Assessing Diagnosis Algorithms: Of Sampling,
Baselines, Metrics and Oracles

Ingo Pill =&
Institute of Software Engineering and Artificial Intelligence, TU Graz, Austria

Johan de Kleer @&
c-infinity, Mountain View, CA, USA

—— Abstract

Assessing and comparing diagnosis algorithms is a surprisingly complex challenge. We have to make
decisions ranging from identifying the implications of the chosen baseline, via defining and ensuring
a representative sampling strategy, to the choice of metric best suited to capture the computational,
probing, or repair costs as well as the deviations from the baseline. We discuss several aspects of the
overall challenge, identify related issues, and evaluate a special economic metric.

2012 ACM Subject Classification Computing methodologies — Causal reasoning and diagnostics
Keywords and phrases Model-based Diagnosis, Diagnosis, Algorithms

Digital Object Identifier 10.4230/0ASIcs.DX.2025.5

1 Introduction

Given a symbolic or subsymbolic description of a system’s structure along with a set of
observations, the task of a diagnostic algorithm is to identify which system components might
be faulty so that their failure explains the observed behavior. In this paper, we address the
question of how to evaluate the quality of such an algorithm’s conclusions and its actions.

At first glance, this might seem to be a straightforward task, but it is surprisingly difficult.
As a thought experiment, imagine that we have all the faulty exemplars of a system that
might ever exist their actual faults. For this exhaustive sample set, we then employ our
diagnostic algorithm and determine the costs that the algorithm incurs while locating the
actual fault(s).

There are several inherent difficulties with this simple concept: (1) it is impossible to
implement in practice due to the required exhaustive set of faulty exemplars. (2) We need
to specify what we mean by “costs.” That is, whether we are interested in computational,
probing, or economic costs. If we are interested in a combination, we need to define a weighted
portfolio metric. In practice, the ideal cost function depends on the actual application scenario,
so that it is (3) impossible to anticipate a specific user’s needs and preferences in terms of
costs. (4) A user will most certainly not have the resources to perform their own detailed
evaluation of all combinations of available algorithms, potential cost functions, and faulty
exemplars. Consequently, an evaluation will suffer from limitations in terms of sampling and
quantification of costs and quality. Those limitations affect, in turn, the representativeness
of the conclusions that we can draw from the experiments.

In practice, diagnostic algorithms are usually evaluated with simulated data. In particular,
we take a simulation model of one or more systems, inject some fault(s) [22, 20], run the
simulation for a (set of) specific input scenarios [22, 14], and then deploy the diagnostic
algorithm to determine the incurred costs; we repeat this until we decide to have enough
samples. That is, until we gained enough confidence in the representativeness of the results.
We assume implicitly that the diagnostic algorithm is deterministic. Otherwise, we would
need to run the algorithm multiple times for each diagnosis problem.

? Ingo Pill and Johap de Kleer; )

37 icensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 5; pp. 5:1-5:19

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:ingo.pill@gmail.com
http://www.ist.tugraz.at/pill
https://orcid.org/0000-0002-8420-6377
mailto:johan@c-infinity.ai
http://www.c-infinity.ai
https://orcid.org/0000-0002-0465-7566
https://doi.org/10.4230/OASIcs.DX.2025.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

5:2

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

Further issues are related to the observability of signals, to uncontrollable contingencies
such as noise that we face in the real world, or to an algorithm’s individual characteristics
such as whether it is based on a precise [4, 19] or probabilistic framework [12]. These issues
most certainly affect the incurred costs, but it is their effect on the algorithm’s results’ quality
that is most noticeable. A particularly intriguing challenge in this direction is that of defining
the baseline against which we compare an algorithm’s results. Related to these issues, we

maybe can diagnose some fault(s) only after a delay [3] that the fault(s) need(s) to
manifest [26] on observable signals.

have to take into account that an algorithm can trade precision with resource expendi-
ture [1]. This can certainly result in incomplete or over-approximated sets of diagnoses
that individually over- or under-approximate the fault situation. This requires us to decide
how to individually penalize delays, approximations, erroneous, and absent diagnoses.

might not be able to isolate the actual fault(s) from the available data [11]. For example,
if the fault is not triggered by the observed input scenarios. A fault may also remain
hidden in observed signals while manifesting only in unobserved ones — a phenomenon
that can be either triggered or suppressed by interactions among multiple faults. In
extreme cases, some specific fault combinations could even result in an equivalent mutant.
That is, a mutated system that is indistinguishable in its I/O behavior from the original
one [7].

have to define the desired baseline: Should the fault(s) injected into a simulation model
(or the faults present in a real system) be considered as the ideal result which is obviously
problematic for equivalent mutants (see Sec. 2.4), or should we seek to define a well-
founded gold standard of diagnoses? To obtain the latter, we would take into account all
the limitations of the available data and specify exactly what is theoretically diagnosable
from the available (limited) observations OBS and the structural model SD [17].

In this paper, we isolate and discuss a variety of challenges that we face when aiming
to assess diagnostic algorithms. Motivated by those discussions, we formulate definitions
and outline metrics that allow us to systematically address the evaluation of diagnosis
algorithms. Our ulterior aim is to support educated and quantitatively comparable answers
to the fundamental question Did a specific algorithm return the correct result, and if not,
how good are the results?. Our discussions aim to address evaluation needs that range from
simple single-algorithm assessment to multi-algorithm comparisons for specific purposes,
and finally to comprehensive evaluations in general contexts like competitions with multiple
benchmarks.

We do not aim at a qualitative analysis that focuses on algorithmic concepts. We rather
aim at an empirical evaluation of an algorithm’s results that is (1) mostly agnostic of the
implemented symbolic or subsymbolic concepts and (2) supports a quantitative assessment
of an algorithm’s results in terms of the quality of the conclusions and their costs. When
we say mostly agnostic, we refer to the requirement of having to know how to interpret an
algorithm’s results. For example, algorithms like [4, 25, 19] report ambiguity groups formed
by a subset-minimal diagnosis and its supersets implicitly in the results.

We organize our paper as follows. We analyze a variety of issues to illustrate the
complexity of the task in Section 2. We then raise the discussion to a more formal level in
Section 3, isolating appropriate notions and definitions that allow us to define and tackle two
specific subtasks. Before we conclude in Section 5, we discuss in Section 4 a special economic
metric that captures the effectiveness of the repair process and has been used in previous
DX competitions [8].



l. Pill and J. de Kleer

2  Why is the representative evaluation/comparison of a diagnosis
algorithm not as straightforward as it seems?

In this section, we seek to identify and illustrate a variety of issues that make the tasks of
evaluating and comparing diagnosis algorithms not as straightforward and simple as they
would seem at first glance. In the following subsections, we walk through a set of illustrating
examples to expose individual challenges that we have to address. The observations we make
in these sections will support us in specifying precise definitions in Section 3 that will allow
us to lead formal discussions of the concepts envisaged in Sections 3.2 and 4.

2.1 Metrics based on sampling and the notion of ambiguity groups

Suppose that we want to design a good metric for single fault diagnosis algorithms. Assume
that we have perfect measurements, which is really only possible in digital circuits. Let the
components of the system be X = {x1,...,x,}. Determining the samples to use to fairly test
a diagnostic engine for a competition is a very complex problem that deserves a separate
treatment, so let us assume for now that the set of samples is given. Let a simple diagnostic
algorithm A return only one fault for a specific diagnosis problem s defined by an exemplar
SD (with a known fault) and some observations OBS. If A returns the actual fault, the score
r(A, s) achieved for sample s is 1 and otherwise it is 0. An overall score S(A) of algorithm A
can, in turn, be defined as:

EsesamplesT(Av S)
|samples|

5(4) = ; (1)

such that we would sample over a set of diagnosis problems. Intuitively, the overall score

estimates the probability of A producing the correct diagnosis for a random sample s €

samples. This simple assessment has numerous shortcomings:

1. Probabilities: How to take into account that different components fail at different rates?

2. Ambiguity Groups: Sometimes the same symptoms can arise from very different system
failures and combinations of faults.

3. Multiple Faults: How to take into account that a system can suffer from multiple
simultaneous faults?

4. Fualse Positives: The sampling approach obviously penalizes false negatives (missed

diagnoses), but does not adequately penalize false positives (reporting invalid diagnoses).

It is easy to see that the way we sample for computing S(A) has a great impact on

the overall score. A diagnostic algorithm is evaluated against a set of benchmark samples.

Imagine a simple system of 4 components {x1, x2, 23,24} with priors p(z1) = 0.001, p(z2) =
0.01, p(z3) = 0.1, p(x4) = 0.889. If we sampled the fault scenarios representatively in the set
of components, i.e., considering an equal distribution, an algorithm A; that always scored
correctly for components x1, x2, x3 but not for x4 would achieve a much better overall score
S(A;7) than A, that scored correctly on x4, but not for 1, x2,25. And it does so, even
though it is much less useful in practice, i.e., since it scores well, s.t. r(As, s) = 1 for rare
samples only. A possible solution to circumvent this would be to draw samples according to
the prior distribution, but this requires far too many samples (i.e., expensive simulations)
and the score S(A) would not be generalizable for varying priors.

An exponentially more efficient approach is to sample over each of the possible faults
and weigh each sample with its prior. This greatly reduces the number of samples needed to
obtain a reasonable score S(A):

5:3

DX 2025



5:4

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

S(4) = 3 pla) ZrEsomrtesn (4, 5) )

- |samples(x)]

Due to ) p(z) = 1, we see that S(A) will be 1 iff 7(A, s) is always correct and 0 if it is
always wrong. But this is a poor approach, since ambiguity groups introduce considerably
more complexity. An ambiguity group is a set of diagnoses among which a diagnoser cannot
distinguish given a specific set of observations. For example, consider diagnosing a sequence of
n digital buffers where we can observe the input of buffer,/z; and the output of buffer,,/x.,.
If the input is 0/low/L, and the output is 1/high/T, we know that one of the buffers is
faulted, but not which one. So all n buffers form an ambiguity group. A similar challenge
arises in the analog case where there are n resistors in a row, or the two inverter example from
Section 2.4 illustrated in Fig. 1. Let us assume for now that the fault is in x;. Considering
the effects that an ambiguity group entails, we need to modify r(A4, s). That is, requiring
A to return x; to achieve r(A, s) = 1 makes no sense. Indeed, a diagnoser should not be
penalized because it returns a different element of the ambiguity group. We need to redefine
what (A4, s) returns. Let G(s) = {z|x is a diagnosis of s}. If we require r(A,s) to return
x, it will be right only m of the time. If we require r(A,s) to return one element of
G(s), a diagnoser may always pick the same element of the ambiguity group, making it
useless for diagnosing other faults in that ambiguity group. If we require r(A, s) to return
the entire G(s), then the diagnoser never gets partial credit. One approach is to give the
diagnoser credit for the fraction of the ambiguity group it returns. So, for example, if there
are two members in the ambiguity group and the diagnoser returns only one member of
the ambiguity group, it would receive a score of % for that sample s. Rewriting the prior
equation to capture this intuition, we obtain

r(A,s
Zséallsam,ples p(G(S)) ‘ ‘((;(S)‘)l
ZsEallsamples p(G(s )

where we assume the diagnoser is sound. This reduces the prior equation in the case there
are no interesting ambiguity groups (of size greater than 1.)

In the multiple fault case, these challenges become only more difficult. Assume that we
have a priori probability distribution over the set of diagnoses A; € 2X. Following the single
fault case, we would like to write (where the A; can be of any cardinality):

S(4) = (3)

zsesarn les(A-)T(Aas)
A) = A, s 4
S(4) ;p( i) |samples(A;)| )

But this has the same kinds of problems with ambiguity groups as discussed earlier. Consider
the n = 10 buffer example. It has a large number of multiple faults in the ambiguity group as
well: (130) + (150) + ... A worse challenge arises in the analog case where there are n resistors
in a row where the ambiguity group can be of size 2" — 1 because any subset of the resistors
can be a diagnosis.

Contributing to this confusion is the fact that we have been mixing together two distinct
ideas: (1) the construction of a fair benchmark and (2) the fair evaluation of a diagnostic
algorithm on a benchmark. There are two important questions: (1) how to construct a
benchmark that truely reflects actual occurring faults, and (2) given a set of samples, how
do we fairly evaluate a diagnostic algorithm on this benchmark. Designers of a benchmark
must concern themselves with the first question. This paper is primarily focused on the
second question. So what we start with is the benchmark which is simply a set of samples



l. Pill and J. de Kleer

(input-output pairs). Let G(s) = {A;|A; is a diagnosis of s}. This defines the ambiguity
group of a sample. The prior p(G(s)) = ZAiGG(s) p(s). The prior single fault equation
remains unchanged with the updated definition of G(s)

Some diagnostic algorithms return a posterior probability V' (A) with each diagnosis. This
requires a new approach, which we will discuss later.

So far we have penalized a diagnoser for false negatives, but not directly for false positives.

But what should happen if the diagnoser returns a false positive, i.e., a diagnoser returns
a non-diagnosis. An approach for this has been well studied in machine learning. One can
construct a confusion matrix with the diagnoser’s results on the vertical axis and the actual
faults on the horizontal. (This applies for both single faults and multiple faults.) Then
accuracy, true positive rate, false positive rate, and precision can be defined in the usual
way as in ML. This also needs to be adapted for ambiguity groups. In ML techniques like
Top-k-accuracy can be used.

An approach which avoids the problems we have seen thus far is to base a metric on the
difference between the true distribution of faults and the one determined by the diagnostic
algorithm.

Let Q(z) be the gold standard — the probability distribution which best approximates
the state of affairs the single fault diagnoser encounters. Let P(x) be the distribution the
diagnoser reports. The most familiar metric is cross-entropy — which is used widely in ML
to compare the predicted probability distributions. In our case, we want to compare how
close the calculated probability distribution P(z) is to the perfect one Q(x). For this case,
KL-divergence is a better metric:

P(x)

Dkr(PllQ) EIEXZOQQ(x) (5)
If P(z) and Q(z) are identical, KL-divergence is 0, unlike cross-entropy. One problem is
that if the diagnoser assigns non-zero probability to a possibility which never occurs, then
KL-divergence is indeterminate. So this is problematic as well.

We hope we have convinced you that all the sampling based metrics described in this
section are problematic measures of a diagnoser’s capabilities. Although these metrics are
often used because they appear to make sense on the surface, none of them is a decent scoring
mechanism for a diagnostic algorithm. Instead, we argue diagnostic algorithms need to be
scored based on the costs they incur in use.

Complementing an understanding of the problems associated with the metrics, we hope
that we have convinced you also that the sampling strategy can have a strong impact on
how we perceive some algorithms’ performances. When designing benchmarks, we thus also
need to anticipate the issues discussed in this section and define a set of samples that keeps
those issues within certain and well-understood limits. In this respect, we would like to point
out also that there are diagnosis algorithms that consider multiple samples in one diagnostic
process [24], such that SD would stay the same for all s but OBS would change. As Pill
and Wotawa mused in [23], supposedly representative concepts for generating test suites like

combinatorial testing could help with defining representative sample sets for such algorithms.

Ideally, their employment would allow us in turn to explain not only some occurred faults,
but to isolate all the faults present in a system via an integrated approach at constructing
representative 1/O scenarios and diagnosing the corresponding observations. Such related
work could help us not only in exploring options to assess multi-scenario diagnosis algorithms,
but also when facing the challenge of designing benchmarks for diagnosis algorithms in
general.

5:5

DX 2025



5:6

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

2.2 Metrics estimating repair costs

As we concluded in Sec. 2.1, sampling has a major impact on how an algorithm performs.
But there are also a variety of concepts for assessing the quality of a diagnostic process, and
our choice can significantly influence how we perceive an algorithm to perform for a specific
sample s (and in general). In this subsection, our focus is on exploring the effects that a
diagnosis algorithm’s results have on the repair process.

Let us start with single fault diagnosis scenarios, and this time, the algorithm returns
a probability distribution p(z1), ..., p(z,) over the system’s components z; € X. These are
the posterior probabilities given some specific observations. For example, a system of three
components {x1,ze, 3} might have posterior probabilities p(z1) = 0.1, p(z2) = 0.6, p(x3) =
0.3. Assume for the moment that these posterior probabilities are the true ones. A simple
repair approach might now replace x; in decreasing posterior probability order. We first
replace z2 (due to the highest posterior probability), and if the symptoms are not gone,
we consider x3, and lastly z1. Assuming the cost of a replacement rep(z;) was unity, the
estimated repair costs C for these posterior probabilities are rep(zz) +rep(xs) * (1 — p(x2)) +
rep(z1)* (1 —p(xa) —p(xs)) = 140.440.1. More formally, we can express C via the following
equation for a given list L of diagnoses A; that were sorted with decreasing probability.

C= E0<i§|L|(7“eP(5Ci) * (1 = Yo<j<in())) (6)

This simple repair process takes advantage of the fact that repairing a single component
and making all repairs suggested by a diagnosis A; is the same in a single-fault scenario.
Obviously, we need to distinguish between the two for multi-fault scenarios though, which,
in turn, requires us to adapt the repair strategy. Before we reason about such an update, let
us first explore a sometimes hidden assumption though. That is, the assumption of whether
we have Perfect Fault Understanding (PFU) when inspecting a component, or not.

In particular, similar to perfect bug understanding from the software engineering commu-

nity (as it is relevant in a diagnostic context when assessing spectrum-based fault localization
metrics), we have to decide whether or not we can assume the ability to recognize faults with
complete certainty when inspecting some component. A simple illustrating scenario would
be that of when we would inspect a software program by looking at a part of the code (the
component), recognize the faulty code in it, and then fix the component’s code accordingly.
In the single fault case, we can observe whether the problematic behavior is gone when
executing the system after the repair of some component z; (as suggested by a single-fault
diagnosis A). So, without requiring PFU, we could just replace z; and avoid a detailed
inspection and fault-oriented repair of x;.
PFU would be an important assumption in multi-fault scenarios insofar, since we would need
to replace all x; in a diagnosis A to supposedly make the observed symptoms disappear. So,
when checking the quality of the individual repairs via observing the system’s behavior, we
would first have to repair all z; € A, and then we would observe executions of the supposedly
fault-free system. Consequently, judging the situation after inspecting/repairing a single
component x; from A would require PFU of z;.

A repair strategy for multi-fault scenarios could exploit PFU as follows. Choose a
component x; that appears in many diagnoses and then investigate and, if needed, repair x;.
If z; was found to be correct in the inspection (due to PFU), all diagnoses A; containing
x; can be discarded s.t. they get a probability of 0, and the probabilities P(©) for all
diagnoses that are still possible (with search space © = 2X) should be updated accordingly.
We repeat this until the symptoms have gone, there is no diagnosis left, or until there is no
component left to repair. Obviously, estimating the costs C of this repair process is a bit



l. Pill and J. de Kleer

more complicated than for a single fault scenario. That is, we need to constantly update
P(2%) after investigating some x;, and we have to statistically approximate the costs incurred
when estimating C.

If we do not have PFU (like when we just swap components without inspection), we
could simply walk through the list of diagnoses A; according to their probabilities and repair
for each investigated A; all components x; € A;. Extending our Eq. 6, we can approximate
the average repair costs in this case as

C = Yo<i<iz|(Bapea,rep(rr)) * (1 — Zo<j<ip(Ay))), (7)

with rep(zy) referring to the repair costs of component ;. When following this process, one
specific downside is that a certain component x; might get repaired more than once. That
is, if it is contained in more than one A; that we had to investigate before arriving at the
actual diagnosis (so that the system is finally repaired).

A supposedly better repair process would keep track of whether individual components
have been repaired before, so as to avoid unnecessary repairs. However, this requires that a
repaired component is not destroyed again during the repair process. That is, before all x;
in the actual diagnosis have been repaired. In practice, this can easily happen, when the
interaction of faults leads to the immediate destruction of a repaired component x; by some
x) that has not yet been repaired. A simple example would be that of a fuse. The fuse could
be immediately destroyed again if the problem that triggered it has not yet been taken care
of. Considering such dependencies, the more naive and also supposedly more costly process
could even be better suited (and cheaper) in practice for many applications.

Please note that the metrics we considered in this subsection are simplistic variants of
the economic metric discussed in Section 4.

2.3 Metrics tailoring to specific evaluation requirements

When researchers present a new algorithm, they often evaluate it in the context of a family
of relevant algorithms and use specific metrics that allow them to show the validity and
effectiveness of the proposed improvements over the state-of-the-art. This approach enables
a clear and focused presentation of these improvements and allows the authors to adhere to
the page limits of a conference at the same time. However, it comes with certain limitations.

Let us illustrate them with the example of RC-Tree [19]. RC-Tree is a diagnosis algorithm
that implements a conflict-driven computation as first proposed by Reiter [25] as well as
de Kleer and Williams [4] in their seminal papers. The computational concept behind
RC-Tree is close to that of HS-DAG [10], but due to some additional reasoning in terms of a
divide-and-conquer exploration of the search space, RC-Tree can avoid all redundancy in the
search. Intuitively, any diagnosis candidate gets generated only via one tree-based exploration
sequence (in contrast to HS-DAG that allows permutations), which results in a narrower
search without losing important properties like completeness, soundness, being an anytime
algorithm, or supporting an on-the-fly calculation of the conflicts. When evaluating RC-Tree,
the authors proved (1) that it returns diagnoses adhering to Reiter’s theory in a sound and
complete manner (see Defs. 4 and 5 in Section 3.1), and they conducted (2) an empirical
evaluation that isolated the performance advantages over HS-DAG as encountered in practice.
The algorithm’s run-time and the number of evaluated diagnosis candidates (which relate
to tree nodes and thus memory consumption) served as metrics in those experiments. The
resulting evaluation certainly meets one’s expectations in terms of elucidating the authors’
contributions. But it does not provide us with a holistic picture on how this algorithm

5:7

DX 2025



5:8

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

compares to the entire algorithmic landscape. That is, in comparison to completely orthogonal
concepts — like subsymbolic algorithms that would approximate probability distributions (see
Section 2.1).

The use of metrics that focus, e.g., on repair costs (see Sec. 2.2) could provide a clearer
picture, but those metrics are not suited for highlighting RC-Tree’s algorithmic improvements
over the state-of-the-art. Experts can draw on their expertise to maintain their own educated
picture of the algorithmic landscape. For example, since RC-Tree returns the same diagnoses
as HS-DAG (which has been around for about four decades), we can infer that the repair
costs and other aspects can be considered to be the same and that there is only a difference in
the computational costs. Consequently, this allows an expert to put RC-Tree into perspective.
A non-expert would hardly have the knowledge to make such deductions. Metrics and
evaluations that are more informative from a global perspective could thus help them in
establishing a holistic picture as quickly as possible. Only such a holistic picture would allow
a diagnostician or engineer to make an educated decision when faced with the challenge of
having to select the most suitable diagnosis algorithm for a specific diagnosis problem.

2.4 Defining the baseline: On the ideal results of a diagnosis algorithm

When we assess the performance of a diagnosis algorithm, we need to think not only about
sampling and metrics, but we also need to know how the ideal results should look like. In
this subsection, we focus on the latter, and we hope to convince you that this supposedly
simple task is not as straightforward to address as it seems.

In order to illustrate some of the issues, let us have a look at a simple example in the
form of the circuit illustrated in Fig. 1. It is a simplified variant of the n-buffer example
from Sec. 2.1 and contains. two inverters. Assume that we can observe the input in; and
the output outs and let us consider three scenarios for an input value of in; = T /1/high.

It is easy to see that the nominal output (such that both inverters work correctly) is
oute = T. If we observe this expected output in practice, we must recall though that this
would be the case also for some fault scenarios. That is, observability limitations (like
that can’t observe out;) might prohibit us to distinguish the nominal case from some fault
scenarios. For our example, this would be the case for Fault Scenario 1 where Inverter 1
suffers from a stuck-at-zero fault so that out; is always L. The same is true for for Fault
Scenario 2 where Inverter 2 suffers from a stuck-at-one fault. In both cases, the fault does
not manifest in the observations, but this would require the input to bein; = L/0/low.
Consequently, the nominal case, Fault Scenario 1 and Fault Scenario 2 form an ambiguity
group (see Sec. 2.1). A consistency-based diagnosis algorithm like RC-Tree [19], HS-DAG [10],
or GDE [4] would report from this ambiguity group only the empty diagnosis which represents
nominal behavior. In fact, the underlying computation concept of those algorithms entails
that when using a weak fault model, any superset of a diagnosis A is also an explanation.
Thus they form sort of an ambiguity group with A by default and are, in turn, not explicitly

in out, in, out,

1 O 1 O

ok,/sa0, / sal, ok,/ sa0,/ sal,

Figure 1 A simple electronic circuit with two inverters, taken from [21].



l. Pill and J. de Kleer

reported. From this example, we can easily see that we need to know how to interpret a
specific algorithm’s results in terms of aspects like implicit ambiguity groups, and we need to
decide how we would formalize this in the baseline.

Let us now consider Fault Scenario 3 which illustrates a special case of an ambiguity

group. In this fault scenario, both inverters malfunction so that they act as buffers and
pass their input values along instead of inverting them. For this double fault, we can easily
observe that there is no input that can reveal it. That is, unless we would improve the
observability. Either via monitoring the intermediate signal out; (= ing), or by adding a
connection from out; to some circuit part that is connected to a different observable output.
In fact, we can observe that the system behaves ezactly as intended on its observable interfaces
not only for Fault Scenario 3, but for all I/O scenarios. In particular, the two faults cancel
each other’s negative effects on the system’s output so that there cannot be any evidence of
this double fault on the observable signals. Since the mutated system is I/O-conformant, we
can refer to it as equivalent mutant [7].
From a designer’s perspective, such an equivalent mutant is among equivalent design choices
for implementing the desired I/O behavior. This presents us with quite interesting challenges
from a diagnostic perspective. That is,we need to explore the question of whether a diagnosis
algorithm is supposed to report equivalent mutants as diagnoses or not, and, potentially, we
need to identify the set of equivalent mutants.

For elucidating further issues, let us consider two general concepts for defining a baseline,
i.e., (1) using the ground truth, and (2) defining/computing a golden set of diagnoses.

For the first option, we would use ground truth knowledge about the faults that are
present in a system and would expect an algorithm to report it. Assume that we, e.g., have
a simulation-based setup like we discussed it in the Introduction. Since we know which faults
we injected and when, we could simply consider this ground truth as gold standard for the
diagnosis algorithm’s results. This choice would be certainly intuitive and natural, but it
comes with several problems, as we can illustrate using the above fault scenarios.

Consider Fault Scenario 3, where, no matter the input, a diagnosis algorithm is likely to
completely fail if we do not consider implicit ambiguity groups. That is, since it will most
probably report the empty diagnosis instead of the double fault.

But there are more issues. So, what if the faults have not manifested yet and there is
potential subsequent behavior for nominal and faulty cases? That is, despite the fault being
present we could have (a) for a stateless system that we might not yet have seen an input
combination that manifests the fault(s) and (b) for a stateful system that we did not yet
experience the delay that is necessary for the manifestation. While the baseline would indeed
require the faults’ detection, the question is on which basis an algorithm would justify that
it reports a related diagnosis? Would we consider the algorithm then to be (a) clairvoyant
(see Sec. 3), does it simply report (b) a statistic assessment with corresponding probabilities
for all the possible continuations and their fault combinations/diagnoses, or (c¢) should the
diagnosis actually be considered spurious — despite being defined in the baseline?

Reflecting on these issues, we might thus rather choose to define the baseline via computing
a well-founded set of diagnoses that takes into account limitations in terms of observability
and diagnosability. Although this approach would allow us to address some of the issues
mentioned above, it comes with increased computational costs and causes its own problems.
Let us consider first the diagnosis of a stateless system like the two-inverter circuit. If a
system is stateless, its behavior depends only on the current input which means in a diagnostic
context that we can diagnose each time step individually. The same holds then also for
the computation of the baseline for which we can either use a proven algorithm or manual

5:9

DX 2025



5:10

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

analysis. The split into independent computations allows us to address a potential scalability
issue that could otherwise arise with larger systems and long computation sequences and
their traces. With the focus on individual time steps, the sizes of SD and OBS are minimized
for each individual computation. Still, we need either an algorithm that can compute the
baseline, or we need to manually inspect the diagnosis problem(s).

For a stateful system, the computational demands might be even higher. That is, we have
to consider the entire history of observations and can’t split the execution into smaller
problems for each time step. The simple reason is that this history is reflected in an internal
(potentially unobservable) state [18] that is relevant for the system’s I/O relation. Like the
authors did for [18, 9], we can still use one health state variable for the entire execution. And
this allows us to constrain the exponential diagnosis search space to 2% instead of 2X*7 (for
a weak fault model and a temporal horizon of length T'). We might also not loose timing
information when a fault manifests since this information might be present in the underlying
computation (like in the conflicts when using RC-Tree).But the models for SD and OBS will
still grow linearly with 7T'.

It is important to note that these scalability issues are further exacerbated when we evaluate
diagnosis algorithms that consider not only one but a set of executions [24] — like when a
diagnostic algorithm examines all failed tests after executing a test suite [23].

For our final argument, assume that we are investigating a live scenario and that we
managed to compute the gold standard of diagnoses for all the individual prefixes. As we
suggested in the introduction, we now have to decide how to penalize the various types of
deviation from the baseline. We have, for instance, that the diagnoses reported could be
over- or under-approximations of diagnoses in the baseline. Or there could be a delay in
detecting a diagnosis, which would require us to compare the diagnoses reported for time
step t; with the baseline for time step ¢; # ¢;. Accommodating these and a variety of other
deviations entails another increase in the computational costs and it illustrates that we must
not consider metrics and baselines in isolation. In Section 3.1, we will define the notions of
near-soundness and near-completeness that will allow us to discuss this in more detail and to
support automated reasoning in this context.

3 A more formal take on the problem at hand

In this section, we move our discussion to a more formal level. We start by developing some
formal definitions in Section 3.1. Based on these definitions, in Section 3.2, we look at how
we can answer the questions of whether a specific diagnosis algorithm returned the correct
result for some diagnosis problem, and if not, how good the results would be. In particular,
we propose to implement an oracle for providing a yes/no answer, and we design a variety of
metrics for quantifying how far off an algorithm is from reporting the ideal results. These
metrics can be used to derive an answer for the second (part of the) question, but also in the
isolation of a yes/no answer to the first (part).

3.1 Some definitions

Note that the notation for some of our definitions deviates from what the reader might be
familiar with from the literature and papers like [4, 25, 19]. The purpose of these deviations
is to accommodate the results from as many diagnosis algorithms/approaches as possible,
including results like diagnosis probability distributions that were computed under the
consideration of strong fault models.



l. Pill and J. de Kleer

Assume that a system SD consists of components z; € X, and that we have some
observations OBS about the behavior of SD'. As indicated in Section 2.1 and following the
literature [4, 25], we can define from SD, X and OBS a diagnosis problem (SD, X, OBS)
where we, e.g., sampled over such diagnosis problems in Eq. 1. A diagnosis A C X for a
diagnosis problem points us to a subset of faulty components that can explain OBS. To this
end, a diagnosis assigns each component z; € X a mode m; € M;, where M; is the finite set
of modes in which a component z; can be.

M; must contain the nominal mode m,,,,, and at least one fault mode. This can be the
general fault mode mge,, but also one or more concrete fault modes my. The general fault
mode Mmye, implements a weak fault model [4, 25] that does not place any restrictions on the
behavior of x; in the faulty case. In contrast, concrete fault modes pose concrete constraints
on the behavior of x; also in the faulty case. Technically, there is no requirement to describe
the exact behavior of a strong fault model but only some constraint. In practice, though,
we tend to do so and define concrete faulty behavior — like a stuck-at-0 fault for a logic
gate. As the respective authors outlined in [5, 25], exact strong fault models have advantages
and disadvantages. For example, they indicate to a user what exactly happened. This
information is certainly welcome during the inspection and repair of the system. When
diagnosing specifications or design ideas, using a strong fault model allows us to even suggest
repairs [18], which we can exploit in generative model-based diagnosis for design purposes as
suggested in [17]. But the advantages are secured at the cost of an increased search space,
since we now have not only two modes per component, but multiple ones. On an algorithmic
level, we are then also limited by the chosen fault modes in our diagnostic search.

We consider nominal mode assignments in a diagnosis A to be optional, so that we require only
those tuples (z;, m;) to be specified in A that assign a non-nominal mode m; € M; \ {Mmpnom }
to some component x;. All components x; € X for which A does not contain an assignment
tuple are assumed to be in nominal node. If we state that a diagnosis A is a subset of X,
like the definitions in [4, 25] suggest, we refer to the observation that A defines a subset of
components that are faulty.

» Definition 1 (diagnosis problem, diagnosis, subset-minimal diagnosis, diagnosis candidate).

Given a system SD, a set OBS of observations about SD’s behavior, a set of components
X, and for each x; € X a set of modes M; that x; can take and where M; contains x;’s
nominal mode Mpom and at least one fault mode. A diagnosis A for a diagnosis problem
(SD, X, OBS) is defined as a set of mode assignments (x;,my), such that component x; is
assigned mode my, € M; and there are no two assignments (x5, my) and (x;, my,) that refer
to the same component (s.t. x; = x;). We allow nominal mode assignments to be optional in
A, so that any x; € X where A contains no mode assignment (z;,%) is assigned Mpom by
default. A set of mode assignments, a.k.a. diagnosis candidate A becomes a diagnosis if, and
only if the diagnosis algorithm assigns it a probability higher than zero (s.t. p(A) > 0) such
that it supposedly can explain OBS. A diagnosis A is subset-minimal, if and only if there is
no diagnosis A" s.t. A’ C A.

Like in Section 2.1, we assume that the results of a diagnosis algorithm are given as
a probability distribution P(©) over the diagnosis space ©. The gold standard in terms
of the expected results of an algorithm will be referred to as Q(©), where we discuss in
Section 2.4 several concepts to define this baseline. If an algorithm algorithm does not report

1 As usual, we will also formally refer to a system model with SD and it will be clear from the context
whether we refer to the system in general or a model

5:11

DX 2025



5:12

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

probabilities but only a set of solutions, a naive concept to create a distribution is to assign
all diagnoses the same probability and non-diagnoses a probability of zero. More elaborate
approaches would consider the components’ priors and a diagnosis A’s cardinality when
computing p(A), but let us continue this discussion later in this section.

Based on the individual M; from Def. 1, the search space for diagnoses © varies in its size
and structure. Let us first consider the cases where Vz; € X : M; = {mpom, mgen}7 so that
we implement a weak fault model. In this case, P(0) and Q(©) are distributions over the
diagnosis space © = 2X. This space grows to M¥X if we implement strong fault models such
that M is a general set of modes for all x € X. If the fault sets vary between individual
components (which is likely to be the case in practice), we can use individual mode sets M;
and © = II,,cx M; for a more precise characterization.

» Definition 2 (diagnosis probability distribution). Given a diagnosis problem (SD, X, OBS)
as of Def. 1, the diagnosis search space © is defined by the individual mode sets M; for the
components x; € X as their cross product. A diagnosis probability distribution P(0©) assigns
each diagnosis candidate A’ € © a probability 0 < p(A’) <1 s.t. Tareop(A’) =1.

» Corollary 3. As per Def. 1, a diagnosis candidate A’ € © from a probability distribution
P(©) as of Def. 2 is a diagnosis iff its probability is higher than zero such that p(A’) > 0.

Soundness and completeness are important properties of any diagnosis algorithm A, since
they capture whether (1) the diagnoses reported by A are indeed diagnoses (in that they follow
a formal definition like our Def. 1), and whether (2) the algorithm will return all diagnoses if
it runs long enough. There’s an abundance of reasons why algorithms could be incomplete
or unsound. Obvious examples are approximating concepts like subsymbolic approaches, but
there are also well-founded analytic concepts. For example, if a diagnosis algorithm is tasked
to derive one minimum-cardinality diagnosis, we usually employ optimizations that result in
an incomplete search but where we can still guarantee that at least one minimum-cardinality
diagnosis survives and that A reports sound results [2, 6]. Another example would be that
of computing all minimal conflicts between SD and OBS (see [4, 25] for the underlying
theory), and where we subsequently employ an approximating algorithm like Staccato [1] for
computing diagnoses as the minimal hitting sets of the conflicts.

Assessing traits like completeness and soundness should thus be an integral part of any
approach that assesses the quality of a diagnosis algorithm and its results, especially if we do
not have detailed knowledge of the algorithm (or its implementation) but have to evaluate it
anyway. Having white-box access to an algorithm and its implementation provides us with a
powerful and intuitive approach to do so, i.e., by deriving formal proofs. In some contexts,
such as competitions, we may have only limited knowledge about the diagnosis engine
rather than detailed information about its implementation. But even if we would know the
algorithm’s details, we need to be aware that a proof would most likely target the algorithm’s
computational concept and seldomly its implementation. In this paper, we are thus interested
in assessing soundness and completeness in the context of a diagnosis algorithm’s results,
rather than proving these traits for the algorithm’s computational concept.

In the context of P(©) and Q(©), intuitively, soundness refers to the question whether a
diagnosis A reported in P(0©) (s.t. p(A) > 0) is also a diagnosis in Q(©). When evaluating
completeness, we need to verify that all diagnoses in Q(©) are also diagnoses in P(O).

» Definition 4 (soundness). Given the diagnosis search space ©, a diagnosis A € © reported
in P(©) is sound, iff it is indeed a diagnosis s.t. A is a diagnosis in Q(©). The results of a
diagnosis algorithm are sound, iff all diagnoses A; reported in P(©) are sound.



l. Pill and J. de Kleer

» Definition 5 (completeness). Given the diagnosis search space ©, the results of a diagnosis
algorithm A are complete, iff there is no A; € © that is a diagnosis in Q(O) but not a
diagnosis in P(©).

It is easy to see that the two definitions support any diagnosis search space, but they do

not take into account how the algorithms encode their results. In particular, as we observed
in Sec. 2.4, some algorithms mention some ambiguity groups implicitly. That is, when using
a weak fault model, algorithms like [25, 4, 19] report only A; for an ambiguity group defined
by a subset-minimal diagnosis A; and all its supersets. That is, since all of A;’s supersets
would qualify as diagnosis according to our Def. 1 by default.
Continuing our discussion on how to generate P(©), we thus might have to enrich the
reported set of diagnoses, like we suggested in Section 2.4. In the current case, we would
derive all the missing probabilities for diagnoses that are entailed by the reported ones. All
non-diagnoses are then finally assigned a probability of 0. Please note that other algorithms
might call for a much more elaborate post-processing.

It is intuitive that Definitions 5 and 4 leave no room for deviations between P(©) and
Q(0) when we look at the respective sets of diagnoses. When considering our discussion
in Section 2.4, the choices we make for defining the gold standard Q(©) could, however,
result in the situation that even the most precise algorithm could not achieve completeness
and soundness. Potential delays in diagnosability could be one of these reasons, i.e., when
we consider the known ground truth about injected faults to define Q(©) and thus do not
consider observability-related issues that would cause the faults to manifest on the observable
signals (and thus in OBS) only after some delay (see Sec. 2.4).

To this end, let us introduce temporal and cardinality-oriented error bounds. Via those
bounds, we can then define some maximum deviations in terms of temporal deviations or
over- and under-approximations of a diagnosis. Within those bounds, we will consider the
results to be near-complete and near-sound.

» Definition 6 (near-completeness). The results of a diagnosis algorithm A are near-complete
with respect to bounds ec € Ng and e € Ny, iff for every diagnosis A; in Q(©) for timestep
tj, there is some diagnosis Ay for timestep t; in P(©) such that

Ay is a sub- or superset of A;,

18] = [A4]| € €c, and

|l - ]| < €T.

Near-completeness allows us to reason within a temporal scope for situations where we
compute diagnoses for each individual time step ¢; of a stateful system’s computation (see
our discussion in Sec. 2.4). For every diagnosis in Q(©) for time step ¢;, we then search for
matching diagnoses in P(©) for any time step ¢j_., < t; < tj+c,. This allows us to deal
with delayed observability as well as with the potential clairvoyance (see Def. 14) of, e.g.,
subsymbolic algorithms. If we do not want to consider temporal deviations, or for the usual
case of diagnosing the entire computation after it finished, we just have to set er to 0. Via
parameter €c, we can control the acceptance of over- or under-approximations of diagnoses
A; from @, such that P would contain only super- or subsets of A;. ec allows us to define a
limit on the difference in cardinality.

» Corollary 7. The results of a diagnosis algorithm A are complete as of Def. 5 if and only
if they are near-complete as of Def. 6 with respect to bounds ec = e = 0.

» Definition 8 (strict near-completeness). The results of a diagnosis algorithm A are strictly
near-complete iff the results are incomplete, but where there are some bounds ec and e for
which they are near-complete.

5:13

DX 2025



5:14

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

» Corollary 9. Let the results of a diagnosis algorithm A be near-complete, and let ec be
the minimum value for ec enabling near-completeness (er being a free variable) and er, . be

min

the corresponding minimum value for er (ec being a free variable). Then the results of A
are not necessarily near-complete for bounds ec and er

min min *

Similar to considering completeness within temporal and cardinality-oriented bounds, let
us consider also soundness within such well-defined bounds.

» Definition 10 (near-soundness). A diagnosis Ay from P(©) for time step t; is near-sound
with respect to bounds ec € Ng and er € Ny iff there is a diagnosis A; for time-step t; in
Q(O) such that

A; is a sub-or superset of Ay,

|Ai] = [Ak|| < ec, and

|] - l| < €.

The results of an algorithm for time step t; are near-sound, iff all of its diagnoses Ay,
from P(©) for time step t; are near-sound.

» Corollary 11. The results of a diagnosis algorithm A are sound as of Def. 4 if and only if
all reported diagnoses are near-sound as of Def. 10 with respect to bounds ec = ep =0 .

» Definition 12 (strict near-soundness). The results of a diagnosis algorithm A are strictly
near-sound iff there is at least one reported diagnosis Ay from P(O) for time-step t; that is
not sound as of Def. 4, and every such diagnosis is near-sound for some bounds ec and er
as of Def. 10.

» Corollary 13. Let the results of a diagnosis algoritm A be near-sound, and let ec,, , be the
minimum value for ec that enables near completeness (s.t. there is some er) and e, . be
the corresponding minimum value for ep (s.t. there is some e ). Then the results of A are
not necessarily near-sound for bounds ec,,,, and er,

min °

When we discussed near-completeness as of Def. 6, we briefly mentioned that an algorithm
might be clairvoyant. Let us briefly formalize such clairvoyance and let us connect it to
strictly near-sound algorithms.

» Definition 14 (clairvoyance, clairvoyant diagnosis). A near-sound diagnosis Ay from P(©)
reported by algorithm A for time step t; is called a clairvoyant diagnosis, if and only if there
is a diagnosis A; in Q(©) for some time-step ti<j<iter S.t. A; is a sub- or superset of Ay
with ||A;] — |Ag|| < ec, but there is no such A; for ti_eq<j<i-

It is easy to see that a clairvoyant diagnosis means that the algorithm is by definition
unsound, 7.e., since there was no matching diagnosis for the same time step.

» Corollary 15. If the results of a diagnosis algorithm A contain a clairvoyant diagnosis A,
then the algorithm’s results are not sound. The results are strictly near-sound iff there exist
appropriate bounds er and e€c such that the results are near-sound with respect to those
bounds.

It is evident that the notions of near-completeness and near-soundness allow us to classify
and compare some algorithms’ performance for a diagnosis problem via inspecting e7 and ec.
That is, via their respective minimum parameters ep and e that are required for achieving
near-soundness and/or near-completeness. The lower the minimum values for the parameters,
the better the algorithm. Via er and - we can thus establish partial orders in the sense that



l. Pill and J. de Kleer

when we fix one of these parameters, the minimum values for the other parameter defines
a natural order regarding their performance. For obtaining a total order, we would need a
or we could take into account the entire set of

weighted metric considering e . and €ec

min min?

all (minimal) combinations. For a representative verdict, some (weighted) average over a set
of samples might need to be computed, implementing the discussion offered in Section 2.1.

Please note that the values for parameters ey and e¢c depend on each other, as can
be seen from Corollaries 9 and 13. A consequence that we can easily observe is that we
might need values for ey that are higher than er,

min

for enabling near-completeness and/or
near-soundness for some specific ¢ (and vice versa).

3.2 The challenge: of oracles and metrics

We motivated our work in the Introduction with the complexity of finding correct and
informative answers to the natural question of whether a specific diagnosis algorithm returned
the correct result for some diagnosis problem, and if not, how good the results are. As we
hope to have convinced you with our discussion in Section 2, providing the right answers is a
complex task that requires us to take into account a wide variety of aspects.

Let us now discuss potential solutions to the problem at hand. In principle, we can
observe that any solution needs to tackle two distinct problems:

Task 1: We need to implement an oracle that judges whether the results are OK or not.

Task 2: We need to quantify the quality of the results with a corresponding measure.

T1 and T2 can be addressed and answered independently, but we can also exploit synergies
and tackle both tasks together. So we could use a quantitative metric for T2 and implement
the oracle O for T1 by a qualitative interpretation of the value obtained by the metric.

An intuitive and straightforward solution for the latter would be to consider P(©) and
Q(©) and to sum up the absolute value of the differences between p(A;) and ¢(A;) when
iterating through the diagnosis space ©. We could adopt KL-convergence as of Eq. 5 in
Section 2.1, we could sum up the squared absolute value such as to penalize larger differences,
and we could adopt a large a variety of similar ideas with individual twists. That is, as long
as we ensure that the final value is 0 iff there is no deviation at all, we have a solution with
the desired property. Obviously, this concept is not very robust against the influence of noisy
computations. If we add some error bound € € RT to mitigate some of the effects (see Eq. 8
for such an oracle O), we would still not be able to address the disadvantage that the metric
(the sum in Eq. 8) does not distinguish between problems with different severity levels.

O(P,Q,¢) = T iff ¥a,colp(Ai) — ¢(A;)| < eand L otherwise (8)

Let us elucidate the issue by considering the two following cases. For Case 1, assume
that there is a very small deviation d; = |p(A;) — ¢(A;)| in the probabilities for some
A (p(A;) >0 Ag(A;) > 0. Case 1 refers thus to a scenario in which A; is a diagnosis in
both P(©) and Q(O), but in which we observe a slight deviation between p(A;) and ¢(A;).
In the context of a repair procedure, this difference might cause a change in the rank of
A;, which could in turn affect repair cost estimates (see Section 2.2). But we can easily
see that A neither missed to report diagnosis A; in Q(®©), nor is A; a spurious diagnosis.
Mathematically, we thus observe that the completeness and soundness of the results is not
negatively affected by the difference in probabilities. Now let us look at Case 2, in which the
probability for the same A, is 0 for either P(©) or Q(©) and is §; for the other. In Case 2,
while the difference is indeed the same as in Case 1, we can easily observe that the results
P(0©) are either incomplete or unsound, i.e., since A either failed to report a diagnosis (if

5:15

DX 2025



5:16

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

p(A;) = 0), or it reported a spurious and thus unsound diagnosis (if ¢(A; = 0)). The metric
can, however, not distinguish Case 2 from Case 1 so that A; contributes in either case with
the same d; to the computation.

An intuitive way to address the issue would be to employ a combination of such a simple
quantitative metric and a formal assessment of completeness and soundness. Following up
on our discussions in Sections 2.4 and 3.1, this might also call for inspecting near-soundness
and near-completeness as of Definitions 10 and 6 instead, since this would allow us, e.g., to
accommodate delays in the diagnosability of some faults.

In combination with this formal assessment, we could replace the metric in Eq. 8 with a
much simpler one. First, we rank the diagnoses for P(0) and Q(©) respectively, and then
subsequently count the A;s for which there is a difference in ranking (taking into account
ambiguity groups). This simplification would make the quantitative measure more robust
to noise and slight deviations in the probabilities that do not change the ranking, while
it already takes the effects on a repair process into account. There is an abundance of
similar metrics, and in Section 4 we discuss with the economic metric a much more elaborate
approach to quantify effects on the repair costs, and thus a metric that is closer in line with
our repair-cost estimate discussion from Section 2.2.

It is easy to see that the combination of a formal assessment with some quantitative
ranking could be realized in a combined metric that allows us to tackle T1 and T2 together,
but also in individual solutions for T1 and T2. We could use the assessment of soundness and
completeness for addressing T'1, and employ a quantitative metric for T2. Approaches for T1
following the concept described above require us to know Q(©). In reality, this assumption
is indeed a strong one and we may not be able to fulfill it in practice. Let us thus explore
whether we might be able to assess completeness and soundness without knowing Q(0).

So, we can verify the soundness of a single diagnosis Ay, for example, by checking if the

symptoms disappear after repairing all (necessary) x; as suggested by Ay. Connecting to our
discussions around PFU in Sec. 2.2), such a Ay is indeed sound. Furthermore, considering
Def. 1, we do not need to verify whether A is subset-minimal, since it is not required by
our definition. For these two reasons, in general, Ay should also be part of Q(©)). That is,
unless we break the hidden assumption that we consider the ambiguity groups of diagnoses
and their supersets in a sensible way such that Q(©) would miss to contain also the relevant
supersets of some diagnosis as diagnoses.
Please note that if we would desire subset-minimality in the diagnoses for a weak fault
model computation, it would not suffice to simply check whether P(©) contains another
diagnosis A; : A; C A — like some diagnosis algorithms do. That is, this check works out
for algorithms like RC-Tree [18] since they are sound and complete. But while completeness
is ensured in those algorithm’s construction, it is not necessarily the case in our context.

Verifying completeness is also sometimes possible without knowing the expected results.
For example, in cases where we have access to a precise system model that is suitable for
working with a SAT, SMT or constraint solver. Assuming that we have, e.g., a behavioral
model in some temporal language [18, 9] or a simple combinational circuit [4], we first compile
SD and OBS into a SAT problem as suggested in those papers (see also [13]), or into an
SMT problem/constraint problem [16]. We then add blocking clauses for all diagnoses from
P(©) and finally ask the solver to search ezhaustively for a new diagnosis [13, 15]. If one is
found, the results P(0©) are incomplete, and otherwise they are complete.

We hope that we could convince you that there are many ways to tackle the problem at
hand, despite all the challenges that we have to face. To illustrate this, we, indeed, discussed
several options to implement the desired oracle (T1), as well as to quantify the quality of the
results reported by a diagnosis algorithm (T2).



l. Pill and J. de Kleer

4 The Economic Metric

The intuition behind economic metrics for diagnostic algorithms is to evaluate their results
in the context of their use. Here we will focus on the task of a repair person who’s task it
is to return the system to its full functioning. (Many other analogous diagnostic metrics
are possible.) If diagnosis is completely accurate the diagnostician can simply replace the
components listed in the diagnosis. But if the diagnosis is not accurate the diagnostician may
replace components which are unfaulted, and in addition incur extra diagnostic expense to
restore the system to complete functioning. Thus they incur two types of wasted effort. The
report of DXC 2010 [8] outlined one approach which we first summarize and then augment
according to the ideas outlined earlier in this paper.

The diagnostic algorithm returns a set of diagnoses: Q = {w1,...,wi}. In addition it
provides a weight V(w) for each diagnosis. The weights typically represent probabilities. We
assume

Z V(w)=1
weN
The normalized utility including both types of wasted effort is (see [8] for details):
n(N+1) a(N+1)
f(n+1) f(r+1)

where f is the count of all components, w is a diagnosis, N is the number of healthy

My (w,w*) =1

*

components, n is the number of false negatives (|w* — w|), w* is the inserted fault, 7 is
the number of false positives (Jw — w*|). From this definition we can see that f = N + N
and n + n = |w* A w| where A indicates symmetric difference. m,y intuitively has the
desired properties. If there are no false positives or false negatives, m,y = 1. A system with
10 components for which the diagnoser finds the incorrect single fault, m,y; = 0.4. If the

diagnoser returns multiple diagnoses, the utility for the diagnoser on that task is:

Mun(w*) =Y V(w)muu(w*,w)
we

This was the exact metric used in prior DXC competitions. However, it does not accommodate
ambiguity groups. Therefore, to obtain a decent score at all, the diagnosers in prior
competitions needed to return as many elements of the ambiguity group each with its own
V(w). The final scores were thus much lower than expected. This was an unfortunate state

of affairs as at the point this was discovered the metrics had been fixed for the competitors.

The full discussion of the utility metric in the presence of ambiguity groups is outside the

scope of this paper. Generalizing the approach we used for the sampling approach we obtain:

Zseallsamples p(G(S))MUtl (S)
ZsEallsamples p(G(S))

S(A) = (9)

5 Conclusions

We hope that we have convinced you that choosing a metric for the evaluation of a diagnostic
algorithm is very complex. In addition, we argue that the best metrics for evaluating the
algorithms’ performance could be those that are based on the costs incurred by the diagnostic
algorithm in its context of use, like the economic metric. In particular, we observe that this

5:17

DX 2025



5:18

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

family of metrics provides us with an assessment that is agnostic to the algorithm itself and
connects directly to how we perceive its performance by considering the practical effects of
the derived results.

A complementing way to assess the results of a diagnostic algorithm is to look at their
completeness and soundness. In practice, we would want to consider some error bounds in
this context, as suggested by our notions of near-completeness and near-soundness. While
we discussed the intuitiveness of computations that take advantage of knowing the gold
standard, in specific circumstances, we can implement approaches that are able to circumvent
the strong requirement of having to know the ideal results.

Following up on our discussions of issues that have to be addressed and our suggestions
for concepts to solve the problems, future work will have to empirically evaluate available
and new metrics to provide us with a clear picture of the algorithmic landscape.

—— References

1 R. Abreu and A. J. C. van Gemund. A low-cost approximate minimal hitting set algorithm
and its application to model-based diagnosis. In 8th Symposium on Abstraction, Reformulation,
and Approzimation, SARA, 2009. URL: http://www.aaai.org/ocs/index.php/SARA/SARA09/
paper/view/834.

2 J. Biteus, M. Nyberg, and E. Frisk. An algorithm for computing the diagnoses with minimal
cardinality in a distributed system. Engineering Applications of Artificial Intelligence, 21(2):
269-276, 2008. doi:10.1016/j.engappai.2007.03.006.

3 A Boussif and M. Ghazel. Diagnosability analysis of input/output discrete-event systems
using model-checking. IFAC-PapersOnlLine, 48(7):71-78, 2015. doi:10.1016/j.ifacol.2015.
06.475.

4 J.deKleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence, 32(1):97-130,
1987. d0i:10.1016/0004-3702(87)90063-4.

5 J. de Kleer and B. C. Williams. Diagnosis with Behavioral Modes. In 11th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1324-1330, 1989.

6 Johan de Kleer. Hitting set algorithms for model-based diagnosis. In 22nd International
Workshop on Principles of Diagnosis (DX’11), 2011.

7  P.Delgado-Pérez and F. Chicano. An experimental and practical study on the equivalent mutant
connection: An evolutionary approach. Information and Software Technology, 124:106317,
2020. doi:10.1016/j.infsof.2020.106317.

8 A. Feldman, T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, J. de Kleer, L. Kuhn, and A. van
Gemund. Empirical evaluation of diagnostic algorithm performance using a generic framework.
International Journal of Prognostics and Health Management, pages 1-28, 2010.

9 A. Feldman, I. Pill, F. Wotawa, I. Matei, and J. de Kleer. Efficient model-based diagnosis
of sequential circuits. In 34th AAAI Conference on Artificial Intelligence (AAAI’20), pages
2814-2821. AAAI Press, 2020. doi:10.1609/AAAT.V34103.5670.

10 R. Greiner, B. A. Smith, and R. W. Wilkerson. A Correction to the Algorithm in Reiter’s Theory
of Diagnosis. Artificial Intelligence, 41(1):79-88, 1989. doi:10.1016/0004-3702(89)90079-9.

11  A. Hou. A theory of measurement in diagnosis from first principles. Artificial Intelligence,
65(2):281-328, February 1994. doi:10.1016/0004-3702(94)90019-1.

12 1. Matei, M. Zhenirovskyy, J. de Kleer, and A. Feldman. Classification-based Diagnosis Using
Synthetic Data from Uncertain Models. Annual Conference of the PHM Society, 10(1), 2018.

13  A. Metodi, R. Stern, M. Kalech, and M. Codish. Compiling Model-Based Diagnosis to Boolean
Satisfaction. In 26th AAAI Conference on Artificial Intelligence, pages 793—799, 2012.

14  E. Muskardin, I. Pill, and F. Wotawa. CatIO - A Framework for Model-Based Diagnosis of
Cyber-Physical Systems. In D. Helic, G. Leitner, M. Stettinger, A. Felfernig, and Z. W. Ras,
editors, Foundations of Intelligent Systems, pages 267276, 2020.


http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/834
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/834
https://doi.org/10.1016/j.engappai.2007.03.006
https://doi.org/10.1016/j.ifacol.2015.06.475
https://doi.org/10.1016/j.ifacol.2015.06.475
https://doi.org/10.1016/0004-3702(87)90063-4
https://doi.org/10.1016/j.infsof.2020.106317
https://doi.org/10.1609/AAAI.V34I03.5670
https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1016/0004-3702(94)90019-1

l. Pill and J. de Kleer

15

16

17

18

19

20

21

22

23

24

25

26

I. Nica, I. Pill, T. Quaritsch, and F. Wotawa. The Route to Success - A Performance
Comparison of Diagnosis Algorithms. In 23rd International Joint Conference on Artificial
Intelligence, pages 1039-1045, 2013.

I.-D. Nica and F. Wotawa. ConDiag - Computing minimal diagnoses using a constraint solver.

In 23rd International Workshop on Principles of Diagnosis, 2012.

I. Pill and J. de Kleer. Challenges for Model-Based Diagnosis. In 35th International Conference
on Principles of Diagnosis and Resilient Systems (DX 2024), volume 125 of Open Access Series
in Informatics (OASIcs), pages 6:1-6:20, 2024. doi:10.4230/0ASIcs.DX.2024.6.

I. Pill and T. Quaritsch. Behavioral diagnosis of LTL specifications at operator level. In 23rd
Int. Joint Conf. on Artificial Intelligence, pages 1053-1059, 2013.

I. Pill and T. Quaritsch. RC-Tree: A variant avoiding all the redundancy in Reiter’s minimal
hitting set algorithm. In IEEE Int. Symp. on Software Reliability Engineering Workshops
(ISSREW), pages 78-84, 2015.

I. Pill, I. Rubil, F. Wotawa, and M. Nica. SIMULTATE: A Toolset for Fault Injection and
Mutation Testing of Simulink Models. In IEEE 9th International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pages 168-173, 2016.

I. Pill and F. Wotawa. Spectrum-Based Fault Localization for Logic-Based Reasoning . In 2018
IEEEFE International Symposium on Software Reliability Engineering Workshops (ISSREW),
pages 192-199, 2018. doi:10.1109/ISSREW.2018.00006.

1. Pill and F. Wotawa. On Using an I/O Model for Creating an Abductive Diagnosis Model via
Combinatorial Exploration, Fault Injection, and Simulation. In 29th International Workshop
on Principles of Diagnosis (DX’18), 2018.

I. Pill and F. Wotawa. Exploiting observations from combinatorial testing for diagnostic
reasoning. In 30th Int. Workshop on Principles of Diagnosis, 2019.

I. Pill and F. Wotawa. Computing Multi-Scenario Diagnoses. In 31st International Workshop on

Principles of Diagnosis, DX ; Conference date: 26-09-2020, 2020. URL: http://dx-2020.o0rg/.

R. Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence, 32(1):57-95,
1987. d0i:10.1016/0004-3702(87)90062-2.

L. Ye, P. Dague, D. Longuet, L. B. Briones, and A. Madalinski. Fault manifestability
verification for discrete event systems. In 22nd European Conf. on Artificial Intelligence, pages
1718-1719, 2016. doi:10.3233/978-1-61499-672-9-1718.

5:19

DX 2025


https://doi.org/10.4230/OASIcs.DX.2024.6
https://doi.org/10.1109/ISSREW.2018.00006
http://dx-2020.org/
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.3233/978-1-61499-672-9-1718

	1 Introduction
	2 Why is the representative evaluation/comparison of a diagnosis algorithm not as straightforward as it seems?
	2.1 Metrics based on sampling and the notion of ambiguity groups
	2.2 Metrics estimating repair costs
	2.3 Metrics tailoring to specific evaluation requirements
	2.4 Defining the baseline: On the ideal results of a diagnosis algorithm

	3 A more formal take on the problem at hand
	3.1 Some definitions
	3.2 The challenge: of oracles and metrics

	4 The Economic Metric
	5 Conclusions

