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—— Abstract

Conventional diagnostic systems often fail to account for temporal dynamics — such as duration,
frequency, or sequence of events — which are critical for accurate fault assessment. Existing solutions
that model time, like Dynamic Bayesian Networks (DBNs), typically suffer from computational
complexity and scalability issues.

This paper introduces a hybrid diagnostic architecture that integrates a standard Bayesian
Networks (BNs) with a powerful temporal reasoner R2U2 (Realizable Responsive Unobtrusive Unit).
By decoupling temporal logic from probabilistic inference, our approach allows the specialized R2U2
engine to efficiently process complex time-dependent conditions and provide nuanced inputs to the
BNs. The result is a more scalable, flexible, and robust framework for diagnosing failures in systems
where temporal behavior is a key factor. The paper will detail this architecture, its generation from
system models, and demonstrate its capabilities using a UAV electric powertrain example.
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1 Introduction

The ability to diagnose and resolve system malfunctions at their source is fundamental to
the reliability of any complex domain, a critical capability delivered by a robust diagnostics
framework. Although the term is frequently used interchangeably with Fault Detection
and Isolation (FDI), diagnostics is a distinct discipline; whereas FDI is concerned with the
identification and localization of a fault, diagnostics endeavors to determine the precise
nature and underlying cause of said failure. A comprehensive array of methodologies has
been developed to this end, spanning from elementary D-matrices that map test outcomes
to failure modes, to more sophisticated probabilistic models like Bayesian Networks (BNs)
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and data-driven techniques such as Deep Neural Networks (DNNs). These approaches are
broadly classifiable as either model-based, which depend on an explicit representation of the
system, or model-free, which derive their logic from empirical data. Moreover, the field of
diagnostics is intrinsically linked with system safety and reliability disciplines, such as Fault
Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA), frequently serving as
the mechanism for the practical detection of failure modes identified therein.

A considerable limitation inherent in many conventional diagnostic methodologies is
their static character; while effective in representing the direct causal relationships between
signals and failure modes, they inadequately incorporate temporal dynamics. These temporal
considerations are, however, often indispensable for an accurate diagnosis. For example,
a transient voltage fluctuation may be considered insignificant, yet the same condition
constitutes a valid fault if it persists for a specified minimum duration. Likewise, subsequent
to a change in a system’s operational mode, certain error conditions may be anticipated and
must be disregarded for a defined interval to preclude erroneous fault indications. Other
temporal patterns, such as the occurrence frequency of anomalous data packets or the specific
sequence of events, can alter the diagnostic output. Although solutions like Dynamic Bayesian
Networks (DBNs) attempt to model these time-dependent relationships, their application is
often hindered by computational complexity and model size, which increases as the network
is unrolled over time, and they exhibit limitations in efficiently managing disparate temporal
intervals.

To surmount these challenges, a hybrid R2U2/BN diagnosis system is proposed for
advanced model-based temporal diagnosis. This framework integrates three principal compo-
nents: a standard diagnostic Bayesian Network, a high-capability temporal reasoner (R2U2),
and the potential for incorporating requirements specified in natural language. The novelty
of this approach resides in the symbiotic integration wherein the BN’s inputs (test signals)
and its outputs (health-state nodes) serve as inputs for the R2U2 reasoner. This reasoner,
in turn, supplies temporally processed information to the BN. This architecture facilitates
robust temporal pre-processing, enabling the formulation of complex logical conditions, or
“temporal tests,” such as “the voltage remained below a threshold for at least 10 seconds
or “the lidar system’s health metric was below 0.7 for a minimum of 2 seconds.” The
R2U2 component employs synchronous observers for Future Time Logic (FTL) that utilize a
three-valued logic (true, false, maybe). When propagated to the BN, this three-valued input
provides more nuanced insights for diagnostic reasoning, thereby overcoming the scalability
and interval-management deficiencies characteristic of DBNs.

The motivation for this hybrid architecture arises from the inherent limitations of DBNs.
By embedding temporal relationships directly into the probabilistic graph, DBNs suffer
from state-space explosion and computational intractability, which complicates modeling
sophisticated temporal patterns. The proposed R2U2/BN system provides a more scalable
solution by decoupling temporal reasoning from probabilistic inference. This separation of
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concerns allows the Bayesian Network to remain a compact model of causal failures, while
the specialized R2U2 reasoner efficiently handles the full expressive power of temporal logic.
The resulting framework is therefore more flexible and robust for diagnosing systems where
complex temporal dynamics are a critical component of the process.

The rest of this paper systematically develops our proposed diagnostic architecture.
Section 2 provides the necessary background on diagnostic Bayesian networks and the R2U2
monitoring engine. With this foundation, Section 3 introduces our novel methodology,
explaining how we combine temporal monitors with Bayesian networks and how these models
are generated from FMEA. We then provide context by comparing our work to existing
research in Section 4, before offering a final summary and outlining future research avenues
in Section 5.
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2 Background

2.1 Diagnostic Bayesian Networks

As defined by Pearl [22], Bayesian Networks (BNs) are directed acyclic graphs that model
causal relationships between variables. In this framework, the nodes represent the variables
themselves, while the connecting arcs point from a cause to its direct effect. The probabilistic
strength of these causal links is captured by conditional probabilities. The example below,
also from [22], serves as a practical illustration of a BN in action.

Figure 1 shows a representative BN, where the complete joint probability distribution
p(z1, 22,23, 24, x5, x6) is the product of the conditional probabilities of each proposition
given its ancestors, Eq. (1).

p(x1,...,26) =p(xe|rs) p(as|re, £3) p(Ts]T1, T2, T3) P(23]21) P(22|21) P(2T1) (1)

The joint probability distribution could also be expressed with the following notation:

()

Figure 1 Example of directed acyclic graph used to create a Bayesian network.

n

p(@)=[[r(zla)) . (2)

Jj=1

where a; represents the set of ancestors of variable z;, and @ is the random vector containing
all variables x4, ..., 2, [23, 2]. For example, the term p(x4|z1, z2,23) becomes p(z4]ay).

Dependencies among propositions are described through the definition of sets of ancestors
(or parents) and descendants (or children). For example, the set {1, 22,23} contains the
ancestors of x4, while {x9, 23} contains the children of ;. This structural model allows
analysis over interventions, i.e., enable the computation of the joint probability density
function (pdf) conditioned on some specific assumptions over a specific variable in the
network [23]. Starting from the example in Figure 1, it is possible to evaluate the joint pdf
given, e.g., ro has been defined True:

Px,=1 (331,(E3, v 7‘/1"6) :p(l‘ﬁ‘l’s)p(deQ = 1,1’3)
p(134‘$17X2 = 17I3)p(x3|x1)
p(x1). (3)

A key challenge in applying Bayesian Networks is the effort required to assess all condi-
tional probabilities. Each node in the network needs a Conditional Probability Table (CPT)
that defines its state based on every possible combination of its parents’ values, meaning the
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table’s size grows combinatorially with the number of parents. For instance, while we can
represent an intervention like forcing X5 = 1 by simply removing the edge from its parent xq
(as its state no longer depends on z1, see Eq. (3)), the initial construction of such dependency
tables for networks with many interconnected nodes remains a significant practical obstacle.

2.2 The R2U2 Monitoring Engine

The real-time R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) has been devel-
oped to continuously monitor system and safety properties of an aerospace system. R2U2 has
been implemented as an FPGA configuration [10]. and a software component. Hierarchical
and modular models within this framework [27, 28] are defined using Metric Temporal Logic
(MTL) [13] and mission-time Linear Temporal Logic (LTL) [25] for expressing Boolean for-
mulas and temporal properties. In the following, we give a high-level overview over the R2U2
framework and its implementation. For details on temporal reasoning, its implementation,
and semantics the reader is referred to [25, 10, 28].

2.2.1 Temporal Logic Observers

LTL and MTL formulas consist of propositional variables, the logic operators A, V, =, or —,
and temporal operators to express temporal relationships between events.

R2U2 is capable of handling formulas for the past-time fragment of temporal logic as well
as future time. Below, we briefly describe future-time operators and their informal semantics.
For LTL formulas p,q, we have Op (ALWAYSp), Op (EVENTUALLY p), X'p (NEXTTIME p),
pUq (p UNTILq), and pRq (p RELEASES ¢q). Their formal definition and concise semantics
is given in [25]. On an informal level, given Boolean variables p, ¢, the temporal operators
have the following meaning (see also Figure 2):

Arways p (Op) means that p must be true at all times along the timeline.

EVENTUALLY p (Op) means that p must be true at some time, either now or in the future.

NEXTTIME p (Xp) means that p must be true in the next time step; in this paper a time
step is a tick of the system clock aboard the UAV.

p UNTIL ¢q (pU q) signifies that either ¢ is true now, at the current time, or else p is true
now and p will remain ¢rue consistently until a future time when ¢ must be ¢rue. Note
that ¢ must be true sometime; p cannot simply be true forever.

p RELEASES ¢ (pR q) signifies that either both p and ¢ are true now or ¢ is true now and
remains true unless there comes a time in the future when p is also true, i.e., p A q is
true. Note that in this case there is no requirement that p will ever become true; ¢ could
simply be true forever. The RELEASE operator is often thought of as a “button push”
operator: pushing button p triggers event —q.

For MTL, each of the temporal operators are accompanied by upper and lower time
bounds that express the time period during which the operator must hold. Specifically, MTL
includes the operators U; ;1 p, Opij) P, P Uji j) ¢, and p Ry, 51 g, where the temporal operator
applies over the interval between time i and time j, inclusive (Figure 2).

Additionally, we use a mission bounded variant of LTL [25] where these time bounds are
implied to be the start and end of the mission of a UAV. Throughout this paper, time steps
corresponds to ticks of the system clock. So, a time bound of [0, 7] would designate the time
bound between 0 and 7 ticks of the system clock from now. Note that this bound is relative
to “now” so that continuously monitoring a formula {7 p would produce true at every
time step ¢ for which p holds anytime between 0 and 7 time steps after ¢, and false otherwise.
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MTL Op Timeline

LTL Op Timeline
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Figure 2 Pictorial representation of LTL temporal operators and MTL operators.

3 Temporal Bayesian Diagnosis with Temporal Logic Monitors

Our approach for diagnostic reasoning with temporal elements is based upon the synergistic
combination of an efficient reasoning algorithm for Bayesian networks and the R2U2 temporal
engine.

3.1 Tool Architecture and Modeling Process

Figure 3 gives a high-level overview of the architecture for our approach. Input signals S,
which are obtained at time point ¢ from sensors, software sensors, the system status, and
outputs of our diagnostic BN are first going through a signal processing stage, where the
values, usually floating point numbers, are scaled and subjected to thresholding to obtain
Boolean values. In our architecture, the thresholds and range limits are model-based and
assumed to be fixed. For example, a floating point signal Up,s; might be thresholded using
Upatt < 18V to obtain the Boolean value Ubatt_low. Signal processing is carried out with a
fixed basic rate, e.g., 10Hz.

The vector of Boolean values B, for time ¢ are now input to the R2U2 monitoring engine.
Here, formulas in past-time and future-time logic are evaluated to yield Boolean or 3-valued
(see Section 3.5.1) valuations V; of each of the formulas at ¢. These outputs comprise the
output of our diagnostic system and are also fed into the diagnostic BN.

For example, the formula Ugp,Ubatt_low could correspond to a failure-mode “battery-
too-weak-unusable”. On the other hand, a formula [y, Ubatt_low would filter out short
drops or glitches of the battery voltage, and the result would be used as a value for an
observable sensor node in the BN.

At each point in time ¢, the BN is evaluated and posterior probabilities are calculated.
These probabilities for selected nodes correspond to the presence of failure modes or can
correspond to component health; these values are direct outputs for our diagnosis system.

These posterior probabilities can also provide valuable information, when considered over
time: for example, knowing if subsystem C' has a poor health H(C') < 0.3 for an extended
period of time. Therefore, selected values are fed back into the signal processing to be able
to formalize such temporal properties.

Our proposed diagnostic architecture is purely model-driven and contains no machine-
learning elements. The process steps for configuring and tailoring our tool is outlined in
Figure 4. We derive diagnostic information from a comprehensive suite of models that are
developed during the design phase of a complex and potentially autonomous system (see
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Figure 3 High-level representation of our diagnostics architecture.
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Figure 4 Development of the configuration for our hybrid diagnostic engine: The diagnostic BN
and the temporal monitors are developed and generated from system requirements, FMEA, Fault
trees, and other models and documentaton. After compilation for efficient execution both parts are
merged into the machine-executable configuration.

Table 1 for an overview). Most notably, functional decomposition models, fault trees, and the
outputs of a Failure Mode and Effects Analysis (FMEA) are used to automatically construct
the diagnostic Bayesian Network. The probabilities for the Bayesian transitions are informed
by a combination of metrics, including Mean Time To Failure (MTTF) and Mean Time
Between Failures (MTBF), as well as operational conditions, system health, and subject
matter expert (SME) expertise.

These models, together with system and component requirements, Concept of Operations
(ConOPS), and safety/performance requirements are used to define the logic and temporal
monitors for R2U2. In the following sections, we describe in detail how the BN and temporal
monitors are constructed, before we discuss a realistic example.

3.2 BN Construction from Failure Mode and Effects Analysis (FMEA)

To develop an effective system-level diagnosis framework under uncertain conditions, we
integrate information from a Failure Mode and Effects Analysis (FMEA) with a Bayesian
Network (BN). This process unfolds in two main stages: first, we construct the graphical
structure of the BN, and second, we define its conditional probability tables (CPTs) which
quantify the relationships between different failure events.

The initial stage involves building the network’s structure by translating the qualitative
FMEA data into the BN’s components. Then systematically convert the identified causes,
failure modes, and effects from the FMEA into nodes within the network. This includes
creating “observable” nodes that represent real-world sensor data — such as a high-temperature
reading — which are critical for identifying and isolating the root cause of a failure. The
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Table 1 Types of models typically used for an autonomous aerospace system like a UAV
(from [26]).

Model Context Description

Effect Fault Propagation Model Functions cross referenced in fault propaga-
tion model. This is used to capture the func-
tional degradation due to the presence of one
or more fault(s).

Implementation Functional Decomposition | Reference to blocks in the system model that

Model

implement one or more function(s) in the
functional decomposition model.

Ambiguity Set

Fault Impact, Refinement
Model

Represents a set of faults which cannot be
distinguished based on the triggering Tests.

Operational Im-
pact

Fault Impact,
Plan

Recovery

Reference to system variables and changes in
their operating range.

Requirement Active Diagnosis Proce- | Conditions on system variables in order to ex-
dures, Recovery Plan ecute active diagnosis procedures or recovery
plans.
Mode Require- | Active Diagnosis Proce- | Conditions on system modes in order to exe-
ment dures, Recovery plan cute active diagnosis procedures or recovery
plans.
TestRefs Active Diagnosis Proce- | Additional tests that can be evaluated when
dures an active diagnosis procedure is executed.
Trigger Condi- | Recovery Plan A set of faults related to triggering a recov-
tion ery plan. Any of the faults in the triggering

condition may be handled using the recovery
plan.

Mode Change

Recovery Plan

Mode change introduced by executing a re-
covery plan.

network is then assembled by drawing directed arcs that reflect the causal logic from the
FMEA, pointing from causes to their resulting failure modes and from failure modes to their
ultimate effects. A simple example of a BN structure build from FMEA of an UAV electric
powertrain is shown in Fig.5 for illustration.

Ve

MOSFET—

Figure 5 Example of a simple BN structure build from FMEA of UAV electric powertrain.
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Table 2 Example of conditional probability table for a fault event with two known root causes.

X1 i) f

0 1
0 0 Pojoo  Pijoo
0 1 Pojo1  Pijo1
10 poio Pijo
1 1 Pojr1 P11

With the Bayesian Network (BN) structure in place, we then assign probabilities to each
node. First, root nodes (those with no parent nodes) are given prior marginal probabilities.
Next, every other node is assigned a conditional probability based on its parent nodes, using
information derived from the FMEA. To determine these values, we can draw from several
sources, including historical failure data, the expertise of engineers, or established techniques
such as maximum entropy theory [11].

Once the BN is fully defined, it can be used to detect and localize a fault within a complex
system by turning observable nodes to True or False. The process starts when an observable
evidence node, or “symptom,” is triggered — for example, when a sensor value exceeds a set
threshold. This new evidence is fed into the network, which then uses Bayesian inference
to update the probability of every potential root cause. The cause that emerges with the
highest failure probability is identified as the source of the fault. We will address potential
complicating factors, such as environmental conditions and false alarms, in the next section.

3.3 Detailed Modeling Approach and Issues

The dependency among elements in FMEAs do not have to be restricted to deterministic
relationships in BNs [2], and this property intrinsically enhances the modeling of the diagnostic
system. Let us consider, for simplicity, a fault event f with two root causes, its ancestors,
x1 and xo. Table 2 is the conditional probability table of the model, where probabilities
are defined through three binary subscripts 4, j, k& € {0,1}. The term py;; defines the
probability of the outcome k given values 4, j, with k referring to the fault event f and i, j
referring to its ancestors x; and xs. For example, pijgo is the probability that f =1 given
both ancestors x;, xo are 0 (or False).

The fault event may happen, with low probability, because of external causes or unknown
events not described by its ancestors. Such external forcing was called Common Cause
Failures in [2], and following that idea, p19o > 0, and so pgjgg = 1 — p1j9o. On the opposite
side of the spectrum, the fault event may not happen even if both ancestors are activated
(true). This option describes the ability of a system to work partially or reconfigure, [2], or
describes a statistical relationship between the three elements, suggesting that root causes
do not deterministically trigger the failure, so pyj;1 < 1. As a result, the two ancestors
may occur without triggering the fault event, so pg11 > 0 and pyj11 =1 — pgj1 1. Different
ancestors may influence the fault event in different ways, e.g. according to the severity of the
root cause. This properties can be easily embedded in the network by assigning different
values to the probabilities conditioned over {X; =1, X5 =0} and {X; =0, X5 = 1}.

In addition to the cases of failures induced by external variables or prevented system
reconfiguration, the BN should also account for the performance of the measuring and/or
detection system. In the proposed architecture, the evidence used to perform inference
over the network is collected through sensors that measure variables connected (directly or
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indirectly) to the fault event we aim to detect. The sensor performance or, similarly, the
ability of the detection system to identify anomalous sensor data, should be embedded in the
estimation of the CPT values. Reconnecting to the previous example, therefore, the element
Pojoo in Table 2 should account for false alarm rates, and p;j;; should include, on top of any
statistical relationship between the elements, the probability of mis-detection.

3.4 Efficient Evaluation of BN

Different BN inference algorithms can be used to compute a posterior probabilities. These
algorithms include junction tree propagation [14, 12, 29] conditioning [8], variable elimination
[17, 30], stochastic local search [21, 19], and arithmetic circuit evaluation [9, 5].

We select arithmetic circuit (AC) evaluation as our inference algorithm, which compiles
our diagnostic BN into an arithmetic circuit. Especially for real-time aerospace systems,
where there is a strong need to align the resource consumption of diagnostic computation to
resource bounds [20, 18] algorithms based upon arithmetic circuit evaluation are powerful,
as they provide predictable real-time performance [5]. An arithmetic circuit is a directed
acyclic graph (DAG) in which the leaf nodes A represent parameters and indicators while
other nodes represent addition and multiplication operators. Figure 6 shows a small BN and
its corresponding AC.

Figure 6 Small diagnostic Bayesian Network (A) and the corresponding arithmetic circuit (B)
(from [3]).

Posterior marginals in a Bayesian Network can be computed from the joint distribution
over all variables X; € X:

p(Xl,XQ, .. ) = H)\g; H 91;‘“
Az Oz|u

where 0., are the parameters of the Bayesian network, i.e., the conditional probabilities
that a variable X is in state x given that its parents U are in the joint state u, i.e.,
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p(X = z|U = u). Further, )\, indicates whether or not state z is consistent with BN inputs
or evidence. For efficient calculation, we rewrite the joint distribution into the corresponding
network polynomial f [9]:

X Az

Oz|u

An arithmetic circuit is a compact representation of a network polynomial [7] which, in
its in-compact form, is exponential in size and thus unrealistic in the general case. Hence,
answers to probabilistic queries, including marginals and most probable explanations (MPEs),
are computed using algorithms that operate directly on the arithmetic circuit. The marginal
probability (see Corollary 1 in [9]) for « given evidence e is calculated as

1 of
~ Pr(e) W (e)

Pr(z|e)

where Pr(e) is the probability of the evidence e. In a bottom-up pass over the circuit, the
probability of a particular evidence setting (or clamping of A parameters) is evaluated. A
subsequent top-down pass over the circuit computes the partial derivatives ;TJ;.

To evaluate the developed Bayesian Network (BN), we utilized the Samlam software
package [6]. Samlam is a powerful, Java-based tool from UCLA that provides a comprehensive
environment for modeling and reasoning with BNs. It includes a graphical user interface for
building network models and a robust reasoning engine. This engine supports various critical
functions, including classical inference, parameter estimation, sensitivity analysis (to assess
how changes in one node affect the entire network), and the computation of Most Probable
Explanations (MPE) [9, 7].
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Figure 7 Evaluation of the BN using the tool Samlam [6].

We applied this framework to the powertrain BN, as shown in the schematic of Fig. 7.
In our evaluation, the sensor nodes are observable and clamped to their current values. The
resulting posterior probabilities of the other nodes are then calculated. For instance, in the
scenario depicted, all sensor readings are nominal except for an abnormal motor current, I,,.
The BN correctly infers a high posterior probability for the “bad motor bearing” fault mode,
identifying it as the likely root cause. It is important to note that this specific example does
not incorporate temporal monitors.

3.5 Defining Temporal Monitors

R2U2 monitors are used in our architecture to pre-process sensor signals (e.g., by thresholding)
and to watch conditions in sensor signals and outputs of the BN over time. In order to allow
simple signal processing, the input language for R2U2 can, in addition to Boolean Variables,
contain arithmetic expressions, like Upq; > 21.0V.
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For diagnostic purposes, there exist a number of different kinds of monitor patterns,
including (see also Table 3):
Thresholding: such monitors perform simple signal processing tasks and determine if the
current signal value is above or below a certain threshold, or is within a given range.
Persistency: a condition is considered to be persistent if it is consecutively true for at least n
time steps: [0, C. Such formulas are used to filter out short dropout or nuisance signals.

Conditions: failure conditions might be only considered, when certain conditions hold, e.g.,
when the system is in a specific mode.

Transient blocking: upon a change in the system (e.g., a mode change), a failure condition
is blocked during a certain temporal interval

Occurrence: these types of monitors can determine if a signal or event occurs more than n
times within a given interval. This type of monitors can be used to trigger events based
upon failure rates, e.g., there should not be more than 3 ill-formed data packets within a
10s interval.

Expectations: these kinds of formulas can be used to monitor if certain events occur before,
during, or after a certain triggering event or condition. E.g., after touchdown, the engine
RPM should be within 30 seconds below 10s71.

Each of the variables of these formulas can be Boolean’s obtained by thresholding sensor
signals or the posterior probabilities of the failure-mode nodes of the diagnostic BN. This
capability allows use to write monitors, which depend on diagnoses. E.g., if the health of a
lidar sensor has been poor for at least the last minute, then only large measurement errors
causes the triggering of a failure mode. Such formulas can be used to customize the diagnosis
system based upon current diagnostic results and health status. If a subsystem has been
diagnosed with a poor health, it might be necessary to tolerate larger error margins in order
to avoid cascading of failure conditions.

Table 3 Typical temporal formulas for monitoring used in our example. Formulas are given in
past time (PT) or future time logic (FT).

’ Formula ‘ L ‘ description

Vi = OiminUsart < 12V PT | battery low voltage V; test succeeds,
if the battery voltage is lower than
12V continuously for at least the
last minute

MR := spin_motor — Q10secArpar > 100 FT | when motor is started, we expect
an increase in RPM of at least 100
within the next 10 seconds

HT := =strong__climb A OiminT > 200F PT | the motor should not be overly hot
for a longer period of time except
when in strong climb mode

B := =batt_overheat A ~O10min—Voarr < 12V FT | the battery is not overheated and
within the next 10 minutes, the bat-
tery voltage shall not fall below 12V

LB := UOiminH(lidar) < 0.5 PT | The LIDAR sensor is diagnosed as
bad, if it had poor health for more
than one consecutive minute

crit := Oiomin Veatt < 12V AQ1minH (lidar) < 0.5 | PT | the battery voltage has been low for
the last 10 minutes and the LIDAR
sensor is unhealthy
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3.56.1 Synchronous Observers

Besides the (asynchronous) temporal observers described in Section 3.5 for past time and
future time linear temporal logic, R2U2 also provides synchronous observers for future time
logic. Whereas the observers for ptLTL can be valuated at each point in time, future-time
observers might need to be valuated at a later time, because R2U2 cannot look into the
future. For example, the ftLTL formula Q[19,p cannot be valuated at the beginning of the
interval, because it is not yet known if p will become true within the next 10 seconds. Thus,
this formula can, in the worst case, only valuated after 10 seconds. R2U2 provides that
information, but the use of ftLTL formulas for monitoring is not suitable for our application.

In contrast, synchronous observers can be valuated at each point in time. Introduced
in [24], they return one of three possible values: false, maybe, true. Their highly efficient
implementation in R2U2 makes them an ideal candidate for temporal monitors. In addition,
the three-values logic values can be directly carried over to the diagnostic Bayesian network.
Here, the observable sensor nodes now get a third state labeled “maybe”.

Its usefulness for diagnostic reasoning with synchronous future temporal monitors becomes
evident when we look at the following example. Encoding a monitor for “the UAV shall
reach an altitude of 300ft within 20 seconds if the ESC status is OK” as

M := (ESC == ok) A Qjgos (alt > 300ft)

provides valuable information at any point in time. Whereas the asynchronous observer
can only valuated after 20 seconds, the synchronous observer returns “maybe” even at the
beginning of the interval, indicating that the UAV can still reach the required altitude. Only
in the case, the ESC is not working, or the 20 second interval has passed, “false” is returned.
This additional piece of instantaneous information can be used to improve the diagnosis and
can also support autonomous decision-making: in the “maybe”-case, the flight might be
continued if the additional risk can be justified, whereas the “false” will need to cause an
abortion of the mission right away.

3.6 Practical Example

We illustrate our approach with a simple model of an electric powertrain for a UAS system.
As shown in Figure 8A, the system consists of a li-ion battery B, the brushless dc motor M
(only one shown here), and the electronic speed control ESC. For each of the components,
we measure temperature 7', voltage V and current I. In the high-fidelity simulator, which
uses physical and electro-chemical models, measurements are obtained in 10 second intervals.
Figure 8B shows the measurement signals which are typical for a nominal situation, where
between ¢ = 900s and ¢t = 1800s the motor load is increased, leading to increased currents I
and a slight rise in battery temperature. The battery voltage slowly decreases as the battery
discharges as load decreases based on operational modes. Toward the end of the scenario,
the battery is near-empty and discharges very quickly.

In the nominal scenario, voltages and currents at each component are the same. As shown
in Figure 5, our diagnostic BN has input nodes for temperatures, currents, and voltages,
and is capable of diagnosing battery-related issues (thermal runaway, low state-of-charge,
low state-of-health),, motor issues (bearing problems and change in the resistance of the
motor winding), as well as in the electronic controller (power MOSFET electronics, or
pulse-width-modulation (PWM) issues).

Figure 9 shows the original nominal signals for the battery, their discretizations with
R2U2, as well as the posterior probabilities for the SOC and SOH nodes. Most significantly,
a Viate < 21.0V is considered low battery voltage (V_batt_low) and V_batt_nom is a battery
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Figure 8 Electric Drive Train for a UAS: schematic (A), and sensor values for a nominal
scenario (B).

voltage between 20V and 26V. The figure shows that with lower voltage through increased
load, and through discharge, the BN nodes for SOC and SOH change, indicating a low
state of charge. Toward the end of the scenario, the battery is drained and the voltage
goes off-nominal. For this scenario, a simple BN is sufficient and no temporal operators are
necessary. In the next scenario, however, we need to deal with noisy signals: the battery
voltage signal can have drop-outs of up to 30 seconds. These dropouts, however, should not
count toward a highly discharged battery. In our framework, we subject the battery voltage
signal to the R2U2 formula

V_batt_low:= |:|07308(‘/bl1tt < 210V)

The noise in Figure 9 has been eliminated properly. If we want to filter out longer-lasting
periods of low voltage, like the time between ¢ = 900s and ¢ = 1800s in Figure 8B, the
R2U2 formula just needs to be adjusted; the additional memory overhead for processing the
temporal formula is minimal (just a ring buffer for 90 integer variables). This is in stark

contrast to using a dynamic BN, which would require to replicate the basic network 90 times.

24v
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Figure 9 Nominal scenario without and with noisy Vie:: signal. Temperature development (not
shown) is identical to the curve shown in Figure 8B.

13:13

DX 2025



13:14

Beyond Dynamic Bayesian Networks

Figure 10 illustrates a diagnostic scenario in which the order of events is important.
Initially, a flight is operating under nominal conditions. After some time, the motor current
(I,) begins to increase while the voltage (V;,,) stays constant. In response, the Bayesian
Network (BN) diagnoses a potential issue with the motor’s bearing or winding. The resulting
increase in friction and current then causes the motor temperature (7,,,) to rise. Once T),
surpasses a critical threshold, the posterior probability for both “bearing” and “winding”
failures becomes very high. This clearly points to a motor malfunction, but a static BN that
fails to consider the sequence of events cannot differentiate between these two failure modes,
leading to an ambiguous diagnosis.

In our framework, we add a past-time temporal formula to the output of the BN:

Bearing := (D[O,IOS](Pbearing >0.7A Pwinding > 0'7)8[0,10]0:'[0,203] Pbearing > 07)

\A Vi
Vi, Vin
I I
T
Th m
10 10
Pge@ —— Pge@ B
1| —— ol ©
PE@ i Py —
r Tt
01| — ug
0 20 40 60 80
A 0 20 40 60 80 B timels]

Figure 10 Failure scenarios (starting at t=30s). A: A faulty bearing causes an extended power
draw (I, high) and a drop in battery voltage. At t=60s, an overheating occurs (75, too high).
Probabilities for issues with the bearing and winding are high, making it impossible for the BN to
find the correct cause. The R2U2 result shows the correct result; the delay caused by the [J operator.
B: failure of the winding. Again, the temporal formula is used to disambiguate the failure situation.

Only if an issue with the motor bearing has been flagged continuously for at least 100s
and then, within 10 seconds, the bearing and the winding issues are flagged at the same time
for at least 20 seconds, we can disambiguate the situation and infer that the bearing issue is
the root cause. The 10 second grace time of the temporal “S” (Since) operator is used to
minimize transient effects observed due to change in operational modes.

The symmetric R2U2 formula for the winding issue would look like:

Winding = (D[O,IOS] (Pbearing >0.7A Pwinding > 0-7)5[0,10](D[O,ZOS]Pwinding > 07)

Figure 10 shows traces for both scenarios. Although a single DBN would be capable
of modeling this situation, the complex temporal dependencies would require a large and
complex DBN.

4 Related Work

Previous work has extensively utilized dynamic Bayesian networks (DBNs) for system
diagnosis and reliability assessment. Addressing the shortcomings of traditional model-based
approaches, Lerner et al. [15] proposed using a temporal causal graph (TCG) to structure a
DBN for representing dynamic variable relationships. This DBN framework has been applied
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to several domains. In the field of reliability engineering, Lewis et al. [16] demonstrated
the use of DBNs for risk assessment and highlighted the importance of modeling the health
state of complex systems. Other related research includes the work of Arocha et al. [1],
who developed a method for identifying reasoning strategies in medical applications through
cognitive-semantic analysis.

In contrast to our approach, which prioritizes network size and efficiency, the methodology
presented by Cai et al [4]. illustrates the trade-offs inherent in using Dynamic Bayesian
Networks (DBNs). Their work effectively addresses the challenge of diagnosing complex
temporal faults — including transient, intermittent, and permanent failures — by explicitly
modeling a system’s dynamic degradation over time. To achieve this, their DBN employs
Markov chains, which replicate the network structure across multiple time slices. While this
allows them to classify fault types based on evolving posterior probabilities, this replication
is precisely what leads to significantly larger and more computationally intensive models — a
complexity our architecture is designed to avoid.

5 Conclusions

In this paper, we have introduced a powerful diagnostic system that successfully untangles
temporal dynamics from probabilistic reasoning. Our key innovation — decoupling the R2U2
temporal monitoring engine from a static Bayesian Network (BN) — offers the best of both
worlds: highly efficient evaluation of complex temporal conditions without the exponential
complexity and network replication inherent in traditional Dynamic BNs. This ensures the
core diagnostic model remains compact, transparent, and easy to maintain.

Looking ahead, our work will focus on making the developed methodology more accessible
and robust for additional complex systems. The most critical next step is to streamline
the modeling process itself. We will achieve this by integrating FRET, an open-source tool
that automatically translates requirements written in structured natural language to formal
temporal logic. This will dramatically accelerate development and eliminate the error-prone
task of manual formula definition. Simultaneously, we will refine the automated generation
of the Bayesian Network, deepening its integration with industry-standard modeling and
analysis tools to create a seamless, end-to-end diagnostic framework.
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