ISC2 cy-
bersecurity workforce study 2023: How the economy, skills gap and artificial intelli-
gence are challenging the global cybersecurity workforce. Technical report, (ISC)2, 2023.
URL: https://media.isc2.org/-/media/Project/ISC2/Main/Media/documents/research/
ISC2_Cybersecurity_Workforce_Study_2023.pdf.

15 Mohammed Kharma, Soohyeon Choi, Mohammed AlKhanafseh, and David Mohaisen. Security
and quality in LLM-generated code: A multi-language, multi-model analysis, 2025. arXiv:
2502.01853.

16 Hao-Ping (Hank) Lee, Advait Sarkar, Lev Tankelevitch, Ian Drosos, Sean Rintel, Richard
Banks, and Nicholas Wilson. The impact of generative AI on critical thinking: Self-reported
reductions in cognitive effort and confidence effects from a survey of knowledge workers. In
CHI 2025, April 2025. doi:10.1145/3706598.3713778.

17 Shahar Man. How AI-generated code is unleashing a tsunami of secur-
ity risks. Forbes Technology Council, April 2025. Accessed: 2025-04-
20. URL: https://www.forbes.com/councils/forbestechcouncil/2025/04/18/
how-ai-generated-code-is-unleashing-a-tsunami-of-security-risks/.

18 Microsoft Corporation. Monaco editor. https://microsoft.github.io/monaco-editor/,
2025. Accessed: 2025-05-04.

https://www.cisa.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://www.cisa.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://doi.org/10.4230/OASIcs.ICPEC.2023.9
https://doi.org/10.1145/3716848
https://doi.org/10.3390/info15090572
https://doi.org/10.1186/s42400-020-00064-4
https://arxiv.org/abs/2504.04372
https://doi.org/10.1007/s10648-024-09868-z
https://media.isc2.org/-/media/Project/ISC2/Main/Media/documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf
https://media.isc2.org/-/media/Project/ISC2/Main/Media/documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf
https://arxiv.org/abs/2502.01853
https://arxiv.org/abs/2502.01853
https://doi.org/10.1145/3706598.3713778
https://www.forbes.com/councils/forbestechcouncil/2025/04/18/how-ai-generated-code-is-unleashing-a-tsunami-of-security-risks/
https://www.forbes.com/councils/forbestechcouncil/2025/04/18/how-ai-generated-code-is-unleashing-a-tsunami-of-security-risks/
https://microsoft.github.io/monaco-editor/


S. Amburi, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 2:15

19 Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do Users Write More Insecure
Code with AI Assistants? In CCS ’23: Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’23, pages 2785–2799, New York, NY, USA,
2023. ACM. doi:10.1145/3576915.3623157.

20 Ricardo Queirós. Exercisify: An AI-Powered Statement Evaluator. In André L. Santos
and Maria Pinto-Albuquerque, editors, 5th International Computer Programming Education
Conference (ICPEC 2024), volume 122 of Open Access Series in Informatics (OASIcs), pages
19:1–19:6, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/OASIcs.ICPEC.2024.19.

21 Ricardo Alexandre Peixoto de Queirós. Integration of a learning playground into a LMS.
In Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer
Science Education Vol. 2, ITiCSE ’22, page 626, New York, NY, USA, 2022. ACM. doi:
10.1145/3502717.3532175.

22 June Sallou, Thomas Durieux, and Annibale Panichella. Breaking the silence: the threats of
using LLMs in software engineering. In Proceedings of the 2024 ACM/IEEE 44th International
Conference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER’24, pages
102–106, New York, NY, USA, 2024. ACM. doi:10.1145/3639476.3639764.

23 Kwan Wei Kevin Tan. Anthropic’s CEO says that in 3 to 6 months, AI will
be writing 90% of the code software developers were in charge of. Business In-
sider, March 2025. Accessed: 2025-04-20. URL: https://www.businessinsider.com/
anthropic-ceo-ai-90-percent-code-3-to-6-months-2025-3.

24 Inc. Veracode. 2025 state of software security: A new view of maturity. Technical report,
Veracode, Inc., February 2025. URL: https://www.veracode.com/wp-content/uploads/
2025/02/State-of-Software-Security-2025.pdf.

25 Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S. Yu,
and Qingsong Wen. Large language models for education: A survey and outlook. CoRR,
abs/2403.18105, 2024. doi:10.48550/arXiv.2403.18105.

ICPEC 2025

https://doi.org/10.1145/3576915.3623157
https://doi.org/10.4230/OASIcs.ICPEC.2024.19
https://doi.org/10.1145/3502717.3532175
https://doi.org/10.1145/3502717.3532175
https://doi.org/10.1145/3639476.3639764
https://www.businessinsider.com/anthropic-ceo-ai-90-percent-code-3-to-6-months-2025-3
https://www.businessinsider.com/anthropic-ceo-ai-90-percent-code-3-to-6-months-2025-3
https://www.veracode.com/wp-content/uploads/2025/02/State-of-Software-Security-2025.pdf
https://www.veracode.com/wp-content/uploads/2025/02/State-of-Software-Security-2025.pdf
https://doi.org/10.48550/arXiv.2403.18105

	1 Introduction
	2 Related Work
	3 Experiment
	4 Results
	5 Discussion
	5.1 Threats to Validity

	6 Conclusion and Future Work

