
The DX Competition 2025 and Its Benchmarks
Ingo Pill1 # Ñ

Institute of Software Engineering and Artificial Intelligence, TU Graz, Austria

Daniel Jung2 # Ñ

Department of Electrical Engineering, Linköping University, Sweden

Eldin Kurudzija3 #

Institute of Space Propulsion, German Aerospace Center (DLR), Köln, Germany

Anna Sztyber-Betley4 #

Warsaw University of Technology, Poland

Michał Syfert #

Warsaw University of Technology, Poland

Kai Dresia #

Institute of Space Propulsion, German Aerospace Center (DLR), Lampoldhausen, Germany

Günther Waxenegger-Wilfing #

Institute of Space Propulsion, German Aerospace Center (DLR), Hardthausen am Kocher, Germany
Institute of Computer Science, University of Würzburg, Germany

Johan de Kleer5 # Ñ

c-infinity, Mountain View, CA, USA

Abstract
Fault diagnosis has been addressed in many research communities, leading to a variety of available
fault diagnosis techniques. Deciding as a user which fault diagnosis methods are suitable for a
specific application is thus a nontrivial task. Benchmarks can provide the community with a holistic
understanding of the landscape of newly developed and available fault diagnosis methods when
making this decision. After a long hiatus, we revived the DX Competition with three fault diagnosis
benchmarks: SLIDe, LUMEN, and LiU-ICE. The purpose of the benchmarks is to inspire fault
diagnosis research with challenging problems in cyber-physical systems relevant for industry. The
benchmarks share a common code structure and we used similar performance metrics in order to
simplify the adaptation of diagnosis system solutions to the different case studies.

2012 ACM Subject Classification Computing methodologies → Causal reasoning and diagnostics

Keywords and phrases Diagnosis, Algorithms, Evaluation

Digital Object Identifier 10.4230/OASIcs.DX.2025.14

Category DX Competition

Supplementary Material
Other (DXC’25 Homepage): https://conf.researchr.org/home/dx-2025#Competition
Other (DXC’25 Benchmarks, incl. Datasets and Instructions): https://vehsys.gitlab-pages.liu.
se/dx25benchmarks/

1 Chair DX Competition 2025
2 Chair LiU-ICE Benchmark
3 Chair LUMEN Benchmark
4 Chair SLIDe Benchmark
5 Co-Chair DX Competition 2025

© Ingo Pill, Daniel Jung, Eldin Kurudzija, Anna Sztyber-Betley, Michał Syfert, Kai Dresia,
Günther Waxenegger-Wilfing, and Johan de Kleer;
licensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 14; pp. 14:1–14:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ingo.pill@gmail.com
http://www.ist.tugraz.at/pill
https://orcid.org/0000-0002-8420-6377
mailto:daniel.jung@liu.se
https://liu.se/medarbetare/daner29
https://orcid.org/0000-0003-0808-052X
mailto:eldin.kurudzija@dlr.de
https://orcid.org/0000-0001-5409-3845
mailto:anna.sztyber@pw.edu.pl
https://orcid.org/0000-0002-6464-8194
mailto:michal.syfert@pw.edu.pl
https://orcid.org/0000-0001-7741-607X
mailto:kai.dresia@dlr.de
https://orcid.org/0000-0003-3229-5184
mailto:guenther.waxenegger@dlr.de
https://orcid.org/0000-0001-5381-6431
mailto:johan@c-infinity.ai
http://www.c-infinity.ai
https://orcid.org/0000-0002-0465-7566
https://doi.org/10.4230/OASIcs.DX.2025.14
https://conf.researchr.org/home/dx-2025#Competition
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

14:2 The DX Competition 2025 and Its Benchmarks

Acknowledgements We would like to thank all of our colleagues who contributed to making the DX
Competition 2025 happen and who worked with us on the benchmarks. This includes in particular
Erik Frisk, Mattias Krysander, Tobias Lindell, Tobias Traudt, Jan Deeken, Justin Hardi, Stefan
Schlechtriem, Michael Börner, Dmitry Suslov, Robson dos Santos Hahn, Sebastian Klein, Wolfgang
Armbruster, Jan Haemisch, Christopher Groll, Max Axel Müller, and Vincent Bareiß.

1 Introduction

Reasoning about the root causes for an encountered problem is a common task. Whenever
an order is not delivered, our car does not start, a program does not work, our multimedia
system stops working, when we feel ill, and in many other situations we are interested in the
reasons why something was or is not working as expected. Only once we know the source of
the problem can we begin to effectively address and solve it to mitigate the issue.

Diagnosis algorithms address this need, in that they tell us exactly which sets of mal-
functioning parts in a system can explain the unexpected behavior. The corresponding
approaches are sometimes dedicated to very specific scenarios [33, 38] and exploit specific
aspects of a diagnostic problem [35], but most concepts are general enough to be applicable
to a wide variety of systems. Whenever we refer to systems, we do so in the most abstract
sense in that we mean actually any artifact that we can reason about. The system targeted
by a diagnostic process might thus be digital, logical, analog, mechanical, cyber-physical,
biological, ecological, ethical, and economical, or it could also refer to, for instance, a social
system, a supply chain, or a process.

Thus, many research communities have been working on concepts and algorithms for
fault diagnosis, and they have been doing so based on a diverse set of underlying techniques.
This led to a large variety of available approaches that range from symbolic [42, 34, 7] to
sub-symbolic [25, 1], hybrid [28] and statistical [5, 36] ones, and which potentially aim at
diagnosing a single [34] or multiple [39] scenarios. In rare cases, they target even the isolation
of all faults that are present in a system [37] by generating and considering data that are
hopefully representative enough. Deciding as a user which fault diagnosis methods are suitable
for a specific application is thus a nontrivial task, and it is certainly not as straightforward
as it might look at first glance. In particular, we have to take into account that all methods
come with their own individual ramifications in terms of resource expenditure, required
knowledge, and achievable performance. Each solution is based on hidden assumptions, see,
e.g. [20], which affect the quality of the results computed in a given scenario.

One solution for providing the community with a holistic understanding of the landscape
of available and newly developed methods is the use of well-formulated benchmarks. They
allow the scientific community to propose different solutions to diagnostic systems and draw
on a well-founded comparison option to evaluate their performance. As we shall discuss in
Section 2, there is a variety of such benchmarks available. Individual papers tend to use
only a subset of those, usually in combination with paper-specific benchmarks. Furthermore,
we have to take into account that the computation hardware as well as available tools (like
SMT/SAT/constraint solvers or simulators) change significantly over time. All of these
aspects make it hard to maintain an accurate picture of old and new proposals. So, when
Reiter argued in his seminal paper [42] that solvers are too slow to search for diagnoses directly
(so not taking conflicts into account), he did not anticipate the technological evolution that
we have experienced since then and that allowed the advent of corresponding solutions [27]
with very competitive performance [30].

I. Pill et al. 14:3

After a long hiatus, we thus revived the DX Competition6, which is an important source
for evaluating new and old algorithms and putting their performance into perspective. In
2025, we started DXC’25 with a set of three benchmarks that focus on three individual
cyber-physical systems. As we explain in individual sections, the three case studies7 combine
different diagnosis tasks, and they feature different properties, as summarized in Table 1.

Table 1 Characteristics of the DXC’25 benchmarks.

SLIDe LUMEN LiU-ICE
application steam line rocket engine combustion engine

docker container available Y Y Y
real/artificial data A A R

natural/injected faults I I I
attacks Y N N

intermittent faults N Y N
discrete/continuous C C C

fault data/system data/ FD, SD FD, SD, SIM FD, SD
simulator
challenges diag, nonlinear diag, nonlinear, sim2real diag, nonlinear

As we can see from the table, the benchmarks focus on persistent faults and cyber-attacks
in a variety of continuous nonlinear systems. For some, a simulator is available so that a
user can also create their own behavioral samples. For others, real and/or artificial data are
provided. All the technical details are available from our DXC’25 benchmark repository, so
that a reader may test their own solutions for all the benchmarks described in this paper.

The outline of this paper is as follows. First, related research and other fault diagnosis
benchmarks are discussed in Section 2. Then, presentations of each of the three DX
benchmarks are given: including a system description, a presentation of considered fault
scenarios, and provided resources. The case study SLIDe is presented in Section 3, LUMEN
in Section 4, and LiU-ICE in Section 5. A description of the benchmark implementation
environments is presented in Section 6 and the evaluation metrics used in the benchmarks
are summarized in Section 7. Finally, a summary is given in Section 8.

2 Related research

Various fault diagnosis benchmarks have been proposed. In contrast to text or vision
processing, technical fault diagnosis research still suffers due to data scarcity. This is
mainly attributed to two causes. First, industrial datasets often cannot be shared due to
confidentiality concerns. Second, fault diagnosis is a field of anomaly detection, where the
number of normal samples is significantly larger than the number of faulty samples. Therefore,
the community can still largely benefit from developing new benchmarks.

DX Community is grounded in logical and model-based approaches [42]. With the
advances in machine learning, the community is integrating data-driven approaches. As
pointed out in [56], industrial machine learning research (including fault diagnosis) must
carefully follow principles to achieve reliable results. One of the crucial aspects is the use of

6 https://conf.researchr.org/home/dx-2025#Competition
7 available from https://vehsys.gitlab-pages.liu.se/dx25benchmarks/

DX 2025

https://conf.researchr.org/home/dx-2025#Competition
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/

14:4 The DX Competition 2025 and Its Benchmarks

held-out test sets. It makes competitions particularly useful for the evaluation of the proposed
algorithms. The study in [19] showed that the performance of the solutions in the competition
had a clear connection to the assumptions made about different faults in the design of the
diagnostic system. Existing benchmarks, while helpful, carry the risk of overfitting to the
test set. This effect was observed in the recent Safeprocess competition [17, 18] based
on an internal combustion engine, where the results on the training data were generally
overestimating the results on the held-out evaluation set.

There are several benchmarks that have been widely adopted in the fault diagnosis
community. The Tennessee Eastman Process (TEP) [8] dataset is a simulation of a chemical
process widely used for control and diagnosis research. DAMADICS benchmark [3] is a study
of the intelligent industrial actuator. The CWRU dataset [45] serves for the comparison of
fault diagnosis of rolling bearings. NASA Ames developed the Advanced Diagnostics and
Prognostics Testbed [41] that has been used for benchmarks and competitions; see, e.g.,
[22]. NASA’s Prognostics Data Repository8 is a collection of datasets for prognostics and
health management. It is a valuable resource for remaining useful life (RUL) prediction
benchmarking. A simulation-based wind turbine benchmark is proposed for fault diagnosis
and fault-tolerant control in [32]. The results of six participants in a competition using the
wind turbine benchmark are summarized in [31].

Recently, a few benchmarks were proposed inside the DX community. A leak detection
and localisation benchmark, including structural model of water distribution network, and
simulated dataset, was proposed in [51, 50]. An ensemble of benchmarks based on simulated
tank systems was presented in [2]. The set requirements for AI benchmarks in the domain
of Cyber-Physical Production Systems were formulated in [11], additionally introducing a
comprehensive benchmark, offering applicability on diagnosis, reconfiguration, and planning
approaches. A TuLAUT (Theory and Teaching of Automation Technology) website9 provides
a curated collection of industrial datasets, including many fault diagnosis datasets.

The DX Competition has a history of successful editions [22, 21, 40, 47, 13], including
synthetic track based on faults injected into ISCAS85 circuits, industrial tracks ADAPT
and ADAPT-Lite, based on the Electrical Power System (EPS) testbed, software track, and
thermal fluid track, which presented problems in a building’s heating, ventilation, and air
conditioning (HVAC) domain. DXC competitions gave rise to or helped evaluate numerous
diagnostic algorithms, including FACT [43], HyDE [29], LYDIA [14], ProADAPT [26]
RODON [24], and Wizards of Oz [16].

The range of problems covered in fault diagnosis benchmarks is extensive (from software
and digital circuits to continuous processes from various domains), but it is still far from
exhaustive. The benchmarks vary in complexity and the task (diagnosis, prognosis, planning).
Due to data scarcity, primarily covering data with faults, many of the benchmarks rely
on simulated data. There is a lack of benchmarks offering data and a structured process
description.

3 SLIDe

SLIDe (Steam Line Intrusion Detection Benchmark) benchmark is devoted to the analysis of
diagnostic algorithms for the detection and isolation of process faults and the detection of
cyberattacks on a simulated fragment of the steam line of a fluidized bed boiler including

8 https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/
pcoe-data-set-repository/

9 https://tulaut.github.io/

https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://tulaut.github.io/

I. Pill et al. 14:5

the third and fourth stage of superheaters. It includes challenging scenarios that exhibit
sensor, actuator, and technological component faults as well as cyberattacks. To reflect the
industrial nature of the benchmark, we provide only a qualitative description of the process
with a list of measurements and a few prepared datasets representing different operating
conditions, but only for fault-free and attack-free states.

The 2-stages steam line superheaters simulator models the processes within the boiler
of a power unit. In each of these sections, there is an attemperator, a superheater, and
a cascade controller – the main controller controls the temperature of the steam after the
superheater, while the auxiliary controller, which controls the injection water valve, controls
the temperature after the cooler. The schematic diagram of the process is shown in Figure 1.

Figure 1 Process block diagram.

The benchmark simulator is implemented in Matlab. Control and measured variables are
shown in Figure 2. B denotes the fuel inflow to the boiler, F steam flows, T temperatures,
G positions of the injection valves, SP set points, and CV control signals. Figure 2 shows
traces of control loops and process variables.

(a) Control loops. (b) Process variables.

Figure 2 Control loops and process variables.

DX 2025

14:6 The DX Competition 2025 and Its Benchmarks

3.1 Process faults
The benchmark includes 16 process and sensor faults. The symbolic locations where process
faults can be introduced are shown in Figure 3.

Figure 3 Symbolic designation of types and places of introduction of process faults.

Process faults are divided into the following types according to the entry points:
pfS : Incorrect operation of the measurement signal path.
pfA: Faulty operation of the actuator.
pfCV : Control signal path malfunction.
pfC : Technological component fault.

3.2 Cyber-attacks
Each cyber attack is carried out according to a designed scenario – a specific method of
attack. Such a scenario consists of elementary impacts on individual system elements and
signals in communication channels called cyber faults. The symbolic locations for introducing
cyber faults in the simulator are shown in Figure 4.

Figure 4 Symbolic designation of types and places of introduction of cyber faults.

We consider the following types of cyberattacks:
cfC – attack on the controller (change of operating mode, change of parameters),
cfSP – modification of set-points,
cfCV – modification of control variables,
cfP V – modification of controlled variables,
cfA – attack on the actuator (blockage, modification of operation, changes of operating
parameters).

Cyber faults should be isolated to the specific control loop, i.e. the competitor’s task is
to detect cyber faults and say which control loop is affected. It is possible for more than one
control loop to be affected by the same cyber-attack scenario. It is not necessary to isolate
the cyber fault to the specific component.

I. Pill et al. 14:7

3.3 Additional resources

Training datasets are available at the competition website10. Training and evaluation data
from the previous version of the benchmark are available [48]. Exemplary algorithms for
fault and cyber-attack detection and isolation can be found in [49, 53, 52].

4 LUMEN

Early launch vehicles such as the American Saturn 5 or the European rocket family Ariane,
were expendable. Diagnostics therefore focused on pre-flight tests and post-test evaluations
while no sophisticated system was used on-board. However, as the space industry shifts
towards reusability and cost reduction, on-board diagnostic systems for health monitoring
are essential for next-generation rocket engines. The RS-25, Space Shuttle’s Main Engine
(SSME), was the first reusable liquid rocket engine (LRE). For on-board diagnostics, dynamic
limit-checks (redlines) for critical engine parameters, e.g. rotational speed of the turbopumps
or combustion chamber pressure, were performed [6]. Those redlines were defined based on
engineering judgement and experience. Although this simple method works well for most
component faults, there are still severe problems: Sensor faults can cause unnecessary engine
shutdowns and component faults can remain undetected. During the operation of rocket
engines, sensors, such as pressure transducers and thermocouples, are subjected to high
thermal and mechanical stresses, which make them susceptible to failure. This is underlined
by the history of Space Shuttle ground test aborts, launch delays and the launch abort of
flight STS-51-F caused by faulty sensors [4]. In addition, undetected component faults can
result in catastrophic events [54]. For a more sophisticated diagnosis of the engine’s health,
vibration data was used on-board of the SSME to detect faults in the turbopumps which
are the most common source of failure in rocket engines [6]. Newer reusable launchers such
as SpaceX’s Falcon 9 also use sophisticated systems for detecting off-nominal conditions
and initiating autonomous safe shutdowns [46]. The effectiveness of their health monitoring
system was demonstrated on various flights, e.g., during flight 84 where one of the nine
engines on the first stage of the rocket was shutdown due to an anomaly and the mission was
still successful. Following SpaceX’s lead, Europe and other nations are actively researching
and developing reusable rockets. The European rocket engine Prometheus, for example, is
being optimised for reusability and cost reduction. The diagnosis of the the engine’s health
plays a vital role in achieving this goal [44]. The development and testing of these diagnostic
systems involves component-level testing and ground tests, with the ultimate goal of ensuring
their suitability in-flight.

LUMEN (Liquid Upper stage deMonstrator ENgine) is a modular pump-fed liquid
oxygen (LOX) and liquid methane (LNG) rocket engine with 25 kN thrust, developed by
the Institute of Space Propulsion of the German Aerospace Center (DLR). The operational
envelope of LUMEN covers combustion chamber pressures from 40 bar to 80 bar and mixture
ratios between 3.0 to 3.8. DLR has successfully completed two hot-fire test campaigns of
LUMEN, demonstrating key capabilities such as stable combustion over a wide throttling
range of 38 bar to 78 bar [10]. With this achievement LUMEN is now fully operational and
available as a testbed for the development of intelligent control and diagnosis systems for
health monitoring.

10 https://conf.researchr.org/home/dx-2025

DX 2025

https://conf.researchr.org/home/dx-2025

14:8 The DX Competition 2025 and Its Benchmarks

4.1 System description
This benchmark is proposed as a challenging problem for fault diagnosis of safety-critical
technical systems with focus on the LUMEN engine. LUMEN, as shown schematically in
Figure 5, is operated in an expander-bleed cycle. Both propellants are pressurized by separate
turbopump units. While LOX is injected directly into the combustion chamber (MCC),
LNG is first used for the regenerative cooling of the combustion chamber in a counterflow
arrangement. The heated coolant flow is partially remixed with LNG to actively control the
fuel injection temperature. The remaining cooling mass flow is further heated within the
nozzle extension (NEM) and is then used to drive LOX and LNG turbines. Afterwards, the
turbine exhaust is vented without being combusted. The generated thrust and therefore the
operating point of LUMEN is defined by the combustion chamber pressure, the mixture ratio
and the cooling channel mass flow. LUMEN’s operating point is set by the position of the
control valves TFV, TOV and FCV in open-loop. A more detailed description of LUMEN
can be found in [9, 23, 55].

(a) Flow scheme of LUMEN. (b) Thrust chamber of LUMEN during a hot-fire
test.

Figure 5 The LUMEN benchmark.

4.2 Challenges
The development of fault diagnosis systems for LUMEN is complicated for various reasons,
e.g. a limited amount of experimental data, measurement inaccuracies, nonlinear dynamics,
the wide throttling range and strong coupling of all components. The placement of sensors
is also constrained by extreme temperatures, high pressures and vibrations within the
engine, which can damage instrumentation and lead to unreliable measurements. In addition,
experimental data for fault scenarios can not be intentionally collected due to the inherent
risk of a catastrophic failure. As a result of the extreme operating conditions close to the
physical limits, the engine may also fail for unpredictable reasons. A number of challenges in
developing a diagnosis system are defined by these difficulties.

The required robustness to unknown faults due to the lack of data for failure scenarios is
one of the main challenges. The diagnosis system should detect any deviation from nominal
operation as fast as possible but also reason based on the symptoms whether a detected
fault can be isolated to known fault scenarios or is unknown. Another challenge poses the

I. Pill et al. 14:9

scarcity of experimental data. Accurate reduced-order simulation models offer the possibility
of generating representative data in controlled environments for both nominal operation and
fault scenarios. However, resulting from unavoidable modeling errors in reduced-order models,
the simulator is only an approximation of the real system. Closing this simulation-reality
gap is not trivial and needs to be addressed in the development of diagnosis systems for
rocket engines.

4.3 Provided resources
For developing the diagnosis system, a transient simulation model of LUMEN is provided.
The simulator accurately reproduces experimental results in both transient and steady-state
conditions with errors below 10 %. The simulator is based on differential-algebraic equations
(DAE) and built with EcosimPro, the state-of-the-art modeling tool for space applications,
and the European Space Propulsion System Simulation (ESPSS) library. The behavior
of each component is defined by a set of geometrical and physical parameters such as the
length, diameter and wall roughness of a pipe which cannot be changed in the simulator. For
performing transient simulations, a Python interface is provided which can be used to adjust
the position of the control valves and therefore change the operating point of LUMEN at
each time step. The output of the simulator consists of noisy measurements at positions in
which sensors are commonly placed within a flight-like rocket engine. In total, the output of
the simulator consists of eight pressure measurements, e.g. the combustion chamber pressure,
seven temperature measurements, e.g. the turbine inlet temperature, the rotational speed of
the two turbopumps, the command and position signal of each valve as well as five mass
flows at different positions, e.g. the injection fuel mass flow. As flowmeters are not used on
board of rocket engines, the provided mass flows are calculated based on other measurements.
The simulator can be used to generate both nominal trajectories and trajectories in which a
fault is introduced at an user-defined time. In total, 15 sensor faults, three actuator faults
and three components faults can be simulated.

To replicate the challenge of the adaption to the real system in this benchmark, we
introduce another simulation model that is not provided to the participants. The modified
simulator has a slightly different set of physical parameters and is a representation of the real
system in this benchmark. This real system simulator is used for evaluating the performance
of the diagnosis systems. To mimic the scarcity of available experimental data, a limited set
of nominal trajectories which is generated with the real system simulator is also provided. In
addition to the known fault scenarios, we use the real system simulator to generate trajectories
for fault scenarios which are unknown to the participants a priori. If the symptoms of these
faults differ from known faults, the diagnosis system should classify this fault as unknown.
An overview of the provided resources and the evaluation process is given in Figure 6. The
evaluation metrics are described in Section 7. For evaluating the diagnosis system solution, a
Docker container with evaluation code is provided as described in Section 6.

4.4 Fault scenarios
Component, sensor, and actuator faults can be introduced in the simulation model at each
time step. Sensor faults can be injected into all measurements by multiplying the measured
variable by a fault factor f ∈ [0.8, 1.2]. As the simulation is performed open loop, sensor
faults affect the measured signal and downstream calculations of the mass flows. Component
and actuator faults, on the other hand, influence the operation of the entire engine as a result
of strong coupling. The actuator fault is modeled as a stuck valve that does not change
position according to the command signal. This fault can be introduced in TFV, TOV and
FCV. In addition, three component faults with different magnitudes can be simulated:

DX 2025

14:10 The DX Competition 2025 and Its Benchmarks

Simulator

Real system
simulator

Limited set of
nominal trajectories

Fault scenarios

Nominal trajectories

Fault scenarios

Parameter
modification

Model
development

Diagnosis
system

Evaluation
class Final score

Available to participants

Not available to participants

Task of participants

Figure 6 Overview of the evaluation process for the LUMEN benchmark.

Blockage of the turbine inlet nozzle: This fault models a geometrical change in the
flow area of the inlet turbine nozzles that can result from stuck particles.
Leakage: This fault simulates a leakage mass flow downstream of the pump. It is
modeled with an additional valve that can be partially opened, and thus introduce a
leakage mass flow.
Increased pressure drop: This fault simulates an additional pressure drop within the
feedlines of the system. It is modeled with an additional valve that can be partially closed
to increase the pressure drop.

To illustrate the described effects of each type of fault, Figure 7 shows the normalized sensor
signals for the valve command for FCV, TFV and TOV, the fuel injection mass flow, the
combustion chamber pressure and the rotational speed of the fuel turbopump (FTP).

5 LiU-ICE

The first version of the Linköping University Internal Combustion Engine (LiU-ICE) industrial
benchmark was initially presented in [17]. The benchmark is proposed as a challenging
industrial-relevant case study to support fault diagnosis research. Engine fault diagnosis
is a nontrivial task that is complicated by nonlinear dynamic behavior, with slow and fast
dynamics, a wide operating range, and both stationary and transient operation.

Developing a diagnosis system is complicated by system model inaccuracies, measurement
uncertainties, and limited training data from relevant fault scenarios. The objective of the
competition is to address these challenges by designing a diagnosis system for the air path of
an internal combustion engine.

5.1 System description
The benchmark consists of operational data collected from an internal combustion engine test
bench, see Figure 8a and a mathematical model, where the model parameters are unknown.
Figure 8b shows a schematic of the modeled part of the system, which is the air path through
the engine. The available sensor signals are as follows:

ypic – Intercooler pressure
yT ic – Intercooler temperature
ypim – Intake manifold pressure
ywaf – Mass flow through the air filter
yxpos – Throttle actuator position

I. Pill et al. 14:11

0.0

0.2

0.4

0.6

0.8

1.0

V
a
lv

e
co

m
m

an
d
 (

-)

FCV

TFV

TOV 0.5

0.6

0.7

0.8

0.9

1.0

F
u
el

 i
n
je

ct
io

n
 m

a
ss

 f
lo

w
 (

-)

20 40 60 80 100

Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

C
om

b
u
st

io
n
 c

h
a
m

b
er

 p
re

ss
u
re

 (
-)

20 40 60 80 100

Time (s)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
ot

at
io

n
al

 s
p
ee

d
 F

T
P

 (
-)

Nominal Component Fault Actuator Fault Sensor Fault

Figure 7 Examples of each fault type on normalized sensor signals. The fault is injected at
different t = 36 s. The valve commands are identical for each fault.

yω – Engine speed
ypamb – Ambient pressure
yT amb – Ambient temperature

The known actuator signals are as follows:
umf – Requested injected fuel mass
uwg – Requested wastegate actuator position

The available signals represent a set of standard signals that are available in a production
engine. Note that most signals are available in the air intake of the engine, see Figure 8b.

The airflow passes through an air filter before the compressor and the intercooler. A
throttle is used to control the pressure in the intake manifold where air enters the cylinders,
where it is mixed with fuel and ignited to generate torque. The exhaust gases pass through
the exhaust manifold and the turbo that drives the compressor before leaving the exhaust.
The wastegate is used to control how much of the exhaust gases pass through the turbo. The
engine control unit makes sure that the engine provides the desired torque while controlling
the stoichiometry of the air and fuel in the cylinder to optimize combustion and reduce
emissions.

5.2 Fault scenarios
Faults are introduced during operation, either by opening a valve that represents a leak or
by modifying a measurement signal in the engine control unit, representing a sensor fault.
The faults considered are the following:

DX 2025

14:12 The DX Competition 2025 and Its Benchmarks

(a) The LiU-ICE test bench.

IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY 4

classification performance by weighing in information from
consecutive samples [?]. This is relevant if there are multiple
fault classes that can explain the same observations.

The probability that the system is changing from one fault
mode to another at time t is modeled using a transition matrix
⇧ 2 Rn+1⇥n+1, where n is the number of known fault classes
and plus one for the unknown fault class. Let ⇧l,k denote the
element representing the probability that the system changes
from mode f l

t�1 to fk
t at time t. Faults are rare events and

the probability that the system is changing mode is considered
small compared to the system staying in the same mode.

The pdf p(r̄t|f l) of the residual output r̄t given fault class f l

is unknown. However, to be able to use the PI -OSVM models
in a Bayesian framework, it is assumed here that p(r̄t|f l) is
large when P (r̄ 2 f l) is large. Then, the pdf is modeled as
p(r̄t|f l) / P (r̄ 2 f l).

A Bayesian filter evaluating the probability of each fault
class f l

t at time t can be computed sequentially as

p(f l
t |r̄1:t) / p(r̄t|f l

t)
n+1X

k=1

⇧k,lp(fk
t�1|r̄1:t�1) (2)

where the prior distribution p(f l
0|r̄0) = p(f l

0) and the proba-
bilities of all modes are normalized, i.e.

Pn+1
k=1 p(f l

t |r̄1:t) = 1.
The sequential formulation of Bayesian filtering is suitable

for on-line computations where class probabilities are com-
puted based on previous samples. A workshop would be able
to download logged data and perform off-line computations
on the whole data batch. Bayesian smoothing can be applied
to a batch of T samples by performing an additional backward
filtering after (??) as

p(f l
t |r̄1:T) / p(f l

t |r̄1:t)
n+1X

k=1

⇧l,kp(fk
t+1|r̄1:T) (3)

followed by a normalization to compute the class probabilities.
Combining the PI -OSVM classifiers and Bayesian filtering or
smoothing gives a systematic method to identify and rank the
different fault hypotheses based on how many samples in a
data batch are classified as each fault class [?].

IV. CASE STUDY

The case study in this work is the same internal combustion
engine system as considered in [?] and [?]. Sensor data have
been collected from the engine test bed, including nominal
system behavior (NF - No Fault) and seven different single-
fault scenarios: air filter clogging fpaf , leakages at the air
filter fWaf and at the throttle fWth, and four different sensor
faults fy,T ic, fy,pic, fy,pim, and fy,Waf . Table ?? summarizes
the seven fault scenarios. The locations of the four sensors are
shown in Fig. ?? where yTic and ypic measure the temperature
and pressure after the intercooler, ypim measures the pressure
at the intake manifold, and yWaf measures the air flow through
the air filter.

A mathematical model is available describing the air flow
through an internal combustion engine. The model has been
used in previous works for residual generation, see for example
[?], and the model structure is similar to the model described

TABLE I
A SUMMARY OF FAULT SCENARIOS COLLECTED FROM ENGINE TEST RIG.

Fault Description
fpaf Air filter clogging
fWaf Leakage after air filter
fWth Leakage before throttle
fy,T ic Intermittent fault in sensor measuring temperature at intercooler
fy,pic Intermittent fault in sensor measuring pressure at intercooler
fy,pim Intermittent fault in sensor measuring intake manifold pressure
fy,Waf Intermittent fault in sensor measuring air flow through air filter

flow flow

paf

pempc

pt

pimpic Intake man.

Air

ExhaustAir Filter

Throttle

Wastegate

uwg

uth

Exhaust man.

Intercooler Engine

Comp. & Turb.

Exhaust

Fig. 1. Overview of the engine. The model consists
of six receivers for each of which the pressure
variable is shown.

speed at its highest possible level, which provides
a fast transient response, or to lower the back
pressure, which ensures good fuel economy. This
leads to two di�erent control strategies that will
be described in section 6.

Matching up a compressor, a turbine, and an
engine is a complex task that involves several
steps. The following procedure is a simplification,
but it illustrates the key steps: 1) Determine
engine displacement and maximum engine power,
which results in data on the boost level and on
the maximum air mass flow. 2) Determine the
compressors that fulfill those requirements and
that reach the desired boost pressure without
surging at the lowest flows possible. 3) Determine
the turbines that drive the compressors as closely
to the surge line as possible without generating
too high a back pressure. Based on this procedure,
simulations and experiments are done to find the
compressor and the turbine that best match a set
of given performance criteria.

Three-way catalytic converters are typically used
to reduce emissions by requiring the engine to
operate at stoichiometric conditions, i.e., � =
1. We thus focus our investigation on engines
operating at � = 1, thus ignoring the problem
that current turbine materials cannot withstand
temperatures above 1300 K. Current practice is to
protect the turbine at high air mass flows by fuel
enrichment, which significantly raises the levels of
pollutants and the fuel consumption.

3. OPTIMAL FUEL ECONOMY:
FORMULATION OF THE PROBLEM

The brake-specific fuel consumption BSFC is de-

fined as the fuel mass flow
�
mf divided by the

generated power P

BSFC �
�
mf

P
=

�
mf

Tq 2� N

where N is the engine speed in revolutions per
second. One problem with the definition of BSFC
is that there is a singularity at zero torque.
Therefore it is advantageous to look at 1

BSFC =

Tq 2� N/
�
mf which then has to be maximized

for best fuel e�ciency. Optimizing the cruising
scenario with constant speed for the best fuel

economy is thus the same as maximizing Tq/
�
mf .

For cruising we now also consider the maximiza-
tion under limited resources, that is a desired fuel

flow
�
mf,des, which now becomes

max Tq(uth, uwg,
�
mf)

subject to
�
mf (uth, uwg) =

�
mf,des

A constant fuel flow corresponds to a constant
air flow, since we are restricting engine operation
to stoichiometric conditions. This leads to the
following formulation of the problem

max Tq(uth, uwg,
�
ma)

subject to
�
ma(uth, uwg) =

�
ma,des

(1)

4. MODELING OF A TURBOCHARGED
ENGINE

The structure incorporates a number of control
volumes which are separated by flow restrictions
(see Figure 1). As a detailed explanation of the
complete model would exceed the scope of this
paper, only the components necessary for study-
ing the problem of fuel optimality are described
in the following paragraphs.

The formulation of the fuel-optimal operation of
turbocharged SI engines shows that models for
engine torque and engine air-mass flow are nec-
essary. Since the control inputs a�ect the intake
and exhaust manifold pressures, the models must
describe how these pressures influence the torque
levels and the air flow.

4.1 Engine Air Mass Flow

The air mass flow to the engine is modeled using
the volumetric e�ciency �vol which provides the
data necessary to calculate the amount of fresh

ypic

yTic

ypim

yWaf

y!

yxpos

ypamb

yTamb

uwg

umf

Fig. 5. A schematic of the model of the air flow through the model. This
figure is used with permission from [?].

in [?], which is based on six control volumes and mass and
energy flows given by restrictions, see Fig. ??.

Nine residual generators r̄ = (r1, . . . , r9) have been gener-
ated in [?] from the model, using the Fault Diagnosis Toolbox
in Matlab [?]. A residual is a function comparing two different
estimates of the same quantity to detect inconsistencies, for
example, between a sensor value and a model prediction of
the measured quantity. An illustrative example is shown in
Fig. ?? where u represents control signals, f faults, y sensor
data, ŷ model predictions, and r = y � ŷ is the residual.

The internal combustion engine is an example of a system
that operates at many different operating conditions including
transients. The residuals are designed to, ideally, filter out the
system dynamics while being sensitive to faults. Even though
both sensor data and residuals can be used as inputs to a
classifier, only residual data will be used here.

The nine residuals are evaluated using data from different
fault scenarios collected from the engine test rig1. The data set
contains 20 276 samples including nominal and faulty data. To
evaluate the situation with limited training data, only 10% of

1Residual data are available in the Fault Diagnosis Toolbox [?] that can be
downloaded from https://faultdiagnosistoolbox.github.io. The selected residual
subset used in this work is described in [?].

(b) A schematic of the air path of an IC engine.

Figure 8 The LiU-ICE benchmark.

fypic – A fault in the inter-cooler pressure sensor ypic

fypim – A fault in the intake manifold pressure sensor ypim

fywaf – A fault in the air mass flow sensor ywaf

fiml – A leakage in the intake manifold
Sensor faults are injected as multiplicative as y = (1 + f)x where y is the measurement signal,
x is the measured variable, and f ̸= 0 represents a fault that scales the measured signal.
Since a sensor fault is introduced during operation, it can affect the operating conditions of
the system through feedback loops. The magnitude of the leakage fault fiml is defined by
the diameter of the valve orifice.

5.3 Provided resources
In the benchmark, a mathematical model of the system and training data from various fault
scenarios are provided. The mathematical model is in the form of semi-explicit differential
algebraic equations (DAE) of index 1. The component models are similar to what is described
in [12]. The provided model is implemented in the Fault Diagnosis Toolbox [15]. A structural
representation of the provided model is shown in Figure 9 where the blue dots represent
unknown variables, the red dots are fault signals, and the black dots are known signals.

5.3.1 Training data
The training data for this version of the LiU-ICE benchmark consist of 26 datasets and include
different magnitudes of each fault. Each data set is sampled at 20 Hz. All training data
sets in the benchmark have been collected using the Worldwide Harmonized Light Vehicle
Test Procedure (WLTP). The WLTP cycle is approximately 30 minutes long and covers
varying operating conditions and transient behavior that represent both urban and highway
driving. Each fault is introduced after approximately two minutes into each corresponding
dataset and is present for the rest of the cycle. A summary of the fault realizations is shown
in Table 2. For sensor faults, the fault signal f can be both positive and negative, that is,
the faulty signal is scaled up or down with respect to the true signal. Each data set starts
with nominal operation, and the fault is injected after approximately two minutes.

I. Pill et al. 14:13

Variables

E
q

u
a

ti
o

n
s

LiU-ICE model

D

I

DI

DI D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

Figure 9 A structural representation of the engine model.

To illustrate the effects of each fault, Figure 10 shows the sensor signals ypic, ypim, and
ywaf for one realization of each fault. The sensor faults in the plots are +10% and the
leakage diameter is 6 mm. The injection of each fault is marked in the corresponding subplot
where the fault is most visible. The sensor faults are marked in the corresponding signal
and the leakage is highlighted in signal ypim which measures close to the location of the
leakage. In the figure, the signals have been translated in time, so they are synchronized in
the drive cycles. Note that since the sensor faults are multiplicative, the same fault size for
the different sensor faults results in different excitation in the signals. Since the fault fywaf

is not visible in the plot, a zoomed in figure is shown in Figure 11.
For the final evaluation, a set of secret test data will be used to evaluate all participating

solutions. Note that the fault scenarios in the test data can be other driving cycles than the
WLTP cycle.

Training data sets are available on the competition website. The previous version of the
benchmark is described in [17].

6 Benchmark implementation environment

To simplify the implementation of diagnostic system solutions to the different benchmarks, a
standardized data format and code structure in Python are used. Each benchmark provides a
Docker container with a similar evaluation code and a template for the implemented diagnosis
system.

Table 2 Summary of training datasets with fault scenarios.

Fault Magnitudes
fypic -15%, -10%, -5%, 5%, 10%, 15%
fypim -15%,-10%, -5%, 5%, 10%, 15%
fyW af -15%,-10%, -5%, 5%, 10%, 15%
fiml 4 mm, 6 mm

DX 2025

14:14 The DX Competition 2025 and Its Benchmarks

60 80 100 120 140 160 180 200 220 240

Time

0.95

1

1.05

1.1

1.15
y

p
ic

10
5

No fault

f
ypic

: +10%

f
ypim

: +10%

f
ywaf

: +10%

f
iml

: 6mm

60 80 100 120 140 160 180 200 220 240

Time

0

2

4

6

8

10

y
p

im

10
4

60 80 100 120 140 160 180 200 220 240

Time

0

0.01

0.02

0.03

y
w

a
f

fypic

fypim

fiml

Figure 10 Examples of signals from different fault scenarios.

100 102 104 106 108 110 112 114 116 118 120

Time

1.5

2

2.5

3

3.5

y
w

a
f

10
-3

No fault

f
ypic

: +10%

f
ypim

: +10%

f
ywaf

: +10%

f
iml

: 6mm

fywaf

Figure 11 A zoom in of the ywaf signal from Figure 10 to show the sensor fault fywaf .

The diagnosis system solution should be implemented in Python in a class using the
following template:
class DiagnosisSystemClass:

def __init__(self):
pass

def Initialize(self):
#initialize diagnosis system here
pass

def Input(self,sample):
#Update diagnosis using new sample
detection = [] # Set flag if fault is detected
isolation = [] # Ranking of diagnoses
return(detection,isolation)

found in DiagnosisSystemClass.py. Note that it is possible to update the class with
functionality needed for the solution. It is important that the inputs and outputs to the
above functions are not changed.

I. Pill et al. 14:15

The evaluation code provided is found in the file evaluate_diagnosis_system.py as
part of the benchmarks and calls the diagnosis system every time a new sample of data is
available. The diagnosis system requires to return if a fault is detected and a ranking of
the diagnoses is obtained. The evaluation of each fault scenario is stored in a csv file in the
results folder in the container.

7 Evaluation metrics

There are various performance metrics that can be used for evaluation of diagnosis systems,
where we outline in the following those chosen for DXC’25.

7.1 Diagnosis of faults
For each new sample, the diagnosis system should return a fault detection flag. When a
fault is detected, the system provides a ranked list of diagnoses with decreasing posterior
probability. The diagnosis system should have high fault detection accuracy and a low
false alarm rate. At the same time, it is important to isolate the true fault to select a
suitable countermeasure. The diagnosis system solutions are evaluated based on the following
performance metrics:

False alarm rate (FAR) – the percentage of samples in which the diagnosis system states
that a fault is detected when there is no fault in the system.
True detection rate (TDR) – the percentage of samples in which the diagnosis system
states that a fault is detected when there is a fault in the system.
Fault isolation accuracy (FIA) – the average probability given to the true diagnosis for
all samples when a fault is correctly detected.

All performance metrics are between 0 and 1. The metrics are kept simple to simplify the
comparison of different fault diagnosis solutions. The total score is calculated as a weighted
sum of these performance metrics as follows:

total score = ((1-FAR) + TDR + FIA)/3.

where a higher value represents better performance. Note that a naive solution can achieve
at least 0.3, e.g., by not triggering any alarm.)

7.2 Diagnosis of cyberattacks
In the SLIDe benchmark, diagnosis of cybernetic faults is also evaluated based on the
following performance metrics:

False alarm rate (FAR) – the percentage of samples in which the diagnosis system states
that a cybernetic attack is detected when there is no cyber attack in the system. We use
1 - FAR as a metric.
True detection rate (TDR) – the percentage of samples in which the diagnosis system
states that a cyber attack is detected when there is a cyber attack in the system.
Cyber attacks isolation accuracy (CIA)

The isolation accuracy of cybernetic faults (CIA) is divided into two parts:
True isolation rate (TIR) – the average probability assigned to the simulated attack
vector,
False isolation rate (FIR) – the average probability assigned to the loops that are not
attacked. We use 1 − FIR as the isolation accuracy score.

DX 2025

14:16 The DX Competition 2025 and Its Benchmarks

The isolation accuracy score is computed as the harmonic mean of TIR and 1 − FIR:

CIA = 2 · TIR · (1 − FIR)
TIR + (1 − FIR) (1)

The metrics used for cyber attacks differ in their approach to isolation accuracy because
we also consider scenarios when multiple loops are attacked. The proposed metric better
evaluates the cases where only some of the attacked loops are isolated correctly in contrast
to only considering the probability of a correct diagnosis.

8 Summary

The three benchmarks described in this paper (and which are available from the DXC’25
benchmark repository11) served as a starting point for reviving the DX competition after
a long hiatus. As we can easily deduce from the characteristics listed in Table 1, our aim
was to provide an initial set of challenges that is diverse but also close enough to foster the
testing of an approach for all benchmarks.

The benchmarks are continuously updated. Thus, we encourage prospective participants
and interested readers to reach out to us for the latest versions. We also plan to complement
the current benchmark set with additional ones that cover other types of system, such as
discrete ones. Of particular interest will be extensions that cover additional diagnostic
problems. This could include intermittent fault scenarios or the evaluation of a system’s
long-term performance (and degradation).

At the same time, we intend to expand the competition with challenges for approaches
that integrate diagnosis with control, repair, and potentially prognosis. Evaluating these
integrated approaches will, in particular, allow us to investigate the effectiveness of various
diagnosis concepts regarding their integration into design approaches for intelligent systems.

Being able to analyze and, in turn, anticipate the exact needs for diagnostic support in
the decision making of an intelligent autonomous system shall provide the community with
the background to make educated design decisions towards enabling resilience in a system.
That is, the ability to reasoning about problems and their mitigation at run-time enables
resilient systems to maintain their functionality not only for anticipated fault scenarios, but
also in situations and circumstances that could not be anticipated at design time.

References
1 J. L. Augustin and O. Niggemann. Graph Structural Residuals: A Learning Approach to

Diagnosis, 2023. doi:10.48550/arXiv.2308.06961.
2 K. Balzereit, A. Diedrich, J. Ginster, S. Windmann, and O. Niggemann. An ensemble of

benchmarks for the evaluation of AI methods for fault handling in CPPS. In 2021 IEEE 19th
Int. Conf. on Industrial Informatics (INDIN), pages 1–6. IEEE, 2021.

3 M. Bartyś, R. Patton, M. Syfert, S. de las Heras, and J. Quevedo. Introduction to the
DAMADICS actuator FDI benchmark study. Control Engineering Practice, 14(6):577–596,
2006.

4 T. W. Bickmore. Real-Time Sensor Data Validation. Contractor Report, NASA-CR-195295,
1994.

5 P. Chatterjee, J. Campos, R. Abreu, and S. Roy. Augmenting Automated Spectrum Based
Fault Localization for Multiple Faults. In 32nd Int. Joint Conf. on Artificial Intelligence
(IJCAI-23), pages 3140–3148, August 2023.

11 https://vehsys.gitlab-pages.liu.se/dx25benchmarks/

https://doi.org/10.48550/arXiv.2308.06961
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/

I. Pill et al. 14:17

6 M. Davidson and J. Stephens. Advanced health management system for the space shuttle
main engine. In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,
2004.

7 J. de Kleer and B. C. Williams. Diagnosis with Behavioral Modes. In 11th Int. Joint Conf. on
Artificial Intelligence (IJCAI), pages 1324–1330, 1989.

8 J. Downs and E. Vogel. A plant-wide industrial process control problem. Computers &
chemical engineering, 17(3):245–255, 1993.

9 K. Dresia, M. Börner, W. Armbruster, S. Klein, T. Traudt, D. Suslov, J. Hardi, G. Waxenegger-
Wilfing, and J. C. Deeken. Design and control challenges for the LUMEN LOX/LNG expander-
bleed rocket engine. In 34th Int. Symposium on Space Technology and Science (ISTS), 2023.

10 K. Dresia, T. Traudt, M. Börner, D. Suslov, W. Armbruster, R. dos Santos Hahn, E. Kurudzija,
C. Groll, M. A. Müller, S. Klein, J. Hämisch, J. Deeken, J. Hardi, and S. Schlechtriem. Hot-fire
testing and system analysis of the LUMEN liquid upper stage demonstrator engine. In 3rd
Int. Conf. on Flight Vehicles, Aerothermodynamics and Re-entry (FAR), 2025.

11 J. Ehrhardt, M. Ramonat, R. Heesch, K. Balzereit, A. Diedrich, and O. Niggemann. An
AI benchmark for diagnosis, reconfiguration & planning. In 2022 IEEE 27th Int. Conf. on
Emerging Technologies and Factory Automation (ETFA), pages 1–8, 2022.

12 L. Eriksson. Modeling and control of turbocharged SI and DI engines. Oil & Gas Science and
Technology-Revue de l’IFP, 62(4):523–538, 2007.

13 A. Feldman, J. de Kleer, T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, and
A. van Gemund. The diagnostic competitions. AI Magazine, 35(2):49–54, 2014. doi:
10.1609/AIMAG.V35I2.2532.

14 A. Feldman, G. Provan, and A. van Gemund. The Lydia approach to combinational model-
based diagnosis. Proc. Int. Workshop on Principles of Diagnosis, 9:403–408, 2009.

15 E. Frisk, M. Krysander, and D. Jung. A toolbox for analysis and design of model based
diagnosis systems for large scale models. IFAC-PapersOnLine, 50(1):3287–3293, 2017.

16 A. Grastien and P. Kan-John. Wizards of Oz description of the 2009 DXC entry. Proc. Int.
Workshop on Principles of Diagnosis, 9:409–413, 2009.

17 D. Jung, E. Frisk, and M. Krysander. The LiU-ICE benchmark–an industrial fault diagnosis
case study. arXiv preprint, 2024. arXiv:2408.13269.

18 D. Jung, E. Frisk, M.s Krysander, A. Sztyber-Betley, F. Corrini, A. Arici, N. Anselmi,
M. Mazzoleni, J. Xu, S. Mo, Z. Xu, C. Yang, Z. Du, H. Safaeipour, M. Forouzanfar, V. Mirahi,
A. Pinnarelli, V. Puig, Q. Deng, Y. Liu, J. Liu, H. Ke, W. Zhu, S. Merkelbach, M. Ahang,
and H. Najjaran. A fault diagnosis benchmark of technical systems with incomplete data – six
solutions. Control Engineering Practice, 2025. to appear.

19 D. Jung, H. Khorasgani, E. Frisk, M. Krysander, and G. Biswas. Analysis of fault isolation
assumptions when comparing model-based design approaches of diagnosis systems. IFAC-
PapersOnLine, 48(21):1289–1296, 2015.

20 D. Jung and M. Krysander. Assumption-based Design of Hybrid Diagnosis Systems: Analyzing
Model-based and Data-driven Principles. In Annual Conf. of the PHM Society, 2024.

21 T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J. de Kleer, and A. Feldman. Second
international diagnostic competition (dxc’10), 2010.

22 T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J. de Kleer, A. van Gemund,
and A. Feldman. First international diagnosis competition-DXC’09. Proc. Int. Workshop on
Principles of Diagnosis DX, 9:383–396, 2009.

23 E. Kurudzija, K. Dresia, J. Martin, T. Traudt, J. C. Deeken, and G. Waxenegger-Wilfing.
Virtual sensing for fault detection within the LUMEN fuel turbopump test campaign. In 9th
Edition of the Space Propulsion Conference, Glasgow, Scotland., May 2024.

24 K. Lunde, R. Lunde, and B. Münker. Model-based failure analysis with rodon. In ECAI 2006,
pages 647–651. IOS Press, 2006.

25 I. Matei, M. Zhenirovskyy, J. de Kleer, and A. Feldman. Classification-based Diagnosis Using
Synthetic Data from Uncertain Models. Annual Conference of the PHM Society, 10(1), 2018.

DX 2025

https://doi.org/10.1609/AIMAG.V35I2.2532
https://doi.org/10.1609/AIMAG.V35I2.2532
https://arxiv.org/abs/2408.13269

14:18 The DX Competition 2025 and Its Benchmarks

26 O. J. Mengshoel. Designing resource-bounded reasoners using bayesian networks: System
health monitoring and diagnosis. In Proc. of the 18th Int. Workshop on Principles of Diagnosis
(dx-07), pages 330–337, 2007.

27 A. Metodi, R. Stern, M. Kalech, and M. Codish. Compiling Model-Based Diagnosis to Boolean
Satisfaction. In 26th AAAI Conf. on Artificial Intelligence, pages 793–799, 2012.

28 L. Moddemann, H. Steude, A. Diedrich, I. Pill, and O. Niggemann. Extracting Knowledge
using Machine Learning for Anomaly Detection and Root-Cause Diagnosis. In 29th IEEE Int.
Conf. on Emerging Technologies and Factory Automation (ETFA), 2024. to appear.

29 S. Narasimhan and L. Brownston. HyDE – A general framework for stochastic and hybrid
modelbased diagnosis. Proc. Int. Workshop on Principles of Diagnosis, 7:162–169, 2007.

30 I. Nica, I. Pill, T. Quaritsch, and F. Wotawa. The Route to Success – A Performance
Comparison of Diagnosis Algorithms. In 23rd International Joint Conference on Artificial
Intelligence, pages 1039–1045, 2013.

31 P. Odgaard and J. Stoustrup. Results of a wind turbine FDI competition. IFAC Proceedings
Volumes, 45(20):102–107, 2012.

32 P. Odgaard, J. Stoustrup, and M. Kinnaert. Fault-tolerant control of wind turbines: A
benchmark model. IEEE Transactions on control systems Technology, 21(4):1168–1182, 2013.
doi:10.1109/TCST.2013.2259235.

33 I. Pill and T. Quaritsch. Behavioral diagnosis of LTL specifications at operator level. In 23rd
Int. Joint Conf. on Artificial Intelligence, pages 1053–1059, 2013.

34 I. Pill and T. Quaritsch. RC-Tree: A variant avoiding all the redundancy in Reiter’s minimal
hitting set algorithm. In IEEE Int. Symp. on Software Reliability Engineering Workshops
(ISSREW), pages 78–84, 2015.

35 I. Pill, T. Quaritsch, and F. Wotawa. Parse tree structure in LTL requirements diagnosis. In
2015 IEEE Int. Symp. on Software Reliability Engineering Workshops, pages 100–107, 2015.

36 I. Pill and F. Wotawa. Spectrum-Based Fault Localization for Logic-Based Reasoning. In
2018 IEEE Int. Symposium on Software Reliability Engineering Workshops (ISSREW), pages
192–199, 2018.

37 I. Pill and F. Wotawa. Exploiting observations from combinatorial testing for diagnostic
reasoning. In 30th Int. Workshop on Principles of Diagnosis, 2019.

38 I. Pill and F. Wotawa. Extending Automated FLTL Test Oracles with Diagnostic Support. In
IEEE Int. Symp.on Software Reliability Engineering Workshops, pages 354–361, 2019.

39 I. Pill and F. Wotawa. Computing Multi-Scenario Diagnoses. In 31st Int. Workshop on
Principles of Diagnosis, 2020.

40 S. Poll, J. de Kleer, R. Abreau, M. Daigle, A. Feldman, D. Garcia, and A Sweet. Third
international diagnostics competition–DXC’11. In Proc. of the 22nd Int. Workshop on Principles
of Diagnosis, pages 267–278, 2011.

41 S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C. Lee, O. Mengshoel, C. Neukom,
D. Nishikawa, J. Ossenfort, et al. Advanced diagnostics and prognostics testbed. In DX Int.
Workshop on Principles of Diagnosis, pages 178–185, 2007.

42 R. Reiter. A Theory of Diagnosis from First Principles. Art. Intelligence, 32(1):57–95, 1987.
doi:10.1016/0004-3702(87)90062-2.

43 I. Roychoudhury, G. Biswas, and X. Koutsoukos. Designing distributed diagnosers for complex
continuous systems. IEEE Trans. on Automation Science and Engineering, 6(2):277–290, 2009.
doi:10.1109/TASE.2008.2009094.

44 P. Simontacchia, R. Blasi, Edeline E., S. Sagnier, , A. Espinosa-Ramos, J. Breteau, and
P. Altenhöfer. PROMETHEUS: Precursor of new low-cost rocket engine family. In Proc. of
the 8th European Conf. for Aeronatuics and Space Sciences (EUCASS), 2019.

45 W. A. Smith and R. B. Randall. Rolling element bearing diagnostics using the case western
reserve university data: A benchmark study. Mechanical Systems and Signal Processing,
64-65:100–131, 2015.

https://doi.org/10.1109/TCST.2013.2259235
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1109/TASE.2008.2009094

I. Pill et al. 14:19

46 SpaceX. Falcon User’s Guide. Space Exploration Technologies Corp., September 2021. (visited
on 05/09/2025). URL: https://www.spacex.com/media/falcon-users-guide-2021-09.pdf.

47 A. Sweet, A. Feldman, S. Narasimhan, M. Daigle, and S. Poll. Fourth international diagnostic
competition–DXC’13. In Proc. of the 24th Int. Workshop on Principles of Diagnosis, pages
224–229, 2013.

48 M. Syfert. Cyber-attack scenarios for super-heaters system, March 2023. doi:10.5281/zenodo.
7612269.

49 M. Syfert, P. Wnuk, A. Sztyber-Betley, and M. Pobocha. The Model of Ongoing Diagnosis of
Process Faults and Detection of Cybernetic Attacks for a Steam Line. Acta Physica Polonica
A, 146(4):438, 2024.

50 A. Sztyber, E. Chanthery, and L. Travé-Massuyès. Benchmark for fault diagnosis of water
distribution network. In 34rd Int. Workshop on Principle of Diagnosis – DX 2023, pages 1–8,
2023.

51 A. Sztyber, E. Chanthery, L. Travé-Massuyès, and C. G. Pérez-Zuñiga. Water network
benchmarks for structural analysis algorithms in fault diagnosis. In 33rd Int. Workshop on
Principle of Diagnosis – DX 2022, 2022.

52 A. Sztyber, Z. Górecka, J. M. Kościelny, and M. Syfert. Controller modelling as a tool for
cyber-attacks detection. In Z. Kowalczuk, editor, Intelligent and Safe Computer Systems in
Control and Diagnostics, pages 100–111, Cham, 2023. Springer International Publishing.

53 A. Sztyber-Betley, M. Syfert, J. M. Kościelny, and Z. Górecka. Controller Cyber-Attack
Detection and Isolation. Sensors, 23(5), 2023. doi:10.3390/S23052778.

54 A. E. Tischer and R. C. Glover. Studies and Analyses of the Space Shuttle Main Engine.
Contractor Report, NASA-CR-183593, 1987.

55 T. Traudt, W. Armbruster, C.r Groll, R. H. Dos Santos Hahn, K. Dresia, M. Börner, S. Klein,
D. Suslov, E. Kurudzija, J. Haemisch, M. A. Müller, J. C. Deeken, J. Hardi, and S. Schlechtriem.
LUMEN, the test bed for rocket engine components: Results of the acceptance tests and
overview on the engine test preparation. In 9th Edition of the Space Propulsion Conference,
May 2024.

56 D. Vranješ, J. Ehrhardt, R. Heesch, L. Moddemann, H. S. Steude, and O. Niggemann.
Design Principles for Falsifiable, Replicable and Reproducible Empirical Machine Learning
Research. In I. Pill, A. Natan, and F. Wotawa, editors, 35th Int. Conf. on Principles of
Diagnosis and Resilient Systems (DX 2024), volume 125 of Open Access Series in Informatics
(OASIcs), pages 7:1–7:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:
10.4230/OASICS.DX.2024.7.

DX 2025

https://www.spacex.com/media/falcon-users-guide-2021-09.pdf
https://doi.org/10.5281/zenodo.7612269
https://doi.org/10.5281/zenodo.7612269
https://doi.org/10.3390/S23052778
https://doi.org/10.4230/OASICS.DX.2024.7
https://doi.org/10.4230/OASICS.DX.2024.7

	1 Introduction
	2 Related research
	3 SLIDe
	3.1 Process faults
	3.2 Cyber-attacks
	3.3 Additional resources

	4 LUMEN
	4.1 System description
	4.2 Challenges
	4.3 Provided resources
	4.4 Fault scenarios

	5 LiU-ICE
	5.1 System description
	5.2 Fault scenarios
	5.3 Provided resources
	5.3.1 Training data

	6 Benchmark implementation environment
	7 Evaluation metrics
	7.1 Diagnosis of faults
	7.2 Diagnosis of cyberattacks

	8 Summary

