Using Qualitative Simulation Models for
Monitoring and Diagnosis

Ankita Das!' &

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

Roxane Koitz-Hristov &
Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

Franz Wotawa? &
Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

—— Abstract

Many systems in our daily lives control physical processes, which are parametrized and adapted, such
as heating systems in buildings. Faults and non-optimized settings lead to a high energy demand
and, therefore, need to be detected as early as possible. Unfortunately, due to specific adaptations,
only the basic principles remain the same, but not the concrete implementations, making the use of
techniques like machine learning difficult. Therefore, we suggest using abstract models that cover the
basic behavior in a way that allows us to reuse the models in different installations. In particular, we
discuss the application of qualitative simulation for fault detection and introduce a formal definition
of conformance between the results of qualitative simulation and the monitored behavior. We discuss
arising difficulties and provide a basis for further research and applications.
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1 Introduction

In 2022, the International Energy Agency estimated the buildings’ energy-related COq
emissions at around 27% of the total worldwide CO, emissions. To bring the emissions down,
several actions have to be taken, including monitoring and diagnosis of heating and cooling
systems that often operate in non-optimal operational spaces using far more energy than
necessary. This is well visible when considering previous work (i) in the context of radiant
ceiling cooling systems, where model predictive control can reduce energy consumption by
up to 27% (see, e.g., [10]), or (ii) heat pumps where fault diagnosis can reduce energy loss
when detected, diagnosed, and repaired early by about 40% [3]. As a consequence, there is a
strong need for automated diagnosis of heating and cooling systems in buildings to reduce
the overall CO5 emissions.
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Qualitative Simulation Models for Monitoring

Unfortunately, monitoring and fault localization of such systems is complicated because
each building is unique, comprising tailored heating and cooling facilities. When using
machine learning, we need either to retrain every model for every building, which is expensive
and time-consuming or to find a way to adapt trained models. This similarly holds for
physical simulation models that would need to be parametrized for every building. However,
the basic principles and their corresponding abstract representation of the behavior of each
of the facilities are the same, which follow physical principles. Hence, when being able to
represent the behavior of systems that follow physical principles in an abstract way, we can
use this for at least detecting faults when monitoring the current behavior of a system.

In this paper, we tackle this challenge and suggest utilizing qualitative reasoning to
provide an abstract model of a system that can be used for fault detection and, finally,
localization. In particular, we discuss how to use and couple qualitative simulation [20]
to ordinary monitoring systems. Rinner and Kuipers [24] already suggested the use of
qualitative simulation in monitoring. In contrast, we formally define conformance between
the outcome of qualitative simulation and the observations obtained from a system. This
formal conformance relationship serves as the basis for detecting faults and may also be
of use for fault localization, providing that the qualitative simulation models also capture
faulty behavior. The idea is to compare the different qualitative states over time with the
abstracted observations. This comparison requires not only abstraction but also specific
enhancements. For example, we do not continuously observe the behavior over time but at
certain time points. Hence, we might not observe reaching landmarks, which would raise
false alarms. Therefore, we need to add reasonable qualitative states to the observations for
comparison.

We organize this paper as follows: In Section 2, we discuss related work. Afterward, in
Section 3, we introduce a simple tank example, which we use in the rest of our paper for
illustration purposes. Section 4 introduces qualitative simulation to be self-contained and
discusses conformance in detail. Finally, we conclude the paper.

2 Related work

Qualitative reasoning provides a powerful method for modeling dynamic systems under
uncertainty by abstracting continuous variables into symbolic associations. Three form-
alisms form the foundation [26]: Qualitative Process Theory (QPT) [12], which models
physical processes using causality and process activation; Qualitative Physics [15], which uses
component-level modeling and constraint propagation to envision possible system behaviors;
and Qualitative Simulation (QSIM) [20], which simulates all consistent qualitative trajectories
from an initial state using a constraint-based model. QSIM represents system dynamics
using Qualitative Differential Equations (QDEs), which abstract sets of Ordinary Differential
Equations (ODEs). Starting from an initial qualitative state, QSIM generates a behavior tree
by enumerating all possible successor states using a transition table of permissible qualitative
changes, and then pruning inconsistent states based on qualitative constraints [21].

QSIM has been extended and applied in various diagnostic frameworks. Subramanian
and Mooney [25] extended QSIM to model systems with multiple concurrent faults by
associating fault-specific constraints and using constraint-based reasoning to isolate them.
Similarly, the SEXTANT system [23] combines QSIM with the HS-DAG algorithm [14] to
compute minimal diagnoses based on behavioral conflicts. Another example is Mimic [11], a
semi-quantitative system that integrates QSIM-style simulation with model-based reasoning
for process monitoring. Mimic identifies faults by detecting discrepancies between simulated
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Figure 1 A simple tank example, comprising a input pipe with a valve, a sink, a sensor S
measuring the maximum water level and a sensor Sz measuring whether water is passing the sink.
The ordinary behavior is that the valve is open enabling an inflow until the maximum water level
is reached and the valve is closed. The outward flow is only for cases where the inflow cannot be
controlled anymore to prevent from flooding.

and observed behavior, and then tests fault hypotheses by adapting the model. Similarly,
DIAMON [22] combines QSIM with consistency-based diagnosis in a layered monitoring
framework. It uses qualitative simulation to detect abnormal behavior and incrementally
refines the model abstraction level to isolate the root cause.

Beyond classical QSIM applications, efforts have been made to scale qualitative simulation
to more complex hybrid systems. Klenk et al. [16, 17] propose translating a subset of Modelica
models into qualitative constraints to enable QSIM-style simulation. The approach reduces
spurious trajectories by incorporating continuity, higher-order derivatives, and landmark
ordering.

QSIM has been successfully combined with frameworks based on constraints, including
Constraint Logic Programming over Finite Domains (CLP(FD)) [2] and Answer Set Pro-
gramming (ASP) [29]. Wiley et al. [29, 28] demonstrate that robots may autonomously learn
qualitative action sequences, such as scaling obstacles or navigating uneven terrain, without
requiring accurate quantitative representations of the robot or its environment when using
their ASP approach to QSIM called ASP-QSIM.

Our approach builds directly on these QSIM-based diagnosis principles but introduces
a conformance-based interpretation of system behavior for system monitoring and fault
detection. By exploiting ASP-QSIM, our method identifies deviations between observed
system trajectories and simulation-derived qualitative behaviors.

3 Illlustrative example

In this section, we illustrate the suggested diagnosis approach considering a tank comprising
a pipe where water flows in that has a valve for enabling water flow or stopping it, and a sink
for preventing overflowing of the tank. We assume that the sink is designed such that even
the amount of water coming from a fully opened input valve can be handled. The overall
system has also two sensors. Sensor S is for indicating that the maximum water level is
reached. In this case the valve will be closed. Otherwise, the valve is set to open. Another
sensor S, measures whether there is an outflow, which indicates a trouble. The second sensor
can be seen as a form of safeguard for the outpipe. Figure 1 graphically depicts the tank
example.
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Figure 2 The correct behavior of the water tank example considering the height of the water
level, the volume of water in the tank, the sensors and the inflow value. Before time 400s, the water
level reaches the maximum causing sensor Si to fire which leads to closing the valve preventing from
additional inflow.

A mathematical model of this tank systems comprises one input, i.e., the volumetric flow
rate, which fills the tank until reaching the maximum level. If there is still an inflow, then the
water will flow through the output of the tank (of course unless it is open and not blocked).
The ordinary behavior of this tank example can be modeled as follows: The tank has an
area A (e.g., in form of a circle of a given radius r where A = r% - 1), a maximum height
Nmaz Where the water should stop, and the height of the tank h;,p, which is higher than
himaz- The inflow in is given in the amount of water per time, i.e., in m®/s. The current
volume of water is a function of time V' (t) = h(t) - A where h(t) is the current height at time
t. This volume depends on the sum of the inflows over time, i.e., V(t) = [ in(t)dt, and,

hence, d‘;it) = in(t). If the water reaches the maximum level, the valve should close. If this
is not the case the water level reaches the outpipe causing an outflow. This outflow should
be the same than the inflow, i.e., out = in, and no further water is added to the tank. When
implementing this model in a simulation language like Modelica [13], we obtain a behavior
like the one depicted in Figure 2. For this behavior we assumed a tank with a radius of 1m,
a maximum level of 1.2m, a top level of 1.5m, and a flow rate of 0.001m3/s. Note that we
varied the inflow over time using a sinus function. This allows us also to see that the inflow
into the tank stops when the valve closes. There are fluctuations of the inflow until reaching
the maximum level in Figure 2. Afterward, the inflow is zero without fluctuations.

Note that the behavior is similar in case of changed parameters but the steepness of the
increase would be different. However, when using concrete values for diagnosis, i.e., the
detection and explanation of misbehavior, we need to adapt any comparison function allowing
us to show differences between the real and the expected behavior. If we use simulation, we
further would need to adapt parameters to fit the simulation outcome with the one of the
real systems due to variations between real components and ideal ones. Hence, a qualitative
representation of the behavior to be used to check conformance of behavior would be a good
idea. To confirm that a water tank system will operate as expected under typical operating
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conditions, a qualitative simulation using ASP-QSIM was carried out. Figure 3 depicts the
qualitative behavior our simulation produces for the tank example. Analyzing the plots, we
see that as the tank fills, the inflow progressively decreases and eventually stabilizes at zero,
while both volume and water level increase until they reach a maximum state, representing
the threshold of the tank. Once this maximum is reached, the sensor S; switched off as
expected. Hence, our simulation accurately captures the tank systems nominal behavior.

Tank Filling Qualitative Simulation
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Figure 3 Qualitative simulation behavior for tank system, showing qualitative transitions of
inflow, level, volume and sensors across key landmarks.

In the following, we discuss the applicability of qualitative simulation for diagnosis
focusing on fault detection. In particular, we want to clarify the following questions:

What means conformance of a concrete system run and the qualitative simulation result?

What are the limitations of qualitative simulation when applied for diagnosis? Here, we

want to outline limitations considering different fault scenarios. Which type of faults can

hardly or not being detected?

For the discussions on limitations, we consider the following fault cases of the tank
example, assuming that the fault happens at 200s and remains permanent until the end of
simulation:

Fault case 1: Sensor S; gets stuck at false. In this case, the controller would not get any
information and not initiate closing the valve. Hence, the water will reach the outpipe
causing sensor Sa to go from false to true.

Fault case 2: Sensor S; is stuck at true, leading to closing the valve immediately. Hence,
the tank will not be filled completely.

Fault case 3: The valve is stuck and always closed leading to zero inflow after 200s. Hence,
none of the sensor will go to true and the tank cannot be filled.

Fault case 4: The valve is stuck and remains open. In this case sensor S; indicates reaching
the maximum level but having no effect. Hence, the top level is reached and sensor So
will go from false to true.

Fault case 5: The valve gets stuck at 50% leading to continuous and not stopping inflow.

Both sensor indicate reaching a certain water level but the water inflow does not stop.
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Figure 4 shows the faulty behaviors resulting from the different fault cases. Before

discussing the limitations and challenges, we introduce the basic definitions of qualitative

simulation in the next section of this paper.
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(e) Fault case 5: Valve stuck at 50% open.

Figure 4 Faulty behavior cases of the tank example.

4  Qualitative Simulation (QSIM)

QSIM provides a formal basis for reasoning about physical systems in situations where precise
numerical data is unavailable or not needed. Unlike numerical simulation techniques, which
require precise parameter values, in QSIM continuous variables are abstracted into symbolic
categories such as increasing, decreasing, or landmark values. QSIM simulates all possible
behaviors of a system given a qualitative model. Its inputs are: (1) QDEs represented by
variables and constraints, and (2) an initial state. QSIM completes the initial state by solving
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a constraint satisfaction problem (CSP) over the QDEs. For each consistent state, it then
generates all valid successors and filters them using constraint consistency. Rather than
predicting a single numeric outcome or trace of a simulation, QSIM captures all plausible
system behaviors over time [20].

» Example (cont.). To illustrate how QSIM is applied in practice, consider out tank system
and its system variables V. We model a single control variable — the inflow — whose value
can be externally manipulated. The remaining variables are state variables, which represent
internal or observable properties of the system. The state variables include the current
water level in the tank (level), the volume (volume), and sensor S1 and sensor S2, which
represent sensor readings related to the tank state.

Each variable in a qualitative model is described over a symbolic structure called a
quantity space. This space consists of key reference points in the domain of the variable,
denoted as landmarks, and the intervals between them. Landmarks represent semantically
meaningful thresholds without requiring precise numeric values. We formalize the quantity
space as follows.

» Definition 1 (Quantity Space (adapted from [30])). For each variable v € V', the quantity
space Q(v) is defined as an ordered set of landmark values l;, i.e, Q(v) = {lo,l1,. .., L} with
lo<li<...<lp.

» Example (cont.). In the tank system, the landmarks for level may include zero (repres-
enting an empty tank), medium, almost_max, and max (representing the threshold for the
tank level). The sensors S1 and S2 may use the landmarks on and off as shown in Figure 3.

Based on the quantity space of a variable, we can now define its qualitative value at a
particular time step t:

» Definition 2 (Qualitative Value (adapted from [19])). A qualitative value QV (V,t) of a
variable v € V at time step t is represented as a tuple (qmag, qdir), where:

gmag is either a landmark or an interval between two landmarks,

qdir € {increasing (inc), steady (std), decreasing (dec)} is the direction of change of v.

» Example (cont.). Suppose that in our tank system model, landmarks define the quantity
space for the variable level, which represents the water level in the tank. The ordered
landmarks for this variable are: zero < medium < almost_max < max. Suppose that at
time ¢, the water level lies within the interval (medium,almost_max) and the level is in-
creasing. Then the qualitative value of level at time ¢ is given as QV(level,t) =
((medium, almost_max), inc).

These qualitative values form the building blocks of a system’s qualitative state, which
captures the complete system snapshot at a given time:

» Definition 3 (Qualitative State (adapted from [30])). A qualitative state S(t) at time t is
defined as S(t) = {QV (vo,t), QV (v1,t),...,QV (vy, t)} over allv e V.

The collection of the qualitative values of all the variables in a system at a given point in
time is its qualitative state [30].

» Example (cont.). For instance, in our tank example in Figure 3, at time point p, we obtain
the following qualitative state:

inflow — (max,dec), level — ((almost_max,max), inc),
S(ps) = { volume — ((almost_max,max),inc),sensor S1 +— (off,inc),
sensor S2+— (off, std)
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4.1 Qualitative dynamics

A qualitative model defines valid qualitative states of the system and how changes in variables
lead to transitions between them. When describing a model, qualitative constraints which
restrict the magnitude and direction of variable change are represented by Qualitative
Differential Equations (QDEs), which include basic constraints such as derivatives, sums,
and monotonic dependencies [29)].

To better reflect actual system causality in different system operational scenarios, Wiley
et al. [29] introduced qualitative rules, which allow constraints to be applied conditionally
only within specific regions of the system’s state space, i.e., when the associated preconditions
are met. The rule-based approach models system behavior in a more context-sensitive and
dynamic manner.

» Example (cont.). In our tank system model, the following domain specific qualitative
constraints (C1-C4) and rules (R1 and R2) are applied: 3
Cl: deriv(level, inflow): The rate of change in water level is determined by inflow.
C2: mplus(level, volume): Volume increases proportionally with tank level.
C3: const(sensor_S1, land(off)): Under condition sensor_conditions_1 (see R1),
the sensor sensor_S1 is constrained to remain off.
C4: const(sensor_S1, land(on)): Under condition sensor_conditions_2 (see R2),
the sensor sensor_S1 is constrained to remain on.
R1: precond(sensor_conditions_1, bound, level, i, zero, i, almost_max) =
const (sensor_S1, land(off))*: When the tank level is between zero and almost_max,
sensor S1 remains off.
R2: precond(sensor_conditions_2, equal, level, land(max)) =
const (sensor_S1, land(on)): When the tank level reaches max, sensor S1 is switched
on.

These qualitative constraints reflect physical principles such as flow regulation (C1) and
conservation of volume (C2), while rules reflect the physical behavior of the systems. For
instance, the sensor stays inactive during normal filling (R1) and activates only at the
threshold (R2).

Qualitative transitions define how the system evolves over time by moving from one
qualitative state to another. For example, if inflow exceeds zero, the level of the tank
increases. While qualitative constraints describe relationships between variables (e.g., how
level depends on inflow), transitions capture the system’s dynamics over time. The QSIM
algorithm [8] systematically computes these transitions. At each time step ¢; and intervall
(tiytiy1) QSIM uses a transition table, which encodes all valid value combinations permitted
by the active constraints [20], to generate a set of candidate successor states S; 11 for the
current qualitative state .S;. For simplicity, we do not distinguish whether we go from one
time point to an interval or vice versa. We only distinguish sequences of states. Further
note that this transition process has been extended in ASP-QSIM [29] to support qualitative
rules. As a result, only contextually valid transitions — as defined by the qualitative rules —
are considered, ensuring that the qualitative simulation reflects both the physical structure
and operational logic of the system.

3 We express constraints and rules using the ASP-QSIM formalism [29], where const indicates a constraint,
land a landmark, and precond a precondition.

4 bound indicates that the variable level is between two values. The i indicates that the range of the
variable can be between zero and almost_max including those two values.
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The output of a qualitative simulation is a set of qualitative behaviors — each a possible

sequence of qualitative states that the system might exhibit given an initial and goal condition.

We refer to a single qualitative behavior also as a qualitative trajectory and one qualitative
behavior reflects one consistent qualitative path the system may follow.

» Definition 4 (Qualitative Behavior [20]). A qualitative behavior QB is an ordered sequence
of qualitative states QB = (Sy, S1,...,Sn), where each state S; maps each variable v € V to
its qualitative value {gmag, qdir) at a time point or interval corresponding to .

» Example (cont.). Consider this first portion of qualitative behavior QB = (Sy, S1, 52, .. .)
from the tank example with the following qualitative states:

So = {inflow — (max,dec), level — (zero, inc), volume — (zero, inc),

sensor S1+— (off, std),sensor S2 — (off,std)},

S1 = {inflow — ((zero,max),dec),level — (medium, inc),
volume — ((zero,medium),inc),sensor S1 — (off,std),

sensor S2+— (off,std)},

Sy = {inflow — ((zero,max),dec),level — (almost_max, inc),
volume — ((zero,medium),inc),sensor S1 — (off,std),

sensor S2+— (off,std)}

4.2 Conformance

Several approaches to define conformance between a system and its qualitative model have
been proposed over the years. In the context of testing, Aichernig et al. [1] introduced the
grioconf relation to formally define when an implementation under test (IUT) conforms to a
qualitative model, based on whether the observed outputs under a sequence of inputs are
a subset of the outputs predicted by the model. Similarly, the ioco-based [27] approach
for qualitative action systems checks if outputs after a given input trace remain within the
allowed qualitative behaviors [7]. In both cases, the qualitative models were constructed
using Garp8 [9], which is founded in Qualitative Process Theory [12]. Both approaches
treat qualitative traces as symbolic abstractions of continuous behaviors. Our work adopts a
similar idea by comparing traces from system observations against qualitative simulations to
check the conformance of the real-world system with the simulation.

First, let us define an Abstract Qualitative Behavior (AQB). An AQB is a qualitative
trace produced by the simulation or the result of abstracting a quantitative trace from a
system run using a system-appropriate discretization. Defining AQBs allows us to formally
compare expected behaviors from the model with observed behaviors from the physical
system using a conformance relation.

» Definition 5 (Abstract Qualitative Behavior). An abstract qualitative behavior AQB is an
ordered sequence of qualitative states QB = (S}, S1,...,S},), where each state S. maps each
variable v € V to its reduced qualitative state only consisting of gmag.

In our AQB, we focus solely on the qualitative magnitude gmag of each variable and
omit the direction of change gdir. First, directionality can be more susceptible to noise and

measurement imprecision in real-world systems, making it unreliable for behavior alignment.

Second, the key behavioral distinctions we want to detect are typically captured by changes
in magnitude (e.g., crossing a landmark), which directly reflect system state transitions.
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In addition, as we are mainly interested in capturing changes within the system and the
qualitative simulation, we abstract away redundant repetitions in a trajectory by minimizing
the ABQs, i.e., min(A@QB). That is, we only consider transitions from a state to a successor
in case the qualitative value changes; otherwise, we consider two states to be qualitatively
equivalent [6]. Consecutive repetitions of qualitatively equivalent states are removed.

» Definition 6 (Minimal Abstract Qualitative Behavior). Given an AQB, we define the minimal
abstract qualitative behavior, min(AQB), as the subsequence of AQB in which all consecutive
states are qualitatively distinct, i.e., min(AQB) = (S}, S],...,S)) where Y0 <i < n:
Si# Sita-

» Example (cont.). For our tank example, we created a Modelica simulation to generate
system behavior data in place of real-world measurements. However, in practice, the same
abstraction process we apply to this simulated data is used to transform time-series data
from real physical sensor measurements.

In order to create an abstract qualitative behavior (AQB) from the concrete quant-
itative data, we first create a quantitative-to-qualitative mapping, i.e., an abstraction.
First, we down sample the original time series at a predetermined rate (i.e, per timestep
in our case). Then, each sampled value is compared to a set of predefined landmarks
{00105 Omedium Galmost maxs Omax |- If it is within a small tolerance of one of these thresholds,
it is considered a landmark (e.g., land(#)); if not, it is assigned to the open interval between
two adjacent landmarks (e.g., interval(6;, 6;11)).

However, direct changes from one sample to another may also affect intermediate qualit-
ative areas. To mitigate this loss of information, we introduce n equally spaced “intermediate
steps” between each pair of sampled timepoints by linearly interpolating the quantitative
values and reclassifying each intermediate value. By altering the number of intermediate
stages, trace length and qualitative fidelity can be compromised. We found that n =1 is
sufficient to capture all landmark and interval transitions in the underlying numeric trace,
while n = 0 may overlook significant qualitative changes in our tank example. After building
the complete qualitative trace, including intermediate steps, a minimization step is employed.
This process, denoted as min(AQB), removes successive states that are qualitatively similar
or in which all system variables retain the same qualitative values. This decrease significantly
lowers the computing complexity for subsequent reasoning tasks and improves interpretability
by focusing exclusively on significant behavioral adjustments. The result satisfies the formal
criterion of minimal abstract qualitative behavior by ensuring that no two successive states
are identical and encouraging precise and effective qualitative reasoning.

Based on the definition of AQBs, we can define a conformance relation. The goal of the
conformance relation is to determine whether the real system behaves in accordance with the
simulation, i.e., whether at least one of the AQBs generated by the qualitative simulation
matches the AQB derived from an observed system run.

» Definition 7 (Conformance). Let min(AQ By eq:) be the minimal abstract qualitative behavior
derived from a system run, and let A be the set of AQBs produced by the qualitative simulation
and afterwards minimized. We define conformance as:

conformance(AQByea, A) <=  JAQBmodel € A : Min(AQ Beq;) = min(AQBodet)

This conformance relation requires an exact match over the entire trace. In principle,
both the simulation and the real system could produce infinite traces, especially when viewed
as executions of transition systems. However, in practical applications we only ever observe
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finite prefixes of such behaviors. To address this, we adopt a bounded trajectory conformance
approach, inspired by similar bounding techniques in model checking (e.g., bounded model
checking [5]). Instead of requiring a full match across infinite behaviors, we check whether
the real system trace matches a simulated behavior up to a fixed prefix length m.

» Definition 8 (Bounded Conformance). We define bounded conformance w.r.t. a prefix
length m as:

conformance,, (AQBreqi; A) <= FAQ Brnodel € A : [min(AQ Beai)],,, = min(AQ Biyodei)]

m

Here, [min(AQB)],, denotes the prefix of a minimal AQB of length m. Thus, bounded
conformance reflects cases were the trajectories are equivalent for the first m qualitatively
distinct states. While this bounded conformance approach is practical and scalable, it
inherently limits fault detection to the prefix of length m, i.e., fault occurring after the prefix
cannot be captured posing a challenge in scenarios where faults manifest beyond the checked
horizon.

» Example (cont.). Once we have determined all qualitative observations by abstraction,
including the interpolated states from the real-world data, we encode them as ASP constraints:

:= not holds(p(t), var, land(), _), time(p(t)).

holds(p(t), var, land(), _), time(p(t)) is a fact used in ASP to define a qualitative
state, where p(t) is a time point, var refers to the qualitative variable (e.g., level), land () is
the qualitative value, and _ refers to the qualitative direction that is absent in our abstraction
as mentioned earlier. holds(....) stipulates that a particular qualitative state must exist
at a particular point in time, while : - not holds(....) ensures that the model is rejected
if the fact holds(....) is absent. In essence it guarantees that the observed behavior is
present in all valid answer sets. Under the guidance of its internal rules, landmarks, and
preconditions, ASP-QSIM attempts to generate valid pathways that logically “fill in the gaps”
around an initial state and a goal state taken from the quantitative trace. The result of this,
as stated earlier, is a set of minimal AQBs.

If one of the simulation model’s produced AQBs exactly matches the abstract qualitative
behavior AQB,ea of the real system, then we have shown bounded conformance. In our
case, we compared the full observed trace with the complete simulated trajectories. Our
experimental results confirmed that the qualitative model accurately captures the system’s
dynamics, i.e., every qualitative trace derived from the quantitative data of the nominal
system behavior matched at least one valid trajectory generated by the simulation model.

4.3 Fault detection

While conformance checking determines whether an observed system behavior matches one of
the expected qualitative behaviors generated by the model, it also offers a principled basis for
revealing faults. In practice, deviations from nominal qualitative trajectories — especially in
the ordering or presence of sensor events — may indicate abnormal or unexpected conditions.
By systematically comparing abstracted observations to simulated behaviors, we can detect
faults as violations of the conformance relation.

» Example (cont.). Qualitative simulation is especially effective in detecting any anomaly
that adds, removes, or reorganizes sensor “on/off” transitions relative to the expected nominal
model behavior. We were able to detect the following faults, as those faults alter the logical
structure of the qualitative state transitions, which QSIM explicitly models:
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Fault case 1 (Sensor S1 stuck false): Sensor S2 turns true without a prior Sensor S1
activation, breaking the expected causal sequence.

Fault case 2 (Sensor S1 stuck true): Sensor S1 changes to true prematurely, i.e., before
the tank reaches the defined threshold.

Fault case 4 (Valve stuck and always opened): Sensor S1 turns true but fails to trigger
valve closure; Sensor S2 becomes true as the valve is not closed.

Fault case 5 (Valve stuck at 50% open): An unanticipated pattern of sensor events ap-
pears that does not match any valid qualitative trajectory.

However, we cannot detect Fault case 3 (Valve stuck and always closed). The system
enters a stagnant condition as both sensors remain off and the water level remains constant
due to the absence of inflow. Since QSIM observes only changes in landmarks or directional
trends, such “silent” failures, where there are no new transitions, are indistinguishable from
nominal behaviors, e.g., the tank has partially stabilized [20]. Slight quantitative differences
that do not cross these symbolic boundaries (i.e., increasing, decreasing, steady) and
landmarks are ignored [18].

5 Conclusions

By abstracting quantitative system behavior into qualitative representations, we demonstrated
how qualitative simulation can effectively detect anomalies across various scenarios by formally
defining conformance between the qualitative simulation and concrete quantitative data. At
the same time, our evaluation uncovered important limitations. In particular, the exclusion
of directional information hindered the detection of one of the faults, which might have
been caught had directionality been preserved during abstraction. This highlights a central
problem of exclusively qualitative models, even though they can capture high-level patterns
and behavior, they may not be able to detect defects that depend on small or deliberate
aberrations.

However, the power of qualitative simulation is in its ability to provide a methodical and
understandable approach to diagnosis, especially in situations where complete quantitative
data is unavailable or unreliable. When considering fault scenarios, it offers a model-based
foundation and excels at identifying anomalies and discrepancies across different system
behaviors.

Future improvements could include the integration of directional cues to enhance sensitivity
to small or gradual deviations, which are currently lost in the reduced abstraction. While
the exclusion of the direction of changes simplifies the qualitative behavior space and reduces
computational overhead, selectively reintroducing it either for specific variables or during
suspected fault windows could strike a balance between fidelity and tractability.

Additionally, the development of hybrid approaches that combine qualitative and quant-
itative reasoning [4] could further improve fault detection robustness. Such methods may
allow the system to benefit from the interpretability and flexibility of qualitative models,
while leveraging quantitative models for precision in ambiguous or borderline cases.

Another area of enhancement lies in the application of bounded conformance not just as a
binary check but as a tool for localizing faults temporally within the trace. By identifying the
prefix length at which divergence from expected behavior occurs, diagnosers could potentially
infer the onset time and probable subsystem associated with the deviation. To address the
challenge of “silent” faults failures that do not result in a change of qualitative state and
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thus evade detection future work could explore the use of context-aware thresholds, state

persistence checks, or anomaly scoring models that monitor for suspicious invariance in

critical variables.

Moreover, QSIM may generate spurious or physically implausible trajectories, particularly

in more complex systems. Incorporating domain knowledge, constraint filtering, or ranking
heuristics will therefore be crucial for scaling the approach to real-world applications.
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