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Abstract
Fault detection in heating systems is critical for ensuring energy efficiency and operational reliability.
Traditional approaches rely on labeled fault data and expert-defined rules, which are often unavailable
or costly to obtain. We introduce GEMMA-FD (GEMMA for Fault Detection), a novel zero-shot
framework for fault detection in heat pumps that leverages large language models (LLMs) without
requiring labeled anomalies or predefined fault signatures. Our method transforms multivariate sensor
time series into structured natural language prompts and augments them with visual features, such
as line plots of key variables, to facilitate multimodal reasoning. Using GEMMA-3, an open-weight
multimodal LLM, we classify heat pump system states as either normal or faulty. Experiments on a
real-world heat pump dataset show that GEMMA-FD can identify unseen faults with reasonable
precision, although its performance remains lower than a supervised XGBoost baseline trained on
the same prompts. Specifically, GEMMA-FD achieves a macro-F1 score of 0.252, compared to 0.69
for XGBoost, underscoring the trade-off between generalization and targeted accuracy. Nevertheless,
GEMMA-FD demonstrates the potential of foundation models for interpretable, multilingual fault
detection in cyber-physical systems, while highlighting the need for prompt engineering, few-shot
augmentation, and multimodal inputs to improve the classification of rare and complex fault types.

2012 ACM Subject Classification Computing methodologies → Machine learning; Computing
methodologies → Natural language processing; Software and its engineering → Software testing
and debugging; Computing methodologies → Knowledge representation and reasoning; Computing
methodologies → Anomaly detection; Computer systems organization → Embedded and cyber-
physical systems

Keywords and phrases fault detection, anomaly detection, cyber-physical systems, HVAC, heat
pumps, energy systems, large language models, zero-shot learning, open-weight LLMs, interpretable
AI, multimodal prompts, smart energy

Digital Object Identifier 10.4230/OASIcs.DX.2025.12

Supplementary Material Software (Reproducibility package): https://doi.org/10.5281/zenodo.
16948128

Funding This work was partially funded by the FFG project ”Scalable Agents for Building Manage-
ment and Energy Efficiency” under grant number FO999923190.
Herbert Muehlburger : The position of this author is funded by the FFG project “The automated
ontology generator” under grant number FO999901761.

Acknowledgements We thank the anonymous reviewers for their constructive and valuable feedback.

1 Introduction

Heating, ventilation, and air conditioning (HVAC) systems account for over 30% of global
energy consumption, with heat pumps playing a critical role in modern energy-efficient
buildings [3]. As cyber-physical systems (CPS), heat pumps generate high-dimensional sensor
data that reflect complex operational states. Detecting faults in these systems is essential to
ensure energy efficiency, equipment longevity, and user comfort.
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Traditional fault detection and diagnosis (FDD) approaches rely on physics-based models
or expert-defined rules [6], which require deep domain expertise and are difficult to scale.
Supervised machine learning (ML) has emerged as a scalable alternative [6,9], but it relies
on large volumes of labeled fault data – often unavailable in real-world CPS deployments. To
mitigate this issue, semi-supervised and weakly supervised methods [5,16] have been explored,
and regression-based field modeling approaches have also been proposed [8]. However, these
still depend on handcrafted features or partial annotations.

Recent advances in large language models (LLMs) offer a new paradigm for fault detection.
LLMs show strong generalization capabilities across diverse tasks, including structured
reasoning and zero-shot classification. Prior work has explored their use in CPS contexts,
such as prompt-based anomaly detection in battery systems [7], and time-series anomaly
detection using structured inputs [1]. In addition, Xu et al. [15] proposed a benchmark
called VisualTimeAnomaly that translates time series into visual representations, enabling
multimodal LLMs to reason about sensor dynamics. However, LLM performance often lags
behind deep learning models unless guided by carefully engineered prompts.

Meanwhile, foundation models for time series forecasting have shown that prompt struc-
ture and in-context reasoning play a key role in zero-shot generalization. TimesFM [4]
demonstrates strong forecasting performance using a decoder-only architecture trained on
time-series data, and TiRex [2] improves forecasting via context distillation and hybrid
memory attention. These developments highlight the importance of architectural and repres-
entational choices in zero-shot time-series tasks.

Building on these insights, we ask: can LLMs detect faults in heat pump systems using
only data from normal operation – without labeled fault data or expert rules?

To answer this, we introduce GEMMA-FD, a zero-shot, multimodal LLM framework for
fault detection in CPS. We reformulate sensor-based fault detection as a structured prompting
task: multivariate time series are converted into natural language descriptions enriched with
statistical summaries, trend cues, and operating modes. We augment these textual prompts
with visual inputs (e.g., heatmaps, line plots, histograms) to guide multimodal reasoning in
GEMMA-3 [13], an open-weight, vision-and-language multimodal LLM released by Google
DeepMind, in a purely zero-shot setting. No fine-tuning or labeled faults are required. Details
on prompt construction and visual summarization are described in Section 3.2.

Our evaluation shows that GEMMA-3 tends to identify normal operating states correctly,
but struggles to detect rare faults – reflecting the current limitations of zero-shot classification
in highly imbalanced CPS settings. Nevertheless, the model captures CPS dynamics to
a surprising extent and offers a reproducible, interpretable, and multilingual baseline for
low-resource FDD.

Our main contributions are:
We present GEMMA-FD, a zero-shot fault detection framework using GEMMA-3, which
transforms sensor time series into structured natural language prompts without requiring
labeled fault data.
We introduce prompt designs that incorporate domain-specific interpretations, sensor
correlations, and visual features (e.g., heatmaps, timeseries plots, histograms) to enhance
LLM reasoning over complex system behavior.
We benchmark GEMMA-3 against a supervised XGBoost baseline trained on the same
prompts, highlighting the trade-offs between zero-shot generalization and supervised
learning for rare fault detection.
We release a fully reproducible pipeline for heat pump fault detection with open-weight
LLMs, including data preprocessing, prompt generation, and evaluation code.
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The remainder of this paper is organized as follows: Section 2 reviews related work.
Section 3 details our methodology and dataset. Section 4 presents and discusses the exper-
imental results. Finally, Section 6 concludes the paper and outlines directions for future
research.

2 Related Work

Fault Detection and Diagnosis (FDD) in cyber-physical systems (CPS), including HVAC
and heat pump systems, has traditionally relied on model-based or data-driven methods.
Classical approaches use physics-based models or expert-defined rules [6], which require
significant domain knowledge and manual effort. As sensor data has become more abundant,
supervised machine learning (ML) methods have emerged [6], although they rely on labeled
fault data that are often costly and limited in diversity.

Several studies have benchmarked ML algorithms for heat pump FDD. Rahman et
al. [9] compared XGBoost, Random Forest, SVM, and k-NN, identifying XGBoost as the
most effective. Weigert et al. [14] utilized smart meter data for operational and anomaly
classification. Shin and Cho [11] predicted the Coefficient of Performance (COP) to support
FDD. Other work, such as by Sunal et al. [12], applied deep learning to fault detection in
centrifugal pumps, offering insights transferable to HVAC systems. To reduce dependency
on labeled data, semi-supervised and weakly supervised methods have been explored [5, 16].
Puttige et al. [8] demonstrated how regression and neural networks trained on field data can
model heat pump behavior effectively.

Time Series and LLM-based Anomaly Detection. Recent advances in large language models
(LLMs) have introduced new opportunities for time series anomaly detection. Alnegheimish
et al. [1] explored whether general-purpose LLMs can act as zero-shot anomaly detectors
and found that structured prompting is essential, though performance often trails deep
learning baselines. Xu et al. [15] proposed AnomalyTransformer, a self-attention-based
approach for modeling dependencies in time series anomalies. The same authors introduced
VisualTimeAnomaly, a benchmark that translates time series into visual representations to
evaluate multimodal LLM performance on TSAD tasks.

Foundation models tailored to time series have further advanced zero-shot reasoning.
TimesFM [4] presents a decoder-only transformer trained on large-scale time series for
forecasting tasks. TiRex [2] builds on this by improving in-context forecasting performance
across short and long horizons via context distillation and hybrid memory attention. While
both focus on forecasting, their findings inform how architectural and prompt design choices
affect zero-shot generalization for time-dependent tasks.

LLMs in Fault Detection. Muehlburger et al. [7] demonstrated prompt-based anomaly
detection in battery systems using open-weight LLMs, without requiring fine-tuning. In the
HVAC domain, Hofer and Wotawa [6] showed that supervised learning informed by expert
knowledge can yield high-performance FDD models for heat pumps.

Despite their generalization capacity, current LLMs often struggle with zero-shot classific-
ation of rare anomalies unless augmented with domain-specific cues, visual summaries, or
few-shot examples. Our work builds on these insights by introducing a fully prompt-based,
multimodal, zero-shot fault detection framework. We show that open-weight foundation
models can partially encode CPS operational manifolds through structured prompts and
visualizations – though further enhancement is needed for reliable minority-class classification.

DX 2025
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Sensor Time Series Data (CSV)

Sliding Window Segmentation

Statistical Summaries &
Visualization Generation

Prompt Construction (NL Summary +
Visualizations)

GEMMA-3 (Multimodal LLM, Zero-
Shot) XGBoost (Supervised Baseline)

LLM Output (Fault + Explanations) XGBoost Output

Performance Comparison
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Figure 1 Overview of the GEMMA-FD pipeline. Sensor data is windowed and summarized with
statistics and visualizations. Structured prompts are fed into GEMMA-3 for zero-shot inference,
while the same text is used in a supervised XGBoost baseline. Outputs are compared using standard
performance metrics.

To the best of our knowledge, this is the first application of an open-weight, zero-shot
LLM-based method for multilingual, interpretable, and label-free fault detection in heat
pump systems. We position GEMMA-FD as a diagnostic baseline, illuminating the strengths
and limitations of current foundation models in real-world CPS deployments.

3 Methodology

We compare two contrasting diagnostic pipelines for fault detection in heat pump systems:
a supervised baseline using XGBoost and a zero-shot multimodal baseline using GEMMA-
3. Both pipelines consume the same structured prompt format but differ in knowledge
acquisition: XGBoost is trained on labeled data, while GEMMA-3 infers labels in a zero-shot
setting without any task-specific training.

Supervised baseline (XGBoost): A gradient-boosted decision tree model trained on
structured prompt-label pairs derived from sensor data.
Zero-shot baseline (GEMMA-3): An open-weight multimodal large language model
(LLM) that receives structured prompts and visual summaries as input and performs
inference-only classification.

This setup allows us to assess the trade-off between supervised accuracy and zero-shot
generalization in low-resource diagnostics. Figure 1 illustrates the overall fault detection
pipeline (XGBoost had been trained before).
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3.1 Dataset and Pipeline Overview

We use multivariate time series data logged from an Austrian heat pump system. Each row in
the CSV logs represents a 1-minute snapshot of multiple synchronized sensor readings. The
dataset contains operational data of the heat pump system (AnlageA_JKj), annotated into
four categories: betrieb_ok (normal operation), defrosting_issue, driver_temp_error,
and overheating_control_issue. The dataset contains in total 130,351 samples. For model
training and evaluation we split the data into training (70%, 91,245 samples), validation
(15%, 19,553), and test (15%, 19,553) sets using a stratified sampling strategy. We further
follow two different data pre-processing paths:

XGBoost path: Each row is treated as an individual sample for supervised training
and testing.

GEMMA-3 path: Data is segmented into overlapping 4-hour windows. Each window
is converted into a textual prompt and three visualizations.

All samples are transformed into structured natural language prompts (see Section 3.2).
For GEMMA-3, the prompt is enriched with composite images (heatmap, time series, and
histogram) to support multimodal reasoning.

The GEMMA-FD pipeline processes multivariate time series data logged from a real-world
heat pump system. Sensor readings are stored as CSV files, where each row represents a
1-minute interval of synchronized measurements across multiple physical variables (e.g.,
temperatures, flow rates, compressor speed). We implement two processing pathways:

A row-wise path for supervised learning (XGBoost) that treats each minute independ-
ently.

A windowed path for zero-shot prompting (GEMMA-3) that aggregates sensor readings
over a 4-hour sliding window to provide temporal context.

As illustrated in Algorithm 1 each sample (row or window) is transformed into a structured
textual prompt. For GEMMA-3, additional multimodal visual summaries (heatmap,
time series, histogram) are also generated and jointly passed to the model.

Algorithm 1 GEMMA-FD Pipeline Overview.

Require: Multivariate time series X; annotated row-wise labels (for supervised baseline)
1: if Supervised then
2: for each row xi in X do
3: Construct structured prompt P (xi) from features
4: end for
5: Train XGBoost on TF–IDF representations of P (xi)
6: else
7: for each time window Wi in X do
8: Extract statistical summaries and trends
9: Generate time-series plot, heatmap, and histogram

10: Construct structured natural language prompt P (Wi)
11: Pass P (Wi) and corresponding image to GEMMA-3 for zero-shot classification
12: end for
13: end if
14: return Predicted class labels ŷ

DX 2025
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3.2 Prompt Generation

To enable large language models (LLMs) to reason about system state, we convert raw heat
pump sensor data into structured textual summaries, using a sliding-window approach. Each
window corresponds to a fixed temporal segment (e.g., 4 hours) of multivariate time-series
data, which is then transformed into a prompt as follows:

Sensor statistics: For each relevant sensor (e.g., compressor speed, flow rate, inlet/outlet
temperatures), we compute the mean, minimum, and maximum over the window. These
are presented in natural language.
Trend detection: For selected sensors, we detect increasing or decreasing trends using
the first and last sample in the window.
Operating mode inference: If available, the categorical “wp-app-state_38” field is
used to infer the dominant operational mode (e.g., heating, standby, defrost).
Visual summary (multimodal input): A composite image is generated per window
containing: (i) a z-score normalized heatmap, (ii) raw time-series plots, and (iii) sensor
histograms. This image is passed to the LLM alongside the text.
Instructions for classification: We append an instruction block asking the LLM to
jointly analyze the image and text and classify the window into one of four predefined
fault categories.

These design choices aim to emulate how human experts summarize system behavior and
enable the LLM to leverage both symbolic and visual cues for anomaly detection. An example
prompt is shown below:

Listing 1 Zero-shot user-prompt for GEMMA-3 with statistical summaries and classification
instructions.

1 === HEAT PUMP SENSOR WINDOW SUMMARY ===
2 Samples: 60 (2023-01-10 08:00 to 2023-01-10 12:00)
3 Most frequent operating mode: heating mode

5 Sensor statistics:
6 T2 Außen: mean=2.41, min=-1.00, max=5.20
7 wp-comp-speed: mean=2800.33, min=2600.00, max=3200.00
8 ...

10 Trends:
11 Compressor speed increased over the window.

13 Instructions:
14 - The image below contains a Z-score normalized heatmap and time series

↪→ plots for all sensors.
15 - Analyze the numeric data and the image.
16 - Look for abnormal periods, outliers, or persistent trends.
17 - Classify the window as one of: [betrieb_ok, defrosting_issue,

↪→ driver_temp_error, overheating_control_issue].
18 - Output ONLY three function calls as specified. Reply in English and

↪→ German.
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Listing 1 presents a representative user prompt automatically generated using lightweight
Python functions, while Listing 2 shows the corresponding system prompt provided to the
model. This fully automated setup eliminates the need for manual annotation and enables
scalable, LLM-based analysis of large, unlabeled datasets.

3.3 Model Configuration
We use a locally hosted, open-weight multimodal language model gemma3:4b, available
through the Ollama framework. This variant supports both text and image input and
is based on the GEMMA-3 architecture released by Google DeepMind in 2025. Table 1
summarizes key model characteristics.

Table 1 LLM configuration for windowed heat pump analysis.

Property Value

Model gemma3:4b (multimodal)
Parameters 4 billion
Weights Open-source (Google DeepMind GEMMA-3)
Inference engine Ollama v0.1.34
Modality Multimodal (image + text)
Context window 8,192 tokens
Hardware Apple MacBook Pro 14.2", M1 Pro, 10 Core CPU, 16 Core GPU
Average inference time ∼2 seconds per window
Batching Single-sample (per window)
Prompt tuning None (zero-shot only)

All predictions were performed using zero-shot prompting, without any fine-tuning or
few-shot examples. Each prompt-image pair is sent independently to the model. The outputs
are parsed to extract fault labels and free-text explanations.

3.4 Zero-Shot Fault Detection with GEMMA-3
We select gemma3:4b, an open-weight, multimodal LLM released by Google DeepMind [13]
and served via the Ollama framework, to maximize reproducibility and local deployment
feasibility. This 4B-parameter model supports both text and image inputs and is well-suited
for vision-language inference tasks in constrained environments.

All experiments are conducted locally, with each sample consisting of a structured textual
prompt and three visualizations as described in Section 3.2. The model receives a diagnostic
system prompt specifying the output format; only the predicted label from the report
function call is used for evaluation, parsed via regular expressions.

Evaluation is performed on a stratified sample of 300 test prompts. This setup reflects
the label-scarce, zero-shot conditions of real-world fault detection. Our method is inspired in
part by VisualTimeAnomaly [15], which highlights the value of multimodal visualizations
for time series anomaly detection, and by Alnegheimish et al. [1], who emphasize the role of
structured prompt engineering for LLM-based time series analysis.

To enrich the LLM’s context, each inference window is described by a structured natural
language prompt and three visualizations: a z-score normalized heatmap of all sensor signals
(Figure 2a), a time series plot (Figure 2b), and histograms of value distributions for each
sensor (Figure 2c). All visual inputs are directly derived from real-world heat pump sensor

DX 2025
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Listing 2 System prompt provided to GEMMA-3 for multimodal zero-shot fault classification
in heat pumps. The model outputs three Python function calls: report(), diagnostics(), and
diagnostics_de().

1 You are a diagnostic assistant for heat pump systems.
2 For each sample, you will receive:
3 - A plot (attached image) showing a 4-hour window of all sensor data (

↪→ heatmap, time series, and histogram)
4 - A structured textual summary of that window

6 Your task:
7 - Use BOTH the plot and the textual summary to classify the system state

↪→ during this period.
8 - Consider all short or persistent abnormalities, not just the overall

↪→ trend.
9 - If you are unsure, explain your reasoning in the diagnostics output.

10 - All classes are equally likely.

12 Output format:
13 - Output exactly three Python function calls, in this order:
14 1. report(fault_type: str)
15 2. diagnostics(explanation: str) # (English)
16 3. diagnostics_de(explanation: str) # (German)

18 Valid fault types:
19 - betrieb_ok: No abnormalities detected during the 24h period.
20 - defrosting_issue: Signs of persistent or recurring defrosting problems.
21 - driver_temp_error: Driver circuit temperature is out of expected range.
22 - overheating_control_issue: Evidence of overheating or failed thermal

↪→ regulation.

24 Example output:
25 report(’driver_temp_error’)
26 diagnostics(’Between 03:00 and 04:00, the driver temperature exceeded the

↪→ normal range. The rest of the day appears normal.’)
27 diagnostics_de(’Zwischen 03:00 und 04:00 lag die Fahrertemperatur auß

↪→ erhalb des Normalbereichs. Der Rest des Tages war unauffällig.’)

29 IMPORTANT: Do not output any explanations or extra text outside of these
↪→ three function calls. Do not include code blocks or define any
↪→ functions.
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Figure 2 Visual encodings used as multimodal inputs to GEMMA-3. Each time window
is represented as (a) a z-score normalized heatmap of sensor signals, (b) selected raw time-series plots,
and (c) representative histograms of sensor value distributions. The values shown are exemplary
and schematic for clarity; actual sensor values differ in scale and range but are visualized in the
same encoding format. This schematic representation highlights the multimodal input structure
(temporal, statistical, distributional) rather than domain-specific magnitudes.

data collected in Austria. The axis labels and variable names in the generated plots appear
in German, as they reflect the naming conventions of the original control system and are
passed to GEMMA-3 without translation to preserve semantic fidelity. These visuals capture
temporal and statistical patterns, supporting robust zero-shot anomaly and fault detection.

For the zero-shot fault detection experiments, we evaluated GEMMA-3 using a stratified
random sample of 300 test windows. To ensure class balance in the evaluation set, we
performed stratified sampling across all annotated system states. Each sample consisted of a
structured prompt and multimodal visualizations, as described previously.

The prediction workflow is as follows:
1. Stratify and sample N = 300 test windows from the full labeled dataset, preserving class

proportions.
2. For each sampled window, generate a structured prompt and corresponding visualizations.
3. Run the llm_predict function, which queries GEMMA-3 via the Ollama inference

framework with each prompt-image pair.
4. Collect and store all raw LLM outputs for further analysis and reproducibility.
5. Parse predicted fault labels from the structured LLM output using regular expressions.
6. Save all predictions and explanations to CSV and TXT files for downstream analysis.
7. Compute classification metrics (precision, recall, F1-score) and confusion matrix on the

held-out samples.
8. Export results as LaTeX tables and plots for inclusion in the paper.

All LLM experiments are conducted with the model running locally to ensure full
reproducibility and data privacy. We restrict the evaluation to 300 test samples per run to
manage computational demands and facilitate interpretability of individual LLM predictions.

3.5 Supervised Baseline: XGBoost
For the supervised baseline, we train an XGBoost classifier using the full row-level dataset,
where each row corresponds to a sensor snapshot and is labeled with one of the four classes:
betrieb_ok, defrosting_issue, driver_temp_error, or overheating_control_issue.
Individual CSV files for each class are parsed and transformed into prompt-label pairs
using domain-informed prompt generation. After concatenating the class-specific data, we

DX 2025
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split the combined dataset into training, validation, and test partitions. To address class
imbalance, the training set is balanced using random oversampling. Each prompt is then
vectorized using term frequency-inverse document frequency (TF–IDF) features, allowing up
to 2,000 unigrams and bigrams.

The XGBoost classifier (objective="multi:softprob") is trained on the balanced train-
ing data with hyperparameters set to 200 trees, a learning rate of 0.05, and a maximum
tree depth of 6. After training, the model is evaluated on the held-out test partition, with
classification metrics and confusion matrices generated to assess performance. This process
is summarized in the following steps:
1. Load and concatenate row-level CSV data for each fault class.
2. Generate structured prompt-label pairs per sample.
3. Stratify into train/validation/test splits.
4. Apply random oversampling to balance the training set.
5. Vectorize prompts with TF–IDF.
6. Train the XGBoost classifier and evaluate on the test set.
7. Report class-wise precision, recall, F1-score, and confusion matrix.
This workflow describes our supervised baseline for comparison with zero-shot LLM-based
fault detection.

3.6 Evaluation Metrics and Protocol

We report precision, recall, and F1-score for each class, as well as macro- and weighted
averages to account for class imbalance and fault rarity, following Seliya et al. [10]. Confusion
matrices visualize misclassifications.

Evaluation Protocols. For computational feasibility and qualitative inspection, GEMMA-3
was evaluated on 300 stratified, randomly-sampled windows from the test set, ensuring
balanced class representation. XGBoost was evaluated on the full test set of 19,553 samples.
Here are the details for the two settings:

Windowed Zero-Shot LLM (GEMMA-3): We selected a stratified random sample
of N = 300 test windows to ensure balanced class representation. Each sample was
processed into a structured prompt and multimodal visualization. This sample size was
chosen to balance computational feasibility and qualitative interpretability of individual
LLM outputs.
Row-Wise and XGBoost (Full Test Set): For the row-wise GEMMA-3 variant
and the supervised XGBoost baseline, we evaluated on the complete held-out test set
(n ≈ 19, 553 samples). No additional stratification was applied; all labeled samples were
included for the XGBoost training.

For each protocol, predictions were parsed, performance metrics computed, and confu-
sion matrices generated. This dual protocol quantifies both balanced and full-scale model
performance for zero-shot and supervised approaches.

Metric definitions. Precision ( T P
T P +F P ) measures the proportion of correctly identified

faults among flagged cases; recall ( T P
T P +F N ) measures the proportion of actual faults correctly

detected; F1-score (2 × Precision×Recall
Precision+Recall ) is their harmonic mean.
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4 Results

This section presents a comparative analysis of fault detection in heat pump systems using
three approaches: (1) GEMMA-3 in a zero-shot setting with windowed, multimodal prompts,
(2) GEMMA-3 with row-wise, non-windowed prompts, and (3) a supervised XGBoost baseline.
We evaluate all methods on the same structured dataset, reporting class-wise precision, recall,
and F1-scores, as well as macro- and weighted averages to account for class imbalance.
Quantitative results are complemented by qualitative analyses of LLM output.

4.1 Overall Performance

GEMMA-3, evaluated on a stratified random sample of 300 windowed test prompts, achieved
a macro-F1 score of 0.19 and a weighted F1 of 0.39 (Table 2), indicating reliable detection of
the dominant class but limited sensitivity to rare faults. XGBoost, in contrast, reached a
macro-F1 of 0.69 and a weighted F1 of 0.83 on the full test set (19,553 samples; Table 4),
demonstrating robust, balanced performance across all fault categories. These results
underscore the advantage of supervised learning with labeled data for comprehensive fault
detection, while highlighting the generalization challenge faced by zero-shot LLM-based
approaches.

We observe that GEMMA-3 achieves its highest recall on the normal class (betrieb_ok),
suggesting that it captures expected system behavior more reliably than anomalous regimes,
consistent with prior findings on LLM robustness to typical inputs [1].

4.2 Class-Wise Performance Trends

A detailed examination of class-wise metrics reveals that GEMMA-3 achieves its highest
recall for the majority class, betrieb_ok, but performs poorly on the minority fault classes.
Specifically, GEMMA-3 attains a recall of 0.345 for betrieb_ok, while recall drops to
zero for defrosting_issue and to 0.056 for driver_temp_error. The model achieves
a moderate recall of 0.500 for overheating_control_issue, but with low precision. In
contrast, the supervised XGBoost model shows high recall across all classes, including 0.818
for defrosting_issue, 0.934 for driver_temp_error, and 0.936 for overheating_control_
issue. This demonstrates that XGBoost not only identifies the majority class but also
maintains strong detection performance for rare faults.

4.3 Error Patterns and Limitations

Analysis of the confusion matrix for GEMMA-3 (Figure 3b) shows that the model predomin-
antly assigns samples to the majority class, betrieb_ok, resulting in frequent misclassification
of fault cases as normal operation. Both defrosting_issue and driver_temp_error are
rarely, if ever, correctly identified, with most of these cases assigned to the normal class.
For overheating_control_issue, GEMMA-3 correctly identifies some instances but also
produces a high number of false positives. In contrast, the confusion matrix for XGBoost
(Figure 3a) is dominated by high values along the diagonal, indicating correct classification
for all classes and minimal confusion between normal and fault types.
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(a) XGBoost on full test set.
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Figure 3 Confusion matrices comparing supervised and zero-shot diagnostic performance.
(a) XGBoost achieves high accuracy across all fault classes with supervised training. (b) GEMMA-3,
operating in a zero-shot setting, displays strong bias toward the majority class (betrieb_ok), with
limited sensitivity to rare faults.

4.4 Performance Comparison

To further clarify the differences between approaches, we present a direct comparison of
zero-shot LLM classification with GEMMA-3 and supervised learning with XGBoost. Both
models are evaluated on identical input data and assessed using standard classification
metrics. The following subsections provide detailed results for each method.

4.4.1 Zero-Shot Inference with Windowing

Table 2 shows the results for the zero-shot setting, where GEMMA-3 was evaluated on 300
randomly selected windows of test prompts. The model output was parsed to extract the
predicted fault class. Figure 3b shows the confusion matrix for this evaluation.

Table 2 Classification performance of GEMMA-3 for zero-shot fault detection in heat pump
systems using structured prompts and windowed multimodal data. The model shows strong recall for
normal operation but limited accuracy for rare fault classes, underscoring the challenges of zero-shot
detection without labeled data.

Class Precision Recall F1 Support

betrieb_ok 0.755 0.345 0.474 223
defrosting_issue 0.000 0.000 0.000 9
driver_temp_error 0.045 0.056 0.050 18
overheating_control_issue 0.148 0.500 0.228 50
micro avg 0.344 0.343 0.344 300
macro avg 0.237 0.225 0.188 300
weighted avg 0.589 0.343 0.393 300
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The model assigned the majority of samples to the betrieb_ok class, resulting in a recall of
0.345 for this category. For the rare fault classes, recall was near zero for defrosting_issue
and 0.056 for driver_temp_error, while recall for overheating_control_issue reached
0.500 but with low precision. The macro-F1 score was 0.188, and the weighted-F1 was 0.393,
indicating overall limited effectiveness in rare fault detection.

Table 3 Classification performance of GEMMA-3 for zero-shot fault detection in heat pump
systems using row-wise, non-windowed prompts. Compared to the windowed setting, the model
shows higher recall for some fault classes but still struggles to detect overheating_control_issue,
indicating limitations in distinguishing complex fault patterns without temporal context.

Class Precision Recall F1 Support

betrieb_ok 0.743 0.706 0.724 14,051
defrosting_issue 0.046 0.251 0.078 630
driver_temp_error 0.159 0.299 0.207 1,170
overheating_control_issue 0.000 0.000 0.000 0
micro avg 0.549 0.658 0.598 15,851
macro avg 0.237 0.314 0.252 15,851
weighted avg 0.672 0.658 0.660 15,851

4.4.2 Row-Wise Zero-Shot Inference (No Windowing)

Table 3 reports classification performance for GEMMA-3 in a row-wise zero-shot setting,
where each time step is treated independently without temporal aggregation. The model
was evaluated on the entire test set (n = 15,851) using non-windowed prompts.

The highest F1-score was achieved for the normal operating state betrieb_ok (F1 =
0.724), with precision and recall of 0.743 and 0.706, respectively. This indicates that the
model performs reasonably well for detecting normal operation. Fault classes, however,
exhibit significantly lower scores. For example, defrosting_issue achieved a recall of
0.251 but extremely low precision (0.046), indicating frequent false positives. Similarly,
driver_temp_error reached a recall of 0.299 with low precision (0.159), suggesting limited
fault discrimination ability.

Notably, the model completely failed to detect any instances of overheating_control_
issue, as indicated by zero precision, recall, and F1 score likely due to lack of context in
single-timestep prompts. This aligns with the observation that more complex temporal
patterns are difficult to infer without windowed context.

The macro-averaged F1-score of 0.252 and the weighted average of 0.660 reflect the
model’s bias toward majority classes. Although the row-wise approach scales more easily
to large datasets, it fails to capture time-dependent anomaly patterns essential for robust
fault diagnosis. These findings highlight inherent challenges in employing multimodal LLMs
directly for fault detection tasks, especially for minority classes. Potential strategies to
enhance performance include targeted prompt-tuning, data augmentation techniques, or
incorporating ensemble methods to improve robustness and accuracy.
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4.4.3 Supervised XGBoost Baseline
The supervised XGBoost model was trained and evaluated on the same dataset as the LLM,
using class-weighted loss to address class imbalance. It achieved, as shown in Figure 4, a
macro-average F1 score of 0.693 and a weighted-average F1 score of 0.827. Recall exceeded
0.81 for all fault classes, with the highest values observed for overheating_control_issue
(0.936) and driver_temp_error (0.934).

Table 4 Classification performance of XGBoost trained on supervised fault labels for heat pump
fault detection. XGBoost demonstrates high precision and recall across all classes, including rare
faults, highlighting the effectiveness of supervised learning when labeled data are available.

Class Precision Recall F1 Support

betrieb_ok 0.984 0.768 0.863 14,462
defrosting_issue 0.378 0.818 0.517 648
driver_temp_error 0.398 0.934 0.558 1,206
overheating_control_issue 0.750 0.936 0.833 3,237
macro avg 0.627 0.864 0.693 19,553
weighted avg 0.889 0.807 0.827 19,553

These results demonstrate that supervised, class-aware training yields strong diagnostic
performance, even when the input consists of structured natural language prompts identical
to those used by the LLM.

4.5 Error Analysis
A detailed examination of the GEMMA-3 results (Tables 2 and 3) reveal three dominant
error patterns:

Majority class bias: GEMMA-3 disproportionately predicts the betrieb_ok (normal
operation) class, even for samples labeled with faults. This leads to very low recall
for rare fault types such as defrosting_issue (0.000) and driver_temp_error (0.056),
reflecting a strong bias toward the majority class. This behavior is clearly visible in the
confusion matrix (Figure 3b).
Limited fault-specific detection: Fault samples are rarely classified with the correct
fault type, even when statistical summaries contain values outside expected ranges. This
suggests that GEMMA-3, operating under zero-shot conditions, struggles to associate
specific numerical patterns with fault semantics.
Overprediction of certain faults: For overheating_control_issue, the model
exhibits moderate recall (0.500) but low precision (0.148). This pattern suggests that
the model often predicts this fault incorrectly (false positives), indicating a tendency to
overtrigger this class rather than true ambiguity at the decision boundary.

In contrast, the XGBoost baseline achieves high recall and precision for all classes,
including minority faults (Table 4). Its confusion matrix (Figure 3a) is dominated by correct
predictions, with minimal misclassification between fault types. This contrast highlights
the challenge of zero-shot LLM-based fault detection – namely, that generalization from
unlabeled normal data is insufficient for robust fault classification in complex cyber-physical
systems.
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These findings underscore the need for future work on:
Enhancing prompt design with explicit fault indicators and temporal patterns,
Applying few-shot learning to expose models to representative fault cases,
Leveraging visual modality inputs (e.g., plots) more effectively for multimodal reasoning.

4.6 Comparison and Insights
A direct comparison between GEMMA-3 and XGBoost highlights the fundamental trade-off
between label-free generalization and supervised precision in heat pump fault detection.

XGBoost consistently outperforms GEMMA-3, particularly on rare faults such as
defrosting_issue and driver_temp_error, achieving high F1-scores across all classes
– even when trained on natural language prompts originally designed for LLMs. This
underscores the effectiveness of supervised learning when annotated data is available,
regardless of input format.
GEMMA-3 enables fully label-free fault detection, operating in a zero-shot regime
using structured prompts and visualizations. However, it struggles with class imbalance
and underperforms on minority fault types, limiting its current practical utility.
LLM-based diagnostics remain promising, especially for low-resource or rapidly
evolving environments. Hybrid strategies that integrate LLMs with few-shot exemplars,
domain knowledge, or statistical post-processing may help overcome zero-shot limitations.

These results emphasize that while foundation models enable flexible deployment without
labeled data, they are not yet reliable for safety-critical diagnostics. Improving multimodal
prompt design and combining statistical learning with LLM reasoning are key directions for
future research.

4.7 Future Directions
Out current framework already incorporates multimodal prompts – combining structured
text with visual representations such as heatmaps, time series, and histograms. Future work
could focus on leveraging these features more effectively. Enhancing prompt engineering
with explicit fault indicators and temporal patterns, as well as introducing few-shot learning
with annotated fault cases, may help address the low recall for rare fault types. In addition,
hybrid approaches that combine LLM-based reasoning with supervised or statistical models
could further improve robustness and accuracy. These directions aim to bridge the remaining
gap between zero-shot generalization and reliable fault detection in complex, real-world
cyber-physical systems.

In summary, supervised learning with XGBoost yields balanced detection across all fault
types, while GEMMA-3’s zero-shot, prompt-based classification is largely limited to majority-
class detection and fails to generalize to rare faults. These findings highlight the fundamental
trade-off between the flexibility of zero-shot LLMs and the reliability of supervised models,
motivating the improvements discussed in the next section.

5 Discussion and Limitations

Our results reveal a core trade-off in fault detection for cyber-physical systems: supervised
models like XGBoost achieve high accuracy across all classes (macro-F1 = 0.69) by leveraging
labeled data, while GEMMA-3 enables interpretable, multilingual zero-shot diagnostics
(macro-F1 = 0.24) without requiring any labeled faults. However, GEMMA-3 suffers from
majority-class bias and limited recall for rare anomalies.
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This performance gap underscores the limitations of zero-shot prompting when fault-
specific cues are weak or absent. Nonetheless, GEMMA-3 delivers natural language explana-
tions and can be deployed in settings where labeled data is scarce or unavailable, making it
a viable foundation for low-label diagnostic pipelines.

To improve zero-shot fault detection, we propose three extensions:
1. Enhance prompt engineering with explicit temporal and fault-indicative features.
2. Introduce few-shot prompts to provide representative fault exemplars during inference.
3. Incorporate retrieval-augmented generation (RAG) using domain-specific corpora

(e.g., technical manuals, field logs) to support root cause explanation.

In this study, we excluded RAG and fine-tuning to isolate the effects of prompt structure
and visual context. This allows us to establish GEMMA-FD as a reproducible zero-shot
baseline and benchmark for future hybrid approaches.

We also acknowledge the limitation of evaluating on a proprietary dataset. Future
work will expand to public HVAC datasets (e.g., UCI SECOM, AHU) and incorporate
unsupervised methods (e.g., Isolation Forest, LSTM Autoencoders) to assess generalizability
and complement LLM reasoning.

Our findings suggest that structured prompting with visual encodings provides a viable
entry point for fault detection in low-label regimes – but bridging the gap to robust deployment
will require hybrid approaches that combine LLMs with symbolic models, supervision, or
retrieval.

6 Conclusion and Outlook

We introduced GEMMA-FD, a zero-shot, prompt-based framework for fault detection in
heat pumps using open-weight, multimodal large language models. By converting sensor
data windows into structured text and visual inputs, our approach enables interpretable fault
classification without labeled anomalies or expert rules.

While GEMMA-3 shows promise as a flexible, label-free diagnostic tool, it underperforms
supervised methods like XGBoost in precision and recall, particularly for rare fault types.
This illustrates the core trade-off between generalization and accuracy in CPS fault detection.

Looking forward, we see strong potential in hybrid approaches that combine the inter-
pretability and accessibility of LLMs with the precision of supervised models. Enhancements
such as few-shot adaptation, prompt ensembling, and retrieval-augmented generation can
bridge current gaps and improve fault isolation and explanation in real-world deployments.
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