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—— Abstract

Questions about Learners’ Code (QLCs) assess programming students’ program comprehension
skills by providing personalised questions targeting the students’ own program code. We conducted
a preliminary, experimental implementation of integrating QLCs in the Automated Assessment
System (AAS) used in an introductory programming course using Java. QLCs targeted some of
the code assignments which students had to complete during the course. We collected 889 answers
to QLCs, answered by 13 students over five course modules. We found that as the complexity of
exercises increases, the success rate of the same type of QLC may not improve, and even exhibit a
decline over time. We further analysed incorrect answers individually to relate them to possible
misconceptions.
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1 Introduction

Introductory programming students are often tasked with completing assignments which
require the development of code conforming to functional requirements, such as the production
of specific outputs. These types of assignments foster students’ program writing skills, but do
not necessarily increase students’ confidence regarding their knowledge of the course materials
[6, 5]. Further, students struggle when asked to explain their own program code [8], indicating
that assignment completion does not necessarily imply proper knowledge acquisition.
Programming students tend to benefit from a more efficient learning process if they
seek to understand their assignments’ underlying concepts [20], which is not guaranteed by
assignment completion. Further, students may struggle to understand and adequately guide
their learning process towards deeper comprehension skills [11]. This obstacle is further
amplified by the emergence of Large Language Models (LLMs), which are capable of producing
working solutions to most introductory programming exercises [4]. An experiment carried out
by Prather et al. (2024) [16] demonstrated that LLMs, when used in an unconstrained manner
by introductory programming students, might be detrimental to students with pre-existing
difficulties, as they create an illusion of understanding that can hinder the learning process.
Questions about Learners’ Code (QLCs) [9] were proposed as a means of assessing the
program comprehension skills of novice programmers. QLCs consist of questions (and, usually,
multiple-choice options for it) which are formulated against a student’s own code. In this way,
students are assessed through questions which specifically target their own code, benefiting
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from a learning aid adapted to the context they are working on. Several contributions have
been made, particularly in automating this approach for programming courses employing
different languages (e.g., Java [18], JavaScript [7], Python [10]).

In this paper, we describe our experimental integration of QLCs in the Automated
Assessment System (AAS) used at our institution for introductory programming courses
in Java. We aim to explore what insight we can gain from integrating QLCs into students’
usual learning process. In particular, we explore the following research questions:

1. RQ1: How does students’ success on different types of QLCs evolve over time?

2. RQ2: Can QLCs offer insight into novice programmers’ misconceptions?

Our overall goal is to assess whether QLCs are an adequate complement to existing
AASs, as we hypothesise that they can yield benefits such as: (a) providing students with
personalised formative feedback, reinforcing program comprehension knowledge and offering
a way to self-assess and detect misconceptions; and (b) provide instructors with a means
to assess students’ progress and detect learner misconceptions, possibly in an automated
manner in a large-scale course.

We describe our preliminary study, in which we implemented QLCs in an AASs and
collected data on student code submissions and QLC responses. We find that analysing
students’ answers to QLCs can offer insight into their learning progress and possible learner
misconceptions, and how the latter evolve over time. These findings could provide an
opportunity not only for students to regulate their learning process, but also for instructors
to steer lectures towards addressing the most common or persistent student difficulties or
misconceptions.

2 Related Work

Introductory programming courses traditionally focus on a writing-first approach, where
students learn to program by writing code that conforms to specific requirements (usually
functional). Previous studies have shown that successfully writing programs does not ne-
cessarily imply deep program comprehension [5, 14], and that learners struggle to explain
their own code even when they were successful in developing programs [8]. Comparatively,
comprehension-first teaching approaches, where program writing is preceded by the devel-
opment of program reading skills, have been shown to be effective in developing program
comprehension skills [19].

A recent approach in strengthening learners’ program comprehension skills consists of
Questions about Learners’ Code (QLCs) [9]. Lehtinen et al. (2021) define QLCs as questions,
posed automatically by a computer to a student, which refer to concrete constructs and
patterns in the program code the student has written [8]. QLCs are typically multiple or
single-choice questions, which can be verified automatically, or open-ended questions, which
might require manual evaluation. They may be generated by employing a mixture of static
analysis (e.g., which constructs are used) and dynamic analysis (e.g., how the code behaves
when executed with specific inputs or starting states). Static QLCs focus on identifying
how programming constructs are employed in the code, whereas dynamic QLCs focus on
program behavior (e.g., tracing variable values). The ability to trace programs is highly
correlated with program comprehension and writing skills [2, 12, 13]. A recent application
of QLCs consists in combining them with the concept of notional machines [1], where the
type of generated questions might involve, for example, the construction of a tree for a given
expression written by the student.
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static int[] inverted(int[] v) {
int[] iv = new int[v.length];
int 1 = 0;
while(i < v.length) {
iv[i] = v[v.length - 1 - i];
i=1+ 1
}

return iv;

(a) Student submission (function to produce an inverted array).

How many array positions are read during the function call inverted([4, 5, 6, 7]1)7
2 X

OX OO

3 X
4 v
5 X

(b) QLC targeting the submitted code shown in Figure la.

Figure 1 Example of a QLC shown after a participant’s submission to an assignment.

A previous study by Lehtinen et al. (2023) [8] investigated whether students’ success in
QLCs correlated to their program writing skills (in JavaScript) and their tendency to drop
out. Their findings indicate that students show more difficulty in answering dynamic QLCs
than static QLCs. Yet, overall, QLC success is highly correlated with course success and
program writing skills. Further, they found that students with higher difficulty in answering
QLCs throughout the course are more likely to drop out.

In previous work, we developed JAsk (2022) [18], a first experimental system for auto-
matically generating QLCs for introductory Java exercises. Similarly to other studies, we
found that students struggle with dynamic QLCs more than they do with static QLCs.
Figure 1 presents an example of a dynamic QLC. In this paper, we continue this line of work,
developing more QLC types, and focusing on how to integrate the questions in an AAS.

3 Approach

Figure 2 presents the concepts of a typical AAS realisation (grey-shaded area). A course is
composed of several code assignments. Each assignment has several test cases, which associate
arguments to expected results, and define one (or possibly more) reference solution. Students
are enrolled in the course and perform submissions to each assignment. Each submission
holds the student solution, which is marked with a score (most likely, automatically).

The remaining concepts of Figure 2 relate to our approach. Each assignment may be
associated to one or more QLC Type (from a catalog), meaning that the AAS will generate
concrete questions of those types for submissions to that assignment. Each question has
two or more multiple-choice options. The text of the question and the options result from
instantiating templates against the submitted code, using its structure, identifiers, and
execution data in the formulation of questions and their multiple-choice options.
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Figure 2 Model relating the concepts of a generic Automated Assessment System with those of
our approach for QLC integration.

Since each QLC is generated from a student’s submission, there is an extra layer of
variability regarding the particular identifiers, structure, and behaviour of the student’s code,
which can influence both the question’s formulation and options. Further, randomly selecting
inputs from an assignment’s test cases provides additional variability. These test cases are
defined with meaningful values that cover usual and edge cases, and sampling from them
guarantees that questions are posed with inputs which make sense for each assignment.

We implemented an experimental incorporation of QLC in the Paddle environment, an
Automated Assessment System (AAS) in which students develop and submit solutions to
coding assignments. Figure 3 illustrates the environment, where we can see a QLC being
presented after an exercise submission.

After each submission that passes the functional tests (i.e. expected outputs are correct),
students are prompted with QLCs targeting their solutions. The idea is that instructors
associate QLCs that target concepts that are relevant for each specific assignment, taking
the sequence of assignments into account. As this was our first experiment of using QLCs
in a course, we chose to associate at most one QLC to each course assignment, and we did
not allow multiple attempts in answering QLCs. All QLCs were single-choice (one correct
option), with response being optional (student may leave the QLC blank). The answers were
stored in a database and were used as data for our study.

4 Study

We conducted a study with introductory programming students by integrating our approach
in a programming course for graduate students in non-STEM fields. The course was taught
using Java, where students were tasked with assignments targeting the concepts of functions,
expressions, variables, control structures, arrays, references, and procedures (side-effects).
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contains *

Write a function contains to check if a number is contained in an array of integers.
Examples:

contains ([1, 3, 4, 2], 5) — false

contains ([1, 3,2, 1], 3) - true

© © write only the function code.
B m (solution )

Code loaded from last submission

1~-|boolean contains ( int [ ] array , int n ) {

2 int i = @8 ;
3v while (1 < array . length ) {
4~ if (array [ 1] =n){
5 return true ;
I
i =1 + 1;

return false ;

Function call

How many reads to array positions are made when invoking contains([1, 2, 3, 6, 7, 8], 4)?

Figure 3 Paddle environment displaying an correct submission with an incorrect QLC.

4.1 Context and Methods

In total, 13 students were enrolled in the course. Regarding gender, 7 (54%) of participants
identified as male, with the remaining 6 (46%) identifying as female. The participants’ ages
ranged from 21 to 49. While the students had varying backgrounds, all came from non-STEM
fields, with only 3 students having previously taken an introductory programming course.

The course lasted for one month, during which students had to submit a series of
assignments in the Paddle environment. The course contents were divided into modules, each
targeting different introductory programming concepts (see Table 1). Each of these modules
had sets of mandatory and optional assignments and were completed in sequence. Students
could not progress to the next module if the mandatory assignments of the current module
were not accomplished. Since our aim was to use QLCs to assess students’ comprehension of
their programs and analyse student misconceptions, we chose to present QLCs only after a
successful submission (i.e., it passes the test cases, and hence, is functionally correct). The
set of QLCs used in our study is available as a standalone library!.

1 https://github.com/ambco-iscte/jask
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Table 1 Course modules.

Module Content

M1 Functions and Expressions

M2 Variables and Control Structures
M3 Dependent Functions

M4 Arrays

M5 References and Procedures

4.2 Results

In total, we collected a total of 889 QLC answers, with an overall success rate of ~ 75%.
Table 2 presents each QLC type included in our study, along with the corresponding success
rate across the duration of the course. For the QLCs which appeared in more than one
course module, we show their success rate over each module (% of right answers per module)
in Figure 4.

Given the small number of students and the relatively small number of QLC attempts,
we manually investigated each incorrect (not blank) response to identify possible student
misconceptions which could have led to those answers. A summary of the identified miscon-
ceptions is given in Table 3. These misconceptions were identified by analysing the students’
incorrect QLC responses. The two authors of this paper served as raters of these incorrect
attempts, attributing one or more of these misconceptions. The classification yields a percent
agreement of 68.9% and a Cohen’s kappa value of k = 0.58, with a 95% confidence interval
of [0.48,0.67], indicating moderate to substantial agreement [15].

We further analyse the incidence over time of each identified misconception that occurred
in more than one course module, which we define as the ratio between the number of incorrect
QLC attempts in each module which could be attributed to a given misconception, and the
number which effectively were attributed to that misconception. That is, for a course module
M and a misconception m, we calculate

# of incorrect QLC answers in M attributed to m
# of QLCs in M in which m could appear

Incidence(m, M) = € [0,1].

Since each author may attribute different labels to each incorrect QLC answer, the incidence
depends on which classification is used. Thus, we choose to present the “true” incidence
value as the mean the incidence values given by both raters. We present these results in
Figure 5.

4.3 Threats to Validity

The main limitation of our study is the number of participants, since any results drawn
from a sample of n = 13 students are difficult to generalise. Further, it is difficult to draw
conclusions regarding possible correlations between QLC and overall course success or other
indicators of student performance, since analyses of statistical significance are inadequate
for such a small sample. Nevertheless, we do not consider that this imposes any significant
limitation to the results we have observed.

Regarding our approach, we could collect a larger pool of QLC attempts by assigning
more than one QLC per assignment. However, we argue that, for our first attempt at
integrating QLCs within an AAS, a smaller, more controlled experiment would be more easy
to managed.
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Table 2 QLCs used in the course and their overall success rates.

QLC Type

Template

Total

Correct

WhatIsResult
HowManyParams

HowMany Variables

WhichReturnType
‘WhichVariableHoldsReturn
WhichParameters

‘WhatVariables

WhichParameterTypes
WhichFunctionDependencies

HowManyArray Writes

HowManyFunctionDependencies

WhichVariableValues

HowManyArrayReads

HowManyVariableAssignments

HowManyLooplterations

HowManyFunctionCalls

HowManyArrayAllocations

What is the value returned by
the function call f (args)?
How many parameters does
the function £ have?

How many variables

(not including parameters)
does the function £ have?
What is the return type of
the function £7

Which variable holds the
result of the function £7
Which are the parameter
names of the function £7
Which are the variable names
(not including parameters) of
the function £7

Which are the parameter
types of the function £7
Which other functions does
the function £ depend on?
How many array position
writes are performed

when calling f (args)?

How many functions does

the function £ depend on?
Which is the sequence of values
taken by the variable v when
calling f (args)?

How many array position reads
are performed when

calling f (args)?

How many times is the
variable v assigned when
calling f (args)?

When calling f (args), how
many iterations does

the loop perform?

How many calls to £, are
performed when

calling £ (args)?

How many arrays are allocated
when calling f (args)?

48

57

43

73

39

75

39

65

28

36

26

69

58

75

95

47

16

93.8%

89.5%

88.4%

87.7%

87.2%

85.3%

79.5%

78.5%

75.0%

75.0%

69.2%

66.7%

65.5%

64.0%

58.9%

55.3%

37.5%
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HowManyParams WhichReturnType WhatlIsResult
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Figure 4 Evolution of the success rate of each QLC type over the course modules. Only QLCs
which appeared in more than one module are shown.
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Table 3 Possible student misconceptions inferred from incorrect QLC answers.

Misconception / Mistake The student...
NotCountlInitialisationAsAssignment Fails to consider the initialisation of a
variable as an actual assignment.
OneMoreLooplteration Is “Off-By-One”: counts one more iteration
than in reality.
ConfuseParameterNamesWithTypes Fails to differentiate between a method’s

parameters’ names and types.
OneLessLooplteration Is “Off-By-One”: counts one less iteration

than in reality.
NotCountFinalLooplIteratorAssignment Fails to consider the (last) assignment of a

loop’s iterator variable when that assignment

will cause the guard evaluation to return False.
Consider ArrayRead AnAssignment Erroneously considers a read access to an

array to be an assignment to the corresponding

array variable.
ConsiderMethodItsOwnDependency Erroneously considers a method to be

dependent on itself, even when it’s not recursive.
ConsiderNativeIlnstructionsAsFunctions Erroneously considers native instructions,

such as return, to be functions.
NotCountUnaryOperatorAsAssignment Fails to consider expressions such as

i++ or i-- as assignments to the variable i.

ConfuseParameter
OneMoreLooplteration OneLessLooplteration NamesWithTypes
40% 40% 40%
35% 35% 35%
30% 30% 30%
25% 25% 25%
20% 20% 20%
15% 15% 15%
10% 10% 10%
5% 5% /\ 5%
0% 0% 0%
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
Module Module Module
NotCountlInitialisationAsAssignment NotCountFinalLooplterator Assignment
40% 40%
35% 35%
30% 30%
25% 25%
20% 20%
15% |
10% 10%
5% 5%
0% 0%
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
Module Module

Figure 5 Incidence rate of student misconceptions per course module (average values of the two
raters). Only misconceptions which occurred more than once are pictured.
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In informal observations, we noticed that students did not appreciate having a single
opportunity to answer each QLC. Most students have a clear wish of keeping a “clean
sheet” regarding module completion, where they have all exercises and questions marked as
successfully completed. The single chance of answering a QLC led some of them to refrain
from answering them without checking with the instructor first. This may have slightly
influenced the success rate of QLCs towards more correct answers.

Regarding student misconceptions, care should be taken in the classification of incorrect
QLC attempts. Students can make simple mistakes or distractions, and thus it might not be
valid to necessarily attribute every incorrect attempt to a misconception. Both the percent
agreement and Cohen’s kappa measure indicate moderate to substantial agreement when it
comes to attributing possible misconceptions to incorrect QLC answers. Nevertheless, more
reliable results might have been obtained by: (1) employing more raters; (2) refining the
classification process; (3) having a larger sample. Further, the reliability of the classification
could be strengthened by having students write a short explanation/reason for their answers.

5 Discussion

Our results show that integrating QLCs within the AAS of a programming course can offer
insight into how learners’ knowledge and misconceptions evolve over time.

Regarding the overall QLC success rates shown in Table 2, we note that it is not
straightforward to attribute specific causes to differing success rates, as they depend on the
assignment’s context and its appearance within the course. Nevertheless, unsurprisingly,
these values showcase students generally struggle more with questions related to concepts
like tracing (e.g., WhichVariableValues) as opposed to static program properties (e.g.,
HowManyParams). This confirms the observations of previous studies [18, 7].

5.1 Student Success over Time

Regarding RQ1, it might be expected that students’ knowledge regarding different program-
ming concepts increases, or at least does not diminish, over a course’s duration. However,
the evolution of QLC success rates shown in Figure 4 contradicts this belief, showing student
progress can fluctuate significantly or even decrease over time. In particular, the evolu-
tion shown in Figure 4 for QLCs of type HowManyLoopIterations highlights particularly
unpredictable progress, with students’ success rate diminishing abruptly after seemingly
achieving higher values (= 75% in M2 to ~ 30% in M3). We investigated this inconsistency
in student performance by performing a manual analysis of the incorrect responses for this
QLC type within modules M2 and M3. The main difference is that loop structures used in
the assignments of module M2 involve less variables and instructions than those in module
M3, in which several variables may be updated and conditions checked within a loop’s body.
Broadly, we may attribute the decrease in performance to the higher complexity of the code
produced for M3’s assignments.

As an illustrative example, Figure 6 shows the possible difference in complexity between
assignments of different modules, with two submissions of the same student. Both assignments
included a HowManyLoopIterations QLC upon completion. The student correctly answered
the QLC for the first exercise (Figure 6a), but not for the second (Figure 6b). We note that this
may not necessarily correspond to a misconception, as it might be the case that the increased
code complexity might lead the student to “slip” without evidencing a misunderstanding.
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int i = 1; static boolean isPrime(int n) {
while(i < 5) { int ¢ = 0;
i=1+ 1; int i = 1;
} while (i <= n) {
if (m% 1 ==0) {
c=c+1;
¥
i=1i+1;
}
if (c==2){
return true;
}
return false;
}

(a) Student’s submission for an exercise in module
M2 — Variables and Control Structures.

(b) Student’s submission for an exercise in module
M3 — Dependent Functions.

Figure 6 Two submissions of a student to an assignment in module M2 and another in M3,
respectively. Both exercises included a QLC of type HowManyLoopIterations upon completion.

Notice how apparently simple static QLCs, such as WhichReturnType and
WhichParameterTypes decline in the rate of correct answers over the progression of modules.
The introduction of more types (single and multi-dimensional arrays, references) as modules
progress may lead to new student misunderstandings involving concepts that initially did

not reveal any significant difficulty.

5.2 Student Misconceptions

Regarding RQ2, our results show that the analysis of QLC success within the context of
each assignment can offer an overall insight into the most prominent novice programmer
misconceptions and how they evolve over time.

In Figure 5, we see that students struggle with counting the exact number of iterations a
loop executes, frequently counting one more than required (OneMoreLoopIteration). Further,
approximately 1 in 5 (20%) QLC attempts present a failure to count a variable’s initialisation
as a value assignment (NotCountInitialisationAsAssignment), a misconception which was
persistent over the course. Even misconceptions relating to simpler concepts, such as determin-
ing the names and/or types of a function’s parameters (ConfuseParameterNamesWithTypes),
while decreasing over time, still showed some incidence in later modules.

These results reveal that, while students are generally able to produce working code in
their assignments, some misconceptions persist over the duration of the course. This agrees
with previous findings that assignment completion does not imply full comprehension [8].

5.3 Limitations

The study was conducted with a small, yet balanced, sample consisting of 13 students.
While our observations can provide valuable insight, it might be beneficial to collect more
generalisable data by conducting a larger-scale study with introductory programming students.
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The main limitation regarding QLC formulation is likely to be the quality of the provided
distractors. Meaningful distractors should make sense for each question type and correspond-
ing assignment, as well as relate to common student misconceptions [17, 3]. Purely random
distractor generation would not be adequate, as the same values might not make sense
for differing question types or assignments. For example, an “off-by-one” approach might
only be adequate for iterator variables. Additionally, it is essential to introduce sufficient
variability in the QLCs presented to each student, fostering academic integrity (lower chance
of plagiarism) and increasing the amount of usable content (unlikely to generate the exact
same QLC twice). This variability is achieved not only by generating each QLC from each
student’s code, but by enriching each assignment with a set of meaningful test cases which
cover a variety of possible inputs.

6 Conclusions

Our observations show that QLCs can offer insight into how students’ knowledge on elementary
programming concepts evolves over time during an introductory programming course. We also
identified and analysed common student misconceptions and how they persist over time. Our
results show that student progress is not linear, with prior knowledge not necessarily persisting
over time or transferring to assignments of higher complexity, and with misconceptions not
necessarily improving over time. The sample used to derive the results was small, but we
believe this introduces no significant bias or limitation to our analysis. Our findings thus
reveal that, while students may appear to understand certain concepts within simple contexts,
this knowledge may not necessarily transfer to assignments of higher complexity.

An implication for instructional design is that it is worth posing the same type of QLC
several times over the progression modules, as concept acquisition tends to be fragile. By
monitoring the QLC results, instructors may detect students’ most prominent misconceptions,
in order to prioritise and reinforce aspects in lectures that students struggle the most. On
the other hand, students may use QLCs as a means of self-assessment that strengthens
their skills and uncovers knowledge gaps. Further, we should provide multiple attempts for
answering QLC, as is not beneficial to have any sort of attrition in the platform usage.

We intend to continue augmenting our AAS with QLCs that not only aid novice program-
mers at each step of their learning process, but provide instructors with insight on how to
structure and guide their course in order to adequately tackle student obstacles. We envision
the usage of QLCs to reinforce and offer insight into students’ program comprehension skills,
and to detect and mitigate misconceptions. As such, in future work we are likely to include
the implementation of QLCs targeting other aspects of novice programmers’ learning process,
like error message comprehension and code quality towards refactoring. We also plan to
enrich QLCs with comprehensive explanations for the correct answers, as well as possible
misconceptions for the incorrect options.
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