
Stepwise Source, a Supporting Tool for Source
Code Demonstration
João Santos #

ALGORITMI Research Centre/LASI - DI, University of Minho, Braga, Portugal

Alvaro Costa Neto #

ALGORITMI Research Centre/LASI - DI, University of Minho, Braga, Portugal
Research Centre in Digitalization and Intelligent Robotics (CeDRI),
Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC),
Instituto Politécnico de Bragança, Portugal
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Barretos, Brazil

Pedro Rangel Henriques #Ñ

ALGORITMI Research Centre/LASI - DI, University of Minho, Braga, Portugal

Abstract
The difficulties in teaching and learning computer programming remain a pressing issue to this day.
Several studies and tools have been developed over the years to tackle this challenge from many
different points-of-view. One of the biggest tools an educator has to support him in a classroom is
the progressive explanation of how a source code is constructed and what effects each of its parts
has on the overall result. Attempts to translate this live-directed tool to an on-line experience is
usually time-consuming and lacking in features. In order to tackle this concern, a tool to create
piecewise source code writing demonstrations was developed – Stepwise Source. The main idea
behind this application is to allow step-by-step explanation of a source code construction, along
with any relevant annotations and automatically assessed challenges that an educator may add. By
providing a dynamic platform for both students and lecturers, this software aims to improve the
teaching and learning of computer programming, while trying to imitate the information flow of a
live lecture, with the added benefit of student-directed pace of explanation. Through interactive
guidance and automated assessment, this tool has the potential to foster a deeper understanding of
computational principles and promote proficiency in programming skills.

2012 ACM Subject Classification Applied computing → Interactive learning environments

Keywords and phrases Computer Programming Education, Source Code Demonstration, Education
Technology

Digital Object Identifier 10.4230/OASIcs.SLATE.2025.10

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UID/00319/2023. The work of Alvaro was supported by national funds:
UID/05757 - Research Centre in Digitalization and Intelligent Robotics (CeDRI); and SusTEC,
LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020)

1 Introduction

Teaching computer programming presents several challenges. On the educator’s side, issues
can arise from choosing an inappropriate programming language, focusing too much on the
language itself rather than fostering computational thinking, or failing to tailor their teaching
methods to meet the diverse needs of learners. [12, 3, 4, 9] From the student’s perspective,
difficulties may stem from a lack of foundational skills, such as weak mathematical or
abstract thinking abilities, or trouble interpreting and breaking problems down into smaller,
manageable tasks. [1, 9, 4, 16] Additionally, students often face challenges related to motivation
and persistence, including giving up early when encountering initial obstacles or struggling
to develop autonomy in their learning process. [12, 2, 17, 1]

© João Santos, Alvaro Costa Neto, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY 4.0

14th Symposium on Languages, Applications and Technologies (SLATE 2025).
Editors: Jorge Baptista and José Barateiro; Article No. 10; pp. 10:1–10:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joaoltmsantos@gmail.com
https://orcid.org/0009-0009-7391-8182
mailto:alvaro@ifsp.edu.br
https://orcid.org/0000-0003-1861-3545
mailto:prh@di.uminho.pt
https://www.di.uminho.pt/~prh/
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.SLATE.2025.10
https://doi.org/10.54499/LA/P/0007/2020
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

10:2 Stepwise Source, a Supporting Tool for Source Code Demonstration

In order to address some of the identified challenges, various programming education
tools have been developed:

Automatic assessment tools, such as Codeboard [13] and ACEGrader [6], for instance,
focus on enhancing student autonomy, allowing learners to track their own progress, and,
often, enabling educators to monitor their development as well;
Source code animation tools, as PythonTutor [10], help students visualize how code
executes, improving their ability to grasp abstract concepts and increasing independence
in learning;

Additionally, there are tools that fall into the category of source code demonstration.
These are designed to support students in writing code by providing partially completed
templates that they must finish. Khan Academy [11] features a solution along these lines in
its exercises section. This approach not only fosters autonomy and offers a more hands-on
learning experience, but it may also aid students in learning the process of computational
thinking by helping them understand how to break down problems into smaller parts, thus
boosting motivation.

This paper is divided in six sections: after this introduction, Section 2 presents the
main ideas and concepts behind Stepwise Source. Section 3 introduces Stepwise Source’s
Domain-Specific Language (DSL) that supports the functioning of the entire application.
Section 4 refers to the main technologies and techniques that were employed to build Stepwise
Source. Section 5 shows how the application can be used and presents the feedback obtained
from future programming educators. Finally, Section 6 finishes the paper with an overview
and proposals for future improvements and projects.

2 Stepwise Source, Proposal

Stepwise Source, accessible at http://stepwisesource.epl.di.uminho.pt, finds a new
path among the existing tools, by allowing educators to create piece-wise demonstrations
of how a source code is written. By adding comments and alternate paths of explanation,
teachers are able to construct complex explanations in an accessible form, that students can
navigate on their own pace. Overall, it aims to simulate the explanation and construction of
source code in a progressive manner, similar – albeit not identical – to a live demonstration.
The main difference relies on the fact that a student itself will determine its rhythm by
controlling the progression or regression of steps according to his or her preferences.

In order to do so, the system requires input from the educator in the form of a presentation.
This presentation consists in a sequence of slides that contains the source code, whose
construction will be demonstrated and explained to the student, and annotations to this
source code that will offer guidance to the student on how to carry out said construction.
This source code can be annotated with specific commands that define how the presentation
will unfold, detailing annotated explanations, possible variations, and even questions for the
students.

The overall system architecture is depicted in Figure 1. As can be seen, the source code
whose construction is demonstrated is not parsed per se, only Stepwise Source’s commands are
processed. The results generated by the parser are compiled into an internal representation
that, in turn, is stored in a database for quick construction of the navigation web page.
The student interacts with the system both by navigating through the presentation, and by
answering exercises that might be added to the slides.

http://stepwisesource.epl.di.uminho.pt

J. Santos, A. Costa Neto, and P. R. Henriques 10:3

Figure 1 Stepwise Source architecture.

Listing 1 Syntax for a slide with an optional description.
1 \ slide{<ID>}{ <TITLE >}
2 \ description {<DESCRIPTION >}
3 \ begin
4 <CONTENT >
5 \end

3 Stepwise Source, DSL

A DSL with a syntax similar to that of LATEX, named Stepwise Language, was designed
specifically for Stepwise Source. The syntactical similarity to LATEX was chosen for its wide
use among computer programming teachers for document preparation. It aims to facilitate
teachers’ presentation input, allowing for all features to be accessible through simple text.

3.1 Overview and Use
Stepwise Language was designed to empower educators in teaching computational thinking
and programming through the creation of interactive and visually appealing presentations.
Central to this DSL are several commands that provide educators with the tools to structure
their lessons, style what is covered, integrate interactive components, and regulate the
information flow. This section provides a detailed exploration of these commands, including
their syntax, components, and practical applications.

3.1.1 Defining a Slide
At the core of any presentation crafted using this DSL lies the concept of a slide, an essential
element that encapsulates both structure and content (see Listing 1 for its declaration syntax).
Its creation begins with the \slide command to define a new slide. Each slide is designated
by a unique identifier (ID) that facilitates reference throughout the presentation, ensuring
that content is organized and coherent.

The title of the slide, represented by the TITLE parameter, provides a succinct overview
of the slide’s focus. It sets the stage for the audience, offering a glimpse into the topic
being addressed. Complementing this, an optional description can be included through
the \description command, adding an extra layer of context and allowing for detailed
explanation of the slide. This description elaborates on the content, helping the audience to
better understand the significance of what they are about to learn.

SLATE 2025

10:4 Stepwise Source, a Supporting Tool for Source Code Demonstration

Listing 2 Example of a slide on variable declaration.
1 % This is a comment that spans to the end of the line.
2 \slide {Intro }{ Introduction to Variables }
3 \ description { Variables are used to store values that can be accessed

↪→ later on.}
4 \begin
5 int main(int argc , char *argv []) \{
6 int x = 5;
7 int y = x + 10;
8 \}
9 \end

Figure 2 Simple slide with text content (from Listing 2).

In order to encapsulate the main content of the slide, the \begin and \end commands
create a block where the primary material resides. This content can consist of various
elements, including code snippets, explanatory annotation text, and exercises that can be
evaluated through regular expressions. The ability to insert diverse types of content within
this structure allows educators to tailor their presentations to suit different teaching styles
and student needs.

As a running example for the rest of this section, a slide designed to introduce the
concept of variable declaration in computer programming using the C language is presented
in Listing 2. In this example, the slide (whose ID is Intro) begins with a clear title
that indicates its purpose (Introduction to Variables), while the description succinctly
explains the function of variables in programming. The block of content then demonstrates the
concept with concrete examples, thereby supporting student comprehension. The rendering
of this slide can be seen in Figure 2.

3.1.2 Styling
In addition to the foundational structure of slides, the visual presentation of content plays a
vital role in effective communication. To enhance the clarity and appeal of presentations, the
DSL offers two distinct commands that specify visual styles for annotations: \newreactive
and \newfixed. Both commands have the essential function of defining custom styles which
can be applied to the content’s annotations, giving educators a versatile way of enhancing

J. Santos, A. Costa Neto, and P. R. Henriques 10:5

Listing 3 Syntax for the declaration of new styles.
1 \ newreactive {<ID>}{ <KEY >; <ATTRIBUTE >=<VALUE >; ...}
2 \ newfixed {<ID>}{ <KEY >; <ATTRIBUTE >=<VALUE >; ...}

Listing 4 Example of use for the \newreactive and \newfixed commands.
1 \ newreactive { highlight }{ color: green; bold}
2 \ newfixed { removed }{ color: red; strikethrough }
3
4 \ slide{Intro }{ Introduction to Variables }
5 \ description { Variables are used to ...}
6 \ begin
7 int main(int argc , char *argv []) \{
8 \ highlight {int x = 5;}{ Initial value of x.}
9 \ removed {int x = x + 10;}{ This is wrong !}

10 \}
11 \end

the visual appearance of their presentations. They ensure that particular aspects of the
presentation stand out and call attention to important information by establishing specific
styles. These instructions contrast in how and when they deliver the styles to the audience,
even though they both aim to improve content presentation.

The \newfixed command ensures that the applied styles are visible at all times, providing
immediate and constant context to the audience. This approach is useful in scenarios where
frequent reference to important information is necessary, offering a stable and predictable
presentation experience.

On the other hand, the \newreactive command introduces a dynamic element by
revealing styles only upon user interaction, such as hovering or clicking on an element. This
feature reduces initial visual clutter, creating a more simplistic experience. It is particularly
advantageous when a gradual reveal of information is desired, allowing educators to control
the pacing of content delivery.

The syntax for defining these styles is presented in Listing 3. In both declarations, ID
serves as the identifier for each styling command definition, allowing it to be referenced
throughout the presentation for consistent application. The KEY and ATTRIBUTE components
consist of a set of CSS-like styling rules that can encompass various attributes such as text
colour, font weight, and other visual properties that contribute to the overall aesthetics of
the content1.

To illustrate the application of these commands, Listing 4 adds them to the running
example of Listing 2. The highlight style (applied on line 8 via the \highlight command)
emphasizes key information using green and bold text, while the removed style (line 9, via
\removed) can effectively signal to students which elements have been removed from prior
discussions with a red colour and strike-through effect. It is important to note that the
explanations for each styled annotation is given as a second parameter for each of the style
commands. The slide for this example can be seen in Figure 3. Teachers can also define
macros that use a style and a fixed message to avoid repetition when creating slides, such as
demonstrated by Listing 5. The Error command is an example of a macro that can be used
throughout the presentation, with the message already defined. Whereas, with the Remove
Style command, the message needs to be defined each time it is used.

1 The list of keys and attributes is presented in Subsection 3.1.3, Table 1.

SLATE 2025

10:6 Stepwise Source, a Supporting Tool for Source Code Demonstration

Figure 3 Slide with both fixed and reactive annotations (from Listing 4).

Listing 5 Example of use for macros.
1 \ newfixed { removed }{text -color: red; strikethrough ;}
2
3 % Defines the macro "error" with the message "This is wrong !".
4 \ removed {error }{ This is wrong !}
5
6 \slide {Intro }{ Introduction to Variables }
7 \ description { Variables are used to ...}
8 \begin
9 int main(int argc , char *argv []) \{

10 \ removed {int 2x = 5;}{ Variable names cannot start with digits .}
11 % This macro adds the message "This is wrong !" automatically .
12 \error{int x = x + 10;}
13 \}
14 \end

Such visual distinctions serve to guide students’ attention to significant aspects of the
material, akin to what a teacher would do while explaining a snippet of code in class.

3.1.3 Styling Keys

Stepwise Source’s DSL employs a CSS-like syntax for defining styles. This familiar structure
assists educators who may have prior experience with web development, allowing them
to focus on content creation rather than navigating complex formatting rules. Educators
can apply colours through specific attributes such as text-color, background-color, and
border-color. The colours themselves can be specified either by their common names (e.g.
red, green, and blue) or by hexadecimal codes in the standard format #RRGGBB.

Table 1 provides a comprehensive overview of the DSL’s styling keys and attributes,
illustrating how they correspond to standard CSS properties. The syntax chosen was not
CSS but a similar one because the DSL could not allow for all of CSS symbols.

J. Santos, A. Costa Neto, and P. R. Henriques 10:7

Table 1 Translation of DSL styling keys and attributes to CSS.

DSL CSS Equivalent Description

text-color: red color: red Changes the text color to red, drawing attention to high-
lighted text.

background-color: blue background-color: blue Sets the background color to blue, useful for emphasizing
sections.

border-color: #FA0C25 border-color: #FA0C25 Defines the color of an element’s border as a specific hex
code, highlighting areas effectively.

bold font-weight: bold Highlights key terms or code for emphasis.

strikethrough text-decoration: line-through Visually indicates removed or outdated content.

underline text-decoration: underline Can be used to underscore important points or warnings.

text-style font-style Applies styling to text, with options for italic and
oblique for emphasis or differentiation.

text-size: 16 font-size: 16px Sets the font size of the text, allowing for adjustments in
readability.

text-align: center text-align: center Aligns the text to the centre of the element, useful for
headings or important messages.

Listing 6 Syntax for exercises creation.
1 \ exercise {/<REGEX >/}{ <PROMPT >}

3.1.4 Exercises

A distinctive feature of this DSL is its ability to stimulate student engagement through the
\exercise command, whose syntax is shown in Listing 6. This command creates interactive
elements within the presentation, fostering active participation and self-assessment among
students.

In this syntax, REGEX is a regular expression2, to be defined by the tutor, that automatically
validates the input provided by the student, ensuring the accuracy of their responses. The
PROMPT serves as the exercise’s statement that is presented to the student, guiding their
interaction and prompting them to reflect on the content of the presentation.

In order to illustrate the application of interactive exercises, consider the example in
Listing 7, which allows for immediate student feedback. In this instance, the command:
\exercise{/[0-9]+/}{Complete the code...}
prompts students to input a valid number, checking their response against the specified
regular expression. This interactivity not only enhances student involvement but also enables
them to self-assess their understanding in real-time.

Interactive exercises foster an engaging learning environment, allowing students to test
their comprehension and receive immediate feedback based on their inputs. Such features
not only promote active learning but also encourage students to engage more deeply with the
material, ultimately enriching the overall educational experience. An example of an exercise
correctly answered (green background indicates a correct answer, red a wrong one) can be
seen in Figure 4.

2 JavaScript standard https://www.w3schools.com/jsref/jsref_obj_regexp.asp

SLATE 2025

https://www.w3schools.com/jsref/jsref_obj_regexp.asp

10:8 Stepwise Source, a Supporting Tool for Source Code Demonstration

Listing 7 Example of an interactive exercise.
1 \slide {Intro }{ Introduction to Variables }
2 \ description { Variables are used to ...}
3 \begin
4 int main(int argc , char *argv []) \{
5 int x = \ exercise {/[0 -9]+/}{ Complete the code by assigning an integer

↪→ value to the variable "x".};
6 int y = x + 10;
7 \}
8 \end

Figure 4 Slide with an exercise correctly answered (from Listing 7).

3.1.5 Presentation Flow
Controlling the flow of the presentation is essential to effectively convey information. The
mandatory \order command enables this by allowing educators to dictate the sequence of
slides, thereby creating dynamic, ans possibly branching paths that are tailored to their
audience’s needs.

Listing 8 shows the syntax of the \order command. SLIDE_LIST represents the list of
identifiers that dictates the order in which the slides will be presented. It is specified by
a comma-separated list of slide IDs. A fork feature allows educators to create branches
in the presentation using the pipe operator (|), enabling alternative paths for the flow of
explanation. This would be used in cases which a topic demands not only demonstration of
correct implementation, but also incorrect ones. Another possible use for the fork feature is
the explanation of alternatives to one topic, such as the different repetition primitives in a
language that can be used to implement loops.

Listing 9 illustrates the functionality of the \order command. It defines a presentation
flow that starts with the slide Intro, followed by Variables, where the presentation can
diverge to either provide examples (Examples) or conduct a quiz (Quiz). Finally, the paths
merge and concludes the presentation with the slide Conclusion. The actual navigation
graph can be seen in Figure 5. By utilizing the \order command, educators can effectively
manage the presentation’s flow, ensuring that content is delivered in a manner that is both
engaging and responsive to the students’ dynamics.

J. Santos, A. Costa Neto, and P. R. Henriques 10:9

Listing 8 Syntax for the \order command.
1 \ order{<SLIDE_LIST >}

Listing 9 Example of a presentation containing five slides.
1 \ slide{Intro }{ Introduction to Variables } ...
2 \ slide{ Variables }{ How to Declare Variables } ...
3 \ slide{ Examples }{ Examples : Declaring Variables } ...
4 \ slide{Quiz }{ Quiz: Variable Declaration } ...
5 \ slide{ Conclusion }{ The End} ...
6 \ order{Intro , Variables , (Examples | Quiz), Conclusion }

3.2 Formal Definition
An Extended Backus-Naur Form (EBNF) grammar was written3 in order to capture the
syntax and structure required for Stepwise Language’s specialized commands4. This section
provides a detailed analysis of each production rule within the EBNF, starting with the
overall structure of the language and proceeding through the components of each command,
including slides, style definitions, macro declarations and presentation order.

The EBNF definition for Stepwise Language begins with the required start production
rule, as seen in Listing 10. This initial rule is defined as a list of commands, including
slide definitions (line 3), style (lines 4 and 5) and macro (line 6) declarations. After all the
commands are set, the presentation order is defined.

The slide command has three main components, represented by non-terminal symbols:
slide, description (optional), and code_block. The slide non-terminal rule, shown in
Listing 11, maps to the slide command with an identifier and a title. The slide keyword is
defined in both Portuguese and English5 (line 2), while the slide identifier follows typical
identifier syntax: a letter followed by alphanumeric characters (line 3). Titles use the TEXT
terminal symbol (line 4), which matches either escaped curly brackets (\}) or any character
with the exception of a closing curly bracket.

The description command, shown in Listing 11, uses the same TEXT terminal for
specifying text content. The code_block command, meanwhile, encapsulates content
within BEGIN and END keywords, as shown in Listing 11.

Inside a slide’s content, it is possible to include both source code (in any programming
language language) and Stepwise Language commands. The EBNF rule for content, shown
in Listing 13, includes three commands. The first is the EXERCISE command, which accepts
a regular expression (REGEX, defined on line 6) and a text value (line 3) as arguments. The
NOT_END commands (lines 4 and 5) are declared to ensure that commands do not accidentally
signal the end of the slide, as would happen if their identifiers were end. Instead, by using
the terminal NOT_END, these command definitions operate within the slide’s content without
triggering its conclusion.

3 The source code for the whole project including the language can be found here: https://github.com/
Yakari144/StepwiseSource

4 More specifically, the grammar was written in Lark’s dialect for EBNF in order to both design and
implement the parser.

5 All keywords are defined in both languages. Identifier, by their own nature, can be written in any
language that uses the English alphabet.

SLATE 2025

https://github.com/Yakari144/StepwiseSource
https://github.com/Yakari144/StepwiseSource

10:10 Stepwise Source, a Supporting Tool for Source Code Demonstration

Figure 5 Navigation graph for the presentation of Listing 9.

Listing 10 Initial production rule.
1 start: commands
2 commands : command + order
3 command : slide description ? code_block
4 | nreactive
5 | nfixed
6 | macro

Source code, defined by the CODE terminal, supports any kind of character and escaped
symbols that are preceded with backslash (\). It is designed to allow for the use of any
programming language, even those that require characters that are reserved for Stepwise
Language, such as open and close curly brackets, and backslash itself. The listings in Section 3
that contain a running example of slides with a source code written in C show that, in order
to use curly brackets to open and close C’s blocks of code, it is necessary to escape them
with backslash (\{ and \}). This strategy, very common in other languages, even allows the
use of Stepwise Language source code inside itself, as the content of a slide6.

The nreactive and nfixed rules, detailed in Listing 14, share a similar syntax and only
differ by their keyword. They define a unique identifier followed by a list of CSS-like styling
rules, each separated by a semicolon.

The macro rule (Listing 15) is defined similarly to the other command rules, but without
a specific keyword. The MACRO terminal captures identifiers that do not conflict with the
other command keywords using a negative lookahead to avoid them. The remaining syntax
aligns closely with that of the other commands.

The final command rule defined in the Stepwise Language’s EBNF, order, is shown in
Listing 16. This command uses a hierarchy of productions to handle command ordering and
prioritization. The recursive structure self-manages precedence: parentheses and identifiers
are evaluated first, followed by the pipe operator (|) and then commas, as the lowest priority.

4 Stepwise Source, Development

The selection of programming languages and tools for building Stepwise Source was crucial
to lay a strong foundation for the system. Python [15] was chosen due to its flexibility, ease
of use, and the wide range of libraries available. Among these libraries, Lark was selected for
its ability to easily and rapidly construct a parser suited for Stepwise Language.

The implementation of Lark’s Interpreter module enables a customized parsing process
tailored to the needs of the DSL. Beyond basic command interpretation, the Interpreter
class traverses the Abstract Syntax Tree (AST), handling each node to build the core
data structures required by the parser, while ensuring efficient communication with the

6 In a similar fashion to programming languages bootstrapping.

J. Santos, A. Costa Neto, and P. R. Henriques 10:11

Listing 11 Slide declaration production rule.
1 slide: "\\" SLIDE "{" ID "}" "{" TEXT "}"
2 SLIDE: " diapositivo " | "slide"
3 ID: ("a".."z"|"A".."Z")("a".."z"|"A".."Z"|"_"|"0".."9")*
4 TEXT: / ((\\\}) | ([^}]))+/

Listing 12 Description production rule.
1 description : "\\" DESCRIPTION "{" TEXT "}"

database. The Interpreter class includes key properties for managing data that is essential
to Stepwise Source’s functionality, including commands and slides declarations, the current
slide’s identifier and content, and the order structure.

Beyond its internal properties, the Interpreter class also implements methods for each of
the non-terminal symbols in the grammar. Beginning with the annotation style declarations,
in order to convert the CSS-like syntax of the Stepwise Language into CSS by iteratively
processing each token and adding the appropriate CSS formatting.

The presentation order command is handled by the functions responsible for storing the
order of the presentation and parsing the slide order expression declared inside the \order
command parameter. Since the operator precedences were structurally defined in the EBNF7,
the interpreter only has to collect and store the data. It checks each token, determining
whether it represents a stopping point or a recursion case, structuring the data accordingly.

Every time a slide declaration is parsed, a new slide object is created and set as the
current one. The Interpreter then iterates through the slide’s contents, populating the slide
object with properties. The annotated source code inside the slide’s content is translated
into HTML in order to style it accordingly, with each exercise command converted to an
input text box.

4.1 Database
Given the importance of managing and retrieving complex data, choosing a suitable database
was essential. MongoDB [14], a document-based database, was selected for its flexibility in
handling the structured data generated by the parser.

In order to effectively organize the parsed data structures within MongoDB, the database
system is divided into three collections: presentations, annotations, and orders. Each
collection plays a specific role in managing the structured information resulting from Stepwise
Language’s parsing.

The presentations table stores presentations that contain an identifier, a name, the
original text input used to generate the presentation, and a list of processed slides. Each
slide within a presentation includes its identifier, title, description, generated HTML code, a
list of annotation identifiers, and a list of exercises, where each exercise entry specifies its
identifier, assessment regular expression, and question.

In the annotations table, each entry represents the annotations linked to a specific
presentation. This table includes the presentation identifier it refers to, alongside a list of
annotations. Each annotation entry has an identifier and a category attribute, classifying it

7 These precedence rules are almost identical to usual arithmetic precedence definitions in regular
programming languages.

SLATE 2025

10:12 Stepwise Source, a Supporting Tool for Source Code Demonstration

Listing 13 Production rule that corresponds to the content of a slide.
1 code_block : "\\" BEGIN content "\\" END
2 content : (entry | code)+
3 entry: "\\" EXERCISE "{" REGEX "}" "{" TEXT "}"
4 | "\\" NOT_END "{" content "}" "{" TEXT "}"
5 | "\\" NOT_END "{" content "}"
6 REGEX: /\/(\\\/|[^\/])+\//
7 code: CODE
8 CODE: /(\\\\ |\\\}|\\\{| [^\\\}\{]) +/

Listing 14 Production rules to declare new styling commands.
1 nreactive : "\\" NEWREACTIVE "{" ID "}" "{" mycss (";" mycss)* "}"
2 nfixed : "\\" NEWFIXED "{" ID "}" "{" mycss (";" mycss)* "}"
3 mycss: TXT_COLOR ":" COLOR | BG_COLOR ":" COLOR | BORDER_COLOR ":" COLOR
4 | BOLD | ITALIC | UNDERLINE | STRIKETHROUGH
5 | TXT_SIZE ":" NUM | TXT_ALIGN ":" ALIGN

as either a "command" or "macro". Entries in the "command" category also include a type
and a list of styling attributes, while those in the "macro" category contain the command
that created it and the associated text.

The final table, orders, holds the structural order of each presentation. Each order entry
includes the presentation identifier and an order string that defines the slide arrangement,
such as:

1 [Beginning , [[Tips], [Exercise]], Syntax , Ending]

which, organizes slides by identifier. Nested lists in the order string represent forks, with
each path in a fork following the same syntax as the main order. This organization allows
each path to be processed as an independent presentation structure.

4.2 Backend
The backend serves as the intermediary layer, managing communication between the frontend,
the parser, and the database. Built with JavaScript [7] and Express.js [8], the backend
efficiently handles requests and processes data, whether it involves retrieving stored content
from MongoDB or sending commands to be processed by the Python-based parser. This
architecture enables the frontend to dynamically interact with the system, providing the
necessary content to users without delays or inconsistencies.

4.3 Web Application
The frontend was developed with Create React App [5] due to its simplicity and efficiency.
React’s component-based architecture made it easier to manage dynamic content and
consistency throughout the application. This framework allows the Web App to render and

Listing 15 Macro production rule.
1 macro: "\\" MACRO "{" ID "}" "{" TEXT "}"
2 MACRO: /(?!" newreactive "|" newfixed "|"order"|" novoreativo "|" novofixo "|"

↪→ ordem")[a-z_A -Z][a-zA -Z_0 -9]*/

J. Santos, A. Costa Neto, and P. R. Henriques 10:13

Listing 16 Presentation order production rule.
1 order: "\\" ORDER "{" exp "}"
2 exp: term
3 | exp ("," term)
4 term: factor
5 | term ("|" factor)
6 factor : ID
7 | "(" exp ")"

Figure 6 Presentations page (on the left) and Editor page (on the right).

update the learning materials in real time, providing an interactive experience for users. The
web application is divided into six pages: Home, About, Documentation, Presentation List,
Presentation Editor, and Presentation Navigator, which will be presented in the next section.

5 Stepwise Source, Use and Feedback

Stepwise Source is comprised of different pages that implement several aspects of the
application. The main operating pages are the presentations list, editor and navigator.

5.1 Presentations List Page
The presentations page (left side of Figure 6) was designed to showcase all presentations
created on the platform. The first row is reserved for the tutorial presentation. Since
this tutorial is not intended for user modification, only a “Go To” button is available,
preventing any edits. This “Go To” button serves as a redirect, guiding users to the
respective presentation page. For all other presentations, besides “Go To”, an additional
“Edit” button is available, allowing users to modify the presentation content.

5.2 Presentation Editor Page
A large text box serves as the editor, allowing users to directly input the code needed to
build their presentations (right side of Figure 6).

An “Upload” button opens a file explorer, enabling the user to select and load a file with
pre-existing code. To support users who may wish to save their progress locally, a “Download”
button is also available. This function instantly downloads the current content of the text
editor as a file named “presentation.txt”.

Once the presentation code is finalized, users can click the “Publish” button to publish
their presentation. This action opens a panel for naming the presentation, making it easier
to find later. The panel prompts for a name and displays any input or naming errors, guiding
the user to make necessary corrections before publishing. If the page was accessed to edit an
existing presentation, clicking “Publish” will update it instead of creating a new one.

SLATE 2025

10:14 Stepwise Source, a Supporting Tool for Source Code Demonstration

5.3 Presentation Navigator Page

The central feature of Stepwise Source is the Presentation Page, where each slide in a
presentation is displayed along with its source code, descriptions, annotations, styling, and
unique navigation options. Figures 2 to 5 already showed the presentation navigator in use
for the running example of Section 3.

Besides what has already been demonstrated in those figures, the navigation between
slides requires more explanation. The navigation section below the content are enables users
to move through the presentation slides. The user can click buttons “Previous” on the
left and “Next” on the right for simple linear navigation, moving backwards and forwards
respectively. In the case of branches (forks) in the presentation flow, more than one option
will be available. A graph positioned in the centre of the navigation section shows the entire
presentation flow, with each circle representing a slide. While the current slide appears in
white with a green border, all other slides are represented in black circles. Users can click on
any node to jump directly to that slide, allowing flexible navigation.

5.4 Feedback

To evaluate its effectiveness, a lecture was conducted with a Master’s Degree class in
Informatics Education at Minho University, Braga. The session, with the participation of
three professors and nine students, covered the need for educational tools that enhance
programming instruction, highlighted the specific challenges Stepwise Source aims to address,
and included a demonstration of the tool.

Students and teachers explored both perspectives by using the application directly while
commenting on its use and usefulness. In addition to pointing out areas where the current
version needed improvement, the feedback from this session, more importantly, affirmed
Stepwise Source’s value as a relevant contribution for teaching and learning computer
programming. Both learners and educators recognized its usefulness, suggesting it would
be a meaningful addition to their educational toolkit. This positive reception highlights
Stepwise Source’s relevance in supporting computer programming education.

This preliminary assessment session allowed for a confirmation on the positive aspects of
Stepwise Source’s usability and user experience.

6 Conclusion

Stepwise Source positions itself as a flexible, useful and free tool to aid educators in creating
on-line source code demonstrations that imitate the free-flowing cadence of live lectures. It
implements a DSL that supports the creation of slides, styled annotations, and branches
in explanation. It was reviewed by future informatics teachers, more specifically, computer
programming, that reinforced the notion of its usefulness and applicability.

While a fully functional version of the tool has been developed, several enhancement
ideas emerged during the development process and the assessment session that are not yet
implemented. One potential improvement is to clarify the relationship between the styled
annotation in the source code and its comment, possibly by incorporating note identification
numbers. Additionally, offering varying levels of detail in the annotations could further
personalize the learning experience, allowing students to engage at their preferred pace. At
last, a Context-Free Grammar could be used to validate the learner’s input instead of a
regular expression, which would further empower this tool.

J. Santos, A. Costa Neto, and P. R. Henriques 10:15

Another suggested feature is the integration of a user management system, enabling
educators to create dedicated classrooms where they could organize presentations by specific
themes. This would enable them to share a curated list of related presentations through a
single link, enhancing accessibility and coherence for their students. The last component
of future improvement would be the possibility of embedding presentations into other web
pages, including Learning Management Systems (LMS) such as Moodle.

Finally, a more robust and structured testing would analyse both the use on the educator’s
part and also the students’ interaction with the tool. This procedure would result in a better
overview of Stepwise Source’s usability and user experience, but also its value as a computer
programming educational tool.

References
1 Cristiana Esteves Araujo. Training Computational Thinking: exploring approaches supported

by Neuroscience. PhD thesis, University of Minho, March 2022. PDInf - prethesis.
2 Albert Bandura, W. H. Freeman, and Richard Lightsey. Self-efficacy: The exercise of control.

Journal of Cognitive Psychotherapy, 13(2):158–166, 1999. doi:10.1891/0889-8391.13.2.158.
3 Yorah Bosse, David Redmiles, and Marco A. Gerosa. Pedagogical content for professors of

introductory programming courses. In Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’19, pages 429–435, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3304221.3319776.

4 Chin Soon Cheah. Factors contributing to the difficulties in teaching and learning of computer
programming: A literature review. Contemp. Educ. Technol., 12(2):ep272, May 2020.

5 Create React App. Create react app. https://create-react-app.dev/, 2024.
6 Sofia Guilherme Rodrigues dos Santos. Automatic grading of programming exercises. University

of Minho, August 2023.
7 Brendan Eich. The javascript programming language. Netscape Communications, 1995.
8 Express. Express. https://expressjs.com/, 2024.
9 Anabela Gomes and Antonio Mendes. Learning to program - difficulties and solutions. In

International Conference on Engineering Education – ICEE 2007, pages 283–287, January
2007.

10 Philip J. Guo. Online python tutor: embeddable web-based program visualization for cs
education. In Proceeding of the 44th ACM Technical Symposium on Computer Science
Education, SIGCSE ’13, pages 579–584, New York, NY, USA, 2013. Association for Computing
Machinery. doi:10.1145/2445196.2445368.

11 Khan Academy. Khan academy. https://www.khanacademy.org/, 2024.
12 Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual Falcão. A systematic

literature review on teaching and learning introductory programming in higher education.
IEEE Transactions on Education, 62(2):77–90, 2019. doi:10.1109/TE.2018.2864133.

13 Bertrand Meyer. Codeboard. https://codeboard.io/, 2024.
14 MongoDB. Mongodb. https://www.mongodb.com/, 2024.
15 Python. Python. https://www.python.org/, 2024.
16 Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in introductory

programming: A literature review. ACM Trans. Comput. Educ., 18(1), October 2017. doi:
10.1145/3077618.

17 Paula Correia Tavares, Elsa Ferreira Gomes, and Pedro Rangel Henriques. Animation and
automatic evaluation in supporting the teaching of programming. In 2015 10th Iberian
Conference on Information Systems and Technologies (CISTI), pages 1–4, 2015. doi:10.1109/
CISTI.2015.7170548.

SLATE 2025

https://doi.org/10.1891/0889-8391.13.2.158
https://doi.org/10.1145/3304221.3319776
https://create-react-app.dev/
https://expressjs.com/
https://doi.org/10.1145/2445196.2445368
https://www.khanacademy.org/
https://doi.org/10.1109/TE.2018.2864133
https://codeboard.io/
https://www.mongodb.com/
https://www.python.org/
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1109/CISTI.2015.7170548
https://doi.org/10.1109/CISTI.2015.7170548

	1 Introduction
	2 Stepwise Source, Proposal
	3 Stepwise Source, DSL
	3.1 Overview and Use
	3.1.1 Defining a Slide
	3.1.2 Styling
	3.1.3 Styling Keys
	3.1.4 Exercises
	3.1.5 Presentation Flow

	3.2 Formal Definition

	4 Stepwise Source, Development
	4.1 Database
	4.2 Backend
	4.3 Web Application

	5 Stepwise Source, Use and Feedback
	5.1 Presentations List Page
	5.2 Presentation Editor Page
	5.3 Presentation Navigator Page
	5.4 Feedback

	6 Conclusion

