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—— Abstract

Modern complex systems, such as radiotherapy machines, require robust strategies for fault detection,
diagnosis, and prognosis to ensure operational continuity and patient safety. While data-driven
methods have gained traction, few studies address diagnostic and prognostic tasks using multimodal
operational data under unsupervised or semi-supervised learning settings. This gap is particularly
critical given the scarcity of labeled failure data in real-world environments. This work aims to
design a unified approach for fault detection, diagnosis, and prognosis using multimodal data in
the absence of complete labeling. To this end, autoencoders (AEs) are employed due to their
suitability for unsupervised and self-supervised learning, flexibility in handling heterogeneous data,
and ability to construct latent representations optimized for various downstream tasks. A specific
implementation based on a Long Short-Term Memory S-Variational Autoencoder (LSTM-3-VAE)
was developed to detect anomalies in machine logs. This framework is applied to TomoTherapy®
systems — a highly complex and under-explored use case within the radiotherapy domain. Initial
results demonstrate strong anomaly detection performance on both a public benchmark dataset
(HDFS) and a proprietary dataset derived from real-world TomoTherapy® machine faults. Beyond
methodology, the paper includes a concise literature review of multimodal learning and data-driven
diagnosis and prognosis with a focus on AEs. Based on this review, key research directions are
identified for the continuation of the thesis, especially the integration of explainable Al as a means
to enhance diagnosis capabilities in the absence of labeled faults.

2012 ACM Subject Classification Computing methodologies — Unsupervised learning
Keywords and phrases Artificial Intelligence, Diagnosis, Prognosis, Radiotherapy machines
Digital Object Identifier 10.4230/0ASIcs.DX.2025.16

Category PhD Panel

1 Corresponding author

© Kélian Poujade, Louise Travé-Massuyes, Jérémy Pirard, and Laure Vieillevigne;
oY licensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).

Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 16; pp. 16:1-16:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:poujade.kelian@iuct-oncopole.fr
https://orcid.org/0009-0000-6196-5111
mailto:louise@laas.fr
https://orcid.org/0000-0002-5322-8418
mailto:jeremy.pirard@airbus.com
https://orcid.org/0009-0007-2762-4357
mailto:vieillevigne.laure@iuct-oncopole.fr
https://orcid.org/0000-0003-0680-7430
https://doi.org/10.4230/OASIcs.DX.2025.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

16:2

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

Funding This research was supported by Accuray Inc as part of the doctoral funding. It has also
benefited from the AI Interdisciplinary Institute ANITI funded by the France 2030 program under
the Grant agreement n°ANR-23-TACL-0002.

Acknowledgements This work is the result of a collaborative tripartite agreement involving IUCT-

Oncopole, Airbus, and Accuray Inc.

1 Introduction

In complex modern systems, fault detection, diagnosis, and prognosis are critical components
for maintaining system integrity and performance. As these systems grow in complexity,
traditional rule-based maintenance approaches are increasingly being supplemented — or
even replaced — by data-driven methods. These techniques hold promise not only for timely
fault detection, but also for enabling robust diagnostic and prognostic capabilities. Despite
significant advances, few studies have investigated comprehensive data-driven diagnosis and
prognosis frameworks that leverage unlabeled multimodal operational data such as machine
logs and time-series sensor measurements. Addressing this limitation is essential, especially
in real-world settings, where labeled failure data is scarce and system behavior is often
stochastic.

A first step in this direction is fault detection through anomaly detection. We have
already explored the use of machine logs for this purpose. As presented in Section 2, a deep
learning approach based on S8-Variational Autoencoders (8-VAE) was developed to identify
abnormal sequences in machine-generated log data. This method demonstrated the feasibility
of using logs as a data source to detect anomalies in the absence of explicit fault labels.

Building upon this foundation, the next phases involve exploring data-driven diagnosis
and prognosis methodologies, particularly under semi-supervised or unsupervised learning
paradigms. Such approaches are more appropriate for the nature of real-world data, where
anomalies may be poorly labeled or entirely unlabeled. This progression is illustrated through
an original case study focusing on TomoTherapy® systems used in cancer radiotherapy.

In radiotherapy, equipment reliability is critical to ensuring effective and uninterrupted
patient treatment. Unplanned faults in radiotherapy systems can lead to treatment delays,
rescheduling, and workflow disruptions, all of which can compromise treatment efficacy and
negatively affect patient outcomes. The continuity of treatment has a well-documented
impact on clinical results, with studies such as [18] demonstrating that extended overall
treatment times can negatively impact local tumor control and influence survival rates.
Among the various technologies employed in radiotherapy, TomoTherapy® machines (Accuray,
Madison, WI) (Figure 1a) stand out for their high complexity and versatility. These systems
integrate advanced image-guided radiotherapy (IGRT) with intensity-modulated radiation
therapy (IMRT) in a helical delivery mode [35]. Treatment delivery involves a continuously
rotating gantry and a synchronized, translating treatment couch, paired with a binary
multi-leaf collimator (MLC) consisting of 64 pneumatically actuated leaves (Figure 1b). This
configuration enables fine-tuned modulation, making the system particularly suitable for
anatomically extensive or complex treatments such as total body irradiation, craniospinal
irradiation, and re-irradiation [54]. Within this system, the MLC is a key subsystem due to
its direct role in beam shaping and dose modulation. However, its mechanical and electronic
complexity, relying on high-frequency actuation, makes it susceptible to faults. A particularly
vulnerable component is the bumper pack — a mechanical absorber designed to cushion the
rapid opening and closing movements of the leaves. Faults in the bumper pack can arise
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from progressive wear or sudden rupture and may compromise both system performance and
treatment accuracy. This work focuses on the MLC subsystem, with the aim of developing
an approach that can be readily generalized to other subsystems.

Although preventive maintenance is standard practice in radiotherapy, including for MLC
components [2], there is growing interest in transitioning toward predictive maintenance
paradigms. Predictive maintenance aims to anticipate equipment failures using real-time or
near-real-time operational data, enabling interventions before breakdowns occur. Such an
approach can minimize unplanned interruptions, optimize spare parts logistics, and most
importantly, safeguard the continuity of care for patients.

To date, research in radiotherapy has focused primarily on performance monitoring
techniques. Studies have analyzed trajectory log files from systems such as standard photon
linacs (TrueBeam® Varian Medical Systems, Palo Alto, CA) and proton therapy machines,
employing methods like threshold-based monitoring [56] and Statistical Process Control
(SPC) [1] . Some studies have investigated predictive methods for system fault anticipation,

typically relying on data from routine quality control (QC) or assurance (QA) tests [34, 16].

This approach limits real-time detection of incipient faults and restricts the resolution of
predictive models. To our knowledge, no studies have explored predictive strategies for
monitoring radiotherapy systems using continuously generated operational data.

This study aims to address this gap by developing a predictive framework tailored to
TomoTherapy® machines. It proposes to go beyond fault detection by leveraging operational
logs and sensor data for fault diagnosis and prognosis in a data-driven manner. Ultimately,
this approach aims to improve equipment reliability and support more consistent and effective
radiotherapy delivery, thereby enhancing the quality of patient care.

(a) (b)

Figure 1 (a) Schema of TomoTherapy® system (model TomoHD™). (b) Schema of main
subsystems composing the TomoTherapy® machines.

2 Conducted research

We first explored anomaly detection on machine log data. These logs, which chronicle the
states, events, and procedures of the system, represent a valuable but underutilized resource
for modeling system behavior and identifying early signs of malfunction. To address the
challenges posed by limited labeled data, the approach relies on Autoencoders (AEs) and
semi-supervised learning strategy, enabling the model to learn normal patterns without
requiring exhaustive labels. A key objective is to construct a latent space that not only
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Figure 2 Overview of the proposed pipeline. The first stage includes DRAIN parsing, grouping,
labeling and Word2Vec to extract features from log files. Obtained embedded sequences are padded
to obtain the input & € V that feed an LSTM-3-VAE. While reconstructing the input at its output
I3, this later learns compressed latent representations z; € Z; useful for anomaly detection. Different
algorithms are then applied on the learned latent space Zy = {zs}.

captures the essential structure of normal operations, but also improves interpretability and
facilitates the distinction between normal and anomalous behaviors. This framework aims
to support more transparent and generalizable anomaly detection in complex systems. A
preprint version of this work has been deposited on HAL [42] and the associated code is
available online 2.

2.1 Proposed pipeline

We developed a semi-supervised pipeline for anomaly detection in log sequences. It assumes
the availability of a subset of logs representing normal system behavior, which is used
to train representation learning models. The pipeline consists of three main stages: log
preprocessing and feature extraction, latent space learning via a Long Short-Term Memory-
based f-Variational Autoencoder (LSTM-3-VAE), and anomaly detection on learned latent
space using traditional machine learning algorithms enhanced with conformal prediction.
The proposed pipeline is illustrated in Fig. 2. The full pipeline is designed to generalize well
across different datasets, relying on minimal tuning and emphasizing the interpretability and
robustness of the learned representations.

2.1.1 Log Preprocessing and Feature Extraction

Raw log files are first parsed using the DRAIN algorithm [22], which groups similar log lines
into structured templates, allowing them to be represented as sequences of discrete event
identifiers. These log lines are then grouped into sequences — either based on procedure
windows or sliding time windows — and each sequence is labeled as either normal or faulty. The
event identifiers from DRAIN parsing are then embedded into dense vector representations
using the Word2Vec model (CBOW variant) [37]. Each log sequence is thus transformed into
a sequence of embedding vectors v € V| which are then padded or truncated to a fixed length
to obtain @ € V. This process ensures compatibility with the subsequent neural architecture.

2 https://gitlab.laas.fr/addram/anomaly-detection-in-log-data.git
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2.1.2 Learning Latent Representations

To capture both semantic and sequential characteristics of log sequences, a latent space
is learned using a LSTM-3-VAE trained using normal labeled data. This model encodes
each embedded sequence ¥ € V into a low-dimensional latent vector z; € Z; that captures
the key patterns and structure of normal behavior, while reconstructing the input sequence
from this compressed representation. The g term in the objective function controls the
balance between reconstruction accuracy and latent space regularization [23], allowing better
separation of anomalies from normal samples.

2.1.3 Anomaly Detection in the Latent Space

Then, traditional anomaly detection algorithms A such as One-Class SVM (OCSVM)[48],
Isolation Forest (IF)[27], and Local Outlier Factor (LOF)[8] are applied on the learned latent
representations zz € Z. These algorithms are learned in a semi-supervised manner using
the latent representations of the normal labeled data used for the LSTM-3-VAE training. To
provide statistical guarantees on model predictions, Conformal Anomaly Detection (CAD) —
a technique derived from the Conformal Prediction framework [5] — is used. This method
allows to define a threshold on anomaly scores returned by the algorithms A to correct the
predictions and guarantee a statistical confidence in the results. Each confidence level is
associated to a threshold value.

2.2 Evaluation

The evaluation of the proposed pipeline was conducted using two datasets: a publicly available
benchmark (HDFS) [66] and a proprietary dataset derived from the logs of TomoTherapy®
machines (TOMO). The TOMO dataset focuses on MLC faults linked to the bumper pack,
gathering data from 20 fault cases across 15 different machines. Each fault case is referenced
as FC(MM/DD/YYYY), identified by the date of the bumper pack repair.

One of the objectives of this study was to investigate the use of Mass-Volume (MV) and
Excess-Mass (EM) scores [12, 20] — metrics specifically designed for unlabeled datasets — as
a means to optimize the model’s parameters and evaluate its performance in the absence of
ground truth labels. These metrics evaluate the distance between the level sets of an anomaly
scoring function and those of the underlying data distribution. They offer a principled way
to assess a model’s ability to capture the structure of the data and produce a meaningful
anomaly score with statistical rigor.

For the HDFS dataset, both EM and MV scores were computed and compared with con-
ventional classification metrics, including the area under the receiver operating characteristic
curve (ROC), the area under the precision-recall curve (PR), and the F1 score. We first
demonstrated that using the EM and MV scores to optimize the model and evaluate anomaly
detection algorithms in the learned latent space yielded results comparable to those obtained
with conventional metrics such as ROC and PR.

Then, for the TOMO dataset — where only a limited number of log sequences were labeled
as normal (specifically, those recorded after system repairs) — only the EM and MV scores
were employed. These metrics were used to assess the model’s performance on a subset of
normal labeled sequences unseen during model training.
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Figure 3 T-SNE visualization of log sequences from FC(06/15/2023) using their learned LSTM-j-
VAE latent representations. (a) Colored by normal label (blue) and unlabeled (orange). (b) Colored
by conformal predictions with different confidence levels based on learned OCSVM scoring function.

2.3 Results

Building on these findings, the EM and MV scores were then used to guide model optimization
on the TOMO dataset and to assess the performance of various machine learning algorithms
applied in the latent space. To complement this quantitative evaluation, several visualizations
of the test data latent representations related to the fault case FC(06,/15/2023) were produced
using t-distributed stochastic neighbor embedding (t-SNE) algorithm [53], which projects
high-dimensional representations into a two-dimensional space for interpretability.

Fig. 3a shows the latent space learned by the LSTM-5-VAE, where a clear separation
appears between labeled normal sequences (blue) and a central group of unlabeled sequences
(orange), indicating behaviors differing from the normal patterns used during training.

Fig. 3b presents the conformal prediction results of OCSVM, the best-performing algorithm
based on EM and MV metrics. The color-coded conformal predictions can be seen as level
sets of the OCSVM’s scoring function. This figure highlights sequences in the center — isolated
from normal ones 3a — as anomalies, mainly with 80% statistical confidence. Additional
isolated groups are flagged as abnormal with 90-95% confidence, despite containing sequences
labeled as normal.

To contextualize these detections, Fig. 4a maps the detected anomalies to their temporal
position relative to subsystem maintenance. Central sequences flagged as abnormal predom-
inantly occurred in the month before the identified fault, with none appearing post-repair,
confirming the relevance of the detections.

Finally, Fig. 4b links the detected anomalous groups to specific log message content.
Messages related to MLC issues (e.g., overtravel, position, bounce) (orange in Fig. 4b),
known indicators of faults, are found in the central anomaly cluster. Another high-confidence
anomaly group, detected in black in Fig. 3b and overlapping normal data in Fig. 3a,
corresponds to machine shutdowns (green in Fig. 4b), reinforcing the consistency of the
detection results with expert knowledge.

3 Thesis roadmap

So far, an approach has been developed to detect anomalous log sequences from the perspective
of the system under study. This method leverages AEs to learn, in a semi-supervised manner,
a latent space optimized for anomaly detection while preserving interpretability. The next
phase of the project aims to enrich this framework by integrating additional data sources,
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Figure 4 T-SNE visualization of log sequences from FC(06/15/2023) using their learned LSTM-
B-VAE latent representations. (a) Colored by temporality. (b) Colored by the number of known
MLC-problem related messages.

such as time-series sensor measurements, to move toward fault diagnosis and prognosis
using multimodal data and Al models. In this context, AEs remain central due to their
key advantages: they naturally support multimodal learning, enable unsupervised or semi-
supervised training, and allow for the construction of meaningful latent representations
tailored to the different mentioned tasks.

3.1 Exploration
3.1.1 Multimodal learning

Multimodal learning refers to the development of AI models capable of processing and
integrating heterogeneous data sources — such as images, time series, text, or tabular data —
within a unified framework. This paradigm is particularly relevant in radiotherapy systems
monitoring, where combining event logs, sensor streams, and contextual metadata yields
richer representations of machine behavior. The goal is to extract complementary information
from each modality to improve tasks such as anomaly detection, diagnosis, and prognosis.
A key challenge lies in aligning and fusing modalities with differing structures, semantics,
and temporal characteristics. Central to this is representation learning, which encodes raw
multimodal inputs into robust, task-relevant vector representations.

Early approaches, like Multimodal Deep Boltzmann Machines [50], illustrated the potential
of probabilistic graphical models to jointly model diverse modalities via a shared latent
layer. However, these models are computationally intensive and require complex variational
inference [50]. More scalable alternatives have emerged with AEs, now central to unsupervised
and self-supervised multimodal learning. In this setting, AEs use modality-specific encoders
(e.g., CNNs, RNNs or transformers) fused into a shared latent space.

AEs are well-suited for self-supervised learning, where reconstruction or auxiliary tasks
drive representation learning without labels. Robinet et al. (2024) [46] introduced DRIM,
which uses dual encoders per modality. The DRIM-U variant minimizes reconstruction of
modality-unique components, using a tailored loss inspired by supervised contrastive learning
and an adversarial objective. Contrastive learning has emerged as a powerful unsupervised
approach, with methods like contrastive predictive coding [39], which use InfoNCE loss to
bring similar representations closer and push others apart. Geng et al. (2022) [19] proposed
Multimodal Masked AEs (M3AE), which learn joint vision-language representations via
masked token prediction, avoiding modality-specific encoders and contrastive learning. Feng
et al. (2024) [17] added a modality-consistency detection task, where the network learns to
identify tampered modalities, enhancing cross-modal coherence.

16:7
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AEs also optimize latent spaces for downstream goals. DRIM separates shared repres-
entations — rich in patient-specific information — from unique ones by minimizing mutual
information, improving interpretability and predictive utility [46]. Correlational Neural
Networks (CorrNet) [10] maximize cross-modal correlation in the latent space. Yang et al.
extended this idea to temporal data with CorrRNN [61].

Fusion strategies in AE-based architectures vary. As surveyed by Zhao et al. (2024) [64],
fusion can occur at the raw-data, feature, or decision levels. DRIM combines shared
and unique representations through attention-based fusion, handling missing modalities
effectively [46]. Other techniques like Tensor Fusion Networks model high-order modality
interactions, though with higher computational cost [63].

Overall, AE-based multimodal learning offers a flexible framework for heterogeneous data,
especially when labels are limited. Key directions include incorporating temporal dynamics,
improving robustness to missing modalities, and optimizing latent spaces for real-world tasks
such as anomaly detection, diagnosis, and prognosis.

3.1.2 Diagnosis

Fault diagnosis is a core task in system monitoring and maintenance, ensuring safety, reliability,
and efficiency. It refers to the reasoning process used to identify the nature and root cause of
a failure based on observed symptoms from measurements, checks, or tests. Formally, it can
be seen as an inference problem: determining a system’s internal (possibly faulty) state from
its external outputs. Diagnosis typically involves three stages: fault detection (whether a
fault occurred), fault isolation (identifying the faulty component), and fault identification
(characterizing the fault’s type and severity). Methods vary by system complexity and data
availability, and can be categorized into model-based, data-driven, or hybrid approaches
combining physical knowledge with statistical or machine learning techniques.

3.1.2.1 Model-based diagnosis

Model-based approaches have long been the dominant paradigm in fault diagnosis [7, 40].
These approaches rely on constructing analytical or physical models that describe the
system’s behavior under nominal and faulty conditions. Such models are usually derived
from first-principles knowledge, including conservation laws, differential equations, discrete
event models, or logical constraints, and are validated through expert analysis and simulation.
Model-based methods provide high interpretability, allow detection of specific fault patterns
with precision, and generally perform well in systems where accurate models are available.

However, their effectiveness is often limited by the complexity of real-world systems.
Modeling nonlinear dynamics, stochastic disturbances, time-varying behaviors, and inter-
actions between subsystems remains a challenging task. See [41] for challenges referring to
the DX approaches. Furthermore, developing and validating such models requires significant
domain expertise and resources, which can be prohibitive in systems that evolve rapidly or
lack comprehensive documentation.

3.1.2.2 Data-driven diagnosis

Data-driven fault diagnosis has gained momentum over the last decade due to increasing
sensor data availability, advances in machine learning, and enhanced computational power.
Unlike model-based methods, these approaches infer patterns or fault signatures directly from
historical or real-time data. This enables fault detection in complex or poorly understood
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systems and improves scalability. Reviews such as [11, 47] highlight the maturity and
applicability of these methods across domains like HVAC systems and general industrial
equipment, underlining their potential to automate diagnostics and reduce expert reliance.

Among these techniques, AEs are widely used for their ability to learn compact, informat-
ive representations from high-dimensional data. Often, they serve as feature extractors, with
supervised classifiers trained on the latent space. For instance, Han Liu et al. (2018) [28]
proposed a recurrent AE-based method using gated recurrent units (GRU-NP-DAEs), where
each AE is trained on a specific fault class and the classification is determined by identifying
the AE that minimizes the reconstruction error. Similarly, Lang Liu et al. (2024) [29]
introduced a variable-wise stacked temporal AE (VW-STAE), in which a variable sensitivity
analysis guides the classification, again relying on supervised training per fault type.

Other works improved AE architectures for better feature extraction. Shao et al. (2021) [49]
used adaptive Morlet wavelets to capture nonlinearities. Yang et al. (2020) [60] combined
sparse and denoising AEs with ensemble learning. Qiu et al. (2025) [43] proposed a mul-
timodal fusion scheme using multiscale stacked denoising AEs for noise robustness. Zhao
et al. (2024) [65] presented a semi-supervised Gaussian mixture VAE for few-shot learning,
adapting to new fault classes via episodic training and a dynamic multimodal prior.

However, these methods often assume the availability of labeled data for all fault types —
an unrealistic assumption in practice. Real-world systems frequently encounter rare or
unknown faults, and collecting exhaustive labeled datasets is infeasible. Fully supervised
AE-based methods may thus struggle to generalize.

To address this, semi- and unsupervised AE-based methods have emerged. These models
learn representations of normal data patterns without relying on fault labels. For example,
Amini and Zhu (2022) [4] introduced a source-aware AE that can operate with or without
labels. Cacciarelli and Kulahci (2022) [9] proposed an orthogonal AE to decorrelate latent
features, improving fault detection and interpretability. Ma et al. (2018) [33] developed a
deep coupling AE for multimodal sensory data, learning a shared representation and applying
late fusion for diagnosis.

These studies reflect growing interest in unsupervised learning frameworks for early fault
detection in safety-critical systems. While supervised AEs remain popular, semi-supervised or
unsupervised models better match real-world constraints, offering scalable, realistic solutions
for modern diagnostic challenges.

3.1.2.3 Fault diagnosis and Al explainability

Another promising avenue for fault diagnosis using data-driven and unsupervised learning
methods is to investigate the role of explainability in Al models. Explainability refers to the
extent to which a model’s internal mechanisms, decisions, and outputs can be interpreted
and understood by humans. In fact, the explainability of the models can be viewed as a form
of diagnosis. While fault detection methods typically indicate the presence of an abnormal
state, explainability goes further by identifying the elements or patterns that contributed to
this state — essentially answering why the system deviated from normal behavior. In this
sense, providing an explanation can lead to diagnosing the cause of the fault. Therefore,
designing an explainable fault detection model is inherently aligned with building a diagnosis
system. Despite its importance, this connection has received limited attention in data-driven
research. In such unsupervised contexts, explainability plays a crucial role, as it enables the
interpretation — and thus the diagnosis — of detected anomalies in the absence of explicit
ground truth. Exploring explainability as a diagnostic tool is therefore not only a promising
direction, but also a necessary one to improve the understanding, trustworthiness, and
practical applicability of data-driven fault detection systems under realistic constraints.

16:9

DX 2025



16:10

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

Explainability methods are typically categorized into two families: post-hoc methods,
which seek to interpret already trained models, and intrinsic methods, which embed in-
terpretability directly into the model architecture or training process. This distinction is
particularly relevant for AEs, which are widely used in unsupervised tasks such as anomaly
detection but often operate as black boxes.

Post-hoc explainability techniques are applied after the model is trained, often without
modifying the model’s structure. Among the most widely used post-hoc tools are Shapley
Additive Explanations (SHAP)[32], which attribute contributions of input features to a
model’s predictions. SHAP has been extensively employed in the context of AEs to understand
anomalies and latent representations. For instance, Antwarg et al. (2021) [6] applied Kernel
SHAP to explain reconstruction-based anomalies by linking reconstruction errors to influential
input features. Similarly, Xu et al. (2021) [59] used SHAP in a dynamic multimodal VAE
(DMVAE) to provide both local and global feature attribution in a clinical prediction task.
In genomics, Li et al. (2023) [26] introduced XA4C, an AE-based pipeline where SHAP
values derived from XGBoost identify critical genes contributing to latent representations,
supporting downstream biological interpretation.

Another line of work focuses on counterfactual explanations, which generate hypothetical
examples to highlight what changes would be required to alter a model’s output, which shares
high similarity with the concept of conflict known in the logical diagnosis theory [44, 13].
Using contrastive supervision, Todo et al. (2023) [52] trained a VAE to disentangle class-
relevant and class-irrelevant components in multivariate time series, enabling the generation of
plausible counterfactuals by manipulating only the class-relevant latent subspace. Extending
this concept, Haselhoff et al. (2024) [21] proposed the Gaussian discriminant VAE (GAVAE),
a self-explainable generative model that integrates a class-conditional latent space with
closed-form counterfactual generation, balancing interpretability and quality of explanations
in vision tasks.

Gradient-based attention mechanisms have also been applied to AEs to enhance inter-
pretability. Liu et al. (2020) [30] derived visual attention maps from VAE latent variables to
localize anomalies in images, while Nguyen et al. (2019) [38] used gradient-based fingerprinting
in an unsupervised VAE for network anomaly detection.

Another line of work involves surrogate models like LIME [45], which approximate AE
behavior locally using interpretable models (e.g., decision trees). Wu and Wang (2021) [57]
proposed a LIME-based framework with explainers for reconstruction, classification, and
global behavior in fraud detection.

In contrast to post-hoc approaches, intrinsic explainability is built into the model archi-
tecture or training objective. One strategy is to enforce interpretable representations through
structured constraints. For example, Di Clemente et al. (2025) [15] developed a physics-
informed AE where latent codes directly correspond to astrophysical quantities such as mass
and radius of neutron stars. By embedding domain knowledge and explicit constraints in the
loss function, the model achieves physical interpretability of latent variables. Other studies
integrate interpretability by combining AEs with inherently transparent models. Aguilar et
al. (2022) [3] proposed a decision tree-based AE capable of handling categorical data without
encoding, offering interpretable internal representations through the branching structure of
the tree itself. In probabilistic frameworks, Bayesian autoencoders (BAEs) can enhance inter-
pretability via uncertainty estimation. Yong and Brintrup (2022) [62] introduced coalitional
Bayesian AEs, where explanations are derived from the mean and epistemic uncertainty of
log-likelihood estimates, providing insight into model behavior under covariate shift without
relying on additional explainer models. Other works focused on providing explanations based
on reconstruction errors from AEs. Kieu et al. (2022) [24] used Robust Principal Component
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Analysis (RPCA) combined with AEs to improve the explainability of outlier detection in
time series, separating outliers from clean data. Martinez-Garcia et al. (2019) [36] proposed
the entropy of the AE’s reconstructed outputs as a form of explanation.

3.1.3 Prognosis

In prognosis, as in diagnosis, methodologies can broadly be divided into model-based and
data-driven approaches, each offering distinct strategies for predicting the Remaining Useful
Life (RUL) and anticipating system failures.

Model-based methods rely on physical laws and tools like Physics of Failure (PoF),
Kalman filters, and finite element analysis to estimate RUL without historical data.

Data-driven methods leverage sensor data and failure history to predict degradation. They
include stochastic models (e.g., Weibull distribution, Bayesian networks, Hidden Markov
Models), statistical techniques (e.g., ARMA, ARIMA), and Al-based approaches.

Among Al-based methods, similarity-based learning has gained prominence. Widodo et
al. (2025) [55] demonstrated an approach for boiler prognosis using Support Vector Machines
(SVMs), Random Forest Algorithms (RFAs), and Dynamic Time Warping (DTW) for RUL
estimation, showing potential for real-world deployment in power plants.

Deep learning models, particularly LSTM networks, have been widely used to model
temporal dependencies in degradation data. Liu et al. (2021) [31] introduced an elastic-net-
regularized LSTM (E-LSTM) to mitigate overfitting and improve RUL prediction stability
for rolling bearings. Wu et al. (2018) [58] utilized vanilla LSTM networks and dynamic
differential technology to enhance RUL prediction under varying operational conditions and
noise levels.

AE-based architectures have also been explored for prognostic tasks. Robinet et al. (2024)
[46] proposed a method for survival prediction using disentangled representations from
incomplete multimodal healthcare data, applying a discretized time model supervised by
a specialized loss function for censored survival data as described by Kvamme and Bor-
gan (2021) [25]. This approach models hazard probabilities over time intervals and learns
individualized survival curves from multimodal inputs. De Pater and Mitici (2023) [14]
designed an LSTM-AE with attention to develop health indicators for aircraft system in an
unsupervised manner. These health indicators are further used to predict the RUL of the
aircraft system using a similarity-based matching approach. In a more recent contribution,
Tefera et al. (2025) [51] introduced a constraint-guided deep learning framework to generate
physically consistent health indicators from bearing sensor data. The proposed AE model
integrates domain constraints — monotonicity, bounded output, and energy-consistency —
into the training process via a custom optimization scheme. Compared to baseline models,
this approach enhances trendability, robustness, and consistency, yielding interpretable
degradation profiles aligned with physical expectations.

Overall, the landscape of prognosis methodologies continues to evolve, with hybrid
approaches combining physics-based insight and data-driven learning offering powerful
solutions for anticipating failures and optimizing maintenance in complex systems.

4 Schedule

The proposed research roadmap is structured into three interconnected phases. Each phase
explores a fundamental capability — fault detection, diagnosis, and prognosis — through the
lens of multimodal and unsupervised (or semi-supervised) learning. A central prerequisite
for each stage is the curation of a clean and well-structured dataset focused on the MLC
subsystem, enabling a controlled yet realistic environment for experimentation.
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4.1 Phase 1 — Multimodal Representation Learning for Anomaly
Detection

Phase 1 aims to construct joint representations of operational logs and time-series sensor
data through unsupervised deep learning. Inspired by recent advances such as DRIM [46]
and Correlational Neural Networks [10], this step will evaluate various fusion strategies
— including dual encoder architectures, disentangled shared/unique representations, and
correlation-maximizing latent spaces.

The goal is to design an embedding space where normal and abnormal behaviors can be
effectively separated, even in the absence of fault labels. Special attention will be given to
robustness in the presence of missing modalities and asynchronous data.

Milestones:
Construction of a labeled and time-aligned multimodal dataset focused on MLC.
Leveraging and extending existing multimodal AE approaches (e.g., DRIM, CorrNet) to
construct a latent space that better suit the characteristics of radiotherapy system data.
Testing different self-supervised learning strategies: reconstruction [46], masked token
prediction [19] and modality-consistency detection task [17].

4.2 Phase 2 — Explainable Fault Diagnosis via Latent Representations

Phase 2 focuses on leveraging the learned multimodal latent space to perform fault diagnosis
in an unsupervised or weakly supervised setting. A key hypothesis is that explainability
can serve as a proxy for diagnosis, especially when ground truth labels are scarce. Building
on the work of Todo et al. [52] and the logical theory of conflict-based diagnosis [44, 13],
counterfactual explanation techniques will be explored as a means of identifying latent
dimensions or input factors contributing to anomalies.

In parallel, post-hoc tools such as SHAP will be employed to generate interpretable
attributions on both the model outputs and the latent encoding. The interplay between
these explanations and traditional diagnostic tasks (fault isolation, severity ranking) will be
investigated.

Milestones:
Adaptation of counterfactual explanations to the latent space of multimodal AEs.
SHAP-based analysis of log and sensor contributions to fault signatures.

Evaluation of the diagnostic capability of selected explainable methods.

4.3 Phase 3 — Prognosis and Remaining Useful Life Estimation

Phase 3, and the final stage, addresses long-term prediction of subsystem degradation. Two
complementary directions will be explored: (1) survival analysis with multimodal latent
embeddings, following Robinet et al. [46]; (2) unsupervised health indicator construction
with physical constraints, following Tefera et al. [51].

In the first direction, discrete-time hazard models will be used to estimate individualized
survival curves from latent variables, integrating sensor and log-derived features. In the
second, attention will be paid to embedding physical priors (e.g., monotonicity, boundedness)
directly into AE training, to produce interpretable and consistent degradation profiles.
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Milestones:
Derivation of latent health indicators from log and sensor embeddings.
Modeling of hazard probabilities from multimodal data (DRIM-like survival modeling).
Training of constraint-aware AEs to enforce physically consistent degradation behavior.

Comparison across Phases: Throughout all phases, systematic comparisons will be
conducted between semi-supervised learning (enabled by partially labeled TOMO data) and
fully unsupervised alternatives, to assess scalability and realism in operational settings.

5 Conclusion

This work presents a semi-supervised learning framework for fault detection in complex
systems using log data. The method, based on a LSTM-3-VAE, demonstrated effective
anomaly detection on both benchmark and real-world datasets, leveraging an optimized latent
space combined with conformal prediction. The case study on TomoTherapy® machines
highlights the practical relevance of this approach in a safety-critical healthcare setting.

Looking forward, the research will expand to incorporate time-series sensor data alongside
log sequences, moving toward a multimodal diagnostic and prognostic framework. Upcoming
phases will explore multimodal fusion strategies, counterfactual and SHAP-based explain-
ability techniques for unsupervised diagnosis, and survival modeling for prognosis. These
directions aim to produce interpretable, generalizable models that support fault isolation
and remaining useful life estimation under realistic operational constraints.
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