Automating Control System Design: Using Language Models for Expert Knowledge in Decentralized Controller Auto-Tuning

Marlon J. Ares-Milian

□

School of Computer Science, University College Cork, Ireland

Gregory Provan

□

□

School of Computer Science, University College Cork, Ireland

Marcos Quinones-Grueiro

□

University, Nashville, TN, USA

Abstract

Fully-automated optimal controller design for engineering systems is a challenging task. While, optimization-based, automated control parameter tuning techniques have been widely discussed in the literature, most works do not discuss expert knowledge requirements for system design, which result in significant human intervention. In this work, we discuss a multistage controller tuning framework for decentralized control that highlights expert knowledge requirements in automated controller design. We propose a methodology to automate the input-output pairing and stage definition steps in the framework using Large Language Models (LLMs) for a family of multi-tank benchmarks. We achieve this by proposing a mathematical language to describe the system and design an algorithm to bind this mathematical representation to the input prompt space of an LLM. We demonstrate that our methodology can produce consistent expert knowledge outputs from the LLM with over 97% accuracy for the multi-tank benchmarks. We also empirically show that, correct stage definition by the LLM can improve tuned controller performance by up to 52%.

2012 ACM Subject Classification Computing methodologies \rightarrow Knowledge representation and reasoning

Keywords and phrases controller auto-tuning, automated system design, large language models

Digital Object Identifier 10.4230/OASIcs.DX.2025.10

Supplementary Material Software (Source Code): https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git, archived at swh:1:dir:81a0af39fd36f5d0fe1daae775b1e460067fd364

Funding This work was supported by Science Foundation Ireland under Grant 13/RC/2094.

1 Introduction

Most modern engineering issues are framed as systems. For example, vehicles, robots, and industrial machines are all systems, albeit different, and each have sub-systems and components that work in close relation to achieve their intended functions. The development of modern engineering systems goes through three main stages: design, production, and operation. Proper design is the focus of this paper, since it enables engineering systems to meet desired performance objectives, e.g.: development and operational costs, safe operation, and robustness, while also supporting validation and verification, enhancing the production and operation stages [8]. However, optimal system design is a very challenging task due to the extensive space of system configurations, components, and parameters [18] that must be explored. In spite of all the advances in automation to date, solving the design problem often requires significant human expertise and iterative design protocols [7]. Therefore, a strong motivation exists to develop automated optimal design methodologies that meet desired objectives while reducing the tedious, time-consuming, and costly aspects of manual design.

With the development of cyber-physical systems and the internet of things, automation has become ubiquitous in modern engineering systems [8] and the key component for automation in any modern system is the controller. A controller (or control algorithm) refers to the sub-system that receives information from real or estimated measurements and operates the actuators in order to regulate system variables with different objectives. The design of controllers for engineering is a complex task, consisting of multiple components and steps. Controllers are usually defined by parametric functions, which results in a problem well-known as controller tuning: the design step where controller parameters are adjusted (or tuned) to meet desired performance objectives. Traditional controller tuning is done manually, requiring an iterative design process based on expert knowledge. This is an inefficient approach that usually results in sub-optimal solutions, which has motivated significant research on automated design of controller parameters, known as controller auto-tuning.

Many modern controller auto-tuning solutions resort to an iterative optimization approach in which some performance objectives are evaluated (either in simulation or hardware) and the controller parameter space is explored using some optimization algorithm until the best set of parameters is obtained; this is done through some combination of system-model knowledge, expert knowledge, and historical data, and includes tools like reinforcement learning [13], evolutionary optimization [16], and Bayesian optimization [17]. Even though the controller parameter search itself has been widely automated, the controller design problem (including controller parameter design) still requires abundant expert knowledge in different steps of the process that are often ignored in the associated literature [2]. Some of the open challenges in fully automated controller design include aspects of the parameter optimization problem definition like defining constraints, defining and restricting the search space, and defining the cost function, as well as other aspects of the control system design such as control loop definition (also known as input-output pairing) [12]; all of these are currently solved, in the majority of cases, using expert knowledge. In this work, we propose a methodology to automate expert knowledge for a subset of steps in the control system design problem: inputoutput (I/O) pairing and stage definition for a multistage controller auto-tuning framework. We use Large Language Models (LLMs) to meet these expert knowledge requirements.

LLMs are deep learning models trained over a large volume of natural language data spanning multiple topics and scientific disciplines while following task-agnostic architectures [5]. Therefore, they are often used as a form of zero-shot or few-shot transferable models with a variety of applications [14][7][19]. This makes LLMs a prime target for automating expert knowledge, a task that is often unstructured and heavily relies on natural language interactions. While LLMs have shown positive results, multiple challenges persist in terms of LLM output formatting, consistency, and accuracy, generalization to more complex topics/benchmarks, factually incorrect responses, etc. Therefore, multiple works have focused on how to maximize performance from an already trained LLM, with prompt engineering (PE) being the most discussed approach. PE is based on the fact that a well-designed (natural language) prompt can dramatically improve the quality of the output in an LLM [10]. In this paper, we discuss a PE methodology to automate expert knowledge in control system design.

The contributions of this work are as follows: (1) We highlight existing challenges in automated controller design and automate expert knowledge using LLMs. We focus on expert knowledge requirements for I/O pairing and stage definition in a multistage decentralized controller auto-tuning framework. (2) We define a mathematical language based on system topology to describe a family of industrial multi-tank benchmarks. (3) We propose a system-informed prompt engineering algorithm to bind the mathematical language to the input prompt space of an LLM in order to automate expert knowledge for controller design. (4) We empirically evaluate the effectiveness of LLMs for substituting expert knowledge in I/O

pairing and stage definition tasks for a family of multi-tank benchmarks using performance metrics like: proper formatting of output prompt and correct expert knowledge provided. We show that the LLM can produce expert knowledge recommendations with over 97% accuracy with consistent formatting for I/O pairing and stage definition. (5) We empirically evaluate, for the first time (to the best of our knowledge), the relevance of controller tuning order on performance of tuned controllers, when tuning decentralized controllers independently and sequentially, for a family of multi-tank benchmarks. We show that, depending on the complexity of the system, and the degree of coupling between its components, a correct stage definition can improve the tuned controller performance by up to 52%

2 Related Work

2.1 Automated Controller Design

When discussing automated controller design, most works focus on controller auto-tuning, which is popularly framed as a derivative-free optimization problem [16][17]. While gradient-based methods are also used for controller auto-tuning [13], derivative-free formulations have the desired advantage of making little or no assumptions on objective or constraint functions.

Multiple authors have proposed metaheuristic approaches to controller auto-tuning, with [16] doing a detailed survey on evolutionary optimization algorithms for multiple-input-multiple-output processes. However, Bayesian optimization (BO) approaches have become quite popular in recent years, due to their high sample efficiency [2] and overall performance. For example [17] present a joint tuning methodology that uses BO to simultaneously tune an LQR controller, an unscented Kalman Filter (UKF), and a guidance and navigation system for an autonomous underwater vehicle (UUV), yielding satisfactory results across multiple objectives. Most of the available solutions focus strictly on the parameter search itself and how to solve it using some optimization tool, leaving the design of the optimization problem, or the control algorithm, as an expert knowledge requirement.

In their work, [2] also propose a Bayesian optimization solution for controller auto-tuning of PID controllers in an underwater vehicle, improving the computational complexity of the controller tuning task by decomposing the search space into smaller dimension subspaces. In order to do so, they propose a multistage framework that aims to formalize all the necessary steps in automated controller design. This formalization highlights a variety of existing challenges in automated controller design that are often ignored, or underexplored in recent works. Examples of these challenges are how to define the parameter search space, the constraints, or the cost function for the optimization problem, issues that are often not discussed, or attributed to expert knowledge. Similarly, how to define the stages in the multistage framework defined in [2] is still one of the open problems highlighted in the paper.

An attempt to address one of these expert knowledge requirements can be found in [12], where an optimal control formulation is proposed in order to simultaneously optimize the controller parameters and produce an I/O pairing for the system. I/O pairing, or control loop design, is often assumed to be already defined in most controller auto-tuning works [17], when, in reality, it is usually performed through expert knowledge.

Overall, state-of-the-art research on automated controller design is significantly challenged by expert knowledge requirements across different stages of the problem.

2.2 LLMs in System Design

Several papers have used LLMs for some aspect of system design, but fundamentally most approaches still adopt significant manual modeling, employing LLMs after the design process.

[14] uses a five-step LLM-based prompting approach that requires as inputs a piping and instrumentation diagram (P&ID) and natural language prompts. They evaluate the approach on a one-tank, one three-tank, and one four-tank system. Our approach differs in that we focus on control tuning and not diagnostics, we use a formal language for LLM prompting that provides guarantees about optimality of controller design, and we focus on control-model optimization and not just model generation.

A closely related approach, SmartControl [19], automatically determines the most suitable PID parameters to achieve the specified performance targets using PSO and DE algorithms. This process includes selecting the optimal gains that will ensure the system's fast and stable response. After optimization, the closed-loop step response is simulated and basic performance metrics (such as settling time, rise time, overshoot, etc.) are calculated and presented to the user via an interactive graphical interface. SmartControl emphasizes interactive design, allowing users to engage directly with the LLM agent to refine the controller design. The approach in the provided paper is more automated; the LLM generates the I/O pairing and stage definitions without direct user interaction during that phase.

ControlAgent [7] employs a range of techniques for integrating domain knowledge, e.g., a knowledge graph or other structured representation of control engineering principles. Our approach aims for full automation once the initial system description is provided; in contrast, ControlAgent involves more interactive elements, allowing users to refine the design process through feedback or iterative refinement with the LLM.

2.3 Systems Modeling using Component-Based Languages

Several frameworks exist to define systems based on interconnected component models, e.g., bond graphs, Simulink, and Modelica. The proposed approach is a fundamentally different framework from such approaches, most of which rely on manually-defined component models.

The approach is most similar to bond graphs (which focuses on representing energy flow and causality), although the current usage is quite different. In a bond graph, nodes consist of a standardized set of elements (e.g., C for capacitance, I for inertia, etc.) and edges/junctions represent system components and their interactions. The resulting graph allows for deriving system equations and performing simulations. Our proposed graph model is simpler than a bond graph model, as it does not specify the inherent physical properties of the nodes.

The two approaches are not mutually exclusive. One could conceivably use bond graphs to model a multi-tank system and then use the resulting model (or a simplified representation of it) as input to the LLM-based system for automated control design. The bond graph would provide a structured representation of the system's dynamics, while the LLM would handle the more complex task of selecting appropriate control strategies and parameters. The paper, however, focuses solely on the LLM-based approach without explicit integration of bond graphs. The paper's graph representation is a simplified topological representation, not a full bond graph model.

3 Preliminaries

3.1 Decentralized parametric control

Let's define a controller by a tuple $C = (U, \mathcal{Y}, \mathcal{U})$ where $\mathcal{Y} \subset \mathbb{R}^{n_y}$ is the space of system measurements/outputs (e.g.: level in a tank, altitude in a drone), $\mathcal{U} \subset \mathbb{R}^{n_u}$ is the space of system inputs (e.g. liquid flow from a pump, propeller commands in a quadcopter), and $U: \mathcal{Y}^t \times \mathcal{U}^{t-1} \to \mathcal{U}$ is a control algorithm that produces a system input at every timestamp t

considering system inputs and outputs from previous system interactions. We are interested in a family of control frameworks called *decentralized parametric controllers*, which are commonly used in industrial and robotic systems [2].

A parametric control algorithm is a parametric function $U: \mathcal{Y}^t \times \mathcal{U}^{t-1} \times \Xi \to \mathcal{U}$ such that $\mathbf{u}(t) = U(\mathbf{y}(0), \dots, \mathbf{y}(t), \mathbf{u}(0), \dots, \mathbf{u}(t-1), \boldsymbol{\xi})$, with $\mathbf{y}(t) \in \mathcal{Y}, \mathbf{u}(t) \in \mathcal{U}, \boldsymbol{\xi} \in \Xi$, where the control algorithm is defined by a set of parameters $\boldsymbol{\xi}$ that must be previously adjusted (tuned). Parametric controllers are very common, with the proportional-integral-derivative controller and its P, I, and D parameters being the industry standard [16].

A decentralized control approach is defined by a set of independent control algorithms $C = \{U_1, U_2, \dots, U_{n_u}\}$ where every control algorithm U_i matches a single system input u_i with a single system output y_i , and the changes in that system input are only conditioned by the corresponding system output, i.e.: $u_i(t) = U(y_i(0), \dots, y_i(t), u_i(0), \dots, u_i(t-1), \boldsymbol{\xi}_i)$. This is a common simplification in control system design [2] with assumptions regarding system coupling. The implications of these assumptions are discussed further in this paper.

3.2 Directed graphs

A graph is defined by a tuple G = (V, E) where $v_i \in V$ is a set of elements called *vertices* $v_i \in \mathbb{N}$ and $e \in E$ is a set of pairs $e = (v_i, v_j); v_i, v_j \in V$ called *edges* [6]. An edge describes a relationship between two vertices, we can say that an edge *joins* two vertices. For the purpose of this work, we are interested in graphs with the following properties:

- **Directed**: In a directed graph, the edges are ordered pairs and have an implied direction, i.e.: $e_1 = (v_1, v_2) \neq e_2 = (v_2, v_1)$. An edge in a directed graph is called a *directed edge*.
- Simple: A simple graph is a graph without loops. A loop in a graph is defined as an edge that joins a vertex to itself, i.e.: $e = (v_i, v_j); v_i = v_j$.
- **Edge-Labeled**: In an edge-labeled graph G = (V, E, L), a labeling function $l : E \to L$ is defined to assign a label from the label set L to each edge in the edge set.

Let's discuss some graph theory concepts that will be relevant in the rest of this work [4].

- ▶ **Definition 1** (Directed Path). A directed path is a sequence of distinct edges $\{e_1, e_2, \ldots, e_{n-1}\}$ in a graph G = (V, E) that joins a sequence of distinct vertices $\{v_1, v_2, \ldots, v_n\}$ such that $e_i = (v_i, v_{i+1}), e_i \in E, \{v_i, v_{i+1}\} \in V$ is a directed edge.
- ▶ **Definition 2** (Strongly Connected Component). A directed graph is considered to be strongly connected if every vertex is reachable from every other vertex in the graph, i.e.: for any vertex pair $(v_i, v_j) \in V$, there is at least one directed path that goes from v_i to v_j . A strongly connected component of a graph G = (V, E) is a subgraph $G' \subseteq G$ that is strongly connected, and is maximal with this property, i.e.: no additional edges or vertices from G can be included in G' without breaking its property of being strongly connected.

Strongly connected components in a graph can be computed in linear time by a variety of algorithms (e.g.: depth-first-search algorithms) [4].

3.3 Large Language Models

Let us define the prompt space \mathcal{Z} [11]. The elements in \mathcal{Z} are a composition of tokens selected from a token vocabulary $t \in \mathcal{T}$, where $z = \{t_1, t_2, \ldots, t_m\}$ can be a sequence of tokens of any length $m \in \mathbb{N}$. An LLM is then defined as a transformation $LLM : \mathcal{Z} \to \mathcal{Z}, z_o = LLM(z_i)$ where, for a given input prompt z_i , the model produces an output prompt z_o .

A common feature in LLM APIs is the system prompt. A system prompt $z_s \in \mathcal{Z}$ permeates every interaction [20] with the LLM, providing context, setting the role and the tone for the LLM responses, ensuring output prompt formatting, etc. Particular implementations of the system prompt vary depending on the LLM; in some cases it is provided as an initial prompt before the input prompt [11], while in other cases a dedicated system token is implemented. For the purpose of this work, we are interested in LLMs with system prompt (z_s) options, i.e.: $LLM : \mathcal{Z} \times \mathcal{Z} \to \mathcal{Z}, z_o = LLM(z_s, z_i)$. In Section 4.4, we define bindings from a graph language describing a family of physical systems to the input and system prompt spaces.

3.4 Bayesian optimization

Bayesian optimization is a technique for globally optimizing black-box functions that are expensive to evaluate [9]. We consider the global minimization problem: $\boldsymbol{\xi}^* = \arg\min_{\boldsymbol{\xi} \in \Xi} \inf_{\boldsymbol{\xi} \in \Xi} f_{\boldsymbol{\xi}}(\boldsymbol{\xi})$, with input space Ξ and objective function $f_{\boldsymbol{\xi}} : \Xi \to \mathbb{R}$. We consider costly-to-evaluate functions $f_{\boldsymbol{\xi}}$ for which we have a limited number of evaluations available before we propose an optimum $\boldsymbol{\xi}^*$ in at most J_{end} iterations. We assume we have access only to noisy evaluations of the objective $l = f_{\boldsymbol{\xi}} + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma_n^2)$ is i.i.d. Gaussian noise with variance σ_n^2 . Finally, we make no assumptions regarding gradients or convexity properties of $f_{\boldsymbol{\xi}}$.

The main steps of a BO routine in iteration j involve (1) response surface learning, (2) optimal input selection $\boldsymbol{\xi}_{j+1}$, and (3) evaluation of the objective function f_{ξ} at $\boldsymbol{\xi}_{j+1}$.

The BO framework uses the predictive mean and variance of a Gaussian Process (GP) [15] model to formulate an acquisition function that trades off exploitation, testing promising controller parameters given the current knowledge, with exploration, sampling unexplored regions of the design space. The BO algorithm can be initiated without any past observations, but it is usually more efficient to calibrate the GP model hyper-parameters and calculate a prior by first collecting an initial set of observations.

4 Methodology

4.1 Controller tuning framework

We define the controller tuning task as a multi-objective optimization (MOO) problem:

$$\min_{\boldsymbol{\xi}} \mathbf{L}(\boldsymbol{\xi}) = [\mathcal{L}_1(\boldsymbol{\xi}), \dots, \mathcal{L}_{n_L}(\boldsymbol{\xi})], \quad \text{s.t. } \boldsymbol{\xi} \in \Xi,$$
(1)

where $\boldsymbol{\xi} \in \Re^{n_{\xi}}$ are controller parameters and $\mathbf{L}(\boldsymbol{\xi})$ are objectives. We consider an MOO problem for a more general definition; however, controller auto-tuning is commonly framed as a scalar objective optimization problem. Our proposed framework is fully compatible with both the multi-objective and scalar-objective definitions of the problem. We assume a system with decentralized parametric controllers; other than that, the proposed framework makes no assumptions on the parameter and objective spaces. This general tuning problem can be redefined as a multistage optimization problem where a subset of controllers is tuned at every stage. Each stage can be defined as an MOO sub-task. Fig. 1 illustrates the process.

At stage $i=1,2,\ldots,n_g$ of the tuning process, a subset of control parameters $(\Xi^i\subseteq\Xi)$ are tuned to minimize some stage-specific objectives (\mathbf{L}^i) , given reference signal R^i . The rest of the control parameters are fixed at a previous stage, or before the tuning process begins, through the constraint parameters $(\bar{\boldsymbol{\xi}}^i,P^i)$. At each stage, a subset $(\boldsymbol{\xi}^i_{min})$ of the optimal control parameters $(\boldsymbol{\xi}_{min})$ is produced as a result of an MOO sub-task described below.

The I/O pairing and the definition of the stages are task-specific steps, both of which are commonly solved using expert knowledge [2][16]. The main contribution of this work is a methodology to automate this expert knowledge requirement and produce an I/O pairing and stage definition using LLMs. Further details on these steps can be found in Section 4.3.



Figure 1 Controller tuning as a Multistage Problem.

The controller tuning optimization task is decomposed into sub-tasks defined as:

$$\min_{\boldsymbol{\xi}} \quad \mathbf{L}^{i}(\boldsymbol{\xi}) = [\mathcal{L}_{1}(\boldsymbol{\xi}), \dots, \mathcal{L}_{n_{i}}(\boldsymbol{\xi})]$$
(2a)

s.t.
$$\boldsymbol{\xi} \in \Xi^i$$
 (2b)

$$(\boldsymbol{\xi} - \bar{\boldsymbol{\xi}}^i)P^i = 0 \tag{2c}$$

where (2c) is a constraint that sets control parameters to specified values $(\bar{\xi}^i)$ from a previous stage or from before the tuning process begins.

These optimization sub-tasks can be solved using any optimization algorithm, as long as the cost function and search space are properly defined. For the purpose of this work, we use Bayesian Optimization to solve the optimization sub-tasks; we refer the reader to [2] for a more detailed discussion on the optimization sub-tasks and the use of Bayesian Optimization.

4.2 Graph Language For System Representation

We now define a language, in the form of an enhanced system graph, to describe physical systems in terms of reservoirs, actuators, and connections:

▶ Definition 3 (Enhanced System Graph). An enhanced system graph is a directed, simple (no loops), edge-labeled graph G = (V, E, L) that describes relationships between tanks and pumps in a multi-tank system. The graph is separated into two subgraphs $G = G^A \cup G^T$ where $G^A = (V^A, E^A, L^A)$ is the actuator subgraph and $G^T = (V^T, E^T, L^T)$ is the tank subgraph.

Let's first discuss the tank subgraph G^T which describes relations between the different tanks. Each vertex in the set $V^T = \{1, 2, \dots N_T\}, v_i^T \in \mathbb{N}$, represents a tank in the system, where tank labels (vertices) are assigned arbitrarily, and N_T is the number of tanks in the system. The edge set $E^T \subset V^T \times V^T, e_k^T = (v_i^T, v_j^T)$ represents a liquid flow connection between the tanks. The direction of the edges represents possible flow directions. A regular directed edge (v_i^T, v_j^T) represents liquid flow that is only feasible from tank v_i^T to tank v_j^T , for example, the drain of a gravity-drained tank that feeds a tank below it. A bidirectional edge $\{(v_i^T, v_j^T), (v_j^T, v_i^T)\}$ represents an interconnection between tanks where liquid flow can occur in both directions, for example, two horizontally aligned tanks connected by a pipe.

Based on the edge directionality and the semantics of edges, we can assign a labeling to edges for constructing LLM prompts. The edge-label set $L^T = \{above, below, interconnected\}$ provides the necessary information about the relationships between the tanks for prompt engineering. The labeling function $l^T(e)$ is defined for any edge $e \in E^T$, $e = (v_i, v_j)$:

$$l^{T}(e) = \begin{cases} interconnected & (v_{j}, v_{i}) \in E^{T} \\ above & (v_{j}, v_{i}) \notin E^{T} \wedge v_{i} < v_{j} \\ below & (v_{j}, v_{i}) \notin E^{T} \wedge v_{i} > v_{j} \end{cases}$$

$$(3)$$

where an edge is labeled *interconnected* if it is bidirectional (i.e.: the opposite direction edge is also in the graph) and above or below if the edge is not bidirectional (i.e.: the opposite direction edge is not in the graph). An edge $e = (v_i, v_j)$ is labeled above if vertex v_i is of lower numerical value than vertex v_j and below if the opposite is true. Note that the value of the vertices, which effectively act as labels for the tanks, are assigned arbitrarily, and the purpose of this labeling strategy is to ensure a consistent distinction between types of edges, which becomes relevant when building natural language prompts for the LLM. Therefore, the distinction between above and below edges is done without loss of generality.

We then define the actuator subgraph $G^A = (V^A, E^A, L^A)$ where each vertex in $V^A = \{1, 2, \dots N_A\}, v_i^A \in \mathbb{N}$ represents an actuator in the multi-tank system, e.g.: a pump. Every edge in $E^A \subseteq V^A \times V^T$ represents a connection between an actuator and a tank, where an edge $e = (v_i^A, v_j^T) \in E^A$ is always directed from an actuator vertex to a tank vertex. One actuator vertex can be connected to multiple tank vertices. The labeling function for the actuator subgraph $l^A : V_A \to L_A$ maps each actuator vertex to a corresponding vertex label that describes attributes of the fluid going through the actuator which may include: temperature of the fluid, composition or concentration of the fluid, etc.; e.g.: $l^A(v) = hot water$.

Fig. 2a shows an example three-tank system and its corresponding graph representation (Fig. 2b). Elements from the tank subgraph are presented in continuous lines while the actuator subgraph is represented by discontinuous lines.

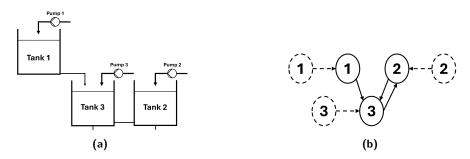


Figure 2 Graph representation (b) of an example 3-tank system (a).

4.3 Input Output Pairing and Stage Definition

In this section we formalize the concepts of I/O pairing and stage definition, and how they relate to the controller auto-tuning framework defined in Section 4.1.

4.3.1 Input-Output Pairing

Let us consider a system with input space $\mathcal{U} \subseteq \mathbb{R}^{n_u}$ consisting of n_u system inputs, corresponding to the output of n_u decentralized controllers. Let us also consider an output space $\mathcal{Y} \subseteq \mathbb{R}^{n_y}$ consisting of n_y outputs, corresponding to known system variables (either by direct measurement or estimation). In the context of decentralized controllers, we define an I/O pairing as a matrix $M^{I/O} \in \mathcal{M}_{n_u \times n_y}$, $m_{ij}^{I/O} \in \{0,1\}$ where $m_{ij}^{I/O} = 1$ if input u_i and output y_j are paired, and $m_{ij}^{I/O} = 0$ otherwise. In practice, an input and an output being paired means that the value of the output is used to compute the paired system input through the respective control algorithm. Every input must be paired with an output exactly once.

Let us illustrate this concept using the example from Fig. 2. This three tank system is fed by three input pumps, pump 1 feeds tank one with an input flow u_1 , pump 2 feeds tank two with an input flow u_2 , and pump 3 feeds tank three with an input flow u_3 . The levels in the three tanks are measured, resulting in the respective outputs y_1 , y_2 , and y_3 . The I/O pairing task in this case is trivial, since it is obvious we want to control the level in tank i using the pump that feeds tank i. Assuming a set of inputs: {FlowPump1, FlowPump2, FlowPump3}, respectively $\{u_1, u_2, u_3\}$, and a set of outputs: {LevelTank1, LevelTank2, LevelTank3}, respectively $\{y_1, y_2, y_3\}$; Fig. 3 shows example I/O pairings for the system.

- (a) Correct Input-Output Pairing.
- (b) Incorrect Input-Output Pairing.

Figure 3 Example Input-Output Pairings.

I/O pairing is equivalent in the literature to control loop design [12] since, pairing an input and an output defines a feedback loop for the corresponding controller. Following the correct input-output pairing (Fig. 3a), we define three control loops: {FlowPump1-LevelTank1, FlowPump2-LevelTank2, FlowPump3-LevelTank3}. We formalize a control loop as a tuple $\pi_i = (u_i, y_j)$ and tuning a control loop refers to tuning the corresponding controller.

4.3.2 Stage Definition

Once we determine an I/O pairing in the system, we must define the stages for the multistage optimization problem presented in Section 4.1. This involves defining the total number of stages n_g and, for every stage i, the controller tuned at this stage and the control parameters fixed from previous stages. This information is then summarized into the stage-specific parameters $(\Xi^i, \bar{\xi}^i, P^i)$ for each optimization subtask (2). In order to produce a concise description of the stages in the framework, we define a stage matrix $M^{SD} \in \mathcal{M}_{n_g \times n_u}, m_{ij}^{SD} \in \{0, 1, 2\}$ where every row represents a stage, and every column represents a control loop. An element in the matrix m_{ij}^{SD} is 1 if the controller for control loop j is tuned at stage i, 0 if

control loop j is open at stage i, and 2 if control loop j is closed at stage i using control parameters tuned in a previous stage. For the purpose of this work, every controller must be tuned exactly once, and at least one controller must be tuned at every stage.

What is a correct stage definition, as well as the relevance of this process, is task-specific, and is often determined from expert knowledge based on the couplings (I/O interactions) in the system. Ideally, the output of a control loop $\pi_i = (u_i, y_j)$ should only be affected by the corresponding input u_i . However, this is often not the case and output y_j is affected by variations in the inputs of other loops $u_{k\neq i}$; when this happens, we say loop π_i is coupled with loop $\pi_k = (u_k, y_l)$. This relationship is not symmetric, if control loop π_i is coupled with control loop π_k , control loop π_k can be decoupled from π_i , where variations in input u_i do not affect output y_l . In the context of controller tuning, we tune control loops that are isolated (i.e.: not coupled to any loops) first and then tune the coupled loops. When tuning a controller for a coupled loop π_i , if possible, we want all the loops that π_i is coupled with to be closed using control parameters tuned in previous stages, which minimizes variations in the variables from the coupled loops, making π_i behave like a decoupled loop. Following this methodology we can see that correct stage definition for a system is not always unique.

Let us illustrate the concept of stage definition using the example from Fig. 2. The control loops in the system are (Section 4.3.1): {FlowPump1-LevelTank1, FlowPump2-LevelTank2, FlowPump3-LevelTank3}, for simplicity, $\{(u_1, y_1), (u_2, y_2), (u_3, y_3)\}$. In this case, the correct stage definition should start by tuning the control loop corresponding to tank 1 (u_1, y_1) . This is an isolated loop in the system since, due to the connection between tank 1 and 3 being gravity-based, no variations in the pumps feeding tank 2 and 3 can affect the level in 1, while variations in the pump feeding tank 1 can affect the level in tanks 2 and 3. Tanks 2 and 3 are interconnected and flow between them can go in either direction, making loops (u_2, y_2) and (u_3, y_3) coupled both ways; therefore, these loops can be tuned in any order. In summary, any stage definition that tunes control loop (u_1, y_1) in the first stage, and maintains this loop closed for further stages, is considered correct. Fig. 4 shows an example of a correct and incorrect stage definitions of the system, replacing $\{0, 1, 2\}$ with $\{open, tuned, closed\}$.

	(u_1,y_1)	(u_2,y_2)	(u_3,y_3)		(u_1,y_1)	(u_2, y_2)	(u_3,y_3)
Stage~1	/tuned	open	$open \$	Stage~1	/ open	\mathbf{tuned}	$open \ $
$Stage\ 2$	closed	open	tuned	Stage2	tuned	closed	open
			closed)				tuned

- (a) Example Correct Stage Definition.
- (b) Example Incorrect Stage Definition.
- Figure 4 Example Stage Definitions.

4.4 LLM prompt design

In this section we discuss how to design input and system prompts (Section 3.3) for an LLM in order to automate I/O pairing and stage definition, given limited structural knowledge of the system, for a family of multi-tank systems. We present an algorithm for input prompt design given the graph representation of the system defined in Section 4.2.

A system with three gravity drained tanks filled with fluid. Tank 1 is positioned above tank 3 and the drain of tank 1 feeds tank 3 as an input flow. Tank 2 and tank 3 are horizontally aligned and interconnected by a pipe. The system is fed by 3 pumps, producing input flows. Pump 1 feeds tank 1. Pump 2 feeds tank 2. Pump 3 feeds tank 3.

Inputs: [FlowPump1, FlowPump2, FlowPump3]

Outputs: [LevelTank1, LevelTank2, LevelTank3]

3 control loops with 3 PID controllers:

[FlowPump1-LevelTank1, FlowPump2-LevelTank2, FlowPump3-LevelTank3]

Propose a methodology to tune the controllers sequentially

Figure 5 Input Prompt for Stage Definition.

4.4.1 Input prompt design

In this section we describe the methodology (Algorithm 1) used to design an input prompt for stage definition in a multi-tank system assuming a graph representation (Def. 3) of the system is available. The resulting input prompt consists of 6 distinct sections: introduction, hierarchical relations, interconnections, actuators, input-output-loop list, and task instruction.

We start by introducing the system and the number of tanks $(N_T = |V^T|)$ in it and then describe the hierarchical relations between tanks. In order to do this, we define a set of single direction edges, $E_H = \{(v_i, v_j) \in E^T \mid (v_j, v_i) \notin E^T\}$. Every edge in E_H represents a hierarchical relation between tanks where only one flow direction is feasible, whether it is due to gravity or a pump forcing a fixed flow. This section of the prompt design algorithm generates a sequence of $|E_H|$ sentences (one for each element in E_H) that describe the hierarchical relations between pairs of tanks using the corresponding labels $l^T(e_i) \in \{above, below\}$. The set E_H is ordered from lowest to highest according to $min(v_i, v_j)$ (min is the minimum between v_i and v_j). The edge ordering of set E_H is done for consistency, which we have found to impact performance significantly when designing the prompt.

We then describe groups of tanks that are interconnected. To do so, we define a set of subgraphs $\mathcal{G}_I = \{G_i' \subseteq G^T \mid |G_i'| > 1 \land G_i' \text{ is strongly connected} \}$. For every connected subgraph G_i' , we produce a sentence highlighting interconnection between the tanks represented by the subgraph. The tanks don't need to be horizontally aligned, we use this sentence structure to stay consistent with the vertical alignment description of the system hierarchy.

Afterwards, we describe the actuators in the system and their relationship with the corresponding tanks. For the purpose of this work, we only consider the family of systems with actuators as pumps, however, the actuator space can be easily expanded by making the actuator label space L^A more expressive. First we list the number of pumps $N_A = |V_A|$. Then, we add a sentence to the prompt for each actuator $v_i \in V^A$, where we list the set of tanks $T_i = \{t^1_{v_i}, t^2_{v_i}, \dots, t^n_{v_i}\}$ that are fed by pump v_i . If the fluid through the actuator has associated attributes, these are added to each actuator sentence by means of $l^A(v_i)$.

Subsequently, we provide an ordered list of inputs and outputs in the system and, for the case of the stage definition task, we also provide a description of the control loops. Finally, instructions about the task (stage definition or I/O pairing) are provided. Fig. 5 shows the resulting input prompt for stage definition designed for the example system in Fig. 2.

Algorithm 1 Input Prompt Design Methodology.

```
1 Input: G
 2 prompt \leftarrow "A system with \{N_T\} gravity drained tanks filled with fluid."
   /* Describe hierarchical relations
                                                                                                          */
 3 foreach e_i = (v_{i_1}, v_{i_2}) \in E_H do
        prompt \leftarrow prompt + \text{``Tank } \{min(v_{i_1}, v_{i_2})\} \text{ is positioned } \{l^T(e_i)\} \text{ tank }
          \{max(v_{i_1}, v_{i_2})\}\ and the drain of tank \{v_{i_1}\}\ feeds tank \{v_{i_2}\}\ as an input flow."
 5 end
    /* Describe interconnection between tanks
                                                                                                          */
 6 foreach G_i' \in \mathcal{G}_I do
        prompt \leftarrow prompt + \text{``Tank } \{v'_{i_1}\}, \text{ tank } \{v'_{i_2}\}, ..., \text{ and tank } \{v'_{i_n}\} \text{ are horizontally }
         aligned and interconnected by a pipe."
 8 end
   /* Describe actuator relations
 9 prompt \leftarrow prompt + "The system is fed by \{N_A\} pumps, producing input flows."
10 foreach v_i \in V_A do
        prompt \leftarrow prompt + \text{``Pump } \{v_i\} \text{ feeds tank } \{t_{v_i}^1\}, \text{ tank } \{t_{v_i}^2\}, \dots \text{'`}
11
        if l^A(v_i) \neq \emptyset then
12
           prompt \leftarrow prompt + \text{``with } \{l^A(v_i)\}.''
13
14 end
    /* System Inputs, Outputs, Loops, and Task
                                                                                                          */
15 prompt \leftarrow prompt + \{List \ of \ Inputs \ and \ Outputs\}
16 if task = StageDefinition then
        prompt \leftarrow prompt + "\{N_u\} \text{ control loops with } \{N_u\} \text{ PID controllers"}
17
        prompt \leftarrow prompt + \{List \ of \ Control \ Loops\}
18
        prompt \leftarrow prompt + "Propose a methodology to tune the controllers sequentially".
20 else if task = IOPairing then
    prompt \leftarrow prompt + "Propose an input-output pairing for the system".
22 Output: prompt
```

4.4.2 System Prompt Design

A well-designed system prompt can enhance the performance of the LLM interaction. The system prompt design strategy consists of four sections: a role statement, a description of the task, output formatting instructions, and an output format example.

The role statement is a common practice in system prompt design, usually implemented with a single sentence in the form: "You are {role}". In this case we define the role as "expert control engineer". We then describe the desired task (I/O pairing or stage definition).

The large output prompt space \mathcal{Z} , along with the stochastic nature of the LLM (assuming non-zero temperature), results in challenges when processing the LLM output programmatically in a fully automated framework. For example, in the case of I/O pairing, we want to produce a matrix like the one in Fig. 3 from a natural language output $z_o \in \mathcal{Z}$. To parse this output correctly, a consistent output prompt formatting is desired. We ensure this by adding formatting instructions to the system prompt, as well as an example desired output.

System prompts are independent from the particular configuration of the multi-tank system, and their design depends on the desired task. Figures 6a and 6b show the system prompts used for the $\rm I/O$ pairing and stage definition tasks respectively.

You are an expert control engineer. Provide a matrix showing recommended input-output pairings for a system. Your answer must contain a table wrapped in <ans></ans> and nothing more. The table must be formatted exactly as described below: - Columns: System Outputs - Rows: System Inputs - Cells: "1"=input and output are paired, "0"=input and output are not paired All inputs must be paired exactly once. Example: <ans> [Output1] [Output2] [Output3] ... [OutputN] Input1 0 1 0 ... 0 Input2 1 0 0 ... 0 InputS 0 0 1 ... 0

You are an expert control engineer. Your task is to provide a matrix showing sequential PID controller tuning order. Upstream control loops should be tuned first. Your answer must contain a table wrapped in <ans></ans> and nothing more. The table must be formatted exactly as described below:

- Columns: PID controllers by control loop
- Rows: Tuning steps
- Cells: "1"=tuned at this step, "0"=opened at this step, "2"=tuned in previous step At least one controller must be tuned per step. Each controller is tuned exactly once. Example:

```
<ans>
[Loop1] [Loop2] [Loop3] ... [LoopN]
Step1 0 1 0 ... 0
Step2 1 2 0 ... 0
...
StepS 0 2 1 ... 2
</ans>
```

(a) System prompt for Input-Output Pairing.

(b) System prompt for Stage Definition.

5 Experimental Design

</ans>

5.1 Performance Metrics

In order to evaluate the proposed I/O pairing and stage definition methodologies we use multiple performance metrics which evaluate output prompt formatting and accuracy, as well as auto-tuned controller performance.

5.1.1 Performance Metrics for LLM output

Consider a system benchmark b, e.g.: three cascading tanks, two interconnected tanks, and a task $\gamma \in \{IOPairing, StageDefinition\}$. Let's then assume an LLM is prompted with the corresponding system (z_s^{γ}) and input $(z_i^{b,\gamma})$ prompts such that the output prompt $z_o = LLM(z_s^{\gamma}, z_i^{b,\gamma})$ is produced. Let us define the following set of performance metrics in order to evaluate output prompt z_o : correct formatting, accuracy, and percentage of accurate over correctly formatted.

Correct Formatting. For a given task γ and benchmark b, let us define a correctly formatted set $\mathcal{Z}_F^{b,\gamma}$ with all the output prompts that match the restrictions imposed in the corresponding system and input prompts $[z_s^{\gamma}, z_i^{s,\gamma}]$. An output prompt $z_o = LLM(z_s^{\gamma}, z_i^{b,\gamma})$ is considered correctly formatted if $z_o \in \mathcal{Z}_F^{b,\gamma}$. We are also interested in the average performance over a set of N interactions (to account for the stochastic nature of the LLM). We define percent of correctly formatted outputs as:

$$\Psi_F = \sum_{i=1}^{N} \frac{L_F(z_o)}{N} * 100, \ z_o = LLM(z_s^{\gamma}, z_i^{b, \gamma}); \ L_F(z_o) = \begin{cases} 1, & z_o \in \mathcal{Z}_F^{b, \gamma} \\ 0, & z_o \notin \mathcal{Z}_F^{b, \gamma} \end{cases}$$
(4)

Accuracy. For a given task γ and benchmark b, let us define a ground truth set $\mathcal{Z}_T^{b,\gamma}$ with all the output prompts that an expert would consider correct. An output prompt $z_o = LLM(z_s^{\gamma}, z_i^{b,\gamma})$ is considered accurate if it is in the ground truth set $z_o \in \mathcal{Z}_T^{s,\gamma}$. An output prompt must be correctly formatted in order to be accurate, i.e.: $\mathcal{Z}_T^{b,\gamma} \subseteq \mathcal{Z}_F^{b,\gamma}$. Similarly to proper formatting, we are interested in the percent of accurate outputs:

$$\Psi_T = \sum_{i=1}^{N} \frac{L_T(z_o)}{N} * 100, \ z_o = LLM(z_s^{\gamma}, z_i^{b, \gamma}); \ L_T(z_o) = \begin{cases} 1, & z_o \in \mathcal{Z}_T^{b, \gamma} \\ 0, & z_o \notin \mathcal{Z}_T^{b, \gamma} \end{cases}$$
(5)

Accuracy over Correct Formatting. Finally, we define a metric for LLM outputs that is only valid over multiple interactions with the LLM: $\Psi_{T/F} = \frac{\Psi_T}{\Psi_F} * 100$. The purpose of this metric is to evaluate the ability of the LLM to produce accurate outputs, assuming that this output is correct (hence ignoring incorrectly formatted responses). This is arguably the most important metric for LLM outputs due to the fact that, if an output is incorrectly formatted, the interaction with the LLM can be repeated $z_o = LLM(z_s^{\gamma}, z_i^{b,\gamma})$ until a correctly formatted output $z_o \in \mathcal{Z}_F^{b,\gamma}$ is produced. This approach is viable since expert knowledge is not required to verify the output formatting, however, a low correct formatting metric Ψ_F can lead to higher inference costs due to unnecessary interactions.

5.1.2 Performance of tuned controllers

We are also interested in evaluating the performance of the tuned controllers given a stage definition produced by the LLM. This performance metric is only valid for properly formatted output prompts $(z_o \in \mathcal{Z}_F^{b,\gamma})$. We are particularly interested in evaluating performance of tuned controllers for different stage definitions in order to validate our hypotheses that stage definition is critical to achieve good controller performance when auto-tuning decentralized controllers sequentially, which, to the best of our knowledge, is a comparison that has not been performed before. We do not evaluate the performance of the tuned controllers for different I/O pairings since this is a well-known topic in the literature [12].

We measure performance of tuned controllers using the integral absolute error (IAE) metric [16][12][2], a well known controller performance metric that evaluates the ability of the system, using the tuned controllers, to minimize the error in the measured variables \mathbf{y} with respect to a reference trajectory \mathbf{y}_R . We use MATLAB bayesopt method to implement a Bayesian optimization algorithm (with IAE as the cost function) and solve the controller tuning problem described in Section 4.1 for different stage definitions proposed by the LLM interactions. A detailed explanation of the full auto-tuning algorithm can be found in [2].

5.2 Multi-tank benchmarks

In this section, we will describe the different multi-tank configurations used to empirically evaluate the proposed methodology. In order to highlight the details of each task, we use three distinct set of benchmarks to evaluate: I/O pairing LLM output, stage definition LLM output, and performance of tuned controllers for stage definition.

For I/O pairing evaluation we use 5 configurations of the multi-tank system which include: (1) three cascaded tanks (Fig. 8a) and (2) four cascaded tanks (Fig. 8c). We also evaluate I/O pairing on three system configurations taken from [12], where input-output pairing is framed as an optimization problem, and solved iteratively. These configurations are: (3) a well-known quadruple tank system (Fig. 9a), (4) a variation of the quadruple tank system (Fig. 9b), and (5) a single tank system where both level and temperature in the tank are controlled (Fig. 9c). Table 1 shows the list of configurations for I/O pairing evaluation.

For stage definition LLM output evaluation we use 7 configurations of the multi-tank system: (1) two cascaded tanks (Fig. 7a), (2) alternative two cascaded tanks (Fig. 7b), (3) two interconnected tanks (Fig. 7c), (4) three cascaded tanks (Fig. 8a) (5) alternative three cascaded tanks (Fig. 8b), (6) the three tank system illustrated in Fig. 2, and (7) four cascaded tanks (Fig. 8c). Table 2 shows the list of configurations for stage definition LLM output evaluation. The pairs of configurations (1)-(2) and (4)-(5) respectively describe a system with the same layout, but different tank labeling. We evaluate alternative labeling of the same configurations to test robustness of the prompt design methodology to small changes in the system description, which has shown to be a challenging task [3].

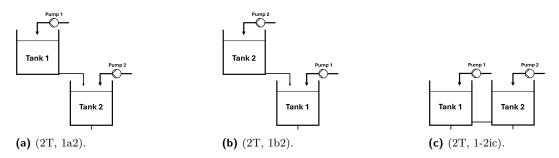


Figure 7 Two-Tank Benchmarks for Empirical Evaluation.

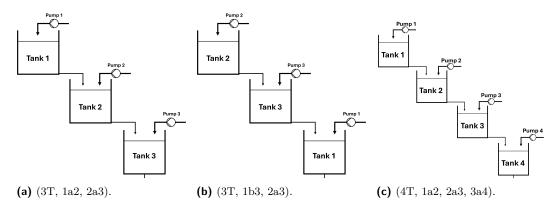


Figure 8 Three and Four Cascaded Tanks Benchmarks for Empirical Evaluation.

Finally, we evaluate the performance of tuned controllers following different stage definitions. We evaluate the performance for three benchmarks: (1) two cascaded tanks, (2) three cascaded tanks, (3) four cascaded tanks. Tank labeling is not relevant in the case of control performance evaluation.

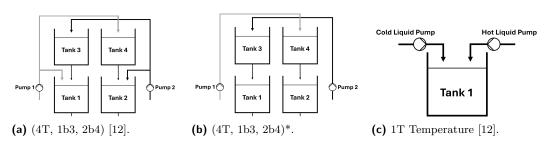


Figure 9 Multi-tank Benchmarks taken from [12] for Empirical Evaluation.

Controller performance is evaluated for different levels of coupling. For this purpose, we define a coupling parameter φ that represents how coupled the control loops in the system are. For the case of the cascaded configurations used, we model the coupling parameter φ as a factor that linearly maps the diameters of the drain in the tanks. A high value of φ results in a larger drain diameter, which results in higher drain flows for each tank, which in turn results in higher input flows into the respective tanks below, translating into higher coupling between tanks. Conversely, a small drain diameter might result in practically non-existent coupling between the tanks, which would result in a set of isolated control loops, rendering the motivation for proper stage definition null. We evaluate the controller performance for three coupling levels: nominal coupling and 1.5 and 2 times nominal coupling.

Three stage definitions are evaluated, labeled: correct stage definition, incorrect stage definition, and independent stage definition. Correct stage definition for the three cascaded configurations refers to a solution that tunes the control loops following the hierarchy; i.e.: the control loop for the tank on top is tuned first, then the tank below, and so on until the bottom tank is reached, while at each stage, control loops tuned in previous stages are closed and controllers are fixed to their tuned parameters. Incorrect stage definition refers to a solution that tunes control loops in the opposite order to the correct stage definition while maintaining control loops from previous stages closed. Independent stage definition refers to the process of tuning a control loop independently at each stage, ie.: control tunings from previous stages do not carry over to the current stage and every loop, except the loop being tuned, is open at each stage. The tuning order in this case is not important. This is technically also an incorrect stage definition for the cascaded configurations, however, we include it as a separate case because it is a common approach to controller tuning in the related literature [2][12]. Fig. 10 shows example stage definitions for the two cascaded tanks system.

- (a) Correct Stage Definition.
- (b) Incorrect Stage Definition.
- (c) Independent Stage Definition.

Figure 10 Example Stage Definitions for Two Cascaded Tanks System.

6 Results and Discussion

In this section we empirically validate the proposed methodology and evaluate the I/O pairing and stage definition tasks for multiple configurations of the multi-tanks system, using performance metrics discussed in the previous section. All LLM experimental results were produced using the Claude-Sonnet-3.7 and Claude-Sonnet-4 LLMs, accessed via Anthropic API [1]. The temperature parameter for the API calls was set to 1.0, which promotes stochasticity and variety in the LLM outputs. The associated codebase and results can be found at https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git.

6.1 Input-Output Pairing

To evaluate the performance of the LLM-based methodology when proposing I/O pairings in a given system, we consider the benchmarks described in Section 5.2. Every input-system prompt pair was evaluated N=100 times and percentage values were reported. Overall, we

Correct Format (%) Accuracy (%) Accuracy/Format (%) Benchmark Sonnet3.7 Sonnet4 Sonnet3.7 Sonnet3.7 Sonnet4 Sonnet4 (1): (3T, 1a2, 2a3) 100 100 100 100 100 100 (2): (4T, 1a2, 2a3, 3a4) 100 100 100 100 100 100 (3): (4T, 1b3, 2b4)[12] 100 100 98 100 100 98 (4): (4T, 1b3, 2b4)* 100 99 100 100 99 100 (5): 1T Temperature [12] 100 98 98 100 100 100

Table 1 Analyzing performance for input-output pairing LLM responses.

Table 2 Analyzing performance for stage definition LLM responses.

Benchmark	Correct Format (%)		Accuracy (%)		Accuracy/Format (%)	
	Sonnet3.7	Sonnet4	Sonnet3.7	Sonnet4	Sonnet3.7	Sonnet4
(1): (2T, 1a2)	98	100	98	99	100	99
(2): (2T, 1b2)	97	100	97	100	100	100
(3): (2T, 1-2ic)	100	100	100	100	100	100
(4): (3T, 1a2, 2a3)	93	100	93	100	100	100
(5): (3T, 1b3, 2a3)	96	100	96	100	100	100
(6): (3T, 1a3, 2-3ic)	96	100	94	98	97.9	98
(7): (4T, 1a2, 2a3, 3a4)	94	100	94	100	100	100

can see in Table 1 that the performance was high across all metrics, with 100% consistency in terms of formatting, which is a challenging task. Accuracy was also high at over 98% for all cases. This empirically shows that an LLM-based solution can yield expert knowledge recommendations regarding I/O pairing for benchmarks within the family of multi-tank systems. Furthermore, for the case of the benchmarks taken from [12], the I/O pairing matches the one achieved by the optimization approach with over 98% accuracy, while requiring less resources in terms of optimization problem formulation, expert interactions, and, potentially, computational cost (assuming inference cost from an LLM interaction is lower than the cost from solving the optimization problem).

6.2 Stage Definition

In order to evaluate the performance of the LLM-based methodology to define stages for a multistage control tuning framework, we consider the system configurations described in Section 5.2. Each input-system prompt pair was evaluated N=100 times and percentage values were reported. Table 2 shows a summary of the performance. While formatting was not as consistent as the I/O pairing case, we can see a very high accuracy/formatting metric with 100% accuracy in most benchmarks. As discussed in Section 5.1.1, accuracy/formatting should be the priority metric, since incorrect formatting can be automatically detected, repeating the interaction with the LLM until a correctly formatted output is produced.

6.2.1 Comparing performance of tuned controllers for different stage definitions

In this section, we empirically compare the performance of tuned controllers described in Section 5.2. Controllers are tuned $N_R = 10$ times for every combination of system configuration, coupling level, and stage definition, and box-plot results over the 10 runs are

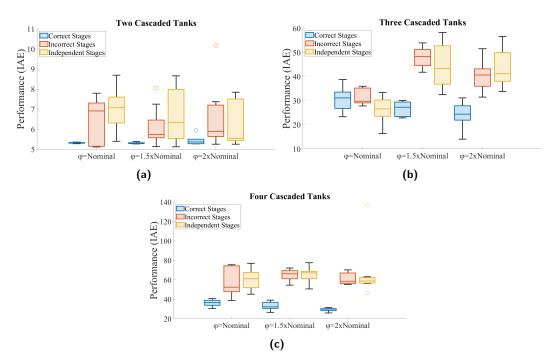


Figure 11 Comparing performance of tuned controllers for different stage definitions and coupling levels.

reported in Fig. 11. Performance is measured in integral absolute error (IAE), and lower error values are desired. Overall, we can see that, as the complexity of the system increases, i.e.: input-output space dimensions, number of components (tanks), etc., the impact of the stage definition on performance increases. In Fig. 11c, which is the most complex system evaluated (four cascaded tanks), there is a distinct difference between the performance achieved when following the correct stage definition and the incorrect stage definitions; however, for the lower complexity benchmarks (Figures 11a and 11b) the difference is not obvious, with the two cascaded tank system showing the largest overlap between stage definitions. Similarly, for every benchmark, an increase in coupling (represented by the φ parameter) is also associated with higher differences between the performances achieved under the correct and incorrect stage definitions; this is an expected result, as stated in Section 5.2. When we compare performance improvement for the three tank benchmark, we can see there is a significant performance improvement when the coupling in the system is high, but there is barely any difference between stage definitions when the coupling is lower. In general, the greatest improvement can be seen for the four cascaded tank benchmark at 2 times nominal coupling (Figure 11c) where a correct stage definition can reduce the error of the tuned controllers by 52% with respect to the incorrect stage definitions.

6.3 Discussion, Limitations, and Future Works

We have evaluated the proposed methodology for a variety of multi-tank benchmarks (Figures 7, 8, and 9), including a benchmark where temperature and level in a tank are controlled simultaneously (Fig. 9c), and a set of cascading tank benchmarks with different levels of coupling (Fig. 11). We have empirically shown that, for these benchmarks, stage definition can have significant impact on the performance of the tuned controllers.

Furthermore, we have shown that the proposed methodology for stage definition using LLMs can propose the correct stage definition and I/O pairing with a high degree of consistency and accuracy.

We acknowledge that, even though the actuator label space $(L^A(e))$ can integrate notions of temperature control, as well as other potential extensions (e.g.: liquid composition/concentration), the proposed methodology is mostly centered around the problem of level control in a family of systems consisting of reservoirs, pumps, and connections. In spite of this limitation, this is a first step towards a system-informed general methodology for prompt engineering with the purpose of expert knowledge automation. An extension of these results to a wider variety of benchmarks would require a redefinition of the mathematical language and the prompt engineering algorithm; however, the core elements of the methodology would persist: a graph representation of the system components and interactions, and a prompt engineering algorithm that binds this graph language to the input prompt space of an LLM. Future works should focus on proposing a generalized mathematical language and prompt engineering algorithm, or, if this is not possible, a set of general guidelines for developing these graph representations and prompt engineering algorithms for different families of benchmarks.

We have proposed a simple topology-based graph representation of the system since we are aiming for a solution that requires minimal expert interaction and knowledge of the system, which would be a limitation for more complex system representations such as bond graphs, process graphs, or structural analysis. However, a generalization of this methodology for systems other than the multi-tank benchmarks will most likely require more complex representations of the system, such as the ones mentioned above.

We have focused on systems with centralized control since I/O pairing and stage definition for sequential controller tuning would rarely be relevant in a centralized control approach. Furthermore, decentralized parametric controllers, or a hybrid between decentralized and supervisory control are industry standard solutions. However, future works should focus on extending the methodology to consider systems with centralized/supervisory control, as well as systems with integrated decoupling strategies.

This work is also limited by the lack of formal definition of what is a correct I/O pairing or stage definition apart from what is referenced as expert knowledge in the associated literature. Therefore, future works will provide a formal framework to measure validity of expert knowledge in terms of I/O pairing and stage definition.

7 Conclusions

This paper addresses controller-tuning aspects of automated engineering system design. We proposed a mathematical language to describe a family of multi-tank benchmarks based on system topology. We implemented an algorithm to bind this mathematical language to the input prompt space of a Large Language Model as a form of prompt engineering. Following this methodology, we automated expert knowledge requirements in decentralized controller auto-tuning related to I/O pairing and stage definition for a multistage tuning framework. Our proposed methodology showed an accuracy of over 97% for both I/O pairing and stage definition, with consistent output formatting. Furthermore, we empirically evaluated the performance of tuned controllers for different stage definitions in a family of multi-tank benchmarks and showed that, depending on the complexity of the system, and degree of coupling between control loops, a correct stage definition can improve performance over the incorrect stage definitions by up to 52%. Future works will extend the mathematical language and the prompt engineering algorithm to a wider variety of benchmarks.

References

- 1 Anthropic api. URL: https://console.anthropic.com.
- Marlon J. Ares-Milian, Gregory Provan, and Marcos Quinones-Grueiro. Towards automated controller parameter design in cyber-physical systems: Improving computational cost. In 2025 IEEE International Conference on Smart Computing, SMARTCOMP 2025, 2025.
- Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi, and Matt Thomson. What's the magic word? a control theory of llm prompting, October 2023. doi:10.48550/arXiv.2310.04444.
- 4 B. Ould Bouamama, G. Biswas, R. Loureiro, and R. Merzouki. Graphical methods for diagnosis of dynamic systems: Review, 2014. doi:10.1016/j.arcontrol.2014.09.004.
- 5 Tom B Brown, Benjamin Mann, Nick Ryder, and Melanie Subbiah et. al. Language models are few-shot learners. In *NeurIPS 2020*, 2020.
- **6** Y. Chen, R. Goebel, G. Lin, B. Su, Y. Xu, and A. Zhang. An improved approximation algorithm for the minimum 3-path partition problem. *Journal of Combinatorial Optimization*, 38:150–164, 2019. doi:10.1007/s10878-018-00372-z.
- 7 Xingang Guo, Darioush Keivan, Usman Syed, Lianhui Qin, Huan Zhang, Geir Dullerud, Peter Seiler, and Bin Hu. Controlagent: Automating control system design via novel integration of llm agents and domain expertise. arXiv preprint arXiv:2410.19811, 2024. doi:10.48550/arXiv.2410.19811.
- P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama, and S. Achiche. Design, modelling, simulation and integration of cyber physical systems: Methods and applications. Computers in Industry, 82:273–289, October 2016. doi:10.1016/j.compind.2016.05.006.
- 9 H J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. *Journal of Basic Engineering*, 1964.
- Jiang Lu, Pinghua Gong, Jieping Ye, Jianwei Zhang, and Changshui Zhang. A survey on machine learning from few samples, September 2020. arXiv:2009.02653.
- 11 Yifan Luo, Yiming Tang, Chengfeng Shen, Zhenan Zhou null, and Bin Dong. Prompt engineering through the lens of optimal control. *Journal of Machine Learning*, 2:241–258, January 2023. doi:10.4208/jml.231023.
- 12 Vasileios K. Mappas, Vassilios S. Vassiliadis, Bogdan Dorneanu, Alexander F. Routh, and Harvey Arellano-Garcia. Automated control loop selection via multistage optimal control formulation and nonlinear programming. *Chemical Engineering Research and Design*, 195:76– 95, July 2023. doi:10.1016/j.cherd.2023.05.041.
- Sammyak Mate, Pawankumar Pal, Anshumali Jaiswal, and Sharad Bhartiya. Simultaneous tuning of multiple pid controllers for multivariable systems using deep reinforcement learning. Digital Chemical Engineering, 9, December 2023. doi:10.1016/j.dche.2023.100131.
- 14 Silke Merkelbach, Alexander Diedrich, Anna Sztyber-Betley, Louise Travé-Massuyès, Elodie Chanthery, Oliver Niggemann, and Roman Dumitrescu. Using multi-modal llms to create models for fault diagnosis. In *The 35th International Conference on Principles of Diagnosis and Resilient Systems (DX'24)*, volume 125, November 2024. doi:10.4230/OASIcs.DX.2024.6.
- 15 C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. USA:MIT Press, January 2006.
- Alejandro Rodríguez-Molina, Efrén Mezura-Montes, Miguel G. Villarreal-Cervantes, and Mario Aldape-Pérez. Multi-objective meta-heuristic optimization in intelligent control: A survey on the controller tuning problem. Applied Soft Computing Journal, 93, August 2020.
- D. Stenger, M. Nitsch, and D. Abel. Joint constrained bayesian optimization of planning, guidance, control, and state estimation of an autonomous underwater vehicle. In ECC 2022, 2022.
- 18 Prerit Terway, Kenza Hamidouche, and Niraj K. Jha. Dispatch: Design space exploration of cyber-physical systems, September 2020. arXiv:2009.10214.
- 19 K. Tohma, H. İ. Okur, H. Gürsoy-Demir, M. N. Aydn, and C. Yeroğlu. Smartcontrol: Interactive pid controller design powered by llm agents and control system expertise. *SoftwareX*, 31:102194, 2025. doi:10.1016/J.SOFTX.2025.102194.
- Collin Zhang, John X. Morris, and Vitaly Shmatikov. Extracting prompts by inverting llm outputs, May 2024. doi:10.48550/arXiv.2405.15012.