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Abstract
Identifying and localizing bugs in programs has always been considered a complex but essential
topic. Whereas the former has led to substantial progress in areas like formal verification and testing
with a high degree of automation, the latter has not been satisfactorily automated. Approaches like
program slicing, model-based diagnosis, and, more recently, spectrum-based fault localization can
be used to find possible causes of a misbehaving program automatically, but often come with high
computational complexity or a larger list of diagnoses, which require additional manual effort. In this
paper, we present the first experimental results of an approach that combines program slicing with
spectrum-based fault localization aiming at improving the outcome of automated debugging methods.
In contrast to previous work, where we illustrated potential improvements only by considering a
particular use case, we present an evaluation based on 22 different example programs in this paper.
The approach improves the wasted effort on average by around 5 to 15% on average.
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1 Introduction

Debugging comprises detecting, localization, and repairing faults in programs, which still is
mainly carried out manually, causing a lot of effort. There are several approaches supporting
the automation of fault detection in use, but almost none for fault localization and repair.
However, automating debugging has been of interest for more than four decades, e.g., see
Ehud Shapiro [21] or Mark Weiser [25, 26]. The latter investigated how programmers perform
debugging utilizing program slices, which are calculated only considering the source code.
Korel and Laski [16] introduced dynamic slicing, where program executions are used to
eliminate part of the source code not involved in current executions. However, despite the
interest in slicing from academia, its use in practice is limited, leading to other debugging
approaches like spectrum-based fault localization or model-based debugging [6, 10, 31].
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Regarding spectrum-based fault localization (SFL), Jones and Harrold [13] introduced
the basic concepts in the corresponding tool Tarantula. In contrast to slicing, which utilizes
program dependencies, SFL uses a probability-based approach considering different execution
runs. In particular, the idea is to assign a suspicious value to each statement (or other part
of a program), which can be motivated as follows. Any statement that is not executed in
failing runs is very unlikely to be faulty. A statement that is only executed in failing runs
is likely faulty. All other statements executed in passing or failing runs might be faulty. A
suspicious value for each statement can be computed considering the execution of statements.

It is worth noting that SFL has gained much attention in the debugging community.
Wong and colleagues [28] provided a survey showing that SFL holds the largest share of
publications of about 30%, followed by slicing-based debugging approaches. However, there
is only a little work combining slicing and SFL for improving debugging, i.e., Wen et al. [27],
Hofer and Wotawa [11], Reis et al. [18], Soha [22], and more recently Wotawa [30]. In this
paper, we mainly focus on the last cited publication and provide an initial experimental
evaluation of the impact of the combined approach on the quality of the debugging results.
In his original paper, Wotawa [30] only discussed the potential impact but did not provide
any experimental evidence of the superiority of the combined slicing and SFL approach. It is
further worth noting that combining approach is one possibility to bring different approaches
together, which often leads to a better performance, e.g., see Mukhtar et al. [17]. The other
way is to show that one approach can be subsumed by the other. For example, Wotawa [29]
showed that the results of static slicing can be achieved using an abstract model of program
statements considering only dependencies between variables and statements.

Hence, in this paper, we contribute to automated software debugging as follows. We
present a first experimental evaluation that considers a combined debugging approach utilizing
SFL and dynamic slicing. The experimental evaluation was carried out considering available
tools for Java programs. The research objective of the study was to clarify whether the
combined debugging approach improves debugging or not. The question is important because
adding slicing to debugging comes with a substantial computational overhead compared to
SFL. Hence, without substantial improvements, a real benefit of the combined method may
not be arguable. In addition to the study, we also discuss challenges and issues we experienced
when carrying out the experimental evaluation. In particular, there is a huge influence of
tools on the outcome, which cannot be neglected and where only partial mitigation is possible.
Note that the provided experimental evaluation cannot be considered an exhaustive one
incorporating a vast number of faulty versions of different programs. It is the first study to
clarify whether conducting additional experimental evaluation is worthwhile.

We organize the paper as follows: We first introduce the foundations behind SFL, dynamic
slicing, and the combined approach. Afterward, we describe the experimental setup, followed
by a detailed presentation of the results. We discuss and summarize the obtained results and
finally conclude this paper.

2 Foundations

In this section, we discuss the foundations behind SFL and its variant that utilizes dynamic
slicing. To illustrate definitions and underlying ideas, we make use of an illustrative example
program. In Figure 1, we have a simple Java program Car.warn that computes the braking
distance using the current velocity, the friction coefficient mu, and the physical equation given
in Line 12. This braking distance is used together with a given distance to a vehicle in front
of a car to raise a warning in the case where we cannot stop within 80% of the provided
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1. public class Car {
2. public static double mu = 1.10758097;
3. public static double constG = 9.80665;
4. public static void warn(
5. double velocity, double distance, boolean raining) {
6. double braking_distance;
7. double current_mu = mu;
8. boolean warning;
9. if (raining) {
10. current_mu = 0.8*current_mu;
11. }
12. braking_distance = (velocity*velocity)/(2*current_mu*constG);
13. if (braking_distance > 0.8*distance) {
14. warning = true;
15. } else {
16. warning = false;
17. }
18. store(warning,braking_distance);
19. }
20. }

Figure 1 An illustrative example program computing an expected braking distance and comparing
it with a distance to a vehicle in front for raising alarm messages.

Table 1 A test suite for program Car.warn.

test case velocity distance raining warning braking_distance
T1 15 10 false true 10.357533856871605
T2 30 64 false false 41.430135427486420
T3 30 64 true true 51.787669284358020
T4 15 64 true false 12.946917321089504

distance. The 80% is a safety margin. In addition, a situation where we have rain influencing
the friction and, therefore, the braking distance is considered. In the case of rain, the friction
coefficient is set to 80% of its original value.

To test Car.warn, we need test cases. A test case comprises given input values and the
resulting expected output values. In our case, we consider the warning and the calculated
braking distance as output. Table 1 comprises 4 test cases for Car.warn. Via executing
Car.warn, we are able to confirm the correct behavior of the program. Let us now assume that
we have a bug in the program. Instead of Line 10, we have current_mu = 0.85*current_mu.
We refer to this faulty variant as Car.warn’. Executing Car.warn’ on the same test suite,
however, leads to a different outcome, which we depict in Table 2. Obviously, the values of
the braking distance are wrong whenever it is raining, but only once the warning is false
instead of true.

After identifying deviations from expectations, we are interested in identifying the root
cause behind them. This is similar to ordinary model-based diagnosis [19, 7] but considers a
program instead of a system comprising interacting (hardware) components.

DX 2025
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Table 2 Running the test suite from Table 1 on program Car.warn’. Values in bold face indicate
differences to expectations.

test case velocity distance raining warning braking_distance
T1 15 10 false true 10.357533856871605
T2 30 64 false false 41.430135427486420
T3 30 64 true false 48.74133579704284
T4 15 64 true false 12.18533394926071

Table 3 The program spectrum of Car.warn’ considering the 4 test cases.

Statement T1 T2 T3 T4 a00 a01 a10 a11 cO

4. public static void warn(

5. double velocity, double distance, boolean raining) {

6. double braking_distance; 1 1 1 1 0 0 2 2 0.707
7. double current_mu = mu; 1 1 1 1 0 0 2 2 0.707
8. boolean warning; 1 1 1 1 0 0 2 2 0.707
9. if (raining) { 1 1 1 1 0 0 2 2 0.707
10. current_mu = 0.85*current_mu; 0 0 1 1 2 0 0 2 1.000
11. }

12. braking_distance = (velocity*velocity)/...; 1 1 1 1 0 0 2 2 0.707
13. if (braking_distance > 0.8*distance) { 1 1 1 1 0 0 2 2 0.707
14. warning = true; 1 0 0 0 1 2 1 0 0.000
15. } else {

16. warning = false; 1 0 1 1 1 0 1 2 0.816
17. }

18. store(warning,braking_distance); 1 1 1 1 0 0 2 2 0.707
19. }

Error vector 0 0 1 1

2.1 Spectrum-Based Fault Localization

We first explain the ideas behind SFL [13, 2, 3, 1]. SFL utilizes the program spectrum for
debugging. A program spectrum is a matrix considering the program statements on one axis
and the test cases on the other. A cell of the matrix has a value of 1 if the statement is
executed in its corresponding test case and 0, otherwise. To access an element of the program
spectrum in row i and column j, we write xij . In addition, we have an error vector ej

indicating whether a test case is passing or failing for each column j. A passing test case
is a test case where the program delivers the expected outcome. Otherwise, a test case is
said to be a failing one. Table 3 shows the program spectrum and the error vector for our
illustrative example program Car.warn’.

To compute a suspicious value for each statement, we need information on whether a
statement is executed in a passing or failing run. SFL introduces for this purpose 4 metrics
values aij for each statement, i.e., row i, which are defined as follows: anm(i) = |{j|xij =
n ∧ ej = m}|. Hence, each anm indicates whether a statement is executed or not in a passing
or failing test case. We find the metrics information for Car.warn’ in Table 3. What is
missing is the computation of a suspicious value. In SFL, the four metrics values are used.
There are a lot of papers introducing the computation of different suspicious values, which
are also called SFL coefficients, that lead to a ranking of statements. The one with the
highest value is the most suspicious, followed by the next value, etc.
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In our experiments, we used three different SFL coefficients, i.e., Tarantula [13] cT

(Equation 1), Ochiai [2] cO (Equation 2), and Sarhan-Beszedes [20] cS (Equation 3):

cT =
a11

a11+a01
a10

a10+a01
+ a11

a11+a01

(1)

cO = a11√
(a11 + a01) · (a11 + a10)

(2)

cS = a11 +
(

a11 − a01

a11 + a01 + a10

)
(3)

For our running example, Table 3 shows the results when applying the Ochiai coefficient.
We see that the statement comprising the fault, i.e., Line 10, is the most suspicious with a
cO value of 1.0, followed by Line 16. Hence, in this case, SFL would enable a programmer to
localize the fault in one step, only having a look at the statement in Line 10.

2.2 Dynamic Slicing

Dynamic slicing [16] is different compared to SFL as it utilizes the data and control de-
pendencies of a program considering statements that are executed for a particular test case.
Dynamic slicing only uses one test case at a time for extracting statements that cause a value
of a given variable at a certain position of the execution. A particular execution can be seen
as a trace, i.e., the execution trace. Together with all dependencies, we obtain a directed
graph, i.e., the execution trace graph. Let us illustrate this using our Car.warn’ method
and test case T3. When calling warn(30,26,true) the following statements are executed
ignoring syntax details:

6. double braking_distance;
7. double current_mu = mu;
8. boolean warning;
9. if (raining) {
10. current_mu = 0.85*current_mu;
12. braking_distance = (velocity*velocity)/(2*current_mu*constG);
13. if (braking_distance > 0.8*distance) {
16. warning = false;
18. store(warning,braking_distance);

We now add information regarding data and control dependencies and obtain the following
graph:
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3:6 Dynamic Slicing and SFL

6.double braking_distance;

7.double current_mu = mu;

8.boolean warning;

9.if (raining)

10.current_mu = 0.85*current_mu;

12.braking_distance = (velocity*velocity)/(2*current_mu*constG);

13.if (braking_distance > 0.8*distance)

16. warning = false;

18.store(warning,braking_distance);

If we now want to compute a dynamic slice for a variable, e.g., braking_distance, we
only need to mark the node from the end of the graph where the variable is defined for
the last time. For braking_distance this is Line 12. Afterward, we traverse the graph
backward and mark all nodes we can reach. For braking_distance we obtain lines 10, 9,
and 7. The final dynamic slice comprises all marked nodes, which are 7, 9, 10, and 12 for
braking_distance. For warning, the dynamic slice is: 7, 9, 10, 12, 13, 16. Considering
a single fault assumption, we may only want to focus on the intersection of both slices,
which finally is the slice for braking_distance. Note that in dynamic slicing, we cannot
rank statements in the slice. We further do not incorporate knowledge about failing or
passing runs. Dynamic slicing is mainly used for failing test cases to identify root causes
for misbehavior. However, due to using dependency information, dynamic slicing allows
distinguishing statements in a block that would not be possible when only considering SFL.
Therefore, a combination of the approaches seems to be a good idea to compensate for the
weaknesses of the respective other approach.

2.3 Dynamic slicing enhanced spectrum-based fault localization
To be self-contained, we briefly explain the idea and algorithm of the combined approach. For
more details, we refer to the original publication of Wotawa [30]. The idea behind combining
slicing and SFL is simple. Instead of considering statement executions and solely the outcome
of a test, we distinguish all output variables and consider the dynamic slices for them. When
distinguishing the outputs of a test, we can also add the information of whether an output is
correct or incorrect directly into SFL. Moreover, statements that are not in any dynamic
slice can be ignored. The computation of the coefficients is then working as usual. Hence,
it is only the way a test is separated into parts that distinguish the hybrid method from
ordinary SFL.

In Figure 4, we depict the outcome of the hybrid method for our running example program
Car.warn’. We see that the buggy statement is still the highest-ranked one. It is worth
noting that, for this example, the hybrid method does not provide an improvement. However,
for other example programs, there are improvements and, therefore, we are interested in a
more detailed evaluation considering different faults and programs.
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Table 4 The program spectrum of Car.warn’ considering the 4 test cases and the hybrid approach.
Note that the columns named B and W are the ones for variables braking_distance and warning
respectively. Further, note that values are only computed for statements appearing in slices.

Statement T1 T2 T3 T4 a00 a01 a10 a11 cO

W B W B W B W B
4. public static void warn(

5. double velocity, ...) {

6. double braking_distance;

7. double current_mu = mu; 1 1 1 1 1 1 1 1 0 0 5 3 0.612
8. boolean warning;

9. if (raining) { 1 1 1 1 1 1 1 1 0 0 5 3 0.612
10. current_mu = 0.85*cur... 0 0 0 0 1 1 1 1 4 0 1 3 0.866
11. }

12. braking_distance = (velocity...; 1 1 1 1 1 1 1 1 0 0 5 3 0.612
13. if (braking_distance > 0.8*...) { 1 1 1 1 1 1 1 1 0 0 5 3 0.612
14. warning = true; 1 0 0 0 0 0 0 0 4 3 1 0 0.000
15. } else {

16. warning = false; 0 0 1 0 1 0 1 0 3 2 2 1 0.333
17. }

18. store(warning,braking_distance);

19. }

Error vector 0 0 0 0 1 1 0 1

2.3.1 Implementation
We implemented the hybrid SFL approach utilizing the existing JSR framework that computes
the checked coverage of Java programs [23, 15, 14]. Checked coverage is a coverage measure
that considers whether statements influence the values of a given test property, which are
used, for example, in JUnit as test oracles. The JSR framework utilizes the Java code
coverage library JaCoCo [9] and the dynamic slicing tool Slicer4J [4] for computing checked
coverage.

Using JSR, we obtain the spectrum for a program and a test suite as follows: For each test
and output variable, we generate a JUnit test that comprises a test property for the variable.
We run JSR on the test suite and compute the checked coverage for all test properties, which
means to compute all statements that influence the variable value and are executed. This
information is added to the program spectrum. For the error vector, we record whether the
test property indicates a passing or a failing run and finally obtain all the needed information.

It is worth noting that we made some changes to JSR and also implemented the computa-
tion of the already introduced SFL coefficients, i.e., Ochiai, Tarantula, and Sarhan-Beszedes.
The implementation is available on GitHub https://github.com/SchleichJonas/JSR. Be-
sides the implementation, we put all programs for obtaining the experimental evaluation into
the repository to ensure reproducibility.

3 Experimental evaluation

The objective of the experimental evaluation is to show the impact of adding dynamic
slicing to spectrum-based fault localization. In particular, we are interested in answering
the question of whether utilizing dynamic slicing improves the outcome of spectrum-based

DX 2025

https://github.com/SchleichJonas/JSR


3:8 Dynamic Slicing and SFL

Table 5 Programs used for the initial experiments.

Program LoC Test cases Inputs Outputs
BMI 24 6 2 1
Expint 88 5 2 1
Fisher 74 5 3 1
Gammq 91 5 2 1
Luhn 91 7 2 1
Middle 27 5 3 1
Tcas 152 8 12 1

fault localization when applied to ordinary programs. To answer this question, we first
need to define what ”improves” means in this context. From the literature, there have been
several metrics specified for comparing different debugging methods, e.g., Hit Ratio@k and
the wasted effort [12]. Whereas the former indicates how often a debugging approach ranks
the correct diagnosis within the first n elements, the latter captures how many non-faulty
statements are ranked before (or have to be inspected before) the buggy statement. The
wasted effort is an absolute evaluation measure and not a percentage rank. Note that wasted
effort is also sometimes referred to as EXAM score and is considered favorable to assess
software debugging techniques [5]. In the context of this paper, we use the following definition
of wasted effort (WE) where sf is the suspicious score of the actual error:

WE = |lines with score > sf | + 0.5 · (|lines with score = sf |) − 1)

Note that the hit ratio given in this paper is always the best, i.e., if there are multiple
statements having the same SFL coefficient value, we assume that the statement comprising
the fault is ranked the best.

For the experimental evaluation, we used different sets of programs. We introduced bugs
and test suites that are able to capture the bug. For every program, we only introduced one
fault manually. We ran the different debugging approaches and obtained the hit ratio and
wasted effort for each program. We finally computed average values. In the following, we
report the obtained results, considering each of the program sets separately. We start with
the initial experiments.

3.1 Initial experiments
We carried out the initial experiments considering simple programs such as a BMI calculator,
the Luhn algorithm that is used for credit card number verification, TCAS, and others,
for which we summarize some metrics information in Table 5. These programs have been
used in the context of software testing and also debugging research. The calculations vary
in complexity from elementary calculations to more complex ones. In each class, multiple
intentional errors were added manually, triggering SFL and dynamic slicing. The introduced
errors differ, aiming at achieving as much variety as possible. Every calculation has multiple
test cases, including passing and failing test cases. Table 6 depicts the applied changes for
obtaining the programs used for the initial experiments.

For each program, we manually developed 5–8 test cases, ensuring that some are passing
and some are failing. For the initial evaluation, we only considered one variable as the output
variable. Hence, we did not expect any negative impact of the hybrid method on the SFL
result. There might be a positive impact on the results because the hybrid SFL method
utilizes data dependencies, which might allow the elimination of statements that do not
contribute to the final outcome and, therefore, improve the ranking.
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Table 6 Alteration of the source code used in the initial experiments.

Program LineNr. Original code Altered code
BMI 17 else if (bmi < 30) else if (bmi > 30)
BMI2 7 bmi_score = weight / (height * height); bmi_score = weight / (height);
BMI3 12 calculateBMI(height, weight); calculateBMI(weight, height);
Expint 43 h *= del; h = del;
Expint2 47 return h*Math.exp(-x); return h*Math.exp(x);
Expint3 38 a = -i*(nm1+i); a = -i*nm1+i;
Fisher4 10 a = 2*(m/2)-m+2; a = 2*(m/2)-n+2;
Fisher2 27 d = 0.5*p*z/w; d = 0.4*p*z/w;
Fisher3 54 p = p*zk+w*z*(zk-1.0)/(z-1.0); p = p*zk+w*(zk-1.0)/(z-1.0);
Gammq 37 an = -i*(i-a); an = i*(i-a);
Gammq2 72 gamser=sum*Math.exp(-

x+a*Math.log(x)-gln);
gamser=sum*Math.exp(-
x+a*Math.log(x));

Gammq3 84 return 1-gamser; return gamser-1;
Luhn 14 if (number.length() != 16 || if (number.length() != 15 ||
Luhn2 76 for (int i = number.length-2; i > -1; i-=2)

{
for (int i = number.length-2; i > 0; i-=2) {

Middle 6 if((a<b && b<c)|| (c<b && b<a)){ if((a<b && b<c)|| (c<b && b>a)){
Middle2 15 return a; return b;
Tcas 54 return ((Climb_Inhibit!=0) ?

Up_Separation + NOZCROSS :
Up_Separation);

return ((Climb_Inhibit!=0) ?
Up_Separation - NOZCROSS :
|Up_Separation);

Tcas2 124 alt_sep = UPWARD_RA; alt_sep = UNRESOLVED;

In tables 7 and 8, we depict the obtained results of the initial experiments considering
SFL alone and the hybrid approach, respectively. We see that there are differences both in
the rank and the wasted effort (WE). In some cases, WE improves when using the hybrid
approach, and in three cases, the WE becomes worse. This holds especially for the Expint
and the Tcas programs, where we obtained severe declines in performance, which is also
visible in the following table, which captures the Hit ratio and the average values of the WE
results for the three SFL coefficients:

Ochiai Tarantula Sarhan-Beszedes
Hit@1 Hit@5 WE Hit@1 Hit@5 WE Hit@1 Hit@5 WE

SFL 0.8333 1.0000 4.8056 0.7222 1.0000 5.8611 0.8333 1.0000 4.8056
Hybrid 0.7778 0.9444 6.4722 0.7222 0.9444 7.6389 0.7778 0.9444 6.4722

For all three SFL coefficients, we see a decline of the WE when using the hybrid approach,
which is unexpected. Therefore, we further investigated the underlying reasons.

After having a look at the usual suspects for causes of the unexpected results, like the
implementation or the experimental setup, which seemed to be correct, we further investigated
the dynamic slicer used in the JSR framework. A detailed analysis of the resulting traces
and slices showed that sometimes the slicer does not give back statements comprising faults.
For both programs Expint and Tcas we obtained a similar outcome. The slicer uses Jimple,
which is a 3-address intermediate representation, to simplify analysis and transformation
of Java bytecode [24] as the internal representation of the program. Unfortunately, this
transformation removes important parts of the program, not allowing the slicer to return
a correct output in every case. It is worth noting that dynamic slicers themselves do not
always deliver back a correct slice, which leads to the development of critical slicing [8] and
other variants.
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Table 7 Results of the initial experiments only considering SFL without slicing. WE stands for
wasted effort.

Program Ochiai Tarantula Sarhan-Beszedes
Rank WE Rank WE Rank WE

BMI 1 0.0 1 1.5 1 0.0
BMI2 1 0.5 3 5.0 1 0.5
BMI3 1 1.0 1 1.0 1 1.0
Expint 1 9.0 1 9.0 1 9.0
Expint2 1 9.0 1 9.0 1 9.0
Expint3 1 9.0 1 9.0 1 9.0
Fisher 1 8.0 1 19.0 1 8.0
Fisher2 1 0.5 1 0.5 1 0.5
Fisher3 2 4.5 2 4.5 2 4.5
Gammq 1 10.0 1 10.0 1 10.0
Gammq2 1 6.0 1 6.0 1 6.0
Gammq3 1 6.0 1 6.0 1 6.0

Luhn 1 0.0 2 2.0 1 0.0
Luhn2 1 6.5 1 6.5 1 6.5
Middle 2 1.5 2 1.5 2 1.5
Middle2 1 0.0 1 0.0 1 0.0

Tcas 4 15.0 4 15.0 4 15.0
Tcas2 1 0.0 1 0.0 1 0.0

Table 8 Results of the initial experiments considering the hybrid approach with dynamic slicing.
An arrow up indicates an improvement of the result compared to the one given in Table 7, and an
arrow down the opposite. WE stands for wasted effort.

Program Ochiai Tarantula Sarhan-Beszedes
Rank WE Rank WE Rank WE

BMI 1 0.0 1 1.5 1 0.0
BMI2 1 0.0↑ 3 4.5↑ 1 0.0↑
BMI3 1 1.0 1 1.0 1 1.0
Expint 2↓ 26.0↓ 2↓ 26.0↓ 2↓ 26.0↓
Expint2 1 7.5↑ 1 7.5↑ 1 7.5↑
Expint3 1 7.5↑ 1 7.5↑ 1 7.5↑
Fisher 1 4.5↑ 1 19.5↓ 1 4.5↑
Fisher2 1 0.5 1 0.5 1 0.5
Fisher3 2 4.5 2 4.5 2 4.5
Gammq 1 8.0↑ 1 8.0↑ 1 8.0↑
Gammq2 1 4.5↑ 1 4.5↑ 1 4.5↑
Gammq3 1 5.0↑ 1 5.0↑ 1 5.0↑

Luhn 1 0.0 1↑ 0.0↑ 1 0.0
Luhn2 1 6.5 1 6.5 1 6.5
Middle 2 5.5↓ 2 5.5↓ 2 5.5↓
Middle2 1 0.0 1 0.0 1 0.0

Tcas 6↓ 35.5↓ 6↓ 35.5↓ 6↓ 35.5↓
Tcas2 1 0.0 1 0.0 1 0.0
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Table 9 Programs used for second experiments.

Program LoC Test cases Inputs Outputs
Armstrong 49 7 1 1
Bubblesort 38 7 1 1
ChineseRemainder 47 7 2 1
Factorial 18 7 1 1
GCD 27 7 2 1
InverseCounter 26 7 1 1
IsPrime 20 7 1 1
LCM 24 7 2 1
LogExp 23 7 2 1
Minimax 50 7 1 1
ModInverse 32 7 2 1
Mult 30 7 2 1
RSA 58 7 3 1
RussianPeasant 34 7 2 1
Sqrt 23 7 1 1

Hence, we can summarize the findings obtained from the initial experiment as follows:

Finding 1: There is a huge impact of the underlying slicer on the obtained results of the
hybrid method in some cases leading to worst results when using the hybrid SFL approach.

More experiments are required to further investigate the effect of the impact of the
underlying slicer and on other influencing factors like the way an error was introduced in a
program. Therefore, we carried out a second and a third experiment.

3.2 Second experiments
The objectives of the second experiment are to clarify whether there is an influence on the
way intentional errors are introduced, covering well-known algorithm implementations. For
this purpose, we selected 15 algorithms, from very simple ones like the greatest common
divisor (GCD) to more complex ones like RSA encryption and decryption. See Table 9 for the
list of implementations and their corresponding statistics. We provided the implementations
to four students and asked them to place one error into the source code, not giving them a lot
of input to avoid introducing bias. Note that the implementations were equally distributed
among the students. The only requirement was that the error still lead to the execution of
the program without any exceptions. The selected students come from different fields; where
two are from software engineering, one from mathematics, and another one is not from any
science discipline at all. Table 10 depicts the changes to the implementations introduced by
the students.

After running the second experiment, we obtained the debugging outcome of SFL and
the hybrid method that we depict in tables 11 and 12, respectively. The debugging methods
performed better in this experiment than the initial one. This is probably because the
programs of the second experimental evaluation are simpler. The improvements can be
observed both for the Tarantula coefficient and the hybrid SFL method. However, Tarantula
still performed worse than the other SFL coefficient. The already well-performing Sarhan-
Beszedes coefficient performed even better than Ochiai, which performed the same as
Sarhan-Beszedes for the initial setup.
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Table 10 Changed code of programs used for the second experiments.

Program LineNr. Original code Altered code
Armstrong 34 int r = temp % 10; int r = temp / 10;
Bubblesort 36 return arr; return res;
ChineseRemainder 26 if (x%num[j] != rem[j]) if (x%num[j] == rem[j])
Factorial 7 int res = 1; int res = 0;
GCD 12 if (a % result == 0 && b % result

== 0) {
if (a / result == 0 && b % result
== 0) {

InverseCounter 12 for (int j = i + 1; j < n; j++) { for (int j = i + 1; j < n - 1; j++) {
IsPrime 10 for (int i = 2; i < n; i++) for (int i = 2; i <= n; i++)
LCM 10 return gcd(b % a, a); return gcd(b % a, b);
LogExp 12 pow = pow * b; pow = pow % b;
Minimax 48 return minimax(0, 0, true, scores,

h);
return -minimax(0, 0, true, scores,
h);

ModInverse 30 return modInverse(A, M); return modInverse(M, M);
Mult 17 return -multiply(x, -y); return multiply(x, -y);
RSA 14 z = (p - 1) * (q - 1); z = (p - 1) * (q + 1);
RussianPeasant 19 res = res + a; res = res % a;
Sqrt 17 return res - 1; return res - res;

Table 11 Results of the second experiments only considering SFL without slicing. WE stands for
wasted effort.

Program Ochiai Tarantula Sarhan-Beszedes
Rank WE Rank WE Rank WE

Armstrong 1 4.5 1 4.5 1 4.5
BubbleSort 1 3.0 1 7.5 1 3.0

ChineseRemainder 1 3.5 1 5.0 1 3.5
Factorial 1 2.0 1 2.5 1 2.0

GCD 1 0.5 1 0.5 1 0.5
InverseCounter 2 4.5 2 4.5 1 3.5

Isprime 1 1.0 1 1.0 1 1.0
LCM 1 0.0 1 0.0 1 0.0

LogExp 1 0.0 1 0.0 1 0.0
Minimax 1 3.0 1 3.0 1 3.0

ModInverse 1 3.0 1 5.0 1 3.0
Mult 1 0.5 1 0.5 1 0.5
RSA 1 12.0 1 12.0 1 12.0

RussianPeasant 1 4.0 1 4.0 1 4.0
Sqrt 2 3.0 2 3.0 2 3.0
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Table 12 Results of the second experiment considering the hybrid approach with dynamic slicing.
An arrow up indicates an improvement of the result compared to the one given in Table 11, and an
arrow down the opposite. WE stands for wasted effort.

Program Ochiai Tarantula Sarhan-Beszedes
Rank WE Rank WE Rank WE

Armstrong 1 5.0↓ 2↓ 7.0↓ 1 5.0↓
BubbleSort 1 0.5↑ 1 7.5 1 0.5↑

ChineseRemainder 3↓ 7.0↓ 1 5.0 3↓ 7.0↓
Factorial 1 1.0↑ 1 2.0↑ 1 1.0↑

GCD 1 1.0↓ 1 1.0↓ 1 1.0↓
InverseCounter 1↑ 2.0↑ 1↑ 2.0↑ 2↓ 5.0↓

Isprime 1 1.0 1 1.0 1 1.0
LCM 1 0.0 1 0.0 1 0.0

LogExp 1 0.0 1 0.0 1 0.0
Minimax 1 2.0↑ 2↓ 4.0↓ 1 2.0↑

ModInverse 1 2.5↑ 1 4.5↑ 1 2.5↑
Mult 1 0.5 1 0.5 1 0.5
RSA 1 9.5↑ 1 9.5↑ 1 9.5↑

RussianPeasant 1 3.5↑ 1 3.5↑ 1 3.5↑
Sqrt 2 3.0 2 3.0 2 3.0

These improvements are also very well visible in the summary of the results, where we
also consider the hit ratio and not only wasted effort, which is given in the following table:

Ochiai Tarantula Sarhan-Beszedes
Hit@1 Hit@5 WE Hit@1 Hit@5 WE Hit@1 Hit@5 WE

SFL 0.8667 1.0000 2.9667 0.8667 1.0000 3.5333 0.9333 1.0000 2.9000
Hybrid 0.8667 1.0000 2.5667 0.8000 1.0000 3.3667 0.8000 1.0000 2.7667

Interestingly, while HitRatio@1 decreased with the hybrid method for Tarantula and
Sarhan-Beszedes, the wasted effort improved slightly for both. For Ochiai, we see no change
in the hit ratio, but the wasted effort also improved. Hence, what we can conclude is the
following:

Finding 2: The hybrid method for SFL behaves slightly better considering the wasted effort
for simple algorithm implementations, whereas the hit ratio is slightly worse.

Hence, we see a different outcome in the experiments where all underlying programs
have only one output. Therefore, we are interested in investigating the effect of considering
programs with more than one output on the debugging results. To answer this question, we
carried out a third experimental evaluation.

3.3 Third experiments
To answer the question of whether the number of output variables impacts the ranking
when comparing SFL with our hybrid method, we used the same example programs as in
the first experiments, which are depicted in Table 5. But for most of the programs of the
initial experiments, we used available variables in the source code as additional outputs for
which we defined the expected values. For the programs and their variants, we have the
following number of outputs in the third experimental setup: BMI (2), Expint (2), Fisher (4),
Gammq (4), Luhn (1), Middle (1), Tcas (5). Note also that the increase of outputs (with
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Table 13 Results of the third experiments only considering SFL without slicing. WE stands for
wasted effort.

Program Ochiai Tarantula Sarhan-Beszedes
Rank WE Rank WE Rank WE

BMI 1 0.0 1 1.5 1 0.0
BMI2 1 2.5 4 7.5 1 2.5
BMI3 1 3.0 1 3.0 1 3.0
Expint 1 7.5 1 7.5 1 7.5
Expint2 1 7.5 1 7.5 1 7.5
Expint3 1 7.5 1 7.5 1 7.5
Fisher 1 8.0 1 13.5 1 8.0
Fisher2 1 0.5 1 0.5 1 0.5
Fisher3 2 4.5 2 4.5 2 4.5
Gammq 1 10.0 1 10.0 1 10.0
Gammq2 1 6.0 1 6.0 1 6.0
Gammq3 1 6.0 1 6.0 1 6.0

Luhn 1 0.0 2 2.0 1 0.0
Luhn2 1 6.5 1 6.5 1 6.5
Middle 2 1.5 2 1.5 2 1.5
Middle2 1 0.0 1 0.0 1 0.0

Tcas 4 16.5 4 16.5 2 11.5
Tcas2 1 0.0 1 0.0 1 0.0

the exception of Luhn and Middle) also leads to an increase in test cases because we have
one JUnit test for each property specifying the expected behavior of one output. Hence,
the results for SFL also might change, which is well visible when comparing Table 7 with
Table 13.

When comparing the results of SFL and the hybrid approach, which are depicted in
Table 13 and Table 14 respectively, we see an improvement. The hybrid approach provides
a better wasted effort for almost all programs. Moreover, the ranking improved as well
and is now the same or better for most of the coefficients. Considering more outputs even
compensates for the problem with the slicer. In the following table, we summarize the
findings for all programs, also considering the hit ratio:

Ochiai Tarantula Sarhan-Beszedes
Hit@1 Hit@5 WE Hit@1 Hit@5 WE Hit@1 Hit@5 WE

SFL 0.8333 1.0000 4.8611 0.7222 1.0000 5.6389 0.8333 1.0000 4.5833
Hybrid 0.8333 1.0000 2.1667 0.7778 1.0000 3.1389 0.8333 1.0000 2.1389

We see that with one exception for Tarantula, the hit ratio of the hybrid approach is
always the same as the one for SFL alone. The wasted effort improves between around 5%
and 15% on average for the different SFL coefficients. Hence, the third experiment confirms
that adding slicing has the potential to improve the outcome, at least for the wasted effort,
which is an important measure for the efficiency of debugging. This leads to the following
third finding of our preliminary experimental evaluation:

Finding 3: For programs with more than one output, the hybrid approach, which integrates
dynamic slicing into SFL, the wasted effort improves.
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Table 14 Results of the third experiments considering the hybrid approach with dynamic slicing.
An arrow up indicates an improvement of the result compared to the one given in Table 13, and an
arrow down the opposite. WE stands for wasted effort.

Program Ochiai Tarantula Sarhan-Beszedes
Rank WE Rank WE Rank WE

BMI 1 0.0 1 1.5 1 0.0
BMI2 1 0.5↑ 2↑ 1.5↑ 1 0.5↑
BMI3 1 0.5↑ 1 0.5↑ 1 0.5↑
Expint 1 0.5↑ 1 0.5↑ 1 0.5↑
Expint2 1 1.0↑ 1 1.0↑ 1 1.0↑
Expint3 1 5.5↑ 1 7.0↑ 1 5.5↑
Fisher 1 0.0↑ 1 12.0↑ 1 0.0↑
Fisher2 1 0.5 1 0.5 1 0.5
Fisher3 2 4.0↑ 2 4.5 2 3.5↑
Gammq 1 6.5↑ 1 7.0↑ 1 6.5↑
Gammq2 1 3.5↑ 1 4.0↑ 1 3.5↑
Gammq3 1 0.0↑ 1 0.0↑ 1 0.0↑

Luhn 1 0.0 1↑ 0.0↑ 1 0.0
Luhn2 1 6.5 1 6.5 1 6.5
Middle 2 5.5↓ 2 5.5↓ 2 5.5↓
Middle2 1 0.0 1 0.0 1 0.0

Tcas 4 4.0↑ 3↑ 4.0↑ 4↓ 4.0↑
Tcas2 1 0.5↓ 1 0.5↓ 1 0.5↓

3.4 Discussion

The experimental evaluation’s objective was to carry out experiments showing whether
combining dynamic slicing with SFL has a positive impact on debugging, i.e., a better hit
ratio or wasted effort. From the experiments, which also considered different SFL coefficients,
we see not a big difference except when considering multiple output variables, which was
somehow expected. What was not expected to see a slight decrease in the debugging efficiency
of the hybrid method for some examples? A detailed analysis reveals that the slicer causes
trouble in some cases. Hence, a result of this evaluation is that the slicer may have a huge
impact depending on the program we want to debug.

As already mentioned, this experimental evaluation is an initial study. It uses small and
at least partially simple example programs. Hence, the outcome may vary when using larger
and more complex programs. However, the programs implement well-known algorithms
and comprise ordinary data and control structures. They have not been selected for a
particular purpose but used because they have already served as examples of different studies.
Besides the selection of the programs, there are other threats to the validity. First, the
implementation makes use of available tools and frameworks, which might be buggy, causing
a bias. Second, we introduced faults manually. However, we did not introduce a fault having
a certain result in mind. Third, the number of programs and their faulty variants are limited.
The same holds for the test suites, which have also been manually generated. Considering
more variants and different test suites might change the outcome. Finally, we used only
one programming language, i.e., Java, for providing examples. Hence, there might also be
an influence on the outcome. Therefore, further studies have to be carried out, including
replications of the experiments, to prove or disprove the obtained findings.
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4 Conclusions

In this paper, we present a first experimental evaluation that compares ordinary spectrum-
based fault localization with a variant that utilizes dynamic slicing to overcome some
limitations, like handling data dependencies. The experimental evaluation relied on several
smaller Java programs where we introduced faults. The evaluation revealed a huge impact
of the implementation, and in particular, the use of a dynamic slicer, on the outcome.
Furthermore, we showed that for programs having more output, the hybrid method performs
better in terms of wasted effort. Hence, the outcome of the study is promising. Howewver,
further experiments are required for a final judgment of the combined debugging methodology.
This includes identifying the influence of test suites or the complexity of programs on the
outcome. Moreover, more faulty variants and larger programs should be used for the
evaluation. The latter is of particular interest to show whether additional computational
complexity of the computationally more demanding hybrid approach really pays off, leading
to a substantially improved debugging outcome. All these open issues we want to consider in
our future research.
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