On the Use of Concept Maps to Improve Student
Skills in an Introductory Object-Oriented Analysis
and Design Course

José F. Vélez
Depto. Informética y Estadistica, Universidad Rey Juan Carlos, Madrid, Spain

A. Belén Moreno
Depto. Informatica y Estadistica, Universidad Rey Juan Carlos, Madrid, Spain

Victoria Ruiz-Parrado
Depto. Informética y Estadistica, Universidad Rey Juan Carlos, Madrid, Spain

Angel Sanchez =24
Depto. Informética y Estadistica, Universidad Rey Juan Carlos, Madrid, Spain

—— Abstract

This paper presents an ongoing work on the application of concept maps to teaching an introductory
Object-Oriented Analysis and Design course for Computer Science students. There exist previous
works that introduce the concept map model in these object-oriented courses. However, these works
do not usually go deeply enough into the transition from concept maps to static class diagrams.
Although concept maps present some clear advantages when defining the abstractions present in
object-oriented software modeling, some drawbacks may also appear if the transformation from
these maps to class diagrams when the task is carried out through simplistic rules. In this paper we
propose an approach, which is illustrated through a use case, to transition from a concept map to a
static class diagram in a more realistic way.

2012 ACM Subject Classification Software and its engineering; Software and its engineering —
Object oriented frameworks; Applied computing — Education

Keywords and phrases Object-Oriented Programming, Concept Map, Abstraction, Unified Modeling
Language (UML), Static Class Diagram

Digital Object Identifier 10.4230/0ASIcs.ICPEC.2025.3

Funding Angel Sdnchez: Gratefully acknowledge the financial support given by the Spanish MICINN
Project: PID2021-1240640B-100, and the URJC Educational Computing Project: PIE24_ 066.

1 Introduction

Courses on Object-Oriented (OO) Programming [1] are considered key components in most
Computer Science curricula. As a part of an OO paradigm course, learning Object-Oriented
Analysis and Design (OOAD) can be difficult for students, because it requires some abstract
thinking skills and (usually) a shift from the (initially learned) procedural programming
paradigm to the object-oriented one. Students must grasp and apply non-trivial concepts
like encapsulation, inheritance, and polymorphism, and also learn to model real-world
problems using objects/classes and their interactions. Moreover, OOAD involves creative
problem-solving, where there is often no single correct solution, making it harder to assess
and improve design choices without experience and practice. Beginners often struggle with
complex terminology, connecting modeling diagrams (usually, the ones of the Unified Modeling
Language), and object-oriented programming code. For all of this, many students fail when
applying the key Object-Oriented principles correctly.

© José F. Vélez, A. Belén Moreno, Victoria Ruiz-Parrado, and Angel Sanchez;
37 licensed under Creative Commons License CC-BY 4.0

6th International Computer Programming Education Conference (ICPEC 2025).

Editors: Ricardo Queirés, Mario Pinto, Filipe Portela, and Alberto Simdes; Article No. 3; pp. 3:1-3:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:angel.sanchez@urjc.es
https://servicios.urjc.es/pdi/ver/angel.sanchez
https://orcid.org/0000-0001-9069-6985
https://doi.org/10.4230/OASIcs.ICPEC.2025.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

3:2

Concept Maps to Improve Student Skills in an Introductory Object-Oriented Course

The Unified Modeling Language (UML) diagrams [6] are visual tools used to model
software systems. They help software developers to analyze, design, program object-oriented
solutions to computing problems, and also communicate how a system works. UML diagrams
can be static (i.e., structure-focused) that represent the structural parts of an OO system,
such as the classes and relationships, and dynamic diagrams (i.e., behavior-focused) that
represent the behavior of an OO system over time, such as the modeling of user interactions
and object workflows. These diagrams are useful for planning, documenting, and maintaining
0O software. Among the static diagrams, class diagrams show the structure of a system
without modeling its behavior. They represent hierarchies of classes and relationships between
them (like inheritance, association or composition) which are shown using connecting lines,
that can include cardinalities defining how many instances of one class can be associated
with instances of another class in a relationship. Each class in a UML diagram contains its
attributes and attached methods. In summary, these class diagrams focus on how classes are
related, not how they interact during execution.

Concept maps [9][10] are visual tools used to organize and represent knowledge. They
consist of nodes (representing concepts) and links (showing relationships between those
concepts). These links are often labeled to describe the nature of the relationships, forming
network-like structures. Concept maps are widely used in education to help students visualize
and understand complex topics. Teachers apply them for lesson planning or for organizing
curriculum content. In some workplaces, they are valuable for knowledge management and
employee training. Researchers and professionals use them for problem-solving, brainstorming,
and structuring information. These maps also useful in software design to model systems
and analyze requirements.

This paper describes our work in progress on a proposed approach to integrate the use of
concept maps as a tool to help Computer Science students in effectively developing static
class UML diagrams.

2 Related work

Concept maps were introduced by Joseph D. Novak and his research team [11] as a mean
of representing the emerging science knowledge of the students. Since then, many works
have appeared to demonstrate the advantages of this graphical tool used to organize and
represent knowledge in different higher education domains [13]. The psychological foundations
of concept maps are rooted in cognitive psychology, particularly in how people organize,
represent, and recall information. Concept maps are designed to represent the structure of
human knowledge, and understanding their psychological basis is crucial for their effective
use in learning and problem-solving [10].

More specifically, the effective use of concept maps in Engineering and Computer Science
education has been widely researched [13] [15]. In the domain of Computer Programming
education, Keppens and Hay [7] suggest that the introduction of concept maps help with
the development and incremental refinement of mental models of programming concepts
and promotes meaningful programming learning. We can also cite the work by Perin and
collaborators [12], who performed an experimental study that demonstrated the efficacy of
introducing concept maps as a metacognitive tool for enhancing students to learn of Entity
and Relationship Diagrams (ERDs) in database modeling.

Different software tools have been developed to create and handle concept maps in an
automatic form. One of the most well-known applications is CMapTools [2]. This is a
software for creating, sharing, and collaborating on concept maps. It allows users to easily

J.F. Vélez, A.B. Moreno, V. Ruiz-Parrado, and A. Sanchez

draw concept maps by dragging and dropping nodes, adding linking phrases, and other
additional components. The tool supports real-time collaboration through shared servers and
offers export options such as PDF, image files, and web pages. CmapTools is widely used in
education, research, and knowledge management to visually represent knowledge structures.
Dogan and Dikbiyik [3] have developed an adaptive intelligent web-based learning system,
called OPCOMITS, that has a free domain model which can be regulated by an expert for
any course. It uses a concept map model to regulate the topic hierarchy, to measure the
learning of the students about course topics and to stimulate learning. Very recently, Diaz
and Garmendia [4] have proposed incorporating annotation practices into concept mapping.
Students could highlight text and link these highlights to existing or newly created concepts
in their concept maps. This way, instructors can access both the concept map and the
relevant readings for better feedback. This approach was implemented through the software
Concept-Go, which is a plug-in for CMaptools.

One of the Computer Science disciplines where concept mapping has been more applied is
Object-Oriented Analysis and Design (OOAD). Ferguson [5] studied how to create concept-
map class diagram using UML for a better understanding of OO concepts. The work by
Sanders and others [14] continues this approach and presented the results of an experiment
to evaluate the OO concept understanding by introducing concept maps in their course.
Sien [17] observed that the abstraction of problem domain into specific “objects” was an
important difficulty for students when following an OOAD course. He describes a set of
basic rules to transform a concept map into class (static) and sequence (dynamic) diagrams.
In a later work, this same author [18] proposed teaching OO modeling as a set of threshold
concepts and adopted concept maps as a mechanism to facilitate the development of class and
sequence diagrams. Later, Shin [16] observed that many students attending OOAD courses
encountered difficulties when transitioning from requirements analysis to OO design, and
then to code implementation. This author performed a study demonstrating that integrating
OOAD with concept maps can help the learners to understand the map-to-diagram transitions
more clearly.

3 Proposed Approach

We describe our proposed approach to introduce concept maps in an OOAD introductory
course. For this description we use a concept map example that was created from the
statement of the following class exercise:

“A university library management application is to be designed. The application should
allow to handle books, study rooms and users. Users can register and unregister, study rooms
can be reserved according to a schedule, and books can be searched and lent according to
some rules. Both study rooms and books are identified by a unique number. Each room can
have different capacity. Additionally, for each book, some common data such as its author,
title and ISBN, must be stored. The library has two types of users: teachers and students,
respectively, who are also identified by a unique numeric code, and the system also stores
their name and email. The main difference between these two user categories is the allowed
loan period. There should also be an option to generate a listing of books that have not been
returned and have an overdue loan date.”

Fig. 1 illustrates the concept map created from this statement. We begin by identifying
the main topic or theme of the exercise, and break it into key concepts, terms, and ideas
related to the topic. We determine how these concepts are related (e.g., cause-effect, sequence,
or hierarchy). Next, we aim to represent each concept, and connect them to other concepts

3:3

ICPEC 2025

3:4

Concept Maps to Improve Student Skills in an Introductory Object-Oriented Course

[Name_][ID number] email]
reserves

search and

[Student][Teacher] discharges

loan and cancel

Figure 1 Concept Map for the University Library Application problem.

using labeled arrows to show their relationships. This map is arranged to flow logically,
often from general to specific concepts. Finally, we review the map to ensure it accurately
represents the content of the class exercise.

Next, we make some remarks on some aspects related to teaching our object-oriented
course. When translating a concept map (created from the problem statement explained
above) to a static class UML diagram, some considerations must be taken into account.

In particular, the nouns in a sentence correspond to concepts (or objects) in the map,
that have types associated to them. These types may correspond either to classes predefined
by the programming language (such as String or Integer) or to classes that must be ad-hoc
defined. Concepts that have no connection with another concept usually correspond to
classes predefined by the language and are therefore represented as attributes. For example,
in the sentence: “The book has an author”, the concept book is associated with a class Book,
while the concept author is associated with the class String and we say that “author is an
attribute of book”.

On the other hand, the verbs in a statement can correspond to methods or to classes.
When a verb has connections to several concepts it is usually represented as a class. If the
verb is a “leaf” (in the concept map), it is usually a method. Also, when there are several
verbs that apply to the same concept, it can be interesting to manage them as classes in a
polymorphic scheme defined by a superior interface. These verbs can always be substantivized
(e.g., “registration” of a book instead of “registering” a book).

Next, we describe the types of linguistic connectors in maps. First, the connectors of
type “is a” or “is of type” usually give rise to inheritance relations. Connectors that imply
“belonging to” or “control” of a concept over other ones in a permanent way, usually give
rise to association relations or to object attributes. Examples of these connectors are: “has”,
“manages”, ... Note that the cardinalities of the association relations are not specific to the
concept map and they are added later in the class diagram. In addition, connectors involving
“short temporal relationships” between concepts often give rise to usage relationships. Some

YA EN1Y W

examples of connectors are: “uses”, “needs”, “accesses”,

J.F. Vélez, A.B. Moreno, V. Ruiz-Parrado, and A. Sanchez

The previous correspondences may be valid for constructing a class diagram of an initial
OOAD solution, but this has many nuances that will be modified when constructing the class
diagram during the implementation of a solution. In particular, we detected the following
problems:

The problem of distribution of methods, which is related to the principles of sole respons-

ibility (SOLID) and the principle of the expert (GRASP) [8].

The problem of the introduction of polymorphism, related to the principle of preferring

polymorphism to type-based conditions.

The problem of unnecessary inheritance.

The problem of multiplicity assignment.

Next, we describe each of these mentioned problems.

3.1 The problem of distribution of methods

Students tend to place methods in classes that have a semantic relationship with the objects.

However, they should take two other things into account with more relevance:
The methods must be in classes that have sufficient information to implement them. This
is clearly expressed in one of the GRASP principles: “A responsibility should only be
assigned to a class if that class has the necessary information to fulfill it”. For example,
according to the concept diagram, the user searches for books in the library. It seems
that the search method belongs to the User class. However, it must be placed in the
UniversityLibrary class, since it is the one that has the information about the books.
On the other hand, the library registers books, in this case it is correct, because the
UniversityLibrary class has the necessary information to allow the method implementation.
The classes should not have multiple responsibilities. For example, the UniversityLibrary
class (in Fig. 2) is heavily loaded with methods. This will make the implementation of
this class more complex and difficult to maintain.

According to the rules proposed previously, Fig. 2 shows the corresponding UML static
class diagram corresponding to the concept map presented in Fig. 1. Note that the cardinalities
in the class diagram are not obtained from the concept map but from the statement and
context of the problem.

3.2 The problem of multiplicity assignment

A concept map does not address the problem of multiplicities. Perhaps one could force
all concept map links to refer to such a concept using labels such as “many”, “some”, “at
least one”, ... However, this solution would complicate the diagram. It is necessary, when
transforming a concept map into an equivalent class diagram, to carry out a detailed study
of the multiplicity in each association relation that appears.

3.3 The problem of introduction of polymorphism

In general, students struggle to understand the concept of polymorphism. Furthermore,
using a conceptual diagram does not clearly highlight the operations that should be grouped
polymorphically.

In the library example, all operations in the class UniversityLibrary could be placed
in different classes that implement an interface called LibraryOperation. Fig. 3 illustrates
this scenario. In addition, this approach solves the single responsibility problem previously
discussed.

3:5

ICPEC 2025

3:6

Concept Maps to Improve Student Skills in an Introductory Object-Oriented Course

UniversityLibrary

- books:Book []
- users:User[]
- studyRooms: StudyRoom []
Book ister(book) StudyRoom

— . register(bool N -
- tltle.Str 0.. 0.1 unregister(book) 1 0.4 - roomlp.str
- author:Str registerUser():User - capacity:Str
- ISBN:Sir unregisterUser(User) -_hours:Str
searchUser(ID)
registerStudyRoom() 1
unregisterStudyRoom()
getOverdueBooks():Book []
0..*

1

Discharge

1

4+

- from:Date 0..* 1
- to:Date User
- user:User

Menu

o - rg[TeiSbtf st - library:UniversityLibrary
. - umber:Str
L. email:Str + show()

lend(book) 4\
return(book) \
search(title,author):book [] - S
reserve(studyRoom, User, hour) UniversityLibraryApp

+ 4+ + +

+ main()

| Student || Teacher |

Figure 2 Corresponding UML Static Class Diagram.

3.4 The problem of unnecessary inheritance

Students tend to create unnecessary inheritance relationships. The Static Class Diagram can
help to discard such relationships. When classes do not provide new methods or properties,
they are often unnecessary. For example, Student and Teacher appear (in Fig. 2) as classes
without attributes or methods. In reality, in the implementation these classes are not
necessary, we only need from an attribute in the User class that indicates the type of user.
Fig. 3 shows this solution. It could be thought that such classes would be necessary if the
treatment of a teacher user was different from that of a student user (e.g., allowing for a
larger number of books to be borrowed and longer borrowing times for the case of teachers).
However, this can be solved in a more versatile way by creating a UserType class that would
capture such differences between these two user types. In addition, this solution would allow
the creation of new user types without modifying the implementation.

4 Discussion

The idea of teaching OOAD using concept maps (as it was proposed by previous authors [17])
is appropriate and powerful to easily recognize object abstractions, because these maps
can help to discover objects and their relationships (e.g., inheritance) in an intuitive and
visual form from the textual statement of a problem. This method encourages a deeper
understanding of abstraction mechanism by students, since they must think more critically
about the structure and behavior of their OO solutions to problems.

However, not using properly concept maps as a tool in OOAD courses can also have some
undesired effects. First, students might focus too much on building a map that look neat
rather than truly understanding the OO design principles. Concept maps can oversimplify
complex relationships, leading to misunderstandings about how real-world systems behave.
They can also be difficult to represent dynamic object behaviors (like polymorphism). Finally,
assessing concept maps “objectively” can be challenging, since different students might
organize the same ideas very differently.

J.F. Vélez, A.B. Moreno, V. Ruiz-Parrado, and A. Sanchez 3:7

<< interface >>
LibraryOperation

| execute(UniversityLibrary)

V 0.*
Book UniversityLibrary StudyRoom LendBook
- title:Str 0..* 0, 1| - books:Book [] 1 0.* [~ roomID:Str
. ReturnBook
- author:Str - users:User [] - capacity:Str 4
- ISBN:Str - studyRooms: StudyRoom [] - hours:Str
-_lentBooks: TreeMap <Date.Book> | 1 SearchBook

1

- RegisterUser
+ main() 9

RegisterBook
0.* 1 = UnregisterBook
Discharge Menu
- from:Date - library:UniversityLibrary —| ReserveRoom
. to:Date 0.* - operations:LibraryOperation 1
- user: _RegisterStudyRoom
user:User User + show()
0. 1 |- name:Str UnregisterStudyRoom
- IDNumber:Str !
- email:Str UniversityLibraryApp
- teacher:Boolean

UnregisterUser

Figure 3 Corresponding UML Static Class Diagram, after corrections (omitting constructors,
getters and setters).

Although the conversion from a concept map to a static UML class diagram is neither
automatic nor immediate, the use of these maps as an intermediate model previous to the
creation of a static class diagram, provides the following pedagogical advantages:

It facilitates the understanding of the OOAD problem for instructors and students (or
for the system analyst and the clients in a business approach). By being concept maps
more readable and easy to understand, and having them only two types of components
(i-e., nodes and connecting elements), students (and customers) can better understand
the model derived from the problem statement.

Concept maps avoid missing elements when translating the requirements to the imple-
mentation. These conceptual diagrams make it easy to check that all the elements present
in the statement (or in the requirements) appear in the derived UML static class diagram.

5 Conclusion

We describe a work in progress about the application of concept maps to teaching an
introductory OOAD course for Computer Science students. The proposal was illustrated
using a sample class exercise. As mentioned, there are some previous works (in particular,
the one by [17]) that propose a method to translate a concept map into a UML class diagram.
However, in our opinion, these solutions are incomplete and require from the additional
modifications such as the ones presented in Section 3. This way, we are able to produce more
realistic solutions when using concept maps in introductory OOAD courses.

As future work, we propose to validate our approach with more complex class exercises.
Moreover, we also will perform an evaluation study to measure the pedagogical effectiveness
of adopting concept maps as a tool to help students when designing their UML static class
diagrams.

ICPEC 2025

3:8 Concept Maps to Improve Student Skills in an Introductory Object-Oriented Course

—— References

1

10

11

12

13

14

15

16

17

18

Grady Booch. Object-oriented development. IEEE Transactions on Software Engineering,
SE-12(2):211-221, 1986. doi:10.1109/TSE.1986.6312937.

Alberto J. Canas and et al. Cmaptools: A knowledge modeling and sharing environment.
In Concept Maps: Theory, Methodology, Technology. Proceedings of the First International
Conference on Concept Mapping, 2004.

Buket Dogan and Emrah Dikbiyik. Opcomits: Developing an adaptive and intelligent web
based educational system based on concept map model: An educational system based on
concept map model. Computer Applications in Engineering Education, 24(5):676-691, May
2016. doi:10.1002/cae.21740.

Oscar Diaz and Xabier Garmendia. Bridging reading and mapping: The role of reading
annotations in facilitating feedback while concept mapping. Information Systems, 127:102458,
2025. doi:10.1016/j.is.2024.102458.

Ernest Ferguson. Object-oriented concept mapping using uml class diagrams. Journal of
Computing Sciences in Colleges, 18(4):344-354, 2003.

Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Longman Publishing Co., Inc., USA, 3 edition, 2003. doi:10.5555/861282.
Jeroen Keppens and David Hay. Concept map assessment for teaching computer programming.
Computer Science Education, 18(1):31-42, 2008. doi:10.1080/08993400701864880.

Robert C. Martin. Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall PTR, USA, 2003. doi:10.5555/515230.

Joseph D. Novak. Learning, Creating, and Using Knowledge: Concept Maps as Facilitative Tools
in Schools and Corporations. Routledge, USA, 2 edition, 2010. doi:10.4324/9780203862001.
Joseph D. Novak and Alberto J. Cafias. The theory underlying concept maps and how to
construct and use them. Technical Report IHMC CmapTools 2006-01 Rev 01-2008, Florida
Institute for Human and Machine Cognition, Pensacola., 2008.

Joseph D. Novak and D. Bob Gowin. Learning How to Learn. Cambridge University Press,
Cambridge, 1984. doi:10.1017/CB09781139173469.

Wagner A. Perin, Davidson Cury, Crediné S. de Menezes, and Camila Z. de Aguiar. Active
learning with concept maps: Enhancing understanding of entity-relationship diagrams in
database modeling. In 2023 IEEE Frontiers in Education Conference (FIE), pages 1-9, 2023.
doi:10.1109/FIE58773.2023.10343471.

Amparo B. Pia, Encarna Blasco-Tamarit, and Maria-Jose Munoz-Portero. Different applications
of concept maps in higher education. Journal of Industrial Engineering and Management,
4(1):81-102, 2011. doi:10.3926/jiem.2011.v4nl.

Kate Sanders, Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan E. Mostrém, Lynda
Thomas, and Carol Zander. Student understanding of object-orientd programming as expressed
in concept maps. In 89th ACM Technical Symposium on Computer Science Education (SIGCSE
'08), Portland, Oregon, USA, March 12-15, 2008, pages 332—-336, 2008. doi:10.1145/1352322.
1352251.

Vinicius dos Santos, Erica F. de Souza, Katia R. Felizardo, and Nandamudi L. Vijayku-
mar. Analyzing the use of concept maps in computer science: A systematic mapping study.
Informatics in Education, 16(2):257-288, 2017. doi:10.15388/infedu.2017.13.

Shin-Shing Shin. Concept maps as instructional tools for improving learning of phase transitions
in object-oriented analysis and design. IEEE Transactions on Education, 59(1):8-16, 2016.
doi:10.1109/TE.2015.2418176.

Ven Yu Sien. Teaching object-oriented modelling using concept maps. 6th Educators’ Sym-
posium: Software Modeling in Education at MODELS 2010 (EduSymp ’10), Electronic Com-
munications of the EASST 34, 2010. doi:10.14279/tuj.eceasst.34.590.619.

Ven Yu Sien and David Weng Kwai Chong. Threshold concepts in object-oriented modelling.
7th Educators’ Symposium: Software Modeling in Education at MODELS 2011 (EduSymp ’10),
Electronic Communications of the EASST 52, 2011. doi:10.14279/tuj.eceasst.52.763.

https://doi.org/10.1109/TSE.1986.6312937
https://doi.org/10.1002/cae.21740
https://doi.org/10.1016/j.is.2024.102458
https://doi.org/10.5555/861282
https://doi.org/10.1080/08993400701864880
https://doi.org/10.5555/515230
https://doi.org/10.4324/9780203862001
https://doi.org/10.1017/CBO9781139173469
https://doi.org/10.1109/FIE58773.2023.10343471
https://doi.org/10.3926/jiem.2011.v4n1
https://doi.org/10.1145/1352322.1352251
https://doi.org/10.1145/1352322.1352251
https://doi.org/10.15388/infedu.2017.13
https://doi.org/10.1109/TE.2015.2418176
https://doi.org/10.14279/tuj.eceasst.34.590.619
https://doi.org/10.14279/tuj.eceasst.52.763

	1 Introduction
	2 Related work
	3 Proposed Approach
	3.1 The problem of distribution of methods
	3.2 The problem of multiplicity assignment
	3.3 The problem of introduction of polymorphism
	3.4 The problem of unnecessary inheritance

	4 Discussion
	5 Conclusion

