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Abstract
Ensuring flight safety for small unmanned aerial systems (sUAS) requires continuous in-flight
monitoring and decision-making, as unexpected events can alter power consumption and deplete
battery energy faster than anticipated. Such events may result in insufficient battery capacity
to complete a mission, thereby compromising flight safety. In this paper, we present an online
feasibility assessment and contingency management framework that continuously monitors the
aircraft’s battery state and the energy required to complete the flight in real-time, which enables
informed decision-making to enhance flight safety. The framework consists of two main components:
power consumption prediction and battery voltage trajectory prediction. The power consumption
prediction is conducted using a model that is based on momentum theory, while the voltage trajectory
prediction is performed using a Neural Ordinary Differential Equation (Neural ODE)-based data-
driven model. By integrating these two components, the framework evaluates the feasibility of a flight
mission in real time and determines whether to proceed with the mission or initiate rerouting. We
evaluate the framework’s performance in a drone delivery scenario in the Dallas–Fort Worth (DFW)
area, where the aircraft encounters an unexpected energy depletion event mid-flight. The proposed
framework is tasked with assessing the feasibility of completing the mission and, if necessary,
rerouting the aircraft for an emergency landing. The results demonstrate that the framework
accurately and efficiently detects energy insufficiencies in real-time and re-routes the aircraft to a
predefined emergency landing site.
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8:2 Real-Time Flight Mission Feasibility Assessment for UAVs

1 Introduction

1.1 Motivation
Drone package delivery using small unmanned aerial systems (sUAS) is rapidly advancing
and nearing widespread implementation. The FAA recently granted approval for companies
such as Zipline and Wing Aviation to operate commercial drones in the Dallas-Fort Worth
(DFW) area without requiring visual observers, enabling beyond-visual-line-of-sight (BVLOS)
operations [11, 12, 16]. This historic authorization represents a significant shift in the
regulatory landscape, paving the way for the safe and routine integration of drone deliveries
into the national airspace.

Despite these advancements, ensuring the safety of drone delivery operations remains a
critical challenge, particularly due to various operational hazards [24]. Among these, hazards
related to aircraft components pose a significant risk to the reliability of advanced air mobility
(AAM) operations such as drone package delivery. In this work, we specifically focus on one
such hazard, which is the risk of insufficient battery capacity to complete a flight mission.

Due to the dynamic and uncertain nature of flight operations, even if pre-departure
feasibility assessments account for all known factors, unexpected events during flight can still
lead to insufficient battery energy. Various operational factors that happen during flight can
influence the power consumption of the aircraft and deplete the battery energy faster than
anticipated. For example, a mid-flight incident such as a bird strike may damage a propeller,
reducing thrust efficiency and increasing power demand [9]. Similarly, if the electronic speed
controller (ESC) or battery overheats beyond a safe threshold, the system may impose a
speed restriction [13], limiting the aircraft’s operational envelope and requiring rerouting to
the nearest landing site.

To mitigate these risks and enhance flight safety, we propose a real-time flight mission
monitoring scheme that continuously evaluates the feasibility of a package delivery mission
based on the available battery energy. The intended operation of this framework in a
real-world drone package delivery scenario is illustrated in Figure 1. The monitoring system
is activated immediately after takeoff and periodically assesses whether the mission remains
feasible. This enables timely adjustments, such as rerouting to a nearby warehouse or an
emergency landing site, to ensure safe operation throughout the flight until the aircraft
reaches its destination.

1.2 Related Work
The two areas related to our overall problem are battery state prediction and battery
feasibility-based flight planning. Here we summarize the previous works related to these
two areas.

1.2.1 Battery State Prediction
Existing battery state prediction methods can be broadly categorized into two approaches:
model-based and data-driven methods. Model-based approaches rely on physical models
of the battery to predict key states, primarily future trajectories of terminal voltage and
state of charge (SoC). These methods typically use either equivalent circuit models or
electrochemical-based models, combined with estimators, to forecast battery states over time.

Equivalent circuit models represent the battery’s internal dynamics using electrical
components such as resistors and capacitors. Common models include the Rint model, the
RC model, and the Thévenin model [14]. These models simplify the battery’s behavior but



A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei 8:3

Mission FeasibilityDepot LocationDelivery LocationDelivery Drone

Figure 1 Schematic diagram representation of the feasibility assessment procedure.

still require parameter estimation and state estimation techniques for accurate predictions. In
contrast, electrochemical-based models simulate the battery’s internal chemistry using porous
electrode theory [15] and describe its dynamics through partial differential equations (PDEs).
There are multiple versions of these models, varying in complexity depending on the target
application, with the most widely used being [8] and [10]. While model-based methods offer
high accuracy and interpretability, they require simulating complex, nonlinear battery models,
making them computationally expensive and impractical for real-time in-flight applications.

To address this limitation, data-driven approaches have been developed. These methods
use machine learning techniques to predict battery states with reduced computational cost.
Among the most common are long short-term memory (LSTM) networks [5], support vector
machines (SVM) [18], and fuzzy inference systems (FIS) [17]. Data-driven approaches are
more computationally efficient [3], making them suitable for real-time applications such as
in-flight battery state prediction. However, their accuracy tends to degrade as the prediction
horizon increases, limiting their reliability for long-term planning applications.

1.2.2 Battery Feasibility Based Flight Planning

The proposed framework aims to perform online battery state prediction for sUAS operations
and assess mission feasibility. Several studies have explored similar goals. For instance, Shibl
et al. [22] developed a battery management system for sUAS that employs deep neural
networks (DNN) and LSTM networks to predict the SoC and the state of health (SoH).
This system enhances battery monitoring and aids in mission planning based on the current
battery state. Similarly, [4] proposed a method for assessing mission feasibility by considering
battery performance and planning optimal routes to ensure successful mission completion.
In another study, Shi et al. [20] introduced a cloud-based framework for the co-estimation of
SoC and SoH, leveraging transformer-based deep learning techniques to provide accurate
and real-time battery state predictions. Additionally, [21] explored a risk-aware approach for
unmanned aerial vehicle and unmanned ground vehicle rendezvous planning using a chance-
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constrained Markov Decision Process. Their method accounts for the stochastic nature of
energy consumption and optimizes rendezvous points to enhance mission feasibility and
safety. Furthermore, Choudhry et al. [7] developed a deep energy model utilizing Temporal
Convolutional Networks to predict energy consumption. They introduced a Conditional
Value-at-Risk (CVaR) metric to assess the risk of battery depletion during flights, providing
a framework for risk-aware mission planning and feasibility assessment.

However, none of these studies approach battery feasibility-based flight planning from the
perspective of forecasting the future voltage trajectory. In contrast, our framework introduces
a two-stage pipeline that first predicts the power consumption profile of the aircraft for the
planned mission and then leverages a data-driven battery model to forecast the corresponding
voltage trajectory. This approach enables a more realistic and forward-looking assessment
of mission feasibility, unlike prior methods that rely solely on the current battery state or
coarse approximations of future energy demands.

2 Problem Formulation

Ensuring the real-time feasibility of flight missions is critical for safe and reliable operations,
particularly in applications such as package delivery. The framework proposed in this paper
periodically assesses battery feasibility during flight to determine whether the aircraft can
successfully reach its destination or if it needs to reroute to an alternate landing site. This
section outlines the formulations of the two key components of the feasibility assessment
framework – the aircraft model and the battery model – and provides a formal description of
the problem addressed in this work.

2.1 Aircraft Model
The aircraft operates in a three-dimensional environment with latitude, longitude, and
altitude. The specific aircraft model considered in this paper is an octo-rotor, whose detailed
dynamics is provided in [1]. For brevity, we summarize the aircraft dynamics here. At any
time t, the aircraft’s state in inertial space is represented as xt ∈ R3, and its evolution follows
the system dynamics:

ζ̇t = f(ζt, ut), (1)

where f : Rn×R→ Rn is a continuous function. The vector ζ represents the aircraft’s states,
including its position (x, y, z), velocities (ẋ, ẏ, ż), angular positions [ϕ, θ, ψ], and angular
velocities [p, q, r]. The control input ut ensures that the aircraft follows a predefined sequence
of waypoints from the initial to the final destination.

2.2 Battery Model
The battery model utilized in this study is an electrochemical model of lithium-ion batteries,
as described in [8], which are a popular choice for powering unmanned aerial vehicles. In
this model, the battery’s current draw, denoted by Ib, serves as the input, while the battery
voltage Vb, temperature Tb, and state of charge (SoC) represent the system states. The
battery dynamics are governed by the following system equation:

ξ̇t = g(ξt, Ib), (2)

where g : Rm×R→ Rm is a continuous function. The state vector ξ represents the battery’s
internal states.
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2.3 Problem Description
Consider an aircraft whose airframe and battery dynamics are given by Equation 1 and 2,
respectively. The aircraft is assigned to deliver a package from an initial warehouse location
xw = (xw, yw, zw) to a designated delivery site xd = (xd, yd, zd). Once the aircraft completes
takeoff, the framework presented in this paper needs to perform a periodic feasibility check
every τ seconds to ensure that the mission remains viable under real-time aircraft and
environmental conditions. At each reassessment step, where xt represents the position
of the aircraft at the time of feasibility assessment, the condition for mission success is
evaluated using:

Vsuccess(t | xt) ≥ Vthresh, ∀t ∈ [t, t+ T ]. (3)

If the battery voltage trajectory is greater than or equal to a predefined feasibility voltage
threshold (Vthresh) value, the aircraft continues its flight. However, if at any point in time, the
battery voltage drops below the threshold, the aircraft must reroute to the nearest warehouse
or designated emergency landing site.

3 Method

To address the problem described in the previous section, we propose the framework shown
in Figure 2, where, at each decision-making step, three major tasks are performed: 1) power
consumption prediction, 2) battery voltage and SoC prediction, and 3) feasibility assessment
and decision making. The remainder of this section discusses these three major tasks of the
framework in detail.

Initial and Final
Locations

Flight Plan
Generator

Identify Flight
Segments

Power
Consumption

Model

Convert Power Profile
to Current Profile

Neural ODE based
Battery Model

Perform Feasibility
Assessment

Proceed?

Reroute

Figure 2 Schematic diagram of the feasibility assessment procedure.

3.1 Power Profile Prediction
Accurate prediction of power consumption for a future flight trajectory is critical for assessing
the feasibility of a mission. The proposed framework predicts the power consumption of a
future flight trajectory using the following procedure. First, a flight plan is generated for the
remaining flight using the initial and final locations. This flight plan comprises waypoints
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between these initial and final locations along with the velocity profile of the aircraft. Next,
the framework identifies distinct flight segments – such as takeoff, cruise, and landing – and
computes the power consumption and flight duration for each flight segment using the power
consumption model which is discussed in the following subsection.

3.1.1 Aircraft Power Consumption Model
To determine the power required for future flight operations, the ideal approach would be
to simulate the detailed aircraft dynamic model and collect the power required for future
flight duration. However, since the detailed aircraft dynamic model is complex and highly
nonlinear, doing so is computationally expensive. To address this challenge, we adopt a power
consumption model for rotary-wing aircraft from [23]. This model is based on momentum
theory and incorporates aerodynamic equations for each flight maneuver including, climb,
hover, horizontal flight, and descent.

Phover = W
3
2

ηh ·
√

2ρAt
, (4)

Pclimb = W

ηc

(
Vc

2 +

√
V 2

c

4 + W

2ρAt

)
, (5)

Pdescent = W

ηc

−Vd

2 +

√
V 2

d

4 + W

2ρAt

 , (6)

where Vc and Vd are vertical climb speed and vertical descent speed values, respectively. In
addition, η is the efficiency factor of the propulsion system, ρ is the air density, W is the
total weight of the aircraft, and At is the sum of the n-disc actuator areas. In addition, the
instantaneous power for horizontal flight is given as:

Phorizontal = W

ηhor
(Vhor sin(αv) + vhor) , (7)

where αv is the angle of attack and ηhor and the horizontal efficiency. In addition, the induced
velocity in horizontal flight vhor, is given by:

vhor =

√√√√−V 2
hor
2 +

√
V 4

hor
4 + ( W

2ρAt
)2. (8)

All the aircraft-related parameters mentioned in the equations above are given in Table 1.

3.1.2 Flight Duration Estimation
The aircraft power consumption model outlined above provides the instantaneous power
required by the aircraft during a given timestamp in a specific flight phase. However, to
predict the power profile for each flight segment, we must also determine the duration of
each segment. Here, we discuss the approach used to estimate the flight duration of each
flight segment. During a climb or descent, the aircraft changes altitude at a constant speed,
and the total time required to reach the desired attitude is given by:

Tclimb/descend,i = hi+1 − hi

Vclimb/descend
, (9)
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Table 1 Aircraft- and battery-related parameters.

Aircraft Parameters Battery Parameters

ρ Air density (1.225 kg/m3) Rint Internal resistance (0.05 Ω)

At Rotor disk area (1.31 m2) η Battery efficiency (0.95)

W Aircraft weight (10 kg) Cn Nominal capacity (22000 mAh)

ηc Climb efficiency (0.85) k0 Open-circuit voltage constant (22.83)

αv Horizontal drag coefficient (0.25) k1 Open-circuit voltage constant (0.39)

ηd Descent efficiency (0.75) k2 Open-circuit voltage constant (−0.78)

ηhor Horizontal efficiency (0.88) Vthresh Battery voltage threshold (18 V)

where hi+1−hi represents the altitude change and Vclimb or (Vdescend) is the predefined climb
(or descent) speed. Similarly, once the aircraft reaches cruising altitude, the aircraft moves
with a constant horizontal velocity. The cruise time for a given segment is computed as:

Tcruise,i = di

Vcruise
, (10)

where di is the horizontal distance of the segment and Vcruise is the predefined cruise speed.
Finally, the overall flight power profile is obtained by concatenating the power profiles for
the climb, cruise, and descent segments, each computed over its respective flight duration:

Pflight = [Pclimb, Pcruise, Pdescend]. (11)

3.2 Power to Current Conversion
After predicting the power profile for the entire flight, we need to convert it into a current
profile to use as input for our Neural ODE-based battery model. However, this conversion is
not straightforward, as both voltage and current are unknown in our problem setting. To
address this, we adopt the Rint-based equivalent circuit model [14]. This model represents
the battery as an ideal voltage source in series with a single resistor and is described by the
following equation:

V (t) = Voc(t)− I(t)Rint, (12)

where V (t) is the battery voltage, Voc(t) is the open circuit voltage, and Rint represents
the internal resistance of the battery. By rewriting this equation using the relationship
P (t) = V (t) · I(t), we obtain the following quadratic equation:

I(t)2Rint − Voc(t)I(t) + P (t) = 0. (13)

In the above equation, Voc(t) is determined from the OCV-SoC curve of the battery, assuming
the SoC of the battery at a given time is known. In this study, we use the Nernst model to
represent the OCV-SoC relationship, which is commonly applied to Li-ion and Li-Po batteries:

Voc(SoC) = k0 + k1 ln(SoC) + k2 ln(1− SoC), (14)

where the parameters k0 = 22.83, k1 = 0.39, and k2 = −0.78 are obtained by fitting
battery data [2]. Figure 3 shows the fitted OCV-SoC curve. Once the SoC is determined,
this curve is used to obtain the corresponding open-circuit voltage of the battery. The
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Figure 3 Fitted SoC vs OCV Curve for the 6S1P 22Ah Battery.

SoC at any given time is estimated using coulomb counting (also known as Ampere-Hour
integration), which estimates the SoC by measuring the amount of charge and discharge
using the following equation:

SoC(t) = SoC(t0)− η

Cn

∫ t

t0

I(t)dt, (15)

where SoC(t0) is the initial state of charge, η represents the coulumbic efficiency, Cn represents
the battery capacity or rated capacity, and I(t) is the instantaneous current discharged from
the battery.

Finally, the derived current profile, along with the current battery voltage value and the
future flight time horizon, is fed into the data-driven battery model. This learning-based
model predicts the voltage and SoC evolution along the anticipated flight trajectory. A
detailed description of the learning-based battery modeling is provided in Section 4.

3.3 Feasibility Assessment and Decision Making
After computing the power required to complete the remaining trajectory and predicting
the battery’s voltage trajectory, we assess mission success using the criterion provided in
Equation 3. At each reassessment step, if the predicted voltage trajectory remains greater
than or equal to the predefined threshold Vthresh throughout the entire prediction horizon,
the aircraft continues its flight as planned. However, if the predicted voltage falls below the
threshold at any point, the aircraft must reroute to the nearest warehouse or designated
emergency landing site. The closest alternate landing site is determined by:

x∗
e = arg min

xe∈E
d(xt,xe), (16)

where E represents the set of predefined emergency landing sites, and d(x(t),xe) is the
distance between the current position of the aircraft and each landing site. Once a new
landing site is identified, the aircraft adjusts its trajectory accordingly and proceeds toward
the new landing site. A feasibility assessment is then conducted for the updated trajectory
to ensure that the aircraft can safely reach the new destination.
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Algorithm 1 Power-to-Current Conversion Process.

Procedure Power-to-CurrentConversion():
Input : Power profile P (t), Battery parameters (Rint, η, Cn, k0, k1, and k2)
Output : Current profile I(t)

1 for each timestep t do
2 Compute open circuit voltage (OCV) from SoC using equation 14

Voc(t)← k0 + k1 ln(SoC(t)) + k2 ln(1− SoC(t))

3 Solve quadratic equation 13

I(t)←
−Voc(t) +

√
Voc(t)2 − 4RintP (t)
2Rint

4 Update SoC using Coulomb counting

SoC(t+ ∆t)← SoC(t)− η

Cn
I(t)∆t

5 End of operation

4 Battery Modeling

To enable accurate, data-driven modeling of battery voltage under future current loads, we
implemented a Neural Ordinary Differential Equation (Neural ODE) approach [6]. Neural
ODEs generalize traditional neural networks by replacing discrete layer-wise transformations
with a continuous-time formulation, where the hidden state h(t) evolves according to a
learned differential equation:

dh

dt
= f(h(t), t; θ) (17)

Here, f is a neural network parameterized by θ that defines the dynamics of the hidden
state over time. In the context of battery modeling, the input current profile and initial
voltage are encoded into the initial hidden state h(0), which is then evolved forward in time
using an ODE solver. At each time step, the evolving hidden state is used to predict the
corresponding battery voltage. This framework naturally supports irregular time sampling
and produces smooth, physically coherent predictions, making it particularly effective for
capturing the dynamics of battery behavior under variable loads.

In this section, we describe the procedures followed to develop the Neural-ODE-based
battery model. The overall training workflow for the Neural ODE-based battery model
is illustrated in the schematic diagram shown in Figure 4. As depicted in the figure, the
modeling process includes dataset generation, construction of training and test sets, model
training using the training set, and performance evaluation using the test set.

4.1 Dataset Generation
To develop and validate a data-driven battery voltage prediction model, we adopted a data
generation procedure designed to capture the dynamic behavior of a lithium-ion battery under
diverse load conditions. This procedure integrates a high-fidelity electrochemical battery
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Figure 4 Neural ODE-based battery model training processes.

model with a current profile generation mechanism to emulate realistic operational scenarios
in drone package delivery missions. The goal is to produce realistic current and voltage profiles
that reflect battery performance during flight operations. The data generation approach
consists of three main stages: (i) flight mission current profile generation, (ii) simulation of
battery voltage, and (iii) dataset construction.

4.1.1 Flight Mission Current Profile Generation
The current profile generation process produces two types of profiles: full-flight mission
profiles and mid-flight constant profiles. Full-flight profiles capture both the takeoff and
cruise phases of the aircraft operations, where the takeoff phase is characterized by a higher
power demand, while the cruise phase exhibits a lower current draw. Mathematically, the
generated current profile at time t, denoted as I(t), is defined as:

I(t) =
{
Itakeoff, 0 ≤ t < Ttakeoff

Icruise, Ttakeoff ≤ t < Ttotal
(18)

where Itakeoff ∼ U(140, 225) A and Icruise ∼ U(50, 70) A, with U(a, b) denoting a uniform
distribution. The takeoff duration, Ttakeoff, is randomly sampled within the range [1, 10]
seconds, ensuring variability in the generated profiles. Mid-flight profiles, on the other hand,
are created by assigning the initial voltage at various points during a full-flight mission
and applying a constant current profile from that point onward. This approach enables the
evaluation of battery response under different initial conditions.

4.1.2 Battery Voltage Simulation
To simulate the voltage response corresponding to the generated current profiles, we employ an
electrochemical battery model [8]. The simulation procedure involves initializing the battery
state, iterating over the generated current profiles, and computing the corresponding voltage
response. The resulting dataset consists of 1, 000 pairs of current and voltage trajectories
and is systematically divided into training and test sets using a 70% − 30% split. Each
entry in the dataset comprises the input current trajectory I(t), the corresponding voltage
response V (t), and the associated time horizon T . Figure 5 illustrates representative samples
from the generated dataset, with current trajectories shown in blue and their corresponding
voltage responses in black.

4.2 Neural ODE Training
In this subsection, we provide details on the data preprocessing steps, as well as the
architectural and training specifications of our Neural ODE-based battery model.
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Figure 5 Representative current profiles (top row) and their corresponding voltage responses
(bottom row).

4.2.1 Data Preprocessing
To ensure robust generalization across various scales of input data and to mitigate numerical
instability during training, the input current and output voltage sequences are standardized
using the training dataset’s mean and standard deviation. The model operates on normalized
time in the range [0, 1] for each sequence.

4.2.2 Neural ODE Model Architecture
Our Neural ODE model consists of two primary components: a neural network-based ODE
function and an ODE solver. The ODE function is implemented as a fully connected
feedforward neural network with three hidden layers, each employing ReLU activation
functions, and outputs the derivative of the voltage. The network takes as input the initial
battery voltage, the input current, and the time horizon, enabling it to learn a continuous-
time differential equation that governs the voltage dynamics. This learned function is then
integrated over time using a fourth-order Runge-Kutta (RK4) solver to generate the battery
voltage trajectory. The model is trained using a composite loss function that combines mean
squared error (MSE) and root mean squared error (RMSE) between the predicted and ground
truth voltage values. After training, the model is evaluated on test current profiles to assess
its accuracy in predicting voltage trajectories. The architectural and training hyperparameter
details of the model are provided in Tables 2 and 3, respectively. These parameters were
identified through a series of empirical experiments, where different configurations were
systematically tested to achieve optimal trade-offs between model complexity, training
efficiency, and predictive performance.

5 Results and Discussion

5.1 Scenario Description
The scenario designed in this paper to evaluate the performance of the proposed real-time
feasibility assessment and contingency management framework involves a drone package
delivery operation within the Dallas–Fort Worth (DFW) metropolitan area, as illustrated
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Table 2 Architecture of the ODE function.

Layer # Neurons Activation

Input 3 –

Layer 1 128 ReLU

Layer 2 128 ReLU

Layer 3 64 ReLU

Output 1 None

Table 3 Training hyperparameters.

Hyperparameter Value

Optimizer Adam

Learning Rate 0.001

Batch Size 4

ODE Solver RK4

Epochs 100

in Figure 6. In this scenario, a single aircraft departs from a designated warehouse located
at 33◦08′48′′N, 96◦48′22′′W, flying towards an assigned delivery location at 33◦09′05′′N,
96◦47′15′′W. We assume all necessary pre-departure feasibility assessments have already
been completed, and the mission has been cleared for execution. Once airborne, the online
feasibility assessment method developed in this study, which is assumed to run offboard,
operates at regular intervals of 5 seconds.

Additionally, to assess the effectiveness of our proposed approach in supporting online
decision-making and contingency management, we introduce a realistic in-flight anomaly
scenario. In this case, the aircraft experiences an anomaly upon reaching the midpoint of
the mission, located at coordinates 33◦08′56.5′′N, 96◦47′48.5′′W. Due to thermal stress
affecting the electronic speed controller (ESC), the cruise speed must be reduced from the
nominal 5 m/s to 3 m/s. This reduction significantly extends the expected flight duration
and increases energy consumption, potentially rendering the original flight plan infeasible.

In response, the aircraft must perform a feasibility assessment under the new flight
condition and dynamically reroute to one of several predefined emergency landing sites
to ensure safety. These alternative landing sites are located at 33◦08′40′′N, 96◦48′12′′W;
33◦09′04′′N, 96◦47′45′′W; and 33◦09′12′′N, 96◦47′11′′W. As shown in Figure 6, these
locations are labeled Emergency Landing 1, Emergency Landing 2, and Emergency Landing 3,
respectively. This scenario provides a rigorous testbed for evaluating the framework’s
capability to forecast infeasibility and adapt flight decisions in real time.

5.2 Results
Because our framework conducts the feasibility assessment in two steps – first predicting the
power profile and then predicting the battery voltage – we evaluate the accuracy of each
step independently. To validate the predicted power profiles, we use the detailed aircraft
model presented in [1] as our ground truth. Similarly, for battery voltage performance
evaluation, we employ the detailed electrochemical Li-ion battery model described in [8]
as the reference. Furthermore, since the online feasibility assessment occurs at fixed time
intervals, voltage predictions made at each timestep are visualized using distinct colors,
with each color corresponding to the prediction profile generated at a specific feasibility
assessment timestep.

5.2.1 Power Consumption Prediction Results
As discussed in Section 5.1, our package delivery scenario involves two main flight phases:
one before the mid-flight incident and another after the incident. Before the mid-flight
incident, the aircraft is executing the original flight plan which is from the warehouse to
the assigned destination (referred to as “Long”). However, once the mid-flight incident is
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Emergency Landing 2 Emergency Landing 3

Emergency Landing 1

Warehouse

Destination

Figure 6 The developed package delivery scenario illustrating the original flight plan, warehouse,
destination, and the three emergency landing sites.

identified and the speed change is applied, the aircraft needs to assess the feasibility of the
original flight plan with the newly updated speed and if it’s not feasible, identify the nearest
emergency landing site from the already pre-defined set of locations and fly towards it while
still performing the feasibility assessment at every 5 seconds.

Following the mid-flight incident, four alternative flight plans are considered, each cor-
responding to a potential landing site: the original destination and the three emergency
landing sites. These include: (i) the flight plan to the original destination after the incident,
which is expected to be infeasible and is labeled “Infeasible” ; (ii) the flight plan to the nearest
emergency landing site, labeled “Short” ; and (iii) the flight plans to the other two emergency
landing sites, labeled “EM1” and “EM3”, respectively.

Figure 7 presents a comparison between the actual aircraft power consumption profiles
and the approximated power profiles for three flight plans: “Long”, “Infeasible”, and “Short”.
These approximations are obtained using the method described in Section 3.1. Since the
mid-flight incident requiring cruise speed reduction occurs at 288 seconds, the second and
third plots show the power profiles only for the remaining flight duration from the moment
the speed reduction is applied. Furthermore, the lower three plots in Figure 7 compare the
actual current profiles against those derived from the predicted power trajectories using the
conversion technique outlined in Section 3.2. This analysis enables a direct evaluation of the
prediction pipeline’s ability to infer current demands under altered flight conditions.

Because the reliability of our decision-making and contingency management framework
heavily depends on the predictive accuracy of the power consumption model and the power-to-
current conversion process, we evaluate the performance of these key components in Table 4.
The table presents the results of 30 simulation runs for each of all flight plans. For each case,
we report the average root mean squared error (RMSE) and mean absolute error (MAE)
between the model-based reference approach and the method proposed in this paper. The
results demonstrate that the proposed framework is capable of predicting both power and
current profiles with reasonable accuracy.
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Figure 7 Power and current profiles for the three flight plans (Long, Infeasible, and Short). The
top three plots illustrate the power profiles corresponding to each flight plan, while the bottom three
plots show the current profiles derived from these power profiles.

5.2.2 Voltage Prediction Results

Once the current profiles for the future flight duration at each timestep are obtained, they
are fed into the trained data-driven battery model to predict the corresponding voltage
trajectories. Figures 8 and 9 present the predicted voltage trajectories for all flight plans
using the Neural-ODE-based approach, alongside the reference battery voltage trajectories
generated by simulating the detailed battery model. For each voltage prediction shown in
Figures 8 and 9, feasibility assessment is performed at 5-second intervals using the criterion
described in Section 1. The minimum voltage threshold for mission feasibility is set at 18 V,
meaning the predicted voltage trajectory must remain above this threshold throughout the
entire operational time horizon for the mission to be considered safe.

As illustrated in Figure 8, the predicted voltage trajectory for the original flight plan
remains above the 18 V threshold at all times and is therefore considered feasible – until
the mid-flight incident occurs. However, as shown in the middle plot of Figure 8, once the
incident triggers a reduction in cruise speed to 3 m/s, the voltage trajectory violates the
threshold at approximately 680 seconds. This indicates that the aircraft can no longer safely
complete its flight to the assigned destination. Consequently, the mission is rerouted to the
emergency landing site, and feasibility is re-evaluated using the current profile for the short
flight plan with the Neural-ODE-based battery model. The result, shown in the final plot of
Figure 8, demonstrates that the revised mission remains feasible under the updated flight
conditions, thereby ensuring the safety of the aircraft.

To provide a more comprehensive understanding of the mid-flight incident and the
rationale behind the chosen contingency plan, Figure 9 presents the voltage predictions for
the two alternative flight plans directed toward the other emergency landing sites (“EM1” and
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Table 4 Comparison of prediction accuracy (RMSE and MAE) for power and current profiles
across all flight plans: Long, Infeasible, Short, EM1, and EM3.

Profile Error Type Long Infeasible Short EM1 EM3

Power (W)
RMSE 295.01 83.82 39.41 75.36 75.37

MAE 68.80 74.84 35.06 66.89 66.80

Current (A)
RMSE 3.76 0.63 0.60 0.63 0.63

MAE 0.94 0.39 0.38 0.39 0.39
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Figure 8 Voltage predictions for the three flight plans (Long, Infeasible, and Short), performed
at 5-second intervals. Each voltage profile corresponds to a specific prediction index, representing
the voltage trajectory forecasted at a given feasibility assessment timestep.

“EM3”). The results clearly demonstrate that both of these trajectories become infeasible, as
the predicted battery voltage drops below the minimum operational threshold. This confirms
the validity of the selected rerouting strategy to the nearest emergency landing site (“Short”).

Furthermore, Figure 10 offers a spatial visualization of the voltage predictions overlaid on
the mission map. In this figure, each flight plan is illustrated using a heatmap that encodes
predicted battery voltage along the flight trajectory. As shown, the battery begins fully
charged at the warehouse, but following the mid-flight incident, the voltage predictions for
all flight plans – except for the one directed to Emergency Landing 2 – fall below the critical
threshold of 18 V at some point along the trajectory. This spatial voltage analysis further
reinforces the feasibility of the re-routing decision and highlights the framework’s efficacy in
supporting real-time contingency management.

To evaluate the performance of the Neural-ODE-based battery model used for online
feasibility assessment, we examine both its prediction accuracy and computational efficiency.
For benchmarking purposes, we developed a physics-informed neural network (PINN) [19]
based battery model, which is considered a state-of-the-art approach for learning battery
dynamics. The PINN model implemented in this study combines a long short-term memory
(LSTM) network with an equivalent circuit-based battery model adopted from [14]. This
approach enhances the predictive capabilities of the data-driven LSTM by embedding
physical laws – specifically, the voltage-current relationships described by the equivalent
circuit – directly into the training process. Rather than relying solely on data, the PINN
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Figure 9 Voltage predictions for flight plans going to emergency landing 1 and emergency
landing 3. Each voltage profile corresponds to a specific prediction index, representing the voltage
trajectory forecasted at a given feasibility assessment timestep.
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Voltage (V)

Figure 10 Spatial visualization of voltage predictions along each flight trajectory. Arrows indicate
the aircraft’s flight direction before and after the mid-flight incident.

minimizes a composite loss function that penalizes both data mismatch and violations of
the governing physical equations. This integration of domain knowledge improves model
generalization, increases robustness to noise, and enables physically consistent predictions
even in extrapolated conditions.

Figure 11 presents a comparison between the Neural-ODE and PINN-based approaches
for the three flight plans. As shown in the left plot, the Neural-ODE-based model consistently
outperforms the PINN model in terms of prediction accuracy across all predictions. These
differences in prediction accuracy have important implications for the safety and efficiency
of aircraft operations. Specifically, for the long flight plan, the PINN-based feasibility
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Figure 11 Performance comparison between the Neural-ODE and PINN-based battery models
relative to the actual voltage trajectories across all three flight plans.
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Figure 12 Comparison of accuracy and computational cost between the Neural-ODE and PINN-
based battery models. The left plot shows prediction accuracy relative to the ground truth voltage
trajectories for all three flight plans, while the right plot presents the average computational time
required for feasibility assessments.

assessment would incorrectly classify the mission as infeasible due to its prediction inaccuracies.
Conversely, in the case of the infeasible flight plan, the PINN model would fail to detect
the voltage threshold violation, potentially resulting in an unsafe decision to proceed with
the mission.

In addition to accuracy, computational efficiency is a critical factor, as the framework is
intended for real-time use during flight, where computational resources are limited. To assess
this, the right plot in Figure 12 shows the average computational time required to perform
feasibility assessments for the three flight plans (Long, Infeasible, and Short), comparing
the model-based approach with the proposed Neural-ODE approach. All experiments were
conducted on a 3.20 GHz Intel Xeon(R) CPU with 125.4 GB of RAM. The results show that
the proposed approach is approximately 36 times faster than the model-based method in the
long flight plan case, with a maximum computation time of 3.76 seconds. This demonstrates
that the proposed framework is well-suited for in-flight operation, where feasibility assessments
must be performed every 5 seconds.
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5.3 Discussion and Lessons Learned
This study provides key insights that may guide future researchers in developing real-time
flight mission feasibility assessment frameworks. By implementing and evaluating our
proposed framework in a realistic drone package delivery scenario, we identified several
important observations and lessons learned.

Decoupling feasibility assessment into power consumption and voltage tra-
jectory prediction enhances flexibility and accuracy. The proposed framework
decomposes the feasibility assessment process into two stages: power consumption predic-
tion and voltage trajectory prediction. This separation allows greater flexibility in selecting
and improving prediction models, leading to higher accuracy and computational efficiency.
As demonstrated in the results, this structured approach achieves both prediction accuracy
and computational efficiency required for real-time feasibility assessment.
The choice of the power consumption model significantly impacts performance.
The efficacy of feasibility assessment is highly dependent on the accuracy of the power
consumption model. In this work, we adopted a momentum theory-based power consump-
tion model for multirotor aircraft and fine-tuned it using experimental data. The decision
to develop or adopt a power consumption model should consider key factors such as
accuracy requirements, computational efficiency, and environmental conditions (e.g., wind
effects). Selecting an appropriate model is crucial for ensuring reliable power predictions.
Power-to-current conversion must account for battery behavior. Given the
extended prediction horizon required in our study (approximately 10 minutes), power-
to-current conversion must incorporate battery dynamics. Our approach utilizes an
open-circuit voltage (OCV) vs state of charge (SoC) relationship modeled using the
Nernst equation, combined with Coulomb counting, to achieve an accurate conversion.
Careful modeling of this process is essential to maintain prediction reliability over long-
duration flights.
The choice of battery modeling technique affects prediction accuracy. Given
that battery behavior is inherently governed by differential equations, we adopted a
Neural ODE-based model to learn the underlying battery dynamics. To benchmark its
performance, we compared it against other time-series prediction techniques, including
physics-informed neural networks (PINNs), which combine long short-term memory
(LSTM) networks with an equivalent circuit-based battery model. Our results indicate
that the Neural ODE-based approach more accurately captures battery voltage trajectories,
making it a promising candidate for the feasibility assessment of dynamical systems.

6 Conclusion

In this paper, we address the problem of online flight mission feasibility assessment for
sUAS operations. Unexpected in-flight events can introduce significant safety risks if not
properly managed. To mitigate these risks, we propose a framework that continuously
monitors battery status and makes real-time decisions to prevent energy insufficiency. The
framework consists of two main components: power consumption prediction and battery
voltage trajectory prediction. Power consumption prediction is performed using a model
based on momentum theory, while voltage trajectory prediction leverages a Neural Ordinary
Differential Equation (Neural ODE)-based data-driven model. By integrating these two
components, the system evaluates mission feasibility in real time and determines whether
to continue the flight or initiate rerouting. We evaluate the framework’s performance in a
drone delivery scenario in the Dallas–Fort Worth (DFW) area, where the aircraft encounters
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an unexpected energy depletion event mid-flight. The results show that the framework
accurately predicts power profiles and voltage trajectories for the remaining flight duration.
Additionally, its computational efficiency makes it feasible for real-time flight monitoring and
contingency management. Future work will incorporate additional sources of uncertainty,
such as wind disturbances and noise in the battery model, to improve prediction accuracy
and decision-making capabilities. We will also extend the battery model to account for
degradation and state of health effects.
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