Beyond Static Diagnosis: A Temporal ASP
Framework for HVAC Fault Detection

Roxane Koitz-Hristov! =
Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

Liliana Marie Prikler &

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria
Franz Wotawa &

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

—— Abstract

Improving sustainability in the building sector requires more efficient operation of energy-intensive

systems such as Heating, Ventilation, and Air Conditioning (HVAC). We present a novel diagnostic
framework for HVAC systems that integrates Answer Set Programming (ASP) with Functional Event
Calculus (FEC). Our approach exploits the declarative nature of ASP for modeling and incorporates
FEC to capture temporal system dynamics.

We demonstrate the feasibility of our approach through a case study on a real-world heating
system, where we model key components and system constraints. Our evaluation on nominal and
faulty traces shows that exploiting ASP in combination with FEC can identify plausible diagnoses.
Moreover, we explore the difference between static and rolling-window strategies and provide insights
into runtime versus soundness on those variants. Our work provides a step toward the practical
application of ASP-based temporal reasoning in building diagnostics.

2012 ACM Subject Classification Computing methodologies — Causal reasoning and diagnostics;
Computing methodologies — Logic programming and answer set programming

Keywords and phrases Model-based diagnosis, Answer set programming, HVAC, Modeling for
diagnosis, Experimental evaluation

Digital Object Identifier 10.4230/0ASIcs.DX.2025.1

Funding The work presented in this paper has been supported by the FFG project Artificial
Intelligence for Smart Diagnosis in Building Automation (ALFA) under grant F0999914932.

Acknowledgements We would like to express our gratitude to our industrial partner, DiLT Analytics
FlexCo.

1 Introduction

It is estimated the building sector accounts for 40% of the energy consumption in the
European Union [9] and world-wide [30]. Heating, Ventilation, and Air Conditioning (HVAC)
systems in buildings cause a large portion of a building’s energy expenditure. Approximately
40% of the final energy consumption of heat and 70% of cooling energy consumption is caused
by non-residential buildings [17] and 75% of greenhouse gas emissions are emitted during
building operation [10]. Hence, reducing the energy consumption in the building sector is a
highly relevant contribution to achieving climate targets.

Fault Detection and Diagnosis (FDD) for HVAC systems in buildings primarily relies on
massive human effort with manual data evaluation triggered by user complaints, random
checks, or non-specific alarms from the building automation systems [39]. Around 15-30% of a
building’s energy consumption is due to faults or inefficient operations of HVAC systems [21, 8],

1 Authors are listed in alphabetical order.

© Roxane Koitz-Hristov, Liliana Marie Prikler, and Franz Wotawa;
37 licensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).

Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 1; pp. 1:1-1:20

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:rkoitz-hristov@tugraz.at
https://orcid.org/0000-0002-5077-8641
mailto:liliana.prikler@tugraz.at
https://orcid.org/0000-0002-0348-064X
mailto:wotawa@tugraz.at
https://orcid.org/0000-0002-0462-2283
https://doi.org/10.4230/OASIcs.DX.2025.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

1:2

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

affecting existing and new buildings [19]. Timely fault detection and resolution are essential
for preserving the performance and reliability of HVAC systems, ultimately extending their
lifespan [45]. However, their inherent complexity, dynamic nature of operation, and the
diverse range of potential faults, makes HVAC FDD a challenging task.

Over the past decades, numerous FDD techniques have been developed for HVAC systems
in buildings, including data-driven and model-based methods. Data-driven approaches (e.g.,
machine learning and statistical methods) have become increasingly popular due to their
ability to analyze large datasets and detect relevant patterns [8]. However, these techniques
require large amounts of data that not only capture nominal but also faulty system behavior,
which is often unavailable in real-world HVAC systems. Additionally, many data-driven
methods lack interpretability, making it challenging to derive explainable diagnoses [24].

In contrast, model-based techniques rely on an explicit system representation to detect
deviations from expected behavior. Both the Fault Detection and Isolation (FDI) and
Model-Based Diagnosis (MBD) community have contributed to HVAC system diagnosis. FDI
methods, rooted in control theory, utilize analytical models based on system equations [46].
In the FDI domain, for instance, Thumati et al. [44] employ a real-time FDI approach for
HVAC systems using residual generation and state estimation. Papadopoulos et al. [32]
extend model-based FDI techniques to multi-zone HVAC systems, introducing a distributed
diagnosis method that enhances scalability and reliability to detect and isolate actuator and
sensor faults. However, creating a precise analytical model for HVAC systems is challenging
due to their complexity [36]. To overcome these challenges, MBD provides an alternative
that does not depend on detailed mathematical formulations but instead represents the
system’s behavior using logical relationships and constraints [38, 11]. For example, Struss et
al. [41] present an approach that exploits numerical Modelica models to generate a qualitative
diagnosis model in the domain of Air Handling Units (AHUs). The resulting diagnostic
model captures the qualitative deviations of variables from their nominal values. When
a discrepancy has been detected between the engineering model and the sensor data, the
diagnostic model and observations are supplied to a consistency-based diagnosis engine
to identify and isolate faults. Provan [35] propose an approach that involves simplifying
detailed HVAC system models to focus on critical components and interactions. The resulting
reference model captures the essential system dynamics while minimizing computational
complexity. From this reference model, a diagnostic model is generated that retains the
necessary behavioral characteristics to effectively isolate faults.

Recently, Answer Set Programming (ASP) [12] has shown promise in the context of model-
based reasoning due to its declarative nature and efficient inference. While ASP has been
successfully applied in a diagnostic context in various subsets of technical systems [22], digital
and analog circuits [47, 48], automated feedback generation for programming assignments [4],
and autonomous robots [20], its use in HVAC fault diagnosis remains largely unexplored
to the best of our knowledge. In addition, many classical MBD approaches lack explicit
temporal reasoning [7], which is essential for tracking dynamic system behavior which is
highly relevant in HVAC systems.

In this paper, we introduce an ASP based-diagnosis framework, that integrates Functional
Event Calculus (FEC) [23, 29, 26] to model events and fluents (state properties) over time.
Our framework thus exploits ASP for constraint reasoning and FEC for modeling temporal
dependencies. In addition, we use solver heuristics to compute minimal diagnoses. We further
present an initial case study, demonstrating the feasibility of our approach on an HVAC
system with limited real-world data.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

The remainder of this paper is organized as follows: Section 2 reviews prior work on

ASP-based diagnosis, including approaches related to temporal reasoning in MBD and ASP.

Subsequently, in Section 3, we provide essential preliminaries on MBD, ASP and FEC. In
Section 4, we describe our approach of combining FEC with ASP for diagnosis. Afterward,
in Section 5 we present a case study where we applied our approach to a HVAC system
and discuss our initial empirical results. Finally, Section 6 concludes the paper and outlines
future directions for research.

2 Related work

Various approaches to MBD have been proposed over the last decades, ranging from procedural
to declarative paradigms. While most research emphasizes on algorithmic techniques, we
focus in this section on declarative techniques, particularly ASP-based methods. In addition,
we discuss related approaches to temporal diagnosis.

2.1 ASP-based diagnosis

One early example of declarative MBD is the work by Friedrich and Nejdl [14]. The authors
introduce a direct diagnosis approach using hyperresolution in Prolog [5]. Unlike traditional
MBD methods that first generate conflicts and then apply a hitting set algorithm to derive
diagnoses, their approach obtains candidates directly as a subset of the consistent logical
model encoded in Prolog.

Similarly, declarative MBD approaches using ASP define the system model directly in the
formalism of the reasoning engine, avoiding an intermediate transformation into a separate
logic or constraint representation. Wotawa [47] investigates ASP as an alternative reasoning
mechanism for diagnosis of the well-known ISCASS85 circuits. In a consistency-based fashion,
the ASP encoding describes the system as a composition of interconnected components, each
defined by its nominal behavior. Observations are incorporated in the model as constraints,
ensuring that any valid diagnosis must be consistent with the observed behavior. The
empirical results indicate that while a traditional dedicated diagnosis algorithm is often
faster, ASP is a stable and reliable approach. In an extension of this research, Wotawa and
Kaufmann [48] present their direct IDTAG algorithm that iteratively generates all diagnoses
with a cardinality of 0 to n based on a theorem prover. Their evaluation revealed that
ASP-based diagnosis performance is comparable to specialized algorithms for digital circuits.
However, for analog circuits, the required grounding process led to a significant increase in
computation time.

Bayerkuhnlein and Wolter [4] propose an alternative ASP encoding for diagnosing faults
in programming assignments within an intelligent tutoring system, incorporating intermediate
values to enhance fault analysis. In addition, to their “traditional” ASP-based framework,
they propose the use of Constraint Answer Set Programming, which enables reasoning over
non-groundable domains, to deal with large or infinite domains in their application.

Prikler and Wotawa [34] introduce multi-shot solving, heuristics, and preference-based
optimizations in ASP diagnosis and show that heuristic-based methods generally yield faster
solutions. By incorporating incremental solving techniques, the authors improve the IDTAG
diagnosis algorithm, making it more competitive with specialized diagnosis approaches.
Experiments on the ISCAS85 circuits revealed that ASP-based diagnosis can match or
outperform hitting-set-based methods when properly optimized.

1:3

DX 2025

1:4

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

2.2 Temporal diagnosis

The ability to reason about changing environments is fundamental to many AT applications,
particularly in explaining observed phenomena and diagnosing unexpected system behavi-
ors [7]. For instance, Raiman et al. [37] showed that even a single, weak temporal axiom —
the non-intermittent-fault assumption — in combination with multiple snapshots allows to
disregard explanations that would otherwise be candidates. MclIlraith [28] applied Situation
Calculus [27] to MBD to address temporal phenomena. By using Situation Calculus as
the logical framework for diagnosing faults in dynamic systems, the approach can address
fundamental challenges such as the ramification problem. In parallel, Thielscher [42] extended
Fluent Calculus [43] to dynamic domains, enabling reasoning about system evolution and
diagnosis using a constraint-based representation of healthy system behavior. Building on
these foundations, Baral, Mcllraith, and Son [3] use an action languages to provide a more
compact and computationally efficient representation of diagnosis in dynamic systems. In
the domain of robotics, Gspandl et al. [18] present a belief management system that embeds
history-based diagnosis into the IndiGolog Situation-Calculus interpreter. Their method
keeps a set of possible action histories and updates them after every step. It checks each
history against the newest sensor readings, explains any inconsistencies by selecting the most
plausible fault hypothesis, and retains only the best-supported histories to guide the robot’s
next action.

Further advancing the field, Balduccini and Gelfond [2] exploit ASP in combination
with the action language AL to integrate diagnosis into an intelligent agent architecture.
In their approach, AL is used to formalize a high-level description of the system behavior,
specifying actions, fluents, and causal laws. A-Prolog, logic programming under answer set
semantics, serves as the computational framework for diagnosing faults. Their approach
enables intelligent agents to perform diagnosis, testing, and repair within a unified framework
of A-Prolog.

Temporal logics are another formalism that has been used for diagnostic purposes, e.g.,
for behavioral diagnosis of Linear-Temporal Logic (LTL) specifications [33]. More recently,
Feldman et al. [13] proposed Finite-Trace Next Logic (FTNL) and a SAT-based algorithm to
diagnose synchronous sequential circuits. FTNL is a simpler temporal logic as it considers
only finite traces and restricts temporal expressiveness to a single next operator. The FTNL
formula is unrolled for a finite horizon before passing it to a SAT solver with a novel encoding
that reduces the number of variables and clauses and has been shown to be efficient on the
ISCASS89 circuits.

Our work is a natural extension of previous research as it combines declarative diagnostic
modeling via ASP with FEC to capture behavior over time. Thus, we enable temporal
reasoning that accounts for the progression of system behavior with the goal of efficient and
effective FDD in the building heating domain.

3 Background

To describe our ASP-based approach, we start by introducing the necessary preliminaries.
We begin with MBD, recalling the classical consistency-based definition of diagnosis, before
explaining ASP and FEC, with some slight adaptations of the formalism.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

3.1 Model-based diagnosis

In MBD [11, 38], we describe a system as a set of components, whose nominal behaviour can
be formulated using some system of logics, e.g., first-order logic. A diagnosis problem occurs
once we have gathered observations.

» Definition 1 (Diagnosis problem). A diagnosis problem is a tuple (SD, COMP, Obs), where
SD is the (logic) description of some system, COMP the set of components of said system,
and Obs a set of observations gathered from the system.

The diagnosis task, given a system description, components and observations as above, is
to determine which components, if any, are faulty. The approach taken by MBD is based
on consistency between the system description and observations: if the observations match
the nominal behaviour of the system, no component needs to be marked as faulty. However,
the system description may also formulate constraints based on the assumption that some
¢ € COMP is healthy, typically written —ab(c). If one assumes to the contrary ab(c), said
constraints are no longer enforced, allowing consistency once again if they were not to hold
otherwise.

» Definition 2 (Diagnosis). Let (SD, COMP, Obs) be a diagnosis problem. A set A C COMP
is a diagnosis if and only if SDU ObsU {ab(c)|c € A} U{—ab(c)|c € COMP\ A} is consistent.

A diagnosis problem is ill-defined if A = COMP is not a diagnosis. Loosely speaking,
when all components of a system are found to be abnormal, there is no nominal behaviour to
expect. On the other extreme, we expect A = & to be a diagnosis when the system behaves
as intended.

More generally, we are interested in diagnoses that are in some sense minimal, that is
diagnoses that do not mark components as faulty without reason.

» Definition 3 (Minimality of a diagnosis). Let A be a diagnosis. A is
subset-minimal, or parsimonious, if there exists no diagnosis A’ s.t. A’ C A, and
cardinality-minimal, if there exists no diagnosis A" s.t. |A'] < |A].

3.2 Answer set programming

ASP [6, 25] is a logic programming paradigm that allows for non-monotonic reasoning. An
answer set program consists of rules of the shape

a4 by AN Aby Anot b1 A--- Anot by,

where a and b; are atoms and not denotes default negation — that is not x is assumed to
hold unless z is known to hold. The head of a rule r is h(r) = {a} and the body consists of
positive atoms b*(r) = {b1,..., by} and negative atoms b~ (r) = {by41,---,bs}. Intuitively
h(r) follows if all atoms in b™(r) holds and no atom in b~ (r) holds. A rule is called a fact, if
m=n=0.

We call an answer set program ground if no variable occurs in any of its rules. The
Gelfond-Lifschitz transformation [16] of a ground program P with respect to a set of atoms
(or model) 7 is

P"={h(r) < bT(r)lr € P,b~(r)N1 =2}

By construction P7 is a Horn formula and thus admits one unique minimal model. If this
model is 7, then 7 is a stable model.

1:5

DX 2025

1:6

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

» Definition 4 (Stable model). Let P be a grounded answer set program and T a set of atoms.
Let P be the Gelfond-Lifschitz transformation of P w.r.t. 7. T is a stable model (or answer
set) of P if and only if T is the smallest satisfying model of PT.

The rest of this section deals with non-ground programs, particularly Clingo extensions
that we make use of. Non-ground answer set programs keep the basic shape of answer set
programs, but use a wider set of literals than pure atoms and their default negations.

The first natural extension to ASP is the use of (implicitly quantified) variables. Consider
for example the program

flies(B) < bird(B) A not flightless(B)
bird(B) «+ penguin(B)
flightless(B) < penguin(B)

[...and so on for other bird species . ..]

which is one way of formulating the “Tweety problem”. Given bird(tweety), we want to derive
flies(tweety). Given penguin(tweety), we want to derive bird(tweety), but not flies(tweety), and
SO on.

To solve answer set programs with variables, we need to ensure that all replacements of
variables with concrete (that is variable-free) terms are properly accounted for. To this end,
we construct the Herbrand base of the program and then ground the program with respect
to it.

» Definition 5 (Herbrand universe and base). Let P be a logic program. The Herbrand
universe of P, denoted U(P) is the set of all terms which can be formed from constants and
function symbols in P.

The Herbrand base B(P) is the set of all variable-free atoms, which can be constructed
from predicates in P and terms in U(P).

» Definition 6 (Grounding). Let P be an answer set program, and r € P. The grounding
of r, written G(r) is a set of ground rules, s.t. r < G(r) w.r.t B(P). Furthermore, G(P) =

UTEP Q(r) .

Our definition of grounding is notably looser than the ones we find in literature, for
reasons that will become apparent once we discuss extensions other than variables. However,
even when dealing with variables, the traditional approach of replacing a variable with every
possible term in /(P) one at a time is a wasteful over-approximation that modern solvers
tend to avoid [31].

In some places, where a domain is explicitly known, one can also use a pool as a notational
shorthand rather than a variable. Pools are collections of terms separated by semicolons, i.e.,
written as t1;...;t, with ¢; terms for 1 < i < n. Similar to variables, rules are instantiated
with each possible replacement of the pool with one of its terms. As an illustrative example,
the pooled “fact”

bird(tweety; roy; silo).
is a shorthand for the facts

bird(tweety).
bird(roy).
bird(silo).

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

Similar to variables, we might want to perform calculations on numbers, both concrete
numbers and again variables. Let <€ {<, <,=,#,> >} and t1, 5 terms, then ¢; < t2 is an
arithmetic literal that the solver must evaluate numerically after having replaced all variables
with concrete numbers.

We continue with conditional literals. Written b : cy,...,c,, conditional literals are
grounded by replacing the symbolic or arithmetic literal b with all replacements b*=!, where
cg=t ..., ==t hold, where [*=! denotes the replacement of variables x with concrete terms ¢
similar to how variables are handled in grounding.

Aggregate literals are written as I {b1;...;b,} u, where [, u are integers and by,...,b,
are literals?, enforce a lower and upper bound respectively on the number of by,...,b, that
may hold. Both [and v may be omitted; in this case no bound is enforced. As a special
case, {a} for a single literal a is known as a choice expression and states that a may or may
not follow as the result of applying some rule.

For a more complete description of the syntax and semantics of Clingo, we refer the
interested reader to [15].

3.3 Functional event calculus

The event calculus (EC) [23, 29] is a logical framework for representing and reasoning about
actions (events) and their effects. FEC [26] extends this framework from the boolean domain
to arbitrary domains.

The FEC has a sort F for fluents (variables f, f’, f1, fa,...), a sort A for actions (variables
a,a’,ay,as,...),asort V for values (variables v, v’, v1,vq,...), and a sort T for discrete points
in time (variables ¢,t',¢1,tq,...). For the scope of this paper, it suffices that 7 C N and
hence time is totally ordered under the comparison <. Key predicates are happens C A x T
and causes_value C A x F x V x T. The function domain : F — 2/V| assigns a domain to
each fluent, while value_of : F x 7 — V assigns a value to each fluent at each time step.

To describe the relationships between these predicates and functions, we first define the
auxiliary predicates value_caused C F x V x T, value_caused_between C F x V x T x T
and other_value_caused_between C F x V x T x T.

value_caused(f,v,t) o Jalhappens(a, t) A causes_value(a, f,v,t).] (FEC1)

value__caused_between(f, v, 1, t2) o Jt[value_caused(f,v,t) ANt <tAt <ty] (FEC2a)

def
other_value_caused_between(f, v, t1,t2) =

Jt, v'[value_caused_between(f, v, t1,t2) Av # V'] (FEC2D)

As can be seen from their definitions, value_caused posits that some action happens
at the specified time, which gives cause for some fluent to take a certain value, whereas

value_caused_between posits that such an action takes place within the interval [t,t2).

Finally, other_value_caused_between posits that an action within the interval gives cause to
some other value. In all of these, gives cause needs to be interpreted in a non-deterministic
manner: a non-deterministic action, such as a dice roll, gives cause for any side of the dice
to show up, but only one side will show up. Likewise, if two people try to respectively open
and close a door, the door will not be open and close at the same time?3.

2 'We only deal with a particular type of head aggregates here. Clingo also supports other aggregates,
that are not needed within the scope of this paper.
3 It may however be “half open” if such a state is modeled.

1:7

DX 2025

1:8

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

With these auxiliary definitions, we can define notions of cause, effect and inertia.
Axiom (FEC3) deals with inertia: a fluent which takes on a certain value at some time and
has no action changing that value, will still take on that value in the future. Axiom (FEC4)
deals with cause and effect in a roundabout way: a fluent can not take on a value without
cause if another value has been caused in some interval.* Calling back to our earlier examples
of non-deterministic outcomes, the consequent discards any value that has been given cause
within the interval, leaving only values that were given cause to be potential effects.

value_of(f,t2) = v «[value_of(f,t1) A t1 < taA
—other_value_caused_between(f, v, t1,t2)] (FEC3)

value_of(f,t2) # v «[other_value_caused_between(f,v,t1,ts)
A —wvalue_caused_between(f,v,t1,12)] (FEC4)

Finally, we constrain fluents to only take values from their assigned domains.
—(value_of(f,t) = v Av ¢ domain(f)) (FEC5)

The axioms (FEC1)—(FEC5) define the functional event calculus.

4 ASP diagnosis with functional event calculus

In this section, we describe our model-based diagnosis system built on top of the functional
event calculus. We first discuss how we describe the health state as fluents. Next, we describe
how we can model individual components and the connections between them. Finally, we
extend the functional event calculus with immediate changes.

4.1 Fluent health states

We assume, that the health state of a component may vary over time and thus model it as
a fluent, i.e., F D {health(c)|c € COMP}. The health state of a component is composed of
the good state ok and at least one abnormal state. The domain of this health state can be
modeled as domain(health(c)) = {ok,ab} in a weak fault model, whereas in a strong fault
model we have domain(health(c)) = {ok, aby,...ab,} for some n.

In order to allow for the health state of a component to switch from ok to ab (or ab; for
some i), we allow unknown actions to occur. Likewise, to model repair, we add a dedicated
repair action for each component. Formally, we have A D {unknown} U {repair(c)|c € COMP}.
The singular unknown action acts as a stand-in for any number of actions that are all
unknown.

The effects of unknown and repair actions are captured by causes_value D U U R
with U C {(unknown, health(c),v,t)|c € COMP,v € domain(c) \ {ok},t € T} modeling
the unknown action and R = {(repair(c), health(c), ok, t)|c € COMP,t € T} modeling repair.
Semantically, the repair actions always give reason for a component to become healthy (but
they do not always happen), whereas unknown actions are free to give cause for some, but
not all health states to change.

4 The original formalization [26] uses a slightly different variant of (FEC3) that also takes into account
values caused at t1. This is redundant as per (FEC4). Note that our (FEC4) is functionally identically
to the original formalization, but makes use of the additional auxiliary axiom (FEC2a).

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

In ASP, we implement unknown actions using Listing 1. This implementation adds two
further constraints: first happens(unknown, t) «— 3f, v[causes_value(unknown, f, v, t)] ensures
that the unknown action happens (and thus takes effect) when it is supposed to cause a
value. Second, the unknown action only causes a healthy state to become abnormal, i.e.,
causes_value(unknown, f,v,t) — value_of(f,t) = ok. By not allowing the unknown action
to transition between faulty state, we prevent the health state from alternating between to
values that have (near-)identical symptoms attached to them.

Listing 1 ASP implementation of the unknown action.

action (unknown) .
% Allow solver to guess affected health states.
{ causes_value (unknown, health(C), ab, T) } :-
time (T), comp(C), value_of ((health(C), T), ok).
{ causes_value (unknown, health(C), ab(X), T) } :-
time (T), comp(C), value_of ((health(C), T), ok), fault(C, X).
happens (unknown, T) :- time(T), causes_value (unknown, _, _, T).

4.2 Modeling component behavior

We imagine idealized components to have three kinds of fluents attached to them: inputs,
outputs and internal controls. Most components will have at least one input and an output,
as well as a nominal relation between them.

In FEC, we need to represent this nominal relation using actions. For example, an analog
adder has two numeric inputs 41, i2, one numeric output o and the nominal relation o = i1 +is.
This nominal relation is upheld by the adder adding its inputs; hence adding is an action
(performed by the adder).

In ASP, we may describe adders as a generalized component as in Listing 2. The first
line communicates that numbers are defined outside of the current scope — typically in the
place where an adder is used. The second line states that adders are a component. A fluent
for its health state is automatically created by code that implements Section 4.1. The third
and fourth line define the fluents related to an adder and their domains respectively. Finally,
the rule for inferring causes_value establishes the semantics of adding.

Listing 2 FEC-based description of analog adders.

#defined number/1. Y, elsewhere

comp (C) :- type(C, adder).
fluent (in1 (C);in2(C);out(C)) :- type(C, adder).
domain ((in1(C);in2(C);out(C)), N) :- type(C, adder), number (N).

causes_value (adding(C), out(C), N+M, T) :-
type (C, adder),
value_of ((health(C), T), ok),
number (N+M), % otherwise addition is undefined
value_of ((in1(C), T), N),
value_of ((in2(C), T), M).

1:9

DX 2025

1:10

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

In addition to nominal behavior, abnormal behavior must also be described via actions.
While all behavior is at the end implemented using mere logic rules, it makes sense to
conceptually distinguish between

abnormal behavior that causes no change in any fluent,

abnormal behavior that modifies existing actions, and

abnormal behavior that causes new actions to occur.

The first kind of abnormal behavior is already implemented without any additional rules,
as axioms (FEC3) and (FEC4) uphold that nothing happens without an action.

For abnormal behaviour that modifies existing actions, alternative rules with causes_value
in their head need to be written. Just like the rules for the nominal behavior, these depend
on the value of the health state. A typical assumption in a weak fault model would be
“anything goes”, i.e., the action may give cause for affected fluents (when in doubt: all output
fluents) to take any value from its domain. A strong fault model could instead assume that
the outcome differs only slightly from the one that is expected.

For abnormal behavior that causes new actions to occur, we also need to write rules with
happens in their head, which again depend on the health state of a component.

As an alternative to the above, a generic rule could encode all possible behaviour, with
constraints restricting the possible actions and caused values in the nominal state. An
example of this is shown in Listing 3.

Listing 3 Alternative description of analog adders using constraints.

#defined number/1. Y, elsewhere

comp(C) :- type(C, adder).
fluent (in1 (C);in2(C);out(C)) :- type(C, adder).
domain ((in1(C);in2(C);out(C)), N) :- type(C, adder), number (N).

{ causes_value (adding(C), out(C), N, T) : number(N) } 1 :-
type (C, adder), time(T).
happens (adding(C), T) :- causes_value(adding(C), _, _, T).
:- value_of ((in1(C), T), N),
value_of ((in2(C), T), M),
value_of ((Cout(C), T), V), V != N+M,
value_of ((health(C), T), ok),
not causes_value (adding(C), out(C), _, T).
:- causes_value (adding(C), out(C), V, T),
value_of ((health(C), T), ok),
value_of ((in1(C), T), N),
value_of ((in2(C), T), M),
V != N+M.

Having modeled individual components, it is now time to model the connections between
them. As in traditional model-based diagnosis, we assume that the values at either end of
a connection is always the same as the other — if this is not the case, we can always add
components that introduce the necessary delays.

Similar to the approach used by Wotawa and Kaufmann [48], we can establish connections
with an auxiliary predicate bound C F x F and the rule

value_of(fa,t) = v < bound(f1, f2) A value_of(f1,t) = v.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

To make the relation symmetrical, one can write bound(f1, f2) Abound(f2, f1). Note that this
rule does not yet propagate values caused from one fluent to another. To this end, the rule

causes_value(a, f2,v,t) = v < bound(f1, f2) A value_of(a, f1,v,t) = v

can be used.
Apart from fluents that are unconditionally bound, our system also supports conditionally
bound fluents. We write these as

value_of(fa,t) = v < bound.(f1, f2) A value_of(health(c),t) = ok A value_of(f1,t) = v,

where fy typically refers to a fluent that may have its value changed by an action of the
component c.

Alternatively, one could model connections by using the same fluent as the input/output
of the affected components, i.e., using shared fluents. This incurs a level of indirection, as a
mapping of fluents to component inputs/outputs needs to be established and consistently
used.

4.3 Split seconds and immediate changes

The axioms (FEC3) and (FEC4) make it so that one unit of time passes between cause and
effect of a change and thus assume a passage of time between them. Modeling time this
closely requires sampling at the speed of change, which is wasteful, as often small changes
accumulate over time to make large changes. Instead, we may wish to establish effects that
become visible “immediately”, that is in the same time step as they occur.

To this end, we introduce the predicates causes_value_immediately C causes_value and
value_caused_immediately C value_caused. The semantics of these “immediate” predicates
is similar to their non-immediate counterparts, except that they cause a value change to be
observed in the same time step rather than the next.

def
value_caused_immediately(f, v, t) = Ja[happens(a, t)A

causes_value_immediately(a, f,v,t)]. (FECil)

To make axioms (FEC3) and (FEC4) respect immediate changes, we replace (FEC2a)
with (FECi2). Intuitively, this version of value_caused_between allows “between” to mean
at the end of the interval, or ¢t = t5, when a value is caused immediately, while preserving

t # to.

def
value_caused_between(f, v, t1,t5) = 3t[value_caused(f,v,t) Aty < t At < to]V
[value_caused_immediately(f,v,t2) A t1 < to]. (FECi2)

Lastly, a value caused immediately must have its change actually happen in the same
time step. This is enforced by (FECi3). Without this axiom, two “immediate” changes
happening at times ¢ and ¢t + 1 would trigger non-determinism in (FEC4), allowing either
value to be taken.

—(value_caused_immediately(f,v,t) A value_of(f,t) # v). (FECi3)

This set of axioms allows us to model sensors that are polled at regular intervals as well
as components that merely propagate changes (e.g., idealized non-sequential components of
sequential circuits).

1:11

DX 2025

1:12

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

5 A case study: Heat distribution line

In this section, we first describe the HVAC system, which is the base of our case study. The
heat distribution line that we consider for our modeling is part of the heating system in
a commercial building. The system includes a pressurized distributor linked to a district
heating transfer station, which supplies heat to multiple distribution lines serving different
zones in the building. Our case study focuses on one of these heat distribution lines.
Afterward, we report on how we modeled the system, as we simplify the original schematics
while ensuring that our models maintains the essential behavioral aspects of the heat
distribution line. Lastly, we present some initial empirical results on said use case.

5.1 System description

The heat distribution line is hydraulically designed as an injection circuit with a globe valve.
Figure 1 depicts its schematics. When the heating system is switched on, the central flow
pipe transports hot water to the flow pipe (F'P) of the heat distribution line. The central
return pipe is connected to the return pipe (RP) of the heat distribution line and transports
the cooled water back to the transfer station. The heat output in the zone is regulated
by controlling the temperature of the water in the flow pipe. This control is based on the
outdoor temperature and is adjusted through a motorized valve. The room temperature is
regulated directly at the radiators within the zone.

The relationship between the outdoor temperature and the room temperature is repres-
ented by the heating curve, which determines the setpoint for the flow pipe temperature.
The lower the outdoor temperature, the higher the supply temperature must be to ensure
the desired room temperature.

The heat distribution line consists of the following components:

Heat Exchanger (H): H transfers heat from the hot water in the flow pipe to the

indoor air within the zone.

Temperature Sensors (T1,T5): T; measures the temperature of the water in the flow

pipe and serves as a reference for control, while 75 monitors the return water temperature.

Pumps (P;, P»): The pumps circulate water within the heating circuit and maintain

constant pressure. P; and P, operate alternately or remain simultaneously switched off.

As soon as one pump is running, there is a flow.

Valve (V): The motorized globe valve regulates the mixing ratio of flow and return water

by modifying its position. It serves as the control element, adjusting the proportion of

hot flow water entering the heating zone based on its position (0-100%). At 0%, no hot
heating water is injected, meaning the flow temperature equals the return temperature.

At 100%, the maximum amount is injected, and the flow temperature corresponds to the

district heating supply temperature.

Check valve (C'V): CV prevents direct bypassing of hot water from the flow pipe to

the return pipe, ensuring proper circulation within the heating system.

Outdoor Temperature Sensor: Although not depicted in Figure 1, this sensor provides

an essential input for the control system.

Additionally, we have preconfigured value ranges to verify the plausibility of the measured
values, along with supplemental constraints that further define the system:
The measured flow temperature must always be higher than the measured return temper-
ature.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

o~
ol
> il >

q <

Figure 1 Heat distribution line schematics.

The measured flow temperature may be up to a maximum of 2 K lower than the setpoint
temperature.

The measured flow temperature may exceed the setpoint temperature by a maximum of
1 K.

5.2 Heat distribution line model

We simplify our model as outlined in Figure 2:
Mixing valve (MV): The check valve C'V and motorized globe valve V' from Figure 1
are simplified into a singular mixing valve MV.
Mixing valve (IV): A second mixing valve IV is added. This mixing valve is controlled
by the answer set program to always use the active pump.
Temperature Sensors (71,73): The temperature sensors T and Ty are “loosely”
attached to the system — they only measure the temperature, but do not influence it.
Main Pump (MP): A “main pump” M P abstracts the link to the district heating
transfer station.

Each component type has a set of fluents associated with its instances. For example,
pumps have the fluents {(), <, F~ 7% T~} indicating their power status (“on” or “of”),
inflow, outflow, inflow temperature and outflow temperature respectively. In ASP, we model
these fluents and their domains as in Listing 4.

Listing 4 Fluents relating to pumps and their domains.

fluent (powered (C); flow ((in;out), C);temp((in;out), C)) :-
type (C, pump).

domain (powered (C), (on;off)) :- type(C, pump).
domain (flow(DIR, C), (flow;no_flow)) :- type(C, pump), DIR=(in;out).
domain (temp (DIR, C), T) :- type(C, pump), DIR=(in;out), temp(T).

We model pumps so that they allow for temperature to change in the direction of their
input — that is, if the input is warmer than the current output, the next output is allowed to
be warmer, and likewise for colder inputs. To model this behavior, we introduce two actions —
heating and cooling respectively. The heating action is shown in Listing 5.

Mixing valves can either immediately forward temperatures and flows from one of their
inputs or mix them, allowing for any temperature between the warmer and the colder side to
be achieved at their output. Finally, the heat exchanger allows for any output strictly below
its input.

1:13

DX 2025

1:14

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

Figure 2 Model schematics.

Listing 5 The heating action in ASP.

happens (heating(C), T) :-
type (C, pump),
causes_value (heating(C), _, _, T).
{ causes_value (heating(C), temp(out, C), X, T) } :-
time (T), time(T+1), temp(X),
value_of ((temp(in, C), T), W), value_of ((temp(out, C), T), V),
V<X, X <=W,
value_of ((flow(in, C), T), flow),
value_of ((flow(out, C), T), flow).

The preconfigured value ranges form the domains of fluents within our model. In
particular, we discretize them, so that any integer temperature value within the known
range is a temperature, power and flow are binary (“on” or “off” and “flowing” or “not
flowing” respectively), and the mixing valves have positions 1, 2, and mix. The constraints
regarding the flow temperature are implemented by additional rules for components and
groups of components. The adjustment of setpoints and valve positions is unchecked, as is
the condition that both pumps must operate alternately.

5.3 Results

We assess our model on three real-world traces, one containing data from operation under
nominal conditions, and two where the valve was leaking and stuck respectively. We prepare
those traces so that initial values for all fluents of interest — particularly, the states of the
pumps and valve as well as all measured temperatures — are available, but encode later
changes of the state only via actions. This means that in order to arrive at the correct
diagnoses, the solver can not simply rely on the input providing the state directly, but has to
actually reason about the actions and retain information.®

5 It should be noted that in continuous monitoring scenarios, residual-based and data-driven approaches
also require updates of internal variables when they start diverging.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

Table 1 Diagnosis results. Diagnoses corresponding to the ground truth are highlighted in bold.

dataset n diagnoses

nominal 8 @

leaking 8 {MV}, {Tl,TQ}, {P17T2}
stuck 8 o

nominal 16 @
1eaking 16 {1\/1‘/}7 {T17 TQ}, {fﬁ7 TQ}
stuck 16 {MV},{MP},{P},{T1}

nominal” 64 {H,T\}P{H, T2}V {H, MV}, {T1},{T»}
leaking” 64 {MV}, {T1,T>}
stuck? 64 {MV}, {T1,Tx},{P1, T»}

*) using a rolling window; preserving fluents related to
power status
1) non-minimal in final step

We consider two scenarios for our evaluation: first, we apply a naive approach using a
single solver call to diagnose n time steps at once. As we will see, this approach is quite
effective for small n, but does not scale well as the number of time steps and thus the solution
space increases. Next, we integrate multiple solver calls over a rolling window to achieve
more efficient diagnosis over a larger number of time steps. In both scenarios, we use a
domain-specific heuristic to ensure trace-minimal diagnoses. A diagnosis A is trace-minimal
if AA'VE : A} C Ay, that is there is no other diagnosis that reports a subset of components as
broken in each time step t. A stricter heuristic would consider subset-minimal diagnoses in
the final time step.

Table 1 shows the diagnoses eventually yielded after 8, 16, and 64 time steps. For the
nominal trace, there is a false positive at a certain time step, where in our discretization T;
and T, report the same temperature despite T3 still being larger. This issue could be solved
by increasing the precision, e.g., by premultiplying with 10, 100, or 1000, which however also
leads to larger domains for the fluents, and thus a significantly larger solution space.

For the faulty traces, the correct diagnosis is always among the diagnoses in the leaking

case, but curiously absent in the stuck case when only a smaller part of the input is considered.
In fact, with just one more time step, that is n = 9, we get the same diagnoses as for n = 16.

More generally, without repair actions, which are absent from our inputs, diagnoses only
grow larger. For most traces, this means that eventually a fixed point will be reached, where

no more information is gained by considering future time steps — especially if A = COMP.

Practical applications should however consider repair sooner.

We also see an interesting behaviour with n = 64 by choice of our heuristic, as we compute
the minimal diagnoses w.r.t. all time steps, but only report the last. In this data set, we
encounter multiple steps where components supposedly break. The first yields the diagnoses
{{H},{T1},{T2}} — the second component, i.e., Ty, T or MV, only breaks later and thus
there are different explanations. If instead one were to compute the minimal diagnosis for
the last time step only, these gratuitous diagnoses would vanish.

In terms of performance, we find that a naive approach of using ASP to diagnose n time
steps does not scale for increasingly large n. The performance limitations can be seen in
Figure 3: while the total diagnosis time for 8 time steps is just three times that of 2 time
steps — and thus scales sublinearly up to this point — diagnosis times for 16 time steps are

1:15

DX 2025

1:16

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

N nominal B leaking 3 stuck

500 500

i . M -
35
30 400 . " 400 i .
25
300 300
e @ 2
3 20 - -
£ £ g
15 200 200
10
100 100
5 I I H
N[l : :
2 4 8 16 2 4 8 16 2 4 8 16
window size window size window size
(a) Single window. (b) 256 time steps. (c) 256 time steps with pre-

served fluents.

Figure 3 Diagnosis times.

Table 2 Inconsistent results between different configurations in the rolling window approach.

dataset params diagnoses

stuck w=8n=16K =0 &

stuck w=16n=16,K = o {MV}, {MP}{P},{T1}
stuck w=8,n= 16,K:{(|)P1,(DP2,(DMP} {MV} {MP}{Pi},{Th}
stuck w=8n=256K=g {MV} {1}

stuck w=28n=256K={Op ,Op,, Oyp} {MV} {T1, T2}, {Pi,T>}

more than twice as large. For even larger window sizes, e.g., w = 32 or w = 64, performance
is worse still, if such window sizes are even feasible — in our experiments, we found w = 64
to be infeasible and thus used a rolling window for Table 1. A window size of 4 < w < 8
appears optimal from our observations. The overhead of preserving fluents seems negligible.

The rolling window, however, introduces soundness problems to the diagnosis, as inform-
ation is lost between subsequent invocations of the solver. It is both possible to be too strict
and not strict enough about the fluent values to remember. Table 2 shows a few examples of
different configurations — varying the window size w, the number n of time steps considered,
and the set K of fluents, whose value is carried over to the next window (not including the
ab health states, i.e., the previous diagnoses, which are always kept) — leading to different
results.

It is well possible, that in the general case, this inconsistency can — or must be —
resolved by means of another answer set program and solver call. Particularly, cautious
consequences (cf., e.g., [1]) would indicate which fluents must take a certain value in any
answer set that assumes a particular diagnosis, but may not be enough to also model which
fluents may not ever take a certain value while assuming a particular diagnosis. We leave
this gap to future work.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

6 Conclusion and Future Work

We demonstrated a diagnosis system based on ASP and FEC and showed how this system
can be used to model the temporal behavior of an HVAC system. Our approach enables an
explicit modeling of time-dependent phenomena in ASP in the context of MBD. Interestingly,
our approach is not only suitable for FDD but also for retrospective analysis. By evaluating
a time series after the fact, the system can help identify precisely when a fault began to
manifest, offering valuable insights into system dynamics and behavior over time.

We conducted an initial case study on a heating system that demonstrated that the
ASP diagnosis model can be used for a practical diagnosis task. While the experiments
indicate that a static window approach becomes computationally infeasible very quickly with
increasing window sizes, the rolling window variant offers a better trade-off between runtime
and window size. However, the rolling window approach comes at the cost of soundness due
to information loss between iterations. We showed that maintaining select fluents across
solver runs can mitigate this issue to some extent.

In future work, we plan on improving the incremental reasoning and formalizing a
more robust preservation strategy for fluents between runs in the case of the rolling window
approach. One possibility would be to consider cautious reasoning to infer missing information.
Furthermore, we intend to extend our work by considering more case studies from the building
domain and other potential application areas, such as diagnosis in the automotive domain.

Another practical challenge worth investigating lies in managing the number of diagnoses
returned. Even when only subset minimal diagnoses are considered, we see a rather large
number of possible results in the small system studied. Thus, finding strategies for reducing
and prioritizing diagnoses is essential in a practical context. For instance, Stern et al. [40]
highlight that presenting the full set of diagnoses may be less effective than aggregating them
into a health state, which is a compact representation that estimates the likelihood of each
component being faulty. It remains to be seen, whether their approach can be meaningfully
integrated with ours.

—— References

1 Mario Alviano, Carmine Dodaro, Salvatore Fiorentino, Alessandro Previti, and Francesco
Ricca. ASP and subset minimality: Enumeration, cautious reasoning and MUSes. Artificial
Intelligence, 320, 2023. doi:10.1016/j.artint.2023.103931.

2 Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-prolog. Theory and
Practice of Logic Programming, 3(4-5):425-461, 2003. doi:10.1017/S1471068403001807.

3 Chitta Baral, Sheila Mcllraith, and Tran Cao Son. Formulating diagnostic problem solving
using an action language with narratives and sensing. In KR, pages 311-322. Citeseer, 2000.

4 Moritz Bayerkuhnlein and Diedrich Wolter. Model-based diagnosis with ASP for non-
groundable domains. In International Symposium on Foundations of Information and Know-
ledge Systems, pages 363—-380. Springer, 2024. doi:10.1007/978-3-031-56940-1_20.

5 Ivan Bratko. Prolog programming for artificial intelligence. Pearson education, 2001.

6 Gerhard Brewka, Thomas Eiter, and Mirostaw Truszczynski. Answer set programming at a
glance. Communications of the ACM, 54(12):92-103, December 2011. doi:10.1145/2043174.
2043195.

7 Vittorio Brusoni, Luca Console, Paolo Terenziani, and Daniele Theseider Dupré. A spectrum
of definitions for temporal model-based diagnosis. Artificial Intelligence, 102(1):39-79, 1998.
do0i:10.1016/50004-3702(98)00044-7.

8 Zhelun Chen, Zheng O’Neill, Jin Wen, Ojas Pradhan, Tao Yang, Xing Lu, Guanjing Lin,
Shohei Miyata, Seungjae Lee, Chou Shen, et al. A review of data-driven fault detection and
diagnostics for building HVAC systems. Applied Energy, 339:121030, 2023. doi:10.1016/j.
apenergy.2023.121030.

1:17

DX 2025

https://doi.org/10.1016/j.artint.2023.103931
https://doi.org/10.1017/S1471068403001807
https://doi.org/10.1007/978-3-031-56940-1_20
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1016/S0004-3702(98)00044-7
https://doi.org/10.1016/j.apenergy.2023.121030
https://doi.org/10.1016/j.apenergy.2023.121030

1:18

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

European Commission. Press release: Commission welcomes political agreement on new
rules to boost energy performance of buildings across the EU, December 2023. URL: https:
//ec.europa.eu/commission/presscorner/detail/de/ip_23_6423.

German Sustainable Building Council. Wegweiser klimapositiver Gebiudebestand 2022 [Guide
to Climate-positive Building Stock 2022]. German Sustainable Building Council, 2022.
Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97-130, 1987. doi:10.1016/0004-3702(87)90063-4.

Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer Set Programming:
A Primer. Springer, 2009. doi:10.1007/978-3-642-03754-2_2.

Alexander Feldman, Ingo Pill, Franz Wotawa, lon Matei, and Johan de Kleer. Efficient model-
based diagnosis of sequential circuits. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2814-2821. AAAI
Press, 2020. doi:10.1609/AAAT.V34103.5670.

Gerhard Friedrich and Wolfgang Nejdl. Momo-model-based diagnosis for everybody. In
Sizth Conference on Artificial Intelligence for Applications, pages 206-213. IEEE, 1990. doi:
10.1109/CAIA.1990.89191.

Martin Gebser, Amelia Harrison, Roland Kaminski, Vladimir Lifschitz, and Torsten Schaub.
Abstract Gringo. Theory and Practice of Logic Programming, 15(4-5):449-463, 2015. doi:
10.1017/S1471068415000150.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming, Proceedings of
the Fifth International Conference and Symposium, Seattle, Washington, USA, August 15-19,
1988 (2 Volumes), pages 1070-1080. MIT Press, 1988.

A Gevorgian, S Pezzutto, S Zambotti, S Croce, U Filippi Oberegger, R Lollini, L. Kranzl, and
A Muller. European building stock analysis. Eurac Research: Bolzano, Italy, 2021.

Stephan Gspandl, Ingo Pill, Michael Reip, Gerald Steinbauer, and Alexander Ferrein. Belief
management for high-level robot programs. In Toby Walsh, editor, IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, pages 900-905. IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/
IJCAI11-156.

Christoph Hutter, Michael Kappert, Ralph Krause, Patrick Miiller, André Koénig, Adrian
Gebhardt, Falko Ziller, Peter Giesler, and Frank Zeidler. MFGeb - Methoden zur Fehlerkennung
im Gebédudebetrieb [MFGeb - methods for fault detection in building operation], 2022. Final
Report. URL: https://ibit.fh-erfurt.de/fileadmin/Dokumente/Projekte/IBIT/mfgeb/
Abschlussbericht-MFGEB_2022.pdf.

Ledio Jahaj, Stalin Munoz Gutierrez, Thomas Walter Rosmarin, Franz Wotawa, and Ger-
ald Steinbauer-Wagner. A model-based diagnosis integrated architecture for dependable
autonomous robots. In 34th International Workshop on Principles of Diagnosis, 2023.
Srinivas Katipamula and Michael R Brambley. Methods for fault detection, diagnostics, and
prognostics for building systems—a review, part ii. HVACER Research, 11(2):169-187, 2005.
doi:10.1080/10789669.2005.10391123.

Roxane Koitz-Hristov and Franz Wotawa. Faster horn diagnosis-a performance comparison of
abductive reasoning algorithms. Applied Intelligence, 50(5):1558-1572, 2020. doi:10.1007/
S10489-019-01575-5.

Robert Kowalski and Marek Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67-95, March 1986. doi:10.1007/BF03037383.

Gerda Langer, Thomas Hirsch, Roman Kern, Theresa Kohl, and Gerald Schweiger. Large
language models for fault detection in buildings’ HVAC systems. In Energy Informatics
Academy Conference, pages 49-60. Springer, 2024. doi:10.1007/978-3-031-74741-0_4.

https://ec.europa.eu/commission/presscorner/detail/de/ip_23_6423
https://ec.europa.eu/commission/presscorner/detail/de/ip_23_6423
https://doi.org/10.1016/0004-3702(87)90063-4
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1609/AAAI.V34I03.5670
https://doi.org/10.1109/CAIA.1990.89191
https://doi.org/10.1109/CAIA.1990.89191
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-156
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-156
https://ibit.fh-erfurt.de/fileadmin/Dokumente/Projekte/IBIT/mfgeb/Abschlussbericht-MFGEB_2022.pdf
https://ibit.fh-erfurt.de/fileadmin/Dokumente/Projekte/IBIT/mfgeb/Abschlussbericht-MFGEB_2022.pdf
https://doi.org/10.1080/10789669.2005.10391123
https://doi.org/10.1007/S10489-019-01575-5
https://doi.org/10.1007/S10489-019-01575-5
https://doi.org/10.1007/BF03037383
https://doi.org/10.1007/978-3-031-74741-0_4

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Vladimir Lifschitz. Answer Set Programming. Springer, 2019. doi:10.1007/
978-3-030-24658-7.

Jiefei Ma, Rob Miller, Leora Morgenstern, and Theodore Patkos. An epistemic event calculus
for ASP-based reasoning about knowledge of the past, present and future. In Ken Mcmillan,
Aart Middeldorp, Geoff Sutcliffe, and Andrei Voronkov, editors, LPAR-19. 19th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 26 of
EPiC Series in Computing, pages 75—87, Stellenbosch, South Africa, 2013. EasyChair. doi:
10.29007/zswj.

John McCarthy and Patrick J Hayes. Some philosophical problems from the standpoint

of artificial intelligence. Machine Intelligence, 4, 1969. doi:10.1016/B978-0-934613-03-3.

50033-7.

Sheila A Mcllraith. Representing actions and state constraints in model-based diagnosis.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth
Conference on Innovative Applications of Artificial Intelligence, AAAT'9T/TAAT97, pages
43-49, 1997. URL: http://www.aaai.org/Library/AAAT/1997/aaai97-007.php.

Rob Miller and Murray Shanahan. Some alternative formulations of the event calculus. In
Antonis C. Kakas and Fariba Sadri, editors, Computational Logic: Logic Programming and
Beyond, Essays in Honour of Robert A. Kowalski, Part II, volume 2408 of Lecture Notes in
Computer Science, pages 452—-490. Springer, 2002. doi:10.1007/3-540-45632-5_17.

Payam Nejat, Fatemeh Jomehzadeh, Mohammad Mahdi Taheri, Mohammad Gohari, and
Muhd Zaimi Abd. Majid. A global review of energy consumption, CO2 emissions and policy
in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable
and Sustainable Energy Reviews, 43:843-862, 2015. doi:10.1016/j.rser.2014.11.066.
Ilkka Niemeld. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241-273, 1999. doi:
10.1023/A:1018930122475.

Panayiotis M Papadopoulos, Vasso Reppa, Marios M Polycarpou, and Christos G Panayiotou.
Distributed diagnosis of actuator and sensor faults in HVAC systems. IFAC-PapersOnlLine,
50(1):4209-4215, 2017. doi:10.1016/j.ifacol.2017.08.816.

Ingo Pill and Thomas Quaritsch. Behavioral diagnosis of LTL specifications at operator level.
In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 1053-1059. IJCAI/AAAT,
2013. URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6595.
Liliana Marie Prikler and Franz Wotawa. Faster diagnosis with answer set programming. In 85th
International Conference on Principles of Diagnosis and Resilient Systems (DX 2024), pages 24—
1. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/0ASIcs.DX.2024.24.
Gregory Provan. Generating reduced-order diagnosis models for HVAC systems. In Iinl.
Workshop on Principles of Diagnosis, Murnau, Germany, 2011.

Aibing Qiu, Ze Yan, Qiangwei Deng, Jianlan Liu, Liangliang Shang, and Jingsong Wu.
Modeling of HVAC systems for fault diagnosis. IEEFE Access, 8:146248-146262, 2020. doi:
10.1109/ACCESS.2020.3015526.

Olivier Raiman, Johan de Kleer, Vijay Saraswat, and Mark Shirley. Characterizing non-
intermittent faults. In Proceedings of the Ninth National Conference on Artificial Intelligence -
Volume 2, AAAT'91, pages 849-854. AAAI Press, 1991. URL: http://www.aaai.org/Library/
AAAT/1991/aaai91-132. php.

Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57-95,
1987. d0i:10.1016/0004-3702(87)90062-2.

Erich Sewe. Automatisierte Fehlererkennung in Heizungsanlagen [Automated Fault Detection
in Heating Systems]. PhD thesis, Universitdt Dresden, 2018.

Roni Stern, Meir Kalech, Shelly Rogov, and Alexander Feldman. How many diagnoses do we
need? Artificial Intelligence, 248:26-45, 2017. doi:10.1016/J.ARTINT.2017.03.002.

1:19

DX 2025

https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.29007/zswj
https://doi.org/10.29007/zswj
https://doi.org/10.1016/B978-0-934613-03-3.50033-7
https://doi.org/10.1016/B978-0-934613-03-3.50033-7
http://www.aaai.org/Library/AAAI/1997/aaai97-007.php
https://doi.org/10.1007/3-540-45632-5_17
https://doi.org/10.1016/j.rser.2014.11.066
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1016/j.ifacol.2017.08.816
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6595
https://doi.org/10.4230/OASIcs.DX.2024.24
https://doi.org/10.1109/ACCESS.2020.3015526
https://doi.org/10.1109/ACCESS.2020.3015526
http://www.aaai.org/Library/AAAI/1991/aaai91-132.php
http://www.aaai.org/Library/AAAI/1991/aaai91-132.php
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/J.ARTINT.2017.03.002

1:20

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

41

42

43

44

45

46

47

48

Peter Struss, Raymond Sterling, Jestis Febres, Umbreen Sabir, and Marcus M. Keane. Combin-
ing engineering and qualitative models to fault diagnosis in air handling units. In Proceedings
of the Twenty-First European Conference on Artificial Intelligence, ECAT’14, pages 1185-1190.
IOS Press, NLD, 2014. doi:10.3233/978-1-61499-419-0-1185.

Michael Thielscher. A theory of dynamic diagnosis. electronic transactions on artificial
intelligence. Electron. Trans. Artif. Intell., 1:73-104, 1997. URL: http://www.ep.liu.se/ej/
etai/1997/004/.

Michael Thielscher. Introduction to the fluent calculus. Electron. Trans. Artif. Intell., 2:179-192,
1998. URL: http://www.ep.liu.se/ej/etai/1998/006/.

Balaje T. Thumati, Miles A. Feinstein, James W. Fonda, Alfred Turnbull, Fay J. Weaver,
Mark E. Calkins, and S. Jagannathan. An online model-based fault diagnosis scheme for
HVAC systems. In 2011 IEEE International Conference on Control Applications (CCA), pages
70-75, 2011. doi:10.1109/CCA.2011.6044486.

Christoffer Thuve and Hema Pushphika Yuvraj. Life cycle assessment of a combustion engine-
mapping the environmental impacts and exploring circular economy. Master’s thesis, Chalmers
University of Technology, 2022.

Louise Travé-Massuyes and Teresa Escobet. Bridge: Matching model-based diagnosis from
FDI and DX perspectives. Fault Diagnosis of Dynamic Systems: Quantitative and Qualitative
Approaches, pages 153-175, 2019. doi:10.1007/978-3-030-17728-7_7.

Franz Wotawa. On the use of answer set programming for model-based diagnosis. In Hamido
Fujita, Philippe Fournier-Viger, Moonis Ali, and Jun Sasaki, editors, Trends in Artificial Intelli-
gence Theory and Applications. Artificial Intelligence Practices - 33rd International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE
2020, Kitakyushu, Japan, September 22-25, 2020, Proceedings, volume 12144 of Lecture Notes
in Computer Science, pages 518-529. Springer, 2020. doi:10.1007/978-3-030-55789-8_45.
Franz Wotawa and David Kaufmann. Model-based reasoning using answer set programming.
Appl. Intell., 52(15):16993-17011, 2022. doi:10.1007/S10489-022-03272-2.

https://doi.org/10.3233/978-1-61499-419-0-1185
http://www.ep.liu.se/ej/etai/1997/004/
http://www.ep.liu.se/ej/etai/1997/004/
http://www.ep.liu.se/ej/etai/1998/006/
https://doi.org/10.1109/CCA.2011.6044486
https://doi.org/10.1007/978-3-030-17728-7_7
https://doi.org/10.1007/978-3-030-55789-8_45
https://doi.org/10.1007/S10489-022-03272-2

	1 Introduction
	2 Related work
	2.1 ASP-based diagnosis
	2.2 Temporal diagnosis

	3 Background
	3.1 Model-based diagnosis
	3.2 Answer set programming
	3.3 Functional event calculus

	4 ASP diagnosis with functional event calculus
	4.1 Fluent health states
	4.2 Modeling component behavior
	4.3 Split seconds and immediate changes

	5 A case study: Heat distribution line
	5.1 System description
	5.2 Heat distribution line model
	5.3 Results

	6 Conclusion and Future Work

