Automating Control System Design: Using
Language Models for Expert Knowledge in
Decentralized Controller Auto-Tuning

Marlon J. Ares-Milian =
School of Computer Science, University College Cork, Ireland

Gregory Provan &
School of Computer Science, University College Cork, Ireland

Marcos Quinones-Grueiro &
Vanderbilt University, Nashville, TN, USA

—— Abstract

Fully-automated optimal controller design for engineering systems is a challenging task. While,
optimization-based, automated control parameter tuning techniques have been widely discussed in
the literature, most works do not discuss expert knowledge requirements for system design, which
result in significant human intervention. In this work, we discuss a multistage controller tuning
framework for decentralized control that highlights expert knowledge requirements in automated
controller design. We propose a methodology to automate the input-output pairing and stage
definition steps in the framework using Large Language Models (LLMs) for a family of multi-tank
benchmarks. We achieve this by proposing a mathematical language to describe the system and
design an algorithm to bind this mathematical representation to the input prompt space of an LLM.
We demonstrate that our methodology can produce consistent expert knowledge outputs from the
LLM with over 97% accuracy for the multi-tank benchmarks. We also empirically show that, correct
stage definition by the LLM can improve tuned controller performance by up to 52%.

2012 ACM Subject Classification Computing methodologies — Knowledge representation and
reasoning

Keywords and phrases controller auto-tuning, automated system design, large language models
Digital Object Identifier 10.4230/0ASIcs.DX.2025.10

Supplementary Material Software (Source Code): https://github.com/mjares/DX2025_LLMs_
ExpertKnowledge.git, archived at swh:1:dir:81a0af39fd36f5d0feldaae775b1e460067£d364

Funding This work was supported by Science Foundation Ireland under Grant 13/RC/2094.

1 Introduction

Most modern engineering issues are framed as systems. For example, vehicles, robots,
and industrial machines are all systems, albeit different, and each have sub-systems and
components that work in close relation to achieve their intended functions. The development
of modern engineering systems goes through three main stages: design, production, and
operation. Proper design is the focus of this paper, since it enables engineering systems to
meet desired performance objectives, e.g.: development and operational costs, safe operation,
and robustness, while also supporting validation and verification, enhancing the production
and operation stages [8]. However, optimal system design is a very challenging task due to
the extensive space of system configurations, components, and parameters [18] that must be
explored. In spite of all the advances in automation to date, solving the design problem often
requires significant human expertise and iterative design protocols [7]. Therefore, a strong
motivation exists to develop automated optimal design methodologies that meet desired

objectives while reducing the tedious, time-consuming, and costly aspects of manual design.
© Marlon J. Ares-Milian, Gregory Provan, and Marcos Quinones-Grueiro;
37 licensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 10; pp. 10:1-10:20

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:122100743@umail.ucc.ie
https://orcid.org/0000-0003-4373-0161
mailto:gprovan@cs.ucc.ie
https://orcid.org/0000-0003-3678-046X
mailto:marcos.quinones.grueiro@vanderbilt.edu
https://orcid.org/0000-0001-5391-6774
https://doi.org/10.4230/OASIcs.DX.2025.10
https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git
https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git
https://archive.softwareheritage.org/swh:1:dir:81a0af39fd36f5d0fe1daae775b1e460067fd364;origin=https://github.com/mjares/DX2025_LLMs_ExpertKnowledge;visit=swh:1:snp:624e3911de2cb97811b20f39e947fb711d1f9853;anchor=swh:1:rev:74b7ea8a268bdaf10ca708b1a68ce54372651200
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

10:2

Automating Control System Design Using Language Models

With the development of cyber-physical systems and the internet of things, automation has
become ubiquitous in modern engineering systems [8] and the key component for automation
in any modern system is the controller. A controller (or control algorithm) refers to the
sub-system that receives information from real or estimated measurements and operates
the actuators in order to regulate system variables with different objectives. The design of
controllers for engineering is a complex task, consisting of multiple components and steps.
Controllers are usually defined by parametric functions, which results in a problem well-known
as controller tuning: the design step where controller parameters are adjusted (or tuned)
to meet desired performance objectives. Traditional controller tuning is done manually,
requiring an iterative design process based on expert knowledge. This is an inefficient
approach that usually results in sub-optimal solutions, which has motivated significant
research on automated design of controller parameters, known as controller auto-tuning.

Many modern controller auto-tuning solutions resort to an iterative optimization approach
in which some performance objectives are evaluated (either in simulation or hardware) and
the controller parameter space is explored using some optimization algorithm until the best set
of parameters is obtained; this is done through some combination of system-model knowledge,
expert knowledge, and historical data, and includes tools like reinforcement learning [13],
evolutionary optimization [16], and Bayesian optimization [17]. Even though the controller
parameter search itself has been widely automated, the controller design problem (including
controller parameter design) still requires abundant expert knowledge in different steps of the
process that are often ignored in the associated literature [2]. Some of the open challenges
in fully automated controller design include aspects of the parameter optimization problem
definition like defining constraints, defining and restricting the search space, and defining
the cost function, as well as other aspects of the control system design such as control loop
definition (also known as input-output pairing) [12]; all of these are currently solved, in
the majority of cases, using expert knowledge. In this work, we propose a methodology to
automate expert knowledge for a subset of steps in the control system design problem: input-
output (I/O) pairing and stage definition for a multistage controller auto-tuning framework.
We use Large Language Models (LLMs) to meet these expert knowledge requirements.

LLMs are deep learning models trained over a large volume of natural language data
spanning multiple topics and scientific disciplines while following task-agnostic architec-
tures [5]. Therefore, they are often used as a form of zero-shot or few-shot transferable
models with a variety of applications [14][7][19]. This makes LLMs a prime target for auto-
mating expert knowledge, a task that is often unstructured and heavily relies on natural
language interactions. While LLMs have shown positive results, multiple challenges persist in
terms of LLM output formatting, consistency, and accuracy, generalization to more complex
topics/benchmarks, factually incorrect responses, etc. Therefore, multiple works have focused
on how to maximize performance from an already trained LLM, with prompt engineering
(PE) being the most discussed approach. PE is based on the fact that a well-designed (natural
language) prompt can dramatically improve the quality of the output in an LLM [10]. In this
paper, we discuss a PE methodology to automate expert knowledge in control system design.

The contributions of this work are as follows: (1) We highlight existing challenges in
automated controller design and automate expert knowledge using LLMs. We focus on expert
knowledge requirements for I/O pairing and stage definition in a multistage decentralized
controller auto-tuning framework. (2) We define a mathematical language based on system
topology to describe a family of industrial multi-tank benchmarks. (3) We propose a system-
informed prompt engineering algorithm to bind the mathematical language to the input
prompt space of an LLM in order to automate expert knowledge for controller design. (4) We
empirically evaluate the effectiveness of LLMs for substituting expert knowledge in I/0O

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

pairing and stage definition tasks for a family of multi-tank benchmarks using performance
metrics like: proper formatting of output prompt and correct expert knowledge provided. We
show that the LLM can produce expert knowledge recommendations with over 97% accuracy
with consistent formatting for I/O pairing and stage definition. (5) We empirically evaluate,
for the first time (to the best of our knowledge), the relevance of controller tuning order
on performance of tuned controllers, when tuning decentralized controllers independently
and sequentially, for a family of multi-tank benchmarks. We show that, depending on the
complexity of the system, and the degree of coupling between its components, a correct stage
definition can improve the tuned controller performance by up to 52%

2 Related Work

2.1 Automated Controller Design

When discussing automated controller design, most works focus on controller auto-tuning,
which is popularly framed as a derivative-free optimization problem [16][17]. While gradient-
based methods are also used for controller auto-tuning [13], derivative-free formulations have
the desired advantage of making little or no assumptions on objective or constraint functions.

Multiple authors have proposed metaheuristic approaches to controller auto-tuning,
with [16] doing a detailed survey on evolutionary optimization algorithms for multiple-input-
multiple-output processes. However, Bayesian optimization (BO) approaches have become
quite popular in recent years, due to their high sample efficiency [2] and overall performance.
For example [17] present a joint tuning methodology that uses BO to simultaneously tune an
LQR controller, an unscented Kalman Filter (UKF), and a guidance and navigation system
for an autonomous underwater vehicle (UUV), yielding satisfactory results across multiple
objectives. Most of the available solutions focus strictly on the parameter search itself and
how to solve it using some optimization tool, leaving the design of the optimization problem,
or the control algorithm, as an expert knowledge requirement.

In their work, [2] also propose a Bayesian optimization solution for controller auto-tuning
of PID controllers in an underwater vehicle, improving the computational complexity of the
controller tuning task by decomposing the search space into smaller dimension subspaces. In
order to do so, they propose a multistage framework that aims to formalize all the necessary
steps in automated controller design. This formalization highlights a variety of existing
challenges in automated controller design that are often ignored, or underexplored in recent
works. Examples of these challenges are how to define the parameter search space, the
constraints, or the cost function for the optimization problem, issues that are often not
discussed, or attributed to expert knowledge. Similarly, how to define the stages in the
multistage framework defined in [2] is still one of the open problems highlighted in the paper.

An attempt to address one of these expert knowledge requirements can be found in [12],
where an optimal control formulation is proposed in order to simultaneously optimize the
controller parameters and produce an I/O pairing for the system. I/O pairing, or control
loop design, is often assumed to be already defined in most controller auto-tuning works [17],
when, in reality, it is usually performed through expert knowledge.

Overall, state-of-the-art research on automated controller design is significantly challenged
by expert knowledge requirements across different stages of the problem.

2.2 LLMs in System Design

Several papers have used LLMs for some aspect of system design, but fundamentally most
approaches still adopt significant manual modeling, employing LLMs after the design process.

10:3

DX 2025

10:4

Automating Control System Design Using Language Models

[14] uses a five-step LLM-based prompting approach that requires as inputs a piping
and instrumentation diagram (P&ID) and natural language prompts. They evaluate the
approach on a one-tank, one three-tank, and one four-tank system. Our approach differs
in that we focus on control tuning and not diagnostics, we use a formal language for LLM
prompting that provides guarantees about optimality of controller design, and we focus on
control-model optimization and not just model generation.

A closely related approach, SmartControl [19], automatically determines the most suitable
PID parameters to achieve the specified performance targets using PSO and DE algorithms.
This process includes selecting the optimal gains that will ensure the system’s fast and stable
response. After optimization, the closed-loop step response is simulated and basic performance
metrics (such as settling time, rise time, overshoot, etc.) are calculated and presented to
the user via an interactive graphical interface. SmartControl emphasizes interactive design,
allowing users to engage directly with the LLM agent to refine the controller design. The
approach in the provided paper is more automated; the LLM generates the I/O pairing and
stage definitions without direct user interaction during that phase.

ControlAgent [7] employs a range of techniques for integrating domain knowledge, e.g., a
knowledge graph or other structured representation of control engineering principles. Our
approach aims for full automation once the initial system description is provided; in contrast,
ControlAgent involves more interactive elements, allowing users to refine the design process
through feedback or iterative refinement with the LLM.

2.3 Systems Modeling using Component-Based Languages

Several frameworks exist to define systems based on interconnected component models, e.g.,
bond graphs, Simulink, and Modelica. The proposed approach is a fundamentally different
framework from such approaches, most of which rely on manually-defined component models.

The approach is most similar to bond graphs (which focuses on representing energy flow
and causality), although the current usage is quite different. In a bond graph, nodes consist of
a standardized set of elements (e.g., C for capacitance, I for inertia, etc.) and edges/junctions
represent system components and their interactions. The resulting graph allows for deriving
system equations and performing simulations. Our proposed graph model is simpler than a
bond graph model, as it does not specify the inherent physical properties of the nodes.

The two approaches are not mutually exclusive. One could conceivably use bond graphs
to model a multi-tank system and then use the resulting model (or a simplified representation
of it) as input to the LLM-based system for automated control design. The bond graph
would provide a structured representation of the system’s dynamics, while the LLM would
handle the more complex task of selecting appropriate control strategies and parameters.
The paper, however, focuses solely on the LLM-based approach without explicit integration
of bond graphs. The paper’s graph representation is a simplified topological representation,
not a full bond graph model.

3 Preliminaries

3.1 Decentralized parametric control

Let’s define a controller by a tuple C = (U, Y,U) where Y C R™ is the space of system
measurements/outputs (e.g.: level in a tank, altitude in a drone), Y C R™ is the space of
system inputs (e.g. liquid flow from a pump, propeller commands in a quadcopter), and
U: V! xU™! — U is a control algorithm that produces a system input at every timestamp ¢

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

considering system inputs and outputs from previous system interactions. We are interested
in a family of control frameworks called decentralized parametric controllers, which are
commonly used in industrial and robotic systems [2].

A parametric control algorithm is a parametric function U : V! x U!~! x E — U such
that u(t) = U(y(0),...,y(t),u(0),...,u(t — 1),&), with y(t) € Y,u(t) € U, € € =, where
the control algorithm is defined by a set of parameters & that must be previously adjusted
(tuned). Parametric controllers are very common, with the proportional-integral-derivative
controller and its P, I, and D parameters being the industry standard [16].

A decentralized control approach is defined by a set of independent control algorithms
C ={Uy,Us,...,U,,} where every control algorithm U; matches a single system input u;
with a single system output y;, and the changes in that system input are only conditioned

by the corresponding system output, i.e.: u;(t) = U(y;(0),...,yi(t),u;(0), ..., u;(t — 1),§,;).

This is a common simplification in control system design [2] with assumptions regarding
system coupling. The implications of these assumptions are discussed further in this paper.

3.2 Directed graphs

A graph is defined by a tuple G = (V| E) where v; € V is a set of elements called vertices
v; € Nand e € F is a set of pairs e = (v;,v,);v;,v; € V called edges [6]. An edge describes
a relationship between two vertices, we can say that an edge joins two vertices. For the
purpose of this work, we are interested in graphs with the following properties:
Directed: In a directed graph, the edges are ordered pairs and have an implied direction,
ie.: e; = (v1,v2) # ea = (v2,v1). An edge in a directed graph is called a directed edge.
Simple: A simple graph is a graph without loops. A loop in a graph is defined as an
edge that joins a vertex to itself, i.e.: e = (v;,v;);v; = vj.
Edge-Labeled: In an edge-labeled graph G = (V, E, L), a labeling function [: E — L is
defined to assign a label from the label set L to each edge in the edge set.

Let’s discuss some graph theory concepts that will be relevant in the rest of this work [4].

» Definition 1 (Directed Path). A directed path is a sequence of distinct edges
{e1,€2,...,en_1} in a graph G = (V,E) that joins a sequence of distinct vertices
{v1,v2,...,0,} such that e; = (vi,vi41),€; € E,{v;,v;41} €V is a directed edge.

» Definition 2 (Strongly Connected Component). A directed graph is considered to be strongly
connected if every vertex is reachable from every other vertex in the graph, i.e.: for any
vertex pair (v;,v;) € V., there is at least one directed path that goes from v; to v;. A strongly
connected component of a graph G = (V, E) is a subgraph G' C G that is strongly connected,
and is maximal with this property, i.e.: no additional edges or vertices from G can be included
in G’ without breaking its property of being strongly connected.

Strongly connected components in a graph can be computed in linear time by a variety of
algorithms (e.g.: depth-first-search algorithms) [4].

3.3 Large Language Models

Let us define the prompt space Z [11]. The elements in Z are a composition of tokens selected
from a token vocabulary t € T, where z = {t1,ta,...,t,} can be a sequence of tokens of any
length m € N. An LLM is then defined as a transformation LLM : Z — Z,z, = LLM (z;)
where, for a given input prompt z;, the model produces an output prompt z,.

10:5

DX 2025

10:6

Automating Control System Design Using Language Models

A common feature in LLM APIs is the system prompt. A system prompt z5 € Z permeates
every interaction [20] with the LLM, providing context, setting the role and the tone for the
LLM responses, ensuring output prompt formatting, etc. Particular implementations of the
system prompt vary depending on the LLM; in some cases it is provided as an initial prompt
before the input prompt [11], while in other cases a dedicated system token is implemented.
For the purpose of this work, we are interested in LLMs with system prompt (z5) options,
ie: LLM : Zx Z — Z,2z, = LLM (25, z;). In Section 4.4, we define bindings from a graph
language describing a family of physical systems to the input and system prompt spaces.

3.4 Bayesian optimization

Bayesian optimization is a technique for globally optimizing black-box functions that are
expensive to evaluate [9]. We consider the global minimization problem: £ = argmin f¢(£),
£e€E

with input space = and objective function fs : = — R. We consider costly-to-evaluate
functions f¢ for which we have a limited number of evaluations available before we propose an
optimum £* in at most J,,q iterations. We assume we have access only to noisy evaluations
of the objective | = f¢ + ¢, where ¢ ~ N(0,02) is i.i.d. Gaussian noise with variance o2.
Finally, we make no assumptions regarding gradients or convexity properties of fe.

The main steps of a BO routine in iteration j involve (1) response surface learning,
(2) optimal input selection &, , and (3) evaluation of the objective function f¢ at &, .

The BO framework uses the predictive mean and variance of a Gaussian Process (GP) [15]
model to formulate an acquisition function that trades off exploitation, testing promising
controller parameters given the current knowledge, with exploration, sampling unexplored
regions of the design space. The BO algorithm can be initiated without any past observations,
but it is usually more efficient to calibrate the GP model hyper-parameters and calculate a
prior by first collecting an initial set of observations.

4 Methodology

4.1 Controller tuning framework

We define the controller tuning task as a multi-objective optimization (MOQ) problem:
minL(§) = [£1(§), - L, (€)], st £€5, 1)

where & € R™¢ are controller parameters and L(£) are objectives. We consider an MOO
problem for a more general definition; however, controller auto-tuning is commonly framed
as a scalar objective optimization problem. Our proposed framework is fully compatible with
both the multi-objective and scalar-objective definitions of the problem. We assume a system
with decentralized parametric controllers; other than that, the proposed framework makes
no assumptions on the parameter and objective spaces. This general tuning problem can
be redefined as a multistage optimization problem where a subset of controllers is tuned at
every stage. Each stage can be defined as an MOO sub-task. Fig. 1 illustrates the process.

At stage i = 1,2,...,n, of the tuning process, a subset of control parameters (' C Z)
are tuned to minimize some stage-specific objectives (L), given reference signal R’. The rest
of the control parameters are fixed at a previous stage, or before the tuning process begins,
through the constraint parameters (€', P'). At each stage, a subset (£°,,,) of the optimal
control parameters (£,,;,,) is produced as a result of an MOO sub-task described below.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

The I/O pairing and the definition of the stages are task-specific steps, both of which are
commonly solved using expert knowledge [2][16]. The main contribution of this work is a
methodology to automate this expert knowledge requirement and produce an I/O pairing

and stage definition using LLMs. Further details on these steps can be found in Section 4.3.

Control Loop and Stage Definition

Input-Output Stage
Pairing Definition

l

4 Stage 1)
J

Search Space Fixed Values
g-gp=0

R! f}nin

=]

Cost
L= [£; (@), - Ly, (D]
/

!

Stage 2

[Search Space][Fixed Values

~N
g2cs (s-F)P2=0] ffnin G)
L Cost] !"m
~/

L% = [£1(8), . Ln, (D]
'
)
4 Stagen,
g

Search Space Fixed Values
R™g [s] [(§-gw)P=0] fmin

Cost

L' = [£,(8), ...Lw({)]

{

Figure 1 Controller tuning as a Multistage Problem.

The controller tuning optimization task is decomposed into sub-tasks defined as:

min L*(€) = [£1(8), - £, (6)) (2a)
st. £€E (2b)
(€& =0 (2)

where (2c) is a constraint that sets control parameters to specified values (él) from a previous
stage or from before the tuning process begins.

These optimization sub-tasks can be solved using any optimization algorithm, as long as
the cost function and search space are properly defined. For the purpose of this work, we use
Bayesian Optimization to solve the optimization sub-tasks; we refer the reader to [2] for a

more detailed discussion on the optimization sub-tasks and the use of Bayesian Optimization.

4.2 Graph Language For System Representation

We now define a language, in the form of an enhanced system graph, to describe physical
systems in terms of reservoirs, actuators, and connections:

» Definition 3 (Enhanced System Graph). An enhanced system graph is a directed, simple
(no loops), edge-labeled graph G = (V, E, L) that describes relationships between tanks and
pumps in a multi-tank system. The graph is separated into two subgraphs G = GAUGT where
GA = (VA EA, LA) is the actuator subgraph and GT = (VT ,ET L") is the tank subgraph.

10:7

DX 2025

10:8

Automating Control System Design Using Language Models

Let’s first discuss the tank subgraph G7 which describes relations between the different
tanks. Each vertex in the set VT = {1,2,... Nr}, viT € N, represents a tank in the system,
where tank labels (vertices) are assigned arbitrarily, and Np is the number of tanks in the
system. The edge set ET C VT x VT el = (v, vT) represents a liquid flow connection
between the tanks. The direction of the edges represents possible flow directions. A regular
directed edge (v}, vT) represents liquid flow that is only feasible from tank v to tank v]T,
for example, the drain of a gravity-drained tank that feeds a tank below it. A bidirectional

edge {(v]",v]), (v],v])} represents an interconnection between tanks where liquid flow can
occur in both directions, for example, two horizontally aligned tanks connected by a pipe.
Based on the edge directionality and the semantics of edges, we can assign a labeling to
edges for constructing LLM prompts. The edge-label set LT = {above, below, interconnected}
provides the necessary information about the relationships between the tanks for prompt

engineering. The labeling function (7 (e) is defined for any edge e € ET, e = (v;,v;):

interconnected (vj,v;) € ET
1T (e) = < above (vj,v:) € BT ANy < v (3)
below (vj,vi) &€ ET ANy > v;

where an edge is labeled interconnected if it is bidirectional (i.e.: the opposite direction edge
is also in the graph) and above or below if the edge is not bidirectional (i.e.: the opposite
direction edge is not in the graph). An edge e = (v;,v;) is labeled above if vertex v; is of
lower numerical value than vertex v; and below if the opposite is true. Note that the value
of the vertices, which effectively act as labels for the tanks, are assigned arbitrarily, and the
purpose of this labeling strategy is to ensure a consistent distinction between types of edges,
which becomes relevant when building natural language prompts for the LLM. Therefore,
the distinction between above and below edges is done without loss of generality.

We then define the actuator subgraph G4 = (V4, E4, L4) where each vertex in V4 =
{1,2,... Na},v#* € N represents an actuator in the multi-tank system, e.g.: a pump. Every
edge in B4 C VA x VT represents a connection between an actuator and a tank, where an edge
e = (vf, ’U]T) € E4 is always directed from an actuator vertex to a tank vertex. One actuator
vertex can be connected to multiple tank vertices. The labeling function for the actuator
subgraph [: V4 — L4 maps each actuator vertex to a corresponding vertex label that
describes attributes of the fluid going through the actuator which may include: temperature
of the fluid, composition or concentration of the fluid, etc.; e.g.: I4(v) = hot water.

Fig. 2a shows an example three-tank system and its corresponding graph representation
(Fig. 2b). Elements from the tank subgraph are presented in continuous lines while the
actuator subgraph is represented by discontinuous lines.

Pump 1

Tank 1 /70N
Pump 3 Pump 2 N 1

Tank 3 Tank 2

(a) (b)

Figure 2 Graph representation (b) of an example 3-tank system (a).

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

4.3 Input Output Pairing and Stage Definition

In this section we formalize the concepts of I/O pairing and stage definition, and how they
relate to the controller auto-tuning framework defined in Section 4.1.

4.3.1 Input-Output Pairing

Let us consider a system with input space & C R™ consisting of n, system inputs, corres-
ponding to the output of n, decentralized controllers. Let us also consider an output space
Y C R™ consisting of n, outputs, corresponding to known system variables (either by direct
measurement or estimation). In the context of decentralized controllers, we define an I/0O
pairing as a matrix M7/©0 ¢ Mo, xn,» mfj/O € {0,1} where mfj/o = 1 if input u; and output
ilj/ © = 0 otherwise. In practice, an input and an output being paired
means that the value of the output is used to compute the paired system input through the

respective control algorithm. Every input must be paired with an output exactly once.

y; are paired, and m

Let us illustrate this concept using the example from Fig. 2. This three tank system is
fed by three input pumps, pump 1 feeds tank one with an input flow uq, pump 2 feeds tank
two with an input flow ug, and pump 3 feeds tank three with an input flow ug. The levels in
the three tanks are measured, resulting in the respective outputs yi, y2, and y3. The I/O
pairing task in this case is trivial, since it is obvious we want to control the level in tank
i using the pump that feeds tank 7. Assuming a set of inputs: {FlowPumpl, FlowPump2,
FlowPump3}, respectively {ui,us,us}, and a set of outputs: {LevelTankl, LevelTank2,
LevelTank3}, respectively {y1,y2,ys}; Fig. 3 shows example I/O pairings for the system.

Y1 Y2 Y3 Y1 Y2 Y3
w /1 0 0 ww 0 1 0
Uz (0 1 O) Uz (1 0 0)
uz N0 0 1 us N0 0 1
(a) Correct Input-Output Pairing. (b) Incorrect Input-Output Pairing.

Figure 3 Example Input-Output Pairings.

I/0O pairing is equivalent in the literature to control loop design [12] since, pairing an input
and an output defines a feedback loop for the corresponding controller. Following the correct
input-output pairing (Fig. 3a), we define three control loops: {FlowPumpl-LevelTankl1,
FlowPump2-Level Tank2, FlowPump3-LevelTank3}. We formalize a control loop as a tuple
m; = (u3,y;) and tuning a control loop refers to tuning the corresponding controller.

4.3.2 Stage Definition

Once we determine an I/O pairing in the system, we must define the stages for the multistage
optimization problem presented in Section 4.1. This involves defining the total number of
stages ng and, for every stage ¢, the controller tuned at this stage and the control parameters
fixed from previous stages. This information is then summarized into the stage-specific
parameters (Z¢,€", P?) for each optimization subtask (2). In order to produce a concise
description of the stages in the framework, we define a stage matrix M°P € M,, 9 XN miSjD €
{0,1,2} where every row represents a stage, and every column represents a control loop. An

element in the matrix mg;” is 1 if the controller for control loop j is tuned at stage i, 0 if

10:9

DX 2025

10:10

Automating Control System Design Using Language Models

control loop j is open at stage i, and 2 if control loop j is closed at stage i using control
parameters tuned in a previous stage. For the purpose of this work, every controller must be
tuned exactly once, and at least one controller must be tuned at every stage.

What is a correct stage definition, as well as the relevance of this process, is task-specific,
and is often determined from expert knowledge based on the couplings (I/O interactions)
in the system. Ideally, the output of a control loop m; = (u,,y;) should only be affected by
the corresponding input u;. However, this is often not the case and output y; is affected by
variations in the inputs of other loops ur;; when this happens, we say loop ; is coupled
with loop m, = (ug,y;). This relationship is not symmetric, if control loop m; is coupled
with control loop 7, control loop 7 can be decoupled from m;, where variations in input wu;
do not affect output y;. In the context of controller tuning, we tune control loops that are
isolated (i.e.: not coupled to any loops) first and then tune the coupled loops. When tuning
a controller for a coupled loop 7, if possible, we want all the loops that 7; is coupled with
to be closed using control parameters tuned in previous stages, which minimizes variations
in the variables from the coupled loops, making 7; behave like a decoupled loop. Following
this methodology we can see that correct stage definition for a system is not always unique.

Let us illustrate the concept of stage definition using the example from Fig. 2. The control
loops in the system are (Section 4.3.1): {FlowPumpl-LevelTankl, FlowPump2-LevelTank2,
FlowPump3-LevelTank3}, for simplicity, {(u1,y1), (u2,y2), (us,ys)}. In this case, the correct
stage definition should start by tuning the control loop corresponding to tank 1 (uq,y;). This
is an isolated loop in the system since, due to the connection between tank 1 and 3 being
gravity-based, no variations in the pumps feeding tank 2 and 3 can affect the level in 1, while
variations in the pump feeding tank 1 can affect the level in tanks 2 and 3. Tanks 2 and 3 are
interconnected and flow between them can go in either direction, making loops (us,y2) and
(us, ys) coupled both ways; therefore, these loops can be tuned in any order. In summary,
any stage definition that tunes control loop (u1,y1) in the first stage, and maintains this
loop closed for further stages, is considered correct. Fig. 4 shows an example of a correct
and incorrect stage definitions of the system, replacing {0, 1,2} with {open, tuned, closed}.

(u1,y1) (u2,y2) (u3,y3) (u1,y1) (u2,y2) (us,y3)
Stage1l [tuned open open Stagel [open tuned open
Stage2 | closed open. tuned Stage2 | tuned closed open,
Stage3 \closed tuned closed Stage3 \closed closed tuned
(a) Example Correct Stage Definition. (b) Example Incorrect Stage Definition.

Figure 4 Example Stage Definitions.

4.4 LLM prompt design

In this section we discuss how to design input and system prompts (Section 3.3) for an LLM
in order to automate I/O pairing and stage definition, given limited structural knowledge of
the system, for a family of multi-tank systems. We present an algorithm for input prompt
design given the graph representation of the system defined in Section 4.2.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

A system with three gravity drained tanks filled with fluid. Tank 1 is positioned above tank 3
and the drain of tank 1 feeds tank 3 as an input flow. Tank 2 and tank 3 are horizontally
aligned and interconnected by a pipe. The system is fed by 3 pumps, producing input flows.
Pump 1 feeds tank 1. Pump 2 feeds tank 2. Pump 3 feeds tank 3.

Inputs: [FlowPumpl, FlowPump2, FlowPump3|

Outputs: [LevelTankl, LevelTank2, Level Tank3]

3 control loops with 3 PID controllers:

[FlowPumpl-LevelTank1, FlowPump2-LevelTank2, FlowPump3-Level Tank3]

Propose a methodology to tune the controllers sequentially

Figure 5 Input Prompt for Stage Definition.

4.4.1 Input prompt design

In this section we describe the methodology (Algorithm 1) used to design an input prompt
for stage definition in a multi-tank system assuming a graph representation (Def. 3) of the
system is available. The resulting input prompt consists of 6 distinct sections: introduction,
hierarchical relations, interconnections, actuators, input-output-loop list, and task instruction.

We start by introducing the system and the number of tanks (Ny = |[VT|) in it and
then describe the hierarchical relations between tanks. In order to do this, we define a
set of single direction edges, Eg = {(v;,v;) € ET | (vj,v;) ¢ ET}. Every edge in Ey
represents a hierarchical relation between tanks where only one flow direction is feasible,
whether it is due to gravity or a pump forcing a fixed flow. This section of the prompt
design algorithm generates a sequence of |Ep| sentences (one for each element in Fp) that
describe the hierarchical relations between pairs of tanks using the corresponding labels
1T (e;) € {above, below}. The set Ep is ordered from lowest to highest according to min(v;, v;)
(min is the minimum between v; and v;). The edge ordering of set E is done for consistency,
which we have found to impact performance significantly when designing the prompt.

We then describe groups of tanks that are interconnected. To do so, we define a set of
subgraphs G; = {G} C G | |G}| > 1 A G is strongly connected}. For every connected sub-
graph G, we produce a sentence highlighting interconnection between the tanks represented
by the subgraph. The tanks don’t need to be horizontally aligned, we use this sentence
structure to stay consistent with the vertical alignment description of the system hierarchy.

Afterwards, we describe the actuators in the system and their relationship with the
corresponding tanks. For the purpose of this work, we only consider the family of systems
with actuators as pumps, however, the actuator space can be easily expanded by making
the actuator label space LA more expressive. First we list the number of pumps N4 = [Va|.
Then, we add a sentence to the prompt for each actuator v; € VA, where we list the set of
tanks T; = {t} .2 ,...,t7 } that are fed by pump v;. If the fluid through the actuator has

associated attributes, these are added to each actuator sentence by means of 1(v;).

Subsequently, we provide an ordered list of inputs and outputs in the system and, for the
case of the stage definition task, we also provide a description of the control loops. Finally,
instructions about the task (stage definition or I/O pairing) are provided. Fig. 5 shows the
resulting input prompt for stage definition designed for the example system in Fig. 2.

10:11

DX 2025

10:12

Automating Control System Design Using Language Models

Algorithm 1 Input Prompt Design Methodology.

1 Input: G
2 prompt < “A system with { Nt} gravity drained tanks filled with fluid.”
/* Describe hierarchical relations */
3 foreach e; = (v;,,v;,) € Eg do
prompt < prompt + “Tank {min(v;,,vs,)} is positioned {I7(e;)} tank
{max (v, v;,)} and the drain of tank {v;, } feeds tank {v;,} as an input flow.”

5 end
/* Describe interconnection between tanks */
6 foreach G} € G; do
prompt < prompt + “Tank {v; }, tank {v;,}, ..., and tank {v; } are horizontally
aligned and interconnected by a pipe.”

8 end

/* Describe actuator relations x/
9 prompt < prompt + “The system is fed by { N4} pumps, producing input flows.”
10 foreach v; € V4 do
11 prompt < prompt + “Pump {v;} feeds tank {t} }, tank {2 }, ...
12 if [4(v;) # @ then
13 ‘ prompt < prompt + “ with {I4(v;)}.

”

14 end
/* System Inputs, Outputs, Loops, and Task x/
15 prompt < prompt + {List of Inputs and Outputs}
16 if task = StageDefinition then
17 prompt < prompt + “{N, } control loops with {N,} PID controllers”
18 prompt < prompt + {List of Control Loops}
19 prompt < prompt+ “Propose a methodology to tune the controllers sequentially”.
20 else if task = IOPairing then
21 prompt < prompt+ “Propose an input-output pairing for the system”.
22 Output: prompt

4.4.2 System Prompt Design

A well-designed system prompt can enhance the performance of the LLM interaction. The
system prompt design strategy consists of four sections: a role statement, a description of
the task, output formatting instructions, and an output format example.

The role statement is a common practice in system prompt design, usually implemented
with a single sentence in the form: “You are {role}”. In this case we define the role as “expert
control engineer”. We then describe the desired task (I/O pairing or stage definition).

The large output prompt space Z, along with the stochastic nature of the LLM (assuming
non-zero temperature), results in challenges when processing the LLM output programmatic-
ally in a fully automated framework. For example, in the case of I/O pairing, we want to
produce a matrix like the one in Fig. 3 from a natural language output z, € Z. To parse
this output correctly, a consistent output prompt formatting is desired. We ensure this by
adding formatting instructions to the system prompt, as well as an example desired output.

System prompts are independent from the particular configuration of the multi-tank
system, and their design depends on the desired task. Figures 6a and 6b show the system
prompts used for the I/O pairing and stage definition tasks respectively.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

You are an expert control engineer. Provide
a matrix showing recommended input-output
pairings for a system. Your answer must con-
tain a table wrapped in <ans></ans> and
nothing more. The table must be formatted
exactly as described below:

- Columns: System Outputs

- Rows: System Inputs

- Cells: “1”=input and output are paired,
“0”=input and output are not paired

All inputs must be paired exactly once.
Example:

<ans>

[Outputl] [Output2] [Output3] ... [OutputN]
Input1010...0

Input2100... 0

InputS001 ... 0
</ans>

You are an expert control engineer. Your
task is to provide a matrix showing sequen-
tial PID controller tuning order. Upstream
control loops should be tuned first. Your
answer must contain a table wrapped in
<ans></ans> and nothing more. The table
must be formatted exactly as described be-
low:

- Columns: PID controllers by control loop
- Rows: Tuning steps

- Cells: “1”’=tuned at this step, “0”=opened
at this step, “2”=tuned in previous step

At least one controller must be tuned per
step. Each controller is tuned exactly once.
Example:

<ans>

[Loopl] [Loop2] [Loop3] ... [LoopN]

Stepl 010 ... 0

Step2120...0

StepS021...2
</ans>

(a) System prompt for Input-Output Pairing. (b) System prompt for Stage Definition.

5 Experimental Design

5.1 Performance Metrics

In order to evaluate the proposed I/O pairing and stage definition methodologies we use
multiple performance metrics which evaluate output prompt formatting and accuracy, as
well as auto-tuned controller performance.

5.1.1 Performance Metrics for LLM output

Consider a system benchmark b, e.g.: three cascading tanks, two interconnected tanks,
and a task v € {IOPairing, StageDe finition}. Let’s then assume an LLM is prompted
with the corresponding system (z7) and input (zf ") prompts such that the output prompt
zo = LLM (27, zf ") is produced. Let us define the following set of performance metrics in

order to evaluate output prompt z,: correct formatting, accuracy, and percentage of accurate
over correctly formatted.

Correct Formatting. For a given task v and benchmark b, let us define a correctly formatted
set Zf,ﬂ with all the output prompts that match the restrictions imposed in the corresponding
system and input prompts [27,2;”]. An output prompt z, = LLM (2], z? "7 is considered
correctly formatted if z, € Zé’,’v. We are also interested in the average performance over a
set of N interactions (to account for the stochastic nature of the LLM). We define percent of

correctly formatted outputs as:

1, 2z, € Z%’W
b,
0, z ¢ Zp"

L
Uy = Z £ (zo) %100, zo = LLM (27, 227); Lp(z) = { (4)

N
1=1

10:13

DX 2025

10:14

Automating Control System Design Using Language Models

Accuracy. For a given task v and benchmark b, let us define a ground truth set Z%"Y
with all the output prompts that an expert would consider correct. An output prompt
2o = LLM(2,207) is considered accurate if it is in the ground truth set z, € Z57. An

output prompt must be correctly formatted in order to be accurate, i.e.: Zgﬂ C Zé’,’v.
Similarly to proper formatting, we are interested in the percent of accurate outputs:

1, z € Zg"y
b,
0, z ¢ Z3"7

U = Z L1 (z,) %100, zo = LLM (22, 2"7); Lp(zo) = { -

N et 2
=1

Accuracy over Correct Formatting. Finally, we define a metric for LLM outputs that is
only valid over multiple interactions with the LLM: U7, p = g—; % 100. The purpose of this
metric is to evaluate the ability of the LLM to produce accurate outputs, assuming that this
output is correct (hence ignoring incorrectly formatted responses). This is arguably the most
important metric for LLM outputs due to the fact that, if an output is incorrectly formatted,
the interaction with the LLM can be repeated z, = LLM (2], zf "7) until a correctly formatted
output z, € Z}?W is produced. This approach is viable since expert knowledge is not required
to verify the output formatting, however, a low correct formatting metric ¥ can lead to
higher inference costs due to unnecessary interactions.

5.1.2 Performance of tuned controllers

We are also interested in evaluating the performance of the tuned controllers given a stage
definition produced by the LLM. This performance metric is only valid for properly formatted
output prompts (z, € Zfﬂ). We are particularly interested in evaluating performance of
tuned controllers for different stage definitions in order to validate our hypotheses that stage
definition is critical to achieve good controller performance when auto-tuning decentralized
controllers sequentially, which, to the best of our knowledge, is a comparison that has not
been performed before. We do not evaluate the performance of the tuned controllers for
different I/O pairings since this is a well-known topic in the literature [12].

We measure performance of tuned controllers using the integral absolute error (IAE)
metric [16][12][2], a well known controller performance metric that evaluates the ability of
the system, using the tuned controllers, to minimize the error in the measured variables y
with respect to a reference trajectory yr. We use MATLAB bayesopt method to implement
a Bayesian optimization algorithm (with TAE as the cost function) and solve the controller
tuning problem described in Section 4.1 for different stage definitions proposed by the LLM
interactions. A detailed explanation of the full auto-tuning algorithm can be found in [2].

5.2 Multi-tank benchmarks

In this section, we will describe the different multi-tank configurations used to empirically
evaluate the proposed methodology. In order to highlight the details of each task, we use
three distinct set of benchmarks to evaluate: 1/0 pairing LLM output, stage definition LLM
output, and performance of tuned controllers for stage definition.

For 1/0 pairing evaluation we use 5 configurations of the multi-tank system which include:
(1) three cascaded tanks (Fig. 8a) and (2) four cascaded tanks (Fig. 8c). We also evaluate
I/O pairing on three system configurations taken from [12], where input-output pairing is
framed as an optimization problem, and solved iteratively. These configurations are: (3) a
well-known quadruple tank system (Fig. 9a), (4) a variation of the quadruple tank system
(Fig. 9b), and (5) a single tank system where both level and temperature in the tank are
controlled (Fig. 9¢). Table 1 shows the list of configurations for I/O pairing evaluation.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

For stage definition LLM output evaluation we use 7 configurations of the multi-tank
system: (1) two cascaded tanks (Fig. 7a), (2) alternative two cascaded tanks (Fig. 7b),
(3) two interconnected tanks (Fig. 7c), (4) three cascaded tanks (Fig. 8a) (5) alternative
three cascaded tanks (Fig. 8b), (6) the three tank system illustrated in Fig. 2, and (7) four
cascaded tanks (Fig. 8c). Table 2 shows the list of configurations for stage definition LLM
output evaluation. The pairs of configurations (1)-(2) and (4)-(5) respectively describe a
system with the same layout, but different tank labeling. We evaluate alternative labeling
of the same configurations to test robustness of the prompt design methodology to small
changes in the system description, which has shown to be a challenging task [3].

Pump 1 Pump 2

Tank 1 Tank 2

Pump 2 Pump 1 Pump 1 Pump 2

Tank 2 Tank 1 Tank 1 Tank 2

1 T T T

(a) (2T, 1a2). (b) (2T, 1b2). (c) (2T, 1-2ic).

Figure 7 Two-Tank Benchmarks for Empirical Evaluation.

Pump 1 Pump 2
Pump 1

Tank 1 Tank 2 Tank1 Pump 2

Pump 2 Pump 3 1

Tank 2

Pump 3

Tank 2 Tank 3 1

Pump 3 Pump 1

] l_©_ 1 1—©— Tank 3

Pump4

Tank 3 Tank 1

Tank 4

(a) (3T, 1a2, 2a3). (b) (3T, 1b3, 2a3). (c) (4T, 1a2, 2a3, 3ad).

Figure 8 Three and Four Cascaded Tanks Benchmarks for Empirical Evaluation.
Finally, we evaluate the performance of tuned controllers following different stage defini-
tions. We evaluate the performance for three benchmarks: (1) two cascaded tanks, (2) three

cascaded tanks, (3) four cascaded tanks. Tank labeling is not relevant in the case of control
performance evaluation.

0 |

Cold Liquid Pump Hot Liquid Pump
Tank 3 Tank4 Tank 3 Tank 4
Pump 1) Pump 2 pump 10 Pump 2
’ Tank 1 Tank 2 ’ Tank 1 Tank 2 ’ Tank1
(a) (4T, 1b3, 2b4) [12]. (b) (4T, 1b3, 2b4)*. (c) 1T Temperature [12].

Figure 9 Multi-tank Benchmarks taken from [12] for Empirical Evaluation.

10:15

DX 2025

10:16

Automating Control System Design Using Language Models

Controller performance is evaluated for different levels of coupling. For this purpose, we
define a coupling parameter ¢ that represents how coupled the control loops in the system
are. For the case of the cascaded configurations used, we model the coupling parameter ¢ as
a factor that linearly maps the diameters of the drain in the tanks. A high value of ¢ results
in a larger drain diameter, which results in higher drain flows for each tank, which in turn
results in higher input flows into the respective tanks below, translating into higher coupling
between tanks. Conversely, a small drain diameter might result in practically non-existent
coupling between the tanks, which would result in a set of isolated control loops, rendering
the motivation for proper stage definition null. We evaluate the controller performance for
three coupling levels: nominal coupling and 1.5 and 2 times nominal coupling.

Three stage definitions are evaluated, labeled: correct stage definition, incorrect stage
definition, and independent stage definition. Correct stage definition for the three cascaded
configurations refers to a solution that tunes the control loops following the hierarchy; i.e.:
the control loop for the tank on top is tuned first, then the tank below, and so on until
the bottom tank is reached, while at each stage, control loops tuned in previous stages are
closed and controllers are fixed to their tuned parameters. Incorrect stage definition refers
to a solution that tunes control loops in the opposite order to the correct stage definition
while maintaining control loops from previous stages closed. Independent stage definition
refers to the process of tuning a control loop independently at each stage, ie.: control tunings
from previous stages do not carry over to the current stage and every loop, except the loop
being tuned, is open at each stage. The tuning order in this case is not important. This is
technically also an incorrect stage definition for the cascaded configurations, however, we
include it as a separate case because it is a common approach to controller tuning in the
related literature [2][12]. Fig. 10 shows example stage definitions for the two cascaded tanks
system.

(u1,y1) (u2,92) (u1,91) (u2,92) (ui,91) (u2,92)

Stage1 (tuned open Stage1 [open tuned Stage1 (tuned open
Stage2 \ closed tuned Stage2 \tuned closed Stage2 \ open tuned

(a) Correct Stage Definition. (b) Incorrect Stage Definition. (c) Independent Stage Definition.

Figure 10 Example Stage Definitions for Two Cascaded Tanks System.

6 Results and Discussion

In this section we empirically validate the proposed methodology and evaluate the 1/0O
pairing and stage definition tasks for multiple configurations of the multi-tanks system, using
performance metrics discussed in the previous section. All LLM experimental results were
produced using the Claude-Sonnet-3.7 and Claude-Sonnet-4 LLMs, accessed via Anthropic
API [1]. The temperature parameter for the API calls was set to 1.0, which promotes
stochasticity and variety in the LLM outputs. The associated codebase and results can be
found at https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git.

6.1 Input-Output Pairing

To evaluate the performance of the LLM-based methodology when proposing I/O pairings in
a given system, we consider the benchmarks described in Section 5.2. Every input-system
prompt pair was evaluated N = 100 times and percentage values were reported. Overall, we

https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

Table 1 Analyzing performance for input-output pairing LLM responses.

Benchmark Correct Format (%) Accuracy (%) Accuracy/Format (%)
Sonnet3.7 Sonnet4 Sonnet3.7 Sonnet4 Sonnet3.7 Sonnet4
(1): (3T, 1a2, 2a3) 100 100 100 100 100 100
(2): (4T, 1a2, 2a3, 3ad) 100 100 100 100 100 100
(3): (4T, 1b3, 2b4)[12] 100 100 100 98 100 98
(4): (4T, 1b3, 2b4)* 100 100 99 100 99 100
(5): 1T Temperature [12] 100 100 08 100 98 100

Table 2 Analyzing performance for stage definition LLM responses.

Benchmark Correct Format (%) Accuracy (%) Accuracy/Format (%)
Sonnet3.7 Sonnet4d Sonnet3.7 Sonnet4 Sonnet3.7 Sonnet4
(1): (2T, 1a2) 98 100 98 99 100 99
(2): (2T, 1b2) 97 100 97 100 100 100
(3): (2T, 1-2ic) 100 100 100 100 100 100
(4): (3T, 1a2, 2a3) 93 100 93 100 100 100
(5): (3T, 1b3, 2a3) 96 100 96 100 100 100
(6): (3T, 1a3, 2-3ic) 96 100 94 98 97.9 98
(7): (4T, 1a2, 2a3, 3ad) 94 100 94 100 100 100

can see in Table 1 that the performance was high across all metrics, with 100% consistency
in terms of formatting, which is a challenging task. Accuracy was also high at over 98% for
all cases. This empirically shows that an LLM-based solution can yield expert knowledge
recommendations regarding I/O pairing for benchmarks within the family of multi-tank
systems. Furthermore, for the case of the benchmarks taken from [12], the I/O pairing
matches the one achieved by the optimization approach with over 98% accuracy, while
requiring less resources in terms of optimization problem formulation, expert interactions,
and, potentially, computational cost (assuming inference cost from an LLM interaction is
lower than the cost from solving the optimization problem).

6.2 Stage Definition

In order to evaluate the performance of the LLM-based methodology to define stages for
a multistage control tuning framework, we consider the system configurations described in
Section 5.2. Each input-system prompt pair was evaluated N = 100 times and percentage
values were reported. Table 2 shows a summary of the performance. While formatting was
not as consistent as the I/O pairing case, we can see a very high accuracy/formatting metric
with 100% accuracy in most benchmarks. As discussed in Section 5.1.1, accuracy/formatting
should be the priority metric, since incorrect formatting can be automatically detected,
repeating the interaction with the LLM until a correctly formatted output is produced.

6.2.1 Comparing performance of tuned controllers for different stage
definitions

In this section, we empirically compare the performance of tuned controllers described
in Section 5.2. Controllers are tuned Ng = 10 times for every combination of system
configuration, coupling level, and stage definition, and box-plot results over the 10 runs are

10:17

DX 2025

10:18

Automating Control System Design Using Language Models

Two Cascaded Tanks 60 Three Cascaded Tanks

CICorrect Stages [ICorrect Stages T

Cincorrect Stages [Cincorrect Stages T
’LEIO Independent Stages {7 50 {_IIndependent Stages
< <
3’ :40
5 [
X | 1 g I 1

T T
£ £ 30
S 7 =}
g g =
o S
=%} 6 =%
—_— - 1 == -+
5 10 ' '
@=Nominal @=1.5xNominal ¢=2xNominal ¢=Nominal ¢=1.5xNominal ¢=2xNominal
(a) (b)
Four Cascaded Tanks

140
[CICorrect Stages
Clincorrect Stages

o 120 Independent Stages
<
=100
o
2 %
<
£ T T
£ o o D=
S 60 J_ —
o 1

40

= o =
20
@=Nominal @=1.5xNominal ~ @=2xNominal
(c)
Figure 11 Comparing performance of tuned controllers for different stage definitions and coupling

levels.

reported in Fig. 11. Performance is measured in integral absolute error (IAE), and lower error
values are desired. Overall, we can see that, as the complexity of the system increases, i.e.:
input-output space dimensions, number of components (tanks), etc., the impact of the stage
definition on performance increases. In Fig. 11c, which is the most complex system evaluated
(four cascaded tanks), there is a distinct difference between the performance achieved when
following the correct stage definition and the incorrect stage definitions; however, for the
lower complexity benchmarks (Figures 11a and 11b) the difference is not obvious, with the
two cascaded tank system showing the largest overlap between stage definitions. Similarly, for
every benchmark, an increase in coupling (represented by the ¢ parameter) is also associated
with higher differences between the performances achieved under the correct and incorrect
stage definitions; this is an expected result, as stated in Section 5.2. When we compare
performance improvement for the three tank benchmark, we can see there is a significant
performance improvement when the coupling in the system is high, but there is barely any
difference between stage definitions when the coupling is lower. In general, the greatest
improvement can be seen for the four cascaded tank benchmark at 2 times nominal coupling
(Figure 11c) where a correct stage definition can reduce the error of the tuned controllers by
52% with respect to the incorrect stage definitions.

6.3 Discussion, Limitations, and Future Works

We have evaluated the proposed methodology for a variety of multi-tank benchmarks
(Figures 7, 8, and 9), including a benchmark where temperature and level in a tank are
controlled simultaneously (Fig. 9c¢), and a set of cascading tank benchmarks with different
levels of coupling (Fig. 11). We have empirically shown that, for these benchmarks,
stage definition can have significant impact on the performance of the tuned controllers.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

Furthermore, we have shown that the proposed methodology for stage definition using LLMs
can propose the correct stage definition and I/O pairing with a high degree of consistency
and accuracy.

We acknowledge that, even though the actuator label space (L“(e)) can integrate notions
of temperature control, as well as other potential extensions (e.g.: liquid composition/concen-
tration), the proposed methodology is mostly centered around the problem of level control in a
family of systems consisting of reservoirs, pumps, and connections. In spite of this limitation,
this is a first step towards a system-informed general methodology for prompt engineering
with the purpose of expert knowledge automation. An extension of these results to a wider
variety of benchmarks would require a redefinition of the mathematical language and the
prompt engineering algorithm; however, the core elements of the methodology would persist:
a graph representation of the system components and interactions, and a prompt engineering
algorithm that binds this graph language to the input prompt space of an LLM. Future works
should focus on proposing a generalized mathematical language and prompt engineering
algorithm, or, if this is not possible, a set of general guidelines for developing these graph
representations and prompt engineering algorithms for different families of benchmarks.

We have proposed a simple topology-based graph representation of the system since we
are aiming for a solution that requires minimal expert interaction and knowledge of the
system, which would be a limitation for more complex system representations such as bond
graphs, process graphs, or structural analysis. However, a generalization of this methodology
for systems other than the multi-tank benchmarks will most likely require more complex
representations of the system, such as the ones mentioned above.

We have focused on systems with centralized control since I/O pairing and stage definition
for sequential controller tuning would rarely be relevant in a centralized control approach.
Furthermore, decentralized parametric controllers, or a hybrid between decentralized and
supervisory control are industry standard solutions. However, future works should focus on
extending the methodology to consider systems with centralized /supervisory control, as well
as systems with integrated decoupling strategies.

This work is also limited by the lack of formal definition of what is a correct I/O pairing
or stage definition apart from what is referenced as expert knowledge in the associated
literature. Therefore, future works will provide a formal framework to measure validity of
expert knowledge in terms of I/O pairing and stage definition.

7 Conclusions

This paper addresses controller-tuning aspects of automated engineering system design. We
proposed a mathematical language to describe a family of multi-tank benchmarks based on
system topology. We implemented an algorithm to bind this mathematical language to the
input prompt space of a Large Language Model as a form of prompt engineering. Following
this methodology, we automated expert knowledge requirements in decentralized controller
auto-tuning related to I/O pairing and stage definition for a multistage tuning framework.
Our proposed methodology showed an accuracy of over 97% for both I/O pairing and stage
definition, with consistent output formatting. Furthermore, we empirically evaluated the
performance of tuned controllers for different stage definitions in a family of multi-tank
benchmarks and showed that, depending on the complexity of the system, and degree of
coupling between control loops, a correct stage definition can improve performance over
the incorrect stage definitions by up to 52%. Future works will extend the mathematical
language and the prompt engineering algorithm to a wider variety of benchmarks.

10:19

DX 2025

10:20

Automating Control System Design Using Language Models

—— References

10

11

12

13

14

15

16

17

18

19

20

Anthropic api. URL: https://console.anthropic.com.

Marlon J. Ares-Milian, Gregory Provan, and Marcos Quinones-Grueiro. Towards automated
controller parameter design in cyber-physical systems: Improving computational cost. In 2025
IEEE International Conference on Smart Computing, SMARTCOMP 2025, 2025.

Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi, and Matt Thomson. What’s the magic
word? a control theory of llm prompting, October 2023. doi:10.48550/arXiv.2310.04444.
B. Ould Bouamama, G. Biswas, R. Loureiro, and R. Merzouki. Graphical methods for diagnosis
of dynamic systems: Review, 2014. doi:10.1016/j.arcontrol.2014.09.004.

Tom B Brown, Benjamin Mann, Nick Ryder, and Melanie Subbiah et. al. Language models
are few-shot learners. In NeurIPS 2020, 2020.

Y. Chen, R. Goebel, G. Lin, B. Su, Y. Xu, and A. Zhang. An improved approximation
algorithm for the minimum 3-path partition problem. Journal of Combinatorial Optimization,
38:150-164, 2019. doi:10.1007/s10878-018-00372-z.

Xingang Guo, Darioush Keivan, Usman Syed, Lianhui Qin, Huan Zhang, Geir Dullerud, Peter
Seiler, and Bin Hu. Controlagent: Automating control system design via novel integration
of llm agents and domain expertise. arXiv preprint arXiv:2410.19811, 2024. doi:10.48550/
arXiv.2410.19811.

P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama, and S. Achiche. Design,
modelling, simulation and integration of cyber physical systems: Methods and applications.
Computers in Industry, 82:273-289, October 2016. doi:10.1016/j.compind.2016.05.006.
H J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve
in the presence of noise. Journal of Basic Engineering, 1964.

Jiang Lu, Pinghua Gong, Jieping Ye, Jianwei Zhang, and Changshui Zhang. A survey on
machine learning from few samples, September 2020. arXiv:2009.02653.

Yifan Luo, Yiming Tang, Chengfeng Shen, Zhenan Zhou null, and Bin Dong. Prompt
engineering through the lens of optimal control. Journal of Machine Learning, 2:241-258,
January 2023. doi:10.4208/jml.231023.

Vasileios K. Mappas, Vassilios S. Vassiliadis, Bogdan Dorneanu, Alexander F. Routh, and
Harvey Arellano-Garcia. Automated control loop selection via multistage optimal control
formulation and nonlinear programming. Chemical Engineering Research and Design, 195:76—
95, July 2023. doi:10.1016/j.cherd.2023.05.041.

Sammyak Mate, Pawankumar Pal, Anshumali Jaiswal, and Sharad Bhartiya. Simultaneous
tuning of multiple pid controllers for multivariable systems using deep reinforcement learning.
Digital Chemical Engineering, 9, December 2023. doi:10.1016/j.dche.2023.100131.

Silke Merkelbach, Alexander Diedrich, Anna Sztyber-Betley, Louise Travé-Massuyes, Elodie
Chanthery, Oliver Niggemann, and Roman Dumitrescu. Using multi-modal llms to create
models for fault diagnosis. In The 35th International Conference on Principles of Diagnosis and
Resilient Systems (DX’24), volume 125, November 2024. doi:10.4230/0ASIcs.DX.2024.6.
C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. USA:MIT
Press, January 2006.

Alejandro Rodriguez-Molina, Efrén Mezura-Montes, Miguel G. Villarreal-Cervantes, and Mario
Aldape-Pérez. Multi-objective meta-heuristic optimization in intelligent control: A survey on
the controller tuning problem. Applied Soft Computing Journal, 93, August 2020.

D. Stenger, M. Nitsch, and D. Abel. Joint constrained bayesian optimization of planning,
guidance, control, and state estimation of an autonomous underwater vehicle. In ECC 2022,
2022.

Prerit Terway, Kenza Hamidouche, and Niraj K. Jha. Dispatch: Design space exploration of
cyber-physical systems, September 2020. arXiv:2009.10214.

K. Tohma, H. 1. Okur, H. Giirsoy-Demir, M. N. Aydn, and C. Yeroglu. Smartcontrol: Interactive
pid controller design powered by llm agents and control system expertise. SoftwareX, 31:102194,
2025. doi:10.1016/J.S0FTX.2025.102194.

Collin Zhang, John X. Morris, and Vitaly Shmatikov. Extracting prompts by inverting llm
outputs, May 2024. doi:10.48550/arXiv.2405.15012.

https://console.anthropic.com
https://doi.org/10.48550/arXiv.2310.04444
https://doi.org/10.1016/j.arcontrol.2014.09.004
https://doi.org/10.1007/s10878-018-00372-z
https://doi.org/10.48550/arXiv.2410.19811
https://doi.org/10.48550/arXiv.2410.19811
https://doi.org/10.1016/j.compind.2016.05.006
https://arxiv.org/abs/2009.02653
https://doi.org/10.4208/jml.231023
https://doi.org/10.1016/j.cherd.2023.05.041
https://doi.org/10.1016/j.dche.2023.100131
https://doi.org/10.4230/OASIcs.DX.2024.6
https://arxiv.org/abs/2009.10214
https://doi.org/10.1016/J.SOFTX.2025.102194
https://doi.org/10.48550/arXiv.2405.15012

	1 Introduction
	2 Related Work
	2.1 Automated Controller Design
	2.2 LLMs in System Design
	2.3 Systems Modeling using Component-Based Languages

	3 Preliminaries
	3.1 Decentralized parametric control
	3.2 Directed graphs
	3.3 Large Language Models
	3.4 Bayesian optimization

	4 Methodology
	4.1 Controller tuning framework
	4.2 Graph Language For System Representation
	4.3 Input Output Pairing and Stage Definition
	4.3.1 Input-Output Pairing
	4.3.2 Stage Definition

	4.4 LLM prompt design
	4.4.1 Input prompt design
	4.4.2 System Prompt Design

	5 Experimental Design
	5.1 Performance Metrics
	5.1.1 Performance Metrics for LLM output
	5.1.2 Performance of tuned controllers

	5.2 Multi-tank benchmarks

	6 Results and Discussion
	6.1 Input-Output Pairing
	6.2 Stage Definition
	6.2.1 Comparing performance of tuned controllers for different stage definitions

	6.3 Discussion, Limitations, and Future Works

	7 Conclusions

