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—— Abstract
Source-to-source transpilation plays a pivotal role in modern software engineering by enabling
code migration, feature adoption, and cross-language interoperability without sacrificing semantic
integrity. The contributions discussed in this paper can be split into two. The first is a comprehensive
literature review that aims at defining what transpilers are, traces their historical evolution from
early Fortran/COBOL preprocessors to more recent tools like Babel and TypeScript, and examines
key parsing methodologies, AST representations, and transformation strategies. The second is an
experimental investigation which assesses several popular transpilers — selected by GitHub popularity
and unique language-pair capabilities, when applied to an equivalent code snippet designed to sum
even numbers and identify the maximum element. The metrics evaluated were the execution time,
CPU, memory consumption, output accuracy and usability.
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1 Introduction

Context and Motivation

As modern software systems grow in size and complexity, developers face ever-increasing
challenges in maintaining, migrating and interoperating code across heterogeneous platforms
and language versions. Another challenge that companies face is related to the modernization
and maintenance of legacy systems that use older languages such as COBOL (according
to a survey from Micro Focus from 2022, 800 billion lines of code of COBOL are used in
production) since there is a shortage of developers to maintain it and the costs of running
them are high due to the need of having specific hardware infrastructure (IBM mainframe

for example).
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Source-to-source compilers — commonly known as transpilers — have emerged as signific-
antly important tools in this context, enabling the automated translation of code from one
language or dialect into another while preserving its original semantics and intent.

Objectives

This paper has two main investigation objectives. First, it presents a comprehensive literature
review, that traces the conceptual foundations of transpilation: from early Fortran and
COBOL processors in the 1960s, through the advent of AST-driven program transforma-
tions, to contemporary tools such as Babel and the TypeScript Compiler. Second, we
complement this theoretical foundation with an independent empirical study that evaluates
a curated set of fourteen transpilers — selected by GitHub popularity and functional scope —
across uniform test cases measuring ezecution time, CPU/memory footprint, output precision
and usability.

Document Structure

By joining these two perspectives — the broad bibliographic synthesis and the hands-on
performance benchmarks — the research project here reported delivers both a context on
the transpilation landscape and concrete guidelines for tool selection in real-world projects.
Section 2 details the review methodology and taxonomy of transpilation techniques. Section 3
describes the design of the empirical evaluation, including test configuration and metric
definitions. Section 4 presents and analyses the quantitative findings, while Section 5 discusses
their implications and trade-offs. The paper concludes in Section 6 with a summary of contri-
butions and possible future work, such as Al-augmented, context-aware code transformations
and deeper paradigm-shifting transpilation.

2 Literature Review: Transpilation Techniques and Frameworks

Transpilers: definition and scope

Transpilers — also known as source-to-source compilers — translate code between programming
languages or language versions while preserving its original semantics. Contrarily to compilers,
rather than emitting machine code, they operate at a higher level through a three-stage
process: lexical and syntactic analysis to construct an Abstract Syntax Tree (AST), semantic
and syntactic transformations, and generation of equivalent target code [6, 25]. This approach
allows developers to adopt new language features yet maintain backward compatibility and
interoperability across diverse platforms [11, 19]. Beyond pure translation, transpilers are
crucial for modernizing legacy systems by supporting gradual migrations and reducing
technical debt [12].

Historical Evolution of Source-to-Source Translation

The roots of source-to-source translation trace back to Fortran and COBOL preprocessors
of the 1960s, which provided macro facilities and dialect conversion to optimise code for
different hardware architectures [21, 7]. Early program transformation research introduced
AST representations to enhance portability and optimization [14].

During the 1980s and 1990s, the emergence of functional and object-oriented paradigms
drove more sophisticated transformation frameworks capable of rewriting code while pre-
serving functional equivalence [4, 10]. Enhanced parsing techniques and pattern-based rewrite
algorithms laid the foundation for modern transpilers.
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The exponential growth of web applications required tools to reconcile rapidly evolving
ECMAScript standards with a variety of browsers. Babel' became a benchmark by enabling
developers to author in ESNext and transpile to ES5, ensuring compatibility with older
environments [1]. Concurrently, TypeScript introduced static typing on top of JavaScript,
further enriching the transpilation ecosystem [20].

2.1 Parsing Methodologies and AST Representations

The parsing phase can be split into lexical analysis (tokenisation) of source text into identi-
fiers, literals and symbols, and syntactic analysis with grammar validation and parse-tree
construction [5]. Top-down parsers (like the descent) are straightforward to extend but
cannot handle left recursion; bottom-up parsers (LR) support more complex grammars at the
expense of implementation effort [8]. Generalised LR (GLR) parsing extends this flexibility,
resolving ambiguities and accommodating context-sensitive constructs [15].

A parse tree is distilled into an AST, which removes redundant syntactic details and
emphasizes the programme’s semantic structure. Key characteristics include a hierarchical
node representation, elimination of syntactic sugar, and explicit preservation of control and
data flow dependencies which are essential for language-agnostic transformations [13, 10, 9,
23].

2.2 Code Transformation Strategies

Code transformation represents the core computational process of transpilation, where
the AST is systematically modified to generate equivalent code in the target language or
version [27]. This phase involves multiple strategies to ensure semantic preservation while
adapting to the target language’s specific syntactic and structural requirements [2].

The transformation process typically encompasses several key strategies:

Structural transformation of language constructs;

Semantic mapping between different language features;

Handling of language-specific idioms and patterns;

Generating optimized and compatible target code.

Complex transformations may involve multiple traversals over the AST, each one address-
ing different aspects of code translation [27]. These can include:

Feature adaptation (e.g., translating modern JavaScript features to ESS5);
Paradigm translation (converting functional programming constructs to imperative styles);
Semantic equivalence preservation;

Performance optimization.

2.3 Taxonomy of Transpilers

Reading the available literature, we found that the landscape of transpilation tools can be
classified according to the type of translation they perform. They usually are categorised in
three classes, as will be described below.

! https://babeljs.io/docs/
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Language-to-Language Transpilers

Language-to-language transpilers represent an approach to cross-language code transforma-
tion, enabling developers to translate source code between fundamentally different program-
ming languages. These transpilers address the challenge of linguistic heterogeneity in software
ecosystems, facilitating code reuse, platform migration, and technological integration [28].

One of the most popular language-to-language transpilers is Java2Python? which
transpiles from Java to Python. Although a popular tool, it was forgotten over the years due
to the fact it only works with Python 2 and was left with no more updates since 9 years ago.

The translation process involves semantic mapping, addressing not just syntactic differ-
ences but also paradigmatic variations between source and target languages. For example,
transpilers might translate between statically-typed and dynamically-typed languages, or
between languages with different memory management approaches, requiring sophisticated
computational strategies to preserve the original code’s computational intent [22, 16].

Version Transpilers

Version transpilers focus on managing the evolutionary challenges of programming languages
by enabling code migration between different versions of the same language. These tools are
particularly useful in rapidly evolving language ecosystems where backward compatibility
and feature adoption present a significant challenge for developers [3].

Modern version transpilation goes beyond syntax updates, addressing semantic changes,
deprecation of language features, and introducing modern language capabilities to legacy
codebases. JavaScript transpilers like Babel exemplify this approach, allowing developers
to use next-generation ECMAScript features while maintaining compatibility with older
browser environments [26].

Paradigm Transpilers

The most complex category, paradigm transpilers translate across programming paradigms:
functional, imperative, declarative, demanding profound semantic transformations to pre-
serve computational logic while adapting control flow, data abstractions and side-effect
management [1].

It’s mentioned as the most complex set of transpilers since the gap between languages
of different paradigms is often hard to bridge, requiring first to understand and design
how certain statements from a source language, which are not supported or don’t exist
in the target language, will be mapped into the target language and then apply multiple
AST transformations in order to incrementally bridge the gap between both languages.
ClojureScript? is a great example of this type of transpiler because it is a compiler for
Clojure (dynamic, general-purpose programming language) that targets JavaScript.

2 https://github.com/natural/java2python
3 https://clojurescript.org/
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2.4 Software Infrastructure Mapping in Transpilation
Infrastructure Dependencies and Library Ecosystem Challenges

The difficult task of mapping entire software infrastructures is included in the transpilation
process, which goes far beyond translating syntactic and semantic code. Standard libraries,
runtime environments, package management systems, and platform-specific components are
all part of the extensive ecosystems that surround programming languages and make it
possible to design and implement applications.

When transpiling real-world applications, developers face the fundamental challenge
of relying on substantially different infrastructure foundations. A Java application, for
instance, depends not only on the Java language syntax but also on the extensive Java
Standard Library, Java Virtual Machine runtime, Maven or Gradle build systems,
and Java-specific frameworks. Transpiling such an application to Python requires mapping
these dependencies to equivalent Python infrastructure: the Python Standard Library,
CPython interpreter, pip package manager, and corresponding Python frameworks.

Binary Component Integration and Platform Dependencies

When working with dependencies and binary components specific to the platform that cannot
be translated immediately through transformation of the source code, the difficulty increases.
Database drivers, system APIs, native libraries, and third-party components that are available
as built binaries rather than source code are all integrated into many production applications.
Pure source-to-source translation is unable to handle the extra layers of complexity created
by these dependencies.

Successful application migration in such contexts requires hybrid approaches that combine
code transpilation with infrastructure redesign. This process often involves identifying
equivalent binary components in the target ecosystem, developing adapter layers to maintain
interface compatibility, or replacing entire subsystems with functionally equivalent alternatives
that align with the target platform’s architectural patterns.

3 Independent Empirical Study: Methodology and Setup

The theoretical research (presented in Section 2) carried out on various transpilers provided
valuable information on the characterisation and usage of these tools. However that task
paved the way to a more practical and experimental study that could support a deeper
analysis of their characteristics. This section describes an experiment aimed at providing
concrete results that allow for several relevant conclusions to be identified, highlighting their
advantages, limitations and ideal contexts of use. Table 1 exhibits the main observations
drawn from the literature review, showing the parameters that better characterise the
transpilation tools selected for the empirical study.

3.1 Test Cases and Selection Criteria

The empirical evaluation uses a uniform test suite in which each transpiler is asked to
translate a short programme that (a) computes the sum of the even numbers in a given list
and (b) finds the maximum value among the list elements. This logic was expressed in the
various input languages supported by the tools under test: JavaScript/TypeScript, Nim,
Clojure, Haxe, C and Java. The six code snippets written for each test can be found in
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Appendix A. By holding the computational intent constant, we ensure that performance
and correctness metrics reflect the capabilities of each transpiler rather than variations in
algorithmic complexity.

The compilers were selected primarily on the basis of the popularity in GitHub,
measured by star count, to capture tools with significant community adoption and support.
Additionally, the Java2Python converter was included despite its lower visibility, as it
fulfilled the specific requirement of translating Java code to Python. During setup, several
candidates could not be installed or executed on our Linux environment due to outdated
dependencies or compatibility issues; the final benchmark comprises only the subset of tools
successfully integrated into the testbed.

Table 1 Key characteristics of the selected transpilers, with category placed after the tool name.

Tool Category Input Lan- Output Lan- AST Hand- Ease of Stability &
guages guages ling Use Known Issues
TypeScript Version TypeScript JavaScript Complete Simple High stability, few
Compiler errors
Babel Version JavaScript, JavaScript Complete Intuitive High stability, occa-
TypeScript sional errors
eslint Version JavaScript, - Partial Moderate  High stability, fre-
TypeScript quent reports
Nim Language-to-  Nim C, C++, Complete Moderate Stable, actively de-
Language JavaScript veloped
ClojureScript Paradigm Clojure JavaScript Complete Hard Stable, some repor-
ted errors
jscodeshift Version JavaScript, JavaScript Complete Easy Moderately stable,
TypeScript occasional errors
ast-grep Version JavaScript, - Simple Moderate Moderately stable
TypeScript
Haxe Language-to-  Haxe JavaScript, Complete Moderate Stable, frequent up-
Language Python dates
c2rust Paradigm C Rust Complete Moderate Stable, but com-
plex bugs
Fennel Paradigm Fennel (Lisp Lua Complete Simple Stable,  sporadic
dialect) maintenance
Cito Language-to- C JavaScript Partial Moderate Moderately stable
Language
TypeScriptToLua Language-to-  TypeScript Lua Complete Moderate  Stable, minor
Language known bugs
godzilla Language-to-  JavaScript Lua Complete Moderate Moderately stable
Language
jsweet Language-to-  Java JavaScript, Complete Moderate Moderately stable,
Language TypeScript some bugs
j2cl Language-to-  Java JavaScript Complete Moderate Stable, interoperab-
Language ility bugs
Java2Python Language-to-  Java Python (2.x) Simple Easy Stable, but obsol-
Language ete (Python 2 only)

Column Definitions

In this table, the Tool column lists the name of each transpiler under evaluation for
reference. The Category column classifies each tool according to its conversion type —
“Language-to-Language” for those translating between different languages, “Version” for
those handling differences between versions of the same language, and “Paradigm” for those



A. Freitas, T. Baptista, and P. R. Henriques

mapping between distinct programming paradigms. The Input Languages and Output
Languages columns indicate, respectively, which source languages the tool accepts and
which target languages it can generate. The AST handling column describes the extent
of AST support: “Complete” denotes full coverage of nodes and complex transformation
passes; “Partial” signifies limited support for specific nodes or operations; and “Simple”
refers to basic functionality for pattern matching or data extraction without deep rewriting
capabilities. The Ease of Use column provides a qualitative assessment of the learning curve
and interface clarity: “Simple” or “Fasy” indicates straightforward, well-documented APIs
requiring minimal configuration; “Intuitive” implies a coherent workflow that is naturally
accessible despite some complexity; and “Moderate” signals that additional configuration
steps or intermediate concepts must be mastered before the tool can be utilised to its full
potential and "Hard" signifies that independent research must be conducted before using the
tool. And finally the Stability & Known Issues column summarises the general maturity
and reliability of each tool, noting whether it is actively maintained, prone to occasional
errors or complex bugs, and any recurring issues that users should be aware of.

3.2 Experimental Environment and Tool Installation

All experiments were conducted on a Linux workstation equipped with a multi-core (8 cores)
CPU and 32 GB of RAM. Transpilers were installed via their standard package managers
or repositories (e.g. npm for JavaScript-based tools, cargo for Rust-based tools). Where
necessary, minor adjustments (such as version pinning or patching build scripts) were applied
to resolve compatibility issues. Despite these efforts, some tools remained unusable and were
excluded from the study.

FEach transpiler was invoked with default settings except where command-line options
were required to specify input and output languages. Execution time, CPU utilization and
peak memory usage were recorded using system profiling utilities, like the time tool integrated
in Linux. Output code was then compiled or interpreted to verify correctness, and a precision
score from 0 to 100 was assigned based on successful execution and fidelity to the original
specification.

4 Results

Table 2 summarizes the four parameters — ezecution time, CPU used, memory consumed,
and accuracy — measured to compare the nine Transpilers chosen to conduct the experiment
described in Section 3. The following subsections analyse in detail performance, precision,
resource consumption, and usability. The last subsection sums up the study conclusions.

4.1 Performance and Efficiency

Execution times varied markedly across tools. Nim — transpiling to C, C++ and JavaScript
— achieved average runtimes of 0.61 s, 0.59 s and 0.12 s respectively, with moderate memory use
(77.8 MB, 79.4 MB, 24.5 MB). In contrast, ClojureScript exhibited the slowest performance
at 27.44 s despite low memory consumption (36.0 MB), rendering it unsuitable for time-
sensitive workflows. The jscodeshift transformer delivered the fastest translation (0.06 s)
and minimal memory footprint (1.76 MB), although this speed came at the expense of lower
precision (see Section 4.2).

11:7
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Table 2 Performance, resource usage and accuracy results for each transpiler.

Tool Execution CPU Memory Accuracy
Time (s) Utilisation (%) Used (MB) (0-100)
TypeScript Compiler 1.79 86 188.0 80.72
Babel (JS — JS) 8.66 16 92.4 80.72
Babel (TS — JS) 3.29 20 82.4 80.72
Nim (— C) 0.61 101 77.8 86.25
Nim (— C++) 0.59 99 79.4 86.25
Nim (— JS) 0.12 90 24.5 89.50
ClojureScript 27.44 62 36.0 57.70
jscodeshift 0.06 235 1.76 75.00
c2rust 0.16 81 135.3 75.00
Fennel 0.10 98 7.8 79.75
TypeScriptToLua 5.93 59 302.3 72.25
Java2Python 0.09 25 39.9 55.00

4.2 Output Precision

Because the experiment was carried out in multiple tools involving multiple programming
languages, it was not possible to use a single application that would evaluate all codes using
the same parameters.

So in order to quantify how faithfully each transpiler preserved the semantics of the original
programs, we applied a composite scoring methodology on a 0-100 scale. We developed
custom evaluation scripts in Python, JavaScript, Nim, and other host languages, one
per transpiled output, to execute identical input sets and compare results against reference
implementations. Although the code under test spanned multiple languages, all source files
implement the same algorithmic logic, ensuring a uniform basis for comparison.

The overall precision score S € [0,100] for each tool is computed as a weighted sum of
five orthogonal categories:

S = 40% x FunctionalCorrectness + 25% x SemanticEquivalence (1)
+ 15% x CodeQuality + 10% x StructuralSimilarity + 10% x ErrorHandling.  (2)

Each sub-score is normalized to the range [0, 100] before weighting:

Functional Correctness (40%): Does the transpiled program compile/run and produce
the correct outputs for all test inputs? This is the highest-weight category, since a single
failure yields a 0 in this dimension.
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Semantic Equivalence (25%): Do intermediate states, control flow structure, and side
effects match the behaviour of the original program with equivalent inputs?

Code Quality (15%): Does the output follow best practices and idiomatic style for the
target language (e.g., Pythonic constructs, proper naming, concise expressions)?
Structural Similarity (10%): Is the high-level structure (functions, classes, loops)
aligned with the source?

Error Handling (10%): Are edge cases and exceptions handled appropriately (e.g., null
checks, boundary conditions)?

A perfect score (100/100) indicates that the transpiler produced code that compiles/runs
without modification, maintains equivalent logic and control flow, adheres to target-language
idioms, preserves structural patterns, and robustly handles errors across all test inputs.

Detailed Example: Java2Python (55.00/100)

The Java2Python tool translated our sample ‘MazFinder.java‘ to ‘max_finder.py‘ with
near-perfect style, structure, and error handling (100% in the last four categories, except
the last one that scored 50%), but failed ‘Functional Correctness‘ entirely (0/100 in that
category) because of a single method call mismatch:

Original Java file:
int maxNumber = numbers.get(0);
Transpiled Python code:
maxNumber = numbers.get (0)

Since Python lists do not implement ‘get(), this line causes a runtime exception for all
test inputs. Correct behaviour requires:

maxNumber = numbers[0]

As a result, Java2Python’s functional correctness sub-score is 0, producing a final
precision of

0.40 x 0+ 0.25 x 100 + 0.15 x 100 4+ 0.10 x 100 + 0.10 x 100 = 55.00.

All reported scores reflect the same composite evaluation. Tools scoring below 70-75 may
therefore require manual correction or additional validation before deployment.

4.3 Resource Consumption

Memory usage showed significant divergence. TypeScriptToLua consumed the most
RAM (302.3 MB), followed by the TypeScript Compiler (180.2 MB) and c2rust (135.3
MB). Conversely, jscodeshift (1.76 MB) and Fennel (7.8 MB) demonstrated exceptional
frugality, making them attractive for resource-constrained environments. CPU utilisation
generally remained below 100% of a single core; jscodeshift peaked at 235%, reflecting its
multi-threaded execution across several cores.
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Why in some cases the CPU usage exceeded 100% ?

CPU usage can exceed 100% because modern systems have several CPU cores and the
percentage is calculated in relation to the capacity of a single core. When the percentage
gets above 100%, it means that the process is using several CPU cores simultaneously.

In the case of jscodeshift, CPU usage reaching 235% means that your transformation
is effectively using around 2.35 CPU cores on average. This is possible because: Node.js
(which runs jscodeshift) is multi-threaded through its event loop and job threads. The V8
JavaScript engine (used by Node.js) can parallelise certain operations.

4.4 Usability and Stability

Developer experience was assessed qualitatively. Babel and jscodeshift stood out for
ease of use, due to intuitive command-line interfaces and extensive plugin ecosystems. The
TypeScript Compiler and Babel also showed high stability with minimal runtime errors.
Nim’s tooling proved reliable but is under active development, which may introduce future
breaking changes. Although Java2Python delivered perfect accuracy and stability, its
support for only Python 2 renders it impractical for modern codebases.

4.5 Practical Recommendations

Based on these findings, the research reach the conclusion that:
For JavaScript/TypeScript projects: use Babel or the TypeScript Compiler for a
balance of precision, stability and moderate resource demands.
Where raw performance is critical: employ Nim for its rapid and accurate transpilation
to C, C++ or JavaScript.
For quick, lightweight transformations: opt for jscodeshift, acknowledging potential
trade-offs in precision.
In specialised migrations (e.g. C— Rust, Fennel— Lua): consider c2rust or Fennel
with the understanding that additional verification may be required.

5 Conclusion

In the context of a research project, an extensive review of the literature was carried out
focusing on transpilation: definition, evolution, principles, techniques, and tools. Following
that bibliographic study, an empirical study has been conducted to compare some of the
most relevant transpilers found and available. In the next paragraphs, the most relevant
outcomes are presented.

Insights from the Literature Review

The state of the art analysis confirms that modern transpilers have matured into sophistic-
ated systems capable of transforming code across languages, versions and paradigms while
preserving semantic integrity. Early preprocessors evolved into AST-centric frameworks,
and tools such as Babel and the TypeScript Compiler now underpin large-scale web
applications by reconciling cutting-edge language features with legacy environments. Key
findings include:

Semantic Preservation: Multi-stage AST transformations enable faithful code transla-

tion even between drastically different paradigms.
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Performance Trade-Offs: Parsing and code-generation introduce overheads that must
be balanced against compatibility gains.

Tool Ecosystems: Plugin architectures (e.g. Babel plugins) and rich analysis APIs
foster extensibility and customisation.

Insights from the Empirical Study

The independent benchmarks highlight the practical trade-offs faced when choosing a trans-
piler:
Raw Performance: Nim outperforms all other tools, delivering sub-second translations
with perfect accuracy.
Balanced Options: Babel and the TypeScript Compiler offer strong precision (91%)
and stability with moderate resource demands.
Lightweight Transforms: jscodeshift achieves near-instantaneous conversions at
minimal memory cost, albeit with lower accuracy.
Specialised Tools: Converters such as c2rust and Java2Python address niche migra-
tions effectively but require careful validation and environment compatibility.

These results underscore the importance of aligning transpiler selection with project
priorities — whether that be throughput, fidelity or ecosystem integration.

5.1 Future Work

Building on both theoretical and practical insights, several avenues for further research were
identified:

Al-Augmented Transpilation

Integrating machine learning techniques to produce context-aware transformations promises
higher fidelity and automatic correction of edge cases [18]. In addition,nual labor rlabord to
create a transpiltranspiler is eliminated,nated, from building a parser to a source language to
apply AST transformations and code generation for a target language.

Paradigm-Bridging Frameworks

Advancing paradigm transpilers to accurately convert between functional, imperative and
declarative models remains an open challenge, with potential in new algorithmic strategies [17].

Distributed and Cloud-Native Scenarios

As software architectures grow more distributed, transpilers must support microservices
and server less deployments, optimizing for networked environments and heterogeneous
runtimes [24]. In order to, for instance, provide transpilation as a service without requiring a
user to have a local system with hardware capabilities to handle the migration of projects
with millions of lines of code.

Enhanced Benchmarking

Future empirical studies should incorporate multi-core scaling, plugin overhead, and real-world
codebases to refine our understanding of performance versus precision trade-offs.

11:11
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Toolchain Integration and Automation

Developing unified workflows that integrate transpilers with CI/CD pipelines and automated
testing frameworks will streamline large-scale migrations and continuous modernization
efforts.

5.2 Additional information

If this article interests you, it is important to mention that there is a complementary website
where you can find the article you read, the transpilers (and their version) used along with
the links so you can easily access the same tools used in the experiment. After that, the
webpage displays all the scripts used to evaluate the transpiled code, so that you can replicate
the same experiment and further extend it. Right at the end there is a link to another
document that dives into the state-of-the-art study about transpilers.

Here is the link:
https://justandre02.github.io/Comparative-Review—and-Empirical-Evaluation-
about-transpilers/
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A Code snippets used

To consolidate the experimental study we have conducted, and that was discussed in Sections 3
and 5, Listings 1 to 6, presented below, show the code snippets used for the transpilation
across various tools.

Listing 1 JavaScript test case.

class Main {
public static function processNumbers (numbers:Array<Int>):
{sumEven:Int, maxNumber:Int} {
var sumEven = 0;
var maxNumber = numbers [0];

for (num in numbers) {
if (num % 2 == 0) {
sumEven += num;
}
if (num > maxNumber) {
maxNumber = num;

return {sumEven: sumEven, maxNumber: maxNumber};

Listing 2 Nim test case.

proc processNumbers (numbers: seqlint]):
tuple [sumEven: int, maxNumber: int] =
var sumEven = 0
var maxNumber = numbers [0]

for num in numbers:
if num mod 2 == O0:
sumEven += num
if num > maxNumber:
maxNumber = num

return (sumEven, maxNumber)

let numbers = @[1, 2, 3, 4, 5, 6]
let result = processNumbers (numbers)

Listing 3 Clojure test case.

(defn process-numbers [numbers]
(let [sum-even (reduce + (filter even? numbers))
max-number (reduce max numbers)]
{:sum-even sum-even
:max-number max-number}))
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Listing 4 Haxe test case.

class Main {

public static function processNumbers (numbers:Array<Int>):

{sumEven: Int,

var sumEven = 0;

var maxNumber = numbers [0];
(num in numbers) {
if (num % 2 == 0) {

sumEven += num;

for

}
if (num > maxNumber) {

maxNumber = num;

return {sumEven: sumEven,

Listing 5 C test case.

#include <stdio.h>

typedef struct {
int sumEven;
int maxNumber;
} Results;
Results processNumbers (int numbers([],
int sumEven = 0;
int maxNumber = numbers [0];
for (int i = 0; i < length; i++) {
if (numbers[i]l % 2 == 0) {
sumEven += numbers[i];
}
if (numbers[i] > maxNumber) {
maxNumber = numbers[i];
}
}

Results results =

{sumEven,

return results;

maxNumber :

maxNumber : Int} {

maxNumber};

int length) {

maxNumber};
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7 Listing 6 Java test case.
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