
A DSL for Swarm Intelligence Algorithms
Kevin Martins #

ALGORITMI Research Centre, University of Minho, Braga, Portugal

Rui Mendes #

LASI Research Centre, University of Minho, Braga, Portugal

Abstract
We propose a domain-specific language to simplify the expression of Swarm Intelligence algorithms.
These algorithms are typically introduced through metaphors, requiring practitioners to manually
translate them into low-level implementations.This process can obscure intent and hinder reprodu-
cibility. The proposed DSL bridges this gap by capturing algorithmic behavior at a higher level of
abstraction. We demonstrate its expressiveness in a few lines of code and evaluate its feasibility
through a reference implementation. A discussion is presented that includes empirical comparisons
with traditional implementations and future directions of the proposed DSL.

2012 ACM Subject Classification Software and its engineering → Domain specific languages

Keywords and phrases Domain Specific Languages, Swarm Intelligence, Global Optimization

Digital Object Identifier 10.4230/OASIcs.SLATE.2025.2

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Unit Project Scope UID/00319/Centro ALGORITMI (ALGORITMI/UM).
Kevin Martins: Kevin Martins thanks FCT for the grant SFRH/BD/151434/2021.

1 Introduction

Optimization is a popular research field that aims to find the best solution to a given problem
by minimizing or maximizing an objective. It is a fundamental aspect of many disciplines,
including mathematics, computer science, and engineering [11].

In the presence of gradient-based information, optimization problems can be solved
efficiently. However, in many cases, this information is not available or is difficult to obtain.
In these scenarios, metaheuristics represent a popular alternative as they are a black-box
method for finding near-optimal solutions.

These black-box methods have become popular tools in many fields such as digital image
processing, computer vision, networks and communications, power and energy management,
machine learning, robotics, medical diagnosis, and others [7].

A particular category of metaheuristics that has attracted much interest in the last two
decades is Swarm Intelligence (SI) [26]. SI algorithms are population-based metaheuristics
that take inspiration from nature by mimicking the intelligent behavior that emerges from a
population of simple organisms in self-organized systems.

In recent years, due to the considerable number of these types of algorithms in the
literature, the research community has expressed concerns about the field [34, 31, 33]. The
dependence on metaphors as the main motivation behind the inner workings of algorithms can
hide similarities between them, leading to duplication of research effort. Furthermore, there
is a tendency to reimplement these algorithms from scratch, which hinders reproducibility
and replicability [34].

However, the no-free lunch (NFL) theorem [39] suggests that the main problem in this
field is that these algorithms are not necessarily good at solving all kinds of problems. In
fact, these algorithms often need to be configured and tested to discover which algorithm is
most suitable to discover the best solution to a given optimization problem.

© Kevin Martins and Rui Mendes;
licensed under Creative Commons License CC-BY 4.0

14th Symposium on Languages, Applications and Technologies (SLATE 2025).
Editors: Jorge Baptista and José Barateiro; Article No. 2; pp. 2:1–2:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kevin.f.martins@gmail.com
https://orcid.org/0000-0002-4569-4910
mailto:rcm@di.uminho.pt
https://orcid.org/0000-0002-5321-6863
https://doi.org/10.4230/OASIcs.SLATE.2025.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

2:2 A DSL for Swarm Intelligence Algorithms

This paper proposes a domain-specific language (DSL) for expressing SI algorithms. The
goal is to demonstrate the feasibility and practicality of using a purpose-built DSL as a
unified and intuitive framework for researchers and practitioners to develop, analyze, combine,
and systematically compare SI algorithms.

We show that the proposed DSL captures the essence of SI algorithms at a higher level
of abstraction, independent of any specific programming language. Most importantly, it
provides a clear separation between metaphor and core algorithmic concepts, such as recom-
bination, probability distributions, and interactions between individuals. This structured
representation improves the ability to identify algorithmic similarities, assess novelty, and
support reproducibility.

Since optimization is a broad topic, this study focuses on SI algorithms applied to
continuous single-objective optimization in real domains.

2 Background

The use of metaphors blurs the specific mechanism in the solution domain, making it difficult
to determine the novelty of the contribution of an algorithm [34, 31]. For example, it has been
argued that the Harmony Search algorithm can be formulated as a variation of Evolution
Strategies [33], the Cuckoo search algorithm as well [5], and the Firefly Algorithm is argued
to be similar to Particle Swarm Optimization with a grouping mechanism inspired by the
behavior of fireflies [18]. It was also argued that for some algorithms, the metaphor, the
mathematical model, and the algorithm are almost entirely different [5, 2].

This overlay between algorithms suggests that metaheuristics have common components
that can be combined or that specific parts of these algorithms can be changed to create
new variations. Due to the NFL theorem, we argue that this fact is a feature, not a bug,
since algorithms can be fine-tuned or modified for a specific optimization problem. In recent
years, several approaches have been proposed to automatize the creation and tuning of
metaheuristics, which seems to support this fact [23, 4, 10, 20].

Furthermore, the research agenda proposed in [33] advocates that a pure functional
description is vital to standardize metaheuristics, opening up opportunities to compose
heuristics in novel ways. Although in a more narrow scope, this approach was taken in [29].

Functional programming (FP) is characterized by: (1) the use of pure functions, that is,
given the same input, the same output is always produced, and (2) by having no side effects,
that is, functions only compute the output and make no changes outside its scope.

Higher-order functions and lazy evaluation are two powerful features with significant con-
tributions to the modularity of functional programming, since they allow modules/functions
to be composed, acting like a kind of ’glue’ [14]. Therefore, this approach seems well suited
for gluing parts of SI algorithms.

FP and DSL are natural partners since both emphasize expressiveness and modularity [13].
Instead of focusing on computing, DSL makes programming in a domain more efficient since
expressiveness is bounded by a purpose-built language [12]. Therefore, DSL allows computing-
specific improvements and techniques to be detached from the domain, allowing scientific
advances in computing and the domain to be seamlessly adopted without disrupting existing
code or workflows. This perspective aligns with the proposed DSL; that is, using functional
programming principles to model SI algorithms modularity allows domain and computational
advances to evolve independently.

DSL can be internal or external [12]. While external DSL is parsed independently of the
underlying programming language, internal DSL represents an Application Programming
Interface (API) for the underlying programming language. This study focuses on external

K. Martins and R. Mendes 2:3

DSL, however, the scope of the objective function of the proposed in the DSL is limited. That
is, certain specificities of objective functions such as access and manipulation of external files
or databases are not addressed in this proposal.

Libraries such as Opytimizer [6], NiaPy [38], and MEALPy [37] offer prebuilt algorithm
templates and utilities for benchmarking, but remain grounded in imperative, metaphor-
centric programming paradigms. As a result, algorithm implementations often involve
boilerplate code and tight coupling between search strategies and problem-specific logic.

In contrast, the proposed purpose-built DSL adopts a high-level declarative approach
that abstracts away low-level implementation details. By emphasizing mechanism-first design
over metaphor-driven structures, it enables practitioners to express, compose, and hybridize
algorithmic components more concisely and flexibly. In addition, it supports contextualized
declarative integration of auxiliary features such as parameter tuning, making the language
naturally extensible.

The following sections will describe the components of the SI algorithms that were
identified and the proposed DSL.

3 Components of Swarm Intelligence algorithms

Many real-world problems can be rewritten as the minimization or maximization of some
objective. As stated in [35], these problems can be defined by the couple (S, f), where S

is the set of feasible solutions and f : S → R is the objective function to optimize. f maps
every feasible solution s ∈ S to a real number representing the quality of the solution.

At a higher level, every SI algorithm comprises two main components: the search space
and the search strategy. The search space is represented by f . On the other hand, the
search strategy is responsible for finding the optimal solution s∗ by iteratively generating
new solutions s that are submitted for evaluation to the search space that, in turn, responds
with the respective quality mapped.

Individuals explore/exploit the search space by generating new solutions. Depending on
the number of individuals involved in the search process, metaheuristics can be classified into
two types: single-solution, where only one individual explores and exploits the search space,
and population-based, where multiple individuals search for the best solution in parallel. SI
algorithms adopts a population-based approach.

Table 1 Algorithms included in this study.

Algorithm Reference
Artificial Bee Colony (ABC) [15]
Cuckoo Search (CS) [43]
Differential Evolution (DE) [32]
Particle Swarm Optimization (PSO) [17]
Barebones Particle Swarm (BB) [16]
Fully Informed Particle Swarm (FIPS) [22]
Firefly Algorithm (FF) [41]
Jaya [27]
Sine Cosine Algorithm (SCA) [24]
Grey Wolf Optimizer (GWO) [25]
Teaching Learning based Optimization (TLBO) [28]

SLATE 2025

2:4 A DSL for Swarm Intelligence Algorithms

The purpose of the search strategy is to use the quality of the solutions generated by
the individuals as a guide to find the optimal solution s∗. The search process begins with
a set of initial solutions in which every individual generates and holds a solution. Then,
the individuals engage in an iterative process, using information about the population to
generate new solutions. In some algorithms, individuals maintain the best solution, thus
maintaining the current solution if it is better than the candidate.

Figure 1 Components of SI algorithms.

As illustrated in Fig. 1, the search strategy can be divided into three main components:
population initialization, topology, and update pipeline. The search process will stop once
the termination criterion has been satisfied. This study treats these components as functions
with specific input and output constraints that must be satisfied. Thus, a valid component
implementation can be any function that satisfies its constraints.

With this approach, the search process can be generalized so that building blocks can
be swapped in and out to compose new or hybrid strategies.The following sections detail
the inner workings of these components. The described building blocks were identified after
analyzing the metaheuristics shown in Table 1.

FIPS and BB are variants of PSO, but are included in this study due to their distinct
internal mechanisms. FIPS relies on a neighborhood topology in which each particle is
influenced by all its neighbors, rather than just the global or local best. BB, on the other
hand, eliminates velocity updates and samples new positions using a Gaussian distribution -
representing an implicit model that contrasts with the explicit mathematical formulations
typical of most SI algorithms.

In addition, although DE is not traditionally classified as a swarm intelligence algorithm,
it is a population-based metaheuristic that shares similarities with SI algorithms such as
stochasticity and information sharing. It was included in this study because of its distinctive
use of crossover mechanisms.

Although this study does not include the latest LSHADE variants, recognized in [19]
for their strong empirical performance, the identified components are general enough to
model such algorithms. In particular, adaptive population size and historical memory can be
expressed as modular functions or higher-order constructs within the proposed framework,
preserving its applicability to advanced strategies.

K. Martins and R. Mendes 2:5

3.1 Population initialization
The search process begins with the initialization of a population of individuals. Initializing
the population with a diverse and representative set of solutions that effectively cover the
solution space is recommended.

Population initialization generates an initial set of candidate solutions. This can be
formalized as a function f : n → S0, where n ∈ Z>1 is the size of the population, and
S0 = {s1, s2, . . . , sn} is the resulting set of solutions.

Usually, random number generation methods are used to initialize the population. Random
number generation can be generated from any probability distribution depending on the
problem.

3.2 Topology
Individuals in the population can be organized so that it is possible to manipulate the
dissemination of information throughout the population [3]. Individuals can be grouped into
neighborhoods, limiting their access to information to the assigned neighborhood. Although
this method is popular in the PSO community, it can be generalized to other population-based
metaheuristics.

A topology function can be any function f : P → T that, given the population of
individuals P as input, produces as output the set of neighborhood T = {N1, N2, ..., Nn}
where Nk = {1, 2, ..., n} represents the set of individuals of a given neighborhood.

Usually, all individuals in the population have information about the entire population.
This topology is termed globally oriented (GBest). In contrast, locally oriented (LBest) is
defined when the adjacent population members are arranged in neighborhoods [21, 8].

Only LBest and GBest topologies were employed in this study. However, since the
topology function is triggered in every iteration i, our approach remains valid even when the
topology is dynamic, that is, the organization changes over the iterations.

3.3 Update pipeline
In every iteration i, selected individuals update their solution by generating new candidate
solutions based on the information provided by their neighborhood. Usually, one update per
individual takes place in every generation. Others, like TLBO and ABC, perform multiple
updates based on some selection mechanism. Thus, a pipeline where one or more updates
occur can be generalized, i.e., in every iteration, a set of updates U = {u1, u2, ..., un} occurs
sequentially.

Every update method uk in the pipeline can be defined by the couple (f, g), where f is
the selection function and g is the update function, that is, only selected individuals can
generate new candidate solutions.

The selection process can be generalized by a function f : P → F such that, given the
population P , it returns the selected individuals F ⊆ P . Examples of selection procedures
include:

All: All individuals are selected.
Random: k individuals are randomly selected.
Probabilistic: k individuals are selected based on some fixed probability or proportionally
to their fitness, that is, better/worst-fitted individuals have higher chances of being
selected.
Rule-based: The selection of an individual is governed by a set of rules.

SLATE 2025

2:6 A DSL for Swarm Intelligence Algorithms

Then, the selected individuals engage in the process of updating their position (solution).
The update process can be generalized by a higher order function g : e × r → si where
si = (s1, s2, ..., sd) is the generated solution vector with d dimensions, e represents the
function responsible for the calculation of candidate solutions and r the recombination
method.

To generate the solution vector, equations are applied using information about the search
space collected by the neighborhood, for example, the best and worst solutions. The equations
usually include random perturbations to promote exploration and exploitation of the search
space.

The generated solution is then recombined using some specific method r, that is, applying
the generated solution to k ≤ n dimensions of the current solution of the individual si−1.
This process is referred to as recombination. Usually, the generated solution is applied to all
dimensions. Other methods include:

Binomial: Based on a predefined probability, the dimensions will be randomly selected
and updated with the new solution.
Exponential: Starting with a randomly chosen index of the circularly arranged set of
dimensions, adjacent indices are selected and updated with the new solution until we fail
a probability roll [9].
Random: A fixed number of dimensions are updated randomly.
Probabilistic: An approach similar to the binomial method. However, a maximum of k

dimensions are updated.

The candidate solution generated si from the update method is then evaluated. Some
algorithms are elitist, discarding the candidate solution if it is not better than the individual’s
best-known solution.

From the algorithms studied, a function evaluation is performed for every update, with
FF representing the only gray area. In the proposal paper pseudocode [41], FF has an
iterative process in that, in each generation, an individual calculates a new solution and
performs function evaluations for every other individual with a better fitness value. However,
in the MATLAB code [42], the author suggests that the update method is applied iteratively
whenever the individual finds another one with better fitness, and at the end only one
evaluation of the objective function evaluation is made.

In order to make our proposal more easily adaptable in parallel computing scenarios, this
study assumes that each update method only undergoes one objective function evaluation
per individual. This approach allows for the decoupling of the objective function evaluation
from the update method, that is, the user provides the update pipeline, and internally the
system takes care of the solution evaluation task after each update. Thus, parallel execution
of the evaluation task and the update method can be enabled among individuals for every
iteration i.

4 Swarm Domain Language

The components identified in the previous chapter can be leveraged to construct a DSL for
SI algorithms, which we refer to as Swarm Domain Language (SDL).

Parameter settings are crucial for the performance of an algorithm when searching
for solutions to optimization problems. Although purposeful configurations can produce
consistent results for a specific problem, they do not guarantee success for all problems. This
makes selecting the appropriate parameters a challenging task. Hence, the parameter-tuning
feature is also included in this DSL proposal.

K. Martins and R. Mendes 2:7

Listing 1 High-level overview of the language.

SEARCH ({ search_space })
USING ({ search_strategy })
UNTIL ({ termination_criteria })

Listing 1 presents a high-level overview of SDL. For better understanding, the following
preliminary syntax is introduced:

::= is used to express how placeholders, e.g., search_space, are syntactically defined.
{...} is used to define the required components.
[...] is used to define optional components.
| is used to define the list of alternative expressions that can be used.
+ indicates that a specific expression can be repeated, that is, one or more if used in
conjunction with {...} and zero or more if used in conjunction with [...].
Numbers ∈ R are referred as number.
Numbers ∈ Z are referred as integer.
equation is used whenever a mathematical equation is expected. Arithmetic and trigo-
nometric operations are allowed.
expression is used whenever is expected a number, parameter, equation or other
production rules that will be described in this section.
comparison is used when comparing two values to determine their relationship: equality
(=), inequality (!=), greater/less than (>, <), or greater/less than or equal to (>=, <=).

In the following sections, we will focus on the language definition of the search space, the
search strategy, and the termination criteria.

4.1 Search space statement
The search space statement is shown in Listing 2. It begins with the declaration of one or
more variables. A variable can be a vector; in this case, the size should be specified. The
lower and upper bounds of each variable are specified using real numbers.

Listing 2 Search space statement of the language.

search_space ::= {VAR {variable_name } [SIZE({integer })]
[BOUNDED BY ({lower_bound },{upper_bound })]}+

{MINIMIZE | MAXIMIZE} {equation }

When specifying the objective function, the goal of the optimization should be declared.
That is, MINIMIZE or MAXIMIZE should be used to specify the optimization goal.

4.2 Search strategy statement
The search strategy statement is shown in Listing 3. First, the parameter declaration occurs
and is optional since some algorithms do not require parameters. Parameters can be set
statically, using numbers or integers, dynamically set using expressions, or, in addition,
automatically set using AUTO. Then, the process described in Section 3 follows.

To perform parameter tuning, replace the static parameter expression with the automatic
one as shown in Listing 4. Integer and real numbers are supported to define the boundaries
of the search space where parameter tuning should occur. It is worth pointing out that when
automatic parameters are defined, the statement TUNE UNTIL(...) must be specified, and
the maximum number of generation (trials) should be provided, i.e. how many evaluations
of the SI algorithm are allowed during parameter tuning.

SLATE 2025

2:8 A DSL for Swarm Intelligence Algorithms

Listing 3 Search strategy statement of the language.

search_strategy ::= [PARAM = { expression | auto }]+
{POPULATION SIZE(integer)} INIT {initialization }
[WITH TOPOLOGY {GBEST | {LBEST [SIZE(integer)}]}] {

[WITH selector]
SELECT {ALL | SIZE(integer)}}
[WHERE comparison]
[ORDER BY {TRIALS | FIT}]
[USING {

[BINOMIAL | EXPONENTIAL] RECOMBINATION
WITH PROBABILITY {probability }
| RANDOM RECOMBINATION SIZE(integer)}

}]
{UPDATE (

[helper = expression]+
{POS = expression }

) [WHEN comparison]}

}+ [TUNE UNTIL(GENERATION=integer)]

Listing 4 Parameter tunning statement of the language.

auto ::= AUTO {INT|FLOAT} BOUNDED BY ({number |integer },{number |integer })

The population initialization instruction follows the parameter declaration. The size
expression defines the number of individuals of the population, while initialization
instructs which method to use. Listing 5 shows the currently supported methods.

Listing 5 Initialization methods of the language.

initialization ::= RANDOM()
| RANDOM_UNIFORM([LOW={number}[,HIGH={number}]])
| RANDOM_[LOG]NORMAL([LOC={number} [,SCALE={number}]])
| RANDOM_SKEWNORMAL([SHAPE={number} [,LOC={number} [,SCALE={number}]]])
| RANDOM_{CAUCHY | LEVY}([LOC={number} [,SCALE={number}]])
| RANDOM_{EXPONENTIAL | RAYLEIGH}([SCALE={number}])
| RANDOM_BETA([ALPHA={number} [,BETA={number}]])
| RANDOM_WEIBULL([SHAPE={number} [,SCALE={number}]])

The topology of the population is optional. When specifying a Lbest topology, the default
size of the neighborhoods is 2 when not provided by the user.

Before moving further, let us introduce the individual memory. It contains a set of
properties that are managed internally throughout generations. It is made up of the following
properties:

POS: The current position of the individual.
BEST: The best position the individual found.
DELTA: The size of the last step taken by the individual, that is, the difference in position
between the current and the previous position.
FIT: The current fitness of the individual.
IMPROVED: If the current position represents an improvement in fitness compared to the
previous one.

K. Martins and R. Mendes 2:9

TRIALS: The number of trials that an individual has performed without improving its
fitness.
NDIMS: The number of dimensions that compose the position vector.
INDEX: The index of the individual in the population.

For the update pipeline, the selection, update, and recombination methods are supported.
In the selection expression, the selectors in Listing 6 can be optionally specified. If specific
selectors are provided, WHERE and ORDER BY must be omitted; otherwise, these clauses can
be used with individual properties in the comparison expression.

Listing 6 Selector statement of the language.

selector ::= [ROULETTE | RANDOM | PROBABILITY {probability }]

Since in some algorithms, the update method can have several instructions, helper
variables can be specified as needed. For example, in PSO, velocity can be defined as a
helper variable to aid in position calculation. The position of the individual, POS, is always
required in the update method, as it defines the new position of the individual in the search
space. However, with the statement WHEN, specific conditions can be defined to update the
individual. For example, to update the individual position only if the new position is better
than the previous position.

Listing 7 Snippet of expression statement in the language. For simplicity arithmetic and
trigonometric operations where omitted.

expression ::= reference |aggregation |utility_function |perturbation |...
reference ::= ALL() | NEIGHBORHOOD() | SWARM_{BEST | WORST}([integer])]
| PICK_{RANDOM | ROULETTE}([UNIQUE] [integer] [WITH REPLACEMENT])
|{RAND|CURRENT}_TO_BEST(WITH PROBABILITY {probability })
aggregation ::= {SUM | AVG | MIN | MAX}({expression })
utility_function ::= IF_THEN({comparison }, {expression }, {expression })
| FILTER({expression }, ({key }) => {expression })
| MAP(expression , ({key }) => {expression })
| REDUCE({expression }, ({key }, {acc }) => expression)
| REPEAT({expression }, {expression })
| DISTANCE({expression }, {expression })
perturbation ::= RANDOM([SIZE={integer}])
| RANDOM_UNIFORM([LOW={expression }[,HIGH={expression }[,SIZE={integer}]]])
| RANDOM_[LOG]NORMAL([LOC={expression } [,SCALE={expression }

[,SIZE={integer}]]])
| RANDOM_SKEWNORMAL([SHAPE={expression }

[,LOC={expression } [,SCALE={expression }[,SIZE={integer}]]]])
| RANDOM_{CAUCHY|LEVY}([LOC={expression } [,SCALE={expression }

[,SIZE={integer}]]])
| RANDOM_{EXPONENTIAL|RAYLEIGH}([SCALE={expression }[,SIZE={integer}]])
| RANDOM_BETA([ALPHA={expression } [,BETA={expression }[,SIZE={integer}]]])
| RANDOM_WEIBULL([SHAPE={expression } [,SCALE={expression }

[,SIZE={integer}]]])

By default, search space helper variables are also available allowing the use of context-
specific search space variables. MAX_GEN and CURR_GEN return the maximum and current
generation, respectively. The same logic is also applied to MAX_EVALS and CURR_EVAL.

SLATE 2025

2:10 A DSL for Swarm Intelligence Algorithms

Both helper and POS are defined using expression where mathematical operations can
be performed using information derived from the population. In addition, the constructs
reference, aggregation, utility_function, and perturbation are allowed as shown in
Listing 7.

In SI algorithms, the common requirement for calculating a candidate’s position is to use
the information provided by the population or neighborhood. Thus, reference can be used
for this purpose. Here, when SWARM_BEST or SWARM_WORST is used without specifying the
size, the best or worst individual in the neighborhood is returned, respectively. Otherwise,
the k best/worst will be returned. In addition, the UNIQUE clause ensures that individuals
are selected without duplication on the update method. Random and roulette selection can
be done with or without replacement.

Although in this proposal SUM, AVG, MIN, and MAX are the aggregation operators proposed,
additional ones could be added. However, utility functions MAP and REDUCE are supported
and can be used to specify more complex aggregation operations.

In fact, complex logic is sometimes required in SI algorithms. FILTER, MAP, and REDUCE
provide a way to execute operations on an expression that evaluates into a collection. FILTER
constructs a new collection by including only the elements of the original collection for which
a specified expression evaluates to true. MAP transforms each collection element using
expression, producing a new collection of transformed values. REDUCE computes a single
result for the collection elements using the acc parameter as the aggregator of results.

The individual and its properties can be accessed in the key parameter. For example, for
an operation performed on a collection of individuals, if individual is defined as the name
of the parameter key, the expression individual.fit gives the fitness of the individual
being evaluated.

DISTANCE calculates the euclidean distance between two expressions, for example, the
positions of two individuals. REPEAT returns a list of the first expression parameter repeated
the number of times specified by the second expression.

Finally, perturbations can be used to define the new position of the individual. These are
the identical probabilistic distributions allowed in the initialization step. However, here, the
size of the random number generation can be specified while in initialization its by definition
given by the number of dimensions of the search space.

4.3 Termination criteria statement

Listing 8 shows the termination criteria statement. EVALUATIONS and GENERATION define the
maximum allowed number of evaluations and generations, respectively. FITNESS defines the
minimum or maximum fitness value that must be achieved before termination. If more than
one condition is specified, the termination will occur whenever one of them is reached.

Listing 8 Termination criteria statement of the language.

termination criteria ::= {
{ {EVALUATIONS|GENERATION} = {integer} }
| { FITNESS = {number} }

}+

K. Martins and R. Mendes 2:11

5 Discussion

This section discusses the practical use and evaluation of the proposed DSL.
We first demonstrate its expressiveness through example implementations of SI algorithms

using SDL, then present comparative results with traditional approaches. Finally, we highlight
the opportunities for extensibility and future directions identified during this study.

5.1 SDL examples
To illustrate the expressiveness and practical utility of the proposed DSL, we present
implementations of GWO and BB using SDL. Both algorithms are applied to the Sphere
function, a well-known benchmark in continuous optimization.

The Sphere function is defined by:

f(x) =
d∑

i=1
x2

i (1)

where x ∈ Rd and −5.12 ≤ xi ≤ 5.12 for all i = 1, . . . , d. It is a simple, convex, and
continuous function with a single global minimum of f(x∗) = 0, at x∗ = 0, . . . , 0.

As shown in Listings 9 and 10, with 13 and 17 lines of SDL for BB and GWO respectively,
it was possible to express not only the algorithms but also the objective function, showing
the prototyping capabilities of such DSL.

Due to space constraints, the implementation of the remaining algorithms used in this
study is available at: https://github.com/kafm/swarmist/tree/main/examples. These
examples illustrate the expressiveness and practicality of the proposed SDL. Each algorithm
can be implemented in a concise and readable manner, with high-level constructs that
clearly capture the intended behavior demonstrating the language’s effectiveness in reducing
boilerplate and improving clarity.

Another key aspect of such approach is that we can create hybrid algorithms, but using
building blocks from other algorithms. For instance, we can apply the binomial crossover
from DE to BB as shown in Listing 11.

Listing 9 SDL of the Grey wolf optimizer (GWO).

SEARCH(
VAR X SIZE(20) BOUNDED BY (-5.12, 5.12)
MINIMIZE SUM(X ** 2)

) USING (
PARAM A = 2
POPULATION SIZE(40) INIT RANDOM_UNIFORM()
SELECT ALL (

UPDATE (
A = PARAM(A) - CURR_GEN * (PARAM(A) / MAX_GEN)
POS = AVG(

MAP(SWARM_BEST(3), (REF) =>
A * ABS((2 * RANDOM()) * REF.POS - POS)

)
)

) WHEN IMPROVED = TRUE
)

) UNTIL (GENERATION = 1000)

SLATE 2025

https://github.com/kafm/swarmist/tree/main/examples

2:12 A DSL for Swarm Intelligence Algorithms

Listing 10 SDL of the Bare Bones Particle Swarm (BB).

SEARCH(
VAR X SIZE(20) BOUNDED BY (-5.12, 5.12)
MINIMIZE SUM(X ** 2)

) USING (
POPULATION SIZE(40) INIT RANDOM_UNIFORM()
SELECT ALL (

UPDATE (
MU= (SWARM_BEST()+BEST)/2
SD = ABS(SWARM_BEST()-BEST)
POS = RANDOM_NORMAL(LOC=MU, SCALE=SD)

) WHEN IMPROVED = TRUE
)

) UNTIL (GENERATION = 1000)

Listing 11 SDL snippet demonstrating the application of crossover in BB algorithm.

PARAM CR = 0.6
POPULATION SIZE(40) INIT RANDOM_UNIFORM()
SELECT ALL (

USING BINOMIAL RECOMBINATION WITH PROBABILITY PARAM(CR)
UPDATE (

MU= (SWARM_BEST()+BEST)/2
SD = ABS(SWARM_BEST()-BEST)
POS = RANDOM_NORMAL(LOC=MU, SCALE=SD)

) WHEN IMPROVED = TRUE
)

5.2 Experimental Evaluation

To demonstrate the feasibility of the proposal DSL, an example implementation was developed
and is available on GitHub: https://github.com/kafm/swarmist. Although built using
Python, the same principles can be used to port the DSL to other programming languages.

Lark [30] was used as the parsing library. A complete machine-readable grammar for
SDL in EBNF format can be found at https://github.com/kafm/swarmist/blob/main/
swarmist/sdl/grammar.py, which defines every nonterminal, token, and production rule
needed for parsing, thus satisfying the requirement for a formal and unambiguous DSL
specification.

For parameter tuning, the example implementation used Optuna [1], however, different
implementations can use different frameworks or methods.

This implementation was then used to perform the following experiments: 1) comparative
results with traditional implementations; and 2) parameter tuning performance evaluation.

We used benchmark functions of the CEC-2017 competition (F1 to F20) [40] with
30 dimensions for all experiments. Opfunu [36], a Python library that implements these
benchmark functions, was used. In addition, we set the termination criteria to 2500 epochs
and the population size was set to 40 individuals for all algorithms.

https://github.com/kafm/swarmist
https://github.com/kafm/swarmist/blob/main/swarmist/sdl/grammar.py
https://github.com/kafm/swarmist/blob/main/swarmist/sdl/grammar.py

K. Martins and R. Mendes 2:13

5.2.1 Comparative results with traditional implementations
To ensure that the SDL results are consistent with traditional metaheuristic implementations,
we compared the SDL results with the Mealpy results, an open source Python library with
more than 160 algorithms implemented [37]. For simplicity, we only selected the SI algorithms
in our study with single update pipelines, that is, PSO, DE, JAYA, FF, GWO, SCA, and WO.

The same parameters were used for SDL and Mealpy. Regarding PSO, a different variation
is implemented in Mealpy since the function receives a minimum and maximum inertia weight
as parameters. Thus, we set the minimum at 0.45 and the maximum at 0.73.

We independently ran the Mealpy implementation for each algorithm and their static
settings 30 times each and applied the Wilcoxon rank-sum test with α = 0.05 to check
whether there was a statistically significant difference between the Mealpy-implemented
algorithms and the SDL ones. Holm corrections were applied to the p-values because several
tests were performed.

We could not statistically conclude that the two settings differ in performance for DE, SCA,
and WO (p-value > 0.05). SDL implementations of PSO, JAYA, and GWO were significantly
better than Mealpy (p-value < 0.05). In contrast, for FF, the Mealpy implementation
yielded better results (p-value < 0.05). The differences found in performance may be
related to the specific implementations of the algorithms, for example, the variation of PSO
implemented by Mealpy.

Regarding FF, SDL was significantly worse in all problems. By analyzing the Mealpy
implementation, we found that a function evaluation was performed wherever an individual
found a better solution for every generation, that is, the Mealpy implementation performed
many more function evaluations than SDL. Thus, the experiment could have been more fair.

5.2.2 Parameter setting performance evaluation
To assess the effectiveness of parameter tuning capabilities, we compared the results of SDL
with tuned parameters with those found in the SDL vs. Mealpy experiment. We excluded FF
from this experiment because of the objective function evaluation problem already explained.

We independently performed the SDL parameter settings tuning for each algorithm,
running it 30 times. To check for any significant differences between the SDL with parameter
tuning, the static SDL settings, and Mealpy, we applied the Wilcoxon rank-sum tests with
α = 0.05. Since we were performing multiple tests, we used the Holm correction for the
p-values. As expected, SDL with parameter settings tuned was statistically better than static
settings and Mealpy in all benchmark problems (p-value < 0.05).

5.3 Extensibility and Future Directions
The SDL proposed in this study leverages high-level constructs to abstract common SI
mechanisms. This abstraction facilitates implementation by reducing the need for imperative
code and enabling modular composition of algorithms. In practice, this led to more concise,
readable, and reusable definitions.

Although the current work focuses on the definition and execution of algorithms, further
extensibility could enhance the long-term utility of the language. For example, the ability
to persist and reuse complete algorithm definitions would allow practitioners to encapsu-
late algorithmic logic once and reuse it across different problems. Listing 12 illustrates a
hypothetical SDL syntax for persisting an algorithm, while Listing 13 shows how such an
algorithm could be reused.

SLATE 2025

2:14 A DSL for Swarm Intelligence Algorithms

Listing 12 Snippet of hypothetical SDL for persisting an algorithm.

CREATE OR REPLACE ALGORITHM BB(
POPULATION SIZE DEFAULT 40, INIT DEFAULT RANDOM_UNIFORM) AS ...

Listing 13 Snippet of hypothetical SDL for reuse of a previously persisted algorithm.

SEARCH(
VAR X SIZE(20) BOUNDED BY (-5.12, 5.12)
MINIMIZE SUM(X ** 2)

) USING BB()

A similar mechanism could also apply to lower-level abstractions, such as reusable
expressions for parameter adaptation or recombination strategies. This would further promote
the construction of hybrid algorithms by mixing building blocks at different abstraction
levels, ultimately improving the language’s expressiveness and extensibility.

Based on these insights, we hypothesize that SDL could support the emergence of
an evolving, reusable library of SI algorithm components. This collection, combined with
automatic tuning and composition mechanisms, could form the basis for automated algorithm
design tailored to specific problem classes.

Although these capabilities were not addressed in this study, they represent promising
directions for future work. However, their implementation involves complex design challenges
that will require further investigation.

Learning a new language may not be ideal for practitioners, and one may argue that visual
interfaces may be preferred over DSLs. However, the textual nature of SDL offers precise
version-controlled specifications that improve systematic design and auditing of optimization
models.

6 Conclusion

This study introduced a purpose-built DSL designed to support the development and
experimentation of SI algorithms. The DSL provides a dedicated and expressive framework
that frees researchers from the constraints of metaphor-driven representations, enabling them
to model search strategies, set parameters, and combine algorithmic components with greater
clarity and flexibility.

The proposed DSL offers a high-level declarative framework for the development and
experimentation of SI algorithms by abstracting low-level implementation details and focusing
on reusable mechanisms rather than metaphors. Thus, it enables clear, flexible, and concise
representations of various algorithmic strategies.

Through illustrative examples and empirical evaluation, we showed that the DSL maintains
performance comparable to traditional implementations, while significantly improving clarity,
modularity, and reproducibility.

In general, the DSL establishes a foundation for a more systematic design and analysis of
SI algorithms, supporting both rigorous experimentation and scalable reuse of algorithmic
components.

References
1 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:

A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

K. Martins and R. Mendes 2:15

2 Claus Aranha, Christian L Camacho Villalón, Felipe Campelo, Marco Dorigo, Rubén Ruiz,
Marc Sevaux, Kenneth Sörensen, and Thomas Stützle. Metaphor-based metaheuristics,
a call for action: the elephant in the room. Swarm Intelligence, 16(1):1–6, 2022. doi:
10.1007/S11721-021-00202-9.

3 Tim Blackwell and James Kennedy. Impact of communication topology in particle swarm
optimization. IEEE Transactions on Evolutionary Computation, 23(4):689–702, 2018. doi:
10.1109/TEVC.2018.2880894.

4 Anna Bogdanova, Jair Pereira Junior, and Claus Aranha. Franken-swarm: grammatical
evolution for the automatic generation of swarm-like meta-heuristics. In proceedings of
the genetic and evolutionary computation conference companion, pages 411–412, 2019. doi:
10.1145/3319619.3321902.

5 Christian L Camacho-Villalón, Marco Dorigo, and Thomas Stützle. An analysis of why cuckoo
search does not bring any novel ideas to optimization. Computers & Operations Research,
142:105747, 2022. doi:10.1016/J.COR.2022.105747.

6 Gustavo H de Rosa, Douglas Rodrigues, and João P Papa. Opytimizer: A nature-inspired
python optimizer. arXiv preprint arXiv:1912.13002, 2019.

7 Tansel Dokeroglu, Ender Sevinc, Tayfun Kucukyilmaz, and Ahmet Cosar. A survey on new
generation metaheuristic algorithms. Computers & Industrial Engineering, 137:106040, 2019.

8 Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory. In
MHS’95. Proceedings of the sixth international symposium on micro machine and human
science, pages 39–43. Ieee, 1995.

9 Andries P Engelbrecht. Computational intelligence: an introduction. John Wiley & Sons,
2007.

10 Iztok Fajfar, Árpád Bűrmen, and Janez Puhan. Grammatical evolution as a hyper-heuristic to
evolve deterministic real-valued optimization algorithms. Genetic programming and evolvable
machines, 19:473–504, 2018. doi:10.1007/S10710-018-9324-5.

11 Christodoulos A Floudas and Panos M Pardalos. Encyclopedia of optimization. Springer
Science & Business Media, 2008.

12 Martin Fowler. Domain-specific languages. Pearson Education, 2010.
13 Jeremy Gibbons. Functional programming for domain-specific languages. In Central

European Functional Programming School, pages 1–28. Springer, 2013. doi:10.1007/
978-3-319-15940-9_1.

14 John Hughes. Why functional programming matters. The computer journal, 32(2):98–107,
1989. doi:10.1093/COMJNL/32.2.98.

15 Dervis Karaboga and Bahriye Basturk. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (abc) algorithm. Journal of global optimization,
39(3):459–471, 2007. doi:10.1007/S10898-007-9149-X.

16 James Kennedy. Bare bones particle swarms. In Proceedings of the 2003 IEEE Swarm
Intelligence Symposium. SIS’03 (Cat. No. 03EX706), pages 80–87. IEEE, 2003. doi:10.1109/
SIS.2003.1202251.

17 James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of
International Conference on Neural Networks (ICNN’95), Perth, WA, Australia, November 27
- December 1, 1995, pages 1942–1948. IEEE, 1995. doi:10.1109/ICNN.1995.488968.

18 Michael A Lones. Metaheuristics in nature-inspired algorithms. In Proceedings of the Com-
panion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation,
pages 1419–1422, 2014. doi:10.1145/2598394.2609841.

19 Zhongqiang Ma, Guohua Wu, Ponnuthurai Nagaratnam Suganthan, Aijuan Song, and Qizhang
Luo. Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic
algorithms. Swarm and Evolutionary Computation, 77:101248, 2023. doi:10.1016/J.SWEVO.
2023.101248.

20 Kevin Martins and Rui Mendes. Cherry-picking meta-heuristic algorithms and parameters for
real optimization problems. In Progress in Artificial Intelligence: 21st EPIA Conference on

SLATE 2025

https://doi.org/10.1007/S11721-021-00202-9
https://doi.org/10.1007/S11721-021-00202-9
https://doi.org/10.1109/TEVC.2018.2880894
https://doi.org/10.1109/TEVC.2018.2880894
https://doi.org/10.1145/3319619.3321902
https://doi.org/10.1145/3319619.3321902
https://doi.org/10.1016/J.COR.2022.105747
https://doi.org/10.1007/S10710-018-9324-5
https://doi.org/10.1007/978-3-319-15940-9_1
https://doi.org/10.1007/978-3-319-15940-9_1
https://doi.org/10.1093/COMJNL/32.2.98
https://doi.org/10.1007/S10898-007-9149-X
https://doi.org/10.1109/SIS.2003.1202251
https://doi.org/10.1109/SIS.2003.1202251
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1145/2598394.2609841
https://doi.org/10.1016/J.SWEVO.2023.101248
https://doi.org/10.1016/J.SWEVO.2023.101248

2:16 A DSL for Swarm Intelligence Algorithms

Artificial Intelligence, EPIA 2022, Lisbon, Portugal, August 31–September 2, 2022, Proceedings,
pages 500–511. Springer, 2022. doi:10.1007/978-3-031-16474-3_41.

21 Rui Mendes, James Kennedy, and José Neves. Watch thy neighbor or how the swarm can
learn from its environment. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium.
SIS’03 (Cat. No. 03EX706), pages 88–94. IEEE, 2003. doi:10.1109/SIS.2003.1202252.

22 Rui Mendes, James Kennedy, and José Neves. The fully informed particle swarm: simpler,
maybe better. IEEE transactions on evolutionary computation, 8(3):204–210, 2004. doi:
10.1109/TEVC.2004.826074.

23 Pericles BC Miranda, Ricardo BC Prudêncio, and Gisele L Pappa. H3ad: A hybrid hyper-
heuristic for algorithm design. Information Sciences, 414:340–354, 2017. doi:10.1016/J.INS.
2017.05.029.

24 Seyedali Mirjalili. Sca: a sine cosine algorithm for solving optimization problems. Knowledge-
based systems, 96:120–133, 2016. doi:10.1016/J.KNOSYS.2015.12.022.

25 Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf optimizer.
Advances in engineering software, 69:46–61, 2014. doi:10.1016/J.ADVENGSOFT.2013.12.007.

26 Anand Nayyar, Dac-Nhuong Le, and Nhu Gia Nguyen. Advances in swarm intelligence for
optimizing problems in computer science. CRC press, 2018.

27 R Rao. Jaya: A simple and new optimization algorithm for solving constrained and uncon-
strained optimization problems. International Journal of Industrial Engineering Computations,
7(1):19–34, 2016.

28 R Venkata Rao, Vimal J Savsani, and DP Vakharia. Teaching–learning-based optimization:
a novel method for constrained mechanical design optimization problems. Computer-aided
design, 43(3):303–315, 2011. doi:10.1016/J.CAD.2010.12.015.

29 Richard Senington and David Duke. De composing metaheuristic operations. In Implementation
and Application of Functional Languages: 24th International Symposium, IFL 2012, Oxford,
UK, August 30-September 1, 2012, Revised Selected Papers 24, pages 224–239. Springer, 2013.
doi:10.1007/978-3-642-41582-1_14.

30 Erez Shinan. Lark: A modern parsing toolkit for Python. https://github.com/lark-parser/
lark, 2020. Version 0.14.0 (2023).

31 Kenneth Sörensen. Metaheuristics—the metaphor exposed. International Transactions in
Operational Research, 22(1):3–18, 2015.

32 Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of global optimization, 11(4):341–359,
1997. doi:10.1023/A:1008202821328.

33 Jerry Swan, Steven Adriaensen, Mohamed Bishr, Edmund K Burke, John A Clark, Patrick
De Causmaecker, Juanjo Durillo, Kevin Hammond, Emma Hart, Colin G Johnson, et al. A
research agenda for metaheuristic standardization. In Proceedings of the XI metaheuristics
international conference, pages 1–3. Citeseer, 2015.

34 Jerry Swan, Steven Adriaensen, Alexander EI Brownlee, Kevin Hammond, Colin G Johnson,
Ahmed Kheiri, Faustyna Krawiec, Juan Julián Merelo, Leandro L Minku, Ender Özcan, et al.
Metaheuristics “in the large”. European Journal of Operational Research, 297(2):393–406,
2022.

35 El-Ghazali Talbi. Metaheuristics: from design to implementation. John Wiley & Sons, 2009.
36 Nguyen Van Thieu. Opfunu: an open-source python library for optimization benchmark

functions. Journal of Open Research Software, 12(1), 2024.
37 Nguyen Van Thieu and Seyedali Mirjalili. Mealpy: An open-source library for latest meta-

heuristic algorithms in python. Journal of Systems Architecture, 139:102871, 2023. doi:
10.1016/J.SYSARC.2023.102871.

38 Grega Vrbančič, Lucija Brezočnik, Uroš Mlakar, Dušan Fister, and Iztok Fister. Niapy: Python
microframework for building nature-inspired algorithms. Journal of Open Source Software,
3(23):613, 2018. doi:10.21105/JOSS.00613.

https://doi.org/10.1007/978-3-031-16474-3_41
https://doi.org/10.1109/SIS.2003.1202252
https://doi.org/10.1109/TEVC.2004.826074
https://doi.org/10.1109/TEVC.2004.826074
https://doi.org/10.1016/J.INS.2017.05.029
https://doi.org/10.1016/J.INS.2017.05.029
https://doi.org/10.1016/J.KNOSYS.2015.12.022
https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007
https://doi.org/10.1016/J.CAD.2010.12.015
https://doi.org/10.1007/978-3-642-41582-1_14
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/J.SYSARC.2023.102871
https://doi.org/10.1016/J.SYSARC.2023.102871
https://doi.org/10.21105/JOSS.00613

K. Martins and R. Mendes 2:17

39 David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997. doi:10.1109/4235.585893.

40 Guohua Wu, Rammohan Mallipeddi, and Ponnuthurai Nagaratnam Suganthan. Problem
definitions and evaluation criteria for the cec 2017 competition on constrained real-parameter
optimization. National University of Defense Technology, Changsha, Hunan, PR China and
Kyungpook National University, Daegu, South Korea and Nanyang Technological University,
Singapore, Technical Report, 2017.

41 Xin-She Yang. Firefly algorithms for multimodal optimization. In International symposium on
stochastic algorithms, pages 169–178. Springer, 2009. doi:10.1007/978-3-642-04944-6_14.

42 Xin-She Yang. Firefly algorithm matlab implementation. MATLAB Central File Ex-
change. Retrieved June 19, 2023., 2011. URL: https://www.mathworks.com/matlabcentral/
fileexchange/29693-firefly-algorithm.

43 Xin-She Yang and Suash Deb. Cuckoo search via lévy flights. In 2009 World congress on
nature & biologically inspired computing (NaBIC), pages 210–214. Ieee, 2009. doi:10.1109/
NABIC.2009.5393690.

SLATE 2025

https://doi.org/10.1109/4235.585893
https://doi.org/10.1007/978-3-642-04944-6_14
https://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1109/NABIC.2009.5393690

	1 Introduction
	2 Background
	3 Components of Swarm Intelligence algorithms
	3.1 Population initialization
	3.2 Topology
	3.3 Update pipeline

	4 Swarm Domain Language
	4.1 Search space statement
	4.2 Search strategy statement
	4.3 Termination criteria statement

	5 Discussion
	5.1 SDL examples
	5.2 Experimental Evaluation
	5.2.1 Comparative results with traditional implementations
	5.2.2 Parameter setting performance evaluation

	5.3 Extensibility and Future Directions

	6 Conclusion

