36th International Conference on
Principles of Diagnosis and
Resilient Systems

DX 2025, September 22-24, 2025, Nashville, TN, USA

Edited by
Marcos Quinones-Grueiro
Gautam Biswas

Ingo Pill

\\v OASICS

OASlcs — Vol. 136 — DX 2025 www.dagstuhl.de/oasics

Editors

Marcos Quinones-Grueiro
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA
marcos.quinones.grueiro@Vanderbilt.Edu

Gautam Biswas
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA
gautam.biswas@Vanderbilt.Edu

Ingo Pill
Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria
ingo.pill@gmail.com

ACM Classification 2012
Computing methodologies — Causal reasoning and diagnostics

ISBN 978-3-95977-394-2

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-394-2.

Publication date
November, 2025

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists all publications of this volume in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/0ASIcs.DX.2025.0

ISBN 978-3-95977-394-2 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0001-5391-6774
mailto:marcos.quinones.grueiro@Vanderbilt.Edu
https://orcid.org/0000-0002-2752-3878
mailto:gautam.biswas@Vanderbilt.Edu
https://orcid.org/0000-0002-8420-6377
mailto:ingo.pill@gmail.com
https://www.dagstuhl.de/dagpub/978-3-95977-394-2
https://www.dagstuhl.de/dagpub/978-3-95977-394-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.DX.2025.0
https://www.dagstuhl.de/dagpub/978-3-95977-394-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

O:iii

OASlcs — OpenAccess Series in Informatics

OASlcs is a series of high-quality conference proceedings across all fields in informatics. OASlIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU Miinchen, Germany)
Barbara Hammer (Universitét Bielefeld, Germany)
Marc Langheinrich (Universita della Svizzera ltaliana — Lugano, Switzerland)

Dorothea Wagner (Editor-in-Chief, Karlsruher Institut fiir Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

DX 2025

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface

Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill

Conference Organization

Regular Papers

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection
Rozxane Koitz-Hristov, Liliana Marie Prikler, and Franz Wotawa

Are Diagnostic Concepts Within the Reach of LLMs?

Anna Sztyber-Betley, Elodie Chanthery, Louise Travé-Massuyés, Silke Merkelbach,
Karol Kukla, Maxence Glotin, Alexander Diedrich, and Oliver Niggemann

Combining Dynamic Slicing and Spectrum-Based Fault Localization — A First
Experimental Evaluation

Jonas Schleich and Franz Wotawa

Using Qualitative Simulation Models for Monitoring and Diagnosis

Ankita Das, Roxane Koitz-Hristov, and Franz Wotawa

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

Ingo Pill and Johan de Kleer i

Towards Predictive Maintenance in an Aluminum Die-Casting Process Using
Deep Learning Clustering and Dimensionality Reduction
Miguel Cubero, Luis Ignacio Jiménez, Daniel Lopez, Belarmino Pulido, and

Carlos Alonso-GOonzAlez

One-Shot Learning in Hybrid System Identification: A New Modular Paradigm
Swantje Plambeck, Maximilian Schmidt, Louise Travé-Massuyés, and

GoeTsChwin Fey

Safe to Fly? Real-Time Flight Mission Feasibility Assessment for Drone Package
Delivery Operations
Abenezer Taye, Austin Coursey, Marcos Quinones-Grueiro, Chao Hu,

Gautam Biswas, and Peng Wei e

Optimized Spectral Fault Receptive Fields for Diagnosis-Informed Prognosis

Stan Munoz Gutiérrez and Franz Wotawao i,

Automating Control System Design: Using Language Models for Expert
Knowledge in Decentralized Controller Auto-Tuning

Marlon J. Ares-Milian, Gregory Provan, and Marcos Quinones-Grueiro

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

0:xi—0:xii

1:1-1:20

2:1-2:20

3:1-3:18

4:1-4:14

5:1-5:19

6:1-6:16

7:1-7:18

8:1-8:20

9:1-9:20

10:1-10:20

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:vi

Contents

A Data-Driven Particle Filter Approach for System-Level Prediction of
Remaining Useful Life
Abel Diaz-Gonzalez, Austin Coursey, Marcos Quinones-Grueiro, and

Gautam BiswWas

GEMMA-FD: Zero-Shot Fault Detection in Heat Pumps Using Multimodal
Language Models

Herbert Muehlburger and Franz Wotawa i,

Short Paper

Beyond Dynamic Bayesian Networks: Fusing Temporal Logic Monitors with
Probabilistic Diagnosis

Chetan Kulkarni and Johann Schumanmn i,

DX Competitions

The DX Competition 2025 and Its Benchmarks
Ingo Pill, Daniel Jung, Eldin Kurudzija, Anna Sztyber-Betley, Michal Syfert,

Kai Dresia, Gunther Wazenegger- Wilfing, and Johan de Kleer

Data-Driven Fault Detection and Isolation Enhanced with System Structural
Relationships
Austin Coursey, Abel Diaz-Gonzalez, Marcos Quinones-Grueiro, and

Gautam BiswWas

PhD Panel

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis —
Application to Radiotherapy Systems

Kélian Poujade, Louise Travé-Massuyes, Jérémy Pirard, and Laure Vieillevigne ..

11:1-11:13

12:1-12:17

13:1-13:17

14:1-14:19

15:1-15:17

16:1-16:17

Preface

In 2025, the 36th International Conference on Principles of Diagnosis and Resilient Systems
(DX’25) was held from September 22nd to 24th in Nashville, United States, hosted by
Vanderbilt University. The DX conference is a leading forum to present and discuss the
latest research, experience reports, and emerging ideas related to diagnosis and resilient
systems. DX is application-agnostic, meaning the research presented covers a wide range of
systems, from physical to computational, represented either in abstract or detailed forms.
Starting with the previous DX’24 edition and continuing onward, we expanded our focus
from diagnosis to include resilience, which refers to a system’s inherent ability to maintain its
essential operations when faced with both expected and unforeseen challenges. DX welcomes
papers that address resilient design as well as approaches for operational resilience.

Topics covered in the DX conference include, but are not limited to:

Monitoring, detection, diagnosis, and mitigation of faults, unexpected issues, and anom-

alies

Formal theories and symbolic, sub-symbolic, as well as hybrid approaches for diagnosis

Data-driven and learning-enabled methods for monitoring and diagnosis

Connections between diagnosis and other techniques such as decision-making, (re-

)planning, (re-)configuration, control, formal verification, and testing.

Concept papers on the theory of design and operational resilience

Designing, developing, and operationalizing resilient systems

Hardware and software instrumentation, as well as dependable data acquisition and

probing

Development, learning, abstraction, transformation, analysis, optimization, and transfer

of diagnosis models

Diagnosis in resilient, intelligent, and autonomous systems

Diagnosis in a distributed, hierarchical, system-of-systems, or multi-agent context

For DX’25, we received 24 submissions in total, despite the feedback about the current
economic difficulties in science and the reluctance to travel that we have been receiving from
the DX community. The 24 submissions are split into 20 submissions by the regular deadline,
and four submissions that were rejected but significantly revised and then resubmitted for the
fast-track option. Out of the 20 original submissions, 1 (out of 1) was accepted for the PhD
panel, and 2 (out of 2) were accepted for the DX competition track. Out of the remaining 17
submissions, 11 (64.7%) were accepted to be published with our DX’25 proceedings as regular
papers. We received four resubmissions of rejected papers for the fast track and accepted
one paper (25%) as regular paper and one (25%) as short paper. The overall acceptance rate
is 66.7% (16 out of 24 papers).

The papers published in these proceedings demonstrate the broad and innovative scope
of current research on diagnosis, prognosis, and resilient systems. Contributions include
advancements in methodology — such as temporal reasoning, functional event calculus, hybrid
system identification, multimodal and zero-shot learning, spectral receptive fields, and particle
filtering — as well as the incorporation of large language models for developing diagnostic
models, controller design, and fault detection. The application areas are just as varied,
covering HVAC systems, radiotherapy machines, automotive die-casting, drones, and heat
pumps. Several studies highlight benchmarking and evaluation frameworks, like the revived
DX Competition and systematic analyses of diagnostic algorithms. Overall, these papers

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:viii

Preface

highlight both the theoretical depth and practical applications of diagnosis research, pointing
toward future integration of AI, multimodal reasoning, and resilience-by-design in complex
engineered systems.

Organizing a conference is always a team effort, so we would like to thank a few people,
starting with Gerilynn Pearce and Mary Margaret Sprinkle from our local support team at
the Institute for Software Integrated Systems at Vanderbilt University. Special thanks to the
Artificial Intelligence Journal for once again sponsoring DX’25 and to the program committee
members for their reviews, which helped us select the right papers to create a high-quality
technical program for the 36th International Conference on Principles of Diagnosis and
Resilient Systems. We would like to specifically mention also our keynote speaker Sankaran
Mahadevan, our two invited speakers Daniel Jung and Chetan Kukarni, the DX competition
committee (see below), as well as the DX steering committee (see below) and the award
committee chairs Louise Travé-Massuyes and Meir Kalech. We also appreciate Dagstuhl,
our publisher, for collaborating with us to make the technical program available through
open-access proceedings.

Finally, we would like to thank all the authors for contributing to the success of this
conference. Without their work and their choice to present it at DX, this event would not
have been possible.

The DX’25 chairs: Marcos Quinones-Grueiro, Gautam Biswas, Ingo Pill

Conference Organization

DX Steering Committee (in a.o0.):

Gautam Biswas (chair), Vanderbilt university, USA

Johan de Kleer, c-infinity, USA

Meir Kalech, Ben Gurion University of the Negev, Israel

Oliver Niggemann, Helmut-Schmidt-Universitdt Hamburg, Germany
Ingo Pill (chair), Graz University of Technology, Austria

Louise Travé-Massuyes, LAAS-CNRS, France

Franz Wotawa, Graz University of Technology, Austria

Marina Zanella, Universita di Brescia, Italy

DX Competition Committee (in a.o.):

Johan de Kleer (Co-Chair)

Jan Deeken

Kai Dresia

Erik Frisk

Daniel Jung (Chair LiU-ICE Benchmark)
Mattias Krysander

Eldin Kurudzija (Chair LUMEN Bechmark)
Ingo Pill (Chair)

Michal Syfert

Anna Sztyber-Betley (Chair SLIDe Benchmark)
Tobias Traudt

Giinther Waxenegger-Wilfling

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

List of Authors

Carlos Alonso-Gonzalez (6)
University of Valladolid, Spain

Marlon J. Ares-Milian (10)
School of Computer Science, University College
Cork, Ireland

Gautam Biswas (8, 11, 15)
Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, USA

Elodie Chanthery (2)
LAAS-CNRS, INSA, University of Toulouse,
France

Austin Coursey (8, 11, 15)
Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, USA

Miguel Cubero (6)
University of Valladolid, Spain

Ankita Das (4)

Institute of Software Engineering and Artificial
Intelligence, Graz University of Technology,
Austria

Johan de Kleer (5, 14)
c-infinity, Mountain View, CA, USA

Abel Diaz-Gonzalez (11, 15)
Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, USA

Alexander Diedrich (2)
Helmut-Schmidt-University, Hamburg, Germany

Kai Dresia (14)

Institute of Space Propulsion, German
Aerospace Center (DLR), Lampoldhausen,
Germany

Goerschwin Fey (7)
Hamburg University of Technology, Germany

Maxence Glotin (2)
LAAS-CNRS, INSA, University of Toulouse,
France

Chao Hu (8)

School of Mechanical, Aerospace, and
Manufacturing Engineering, University of
Connecticut, Storrs, CT, USA

Luis Ignacio Jiménez (6)
University of Valladolid, Spain

Daniel Jung (14)
Department of Electrical Engineering, Linkdping
University, Sweden

Roxane Koitz-Hristov (1, 4)

Institute of Software Engineering and Artificial
Intelligence, Graz University of Technology,
Austria

Karol Kukla (2)

Warsaw, Poland

Chetan Kulkarni (13)
KBR Inc, NASA Ames Research Center, Moffett
Field, CA, USA

Eldin Kurudzija (14)
Institute of Space Propulsion, German
Aerospace Center (DLR), Koln, Germany

Daniel Lépez (6)
HORSE Powertrain, Valladolid, Spain

Silke Merkelbach (2)
Fraunhofer IEM, Paderborn, Germany

Herbert Muehlburger (12)

Institute of Software Engineering and Artificial
Intelligence, Graz University of Technology,
Austria

Stan Munoz Gutiérrez (9)

Institute of Software Engineering and Artificial
Intelligence, Graz University of Technology,
Austria

Oliver Niggemann (2)
Helmut-Schmidt-University, Hamburg, Germany

Ingo Pill (5, 14)
Institute of Software Engineering and Artificial
Intelligence, TU Graz, Austria

Jérémy Pirard (16)
Airbus, Toulouse, France

Swantje Plambeck (7
Hamburg University of Technology, Germany

Kélian Poujade (16)

Université de Toulouse, Oncopole Claudius
Regaud, Institut Universitaire du Cancer de
Toulouse (IUCT), France; Université de
Toulouse, CNRS, INSERM, Centre de
Recherches en Cancérologie de Toulouse
(CRCT), France

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4136-9632
https://doi.org/10.4230/OASIcs.DX.2025.6
https://orcid.org/0000-0003-4373-0161
https://doi.org/10.4230/OASIcs.DX.2025.10
https://orcid.org/0000-0002-2752-3878
https://doi.org/10.4230/OASIcs.DX.2025.8
https://doi.org/10.4230/OASIcs.DX.2025.11
https://doi.org/10.4230/OASIcs.DX.2025.15
https://orcid.org/0000-0003-0015-5566
https://doi.org/10.4230/OASIcs.DX.2025.2
https://orcid.org/0000-0003-1774-6442
https://doi.org/10.4230/OASIcs.DX.2025.8
https://doi.org/10.4230/OASIcs.DX.2025.11
https://doi.org/10.4230/OASIcs.DX.2025.15
https://orcid.org/0009-0008-9719-5575
https://doi.org/10.4230/OASIcs.DX.2025.6
https://orcid.org/0009-0000-0209-5275
https://doi.org/10.4230/OASIcs.DX.2025.4
https://orcid.org/0000-0002-0465-7566
https://doi.org/10.4230/OASIcs.DX.2025.5
https://doi.org/10.4230/OASIcs.DX.2025.14
https://orcid.org/0000-0001-6226-1925
https://doi.org/10.4230/OASIcs.DX.2025.11
https://doi.org/10.4230/OASIcs.DX.2025.15
https://orcid.org/0000-0002-8674-6895
https://doi.org/10.4230/OASIcs.DX.2025.2
https://orcid.org/0000-0003-3229-5184
https://doi.org/10.4230/OASIcs.DX.2025.14
https://orcid.org/0000-0001-6433-6265
https://doi.org/10.4230/OASIcs.DX.2025.7
https://doi.org/10.4230/OASIcs.DX.2025.2
https://doi.org/10.4230/OASIcs.DX.2025.8
https://orcid.org/0000-0001-6386-9115
https://doi.org/10.4230/OASIcs.DX.2025.6
https://orcid.org/0000-0003-0808-052X
https://doi.org/10.4230/OASIcs.DX.2025.14
https://orcid.org/0000-0002-5077-8641
https://doi.org/10.4230/OASIcs.DX.2025.1
https://doi.org/10.4230/OASIcs.DX.2025.4
https://doi.org/10.4230/OASIcs.DX.2025.2
https://doi.org/10.4230/OASIcs.DX.2025.13
https://orcid.org/0000-0001-5409-3845
https://doi.org/10.4230/OASIcs.DX.2025.14
https://orcid.org/0009-0008-3498-0664
https://doi.org/10.4230/OASIcs.DX.2025.6
https://orcid.org/0009-0005-9598-5117
https://doi.org/10.4230/OASIcs.DX.2025.2
https://orcid.org/0000-0002-7672-0501
https://doi.org/10.4230/OASIcs.DX.2025.12
https://orcid.org/0000-0001-6259-1609
https://doi.org/10.4230/OASIcs.DX.2025.9
https://orcid.org/0000-0001-8747-3596
https://doi.org/10.4230/OASIcs.DX.2025.2
https://orcid.org/0000-0002-8420-6377
https://doi.org/10.4230/OASIcs.DX.2025.5
https://doi.org/10.4230/OASIcs.DX.2025.14
https://orcid.org/0009-0007-2762-4357
https://doi.org/10.4230/OASIcs.DX.2025.16
https://orcid.org/0000-0002-4875-5280
https://doi.org/10.4230/OASIcs.DX.2025.7
https://orcid.org/0009-0000-6196-5111
https://doi.org/10.4230/OASIcs.DX.2025.16
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xii

Authors

Liliana Marie Prikler (1)

Institute of Software Engineering and Artificial
Intelligence, Graz University of Technology,
Austria

Gregory Provan (10)
School of Computer Science, University College
Cork, Ireland

Belarmino Pulido (6)
University of Valladolid, Spain

Marcos Quinones-Grueiro (8, 10, 11, 15)
Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, USA

Jonas Schleich (3)
Graz University of Technology, Austria

Maximilian Schmidt (7
Hamburg University of Technology, Germany

Johann Schumann (13)
KBR Inc, NASA Ames Research Center, Moffett
Field, CA, USA

Michat Syfert (14)
Warsaw University of Technology, Poland

Anna Sztyber-Betley (2, 14)
Warsaw University of Technology, Poland

Abenezer Taye (8)

Mechanical and Aerospace Engineering
Department, School of Engineering and Applied
Science, George Washington University,
Washington DC, USA

Louise Travé-Massuyes (2, 7, 16)
LAAS-CNRS, University of Toulouse, France

Laure Vieillevigne (16)

Université de Toulouse, Oncopole Claudius
Regaud, Institut Universitaire du Cancer de
Toulouse (IUCT), France; Université de
Toulouse, CNRS, INSERM, Centre de
Recherches en Cancérologie de Toulouse
(CRCT), France

Gilinther Waxenegger-Wilfing (14)
Institute of Space Propulsion, German
Aerospace Center (DLR), Hardthausen am
Kocher, Germany; Institute of Computer
Science, University of Wiirzburg, Germany

Peng Wei (8)

Mechanical and Aerospace Engineering
Department, School of Engineering and Applied
Science, George Washington University,
Washington DC, USA

Franz Wotawa (1, 3,4, 9, 12)

Institute of Software Engineering and Artificial
Intelligence, Graz University of Technology,
Austria

https://orcid.org/0000-0002-0348-064X
https://doi.org/10.4230/OASIcs.DX.2025.1
https://orcid.org/0000-0003-3678-046X
https://doi.org/10.4230/OASIcs.DX.2025.10
https://orcid.org/0000-0003-2340-684X
https://doi.org/10.4230/OASIcs.DX.2025.6
https://orcid.org/0000-0001-5391-6774
https://doi.org/10.4230/OASIcs.DX.2025.8
https://doi.org/10.4230/OASIcs.DX.2025.10
https://doi.org/10.4230/OASIcs.DX.2025.11
https://doi.org/10.4230/OASIcs.DX.2025.15
https://doi.org/10.4230/OASIcs.DX.2025.3
https://orcid.org/0009-0005-4532-7669
https://doi.org/10.4230/OASIcs.DX.2025.7
https://doi.org/10.4230/OASIcs.DX.2025.13
https://orcid.org/0000-0001-7741-607X
https://doi.org/10.4230/OASIcs.DX.2025.14
https://orcid.org/0000-0002-6464-8194
https://doi.org/10.4230/OASIcs.DX.2025.2
https://doi.org/10.4230/OASIcs.DX.2025.14
https://orcid.org/0009-0001-3469-0949
https://doi.org/10.4230/OASIcs.DX.2025.8
https://orcid.org/0000-0002-5322-8418
https://doi.org/10.4230/OASIcs.DX.2025.2
https://doi.org/10.4230/OASIcs.DX.2025.7
https://doi.org/10.4230/OASIcs.DX.2025.16
https://orcid.org/0000-0003-0680-7430
https://doi.org/10.4230/OASIcs.DX.2025.16
https://orcid.org/0000-0001-5381-6431
https://doi.org/10.4230/OASIcs.DX.2025.14
https://orcid.org/0000-0001-8492-5411
https://doi.org/10.4230/OASIcs.DX.2025.8
https://orcid.org/0000-0002-0462-2283
https://doi.org/10.4230/OASIcs.DX.2025.1
https://doi.org/10.4230/OASIcs.DX.2025.3
https://doi.org/10.4230/OASIcs.DX.2025.4
https://doi.org/10.4230/OASIcs.DX.2025.9
https://doi.org/10.4230/OASIcs.DX.2025.12

Beyond Static Diagnosis: A Temporal ASP
Framework for HVAC Fault Detection

Roxane Koitz-Hristov! =
Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

Liliana Marie Prikler &

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria
Franz Wotawa &

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

—— Abstract

Improving sustainability in the building sector requires more efficient operation of energy-intensive

systems such as Heating, Ventilation, and Air Conditioning (HVAC). We present a novel diagnostic
framework for HVAC systems that integrates Answer Set Programming (ASP) with Functional Event
Calculus (FEC). Our approach exploits the declarative nature of ASP for modeling and incorporates
FEC to capture temporal system dynamics.

We demonstrate the feasibility of our approach through a case study on a real-world heating
system, where we model key components and system constraints. Our evaluation on nominal and
faulty traces shows that exploiting ASP in combination with FEC can identify plausible diagnoses.
Moreover, we explore the difference between static and rolling-window strategies and provide insights
into runtime versus soundness on those variants. Our work provides a step toward the practical
application of ASP-based temporal reasoning in building diagnostics.

2012 ACM Subject Classification Computing methodologies — Causal reasoning and diagnostics;
Computing methodologies — Logic programming and answer set programming

Keywords and phrases Model-based diagnosis, Answer set programming, HVAC, Modeling for
diagnosis, Experimental evaluation

Digital Object Identifier 10.4230/0ASIcs.DX.2025.1

Funding The work presented in this paper has been supported by the FFG project Artificial
Intelligence for Smart Diagnosis in Building Automation (ALFA) under grant F0999914932.

Acknowledgements We would like to express our gratitude to our industrial partner, DiLT Analytics
FlexCo.

1 Introduction

It is estimated the building sector accounts for 40% of the energy consumption in the
European Union [9] and world-wide [30]. Heating, Ventilation, and Air Conditioning (HVAC)
systems in buildings cause a large portion of a building’s energy expenditure. Approximately
40% of the final energy consumption of heat and 70% of cooling energy consumption is caused
by non-residential buildings [17] and 75% of greenhouse gas emissions are emitted during
building operation [10]. Hence, reducing the energy consumption in the building sector is a
highly relevant contribution to achieving climate targets.

Fault Detection and Diagnosis (FDD) for HVAC systems in buildings primarily relies on
massive human effort with manual data evaluation triggered by user complaints, random
checks, or non-specific alarms from the building automation systems [39]. Around 15-30% of a
building’s energy consumption is due to faults or inefficient operations of HVAC systems [21, 8],

1 Authors are listed in alphabetical order.

© Roxane Koitz-Hristov, Liliana Marie Prikler, and Franz Wotawa;
37 licensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).

Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 1; pp. 1:1-1:20

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:rkoitz-hristov@tugraz.at
https://orcid.org/0000-0002-5077-8641
mailto:liliana.prikler@tugraz.at
https://orcid.org/0000-0002-0348-064X
mailto:wotawa@tugraz.at
https://orcid.org/0000-0002-0462-2283
https://doi.org/10.4230/OASIcs.DX.2025.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

1:2

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

affecting existing and new buildings [19]. Timely fault detection and resolution are essential
for preserving the performance and reliability of HVAC systems, ultimately extending their
lifespan [45]. However, their inherent complexity, dynamic nature of operation, and the
diverse range of potential faults, makes HVAC FDD a challenging task.

Over the past decades, numerous FDD techniques have been developed for HVAC systems
in buildings, including data-driven and model-based methods. Data-driven approaches (e.g.,
machine learning and statistical methods) have become increasingly popular due to their
ability to analyze large datasets and detect relevant patterns [8]. However, these techniques
require large amounts of data that not only capture nominal but also faulty system behavior,
which is often unavailable in real-world HVAC systems. Additionally, many data-driven
methods lack interpretability, making it challenging to derive explainable diagnoses [24].

In contrast, model-based techniques rely on an explicit system representation to detect
deviations from expected behavior. Both the Fault Detection and Isolation (FDI) and
Model-Based Diagnosis (MBD) community have contributed to HVAC system diagnosis. FDI
methods, rooted in control theory, utilize analytical models based on system equations [46].
In the FDI domain, for instance, Thumati et al. [44] employ a real-time FDI approach for
HVAC systems using residual generation and state estimation. Papadopoulos et al. [32]
extend model-based FDI techniques to multi-zone HVAC systems, introducing a distributed
diagnosis method that enhances scalability and reliability to detect and isolate actuator and
sensor faults. However, creating a precise analytical model for HVAC systems is challenging
due to their complexity [36]. To overcome these challenges, MBD provides an alternative
that does not depend on detailed mathematical formulations but instead represents the
system’s behavior using logical relationships and constraints [38, 11]. For example, Struss et
al. [41] present an approach that exploits numerical Modelica models to generate a qualitative
diagnosis model in the domain of Air Handling Units (AHUs). The resulting diagnostic
model captures the qualitative deviations of variables from their nominal values. When
a discrepancy has been detected between the engineering model and the sensor data, the
diagnostic model and observations are supplied to a consistency-based diagnosis engine
to identify and isolate faults. Provan [35] propose an approach that involves simplifying
detailed HVAC system models to focus on critical components and interactions. The resulting
reference model captures the essential system dynamics while minimizing computational
complexity. From this reference model, a diagnostic model is generated that retains the
necessary behavioral characteristics to effectively isolate faults.

Recently, Answer Set Programming (ASP) [12] has shown promise in the context of model-
based reasoning due to its declarative nature and efficient inference. While ASP has been
successfully applied in a diagnostic context in various subsets of technical systems [22], digital
and analog circuits [47, 48], automated feedback generation for programming assignments [4],
and autonomous robots [20], its use in HVAC fault diagnosis remains largely unexplored
to the best of our knowledge. In addition, many classical MBD approaches lack explicit
temporal reasoning [7], which is essential for tracking dynamic system behavior which is
highly relevant in HVAC systems.

In this paper, we introduce an ASP based-diagnosis framework, that integrates Functional
Event Calculus (FEC) [23, 29, 26] to model events and fluents (state properties) over time.
Our framework thus exploits ASP for constraint reasoning and FEC for modeling temporal
dependencies. In addition, we use solver heuristics to compute minimal diagnoses. We further
present an initial case study, demonstrating the feasibility of our approach on an HVAC
system with limited real-world data.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

The remainder of this paper is organized as follows: Section 2 reviews prior work on

ASP-based diagnosis, including approaches related to temporal reasoning in MBD and ASP.

Subsequently, in Section 3, we provide essential preliminaries on MBD, ASP and FEC. In
Section 4, we describe our approach of combining FEC with ASP for diagnosis. Afterward,
in Section 5 we present a case study where we applied our approach to a HVAC system
and discuss our initial empirical results. Finally, Section 6 concludes the paper and outlines
future directions for research.

2 Related work

Various approaches to MBD have been proposed over the last decades, ranging from procedural
to declarative paradigms. While most research emphasizes on algorithmic techniques, we
focus in this section on declarative techniques, particularly ASP-based methods. In addition,
we discuss related approaches to temporal diagnosis.

2.1 ASP-based diagnosis

One early example of declarative MBD is the work by Friedrich and Nejdl [14]. The authors
introduce a direct diagnosis approach using hyperresolution in Prolog [5]. Unlike traditional
MBD methods that first generate conflicts and then apply a hitting set algorithm to derive
diagnoses, their approach obtains candidates directly as a subset of the consistent logical
model encoded in Prolog.

Similarly, declarative MBD approaches using ASP define the system model directly in the
formalism of the reasoning engine, avoiding an intermediate transformation into a separate
logic or constraint representation. Wotawa [47] investigates ASP as an alternative reasoning
mechanism for diagnosis of the well-known ISCASS85 circuits. In a consistency-based fashion,
the ASP encoding describes the system as a composition of interconnected components, each
defined by its nominal behavior. Observations are incorporated in the model as constraints,
ensuring that any valid diagnosis must be consistent with the observed behavior. The
empirical results indicate that while a traditional dedicated diagnosis algorithm is often
faster, ASP is a stable and reliable approach. In an extension of this research, Wotawa and
Kaufmann [48] present their direct IDTAG algorithm that iteratively generates all diagnoses
with a cardinality of 0 to n based on a theorem prover. Their evaluation revealed that
ASP-based diagnosis performance is comparable to specialized algorithms for digital circuits.
However, for analog circuits, the required grounding process led to a significant increase in
computation time.

Bayerkuhnlein and Wolter [4] propose an alternative ASP encoding for diagnosing faults
in programming assignments within an intelligent tutoring system, incorporating intermediate
values to enhance fault analysis. In addition, to their “traditional” ASP-based framework,
they propose the use of Constraint Answer Set Programming, which enables reasoning over
non-groundable domains, to deal with large or infinite domains in their application.

Prikler and Wotawa [34] introduce multi-shot solving, heuristics, and preference-based
optimizations in ASP diagnosis and show that heuristic-based methods generally yield faster
solutions. By incorporating incremental solving techniques, the authors improve the IDTAG
diagnosis algorithm, making it more competitive with specialized diagnosis approaches.
Experiments on the ISCAS85 circuits revealed that ASP-based diagnosis can match or
outperform hitting-set-based methods when properly optimized.

1:3

DX 2025

1:4

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

2.2 Temporal diagnosis

The ability to reason about changing environments is fundamental to many AT applications,
particularly in explaining observed phenomena and diagnosing unexpected system behavi-
ors [7]. For instance, Raiman et al. [37] showed that even a single, weak temporal axiom —
the non-intermittent-fault assumption — in combination with multiple snapshots allows to
disregard explanations that would otherwise be candidates. MclIlraith [28] applied Situation
Calculus [27] to MBD to address temporal phenomena. By using Situation Calculus as
the logical framework for diagnosing faults in dynamic systems, the approach can address
fundamental challenges such as the ramification problem. In parallel, Thielscher [42] extended
Fluent Calculus [43] to dynamic domains, enabling reasoning about system evolution and
diagnosis using a constraint-based representation of healthy system behavior. Building on
these foundations, Baral, Mcllraith, and Son [3] use an action languages to provide a more
compact and computationally efficient representation of diagnosis in dynamic systems. In
the domain of robotics, Gspandl et al. [18] present a belief management system that embeds
history-based diagnosis into the IndiGolog Situation-Calculus interpreter. Their method
keeps a set of possible action histories and updates them after every step. It checks each
history against the newest sensor readings, explains any inconsistencies by selecting the most
plausible fault hypothesis, and retains only the best-supported histories to guide the robot’s
next action.

Further advancing the field, Balduccini and Gelfond [2] exploit ASP in combination
with the action language AL to integrate diagnosis into an intelligent agent architecture.
In their approach, AL is used to formalize a high-level description of the system behavior,
specifying actions, fluents, and causal laws. A-Prolog, logic programming under answer set
semantics, serves as the computational framework for diagnosing faults. Their approach
enables intelligent agents to perform diagnosis, testing, and repair within a unified framework
of A-Prolog.

Temporal logics are another formalism that has been used for diagnostic purposes, e.g.,
for behavioral diagnosis of Linear-Temporal Logic (LTL) specifications [33]. More recently,
Feldman et al. [13] proposed Finite-Trace Next Logic (FTNL) and a SAT-based algorithm to
diagnose synchronous sequential circuits. FTNL is a simpler temporal logic as it considers
only finite traces and restricts temporal expressiveness to a single next operator. The FTNL
formula is unrolled for a finite horizon before passing it to a SAT solver with a novel encoding
that reduces the number of variables and clauses and has been shown to be efficient on the
ISCASS89 circuits.

Our work is a natural extension of previous research as it combines declarative diagnostic
modeling via ASP with FEC to capture behavior over time. Thus, we enable temporal
reasoning that accounts for the progression of system behavior with the goal of efficient and
effective FDD in the building heating domain.

3 Background

To describe our ASP-based approach, we start by introducing the necessary preliminaries.
We begin with MBD, recalling the classical consistency-based definition of diagnosis, before
explaining ASP and FEC, with some slight adaptations of the formalism.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

3.1 Model-based diagnosis

In MBD [11, 38], we describe a system as a set of components, whose nominal behaviour can
be formulated using some system of logics, e.g., first-order logic. A diagnosis problem occurs
once we have gathered observations.

» Definition 1 (Diagnosis problem). A diagnosis problem is a tuple (SD, COMP, Obs), where
SD is the (logic) description of some system, COMP the set of components of said system,
and Obs a set of observations gathered from the system.

The diagnosis task, given a system description, components and observations as above, is
to determine which components, if any, are faulty. The approach taken by MBD is based
on consistency between the system description and observations: if the observations match
the nominal behaviour of the system, no component needs to be marked as faulty. However,
the system description may also formulate constraints based on the assumption that some
¢ € COMP is healthy, typically written —ab(c). If one assumes to the contrary ab(c), said
constraints are no longer enforced, allowing consistency once again if they were not to hold
otherwise.

» Definition 2 (Diagnosis). Let (SD, COMP, Obs) be a diagnosis problem. A set A C COMP
is a diagnosis if and only if SDU ObsU {ab(c)|c € A} U{—ab(c)|c € COMP\ A} is consistent.

A diagnosis problem is ill-defined if A = COMP is not a diagnosis. Loosely speaking,
when all components of a system are found to be abnormal, there is no nominal behaviour to
expect. On the other extreme, we expect A = & to be a diagnosis when the system behaves
as intended.

More generally, we are interested in diagnoses that are in some sense minimal, that is
diagnoses that do not mark components as faulty without reason.

» Definition 3 (Minimality of a diagnosis). Let A be a diagnosis. A is
subset-minimal, or parsimonious, if there exists no diagnosis A’ s.t. A’ C A, and
cardinality-minimal, if there exists no diagnosis A" s.t. |A'] < |A].

3.2 Answer set programming

ASP [6, 25] is a logic programming paradigm that allows for non-monotonic reasoning. An
answer set program consists of rules of the shape

a4 by AN Aby Anot b1 A--- Anot by,

where a and b; are atoms and not denotes default negation — that is not x is assumed to
hold unless z is known to hold. The head of a rule r is h(r) = {a} and the body consists of
positive atoms b*(r) = {b1,..., by} and negative atoms b~ (r) = {by41,---,bs}. Intuitively
h(r) follows if all atoms in b™(r) holds and no atom in b~ (r) holds. A rule is called a fact, if
m=n=0.

We call an answer set program ground if no variable occurs in any of its rules. The
Gelfond-Lifschitz transformation [16] of a ground program P with respect to a set of atoms
(or model) 7 is

P"={h(r) < bT(r)lr € P,b~(r)N1 =2}

By construction P7 is a Horn formula and thus admits one unique minimal model. If this
model is 7, then 7 is a stable model.

1:5

DX 2025

1:6

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

» Definition 4 (Stable model). Let P be a grounded answer set program and T a set of atoms.
Let P be the Gelfond-Lifschitz transformation of P w.r.t. 7. T is a stable model (or answer
set) of P if and only if T is the smallest satisfying model of PT.

The rest of this section deals with non-ground programs, particularly Clingo extensions
that we make use of. Non-ground answer set programs keep the basic shape of answer set
programs, but use a wider set of literals than pure atoms and their default negations.

The first natural extension to ASP is the use of (implicitly quantified) variables. Consider
for example the program

flies(B) < bird(B) A not flightless(B)
bird(B) «+ penguin(B)
flightless(B) < penguin(B)

[...and so on for other bird species . ..]

which is one way of formulating the “Tweety problem”. Given bird(tweety), we want to derive
flies(tweety). Given penguin(tweety), we want to derive bird(tweety), but not flies(tweety), and
SO on.

To solve answer set programs with variables, we need to ensure that all replacements of
variables with concrete (that is variable-free) terms are properly accounted for. To this end,
we construct the Herbrand base of the program and then ground the program with respect
to it.

» Definition 5 (Herbrand universe and base). Let P be a logic program. The Herbrand
universe of P, denoted U(P) is the set of all terms which can be formed from constants and
function symbols in P.

The Herbrand base B(P) is the set of all variable-free atoms, which can be constructed
from predicates in P and terms in U(P).

» Definition 6 (Grounding). Let P be an answer set program, and r € P. The grounding
of r, written G(r) is a set of ground rules, s.t. r < G(r) w.r.t B(P). Furthermore, G(P) =

UTEP Q(r) .

Our definition of grounding is notably looser than the ones we find in literature, for
reasons that will become apparent once we discuss extensions other than variables. However,
even when dealing with variables, the traditional approach of replacing a variable with every
possible term in /(P) one at a time is a wasteful over-approximation that modern solvers
tend to avoid [31].

In some places, where a domain is explicitly known, one can also use a pool as a notational
shorthand rather than a variable. Pools are collections of terms separated by semicolons, i.e.,
written as t1;...;t, with ¢; terms for 1 < i < n. Similar to variables, rules are instantiated
with each possible replacement of the pool with one of its terms. As an illustrative example,
the pooled “fact”

bird(tweety; roy; silo).
is a shorthand for the facts

bird(tweety).
bird(roy).
bird(silo).

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

Similar to variables, we might want to perform calculations on numbers, both concrete
numbers and again variables. Let <€ {<, <,=,#,> >} and t1, 5 terms, then ¢; < t2 is an
arithmetic literal that the solver must evaluate numerically after having replaced all variables
with concrete numbers.

We continue with conditional literals. Written b : cy,...,c,, conditional literals are
grounded by replacing the symbolic or arithmetic literal b with all replacements b*=!, where
cg=t ..., ==t hold, where [*=! denotes the replacement of variables x with concrete terms ¢
similar to how variables are handled in grounding.

Aggregate literals are written as I {b1;...;b,} u, where [, u are integers and by,...,b,
are literals?, enforce a lower and upper bound respectively on the number of by,...,b, that
may hold. Both [and v may be omitted; in this case no bound is enforced. As a special
case, {a} for a single literal a is known as a choice expression and states that a may or may
not follow as the result of applying some rule.

For a more complete description of the syntax and semantics of Clingo, we refer the
interested reader to [15].

3.3 Functional event calculus

The event calculus (EC) [23, 29] is a logical framework for representing and reasoning about
actions (events) and their effects. FEC [26] extends this framework from the boolean domain
to arbitrary domains.

The FEC has a sort F for fluents (variables f, f’, f1, fa,...), a sort A for actions (variables
a,a’,ay,as,...),asort V for values (variables v, v’, v1,vq,...), and a sort T for discrete points
in time (variables ¢,t',¢1,tq,...). For the scope of this paper, it suffices that 7 C N and
hence time is totally ordered under the comparison <. Key predicates are happens C A x T
and causes_value C A x F x V x T. The function domain : F — 2/V| assigns a domain to
each fluent, while value_of : F x 7 — V assigns a value to each fluent at each time step.

To describe the relationships between these predicates and functions, we first define the
auxiliary predicates value_caused C F x V x T, value_caused_between C F x V x T x T
and other_value_caused_between C F x V x T x T.

value_caused(f,v,t) o Jalhappens(a, t) A causes_value(a, f,v,t).] (FEC1)

value__caused_between(f, v, 1, t2) o Jt[value_caused(f,v,t) ANt <tAt <ty] (FEC2a)

def
other_value_caused_between(f, v, t1,t2) =

Jt, v'[value_caused_between(f, v, t1,t2) Av # V'] (FEC2D)

As can be seen from their definitions, value_caused posits that some action happens
at the specified time, which gives cause for some fluent to take a certain value, whereas

value_caused_between posits that such an action takes place within the interval [t,t2).

Finally, other_value_caused_between posits that an action within the interval gives cause to
some other value. In all of these, gives cause needs to be interpreted in a non-deterministic
manner: a non-deterministic action, such as a dice roll, gives cause for any side of the dice
to show up, but only one side will show up. Likewise, if two people try to respectively open
and close a door, the door will not be open and close at the same time?3.

2 'We only deal with a particular type of head aggregates here. Clingo also supports other aggregates,
that are not needed within the scope of this paper.
3 It may however be “half open” if such a state is modeled.

1:7

DX 2025

1:8

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

With these auxiliary definitions, we can define notions of cause, effect and inertia.
Axiom (FEC3) deals with inertia: a fluent which takes on a certain value at some time and
has no action changing that value, will still take on that value in the future. Axiom (FEC4)
deals with cause and effect in a roundabout way: a fluent can not take on a value without
cause if another value has been caused in some interval.* Calling back to our earlier examples
of non-deterministic outcomes, the consequent discards any value that has been given cause
within the interval, leaving only values that were given cause to be potential effects.

value_of(f,t2) = v «[value_of(f,t1) A t1 < taA
—other_value_caused_between(f, v, t1,t2)] (FEC3)

value_of(f,t2) # v «[other_value_caused_between(f,v,t1,ts)
A —wvalue_caused_between(f,v,t1,12)] (FEC4)

Finally, we constrain fluents to only take values from their assigned domains.
—(value_of(f,t) = v Av ¢ domain(f)) (FEC5)

The axioms (FEC1)—(FEC5) define the functional event calculus.

4 ASP diagnosis with functional event calculus

In this section, we describe our model-based diagnosis system built on top of the functional
event calculus. We first discuss how we describe the health state as fluents. Next, we describe
how we can model individual components and the connections between them. Finally, we
extend the functional event calculus with immediate changes.

4.1 Fluent health states

We assume, that the health state of a component may vary over time and thus model it as
a fluent, i.e., F D {health(c)|c € COMP}. The health state of a component is composed of
the good state ok and at least one abnormal state. The domain of this health state can be
modeled as domain(health(c)) = {ok,ab} in a weak fault model, whereas in a strong fault
model we have domain(health(c)) = {ok, aby,...ab,} for some n.

In order to allow for the health state of a component to switch from ok to ab (or ab; for
some i), we allow unknown actions to occur. Likewise, to model repair, we add a dedicated
repair action for each component. Formally, we have A D {unknown} U {repair(c)|c € COMP}.
The singular unknown action acts as a stand-in for any number of actions that are all
unknown.

The effects of unknown and repair actions are captured by causes_value D U U R
with U C {(unknown, health(c),v,t)|c € COMP,v € domain(c) \ {ok},t € T} modeling
the unknown action and R = {(repair(c), health(c), ok, t)|c € COMP,t € T} modeling repair.
Semantically, the repair actions always give reason for a component to become healthy (but
they do not always happen), whereas unknown actions are free to give cause for some, but
not all health states to change.

4 The original formalization [26] uses a slightly different variant of (FEC3) that also takes into account
values caused at t1. This is redundant as per (FEC4). Note that our (FEC4) is functionally identically
to the original formalization, but makes use of the additional auxiliary axiom (FEC2a).

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

In ASP, we implement unknown actions using Listing 1. This implementation adds two
further constraints: first happens(unknown, t) «— 3f, v[causes_value(unknown, f, v, t)] ensures
that the unknown action happens (and thus takes effect) when it is supposed to cause a
value. Second, the unknown action only causes a healthy state to become abnormal, i.e.,
causes_value(unknown, f,v,t) — value_of(f,t) = ok. By not allowing the unknown action
to transition between faulty state, we prevent the health state from alternating between to
values that have (near-)identical symptoms attached to them.

Listing 1 ASP implementation of the unknown action.

action (unknown) .
% Allow solver to guess affected health states.
{ causes_value (unknown, health(C), ab, T) } :-
time (T), comp(C), value_of ((health(C), T), ok).
{ causes_value (unknown, health(C), ab(X), T) } :-
time (T), comp(C), value_of ((health(C), T), ok), fault(C, X).
happens (unknown, T) :- time(T), causes_value (unknown, _, _, T).

4.2 Modeling component behavior

We imagine idealized components to have three kinds of fluents attached to them: inputs,
outputs and internal controls. Most components will have at least one input and an output,
as well as a nominal relation between them.

In FEC, we need to represent this nominal relation using actions. For example, an analog
adder has two numeric inputs 41, i2, one numeric output o and the nominal relation o = i1 +is.
This nominal relation is upheld by the adder adding its inputs; hence adding is an action
(performed by the adder).

In ASP, we may describe adders as a generalized component as in Listing 2. The first
line communicates that numbers are defined outside of the current scope — typically in the
place where an adder is used. The second line states that adders are a component. A fluent
for its health state is automatically created by code that implements Section 4.1. The third
and fourth line define the fluents related to an adder and their domains respectively. Finally,
the rule for inferring causes_value establishes the semantics of adding.

Listing 2 FEC-based description of analog adders.

#defined number/1. Y, elsewhere

comp (C) :- type(C, adder).
fluent (in1 (C);in2(C);out(C)) :- type(C, adder).
domain ((in1(C);in2(C);out(C)), N) :- type(C, adder), number (N).

causes_value (adding(C), out(C), N+M, T) :-
type (C, adder),
value_of ((health(C), T), ok),
number (N+M), % otherwise addition is undefined
value_of ((in1(C), T), N),
value_of ((in2(C), T), M).

1:9

DX 2025

1:10

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

In addition to nominal behavior, abnormal behavior must also be described via actions.
While all behavior is at the end implemented using mere logic rules, it makes sense to
conceptually distinguish between

abnormal behavior that causes no change in any fluent,

abnormal behavior that modifies existing actions, and

abnormal behavior that causes new actions to occur.

The first kind of abnormal behavior is already implemented without any additional rules,
as axioms (FEC3) and (FEC4) uphold that nothing happens without an action.

For abnormal behaviour that modifies existing actions, alternative rules with causes_value
in their head need to be written. Just like the rules for the nominal behavior, these depend
on the value of the health state. A typical assumption in a weak fault model would be
“anything goes”, i.e., the action may give cause for affected fluents (when in doubt: all output
fluents) to take any value from its domain. A strong fault model could instead assume that
the outcome differs only slightly from the one that is expected.

For abnormal behavior that causes new actions to occur, we also need to write rules with
happens in their head, which again depend on the health state of a component.

As an alternative to the above, a generic rule could encode all possible behaviour, with
constraints restricting the possible actions and caused values in the nominal state. An
example of this is shown in Listing 3.

Listing 3 Alternative description of analog adders using constraints.

#defined number/1. Y, elsewhere

comp(C) :- type(C, adder).
fluent (in1 (C);in2(C);out(C)) :- type(C, adder).
domain ((in1(C);in2(C);out(C)), N) :- type(C, adder), number (N).

{ causes_value (adding(C), out(C), N, T) : number(N) } 1 :-
type (C, adder), time(T).
happens (adding(C), T) :- causes_value(adding(C), _, _, T).
:- value_of ((in1(C), T), N),
value_of ((in2(C), T), M),
value_of ((Cout(C), T), V), V != N+M,
value_of ((health(C), T), ok),
not causes_value (adding(C), out(C), _, T).
:- causes_value (adding(C), out(C), V, T),
value_of ((health(C), T), ok),
value_of ((in1(C), T), N),
value_of ((in2(C), T), M),
V != N+M.

Having modeled individual components, it is now time to model the connections between
them. As in traditional model-based diagnosis, we assume that the values at either end of
a connection is always the same as the other — if this is not the case, we can always add
components that introduce the necessary delays.

Similar to the approach used by Wotawa and Kaufmann [48], we can establish connections
with an auxiliary predicate bound C F x F and the rule

value_of(fa,t) = v < bound(f1, f2) A value_of(f1,t) = v.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

To make the relation symmetrical, one can write bound(f1, f2) Abound(f2, f1). Note that this
rule does not yet propagate values caused from one fluent to another. To this end, the rule

causes_value(a, f2,v,t) = v < bound(f1, f2) A value_of(a, f1,v,t) = v

can be used.
Apart from fluents that are unconditionally bound, our system also supports conditionally
bound fluents. We write these as

value_of(fa,t) = v < bound.(f1, f2) A value_of(health(c),t) = ok A value_of(f1,t) = v,

where fy typically refers to a fluent that may have its value changed by an action of the
component c.

Alternatively, one could model connections by using the same fluent as the input/output
of the affected components, i.e., using shared fluents. This incurs a level of indirection, as a
mapping of fluents to component inputs/outputs needs to be established and consistently
used.

4.3 Split seconds and immediate changes

The axioms (FEC3) and (FEC4) make it so that one unit of time passes between cause and
effect of a change and thus assume a passage of time between them. Modeling time this
closely requires sampling at the speed of change, which is wasteful, as often small changes
accumulate over time to make large changes. Instead, we may wish to establish effects that
become visible “immediately”, that is in the same time step as they occur.

To this end, we introduce the predicates causes_value_immediately C causes_value and
value_caused_immediately C value_caused. The semantics of these “immediate” predicates
is similar to their non-immediate counterparts, except that they cause a value change to be
observed in the same time step rather than the next.

def
value_caused_immediately(f, v, t) = Ja[happens(a, t)A

causes_value_immediately(a, f,v,t)]. (FECil)

To make axioms (FEC3) and (FEC4) respect immediate changes, we replace (FEC2a)
with (FECi2). Intuitively, this version of value_caused_between allows “between” to mean
at the end of the interval, or ¢t = t5, when a value is caused immediately, while preserving

t # to.

def
value_caused_between(f, v, t1,t5) = 3t[value_caused(f,v,t) Aty < t At < to]V
[value_caused_immediately(f,v,t2) A t1 < to]. (FECi2)

Lastly, a value caused immediately must have its change actually happen in the same
time step. This is enforced by (FECi3). Without this axiom, two “immediate” changes
happening at times ¢ and ¢t + 1 would trigger non-determinism in (FEC4), allowing either
value to be taken.

—(value_caused_immediately(f,v,t) A value_of(f,t) # v). (FECi3)

This set of axioms allows us to model sensors that are polled at regular intervals as well
as components that merely propagate changes (e.g., idealized non-sequential components of
sequential circuits).

1:11

DX 2025

1:12

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

5 A case study: Heat distribution line

In this section, we first describe the HVAC system, which is the base of our case study. The
heat distribution line that we consider for our modeling is part of the heating system in
a commercial building. The system includes a pressurized distributor linked to a district
heating transfer station, which supplies heat to multiple distribution lines serving different
zones in the building. Our case study focuses on one of these heat distribution lines.
Afterward, we report on how we modeled the system, as we simplify the original schematics
while ensuring that our models maintains the essential behavioral aspects of the heat
distribution line. Lastly, we present some initial empirical results on said use case.

5.1 System description

The heat distribution line is hydraulically designed as an injection circuit with a globe valve.
Figure 1 depicts its schematics. When the heating system is switched on, the central flow
pipe transports hot water to the flow pipe (F'P) of the heat distribution line. The central
return pipe is connected to the return pipe (RP) of the heat distribution line and transports
the cooled water back to the transfer station. The heat output in the zone is regulated
by controlling the temperature of the water in the flow pipe. This control is based on the
outdoor temperature and is adjusted through a motorized valve. The room temperature is
regulated directly at the radiators within the zone.

The relationship between the outdoor temperature and the room temperature is repres-
ented by the heating curve, which determines the setpoint for the flow pipe temperature.
The lower the outdoor temperature, the higher the supply temperature must be to ensure
the desired room temperature.

The heat distribution line consists of the following components:

Heat Exchanger (H): H transfers heat from the hot water in the flow pipe to the

indoor air within the zone.

Temperature Sensors (T1,T5): T; measures the temperature of the water in the flow

pipe and serves as a reference for control, while 75 monitors the return water temperature.

Pumps (P;, P»): The pumps circulate water within the heating circuit and maintain

constant pressure. P; and P, operate alternately or remain simultaneously switched off.

As soon as one pump is running, there is a flow.

Valve (V): The motorized globe valve regulates the mixing ratio of flow and return water

by modifying its position. It serves as the control element, adjusting the proportion of

hot flow water entering the heating zone based on its position (0-100%). At 0%, no hot
heating water is injected, meaning the flow temperature equals the return temperature.

At 100%, the maximum amount is injected, and the flow temperature corresponds to the

district heating supply temperature.

Check valve (C'V): CV prevents direct bypassing of hot water from the flow pipe to

the return pipe, ensuring proper circulation within the heating system.

Outdoor Temperature Sensor: Although not depicted in Figure 1, this sensor provides

an essential input for the control system.

Additionally, we have preconfigured value ranges to verify the plausibility of the measured
values, along with supplemental constraints that further define the system:
The measured flow temperature must always be higher than the measured return temper-
ature.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

o~
ol
> il >

q <

Figure 1 Heat distribution line schematics.

The measured flow temperature may be up to a maximum of 2 K lower than the setpoint
temperature.

The measured flow temperature may exceed the setpoint temperature by a maximum of
1 K.

5.2 Heat distribution line model

We simplify our model as outlined in Figure 2:
Mixing valve (MV): The check valve C'V and motorized globe valve V' from Figure 1
are simplified into a singular mixing valve MV.
Mixing valve (IV): A second mixing valve IV is added. This mixing valve is controlled
by the answer set program to always use the active pump.
Temperature Sensors (71,73): The temperature sensors T and Ty are “loosely”
attached to the system — they only measure the temperature, but do not influence it.
Main Pump (MP): A “main pump” M P abstracts the link to the district heating
transfer station.

Each component type has a set of fluents associated with its instances. For example,
pumps have the fluents {(), <, F~ 7% T~} indicating their power status (“on” or “of”),
inflow, outflow, inflow temperature and outflow temperature respectively. In ASP, we model
these fluents and their domains as in Listing 4.

Listing 4 Fluents relating to pumps and their domains.

fluent (powered (C); flow ((in;out), C);temp((in;out), C)) :-
type (C, pump).

domain (powered (C), (on;off)) :- type(C, pump).
domain (flow(DIR, C), (flow;no_flow)) :- type(C, pump), DIR=(in;out).
domain (temp (DIR, C), T) :- type(C, pump), DIR=(in;out), temp(T).

We model pumps so that they allow for temperature to change in the direction of their
input — that is, if the input is warmer than the current output, the next output is allowed to
be warmer, and likewise for colder inputs. To model this behavior, we introduce two actions —
heating and cooling respectively. The heating action is shown in Listing 5.

Mixing valves can either immediately forward temperatures and flows from one of their
inputs or mix them, allowing for any temperature between the warmer and the colder side to
be achieved at their output. Finally, the heat exchanger allows for any output strictly below
its input.

1:13

DX 2025

1:14

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

Figure 2 Model schematics.

Listing 5 The heating action in ASP.

happens (heating(C), T) :-
type (C, pump),
causes_value (heating(C), _, _, T).
{ causes_value (heating(C), temp(out, C), X, T) } :-
time (T), time(T+1), temp(X),
value_of ((temp(in, C), T), W), value_of ((temp(out, C), T), V),
V<X, X <=W,
value_of ((flow(in, C), T), flow),
value_of ((flow(out, C), T), flow).

The preconfigured value ranges form the domains of fluents within our model. In
particular, we discretize them, so that any integer temperature value within the known
range is a temperature, power and flow are binary (“on” or “off” and “flowing” or “not
flowing” respectively), and the mixing valves have positions 1, 2, and mix. The constraints
regarding the flow temperature are implemented by additional rules for components and
groups of components. The adjustment of setpoints and valve positions is unchecked, as is
the condition that both pumps must operate alternately.

5.3 Results

We assess our model on three real-world traces, one containing data from operation under
nominal conditions, and two where the valve was leaking and stuck respectively. We prepare
those traces so that initial values for all fluents of interest — particularly, the states of the
pumps and valve as well as all measured temperatures — are available, but encode later
changes of the state only via actions. This means that in order to arrive at the correct
diagnoses, the solver can not simply rely on the input providing the state directly, but has to
actually reason about the actions and retain information.®

5 It should be noted that in continuous monitoring scenarios, residual-based and data-driven approaches
also require updates of internal variables when they start diverging.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

Table 1 Diagnosis results. Diagnoses corresponding to the ground truth are highlighted in bold.

dataset n diagnoses

nominal 8 @

leaking 8 {MV}, {Tl,TQ}, {P17T2}
stuck 8 o

nominal 16 @
1eaking 16 {1\/1‘/}7 {T17 TQ}, {fﬁ7 TQ}
stuck 16 {MV},{MP},{P},{T1}

nominal” 64 {H,T\}P{H, T2}V {H, MV}, {T1},{T»}
leaking” 64 {MV}, {T1,T>}
stuck? 64 {MV}, {T1,Tx},{P1, T»}

*) using a rolling window; preserving fluents related to
power status
1) non-minimal in final step

We consider two scenarios for our evaluation: first, we apply a naive approach using a
single solver call to diagnose n time steps at once. As we will see, this approach is quite
effective for small n, but does not scale well as the number of time steps and thus the solution
space increases. Next, we integrate multiple solver calls over a rolling window to achieve
more efficient diagnosis over a larger number of time steps. In both scenarios, we use a
domain-specific heuristic to ensure trace-minimal diagnoses. A diagnosis A is trace-minimal
if AA'VE : A} C Ay, that is there is no other diagnosis that reports a subset of components as
broken in each time step t. A stricter heuristic would consider subset-minimal diagnoses in
the final time step.

Table 1 shows the diagnoses eventually yielded after 8, 16, and 64 time steps. For the
nominal trace, there is a false positive at a certain time step, where in our discretization T;
and T, report the same temperature despite T3 still being larger. This issue could be solved
by increasing the precision, e.g., by premultiplying with 10, 100, or 1000, which however also
leads to larger domains for the fluents, and thus a significantly larger solution space.

For the faulty traces, the correct diagnosis is always among the diagnoses in the leaking

case, but curiously absent in the stuck case when only a smaller part of the input is considered.
In fact, with just one more time step, that is n = 9, we get the same diagnoses as for n = 16.

More generally, without repair actions, which are absent from our inputs, diagnoses only
grow larger. For most traces, this means that eventually a fixed point will be reached, where

no more information is gained by considering future time steps — especially if A = COMP.

Practical applications should however consider repair sooner.

We also see an interesting behaviour with n = 64 by choice of our heuristic, as we compute
the minimal diagnoses w.r.t. all time steps, but only report the last. In this data set, we
encounter multiple steps where components supposedly break. The first yields the diagnoses
{{H},{T1},{T2}} — the second component, i.e., Ty, T or MV, only breaks later and thus
there are different explanations. If instead one were to compute the minimal diagnosis for
the last time step only, these gratuitous diagnoses would vanish.

In terms of performance, we find that a naive approach of using ASP to diagnose n time
steps does not scale for increasingly large n. The performance limitations can be seen in
Figure 3: while the total diagnosis time for 8 time steps is just three times that of 2 time
steps — and thus scales sublinearly up to this point — diagnosis times for 16 time steps are

1:15

DX 2025

1:16

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

N nominal B leaking 3 stuck

500 500

i . M -
35
30 400 . " 400 i .
25
300 300
e @ 2
3 20 - -
£ £ g
15 200 200
10
100 100
5 I I H
N[l : :
2 4 8 16 2 4 8 16 2 4 8 16
window size window size window size
(a) Single window. (b) 256 time steps. (c) 256 time steps with pre-

served fluents.

Figure 3 Diagnosis times.

Table 2 Inconsistent results between different configurations in the rolling window approach.

dataset params diagnoses

stuck w=8n=16K =0 &

stuck w=16n=16,K = o {MV}, {MP}{P},{T1}
stuck w=8,n= 16,K:{(|)P1,(DP2,(DMP} {MV} {MP}{Pi},{Th}
stuck w=8n=256K=g {MV} {1}

stuck w=28n=256K={Op ,Op,, Oyp} {MV} {T1, T2}, {Pi,T>}

more than twice as large. For even larger window sizes, e.g., w = 32 or w = 64, performance
is worse still, if such window sizes are even feasible — in our experiments, we found w = 64
to be infeasible and thus used a rolling window for Table 1. A window size of 4 < w < 8
appears optimal from our observations. The overhead of preserving fluents seems negligible.

The rolling window, however, introduces soundness problems to the diagnosis, as inform-
ation is lost between subsequent invocations of the solver. It is both possible to be too strict
and not strict enough about the fluent values to remember. Table 2 shows a few examples of
different configurations — varying the window size w, the number n of time steps considered,
and the set K of fluents, whose value is carried over to the next window (not including the
ab health states, i.e., the previous diagnoses, which are always kept) — leading to different
results.

It is well possible, that in the general case, this inconsistency can — or must be —
resolved by means of another answer set program and solver call. Particularly, cautious
consequences (cf., e.g., [1]) would indicate which fluents must take a certain value in any
answer set that assumes a particular diagnosis, but may not be enough to also model which
fluents may not ever take a certain value while assuming a particular diagnosis. We leave
this gap to future work.

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

6 Conclusion and Future Work

We demonstrated a diagnosis system based on ASP and FEC and showed how this system
can be used to model the temporal behavior of an HVAC system. Our approach enables an
explicit modeling of time-dependent phenomena in ASP in the context of MBD. Interestingly,
our approach is not only suitable for FDD but also for retrospective analysis. By evaluating
a time series after the fact, the system can help identify precisely when a fault began to
manifest, offering valuable insights into system dynamics and behavior over time.

We conducted an initial case study on a heating system that demonstrated that the
ASP diagnosis model can be used for a practical diagnosis task. While the experiments
indicate that a static window approach becomes computationally infeasible very quickly with
increasing window sizes, the rolling window variant offers a better trade-off between runtime
and window size. However, the rolling window approach comes at the cost of soundness due
to information loss between iterations. We showed that maintaining select fluents across
solver runs can mitigate this issue to some extent.

In future work, we plan on improving the incremental reasoning and formalizing a
more robust preservation strategy for fluents between runs in the case of the rolling window
approach. One possibility would be to consider cautious reasoning to infer missing information.
Furthermore, we intend to extend our work by considering more case studies from the building
domain and other potential application areas, such as diagnosis in the automotive domain.

Another practical challenge worth investigating lies in managing the number of diagnoses
returned. Even when only subset minimal diagnoses are considered, we see a rather large
number of possible results in the small system studied. Thus, finding strategies for reducing
and prioritizing diagnoses is essential in a practical context. For instance, Stern et al. [40]
highlight that presenting the full set of diagnoses may be less effective than aggregating them
into a health state, which is a compact representation that estimates the likelihood of each
component being faulty. It remains to be seen, whether their approach can be meaningfully
integrated with ours.

—— References

1 Mario Alviano, Carmine Dodaro, Salvatore Fiorentino, Alessandro Previti, and Francesco
Ricca. ASP and subset minimality: Enumeration, cautious reasoning and MUSes. Artificial
Intelligence, 320, 2023. doi:10.1016/j.artint.2023.103931.

2 Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-prolog. Theory and
Practice of Logic Programming, 3(4-5):425-461, 2003. doi:10.1017/S1471068403001807.

3 Chitta Baral, Sheila Mcllraith, and Tran Cao Son. Formulating diagnostic problem solving
using an action language with narratives and sensing. In KR, pages 311-322. Citeseer, 2000.

4 Moritz Bayerkuhnlein and Diedrich Wolter. Model-based diagnosis with ASP for non-
groundable domains. In International Symposium on Foundations of Information and Know-
ledge Systems, pages 363—-380. Springer, 2024. doi:10.1007/978-3-031-56940-1_20.

5 Ivan Bratko. Prolog programming for artificial intelligence. Pearson education, 2001.

6 Gerhard Brewka, Thomas Eiter, and Mirostaw Truszczynski. Answer set programming at a
glance. Communications of the ACM, 54(12):92-103, December 2011. doi:10.1145/2043174.
2043195.

7 Vittorio Brusoni, Luca Console, Paolo Terenziani, and Daniele Theseider Dupré. A spectrum
of definitions for temporal model-based diagnosis. Artificial Intelligence, 102(1):39-79, 1998.
do0i:10.1016/50004-3702(98)00044-7.

8 Zhelun Chen, Zheng O’Neill, Jin Wen, Ojas Pradhan, Tao Yang, Xing Lu, Guanjing Lin,
Shohei Miyata, Seungjae Lee, Chou Shen, et al. A review of data-driven fault detection and
diagnostics for building HVAC systems. Applied Energy, 339:121030, 2023. doi:10.1016/j.
apenergy.2023.121030.

1:17

DX 2025

https://doi.org/10.1016/j.artint.2023.103931
https://doi.org/10.1017/S1471068403001807
https://doi.org/10.1007/978-3-031-56940-1_20
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1016/S0004-3702(98)00044-7
https://doi.org/10.1016/j.apenergy.2023.121030
https://doi.org/10.1016/j.apenergy.2023.121030

1:18

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

European Commission. Press release: Commission welcomes political agreement on new
rules to boost energy performance of buildings across the EU, December 2023. URL: https:
//ec.europa.eu/commission/presscorner/detail/de/ip_23_6423.

German Sustainable Building Council. Wegweiser klimapositiver Gebiudebestand 2022 [Guide
to Climate-positive Building Stock 2022]. German Sustainable Building Council, 2022.
Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97-130, 1987. doi:10.1016/0004-3702(87)90063-4.

Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer Set Programming:
A Primer. Springer, 2009. doi:10.1007/978-3-642-03754-2_2.

Alexander Feldman, Ingo Pill, Franz Wotawa, lon Matei, and Johan de Kleer. Efficient model-
based diagnosis of sequential circuits. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2814-2821. AAAI
Press, 2020. doi:10.1609/AAAT.V34103.5670.

Gerhard Friedrich and Wolfgang Nejdl. Momo-model-based diagnosis for everybody. In
Sizth Conference on Artificial Intelligence for Applications, pages 206-213. IEEE, 1990. doi:
10.1109/CAIA.1990.89191.

Martin Gebser, Amelia Harrison, Roland Kaminski, Vladimir Lifschitz, and Torsten Schaub.
Abstract Gringo. Theory and Practice of Logic Programming, 15(4-5):449-463, 2015. doi:
10.1017/S1471068415000150.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming, Proceedings of
the Fifth International Conference and Symposium, Seattle, Washington, USA, August 15-19,
1988 (2 Volumes), pages 1070-1080. MIT Press, 1988.

A Gevorgian, S Pezzutto, S Zambotti, S Croce, U Filippi Oberegger, R Lollini, L. Kranzl, and
A Muller. European building stock analysis. Eurac Research: Bolzano, Italy, 2021.

Stephan Gspandl, Ingo Pill, Michael Reip, Gerald Steinbauer, and Alexander Ferrein. Belief
management for high-level robot programs. In Toby Walsh, editor, IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, pages 900-905. IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/
IJCAI11-156.

Christoph Hutter, Michael Kappert, Ralph Krause, Patrick Miiller, André Koénig, Adrian
Gebhardt, Falko Ziller, Peter Giesler, and Frank Zeidler. MFGeb - Methoden zur Fehlerkennung
im Gebédudebetrieb [MFGeb - methods for fault detection in building operation], 2022. Final
Report. URL: https://ibit.fh-erfurt.de/fileadmin/Dokumente/Projekte/IBIT/mfgeb/
Abschlussbericht-MFGEB_2022.pdf.

Ledio Jahaj, Stalin Munoz Gutierrez, Thomas Walter Rosmarin, Franz Wotawa, and Ger-
ald Steinbauer-Wagner. A model-based diagnosis integrated architecture for dependable
autonomous robots. In 34th International Workshop on Principles of Diagnosis, 2023.
Srinivas Katipamula and Michael R Brambley. Methods for fault detection, diagnostics, and
prognostics for building systems—a review, part ii. HVACER Research, 11(2):169-187, 2005.
doi:10.1080/10789669.2005.10391123.

Roxane Koitz-Hristov and Franz Wotawa. Faster horn diagnosis-a performance comparison of
abductive reasoning algorithms. Applied Intelligence, 50(5):1558-1572, 2020. doi:10.1007/
S10489-019-01575-5.

Robert Kowalski and Marek Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67-95, March 1986. doi:10.1007/BF03037383.

Gerda Langer, Thomas Hirsch, Roman Kern, Theresa Kohl, and Gerald Schweiger. Large
language models for fault detection in buildings’ HVAC systems. In Energy Informatics
Academy Conference, pages 49-60. Springer, 2024. doi:10.1007/978-3-031-74741-0_4.

https://ec.europa.eu/commission/presscorner/detail/de/ip_23_6423
https://ec.europa.eu/commission/presscorner/detail/de/ip_23_6423
https://doi.org/10.1016/0004-3702(87)90063-4
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1609/AAAI.V34I03.5670
https://doi.org/10.1109/CAIA.1990.89191
https://doi.org/10.1109/CAIA.1990.89191
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-156
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-156
https://ibit.fh-erfurt.de/fileadmin/Dokumente/Projekte/IBIT/mfgeb/Abschlussbericht-MFGEB_2022.pdf
https://ibit.fh-erfurt.de/fileadmin/Dokumente/Projekte/IBIT/mfgeb/Abschlussbericht-MFGEB_2022.pdf
https://doi.org/10.1080/10789669.2005.10391123
https://doi.org/10.1007/S10489-019-01575-5
https://doi.org/10.1007/S10489-019-01575-5
https://doi.org/10.1007/BF03037383
https://doi.org/10.1007/978-3-031-74741-0_4

R. Koitz-Hristov, L. M. Prikler, and F. Wotawa

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Vladimir Lifschitz. Answer Set Programming. Springer, 2019. doi:10.1007/
978-3-030-24658-7.

Jiefei Ma, Rob Miller, Leora Morgenstern, and Theodore Patkos. An epistemic event calculus
for ASP-based reasoning about knowledge of the past, present and future. In Ken Mcmillan,
Aart Middeldorp, Geoff Sutcliffe, and Andrei Voronkov, editors, LPAR-19. 19th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 26 of
EPiC Series in Computing, pages 75—87, Stellenbosch, South Africa, 2013. EasyChair. doi:
10.29007/zswj.

John McCarthy and Patrick J Hayes. Some philosophical problems from the standpoint

of artificial intelligence. Machine Intelligence, 4, 1969. doi:10.1016/B978-0-934613-03-3.

50033-7.

Sheila A Mcllraith. Representing actions and state constraints in model-based diagnosis.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth
Conference on Innovative Applications of Artificial Intelligence, AAAT'9T/TAAT97, pages
43-49, 1997. URL: http://www.aaai.org/Library/AAAT/1997/aaai97-007.php.

Rob Miller and Murray Shanahan. Some alternative formulations of the event calculus. In
Antonis C. Kakas and Fariba Sadri, editors, Computational Logic: Logic Programming and
Beyond, Essays in Honour of Robert A. Kowalski, Part II, volume 2408 of Lecture Notes in
Computer Science, pages 452—-490. Springer, 2002. doi:10.1007/3-540-45632-5_17.

Payam Nejat, Fatemeh Jomehzadeh, Mohammad Mahdi Taheri, Mohammad Gohari, and
Muhd Zaimi Abd. Majid. A global review of energy consumption, CO2 emissions and policy
in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable
and Sustainable Energy Reviews, 43:843-862, 2015. doi:10.1016/j.rser.2014.11.066.
Ilkka Niemeld. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241-273, 1999. doi:
10.1023/A:1018930122475.

Panayiotis M Papadopoulos, Vasso Reppa, Marios M Polycarpou, and Christos G Panayiotou.
Distributed diagnosis of actuator and sensor faults in HVAC systems. IFAC-PapersOnlLine,
50(1):4209-4215, 2017. doi:10.1016/j.ifacol.2017.08.816.

Ingo Pill and Thomas Quaritsch. Behavioral diagnosis of LTL specifications at operator level.
In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 1053-1059. IJCAI/AAAT,
2013. URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6595.
Liliana Marie Prikler and Franz Wotawa. Faster diagnosis with answer set programming. In 85th
International Conference on Principles of Diagnosis and Resilient Systems (DX 2024), pages 24—
1. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/0ASIcs.DX.2024.24.
Gregory Provan. Generating reduced-order diagnosis models for HVAC systems. In Iinl.
Workshop on Principles of Diagnosis, Murnau, Germany, 2011.

Aibing Qiu, Ze Yan, Qiangwei Deng, Jianlan Liu, Liangliang Shang, and Jingsong Wu.
Modeling of HVAC systems for fault diagnosis. IEEFE Access, 8:146248-146262, 2020. doi:
10.1109/ACCESS.2020.3015526.

Olivier Raiman, Johan de Kleer, Vijay Saraswat, and Mark Shirley. Characterizing non-
intermittent faults. In Proceedings of the Ninth National Conference on Artificial Intelligence -
Volume 2, AAAT'91, pages 849-854. AAAI Press, 1991. URL: http://www.aaai.org/Library/
AAAT/1991/aaai91-132. php.

Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57-95,
1987. d0i:10.1016/0004-3702(87)90062-2.

Erich Sewe. Automatisierte Fehlererkennung in Heizungsanlagen [Automated Fault Detection
in Heating Systems]. PhD thesis, Universitdt Dresden, 2018.

Roni Stern, Meir Kalech, Shelly Rogov, and Alexander Feldman. How many diagnoses do we
need? Artificial Intelligence, 248:26-45, 2017. doi:10.1016/J.ARTINT.2017.03.002.

1:19

DX 2025

https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.29007/zswj
https://doi.org/10.29007/zswj
https://doi.org/10.1016/B978-0-934613-03-3.50033-7
https://doi.org/10.1016/B978-0-934613-03-3.50033-7
http://www.aaai.org/Library/AAAI/1997/aaai97-007.php
https://doi.org/10.1007/3-540-45632-5_17
https://doi.org/10.1016/j.rser.2014.11.066
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1016/j.ifacol.2017.08.816
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6595
https://doi.org/10.4230/OASIcs.DX.2024.24
https://doi.org/10.1109/ACCESS.2020.3015526
https://doi.org/10.1109/ACCESS.2020.3015526
http://www.aaai.org/Library/AAAI/1991/aaai91-132.php
http://www.aaai.org/Library/AAAI/1991/aaai91-132.php
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/J.ARTINT.2017.03.002

1:20

Beyond Static Diagnosis: A Temporal ASP Framework for HVAC Fault Detection

41

42

43

44

45

46

47

48

Peter Struss, Raymond Sterling, Jestis Febres, Umbreen Sabir, and Marcus M. Keane. Combin-
ing engineering and qualitative models to fault diagnosis in air handling units. In Proceedings
of the Twenty-First European Conference on Artificial Intelligence, ECAT’14, pages 1185-1190.
IOS Press, NLD, 2014. doi:10.3233/978-1-61499-419-0-1185.

Michael Thielscher. A theory of dynamic diagnosis. electronic transactions on artificial
intelligence. Electron. Trans. Artif. Intell., 1:73-104, 1997. URL: http://www.ep.liu.se/ej/
etai/1997/004/.

Michael Thielscher. Introduction to the fluent calculus. Electron. Trans. Artif. Intell., 2:179-192,
1998. URL: http://www.ep.liu.se/ej/etai/1998/006/.

Balaje T. Thumati, Miles A. Feinstein, James W. Fonda, Alfred Turnbull, Fay J. Weaver,
Mark E. Calkins, and S. Jagannathan. An online model-based fault diagnosis scheme for
HVAC systems. In 2011 IEEE International Conference on Control Applications (CCA), pages
70-75, 2011. doi:10.1109/CCA.2011.6044486.

Christoffer Thuve and Hema Pushphika Yuvraj. Life cycle assessment of a combustion engine-
mapping the environmental impacts and exploring circular economy. Master’s thesis, Chalmers
University of Technology, 2022.

Louise Travé-Massuyes and Teresa Escobet. Bridge: Matching model-based diagnosis from
FDI and DX perspectives. Fault Diagnosis of Dynamic Systems: Quantitative and Qualitative
Approaches, pages 153-175, 2019. doi:10.1007/978-3-030-17728-7_7.

Franz Wotawa. On the use of answer set programming for model-based diagnosis. In Hamido
Fujita, Philippe Fournier-Viger, Moonis Ali, and Jun Sasaki, editors, Trends in Artificial Intelli-
gence Theory and Applications. Artificial Intelligence Practices - 33rd International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE
2020, Kitakyushu, Japan, September 22-25, 2020, Proceedings, volume 12144 of Lecture Notes
in Computer Science, pages 518-529. Springer, 2020. doi:10.1007/978-3-030-55789-8_45.
Franz Wotawa and David Kaufmann. Model-based reasoning using answer set programming.
Appl. Intell., 52(15):16993-17011, 2022. doi:10.1007/S10489-022-03272-2.

https://doi.org/10.3233/978-1-61499-419-0-1185
http://www.ep.liu.se/ej/etai/1997/004/
http://www.ep.liu.se/ej/etai/1997/004/
http://www.ep.liu.se/ej/etai/1998/006/
https://doi.org/10.1109/CCA.2011.6044486
https://doi.org/10.1007/978-3-030-17728-7_7
https://doi.org/10.1007/978-3-030-55789-8_45
https://doi.org/10.1007/S10489-022-03272-2

Are Diagnostic Concepts Within the Reach of
LLMs?

Anna Sztyber-Betley & Elodie Chanthery &

Warsaw University of Technology, Poland LAAS-CNRS, INSA, University of Toulouse,
France

Louise Travé-Massuyes & Silke Merkelbach =

LAAS-CNRS, University of Toulouse, France Fraunhofer IEM, Paderborn, Germany

Karol Kukla & Maxence Glotin &

Warsaw, Poland LAAS-CNRS, INSA, University of Toulouse,
France

Alexander Diedrich & Oliver Niggemann &

Helmut-Schmidt-University, Hamburg, Germany Helmut-Schmidt-University, Hamburg, Germany

—— Abstract

Model-based diagnosis is a cornerstone of system health monitoring, allowing for the identification

of faulty components based on observed behavior and a formal system model. However, obtaining a
useful and reliable model is often an expensive and manual task. While the generation of a formal
model was the aim of previous work, in this paper, we propose a methodology to use large language
models to generate Minimal Structurally Overdetermined sets (MSOs). MSOs are specific subsets
of the model equations from which diagnosis tests can be obtained. We investigate two different
directions: (i) the large-language-models’ ability to generate MSO sets for hybrid systems, similar to
those generated by the well-known Fault Diagnosis Toolbox (FDT) (ii) the automated generation of
MSOs for Boolean circuits, as well as the computation of the diagnoses. We thus show how both
dynamic and static systems can be analysed by large-language models and how their output can be
used for effective fault diagnosis. We evaluate our approach on a set of arithmetic and logic circuits,
using OpenAl’s LLMs 4o-mini, o1, and 03-mini.

2012 ACM Subject Classification Computing methodologies — Knowledge representation and
reasoning

Keywords and phrases Fault Diagnosis, Large Language Models, LLMs, Model Based Diagnosis,
MSO, Redundancy Relations, Conflicts, Diagnoses

Digital Object Identifier 10.4230/OASIcs.DX.2025.2

Supplementary Material

Software (Source code): https://github.com/asztyber/LLM_diagnostic_concepts [1§]
archived at swh:1:dir:d265fcfc25d623bff2fa34d48590c7eb66d08995

Software (Source code): https://github.com/jadlownik/FaultDiagnosis/tree/develop [10]
archived at swh:1:dir:b8a40cc86347d60c8efb7ce10df9343400eee88e

Funding Elodie Chanthery: The work is supported by ANITI through the French “Investing for the
Future — P3TA” program under the Grant agreement n° ANR-19-P3IA-0004.
Louise Travé-Massuyés: The work is supported by ANITI through the French “Investing for the
Future — P3IA” program under the Grant agreement n° ANR-19-P3IA-0004.

Acknowledgements This work has benefited from participation in Dagstuhl Seminar 24031 “Fusing

Causality, Reasoning, and Learning for Fault Management and Diagnosis”.

© Anna Sztyber-Betley, Elodie Chanthery, Louise Travé-Massuyes, Silke Merkelbach, Karol Kukla,

Maxence Glotin, Alexander Diedrich, and Oliver Niggemann;

licensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 2; pp. 2:1-2:20

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:anna.sztyber@pw.edu.pl
https://orcid.org/0000-0002-6464-8194
mailto:elodie.chanthery@laas.fr
https://orcid.org/0000-0003-0015-5566
mailto:louise@laas.fr
https://orcid.org/0000-0002-5322-8418
mailto:silke.merkelbach@iem.fraunhofer.de
https://orcid.org/0009-0005-9598-5117
mailto:karol.patryk.kukla@gmail.com
mailto:maxence.glotin@laas.fr
mailto:alexander.diedrich@hsu-hh.de
https://orcid.org/0000-0002-8674-6895
mailto:oliver.niggemann@hsu-hh.de
https://orcid.org/0000-0001-8747-3596
https://doi.org/10.4230/OASIcs.DX.2025.2
https://github.com/asztyber/LLM_diagnostic_concepts
https://archive.softwareheritage.org/swh:1:dir:d265fcfc25d623bff2fa34d48590c7eb66d08995;origin=https://github.com/asztyber/LLM_diagnostic_concepts;visit=swh:1:snp:31599884a2ca089151c386c2915805fda441c252;anchor=swh:1:rev:5ad0879c1c0cc2a298b82e86e20b6e70cb6a2c24
https://github.com/jadlownik/FaultDiagnosis/tree/develop
https://archive.softwareheritage.org/swh:1:dir:b8a40cc86347d60c8efb7ce10df9343400eee88e;origin=https://github.com/jadlownik/FaultDiagnosis;visit=swh:1:snp:f3ecc9d71018391ddad295112400f0de0a31daf7;anchor=swh:1:rev:ad6e2ff065689d228955580d57ace4f4b72a1495
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

2:2

Are Diagnostic Concepts Within the Reach of LLMs?

1 Introduction

Model-based diagnosis (MBD) is a cornerstone of system health monitoring, allowing for the
identification of faulty components based on observed behavior and a formal system model.
One common approach within MBD is structural analysis [8]. Structural analysis is used to
obtain Analytical Redundancy Relations (ARRs) for fault diagnosis. Performing structural
analysis means abstracting the system model by keeping only the links between equations
and variables. The main advantages are that it can be applied to large-scale systems, linear
or non-linear, and even under uncertainty. Structural analysis uses the computation of
Minimal Structurally Overdetermined sets (MSOs), i.e. sets that contain one equation more
than the number of variables. Due to this overdetermined property, they play a key role in
detecting and isolating faults [4]. Traditionally, the computation of MSOs is performed using
dedicated tools such as the Fault Diagnosis Toolbox (FDT) [5], which apply algorithmic
methods grounded in analytical redundancy and structural analysis. On the other hand, the
main disadvantage of using tools such as the FDT is that they require a correct and reliable
model of the underlying system.

With the recent rise of large language models (LLMs), which demonstrate impressive
capabilities in reasoning, synthesis, and symbolic manipulation, a question naturally arises:
can these models be repurposed to perform structured engineering tasks, such as generating
MSO sets directly from system diagrams, thus reducing the need to rely on manually specified
models? If so, this could open new avenues for intuitive, rapid prototyping and integration
of natural language interfaces into diagnostic systems.

In this work, we propose an exploratory evaluation of LLMs’ ability to generate MSO
sets from engineering documentation, comparing its outputs to those produced by the Fault
Diagnosis Toolbox [5]. We aim to assess both the correctness and completeness of the MSO
sets proposed, as well as to identify the strengths and limitations of using LLMs in such a
formal and structured context. We perform a similar analysis for the generation of conflicts
and diagnoses. Our goal is not only to measure performance, but also to understand the
potential and boundaries of LLMs in a field traditionally dominated by rule-based and
algorithmic approaches.

We carry out the test on the OpenAl models: 40-mini, 01!, and 03-mini?, as the o-series
of models shows leading performance in math, coding, and science questions®, and 4o-mini is
a time and cost effective alternative.

Recent advancements in LLMs have spurred their application in fault diagnosis across
a range of complex systems. These models are being explored not only for their fault
detection capabilities but also for their ability to provide interpretability, adaptability, and
generalization in data-driven diagnostics. Several works have proposed hybrid frameworks
that integrate LLMs with traditional diagnosis tools to improve explainability and operator
support. For instance, the authors of [3] combine a physics-based diagnostic tool with an
LLM to enhance fault interpretability in nuclear power plants, demonstrating improved
transparency and operator interaction through natural language explanations. In software
engineering, AutoFL [6] employs LLMs for fault localization, enhancing developer trust
by providing rationales for fault hypotheses and navigating large code-bases using prompt
engineering. Similarly, LLMAO [21] introduces a fine-tuned LLM architecture capable of

! https://openai.com/o1/

2 https://openai.com/index/openai-o3-mini/

3 Shortly before the submission of the paper the new models were released: 03 and o4-mini, so further
improvement can be expected.

https://openai.com/o1/
https://openai.com/index/openai-o3-mini/

A. Sztyber-Betley et al.

diagrams
____________________ 1
: o Broad approach 2
= - : & X o

- i Inuder.lce gé'gosr : $ 1
“&é‘?l matrix = MSO generation Sasl|

P
S generation |

3
'y |

© Model

Generation

Dedicated approach to arithmetic and logic circuits
(Merkelbach et al., 2024) &

& "

{7

& 9'3&
&

&
,59
$, : &
MSO & Conflicts 5§ Diagnoses [&s3
generation generation generation

Legend: I :)
I @ ;’heo.ret_lcal S desarini, T.he.oretlcal
LLM use 1 escription, observations description, pseudo-

polybox ex code, polybox ex

Current project

Figure 1 The overall methodology. Model generation was covered in previous work [12]. In both
approaches MSOs are generated. The broad approach is applicable to many types of systems, in
particular hybrid systems. The dedicated approach is for logic circuits.

fault localization at a line level without relying on test coverage data, surpassing traditional
ML-based methods. From an industrial systems perspective, various methods have been
proposed to adapt LLMs to multi-modal and time-series data. FD-LLM [11] aligns LLMs with
engineering data using modal alignment and prompt learning to handle overlapping features
in complex equipment diagnostics. FaultExplainer [7] uses LLMs to generate plausible and
actionable explanations, but also highlights its limitations, including reliance on PCA-selected
features and some hallucinations. In cyber-physical systems, FLEX [13] and FaultLines [14]
demonstrate how open-source LLMs can perform anomaly and fault detection using retrieval-
augmented generation and prompt engineering. These works reveal that model performance
is closely tied to prompt design and textual encoding strategies.

LLMs also show promise in handling challenges such as cross-domain generalization and
data scarcity. The authors of [19] present an LLM-based framework for bearing fault diagnosis
that combines textual representation of sensor data with fine-tuning strategies to achieve
superior performance across different datasets and operational conditions. The AAD-LLM
framework [17] further extends this adaptability by enabling multi-modal, zero-shot anomaly
detection in manufacturing systems, using pre-trained LLMs without requiring retraining or
finetuning. They also propose a very interesting state of the art on LLMs use for Time Series
forecasting. Overall, the field is evolving toward more robust, interpretable, and adaptive
diagnostic solutions leveraging LLMs. However, none of these works really links LLM results
to concepts developed in the field of model-based diagnostics. This is the major contribution
of our article.

This article is organized as follows: Section 2 recalls some important concepts for diagnosis.
Section 4 briefly details previous work. Section 5 presents our two main contributions. The
road approach for creating MSOs from piping and instrumentation diagrams, and a Dedicated
Approach for arithmetic and logic circuits. Finally, Section 6 presents our empirical evaluation.
At the end of the article we discuss our results and present some future research directions.

2:3

DX 2025

2:4

Are Diagnostic Concepts Within the Reach of LLMs?

2 Problem Formulation

Figure 1 illustrates our methodology. Input to the methodology are P&ID diagrams and
circuit diagrams, i.e. a common form of engineering documentation for use-cases in the
process industry and hardware design. Block 1 “Model Generation” has been described
n [12]. Tt generates a set of equations that can be used by the Fault Diagnosis Toolbox to
obtain MSO sets. Section 4 briefly recalls the model generation process.
For our solution in this article, we used two independent prompting approaches:
1. A Broad Approach (in green box), able to handle continuous systems described by the
differential equations that generates MSO sets from a set of differential equations
2. A Dedicated Approach to arithmetic and logic circuits (in orange box) that
generates MSO sets, conflicts, and finally obtains diagnoses for the considered system.

Blocks 2 and 3 are used for the Broad Approach, described in Section 5.2. Blocks 4, 5,
and 6 are used for the Dedicated Approach to arithmetic and logic circuits, described
in Section 5.1. Each block uses an LLM for its reasoning.

In the case of arithmetic and logic circuits, checking the consistency of observations with
the model is straightforward and leads to unambiguous answers. In the case of continuous,
dynamical systems, in the presence of noise and dynamical fault profiles residual evaluation
is more challenging. Therefore, for circuits, we perform all the steps that result in diagnoses
(Blocks 4 to 6), and in the Broad Approach we only generate MSO sets (Blocks 2 and 3).

3 Background

A system model M(z,z, f) typically comprises both unknown variables, denoted by x, and
known variables z, which are measured using sensors.

The variables x are partitioned into two categories: differential variables x1 and algebraic
variables xo. Faults affecting the system are explicitly represented by a dedicated vector of
parameters f. We denote the sets of known variables, unknown variables, and faults by Z,
X, and F, respectively.

A commonly used representation, known as a semi-explicit Differential Algebraic system
of Equations (semi-explicit DAE), for general systems in the continuous-time domain is as
follows:

dlL’l (t)

= h(z1(t), za(t), 2c(t), f), x1(to) = w0
Mz, 0) 50 = 1(21(t), 22(8), 2e(8),) 1)

Here, z1(t) € R™1 and z3(t) € R":2 denote the vectors of unknown variables. The
vectors zg(t) € R"== and z.(t) € R™= represent the measured outputs and controlled inputs,
respectively, both considered known. In systems without external actuation, z.(¢) may be
Zero.

The functions h, [, and g can be linear or nonlinear and typically depend on a set of
system parameters, denoted by Z, (e.g., tank diameter, nominal flow rate, etc.).

Interestingly, dynamic systems (represented by differential equations) and static systems
(represented by algebraic equations) are sub-classes of DAEs.

For any vector v, we define v as the augmented vector comprising v and its time derivatives
up to a certain (unspecified) order.

A. Sztyber-Betley et al.

» Definition 1 (Analytical Redundancy Relations (ARR)). ARRs are relations M'(Z) = M"(f)
obtained from M(z,x, f) by formally eliminating unknown variables . While M" (f) is the
internal form that depends on the faults and is not known, M'(Z) is the computation form

and can be computed from the known variables and their derivatives.

M'(Z) defines a set of ARRs. A single ARR takes the form arr;(z’) = r;, where r; is a
scalar signal named residual and Z' a subvector of z. It can be used as residual generator.

» Definition 2 (Residual generator for M(z, z, f)). A relation of the form arr;(z') = r;, with

input Z' a subvector of z and output 7;, a scalar signal named residual, is a residual generator

for the model M(z,x, f) if, for all z consistent with M(z,x, f), it holds that tlim r(t) = 0.
—00

In simple terms, a residual generator produces a signal called a residual, which ideally
remains zero when the system operates correctly. Any deviation from zero may indicate the
presence of a fault.

From the system model, it is possible to derive Analytical Redundancy Relations (ARRs)
by exploiting the inherent analytical redundancy. This is typically achieved through variable
elimination techniques, resulting in relations that involve only the known variables. ARRs
serve as the foundation for diagnosis tests, enabling the verification of whether the measure-
ments z are consistent with the system model M(z,z, f). If a fault is present in the system,
it is expected to affect some of the measurements, and consequently, the residuals. If no
such influence is observable, the fault is said to be non-detectable, and as such, it cannot be
identified [9].

Building on the foundational work by Cassar and Staroswiecki [1], and Travé-Massuyes
et al. [20], structural analysis has emerged as a powerful tool for deriving ARRs. This
method abstracts the system model by focusing solely on the structural relationships between
equations and variables, disregarding the specific functional forms. One of the key advantages
of structural analysis is its applicability to large-scale systems, whether linear or nonlinear,
and even in the presence of model uncertainty. Along the structural approach, the structure
of a system M(z,x, f), or structural system, can be represented by a biadjacency matrix
crossing variables and equations, named the Incidence Matriz.

» Definition 3 (Incidence matrix). The Incidence Matriz of a system M(z,z, f) is an
ne X (ng +n,) binary matriz, where n, = Ny, + Ny, is the number of unknown variables,
Ny = Ny, + N, is the number of known variables, and n. is the number of equations. Each
row stands for an equation and each column for a variable. A 1 in position (i,7) means that
the equation of row i contains the variable of column j.

When applied to fault diagnosis, structural analysis helps identify subsets of equations
that exhibit redundancy. The structural redundancy pa of a set of equations M’ C M
is defined as the difference between the number of equations and the number of unknown
variables within that subset.

Of particular diagnostic relevance are the Proper Structurally Overdetermined (PSO)
sets, which are sets of equations that together contain just enough redundancy to allow fault
detection through consistency checks.

A just determined part refers to a set of equations where the number of equations
matches the number of unknown variables, allowing for a unique solution. In contrast, an
underdetermined part has fewer equations than unknowns, making it impossible to uniquely
determine the values of all variables.

2:5

DX 2025

2:6

Are Diagnostic Concepts Within the Reach of LLMs?

» Definition 4 (PSO set). A subset of equations » C M(z,x, f) is a PSO set if its number
of equations is greater than the number of unknown variables, and this overdetermination
applies to the entire set (i.e., the set is structurally redundant and contains no exactly or
underdetermined parts).

Another interesting concept are the minimal subsets of equations ¢y C M(z,x, f) that
possess exactly one degree of structural redundancy, i.e., py, = 1. Such subsets are referred
to as Minimal Structurally Overdetermined (MSO) sets.

» Definition 5 (MSO set). A subset of equations 1 C M(z,z, f) is an MSO set of M(z,z, f)
if (1) pp =1, and (2) no subset of ¢ is overdetermined. The set of MSO sets of M is
denoted V.

Certain MSO sets have been shown to support the formulation of diagnostic tests [9],
making them essential components for residual generation and fault detection. These
particular subsets are called Fault-Driven Minimal Structurally Overdetermined (FMSO)
sets [15].

Let F,, denote the set of faults involved in a given subset of equations ¢ C M(z,z, f),
then FMSO sets can be defined as follows.

» Definition 6 (FMSO set). A subset of equations ¢ C M(z,x, f) is an FMSO set of
M(z,z, f) if (1) ¢ is an MSO set and (2) F, # 0. The set of FMSO sets of M is denoted ®.

Given an FMSO set ¢, F, is defined as the fault support of ¢ and the physical components
modeled by the equations in ¢ define its component support COMP,,.

In most cases, FMSO sets can be transformed into Analytical Redundancy Relations
(ARRs) through sequential elimination. Due to their structural properties, all unknown
variables appearing in an FMSO set ¢ can be algebraically resolved using |p| — 1 equations.
These expressions can then be substituted into the remaining |p|-th equation, yielding an
ARR formulated off-line. This ARR is subsequently employed on-line as a diagnostic test.

Building upon the findings in [2], which establish a connection between model-based
approaches from the control community (FDI) and those from the artificial intelligence
community (DX), the concept of an R-conflict, originally introduced by Reiter [16], can be
related to FMSO sets under the assumption of Model Representation Equivalence.

» Definition 7 (R-conflict). The component support COMP, of an FMSO set ¢ is an
R-conflict if the diagnosis test derived from ¢ fails when evaluated with the measurements
obtained from the physical system. A minimal R-conflict is an R-conflict that does not strictly
include (set inclusion) any R-conflict.

An R-conflict indicates that at least one component within the R-conflict must be faulty
to explain the observed behavior; equivalently, it is not possible for all components in the
R-conflict to be functioning normally. Interestingly, the set of minimal diagnoses can be
generated from the set of minimal R-conflicts.

» Definition 8 (Minimal diagnosis). A set of physical components A, modeled by some of the
equations of M(z,x, f), is a minimal diagnosis if and only if it is a minimal hitting * set of
the collection of minimal R-conflicts.

Figure 2 illustrates the different concepts that have been introduced on the well-known
polybox example.

* A hitting set for a collection € of sets is a set H C | J{S/S € €} such that H NS # {} for each S € C.
A hitting set is minimal if and only if no proper subset of it is a hitting set for C.

A. Sztyber-Betley et al.

™ Component | wodel |

Multiplier M1 eq(M1): T=Ax C
F=10 —
outputs Multiplier M2 eq(M2): U=BxD
G=12 Multiplier M3 eq(M3): W=C x E
Adder A1 eq(Al): F=T+U
Adder A2 eq(A2): G=U+W
___lalslclolelFlGlTulw]
eq(M1) 1 1 1
3 equations
eq(M2) 1 1 1 N4 T_A\i c U= B/x D
eq(M3) 1 1 1 FMSO,=) F—TtU @
eq(A1) 1 1 1 [{ealM1), eq(M2), eq(a1)}
COMPys0,.={M1, M2, A1 M
el I I 1)1 FMSOl{ } arri: AxC+BxD- F=0
Incidence matrix
2 unknown variables \ Example of ARR generation from FMSO,|

FMSO,={eq(M1), eq(M2), eq(A1)}
FMS0,={eq(M2), eq(M3), eq(A2)}

FMSO,={eq(M1), eq(M3), eq(A1), eq(A2)}

arri: AxC+BxD—-F#0
=) arr,ExC+BxD- G=0
arry3: AxC-ExC—-F+G#0

Minimal R-conflicts
= {M1, M2, A1}

{™m1, M3, A1, A2}

Minimal diagnoses

{m1, A1, M2m3,
M2A2}

Figure 2 Illustration of the concepts using the polybox example. In the broad approach we
output only the MSOs, while in the dedicated approach we output diagnoses.

The notion of FMSO set also plays a pivotal role in the formal definitions of structural
detectable and structural isolable faults. In the following, we revisit these fundamental
definitions as presented in [9].

» Definition 9 (Detectable fault). A fault f € F is structurally detectable in the system
M(z,z, f) if there exists an FMSO set p € ® such that f € F,.

» Definition 10 (Isolable faults). Given two structurally detectable faults f and f' of F,
f# [, [is structurally isolable from f' if there exists an FMSO set ¢ € ® such that f € F,
and f' & F,.

The Fault Diagnosis Toolbox (FDT) [5] is a software framework designed for the analysis
and synthesis of fault diagnosis in systems that are typically modeled with differential-
algebraic equations. By leveraging a structural representation of the system, the toolbox
enables the automatic extraction of FMSO sets. From these sets, it allows one to generate
Analytical Redundancy Relations (ARRs), which can subsequently be used as diagnosis
tests.

4 Model generation

Previous work [12] proposes an approach to create mathematical models for process industry

systems using multi-modal large language models (MLLM). It presents a five-step prompting

approach that uses a piping and instrumentation diagram (P&ID) and natural language

prompts as its input. For clarity, we will briefly sketch the previous approach in this section.
The five steps of the prompting approach are the following:

1. Read Diagram — Let the MLLM read the diagram image data and represent it in some
partially specified intermediate format. Partial specification is performed in the prompt.

2. Identify Sensors — The LLM creates a table containing existing sensors, their type,
and their placement from the input diagram and from the output from step 1 in the
form of CompsConnections. Context about P&IDs, possibly occurring sensors, and the
placement of the sensors in the diagram are provided in the system message.

2:7

DX 2025

2:8

Are Diagnostic Concepts Within the Reach of LLMs?

3. Create the mathematical Equations — The mathematical equations are created by
the LLM using provided variable names and assumptions.

4. Sensor Matching and Variable Assignment — In this step, all the results from
the previous steps are merged, the faults are added to the equations and the resulting
mathematical model M is created.

5. Format Model for Fault Diagnosis Toolbox — In the final step, the mathematical
model M is transformed to be suitable for the FDT into M.

All steps provide the MLLM with the P&ID as input. In addition, the steps take a system
message and a user prompt as input. The system message contains the generic task for the
respective step. However, taking current abilities of MLLMs into account, it is still domain
dependent. The user message contains a subset of the external information Z' C Z which is
specific for the system, where Z is denotes all available external information. The prompts
can be found on GitHub®. The approach aims to work for water tank systems with standard
components, such as tanks, pumps, valves, flow indicators, and level indicators.

5 Generating MSO Sets, Conflicts, and Diagnoses

As described before, for our solution in this article, we use two independent prompting
approaches:

1. Dedicated approach — designed to handle arithmetic and logic circuits,

2. Broad approach — able to handle continuous systems described by differential equations.
While the Dedicated Approach outputs proper diagnoses, the Broad Approach outputs the
more general FMSO sets from which diagnoses can be computed using actual observations
and tools such as the Fault Diagnosis Toolbox.

5.1 Dedicated approach to arithmetic and logic circuits

To generate the diagnoses, we test the following approach consisting of three steps:

1. Generation of MSO sets — We provide system equations and the sets of X, Z, and F
variables as inputs. The model is asked to output all Minimal Structurally Overdetermined
(MSO) Sets. This is illustrated by block 4 in Figure 1. Table 1 presents the prompt. The
prompt contains a theoretical description and the Polybox system.

2. Generation of Conflicts — We provide the system description, the MSO sets, and
observations as inputs. The LLM is asked to evaluate all MSOs for consistency and to
generate all conflicts. The prompt contains the theoretical description, detailed steps,
and hints for the Python implementation (we test variants with code interpreter allowed)
and three simple examples. This is illustrated by block 5 in Figure 1.

3. Generation of Diagnoses — We provide the set of conflicts as inputs. The model is
asked to generate all minimal diagnoses. The prompt contains the theoretical description,
pseudo-code of the algorithm, and Polybox example. This is illustrated by block 6
in Figure 1.

Figure 3 illustrates the inputs and outputs of each step in the Dedicated Approach (we
follow the example from Figure 2). We start with a system description given by a set of
equations (system model M(z,z, f), Equation (1)) and generate MSO sets (Definition 5)

5 https://github.com/silkeme/DX24_Model_Creation_LLMs
The repository contains the prompts, all mentioned information about the systems used for the evaluation,
the resulting mathematical models, and all intermediate outputs.

https://github.com/silkeme/DX24_Model_Creation_LLMs

A. Sztyber-Betley et al.

using the prompt given in Table 1. Next, residual generators (Definition 2), resulting from
each MSO, are evaluated given the values of known variables z. The value of a residual
generator different from 0 indicates the existence of R-conflict (Definition 7). The output
of the second step is the set of conflicts. In the last step, the conflicts are used to generate

minimal diagnoses (Definition 8).

The prompts for the computation of conflicts and diagnoses can be found on GitHub®.

Table 1 Prompt for computation of Minimal Structurally Overdetermined (MSO) Sets (Dedicated

Approach).

Perform an analysis of the equation system equations and identify all Minimal Structurally Overde-
termined (MSO) sets.

Definitions:
1. Unknown variables: These are only the variables that start with “x”.

2. Structural redundancy: This is the difference between the number of equations and the number
of unique unknown variables in those equations:
R = (number of equations) — (number of unique unknowns).
3. PSO (Properly Structurally Observable): A subset is PSO if its structural redundancy is greater
than 0.
Conditions:
1. The selected set of equations must have exactly one structural redundancy.
2. None of its proper subsets can be PSO (all must have redundancy < 0).
Output: JSON format: { "mso": [...] }, where each inner list represents a valid MSO set.

RESPONSE MUST BE IN JSON FORMAT. DO NOT GENERATE CODE AND
RETURN IT IN RESPONSE.

<example>
<input>

equations = {

’M1’: ’a * c = x01°,
’M2°: ’b * d = x027,
‘M3’: ’c x e = x03°,
A2 ’x01 + x02 = 7,
’A1’: ’x02 + x03 = g’,

}

</input>

<output>

{ ‘'"mso" = [[’°M1’, °M2’, °A1°], [’°M2°, °M3’, °A2’], [’M1’, °M3’, ’A1’>, *A2’]] }

</output>

</example>

5.2 Broad approach

To generate the MSO sets, the approach consists of two steps:

1.

6

Generation of the Incidence Matrix — As input, we provide system equations. The
model is asked to return the incidence matrix as a Python dictionary. This is illustrated
by block 2 in Figure 1. The prompt for the variant without code interpreter is shown
in Table 2.

https://github.com/asztyber/LLM_diagnostic_concepts/blob/main/prompts/dedicated/
prompts_Karol.py The file contains three prompts for the three mentioned steps. Code to
run the experiments can be found in https://github.com/jadlownik/FaultDiagnosis/tree/develop

2:9

DX 2025

https://github.com/asztyber/LLM_diagnostic_concepts/blob/main/prompts/dedicated/prompts_Karol.py
https://github.com/asztyber/LLM_diagnostic_concepts/blob/main/prompts/dedicated/prompts_Karol.py
https://github.com/jadlownik/FaultDiagnosis/tree/develop

2:10 Are Diagnostic Concepts Within the Reach of LLMs?

Model equations
[componert | woael |

Multiplier M1 eq(M1): T=A x C
Multiplier M2 eq(M2): U=BxD
Multiplier M3 eq(M3): W=Cx E
Adder A1 eq(Al): F=T+U
Adder A2 eq(A2): G=U+ W

SRR EMs0,={eq(M1), eq(M2), eq(A1)}

- FMS0,={eq(M2), eq(M3), eq(A2)}

FMS0,={eq(M1), eq(M3), eq(A1), eq(A2)}

Minimal R-conflicts Minimal diagnoses
L
{m1, M2, a1}

——
M1, A1, M2M3,
=))
M2a2}

inputs outputs {™M1, M3, A1, A2}
A=2 B=2 C=3 D=3 E=2 F=10 G=12

‘ Model equations | ‘MSOS ‘

Figure 3 Inputs and outputs of each step in Dedicated Approach.

2. Generation of MSO sets — We provide the incidence matrix including only unknown
variables as input. The model is asked to find all the MSO sets for the provided model in
two sub-steps. First, find all the PSO sets (Definition 4), then, within these PSO sets,
find the minimal ones. Two versions were implemented, one with code interpreter and
one without code interpreter. This is illustrated by block 3 in Figure 1. The prompt for
the variant without code interpreter is shown in Table 3.

componert ———wiose SR T U lW]

Multiplier M1 eq(M1): T=Ax C eq(M1) 1
. S——— P EMs0,={eq(M1), eq(M2), eq(A1)}
Multiplier M2 eq(M2): U=Bx D
i mm) M2 FMsO={ea(M2) eqM3) eq(a2)}
Multiplier M3 eq(M3): W=CxE M3 1
Adder AL T eq(M3) FMS0,={eq(M1), eq(M3), eq(A1), eq(A2)}
er eqiAtl: k= eqAl) 1 1
Adder A2 eq(A2): G=U+W eqlA2) 11

Figure 4 Inputs and outputs of each step in Broad Approach.

Figure 4 illustrates the inputs and outputs of the two steps for finding the MSO sets. In
the first step, the incidence matrix is computed (Definition 3). Ounly the part containing
unknown variables x is computed, which is the important part for MSO generation. In the
second step, MSOs (Definition 5) are computed from the incidence matrix via PSO sets.

The full set of prompts (including variant for use of code interpreter) can be found on
GitHub”.

" https://github.com/asztyber/LLM_diagnostic_concepts/blob/main/prompts/broad/ The direct-
ory contains prompts and code to run them.

https://github.com/asztyber/LLM_diagnostic_concepts/blob/main/prompts/broad/

A. Sztyber-Betley et al.

Table 2 Prompt for computation of Incidence Matrices (Broad Approach).

Your job is to create an incidence matrix of the provided model. In the incidence matrix, each row
represents an equation and each column represents an UNKNOWN variable. Note that unknown
variables are stored under key 'x’ in the provided model.

Return the incidence matrix. Please return the matrix as a Python dictionary in the following
format: ’eq0’: ['unknown var in eq0’, ...], ’eql’: ['unknown var in eql’, ...], ...

Each line in the dictionary should correspond to one equation (do not write everything on the same
line). Only return the dictionary.

Be careful with the equations of type ’fdt.DiffConstraint’. Change those equations by a simple
equality relation. If you have fdt.DiffConstraint(dt,t), change it by t - dt. Make sure to complete
your analysis before responding to me.

Table 3 Prompt for computation of Minimal Structurally Overdetermined (MSO) Sets from
Incidence Matrices (Broad Approach).

Your job is to find all the MSO (Minimal Structurally Overdetermined) sets for the provided model,
represented here by the provided incidence matrix. In the incidence matrix, each line represents an
equation with the unknown variables that belong to this equation. Note that the matrix contains
only the unknown variables. MSO sets consist of equations and contain one more equation than the
number of unknown variables.

Proceed in two parts. First, find all the PSO (Proper Structurally Overdetermined) sets. Then,
within these PSO sets, collect those that are minimal (PSO sets that do not contain any subsets
that are PSO) to keep only the MSO sets. Store all the MSO sets in a python dictionary and return
only the dictionary to me. Use one line for each MSO set.

Additionally, include the number of MSO sets found in the dictionary. You MUST only return the
dictionary. Don’t make up an example, work with the provided incidence matrix. Make sure to
complete your analysis before responding to me.

6 Test and Validation

All approaches were evaluated through OpenAI API. We evaluated the following models:
gpt-40-mini-2024-07-18 (referred in the following as 4o-mini), 03-mini-2025-01-31 (referred in
the following as 03-mini), and 01-2024-12-17 (referred in the following as ol). 4o-mini was
evaluated with the access to the code interpreter, therefore the model could write Python
code and run it to generate the answer®. ol and 03-mini are reasoning models?, trained with
reinforcement learning to perform complex reasoning, and performing all computations in
internal chain of thought. Note that we cannot tell for sure that these models did not use a
code interpreter in the background as well.

Experiments were performed with temperature 0 and top_p = 0 for 4o-mini. The
reasoning effort for ol and 03-mini was ’high’ for the Dedicated Approach and 'medium’ for
the Broad Approach. Tests were repeated 10 times for each test case (test case including
example description and the set of observations) for 4o-mini and 03-mini. Tests for ol were
performed only once, because of costs'®.

Each LLM reasoning step was evaluated independently, i.e. for each blue box in Figure 1
we provided correct inputs, irrespective of the result of the previous step. That way, we can
evaluate the accuracy of each algorithm step reliably.

8 We tried gpt-4o and gpt-4o-mini but the accuracy was close to zero on unseen examples. Performance
of gpt-4o and gpt-4o-mini with code interpreter was similar in initial experiments, so we decided to
evaluate full set of examples on gpt-40-mini because of costs.

9 https://openai.com/index/learning-to-reason-with-11lms/

10 One iteration costed around 30%

2:11

DX 2025

https://openai.com/index/learning-to-reason-with-llms/

2:12

Are Diagnostic Concepts Within the Reach of LLMs?

We carried out tests on 23 arithmetic and logic circuits with different levels of complexity
(Figure 5). The circuits contain adders, multipliers, and AND, OR, NOR, NAND, and XOR
gates. Table 4 summarizes examples’ characteristics''. The number of minimal conflicts and
diagnoses can vary for a given example depending on the observations'?. For each example,
we assumed all inputs and outputs are measured. We only considered components faults.
Sensor faults and sensor equations were omitted.

a
a b A1 x01
A1 ‘ ot
b——— ¢ A2 x02
d
(a) Example 10. (b) Example 11.

A
15‘1/ x01 ,,\\
— A5 x05
A? x02 /
L/

T
A e
T

A3) x03 — o
d i< AB——9g
Ag) x04 —
e //’
(c) Example 12. (d) Example 13.

Figure 5 Selected examples with different level of complexity.

As shown in Figure 6, we evaluate the models’ performance using complementary metrics
that capture different aspects of accuracy in incidence matrix generation. For each equation,
precision measures how many of the model’s predicted variables are correct, while recall
measures how many of the correct variables the model identified. The F1 score combines
these into a single metric, penalizing both missing and spurious variables. The accuracy
metric is the strictest, requiring perfect variable sets for each equation.

4o-mini often includes known variables and faults as variables involved in incidence matrix,
resulting in the poor scores.

Ground truth for incidence matrices, MSO sets, and residual evaluation was computed
using Fault Diagnosis Toolbox [5]. Correct minimal diagnoses were computed with the
implementation of minimal hitting sets algorithm.

The evaluation metrics (Precision, Recall, and F1 score) were computed by comparing
the generated MSO sets with the ground truth MSO sets. Precision measures the fraction of
correctly identified MSO sets among all generated sets (L), while Recall indicates the

TP+FP

fraction of ground truth MSO sets that were successfully found (TPZ%)B. The F1 score is

2 . Drecision Recally he metrics for conflicts

the harmonic mean of Precision and Recall (2 - 5 25 rmee sy
and diagnoses were computed in an analogous way.

1You can find image for each example here https://github.com/jadlownik/FaultDiagnosis/tree/
develop/images and descriptions here https://github.com/asztyber/LLM_diagnostic_concepts/
tree/main/examples

12 The results contain readable Excel files containing generated and correct MSOs, conflicts and diagnoses.

31n the case where the number of ground truth solutions is zero (P = 0), and the generated solution
is also empty (FP = 0) we set Precision and Recall to 1, to avoid penalizing correct answers for the
empty solutions.

https://github.com/jadlownik/FaultDiagnosis/tree/develop/images
https://github.com/jadlownik/FaultDiagnosis/tree/develop/images
https://github.com/asztyber/LLM_diagnostic_concepts/tree/main/examples
https://github.com/asztyber/LLM_diagnostic_concepts/tree/main/examples

A. Sztyber-Betley et al.

Table 4 Example Characteristics.

Example |X| |Z| |F| Relations MSOs Conflicts Diagnoses
Example 2 10 5 5 3 0-3 0-8
Example 3 13 8 7 7 2 0-2 0-12
Example 4 13 8 7 7 2 0-2 0-12
Example 5 13 8 7 7 2 0-2 0-12
Example 6 17 11 8 8 3 0-3 0-21
Example 7 13 9 6 6 3 0-2 0-5
Example 8 18 10 11 11 6 0-5 0-45
Example 9 29 17 15 15 6 0-6 0-165
Example 10 3 3 1 1 1 0-1 0-1
Example 11 7 5 3 3 1 0-1 0-3
Example 12 10 7 5 5 3 0-2 0-5
Example 13 13 8 7 7 2 0-2 0-12
Example 14 13 8 7 7 2 0-2 0-12
Example 15 13 8 7 7 2 0-2 0-12
Example 16 17 11 8 8 3 0-3 0-21
Example 17 13 9 6 6 3 0-3 0-9
Example 18 18 10 11 11 6 0-5 0-57
Example 19 29 17 15 15 6 0-5 0-153
Example 20 12 9 5 5 3 0-3 0-8
Example 21 12 9 5 5 3 0-3 0-8
Example 22 7 5 3 3 1 0-1 0-3
Example 23 3 3 1 1 1 0-1 0-1
Example 24 7 5 3 3 1 0-1 0-3

The Figures 8, 10, and 12 show F1 scores for different model versions (4o-mini, ol, and
03-mini). Each data point represents the mean F1 score for examples with the same number
of solutions (MSOs, conflicts, or diagnoses), with error bars indicating the standard deviation
across these examples. The dashed lines show the linear trend of performance as the number
of solutions increases. The Figures 7, 9, and 11 show F1 scores sorted by the number of
relations in the example.

The bar plots (Figures 13, 14, 15) show the aggregated performance metrics (F1 score,

Precision, and Recall) for each model (40-mini, o1, and 03-mini) across all test examples.

Each bar represents the mean value of the corresponding metric, with error bars indicating
the standard deviation.

7 Discussion

An analysis of the obtained results leads to the following conclusions.

For incidence matrix generation (Figure 6), we can observe that ol and 03-mini achieve
perfect accuracy. 4o-mini tends to include additional variables (not in X but correctly
assigned to the equations); otherwise, the results are correct. Incidence matrix generation is
the simplest algorithmic task.

For MSO generation (Figure 7), 4o-mini has problems with examples containing only
one relation. Otherwise, the performance is relatively stable with an increasing number
of examples. 4o-mini has access to a code interpreter, making handling different input

2:13

DX 2025

2:14

Are Diagnostic Concepts Within the Reach of LLMs?

.0
0.8
0.6
g
o
O
%]
0.4
0.2
0.00+0.00
F1

0.0
Precision Recall Accuracy

-

s 4o-mini s ol W 03-mini

Figure 6 Performance comparison of three models (40-mini, 01, and 03-mini) on incidence matrix
generation. The bars show mean values with standard deviations computed across all examples
and runs. For each model, we evaluate four metrics: F1 score (harmonic mean of precision and
recall), precision (ratio of correctly identified variables to all variables predicted in an equation),
recall (ratio of correctly identified variables to all variables that should be in an equation), and
accuracy (percentage of equations where all variables match exactly). The precision, recall, and F1
scores are first computed for each equation separately and then averaged across all equations in an
example. The accuracy represents a stricter metric, as it only counts equations where the model
identified exactly the right set of variables, with no missing or extra variables.

sizes easier. The performance of ol and 03-mini decreases with the number of relations
in the example. We can observe similar tendencies depending on the number of MSOs
to be generated (Figure 8). Plots on Figure 7 and Figure 8 show results aggregated over
two prompting approaches (Dedicated and Broad). Figure 13 compares the performance of
different models and prompting approaches. The performance of the Dedicated and Broad
Approach is similar despite much more domain knowledge included in the dedicated prompts.
Additionally, the Broad Approach includes a correct incidence matrix as an input for MSO
generation, but it does not influence the results significantly. ol shows the best performance
across all metrics, while 4o-mini is the worst despite the access to the code interpreter.

Performance in conflict generation, depending on the number of relations and conflicts, is
presented respectively in Figure 9 and Figure 10. Trend lines show increasing performance
with increasing complexity, but this is caused by poor performance when the number of
conflicts is zero (i.e. there are no inconsistencies in the system description and observation).
ol performs best for conflict generation (Figure 14).

Diagnoses generation is the most computation-heavy task. We observe a clear decrease
in the performance with increasing complexity (Figure 11 and Figure 12). 03-mini performs
best for diagnoses generation (Figure 15).

As LLMs were not primarily designed to handle algorithmic and computational tasks, the
performance of reasoning models is surprisingly good. 03-mini achieves F'1 = 0.917 £ 0.249
on conflicts generation and F'1 = 0.784 £ 0.322 on diagnoses generation. The examples were
generated manually and were unavailable in the training data (correct solutions were released
after the tested models’ release).

A. Sztyber-Betley et al.

1.0 L 4 ¢ ES |
- 1 |
0.8 : i y
| ! ® ‘I 1
’ | 1 |]
|] ¢ .
006 | T ®
o a | 1 ®
%)]
] | L]
~ 1 1
w 04
0.2
0.0 L]
2 4 6 8 10 12 14
Number of Relations
® 4o-mini i ol $ 03-mini

Figure 7 Performance comparison of MSO generation across different versions (4o_ mini, ol,
03__mini) relative to the number of relations in examples.

1.0 ® | T
| ‘
08 I b
; | |
| I .
E 0.6 ¢ . J
5 | ‘ {
[¥] 1
[7,] +
@ _ :
w 0.4
0.2
0.0
1 2 3 4 5 6

Number of MSOs

» 4o-mini i ol $ 03-mini

Figure 8 Performance comparison of MSO generation across different versions (4o_ mini, ol,
03_mini) relative to the number of MSOs in examples.

8 Conclusion

This paper explores the use of large language models (LLMs) as a novel tool for performing
structural analysis in model-based diagnosis (MBD), specifically focusing on the automatic
generation of Minimal Structurally Overdetermined (MSO) sets, from which diagnosis tests
can be obtained, from engineering documentation. The generation of conflicts and diagnoses
is also explored. The authors evaluate the performance of various OpenAI LLMs (including
ol, 03-mini, and 40-mini) by comparing their generated MSOs, conflicts, and diagnoses
against those produced by traditional tools. The paper situates its contribution within a
growing body of work on LLM-based fault diagnosis but emphasizes its unique connection
to foundational MBD concepts. An empirical evaluation highlights both the potential and
limitations of LLMs in structured engineering tasks, offering insights into their applicability
and future integration into hybrid diagnostic frameworks.

2:15

DX 2025

2:16 Are Diagnostic Concepts Within the Reach of LLMs?

1.0

0.8

F1 Score
o o
> o

0.2

0.0

2 4 6 8 10 12 14
Number of Relations

& 4o-mini i ol $ 03-mini

Figure 9 Performance comparison of minimal conflicts generation across different versions
(40__mini, 01, 03__mini) relative to the number of relations in examples.

1.0 T T T &
t
1 |
0.8 | 1 |
!
1
1
Q06
o
5 [
n [
-
0.4
)
02 |
0.0
0 1 2 3 4 5 6

Number of Conflicts

® 4o-mini i ol $ 03-mini

Figure 10 Performance comparison of minimal conflicts generation across different versions
(40__mini, ol, 03__mini) relative to the number of conflicts in examples.

The main goal of this work is to evaluate LLM capabilities in the context of MBD fault
diagnosis. While we find some results surprisingly good, at this point, LLMs do not provide
an alternative to diagnosis algorithms. The current level of accuracy is not sufficient to
replace traditional tools. Additionally, as the results are obtained by API calls, the time to
achieve the results depends on the network load and other factors and cannot be bounded
robustly. Another practical consideration is the cost. Lastly, it can be observed that the
quality of the results vary highly in different runs.

Several avenues can be explored to extend this work. First, broader benchmarking
on more diverse and complex systems, including hybrid systems or distributed systems,
would help assess the generalization capabilities and scalability of LLMs in diagnostic tasks.
Another promising direction involves fine-tuning or instruction-tuning language models on
domain-specific corpora to improve their performance. Additionally, integrating multi-modal
inputs — such as P&ID diagrams, circuit schematics, or CAD models — via vision-language
models may allow more intuitive and direct processing of engineering data.

A. Sztyber-Betley et al.

1.0 ¢ *

0.8

F1 Score
o
o

e
FS

0.2

0.0

2 4 6 8 10 12 14
Number of Relations

® 4o-mini i ol $ 03-mini

Figure 11 Performance comparison of minimal diagnoses generation across different versions
(40__mini, o1, 03_mini) relative to the number of relations in examples.

10 gcm
| v
0.8 1 I
o1 |
I
006 3 ; |
oo W | |
S |
(] 4 ¢ -
- [I
w 0.4 ° | *
IL.
of o i ¢ 1
| : s ;7 ° -
0.2 115 |
® 09 '
| ™
1
L =
0.0 L m = 5
0 25 50 75 100 125 150

Number of Diagnoses

5 4o-mini i ol $ 03-mini

Figure 12 Performance comparison of minimal diagnoses generation across different versions
(40_mini, o1, 03__mini) relative to the number of diagnoses in examples.

Furthermore, future work could explore the use of the recent Model Context Protocol
(MCP) in diagnostic frameworks involving distributed architectures. MCP provides a struc-
tured way to manage model contexts and execution flows across different computational
components. By integrating MCP with language models, it becomes possible to coordinate
diagnostic reasoning over a set of specialized servers, each responsible for distinct functional-
ities — such as structural analysis, variable elimination, or diagnosis generation from conflicts.
This would enable a modular and scalable diagnostic pipeline, where LLMs interact with
context-aware services rather than operating as monolithic agents. On the other hand, this
modular structure is particularly well suited for diagnosis in distributed systems, where
different subsystems may operate independently, expose only partial observability, or follow
different modeling paradigms. MCP can enable seamless orchestration of context-aware
services across these subsystems, allowing LLMs to query relevant components dynamically
and integrate partial diagnosis results into a coherent global view. Such an approach enhances
scalability, reusability, and flexibility in large-scale or heterogeneous diagnosis environments,
while also opening new opportunities for intelligent fault management across distributed
infrastructures.

2:17

DX 2025

2:18 Are Diagnostic Concepts Within the Reach of LLMs?

C LA i L
@ %
. MWW, WWY, G,

e 4o0-mini (dedicated) w0l (dedicated) e 03-mini (dedicated)
@ 40-mini (broad) 4 ol (broad) & 03-mini (broad)

" Figure 13 Comparison of F1 score, Precision, and Recall for MSO generation across different
models. Each bar shows the mean value with standard deviation.

ol il i

Precision Recall

1.0

0.

oo

0.

Score
[e)]

0.

»

0.

N

0.0

s 4o-mini ol s 03-mini

"/ Figure 14 Comparison of F1 score, Precision, and Recall for minimal conflicts generation across
different models. Each bar shows the mean value with standard deviation.

rrr

Precision Recall

Score
» [e)] [e0]

N

s 4o-mini ol s 03-mini

"/ Figure 15 Comparison of F1 score, Precision, and Recall for minimal diagnoses generation across
different models. Each bar shows the mean value with standard deviation.

A. Sztyber-Betley et al.

—— References

1

10

11

12

13

14

15

16

17

J-Ph Cassar and M Staroswiecki. A structural approach for the design of failure detection and
identification systems. IFAC Proceedings Volumes, 30(6):841-846, 1997.

Marie-Odile Cordier, Philippe Dague, Michel Dumas, Francois Lévy, Jacky Montmain, Marcel
Staroswiecki, and Louise Travé-Massuyes. A comparative analysis of ai and control theory
approaches to model-based diagnosis. In FCAI, pages 136140, 2000.

Akshay J Dave, Tat Nghia Nguyen, and Richard B Vilim. Integrating llms for explainable
fault diagnosis in complex systems. arXiv preprint arXiv:2402.06695, 2024. doi:10.48550/
arXiv.2402.06695.

Teresa Escobet, Anibal Bregon, Belarmino Pulido, and Vicen¢ Puig. Fault Diagnosis of
Dynamic Systems. Springer, 2019.

Erik Frisk, Mattias Krysander, and Daniel Jung. A toolbox for analysis and design of model
based diagnosis systems for large scale models. IFAC-PapersOnLine, 50(1):3287-3293, 2017.
Sungmin Kang, Gabin An, and Shin Yoo. A quantitative and qualitative evaluation of
llm-based explainable fault localization. Proceedings of the ACM on Software Engineering,
1(FSE):1424-1446, 2024. doi:10.1145/3660771.

Abdullah Khan, Rahul Nahar, Hao Chen, Gonzalo E Flores, and Can Li. Faultexplainer:
Leveraging large language models for interpretable fault detection and diagnosis. arXiv preprint
arXiv:2412.14492, 2024.

Mattias Krysander, Jan Aslund, and Mattias Nyberg. An efficient algorithm for finding minimal
overconstrained subsystems for model-based diagnosis. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, 38(1):197-206, 2007. doi:10.1109/TSMCA.
2007.909555.

Mattias Krysander, Jan Aslund, and Mattias Nyberg. An efficient algorithm for finding minimal
overconstrained subsystems for model-based diagnosis. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans, 38(1):197-206, 2008. doi:10.1109/TSMCA.
2007.909555.

Karol Kukla. jadlownik/FaultDiagnosis. Software, swhld: swh:1:dir:b8a40cc86347d60
c8efb7ce10df9343400eee88e (visited on 2025-10-20). URL: https://github.com/jadlownik/
FaultDiagnosis/tree/develop, doi:10.4230/artifacts.24965.

Lin Lin, Sihao Zhang, Song Fu, and Yikun Liu. Fd-llm: Large language model for fault
diagnosis of complex equipment. Advanced Engineering Informatics, 65:103208, 2025. doi:
10.1016/J.AEI.2025.103208.

Silke Merkelbach, Alexander Diedrich, Anna Sztyber-Betley, Louise Travé-Massuyes, Elodie
Chanthery, Oliver Niggemann, and Roman Dumitrescu. Using multi-modal llms to create
models for fault diagnosis. In The 35th International Conference on Principles of Diagnosis
and Resilient Systems (DX’24), volume 125, 2024.

Herbert Muehlburger and Franz Wotawa. Flex: Fault localization and explanation using
open-source large language models in powertrain systems (short paper). In 35th International
Conference on Principles of Diagnosis and Resilient Systems (DX 2024), pages 25:1-25:14.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/0ASIcs.DX.2024.25.
Herbert Miithlburger and Franz Wotawa. Faultlines-evaluating the efficacy of open-source large
language models for fault detection in cyber-physical systems. In 2024 IEEFE International
Conference on Artificial Intelligence Testing (AlTest), pages 47-54. IEEE, 2024. doi:10.1109/
AITEST62860.2024.00014.

CG Pérez-Zuniga, E Chanthery, L Travé-Massuyes, and J Sotomayor. Fault-driven structural
diagnosis approach in a distributed context. IFAC-PapersOnLine, 50(1):14254-14259, 2017.

Raymond Reiter. A theory of diagnosis from first principles. Artificial intelligence, 32(1):57-95,
1987. doi:10.1016/0004-3702(87)90062-2.

Alicia Russell-Gilbert, Alexander Sommers, Andrew Thompson, Logan Cummins, Sudip
Mittal, Shahram Rahimi, Maria Seale, Joseph Jaboure, Thomas Arnold, and Joshua Church.
Aad-llm: Adaptive anomaly detection using large language models. In 202/ IEEE International
Conference on Big Data (BigData), pages 4194-4203. IEEE, 2024. doi:10.1109/BIGDATA62323.
2024.10825679.

2:19

DX 2025

https://doi.org/10.48550/arXiv.2402.06695
https://doi.org/10.48550/arXiv.2402.06695
https://doi.org/10.1145/3660771
https://doi.org/10.1109/TSMCA.2007.909555
https://doi.org/10.1109/TSMCA.2007.909555
https://doi.org/10.1109/TSMCA.2007.909555
https://doi.org/10.1109/TSMCA.2007.909555
https://archive.softwareheritage.org/swh:1:dir:b8a40cc86347d60c8efb7ce10df9343400eee88e;origin=https://github.com/jadlownik/FaultDiagnosis;visit=swh:1:snp:f3ecc9d71018391ddad295112400f0de0a31daf7;anchor=swh:1:rev:ad6e2ff065689d228955580d57ace4f4b72a1495
https://archive.softwareheritage.org/swh:1:dir:b8a40cc86347d60c8efb7ce10df9343400eee88e;origin=https://github.com/jadlownik/FaultDiagnosis;visit=swh:1:snp:f3ecc9d71018391ddad295112400f0de0a31daf7;anchor=swh:1:rev:ad6e2ff065689d228955580d57ace4f4b72a1495
https://github.com/jadlownik/FaultDiagnosis/tree/develop
https://github.com/jadlownik/FaultDiagnosis/tree/develop
https://doi.org/10.4230/artifacts.24965
https://doi.org/10.1016/J.AEI.2025.103208
https://doi.org/10.1016/J.AEI.2025.103208
https://doi.org/10.4230/OASIcs.DX.2024.25
https://doi.org/10.1109/AITEST62860.2024.00014
https://doi.org/10.1109/AITEST62860.2024.00014
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1109/BIGDATA62323.2024.10825679
https://doi.org/10.1109/BIGDATA62323.2024.10825679

2:20

Are Diagnostic Concepts Within the Reach of LLMs?

18

19

20

21

Anna Sztyber Betley. asztyber/LLM_ diagnostic_ concepts. Software, swhld: swh:1:dir:
d265fcfc25d623bf£2fa34d48590c7eb66d08995 (visited on 2025-10-20). URL: https://
github.com/asztyber/LLM_diagnostic_concepts, doi:10.4230/artifacts.24966.

Laifa Tao, Haifei Liu, Guoao Ning, Wenyan Cao, Bohao Huang, and Chen Lu. Llm-based
framework for bearing fault diagnosis. Mechanical Systems and Signal Processing, 224:112127,
2025.

Louise Travé-Massuyes, Teresa Escobet, and Xavier Olive. Diagnosability analysis based on
component-supported analytical redundancy relations. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, 36(6):1146-1160, 2006. doi:10.1109/TSMCA.
2006.878984.

Aidan ZH Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn. Large language
models for test-free fault localization. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, pages 1-12, 2024.

https://archive.softwareheritage.org/swh:1:dir:d265fcfc25d623bff2fa34d48590c7eb66d08995;origin=https://github.com/asztyber/LLM_diagnostic_concepts;visit=swh:1:snp:31599884a2ca089151c386c2915805fda441c252;anchor=swh:1:rev:5ad0879c1c0cc2a298b82e86e20b6e70cb6a2c24
https://archive.softwareheritage.org/swh:1:dir:d265fcfc25d623bff2fa34d48590c7eb66d08995;origin=https://github.com/asztyber/LLM_diagnostic_concepts;visit=swh:1:snp:31599884a2ca089151c386c2915805fda441c252;anchor=swh:1:rev:5ad0879c1c0cc2a298b82e86e20b6e70cb6a2c24
https://github.com/asztyber/LLM_diagnostic_concepts
https://github.com/asztyber/LLM_diagnostic_concepts
https://doi.org/10.4230/artifacts.24966
https://doi.org/10.1109/TSMCA.2006.878984
https://doi.org/10.1109/TSMCA.2006.878984

Combining Dynamic Slicing and Spectrum-Based
Fault Localization — A First Experimental
Evaluation

Jonas Schleich &
Graz University of Technology, Austria

Franz Wotawa!? =

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

—— Abstract

Identifying and localizing bugs in programs has always been considered a complex but essential
topic. Whereas the former has led to substantial progress in areas like formal verification and testing
with a high degree of automation, the latter has not been satisfactorily automated. Approaches like
program slicing, model-based diagnosis, and, more recently, spectrum-based fault localization can
be used to find possible causes of a misbehaving program automatically, but often come with high
computational complexity or a larger list of diagnoses, which require additional manual effort. In this
paper, we present the first experimental results of an approach that combines program slicing with
spectrum-based fault localization aiming at improving the outcome of automated debugging methods.
In contrast to previous work, where we illustrated potential improvements only by considering a
particular use case, we present an evaluation based on 22 different example programs in this paper.
The approach improves the wasted effort on average by around 5 to 15% on average.

2012 ACM Subject Classification Software and its engineering — Software testing and debugging;
Computing methodologies — Causal reasoning and diagnostics

Keywords and phrases Software fault localization, program slicing, spectrum-based fault localization,
automated debugging

Digital Object Identifier 10.4230/0ASIcs.DX.2025.3

Supplementary Material Software (Source Code): https://github.com/SchleichJonas/JSR
archived at swh:1:dir:062e5cd4325d9b47fafadb80£521129b36a5c8c6

Funding Franz Wotawa: The work was supported by the Austrian Science Fund (FWF) Cluster of
Excellence Bilateral AI under contract number 10.55776/COE12.

1 Introduction

Debugging comprises detecting, localization, and repairing faults in programs, which still is
mainly carried out manually, causing a lot of effort. There are several approaches supporting
the automation of fault detection in use, but almost none for fault localization and repair.
However, automating debugging has been of interest for more than four decades, e.g., see
Ehud Shapiro [21] or Mark Weiser [25, 26]. The latter investigated how programmers perform
debugging utilizing program slices, which are calculated only considering the source code.
Korel and Laski [16] introduced dynamic slicing, where program executions are used to
eliminate part of the source code not involved in current executions. However, despite the
interest in slicing from academia, its use in practice is limited, leading to other debugging
approaches like spectrum-based fault localization or model-based debugging [6, 10, 31].

1 Corresponding author
2 Authors are listed in alphabetical order.

© Jonas Schleich and Franz Wotawa;
37 licensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).

Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 3; pp. 3:1-3:18

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jonas.schleich@student.tugraz.at
mailto:wotawa@tugraz.at
https://orcid.org/0000-0002-0462-2283
https://doi.org/10.4230/OASIcs.DX.2025.3
https://github.com/SchleichJonas/JSR
https://archive.softwareheritage.org/swh:1:dir:062e5cd4325d9b47fafadb80f521129b36a5c8c6;origin=https://github.com/SchleichJonas/JSR;visit=swh:1:snp:ffee13595bab0901c0d8d88ed2faa7583740b0cb;anchor=swh:1:rev:3e975b7ae9d79bc72610dd46c8d5511b5445f1ff
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

3:2

Dynamic Slicing and SFL

Regarding spectrum-based fault localization (SFL), Jones and Harrold [13] introduced
the basic concepts in the corresponding tool Tarantula. In contrast to slicing, which utilizes
program dependencies, SFL uses a probability-based approach considering different execution
runs. In particular, the idea is to assign a suspicious value to each statement (or other part
of a program), which can be motivated as follows. Any statement that is not executed in
failing runs is very unlikely to be faulty. A statement that is only executed in failing runs
is likely faulty. All other statements executed in passing or failing runs might be faulty. A
suspicious value for each statement can be computed considering the execution of statements.

It is worth noting that SFL has gained much attention in the debugging community.
Wong and colleagues [28] provided a survey showing that SFL holds the largest share of
publications of about 30%, followed by slicing-based debugging approaches. However, there
is only a little work combining slicing and SFL for improving debugging, i.e., Wen et al. [27],
Hofer and Wotawa [11], Reis et al. [18], Soha [22], and more recently Wotawa [30]. In this
paper, we mainly focus on the last cited publication and provide an initial experimental
evaluation of the impact of the combined approach on the quality of the debugging results.
In his original paper, Wotawa [30] only discussed the potential impact but did not provide
any experimental evidence of the superiority of the combined slicing and SFL approach. It is
further worth noting that combining approach is one possibility to bring different approaches
together, which often leads to a better performance, e.g., see Mukhtar et al. [17]. The other
way is to show that one approach can be subsumed by the other. For example, Wotawa [29]
showed that the results of static slicing can be achieved using an abstract model of program
statements considering only dependencies between variables and statements.

Hence, in this paper, we contribute to automated software debugging as follows. We
present a first experimental evaluation that considers a combined debugging approach utilizing
SFL and dynamic slicing. The experimental evaluation was carried out considering available
tools for Java programs. The research objective of the study was to clarify whether the
combined debugging approach improves debugging or not. The question is important because
adding slicing to debugging comes with a substantial computational overhead compared to
SFL. Hence, without substantial improvements, a real benefit of the combined method may
not be arguable. In addition to the study, we also discuss challenges and issues we experienced
when carrying out the experimental evaluation. In particular, there is a huge influence of
tools on the outcome, which cannot be neglected and where only partial mitigation is possible.
Note that the provided experimental evaluation cannot be considered an exhaustive one
incorporating a vast number of faulty versions of different programs. It is the first study to
clarify whether conducting additional experimental evaluation is worthwhile.

We organize the paper as follows: We first introduce the foundations behind SFL, dynamic
slicing, and the combined approach. Afterward, we describe the experimental setup, followed
by a detailed presentation of the results. We discuss and summarize the obtained results and
finally conclude this paper.

2 Foundations

In this section, we discuss the foundations behind SFL and its variant that utilizes dynamic
slicing. To illustrate definitions and underlying ideas, we make use of an illustrative example
program. In Figure 1, we have a simple Java program Car.warn that computes the braking
distance using the current velocity, the friction coefficient mu, and the physical equation given
in Line 12. This braking distance is used together with a given distance to a vehicle in front
of a car to raise a warning in the case where we cannot stop within 80% of the provided

J. Schleich and F. Wotawa

1. public class Car {

2 public static double mu = 1.10758097;

3 public static double constG = 9.80665;

4 public static void warn(

5. double velocity, double distance, boolean raining) {
6 double braking_distance;

7 double current_mu = mu;

8 boolean warning;

9 if (raining) {

10. current_mu = 0.8*current_mu;

11. X

12. braking_distance = (velocity*velocity)/(2*current_mu*constG);
13. if (braking_distance > 0.8*distance) {

14. warning = true;

15. } else {

16. warning = false;

17. X

18. store(warning,braking_distance);

19. }

20. }

Figure 1 An illustrative example program computing an expected braking distance and comparing
it with a distance to a vehicle in front for raising alarm messages.

Table 1 A test suite for program Car.warn.

test case | velocity | distance | raining || warning braking_distance
Ty 15 10 false true | 10.357533856871605
T 30 64 false false | 41.430135427486420
T3 30 64 true true | 51.787669284358020
Ty 15 64 true false | 12.946917321089504

distance. The 80% is a safety margin. In addition, a situation where we have rain influencing
the friction and, therefore, the braking distance is considered. In the case of rain, the friction
coefficient is set to 80% of its original value.

To test Car.warn, we need test cases. A test case comprises given input values and the
resulting expected output values. In our case, we consider the warning and the calculated
braking distance as output. Table 1 comprises 4 test cases for Car.warn. Via executing
Car.warn, we are able to confirm the correct behavior of the program. Let us now assume that

we have a bug in the program. Instead of Line 10, we have current_mu = 0.85%current_mu.

We refer to this faulty variant as Car.warn’. Executing Car.warn’ on the same test suite,
however, leads to a different outcome, which we depict in Table 2. Obviously, the values of
the braking distance are wrong whenever it is raining, but only once the warning is false
instead of true.

After identifying deviations from expectations, we are interested in identifying the root
cause behind them. This is similar to ordinary model-based diagnosis [19, 7] but considers a
program instead of a system comprising interacting (hardware) components.

3:3

DX 2025

3:4

Dynamic Slicing and SFL

Table 2 Running the test suite from Table 1 on program Car.warn’. Values in bold face indicate
differences to expectations.

test case | velocity | distance | raining || warning braking distance
Ty 15 10 false true 10.357533856871605
1> 30 64 false false 41.430135427486420
T3 30 64 true false | 48.74133579704284
Ty 15 64 true false | 12.18533394926071

Table 3 The program spectrum of Car.warn’ considering the 4 test cases.

Statement Ty | T> | T3 | Ty || aco | ao1 | @10 | a1 co
4. public static void warn(

5. double velocity, double distance, boolean raining) {

6. double braking distance; 1 1 1 1 0 0 2 2 0.707
7. double current_mu = mu; 1 1 1 1 0 0 2 2 0.707
8. boolean warning; 1 1 1 1 0 0 2 2 0.707
9. if (raining) { 1 1 1 1 0 0 2 2 0.707
10. current__mu = 0.85%current__mu; 0 0 1 1 2 0 0 2 1.000
11}

12. braking distance = (velocity*velocity)/...; 1 1 1 1 0 0 2 2 0.707
13. if (braking_distance > 0.8*distance) { 1 1 1 1 0 0 2 2 0.707
14. warning = true; 1 0 0 0 1 2 1 0 0.000
15. } else {

16. warning = false; 1 0 1 1 1 0 1 2 0.816
17. }

18. store(warning,braking_distance); 1 1 1 1 0 0 2 2 0.707
19. }

Error vector 0 0 1 1

2.1 Spectrum-Based Fault Localization

We first explain the ideas behind SFL [13, 2, 3, 1]. SFL utilizes the program spectrum for
debugging. A program spectrum is a matrix considering the program statements on one axis
and the test cases on the other. A cell of the matrix has a value of 1 if the statement is
executed in its corresponding test case and 0, otherwise. To access an element of the program
spectrum in row ¢ and column j, we write x;;. In addition, we have an error vector e;
indicating whether a test case is passing or failing for each column j. A passing test case
is a test case where the program delivers the expected outcome. Otherwise, a test case is
said to be a failing one. Table 3 shows the program spectrum and the error vector for our
illustrative example program Car.warn’.

To compute a suspicious value for each statement, we need information on whether a
statement is executed in a passing or failing run. SFL introduces for this purpose 4 metrics
values a;; for each statement, i.e., row i, which are defined as follows: an, () = [{j|zi; =
nAe; =m}|. Hence, each ay,, indicates whether a statement is executed or not in a passing
or failing test case. We find the metrics information for Car.warn’ in Table 3. What is
missing is the computation of a suspicious value. In SFL, the four metrics values are used.
There are a lot of papers introducing the computation of different suspicious values, which
are also called SFL coefficients, that lead to a ranking of statements. The one with the
highest value is the most suspicious, followed by the next value, etc.

J. Schleich and F. Wotawa

In our experiments, we used three different SFL coefficients, i.e., Tarantula [13] cr
(Equation 1), Ochiai [2] ¢o (Equation 2), and Sarhan-Beszedes [20] c¢s (Equation 3):

ail
ai1+ao1

er = aio a1l (1)
aio+tao1 ai1+tao1
aiy

co =
\/(an +ag1) - (a11 + aio)

s = ain + (‘M> (3)

a11 + ap1 + aio

For our running example, Table 3 shows the results when applying the Ochiai coefficient.
We see that the statement comprising the fault, i.e., Line 10, is the most suspicious with a
co value of 1.0, followed by Line 16. Hence, in this case, SFL would enable a programmer to
localize the fault in one step, only having a look at the statement in Line 10.

2.2 Dynamic Slicing

Dynamic slicing [16] is different compared to SFL as it utilizes the data and control de-
pendencies of a program considering statements that are executed for a particular test case.
Dynamic slicing only uses one test case at a time for extracting statements that cause a value
of a given variable at a certain position of the execution. A particular execution can be seen
as a trace, i.e., the execution trace. Together with all dependencies, we obtain a directed
graph, i.e., the execution trace graph. Let us illustrate this using our Car.warn’ method
and test case T5. When calling warn(30,26,true) the following statements are executed
ignoring syntax details:

6 double braking_distance;

T. double current_mu = mu;

8 boolean warning;

9 if (raining) {

10. current_mu = 0.85*current_mu;

12. braking_distance = (velocity*velocity)/(2*current_mu*constG);
13. if (braking_distance > 0.8+*distance) {

16. warning = false;

18. store(warning,braking_distance);

We now add information regarding data and control dependencies and obtain the following
graph:

3:5

DX 2025

3:6

Dynamic Slicing and SFL

l 6.double braking_distance;

l 7.double current_mu = mu;

8.boolean warning;
_ - 9.if (raining)
-

-
-
s
7

)

t

10.current__mu = 0.85%current_ mu;

12.braking_ distance = (velocity*velocity)/(2*current_mu*constG);

% 13.if (braking_ distance > 0.8*distance)
\

16. warning = false;

l 18.store(warning,braking_distance);

If we now want to compute a dynamic slice for a variable, e.g., braking_distance, we
only need to mark the node from the end of the graph where the variable is defined for
the last time. For braking distance this is Line 12. Afterward, we traverse the graph
backward and mark all nodes we can reach. For braking_distance we obtain lines 10, 9,
and 7. The final dynamic slice comprises all marked nodes, which are 7, 9, 10, and 12 for
braking_distance. For warning, the dynamic slice is: 7, 9, 10, 12, 13, 16. Considering
a single fault assumption, we may only want to focus on the intersection of both slices,
which finally is the slice for braking_distance. Note that in dynamic slicing, we cannot
rank statements in the slice. We further do not incorporate knowledge about failing or
passing runs. Dynamic slicing is mainly used for failing test cases to identify root causes
for misbehavior. However, due to using dependency information, dynamic slicing allows
distinguishing statements in a block that would not be possible when only considering SFL.
Therefore, a combination of the approaches seems to be a good idea to compensate for the
weaknesses of the respective other approach.

2.3 Dynamic slicing enhanced spectrum-based fault localization

To be self-contained, we briefly explain the idea and algorithm of the combined approach. For
more details, we refer to the original publication of Wotawa [30]. The idea behind combining
slicing and SFL is simple. Instead of considering statement executions and solely the outcome
of a test, we distinguish all output variables and consider the dynamic slices for them. When
distinguishing the outputs of a test, we can also add the information of whether an output is
correct or incorrect directly into SFL. Moreover, statements that are not in any dynamic
slice can be ignored. The computation of the coefficients is then working as usual. Hence,
it is only the way a test is separated into parts that distinguish the hybrid method from
ordinary SFL.

In Figure 4, we depict the outcome of the hybrid method for our running example program
Car.warn’. We see that the buggy statement is still the highest-ranked one. It is worth
noting that, for this example, the hybrid method does not provide an improvement. However,
for other example programs, there are improvements and, therefore, we are interested in a
more detailed evaluation considering different faults and programs.

J. Schleich and F. Wotawa

Table 4 The program spectrum of Car.warn’ considering the 4 test cases and the hybrid approach.
Note that the columns named B and W are the ones for variables braking_distance and warning
respectively. Further, note that values are only computed for statements appearing in slices.

Statement Ty Ts T3 Ty ago | @o1 | aio | @11 co
W| B|W|B|W|B|W|B

4. public static void warn(

5. double velocity, ...) {

6. double braking distance;

7. double current_mu = mu; 1111|1111 0 0 5 3 0.612

8. boolean warning;

9. if (raining) { 1|1 (1|11]1|1]1 0 0 5 3 0.612

10. current_mu = 0.85*cur... 0jo0|j0jO0|1|1]|1]1 4 0 1 3 0.866

1.}

12. braking_distance = (velocity...; 1111|1111 0 0 5 3 0.612

13. if (braking distance > 0.8%...) { 1|1 (1|11]1|1]1 0 0 5 3 0.612

14. warning = true; 1{o0(ojofoj010/|0 4 3 1 0 0.000

15. } else {

16. warning = false; oOjo|1|O0o|1]0O0]1]O 3 2 2 1 0.333

17. }

18. store(warning,braking _distance);

19. }

Error vector 0j0j0j0|1]1]0]|1

2.3.1 Implementation

We implemented the hybrid SFL approach utilizing the existing JSR framework that computes
the checked coverage of Java programs [23, 15, 14]. Checked coverage is a coverage measure
that considers whether statements influence the values of a given test property, which are
used, for example, in JUnit as test oracles. The JSR framework utilizes the Java code
coverage library JaCoCo [9] and the dynamic slicing tool Slicer4J [4] for computing checked
coverage.

Using JSR, we obtain the spectrum for a program and a test suite as follows: For each test
and output variable, we generate a JUnit test that comprises a test property for the variable.
We run JSR on the test suite and compute the checked coverage for all test properties, which
means to compute all statements that influence the variable value and are executed. This
information is added to the program spectrum. For the error vector, we record whether the
test property indicates a passing or a failing run and finally obtain all the needed information.

It is worth noting that we made some changes to JSR and also implemented the computa-
tion of the already introduced SFL coefficients, i.e., Ochiai, Tarantula, and Sarhan-Beszedes.
The implementation is available on GitHub https://github.com/SchleichJonas/JSR. Be-
sides the implementation, we put all programs for obtaining the experimental evaluation into
the repository to ensure reproducibility.

3 Experimental evaluation

The objective of the experimental evaluation is to show the impact of adding dynamic
slicing to spectrum-based fault localization. In particular, we are interested in answering
the question of whether utilizing dynamic slicing improves the outcome of spectrum-based

3:7

DX 2025

https://github.com/SchleichJonas/JSR

3:8

Dynamic Slicing and SFL

Table 5 Programs used for the initial experiments.

Program | LoC | Test cases | Inputs | Outputs
BMI 24 6 2 1
Expint 88 5 2 1
Fisher 74 5 3 1
Gammgq 91 5 2 1
Luhn 91 7 2 1
Middle 27 5 3 1
Tcas 152 8 12 1

fault localization when applied to ordinary programs. To answer this question, we first
need to define what ”improves” means in this context. From the literature, there have been
several metrics specified for comparing different debugging methods, e.g., Hit Ratio@k and
the wasted effort [12]. Whereas the former indicates how often a debugging approach ranks
the correct diagnosis within the first n elements, the latter captures how many non-faulty
statements are ranked before (or have to be inspected before) the buggy statement. The
wasted effort is an absolute evaluation measure and not a percentage rank. Note that wasted
effort is also sometimes referred to as EXAM score and is considered favorable to assess
software debugging techniques [5]. In the context of this paper, we use the following definition
of wasted effort (WE) where sy is the suspicious score of the actual error:

W E = |lines with score > sy| 4 0.5 - (|lines with score = sy|) — 1)

Note that the hit ratio given in this paper is always the best, i.e., if there are multiple
statements having the same SFL coefficient value, we assume that the statement comprising
the fault is ranked the best.

For the experimental evaluation, we used different sets of programs. We introduced bugs
and test suites that are able to capture the bug. For every program, we only introduced one
fault manually. We ran the different debugging approaches and obtained the hit ratio and
wasted effort for each program. We finally computed average values. In the following, we
report the obtained results, considering each of the program sets separately. We start with
the initial experiments.

3.1 |Initial experiments

We carried out the initial experiments considering simple programs such as a BMI calculator,
the Luhn algorithm that is used for credit card number verification, TCAS, and others,
for which we summarize some metrics information in Table 5. These programs have been
used in the context of software testing and also debugging research. The calculations vary
in complexity from elementary calculations to more complex ones. In each class, multiple
intentional errors were added manually, triggering SFL and dynamic slicing. The introduced
errors differ, aiming at achieving as much variety as possible. Every calculation has multiple
test cases, including passing and failing test cases. Table 6 depicts the applied changes for
obtaining the programs used for the initial experiments.

For each program, we manually developed 5-8 test cases, ensuring that some are passing
and some are failing. For the initial evaluation, we only considered one variable as the output
variable. Hence, we did not expect any negative impact of the hybrid method on the SFL
result. There might be a positive impact on the results because the hybrid SFL. method
utilizes data dependencies, which might allow the elimination of statements that do not
contribute to the final outcome and, therefore, improve the ranking.

J. Schleich and F. Wotawa

Table 6 Alteration of the source code used in the initial experiments.

Program | LineNr. | Original code Altered code

BMI 17 else if (bmi < 30) else if (bmi > 30)

BMI2 7 bmi_score = weight / (height * height); bmi_score = weight / (height);

BMI3 12 calculateBMI(height, weight); calculateBMI(weight, height);

Expint 43 h *= del; h = del;

Expint2 47 return h*Math.exp(-x); return h*Math.exp(x);

Expint3 38 a = -I*(nm1+i); a = -i*nml+i;

Fisher4 10 a = 2*%(m/2)-m+2; a = 2%(m/2)-n+2;

Fisher2 27 d = 0.5*%p*z/w; d = 0.4%p*z/w;

Fisher3 54 p = p*zk+w*z*(zk-1.0)/(z-1.0); p = p*zk+w*(zk-1.0)/(z-1.0);

Gammq 37 an = -i*(i-a); an = i*(i-a);

Gammq?2 72 gamser=sum*Math.exp(- gamser=sum*Math.exp(-
x-+a*Math.log(x)-gln); x+a*Math.log(x));

Gammg3 84 return 1-gamser; return gamser-1;

Luhn 14 if (number.length() '= 16 || if (number.length() '= 15 ||

Luhn2 76 for (int i = number.length-2; i > -1; i-=2) | for (int i = number.length-2; i > 0; i-=2) {
{

Middle 6 if((a<b && b<c)|| (c<b && b<a)){ if((a<b && b<c)|| (c<b && b>a)){

Middle2 15 return a; return b;

Tcas 54 return ((Climb__Inhibit!=0) ?7 | return ((Climb__Inhibit!=0) ?
Up_Separation 4+ NOZCROSS :| Up_Separation - NOZCROSS
Up_ Separation); |Up__Separation);

Tcas2 124 alt_sep = UPWARD_RA; alt__sep = UNRESOLVED;

In tables 7 and 8, we depict the obtained results of the initial experiments considering
SFL alone and the hybrid approach, respectively. We see that there are differences both in
the rank and the wasted effort (WE). In some cases, WE improves when using the hybrid
approach, and in three cases, the WE becomes worse. This holds especially for the Expint
and the Tcas programs, where we obtained severe declines in performance, which is also
visible in the following table, which captures the Hit ratio and the average values of the WE
results for the three SFL coefficients:

Ochiai Tarantula Sarhan-Beszedes
Hit@l | Hit@5 WE Hit@l | Hit@5 WE Hit@l | Hit@5 WE
SFL 0.8333 1.0000 | 4.8056 | 0.7222 1.0000 | 5.8611 | 0.8333 1.0000 | 4.8056
Hybrid | 0.7778 0.9444 | 6.4722 | 0.7222 0.9444 | 7.6389 | 0.7778 0.9444 | 6.4722

For all three SFL coeflicients, we see a decline of the WE when using the hybrid approach,
which is unexpected. Therefore, we further investigated the underlying reasons.

After having a look at the usual suspects for causes of the unexpected results, like the
implementation or the experimental setup, which seemed to be correct, we further investigated
the dynamic slicer used in the JSR framework. A detailed analysis of the resulting traces

and slices showed that sometimes the slicer does not give back statements comprising faults.

For both programs Expint and Tcas we obtained a similar outcome. The slicer uses Jimple,
which is a 3-address intermediate representation, to simplify analysis and transformation
of Java bytecode [24] as the internal representation of the program. Unfortunately, this
transformation removes important parts of the program, not allowing the slicer to return
a correct output in every case. It is worth noting that dynamic slicers themselves do not
always deliver back a correct slice, which leads to the development of critical slicing [8] and
other variants.

3:9

DX 2025

3:10 Dynamic Slicing and SFL

Table 7 Results of the initial experiments only considering SFL without slicing. WE stands for
wasted effort.

Program Ochiai Tarantula Sarhan-Beszedes
Rank | WE | Rank | WE | Rank WE
BMI 1 0.0 1 1.5 1 0.0
BMI2 1 0.5 3 5.0 1 0.5
BMI3 1 1.0 1 1.0 1 1.0
Expint 1 9.0 1 9.0 1 9.0
Expint2 1 9.0 1 9.0 1 9.0
Expint3 1 9.0 1 9.0 1 9.0
Fisher 1 8.0 1 19.0 1 8.0
Fisher2 1 0.5 1 0.5 1 0.5
Fisher3 2 4.5 2 4.5 2 4.5
Gammq 1 10.0 1 10.0 1 10.0
Gammgq2 1 6.0 1 6.0 1 6.0
Gammgq3 1 6.0 1 6.0 1 6.0
Luhn 1 0.0 2 2.0 1 0.0
Luhn2 1 6.5 1 6.5 1 6.5
Middle 2 1.5 2 1.5 2 1.5
Middle2 1 0.0 1 0.0 1 0.0
Tcas 4 15.0 4 15.0 4 15.0
Tcas2 1 0.0 1 0.0 1 0.0

Table 8 Results of the initial experiments considering the hybrid approach with dynamic slicing.
An arrow up indicates an improvement of the result compared to the one given in Table 7, and an
arrow down the opposite. WE stands for wasted effort.

Program Ochiai Tarantula Sarhan-Beszedes
Rank | WE | Rank | WE | Rank WE
BMI 1 0.0 1 1.5 1 0.0
BMI2 1 0.01 3 4.51 1 0.01
BMI3 1 1.0 1 1.0 1 1.0
Expint 20 | 2600 | 20 | 2600 20 26.0J
Expint2 1 7.51 1 7.51 1 7.5
Expint3 1 7.51 1 7.51 1 7.5T
Fisher 1 451 1 1950 1 457
Fisher2 1 0.5 1 0.5 1 0.5
Fisher3 2 4.5 2 4.5 2 4.5
Gammq 1 8.01 1 8.0t 1 8.0T
Gammgq2 1 4.57 1 4.57 1 4.57
Gammgq3 1 5.0 1 5.01 1 5.0
Luhn 1 0.0 11 0.01 1 0.0
Luhn2 1 6.5 1 6.5 1 6.5
Middle 2 5.5) 2 5.5) 2 5.5)
Middle2 1 0.0 1 0.0 1 0.0
Tcas 6] 35.5] 6l 35.5] 6J 35.5]
Tcas2 1 0.0 1 0.0 1 0.0

J. Schleich and F. Wotawa

Table 9 Programs used for second experiments.

Program LoC | Test cases | Inputs | Outputs
Armstrong 49 7 1 1
Bubblesort 38 7 1 1
ChineseRemainder | 47 7 2 1
Factorial 18 7 1 1
GCD 27 7 2 1
InverseCounter 26 7 1 1
IsPrime 20 7 1 1
LCM 24 7 2 1
LogExp 23 7 2 1
Minimax 50 7 1 1
ModInverse 32 7 2 1
Mult 30 7 2 1
RSA 58 7 3 1
RussianPeasant 34 7 2 1
Sqrt 23 7 1 1

Hence, we can summarize the findings obtained from the initial experiment as follows:

Finding 1: There is a huge impact of the underlying slicer on the obtained results of the

hybrid method in some cases leading to worst results when using the hybrid SFL approach.

More experiments are required to further investigate the effect of the impact of the
underlying slicer and on other influencing factors like the way an error was introduced in a
program. Therefore, we carried out a second and a third experiment.

3.2 Second experiments

The objectives of the second experiment are to clarify whether there is an influence on the
way intentional errors are introduced, covering well-known algorithm implementations. For
this purpose, we selected 15 algorithms, from very simple ones like the greatest common
divisor (GCD) to more complex ones like RSA encryption and decryption. See Table 9 for the
list of implementations and their corresponding statistics. We provided the implementations
to four students and asked them to place one error into the source code, not giving them a lot
of input to avoid introducing bias. Note that the implementations were equally distributed
among the students. The only requirement was that the error still lead to the execution of
the program without any exceptions. The selected students come from different fields; where
two are from software engineering, one from mathematics, and another one is not from any
science discipline at all. Table 10 depicts the changes to the implementations introduced by
the students.

After running the second experiment, we obtained the debugging outcome of SFL and
the hybrid method that we depict in tables 11 and 12, respectively. The debugging methods
performed better in this experiment than the initial one. This is probably because the
programs of the second experimental evaluation are simpler. The improvements can be
observed both for the Tarantula coefficient and the hybrid SFL method. However, Tarantula
still performed worse than the other SFL coefficient. The already well-performing Sarhan-
Beszedes coefficient performed even better than Ochiai, which performed the same as
Sarhan-Beszedes for the initial setup.

3:11

DX 2025

Dynamic Slicing and SFL

Table 10 Changed code of programs used for the second experiments.

Program LineNr. | Original code Altered code

Armstrong 34 int r = temp % 10; int r = temp / 10;

Bubblesort 36 return arr; return res;

ChineseRemainder | 26 if (x%numlj] != remlj]) if (x%numlj] == reml[j])

Factorial 7 int res = 1; int res = 0;

GCD 12 if (a % result == 0 && b % result | if (a / result == 0 && b % result
==0){ ==0){

InverseCounter 12 for (int j =i+ 1; j < n; j++) { for (intj=1+1;j<n-1;j++) {

IsPrime 10 for (int i = 2;1 < n; i++) for (int i = 2; i <= n; i++)

LCM 10 return ged(b % a, a); return ged(b % a, b);

LogExp 12 pow = pow * b; pow = pow % b;

Minimax 48 return minimax (0, 0, true, scores, | return -minimax(0, 0, true, scores,
h); h);

ModInverse 30 return modInverse(A, M); return modInverse(M, M);

Mult 17 return -multiply(x, -y); return multiply(x, -y);

RSA 14 z=(p-1)*(q-1); z=(p-1)*(qa+1)

RussianPeasant 19 res = res + a; res = res % a;

Sqrt 17 return res - 1; return res - res;

Table 11 Results of the second experiments only considering SFL without slicing. WE stands for
wasted effort.

Program Ochiai Tarantula | Sarhan-Beszedes
Rank | WE | Rank | WE | Rank WE
Armstrong 1 4.5 1 4.5 1 4.5
BubbleSort 1 3.0 1 7.5 1 3.0
ChineseRemainder 1 3.5 1 5.0 1 3.5
Factorial 1 2.0 1 2.5 1 2.0
GCD 1 0.5 1 0.5 1 0.5
InverseCounter 2 4.5 2 4.5 1 3.5
Isprime 1 1.0 1 1.0 1 1.0
LCM 1 0.0 1 0.0 1 0.0
LogExp 1 0.0 1 0.0 1 0.0
Minimax 1 3.0 1 3.0 1 3.0
ModInverse 1 3.0 1 5.0 1 3.0
Mult 1 0.5 1 0.5 1 0.5
RSA 1 12.0 1 12.0 1 12.0
RussianPeasant 1 4.0 1 4.0 1 4.0
Sqrt 2 3.0 2 3.0 2 3.0

J. Schleich and F. Wotawa

Table 12 Results of the second experiment considering the hybrid approach with dynamic slicing.
An arrow up indicates an improvement of the result compared to the one given in Table 11, and an
arrow down the opposite. WE stands for wasted effort.

Program Ochiai Tarantula | Sarhan-Beszedes
Rank | WE | Rank | WE | Rank WE
Armstrong 1 5.04 2] 7.04 1 5.04
BubbleSort 1 0.51 1 7.5 1 0.51
ChineseRemainder 3] 7.04 1 5.0 34 7.04
Factorial 1 1.071 1 2.01 1 1.01
GCD 1 1.04 1 1.0) 1 1.04
InverseCounter 11 2.01 11 2.07 2] 5.04
Isprime 1 1.0 1 1.0 1 1.0
LCM 1 0.0 1 0.0 1 0.0
LogExp 1 0.0 1 0.0 1 0.0
Minimax 1 2.0 2] 4.04 1 2.0
ModInverse 1 2.51 1 4.51 1 2.57
Mult 1 0.5 1 0.5 1 0.5
RSA 1 9.51 1 9.57 1 9.51
RussianPeasant 1 3.51 1 3.57 1 3.57
Sqrt 2 3.0 2 3.0 2 3.0

These improvements are also very well visible in the summary of the results, where we
also consider the hit ratio and not only wasted effort, which is given in the following table:

Ochiai Tarantula Sarhan-Beszedes
Hit@Q1l | Hit@5 WE Hit@Q1l | Hit@5 WE Hit@Q1l | Hit@5 WE
SFL 0.8667 1.0000 | 2.9667 | 0.8667 1.0000 | 3.5333 | 0.9333 1.0000 | 2.9000
Hybrid | 0.8667 1.0000 | 2.5667 | 0.8000 1.0000 | 3.3667 | 0.8000 1.0000 | 2.7667

Interestingly, while HitRatio@1 decreased with the hybrid method for Tarantula and
Sarhan-Beszedes, the wasted effort improved slightly for both. For Ochiai, we see no change
in the hit ratio, but the wasted effort also improved. Hence, what we can conclude is the
following:

Finding 2: The hybrid method for SFL behaves slightly better considering the wasted effort
for simple algorithm implementations, whereas the hit ratio is slightly worse.

Hence, we see a different outcome in the experiments where all underlying programs
have only one output. Therefore, we are interested in investigating the effect of considering
programs with more than one output on the debugging results. To answer this question, we
carried out a third experimental evaluation.

3.3 Third experiments

To answer the question of whether the number of output variables impacts the ranking
when comparing SFL with our hybrid method, we used the same example programs as in
the first experiments, which are depicted in Table 5. But for most of the programs of the
initial experiments, we used available variables in the source code as additional outputs for
which we defined the expected values. For the programs and their variants, we have the
following number of outputs in the third experimental setup: BMI (2), Expint (2), Fisher (4),
Gammgq (4), Luhn (1), Middle (1), Tcas (5). Note also that the increase of outputs (with

3:13

DX 2025

3:14

Dynamic Slicing and SFL

Table 13 Results of the third experiments only considering SFL without slicing. WE stands for
wasted effort.

Program Ochiai Tarantula | Sarhan-Beszedes
Rank | WE | Rank | WE | Rank WE
BMI 1 0.0 1 1.5 1 0.0
BMI2 1 2.5 4 7.5 1 2.5
BMI3 1 3.0 1 3.0 1 3.0
Expint 1 7.5 1 7.5 1 7.5
Expint2 1 7.5 1 7.5 1 7.5
Expint3 1 7.5 1 7.5 1 7.5
Fisher 1 8.0 1 13.5 1 8.0
Fisher2 1 0.5 1 0.5 1 0.5
Fisher3 2 4.5 2 4.5 2 4.5
Gammgq 1 10.0 1 10.0 1 10.0
Gammgq2 1 6.0 1 6.0 1 6.0
Gammq3 1 6.0 1 6.0 1 6.0
Luhn 1 0.0 2 2.0 1 0.0
Luhn2 1 6.5 1 6.5 1 6.5
Middle 2 1.5 2 1.5 2 1.5
Middle2 1 0.0 1 0.0 1 0.0
Tcas 4 16.5 4 16.5 2 11.5
Tcas2 1 0.0 1 0.0 1 0.0

the exception of Luhn and Middle) also leads to an increase in test cases because we have
one JUnit test for each property specifying the expected behavior of one output. Hence,
the results for SFL also might change, which is well visible when comparing Table 7 with
Table 13.

When comparing the results of SFL and the hybrid approach, which are depicted in
Table 13 and Table 14 respectively, we see an improvement. The hybrid approach provides
a better wasted effort for almost all programs. Moreover, the ranking improved as well
and is now the same or better for most of the coefficients. Considering more outputs even
compensates for the problem with the slicer. In the following table, we summarize the
findings for all programs, also considering the hit ratio:

Ochiai Tarantula Sarhan-Beszedes
Hit@1 | Hit@5 WE Hit@1 | Hit@5 WE Hit@Q1 | Hit@5 WE
SFL 0.8333 1.0000 | 4.8611 | 0.7222 1.0000 | 5.6389 | 0.8333 1.0000 | 4.5833
Hybrid | 0.8333 1.0000 | 2.1667 | 0.7778 1.0000 | 3.1389 | 0.8333 1.0000 | 2.1389

We see that with one exception for Tarantula, the hit ratio of the hybrid approach is
always the same as the one for SFL alone. The wasted effort improves between around 5%
and 15% on average for the different SFL coefficients. Hence, the third experiment confirms
that adding slicing has the potential to improve the outcome, at least for the wasted effort,
which is an important measure for the efficiency of debugging. This leads to the following
third finding of our preliminary experimental evaluation:

Finding 3: For programs with more than one output, the hybrid approach, which integrates
dynamic slicing into SFL, the wasted effort improves.

J. Schleich and F. Wotawa

Table 14 Results of the third experiments considering the hybrid approach with dynamic slicing.
An arrow up indicates an improvement of the result compared to the one given in Table 13, and an
arrow down the opposite. WE stands for wasted effort.

Program Ochiai Tarantula Sarhan-Beszedes
Rank | WE | Rank | WE | Rank WE
BMI 1 0.0 1 1.5 1 0.0
BMI2 1 0.51 21 1.51 1 0.57
BMI3 1 0.51 1 0.51 1 0.51
Expint 1 0.51 1 0.51 1 0.57
Expint2 1 1.01 1 1.01 1 1.01
Expint3 1 5.51 1 7.01 1 5.51
Fisher 1 0.01 1 12.01 1 0.07
Fisher2 1 0.5 1 0.5 1 0.5
Fisher3 2 4.01 2 4.5 2 3.51
Gammq 1 6.57 1 7.0t 1 6.57
Gammq?2 1 3.51 1 4.01 1 3.51
Gammg3 1 0.01 1 0.0t 1 0.0t
Luhn 1 0.0 11 0.0t 1 0.0
Luhn2 1 6.5 1 6.5 1 6.5
Middle 2 5.5 2 5.5 2 5.5)
Middle2 1 0.0 1 0.0 1 0.0
Tcas 4 4.01 31 4.01 4] 4.01
Tcas2 1 0.54 1 0.5 1 0.5

3.4 Discussion

The experimental evaluation’s objective was to carry out experiments showing whether
combining dynamic slicing with SFL has a positive impact on debugging, i.e., a better hit
ratio or wasted effort. From the experiments, which also considered different SFL coefficients,
we see not a big difference except when considering multiple output variables, which was
somehow expected. What was not expected to see a slight decrease in the debugging efficiency
of the hybrid method for some examples? A detailed analysis reveals that the slicer causes
trouble in some cases. Hence, a result of this evaluation is that the slicer may have a huge
impact depending on the program we want to debug.

As already mentioned, this experimental evaluation is an initial study. It uses small and
at least partially simple example programs. Hence, the outcome may vary when using larger
and more complex programs. However, the programs implement well-known algorithms
and comprise ordinary data and control structures. They have not been selected for a
particular purpose but used because they have already served as examples of different studies.
Besides the selection of the programs, there are other threats to the validity. First, the
implementation makes use of available tools and frameworks, which might be buggy, causing
a bias. Second, we introduced faults manually. However, we did not introduce a fault having
a certain result in mind. Third, the number of programs and their faulty variants are limited.
The same holds for the test suites, which have also been manually generated. Considering
more variants and different test suites might change the outcome. Finally, we used only
one programming language, i.e., Java, for providing examples. Hence, there might also be
an influence on the outcome. Therefore, further studies have to be carried out, including
replications of the experiments, to prove or disprove the obtained findings.

3:15

DX 2025

3:16

Dynamic Slicing and SFL

4 Conclusions

In this paper, we present a first experimental evaluation that compares ordinary spectrum-
based fault localization with a variant that utilizes dynamic slicing to overcome some
limitations, like handling data dependencies. The experimental evaluation relied on several
smaller Java programs where we introduced faults. The evaluation revealed a huge impact
of the implementation, and in particular, the use of a dynamic slicer, on the outcome.
Furthermore, we showed that for programs having more output, the hybrid method performs
better in terms of wasted effort. Hence, the outcome of the study is promising. Howewver,
further experiments are required for a final judgment of the combined debugging methodology.
This includes identifying the influence of test suites or the complexity of programs on the
outcome. Moreover, more faulty variants and larger programs should be used for the
evaluation. The latter is of particular interest to show whether additional computational
complexity of the computationally more demanding hybrid approach really pays off, leading
to a substantially improved debugging outcome. All these open issues we want to consider in
our future research.

—— References

1 Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. A practical evaluation
of spectrum-based fault localization. Journal of Systems and Software, 82(11):1780-1792, 2009.
doi:10.1016/j.jss.2009.06.035.

2 Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. On the accuracy of spectrum-based
fault localization. In Proceedings TAIC' PART’07, pages 89-98. IEEE, 2006.

3 Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. Spectrum-based multiple fault
localization. In Proc. IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 88-99, 2009. doi:10.1109/ASE.2009.25.

4 Khaled Ahmed, Mieszko Lis, and Julia Rubin. Slicer4J: A Dynamic Slicer for Java. In The
ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2021.

5 Aaron Ang, Alexandre Perez, Arie Van Deursen, and Rui Abreu. Revisiting the practical use of
automated software fault localization techniques. In 2017 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pages 175-182, 2017. doi:10.1109/
ISSREW.2017.68.

6 Luca Console, Gerhard Friedrich, and Daniele Theseider Dupré. Model-based diagnosis meets
error diagnosis in logic programs. In Proceedings 13!" International Joint Conf. on Artificial
Intelligence, pages 1494-1499, Chambery, August 1993.

7 Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97-130, 1987. doi:10.1016/0004-3702(87)90063-4.

8 Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Critical slicing for software fault
localization. In International Symposium on Software Testing and Analysis (ISSTA), pages
121-134, 1996. doi:10.1145/229000.226310.

9 EclEmma team. Jacoco java code coverage library. https://www.eclemma.org/jacoco/. Last
accessed 20 January 2025. URL: https://wuw.eclemma.org/jacoco/.

10 Gerhard Friedrich, Markus Stumptner, and Franz Wotawa. Model-based diagnosis of hardware
designs. Artificial Intelligence, 111(2):3-39, July 1999. doi:10.1016/50004-3702(99)00034-X.

11 Birgit Gertraud Hofer and Franz Wotawa. Spectrum enhanced dynamic slicing for better
fault localization. In Luc de Raedt, editor, ECAI 2012 - 20th FEuropean Conference on
Artificial Intelligence., volume 242 of ECAI, pages 420-425, Netherlands, 2012. IOS Press.
doi:10.3233/978-1-61499-098-7-420.

https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1109/ISSREW.2017.68
https://doi.org/10.1109/ISSREW.2017.68
https://doi.org/10.1016/0004-3702(87)90063-4
https://doi.org/10.1145/229000.226310
https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/
https://doi.org/10.1016/S0004-3702(99)00034-X
https://doi.org/10.3233/978-1-61499-098-7-420

J. Schleich and F. Wotawa

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

Jiajun Jiang, Ran Wang, Yingfei Xiong, Xiangping Chen, and Lu Zhang. Combining spectrum-
based fault localization and statistical debugging: An empirical study. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 502-514, 2019.
doi:10.1109/ASE.2019.00054.

J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic fault-localization
technique. In Proceedings ASE’05, pages 273-282. ACM Press, 2005.

Roxane Koitz-Hristov, Thomas Sterner, Lukas Stracke, and Franz Wotawa. On the suitability
of checked coverage and genetic parameter tuning in test suite reduction. Journal of Software:
Evolution and Process, 36(8):¢2656, 2024. doi:10.1002/smr .2656.

Roxane Koitz-Hristov, Lukas Stracke, and Franz Wotawa. Checked coverage for test suite
reduction — is it worth the effort? In 2022 IEEE/ACM International Conference on Automation
of Software Test (AST), pages 6-16, 2022. doi:10.1145/3524481.3527216.

Bogdan Korel and Janusz Laski. Dynamic Program Slicing. Information Processing Letters,
29:155-163, 1988. doi:10.1016/0020-0190(88)90054-3.

Adil Mukhtar, Birgit Hofer, Dietmar Jannach, Franz Wotawa, and Konstantin Schekotihin.
Boosting spectrum-based fault localization for spreadsheets with product metrics in a learning
approach. In 37th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2022, Rochester, MI, USA, October 10-14, 2022, pages 175:1-175:5. ACM, 2022. doi:
10.1145/3551349.3559546.

Sofia Reis, Rui Abreu, and Marcelo d’Amorim. Demystifying the combination of dynamic
slicing and spectrum-based fault localization. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19, pages 4760—-4766. International Joint
Conferences on Artificial Intelligence Organization, July 2019. doi:10.24963/ijcai.2019/661.
Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57-95,
1987. doi:10.1016/0004-3702(87)90062-2.

Qusay Idrees Sarhan and Arpad Beszedes. Experimental evaluation of a new ranking formula
for spectrum based fault localization. In 2022 IEEE 22nd International Working Conference
on Source Code Analysis and Manipulation (SCAM), pages 276-280, 2022. doi:10.1109/
SCAM55253.2022.00038.

Ehud Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, Massachusetts, 1983.
Péter Attila Soha. On the efficiency of combination of program slicing and spectrum-based
fault localization. In 2023 IEEE Conference on Software Testing, Verification and Validation
(ICST), pages 499-501, 2023. doi:10.1109/ICST57152.2023.00061.

Lukas Stracke. Jsr - the java test suite reduction framework. https://github.com/Lms24/
JSR?7tab=readme-ov-file#jsr---the-java-test-suite-reduction-framework. Last ac-
cessed 20 January 2025. URL: https://github.com/Lms24/JSR?7tab=readme-ov-file#
jsr---the-java-test-suite-reduction-framework.

Raja Vallée-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for analyses and
transformations, 1998. URL: https://api.semanticscholar.org/CorpusID:10529361.
Mark Weiser. Programmers use slices when debugging. Communications of the ACM, 25(7):446—
452, July 1982. doi:10.1145/358557.358577.

Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352-357,
July 1984. doi:10.1109/TSE.1984.5010248.

Wanzhi Wen, Bixin Li, Xiaobing Sun, and Jiakai Li. Program slicing spectrum-based software
fault localization. In Proceedings of the International Conference on Software Engineering and
Knowledge Engineering (SEKE), Miami Beach, USA, 2011.

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software
fault localization. IEEFE Trans. Software Eng., 42(8):707-740, 2016. doi:10.1109/TSE.2016.
2521368.

Franz Wotawa. On the Relationship between Model-Based Debugging and Program Slicing.
Artificial Intelligence, 135(1-2):124-143, 2002. doi:10.1016/S0004-3702(01)00161-8.

3:17

DX 2025

https://doi.org/10.1109/ASE.2019.00054
https://doi.org/10.1002/smr.2656
https://doi.org/10.1145/3524481.3527216
https://doi.org/10.1016/0020-0190(88)90054-3
https://doi.org/10.1145/3551349.3559546
https://doi.org/10.1145/3551349.3559546
https://doi.org/10.24963/ijcai.2019/661
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1109/SCAM55253.2022.00038
https://doi.org/10.1109/SCAM55253.2022.00038
https://doi.org/10.1109/ICST57152.2023.00061
https://github.com/Lms24/JSR?tab=readme-ov-file#jsr---the-java-test-suite-reduction-framework
https://github.com/Lms24/JSR?tab=readme-ov-file#jsr---the-java-test-suite-reduction-framework
https://github.com/Lms24/JSR?tab=readme-ov-file#jsr---the-java-test-suite-reduction-framework
https://github.com/Lms24/JSR?tab=readme-ov-file#jsr---the-java-test-suite-reduction-framework
https://api.semanticscholar.org/CorpusID:10529361
https://doi.org/10.1145/358557.358577
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1016/S0004-3702(01)00161-8

3:18 Dynamic Slicing and SFL

30 Franz Wotawa. Surveying and generalizing methods for combining dynamic slicing with
spectrum-based fault localization. In Proceedings of the 34th International Workshop on
Principles of Diagnosis (DX), Loma Mar, CA, USA, 2023. URL: https://dx-2023.sai.
tugraz.at/DX23_Wotawa.pdf.

31 Franz Wotawa, Mihai Nica, and Iulia Moraru. Automated debugging based on a constraint
model of the program and a test case. J. Log. Algebraic Methods Program., 81(4):390-407,
2012. doi:10.1016/j.jlap.2012.03.002.

https://dx-2023.sai.tugraz.at/DX23_Wotawa.pdf
https://dx-2023.sai.tugraz.at/DX23_Wotawa.pdf
https://doi.org/10.1016/j.jlap.2012.03.002

Using Qualitative Simulation Models for
Monitoring and Diagnosis

Ankita Das!' &

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

Roxane Koitz-Hristov &
Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

Franz Wotawa? &
Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

—— Abstract

Many systems in our daily lives control physical processes, which are parametrized and adapted, such
as heating systems in buildings. Faults and non-optimized settings lead to a high energy demand
and, therefore, need to be detected as early as possible. Unfortunately, due to specific adaptations,
only the basic principles remain the same, but not the concrete implementations, making the use of
techniques like machine learning difficult. Therefore, we suggest using abstract models that cover the
basic behavior in a way that allows us to reuse the models in different installations. In particular, we
discuss the application of qualitative simulation for fault detection and introduce a formal definition
of conformance between the results of qualitative simulation and the monitored behavior. We discuss
arising difficulties and provide a basis for further research and applications.

2012 ACM Subject Classification Computing methodologies — Causal reasoning and diagnostics;
Computing methodologies — Spatial and physical reasoning; Computing methodologies — Modeling
methodologies

Keywords and phrases Qualitative Simulation, Fault Detection, Model-based Diagnosis, Monitoring,
Application

Digital Object Identifier 10.4230/0ASIcs.DX.2025.4

Funding The work presented in this paper has been supported by the FFG project Artificial
Intelligence for Smart Diagnosis in Building Automation (ALFA) under grant FO999914932.
Ankita Das: Supported by by the Christian-Doppler Forschungsgesellschaft (CDG) project Al-based
Diagnosis for Energy Transition and the Circular Economy (AID4ETCE).

1 Introduction

In 2022, the International Energy Agency estimated the buildings’ energy-related COq
emissions at around 27% of the total worldwide CO, emissions. To bring the emissions down,
several actions have to be taken, including monitoring and diagnosis of heating and cooling
systems that often operate in non-optimal operational spaces using far more energy than
necessary. This is well visible when considering previous work (i) in the context of radiant
ceiling cooling systems, where model predictive control can reduce energy consumption by
up to 27% (see, e.g., [10]), or (ii) heat pumps where fault diagnosis can reduce energy loss
when detected, diagnosed, and repaired early by about 40% [3]. As a consequence, there is a
strong need for automated diagnosis of heating and cooling systems in buildings to reduce
the overall CO5 emissions.

L Authors are listed in alphabetical order.
2 Corresponding author.

© Ankita Das, Roxane Koitz-Hristov, and Franz Wotawa;
oy

licensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 4; pp.4:1-4:14

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ankita.das@tugraz.at
https://orcid.org/0009-0000-0209-5275
mailto:rkoitz-hristov@tugraz.at
https://orcid.org/0000-0002-5077-8641
mailto:wotawa@tugraz.at
https://orcid.org/0000-0002-0462-2283
https://doi.org/10.4230/OASIcs.DX.2025.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

4:2

Qualitative Simulation Models for Monitoring

Unfortunately, monitoring and fault localization of such systems is complicated because
each building is unique, comprising tailored heating and cooling facilities. When using
machine learning, we need either to retrain every model for every building, which is expensive
and time-consuming or to find a way to adapt trained models. This similarly holds for
physical simulation models that would need to be parametrized for every building. However,
the basic principles and their corresponding abstract representation of the behavior of each
of the facilities are the same, which follow physical principles. Hence, when being able to
represent the behavior of systems that follow physical principles in an abstract way, we can
use this for at least detecting faults when monitoring the current behavior of a system.

In this paper, we tackle this challenge and suggest utilizing qualitative reasoning to
provide an abstract model of a system that can be used for fault detection and, finally,
localization. In particular, we discuss how to use and couple qualitative simulation [20]
to ordinary monitoring systems. Rinner and Kuipers [24] already suggested the use of
qualitative simulation in monitoring. In contrast, we formally define conformance between
the outcome of qualitative simulation and the observations obtained from a system. This
formal conformance relationship serves as the basis for detecting faults and may also be
of use for fault localization, providing that the qualitative simulation models also capture
faulty behavior. The idea is to compare the different qualitative states over time with the
abstracted observations. This comparison requires not only abstraction but also specific
enhancements. For example, we do not continuously observe the behavior over time but at
certain time points. Hence, we might not observe reaching landmarks, which would raise
false alarms. Therefore, we need to add reasonable qualitative states to the observations for
comparison.

We organize this paper as follows: In Section 2, we discuss related work. Afterward, in
Section 3, we introduce a simple tank example, which we use in the rest of our paper for
illustration purposes. Section 4 introduces qualitative simulation to be self-contained and
discusses conformance in detail. Finally, we conclude the paper.

2 Related work

Qualitative reasoning provides a powerful method for modeling dynamic systems under
uncertainty by abstracting continuous variables into symbolic associations. Three form-
alisms form the foundation [26]: Qualitative Process Theory (QPT) [12], which models
physical processes using causality and process activation; Qualitative Physics [15], which uses
component-level modeling and constraint propagation to envision possible system behaviors;
and Qualitative Simulation (QSIM) [20], which simulates all consistent qualitative trajectories
from an initial state using a constraint-based model. QSIM represents system dynamics
using Qualitative Differential Equations (QDEs), which abstract sets of Ordinary Differential
Equations (ODEs). Starting from an initial qualitative state, QSIM generates a behavior tree
by enumerating all possible successor states using a transition table of permissible qualitative
changes, and then pruning inconsistent states based on qualitative constraints [21].

QSIM has been extended and applied in various diagnostic frameworks. Subramanian
and Mooney [25] extended QSIM to model systems with multiple concurrent faults by
associating fault-specific constraints and using constraint-based reasoning to isolate them.
Similarly, the SEXTANT system [23] combines QSIM with the HS-DAG algorithm [14] to
compute minimal diagnoses based on behavioral conflicts. Another example is Mimic [11], a
semi-quantitative system that integrates QSIM-style simulation with model-based reasoning
for process monitoring. Mimic identifies faults by detecting discrepancies between simulated

A. Das, R. Koitz-Hristov, and F. Wotawa

@?_ _____ maa févfé____#p@

current level

Figure 1 A simple tank example, comprising a input pipe with a valve, a sink, a sensor S
measuring the maximum water level and a sensor Sz measuring whether water is passing the sink.
The ordinary behavior is that the valve is open enabling an inflow until the maximum water level
is reached and the valve is closed. The outward flow is only for cases where the inflow cannot be
controlled anymore to prevent from flooding.

and observed behavior, and then tests fault hypotheses by adapting the model. Similarly,
DIAMON [22] combines QSIM with consistency-based diagnosis in a layered monitoring
framework. It uses qualitative simulation to detect abnormal behavior and incrementally
refines the model abstraction level to isolate the root cause.

Beyond classical QSIM applications, efforts have been made to scale qualitative simulation
to more complex hybrid systems. Klenk et al. [16, 17] propose translating a subset of Modelica
models into qualitative constraints to enable QSIM-style simulation. The approach reduces
spurious trajectories by incorporating continuity, higher-order derivatives, and landmark
ordering.

QSIM has been successfully combined with frameworks based on constraints, including
Constraint Logic Programming over Finite Domains (CLP(FD)) [2] and Answer Set Pro-
gramming (ASP) [29]. Wiley et al. [29, 28] demonstrate that robots may autonomously learn
qualitative action sequences, such as scaling obstacles or navigating uneven terrain, without
requiring accurate quantitative representations of the robot or its environment when using
their ASP approach to QSIM called ASP-QSIM.

Our approach builds directly on these QSIM-based diagnosis principles but introduces
a conformance-based interpretation of system behavior for system monitoring and fault
detection. By exploiting ASP-QSIM, our method identifies deviations between observed
system trajectories and simulation-derived qualitative behaviors.

3 Illlustrative example

In this section, we illustrate the suggested diagnosis approach considering a tank comprising
a pipe where water flows in that has a valve for enabling water flow or stopping it, and a sink
for preventing overflowing of the tank. We assume that the sink is designed such that even
the amount of water coming from a fully opened input valve can be handled. The overall
system has also two sensors. Sensor S is for indicating that the maximum water level is
reached. In this case the valve will be closed. Otherwise, the valve is set to open. Another
sensor S, measures whether there is an outflow, which indicates a trouble. The second sensor
can be seen as a form of safeguard for the outpipe. Figure 1 graphically depicts the tank
example.

4:3

DX 2025

4:4 Qualitative Simulation Models for Monitoring

height == - vol sl —.—. 52 inflow

’ —_ ISR R S

35 | Fi

R B

.,

o 200 400 600 800 1,000
time (s)

Figure 2 The correct behavior of the water tank example considering the height of the water
level, the volume of water in the tank, the sensors and the inflow value. Before time 400s, the water
level reaches the maximum causing sensor Si to fire which leads to closing the valve preventing from
additional inflow.

A mathematical model of this tank systems comprises one input, i.e., the volumetric flow
rate, which fills the tank until reaching the maximum level. If there is still an inflow, then the
water will flow through the output of the tank (of course unless it is open and not blocked).
The ordinary behavior of this tank example can be modeled as follows: The tank has an
area A (e.g., in form of a circle of a given radius r where A = r% - 1), a maximum height
Nmaz Where the water should stop, and the height of the tank h;,p, which is higher than
himaz- The inflow in is given in the amount of water per time, i.e., in m®/s. The current
volume of water is a function of time V' (t) = h(t) - A where h(t) is the current height at time
t. This volume depends on the sum of the inflows over time, i.e., V(t) = [in(t)dt, and,

hence, d‘;it) = in(t). If the water reaches the maximum level, the valve should close. If this
is not the case the water level reaches the outpipe causing an outflow. This outflow should
be the same than the inflow, i.e., out = in, and no further water is added to the tank. When
implementing this model in a simulation language like Modelica [13], we obtain a behavior
like the one depicted in Figure 2. For this behavior we assumed a tank with a radius of 1m,
a maximum level of 1.2m, a top level of 1.5m, and a flow rate of 0.001m3/s. Note that we
varied the inflow over time using a sinus function. This allows us also to see that the inflow
into the tank stops when the valve closes. There are fluctuations of the inflow until reaching
the maximum level in Figure 2. Afterward, the inflow is zero without fluctuations.

Note that the behavior is similar in case of changed parameters but the steepness of the
increase would be different. However, when using concrete values for diagnosis, i.e., the
detection and explanation of misbehavior, we need to adapt any comparison function allowing
us to show differences between the real and the expected behavior. If we use simulation, we
further would need to adapt parameters to fit the simulation outcome with the one of the
real systems due to variations between real components and ideal ones. Hence, a qualitative
representation of the behavior to be used to check conformance of behavior would be a good
idea. To confirm that a water tank system will operate as expected under typical operating

A. Das, R. Koitz-Hristov, and F. Wotawa

conditions, a qualitative simulation using ASP-QSIM was carried out. Figure 3 depicts the
qualitative behavior our simulation produces for the tank example. Analyzing the plots, we
see that as the tank fills, the inflow progressively decreases and eventually stabilizes at zero,
while both volume and water level increase until they reach a maximum state, representing
the threshold of the tank. Once this maximum is reached, the sensor S; switched off as
expected. Hence, our simulation accurately captures the tank systems nominal behavior.

Tank Filling Qualitative Simulation

inflow level volume
max max max
almost_max f—-— e almost_ max e almost max {—— e
medium 4 eeeeeseee gl N e 4 eeeeee b medium d-eeeeeeebemmefles e e
zero 2ero zero
PO pl p2 p3 p4 pS p6 p7 PO pl p2 p3 p4d ps p6 p7 PO pl p2 p3 p4 ps p6 p7
sensor S1 sensor S2

on

off

PO pl P2 p3 p4 p5 P& p7 po pl p2 p3 p4 2] P p7

Figure 3 Qualitative simulation behavior for tank system, showing qualitative transitions of
inflow, level, volume and sensors across key landmarks.

In the following, we discuss the applicability of qualitative simulation for diagnosis
focusing on fault detection. In particular, we want to clarify the following questions:

What means conformance of a concrete system run and the qualitative simulation result?

What are the limitations of qualitative simulation when applied for diagnosis? Here, we

want to outline limitations considering different fault scenarios. Which type of faults can

hardly or not being detected?

For the discussions on limitations, we consider the following fault cases of the tank
example, assuming that the fault happens at 200s and remains permanent until the end of
simulation:

Fault case 1: Sensor S; gets stuck at false. In this case, the controller would not get any
information and not initiate closing the valve. Hence, the water will reach the outpipe
causing sensor Sa to go from false to true.

Fault case 2: Sensor S; is stuck at true, leading to closing the valve immediately. Hence,
the tank will not be filled completely.

Fault case 3: The valve is stuck and always closed leading to zero inflow after 200s. Hence,
none of the sensor will go to true and the tank cannot be filled.

Fault case 4: The valve is stuck and remains open. In this case sensor S; indicates reaching
the maximum level but having no effect. Hence, the top level is reached and sensor So
will go from false to true.

Fault case 5: The valve gets stuck at 50% leading to continuous and not stopping inflow.

Both sensor indicate reaching a certain water level but the water inflow does not stop.

4:5

DX 2025

4:6

Qualitative Simulation Models for Monitoring

Figure 4 shows the faulty behaviors resulting from the different fault cases. Before

discussing the limitations and challenges, we introduce the basic definitions of qualitative

simulation in the next section of this paper.

—— height - - vol] inflow

time (5)

(a) Fault case 1: Sensor Si stuck

——height ——— vol ... s1 —.—. 52 —inflow.

T 3 1
800 1,000

at false.

T T T
o 200 00
time (5)

T 1
800 1,000

(c) Fault case 3: Valve stuck and always closed.

—height —- - vol -

st —.—. 52 —inflow

—— height = vol R — inflow

? T T T T T T T 1
o 200 400 600 800 1,000
time (5)

(b) Fault case 2: Sensor Si stuck at true.

—— height === vol §1 —.—. 52 ——inflow

T T T i
o 20 400 600 800 1,000
time (5)

(d) Fault case 4: Valve stuck and always opened.

f T T T T 1
0 200 00 600 800 1,000
timo (5)

(e) Fault case 5: Valve stuck at 50% open.

Figure 4 Faulty behavior cases of the tank example.

4 Qualitative Simulation (QSIM)

QSIM provides a formal basis for reasoning about physical systems in situations where precise
numerical data is unavailable or not needed. Unlike numerical simulation techniques, which
require precise parameter values, in QSIM continuous variables are abstracted into symbolic
categories such as increasing, decreasing, or landmark values. QSIM simulates all possible
behaviors of a system given a qualitative model. Its inputs are: (1) QDEs represented by
variables and constraints, and (2) an initial state. QSIM completes the initial state by solving

A. Das, R. Koitz-Hristov, and F. Wotawa

a constraint satisfaction problem (CSP) over the QDEs. For each consistent state, it then
generates all valid successors and filters them using constraint consistency. Rather than
predicting a single numeric outcome or trace of a simulation, QSIM captures all plausible
system behaviors over time [20].

» Example (cont.). To illustrate how QSIM is applied in practice, consider out tank system
and its system variables V. We model a single control variable — the inflow — whose value
can be externally manipulated. The remaining variables are state variables, which represent
internal or observable properties of the system. The state variables include the current
water level in the tank (level), the volume (volume), and sensor S1 and sensor S2, which
represent sensor readings related to the tank state.

Each variable in a qualitative model is described over a symbolic structure called a
quantity space. This space consists of key reference points in the domain of the variable,
denoted as landmarks, and the intervals between them. Landmarks represent semantically
meaningful thresholds without requiring precise numeric values. We formalize the quantity
space as follows.

» Definition 1 (Quantity Space (adapted from [30])). For each variable v € V', the quantity
space Q(v) is defined as an ordered set of landmark values l;, i.e, Q(v) = {lo,l1,. .., L} with
lo<li<...<lp.

» Example (cont.). In the tank system, the landmarks for level may include zero (repres-
enting an empty tank), medium, almost_max, and max (representing the threshold for the
tank level). The sensors S1 and S2 may use the landmarks on and off as shown in Figure 3.

Based on the quantity space of a variable, we can now define its qualitative value at a
particular time step t:

» Definition 2 (Qualitative Value (adapted from [19])). A qualitative value QV (V,t) of a
variable v € V at time step t is represented as a tuple (qmag, qdir), where:

gmag is either a landmark or an interval between two landmarks,

qdir € {increasing (inc), steady (std), decreasing (dec)} is the direction of change of v.

» Example (cont.). Suppose that in our tank system model, landmarks define the quantity
space for the variable level, which represents the water level in the tank. The ordered
landmarks for this variable are: zero < medium < almost_max < max. Suppose that at
time ¢, the water level lies within the interval (medium,almost_max) and the level is in-
creasing. Then the qualitative value of level at time ¢ is given as QV(level,t) =
((medium, almost_max), inc).

These qualitative values form the building blocks of a system’s qualitative state, which
captures the complete system snapshot at a given time:

» Definition 3 (Qualitative State (adapted from [30])). A qualitative state S(t) at time t is
defined as S(t) = {QV (vo,t), QV (v1,t),...,QV (vy, t)} over allv e V.

The collection of the qualitative values of all the variables in a system at a given point in
time is its qualitative state [30].

» Example (cont.). For instance, in our tank example in Figure 3, at time point p, we obtain
the following qualitative state:

inflow — (max,dec), level — ((almost_max,max), inc),
S(ps) = { volume — ((almost_max,max),inc),sensor S1 +— (off,inc),
sensor S2+— (off, std)

4:7

DX 2025

4:8

Qualitative Simulation Models for Monitoring

4.1 Qualitative dynamics

A qualitative model defines valid qualitative states of the system and how changes in variables
lead to transitions between them. When describing a model, qualitative constraints which
restrict the magnitude and direction of variable change are represented by Qualitative
Differential Equations (QDEs), which include basic constraints such as derivatives, sums,
and monotonic dependencies [29)].

To better reflect actual system causality in different system operational scenarios, Wiley
et al. [29] introduced qualitative rules, which allow constraints to be applied conditionally
only within specific regions of the system’s state space, i.e., when the associated preconditions
are met. The rule-based approach models system behavior in a more context-sensitive and
dynamic manner.

» Example (cont.). In our tank system model, the following domain specific qualitative
constraints (C1-C4) and rules (R1 and R2) are applied: 3
Cl: deriv(level, inflow): The rate of change in water level is determined by inflow.
C2: mplus(level, volume): Volume increases proportionally with tank level.
C3: const(sensor_S1, land(off)): Under condition sensor_conditions_1 (see R1),
the sensor sensor_S1 is constrained to remain off.
C4: const(sensor_S1, land(on)): Under condition sensor_conditions_2 (see R2),
the sensor sensor_S1 is constrained to remain on.
R1: precond(sensor_conditions_1, bound, level, i, zero, i, almost_max) =
const (sensor_S1, land(off))*: When the tank level is between zero and almost_max,
sensor S1 remains off.
R2: precond(sensor_conditions_2, equal, level, land(max)) =
const (sensor_S1, land(on)): When the tank level reaches max, sensor S1 is switched
on.

These qualitative constraints reflect physical principles such as flow regulation (C1) and
conservation of volume (C2), while rules reflect the physical behavior of the systems. For
instance, the sensor stays inactive during normal filling (R1) and activates only at the
threshold (R2).

Qualitative transitions define how the system evolves over time by moving from one
qualitative state to another. For example, if inflow exceeds zero, the level of the tank
increases. While qualitative constraints describe relationships between variables (e.g., how
level depends on inflow), transitions capture the system’s dynamics over time. The QSIM
algorithm [8] systematically computes these transitions. At each time step ¢; and intervall
(tiytiy1) QSIM uses a transition table, which encodes all valid value combinations permitted
by the active constraints [20], to generate a set of candidate successor states S; 11 for the
current qualitative state .S;. For simplicity, we do not distinguish whether we go from one
time point to an interval or vice versa. We only distinguish sequences of states. Further
note that this transition process has been extended in ASP-QSIM [29] to support qualitative
rules. As a result, only contextually valid transitions — as defined by the qualitative rules —
are considered, ensuring that the qualitative simulation reflects both the physical structure
and operational logic of the system.

3 We express constraints and rules using the ASP-QSIM formalism [29], where const indicates a constraint,
land a landmark, and precond a precondition.

4 bound indicates that the variable level is between two values. The i indicates that the range of the
variable can be between zero and almost_max including those two values.

A. Das, R. Koitz-Hristov, and F. Wotawa

The output of a qualitative simulation is a set of qualitative behaviors — each a possible

sequence of qualitative states that the system might exhibit given an initial and goal condition.

We refer to a single qualitative behavior also as a qualitative trajectory and one qualitative
behavior reflects one consistent qualitative path the system may follow.

» Definition 4 (Qualitative Behavior [20]). A qualitative behavior QB is an ordered sequence
of qualitative states QB = (Sy, S1,...,Sn), where each state S; maps each variable v € V to
its qualitative value {gmag, qdir) at a time point or interval corresponding to .

» Example (cont.). Consider this first portion of qualitative behavior QB = (Sy, S1, 52, .. .)
from the tank example with the following qualitative states:

So = {inflow — (max,dec), level — (zero, inc), volume — (zero, inc),

sensor S1+— (off, std),sensor S2 — (off,std)},

S1 = {inflow — ((zero,max),dec),level — (medium, inc),
volume — ((zero,medium),inc),sensor S1 — (off,std),

sensor S2+— (off,std)},

Sy = {inflow — ((zero,max),dec),level — (almost_max, inc),
volume — ((zero,medium),inc),sensor S1 — (off,std),

sensor S2+— (off,std)}

4.2 Conformance

Several approaches to define conformance between a system and its qualitative model have
been proposed over the years. In the context of testing, Aichernig et al. [1] introduced the
grioconf relation to formally define when an implementation under test (IUT) conforms to a
qualitative model, based on whether the observed outputs under a sequence of inputs are
a subset of the outputs predicted by the model. Similarly, the ioco-based [27] approach
for qualitative action systems checks if outputs after a given input trace remain within the
allowed qualitative behaviors [7]. In both cases, the qualitative models were constructed
using Garp8 [9], which is founded in Qualitative Process Theory [12]. Both approaches
treat qualitative traces as symbolic abstractions of continuous behaviors. Our work adopts a
similar idea by comparing traces from system observations against qualitative simulations to
check the conformance of the real-world system with the simulation.

First, let us define an Abstract Qualitative Behavior (AQB). An AQB is a qualitative
trace produced by the simulation or the result of abstracting a quantitative trace from a
system run using a system-appropriate discretization. Defining AQBs allows us to formally
compare expected behaviors from the model with observed behaviors from the physical
system using a conformance relation.

» Definition 5 (Abstract Qualitative Behavior). An abstract qualitative behavior AQB is an
ordered sequence of qualitative states QB = (S}, S1,...,S},), where each state S. maps each
variable v € V to its reduced qualitative state only consisting of gmag.

In our AQB, we focus solely on the qualitative magnitude gmag of each variable and
omit the direction of change gdir. First, directionality can be more susceptible to noise and

measurement imprecision in real-world systems, making it unreliable for behavior alignment.

Second, the key behavioral distinctions we want to detect are typically captured by changes
in magnitude (e.g., crossing a landmark), which directly reflect system state transitions.

4:9

DX 2025

4:10

Qualitative Simulation Models for Monitoring

In addition, as we are mainly interested in capturing changes within the system and the
qualitative simulation, we abstract away redundant repetitions in a trajectory by minimizing
the ABQs, i.e., min(A@QB). That is, we only consider transitions from a state to a successor
in case the qualitative value changes; otherwise, we consider two states to be qualitatively
equivalent [6]. Consecutive repetitions of qualitatively equivalent states are removed.

» Definition 6 (Minimal Abstract Qualitative Behavior). Given an AQB, we define the minimal
abstract qualitative behavior, min(AQB), as the subsequence of AQB in which all consecutive
states are qualitatively distinct, i.e., min(AQB) = (S}, S],...,S)) where Y0 <i < n:
Si# Sita-

» Example (cont.). For our tank example, we created a Modelica simulation to generate
system behavior data in place of real-world measurements. However, in practice, the same
abstraction process we apply to this simulated data is used to transform time-series data
from real physical sensor measurements.

In order to create an abstract qualitative behavior (AQB) from the concrete quant-
itative data, we first create a quantitative-to-qualitative mapping, i.e., an abstraction.
First, we down sample the original time series at a predetermined rate (i.e, per timestep
in our case). Then, each sampled value is compared to a set of predefined landmarks
{00105 Omedium Galmost maxs Omax |- If it is within a small tolerance of one of these thresholds,
it is considered a landmark (e.g., land(#)); if not, it is assigned to the open interval between
two adjacent landmarks (e.g., interval(6;, 6;11)).

However, direct changes from one sample to another may also affect intermediate qualit-
ative areas. To mitigate this loss of information, we introduce n equally spaced “intermediate
steps” between each pair of sampled timepoints by linearly interpolating the quantitative
values and reclassifying each intermediate value. By altering the number of intermediate
stages, trace length and qualitative fidelity can be compromised. We found that n =1 is
sufficient to capture all landmark and interval transitions in the underlying numeric trace,
while n = 0 may overlook significant qualitative changes in our tank example. After building
the complete qualitative trace, including intermediate steps, a minimization step is employed.
This process, denoted as min(AQB), removes successive states that are qualitatively similar
or in which all system variables retain the same qualitative values. This decrease significantly
lowers the computing complexity for subsequent reasoning tasks and improves interpretability
by focusing exclusively on significant behavioral adjustments. The result satisfies the formal
criterion of minimal abstract qualitative behavior by ensuring that no two successive states
are identical and encouraging precise and effective qualitative reasoning.

Based on the definition of AQBs, we can define a conformance relation. The goal of the
conformance relation is to determine whether the real system behaves in accordance with the
simulation, i.e., whether at least one of the AQBs generated by the qualitative simulation
matches the AQB derived from an observed system run.

» Definition 7 (Conformance). Let min(AQ By eq:) be the minimal abstract qualitative behavior
derived from a system run, and let A be the set of AQBs produced by the qualitative simulation
and afterwards minimized. We define conformance as:

conformance(AQByea, A) <= JAQBmodel € A : Min(AQ Beq;) = min(AQBodet)

This conformance relation requires an exact match over the entire trace. In principle,
both the simulation and the real system could produce infinite traces, especially when viewed
as executions of transition systems. However, in practical applications we only ever observe

A. Das, R. Koitz-Hristov, and F. Wotawa

finite prefixes of such behaviors. To address this, we adopt a bounded trajectory conformance
approach, inspired by similar bounding techniques in model checking (e.g., bounded model
checking [5]). Instead of requiring a full match across infinite behaviors, we check whether
the real system trace matches a simulated behavior up to a fixed prefix length m.

» Definition 8 (Bounded Conformance). We define bounded conformance w.r.t. a prefix
length m as:

conformance,, (AQBreqi; A) <= FAQ Brnodel € A : [min(AQ Beai)],,, = min(AQ Biyodei)]

m

Here, [min(AQB)],, denotes the prefix of a minimal AQB of length m. Thus, bounded
conformance reflects cases were the trajectories are equivalent for the first m qualitatively
distinct states. While this bounded conformance approach is practical and scalable, it
inherently limits fault detection to the prefix of length m, i.e., fault occurring after the prefix
cannot be captured posing a challenge in scenarios where faults manifest beyond the checked
horizon.

» Example (cont.). Once we have determined all qualitative observations by abstraction,
including the interpolated states from the real-world data, we encode them as ASP constraints:

:= not holds(p(t), var, land(), _), time(p(t)).

holds(p(t), var, land(), _), time(p(t)) is a fact used in ASP to define a qualitative
state, where p(t) is a time point, var refers to the qualitative variable (e.g., level), land () is
the qualitative value, and _ refers to the qualitative direction that is absent in our abstraction
as mentioned earlier. holds(....) stipulates that a particular qualitative state must exist
at a particular point in time, while : - not holds(....) ensures that the model is rejected
if the fact holds(....) is absent. In essence it guarantees that the observed behavior is
present in all valid answer sets. Under the guidance of its internal rules, landmarks, and
preconditions, ASP-QSIM attempts to generate valid pathways that logically “fill in the gaps”
around an initial state and a goal state taken from the quantitative trace. The result of this,
as stated earlier, is a set of minimal AQBs.

If one of the simulation model’s produced AQBs exactly matches the abstract qualitative
behavior AQB,ea of the real system, then we have shown bounded conformance. In our
case, we compared the full observed trace with the complete simulated trajectories. Our
experimental results confirmed that the qualitative model accurately captures the system’s
dynamics, i.e., every qualitative trace derived from the quantitative data of the nominal
system behavior matched at least one valid trajectory generated by the simulation model.

4.3 Fault detection

While conformance checking determines whether an observed system behavior matches one of
the expected qualitative behaviors generated by the model, it also offers a principled basis for
revealing faults. In practice, deviations from nominal qualitative trajectories — especially in
the ordering or presence of sensor events — may indicate abnormal or unexpected conditions.
By systematically comparing abstracted observations to simulated behaviors, we can detect
faults as violations of the conformance relation.

» Example (cont.). Qualitative simulation is especially effective in detecting any anomaly
that adds, removes, or reorganizes sensor “on/off” transitions relative to the expected nominal
model behavior. We were able to detect the following faults, as those faults alter the logical
structure of the qualitative state transitions, which QSIM explicitly models:

4:11

DX 2025

4:12

Qualitative Simulation Models for Monitoring

Fault case 1 (Sensor S1 stuck false): Sensor S2 turns true without a prior Sensor S1
activation, breaking the expected causal sequence.

Fault case 2 (Sensor S1 stuck true): Sensor S1 changes to true prematurely, i.e., before
the tank reaches the defined threshold.

Fault case 4 (Valve stuck and always opened): Sensor S1 turns true but fails to trigger
valve closure; Sensor S2 becomes true as the valve is not closed.

Fault case 5 (Valve stuck at 50% open): An unanticipated pattern of sensor events ap-
pears that does not match any valid qualitative trajectory.

However, we cannot detect Fault case 3 (Valve stuck and always closed). The system
enters a stagnant condition as both sensors remain off and the water level remains constant
due to the absence of inflow. Since QSIM observes only changes in landmarks or directional
trends, such “silent” failures, where there are no new transitions, are indistinguishable from
nominal behaviors, e.g., the tank has partially stabilized [20]. Slight quantitative differences
that do not cross these symbolic boundaries (i.e., increasing, decreasing, steady) and
landmarks are ignored [18].

5 Conclusions

By abstracting quantitative system behavior into qualitative representations, we demonstrated
how qualitative simulation can effectively detect anomalies across various scenarios by formally
defining conformance between the qualitative simulation and concrete quantitative data. At
the same time, our evaluation uncovered important limitations. In particular, the exclusion
of directional information hindered the detection of one of the faults, which might have
been caught had directionality been preserved during abstraction. This highlights a central
problem of exclusively qualitative models, even though they can capture high-level patterns
and behavior, they may not be able to detect defects that depend on small or deliberate
aberrations.

However, the power of qualitative simulation is in its ability to provide a methodical and
understandable approach to diagnosis, especially in situations where complete quantitative
data is unavailable or unreliable. When considering fault scenarios, it offers a model-based
foundation and excels at identifying anomalies and discrepancies across different system
behaviors.

Future improvements could include the integration of directional cues to enhance sensitivity
to small or gradual deviations, which are currently lost in the reduced abstraction. While
the exclusion of the direction of changes simplifies the qualitative behavior space and reduces
computational overhead, selectively reintroducing it either for specific variables or during
suspected fault windows could strike a balance between fidelity and tractability.

Additionally, the development of hybrid approaches that combine qualitative and quant-
itative reasoning [4] could further improve fault detection robustness. Such methods may
allow the system to benefit from the interpretability and flexibility of qualitative models,
while leveraging quantitative models for precision in ambiguous or borderline cases.

Another area of enhancement lies in the application of bounded conformance not just as a
binary check but as a tool for localizing faults temporally within the trace. By identifying the
prefix length at which divergence from expected behavior occurs, diagnosers could potentially
infer the onset time and probable subsystem associated with the deviation. To address the
challenge of “silent” faults failures that do not result in a change of qualitative state and

A. Das, R. Koitz-Hristov, and F. Wotawa

thus evade detection future work could explore the use of context-aware thresholds, state

persistence checks, or anomaly scoring models that monitor for suspicious invariance in

critical variables.

Moreover, QSIM may generate spurious or physically implausible trajectories, particularly

in more complex systems. Incorporating domain knowledge, constraint filtering, or ranking
heuristics will therefore be crucial for scaling the approach to real-world applications.

—— References

1

10

11

12

13

14

15

16

Bernhard K. Aichernig, Harald Brandl, and Franz Wotawa. Conformance testing of hybrid
systems with qualitative reasoning models. FElectronic Notes in Theoretical Computer Science,
253(2):53-69, 2009. Proceedings of Fifth Workshop on Model Based Testing (MBT 2009).
doi:10.1016/j.entcs.2009.09.051.

Aleksander Bandelj, Ivan Bratko, and Dorian Suc. Qualitative simulation with clp. In
Proceedings of the 16th International Workshop on Qualitative Reasoning (QR02), 2002.

I. Bellanco, E. Fuentes, M. VallAss, and J. Salom. A review of the fault behavior of heat
pumps and measurements, detection and diagnosis methods including virtual sensors. Journal
of Building Engineering, 39:102254, 2021. doi:10.1016/j.jobe.2021.102254.

Daniel Berleant and Benjamin J. Kuipers. Qualitative and quantitative simulation: bridging
the gap. Artificial Intelligence, 95(2):215-255, 1997. doi:10.1016/S0004-3702(97)00050-7.
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Adv. Comput., 58:117-148, 2003. doi:10.1016/S0065-2458(03)
58003-2.

Harald Brandl, Gordon Fraser, and Franz Wotawa. Qr-model based testing. In Proceedings of
the 3rd international workshop on Automation of software test, pages 20—17, 2008.

Harald Brandl, Martin Weiglhofer, and Bernhard K. Aichernig. Automated conformance
verification of hybrid systems. In Ji Wang, W. K. Chan, and Fei-Ching Kuo, editors, Proceedings
of the 10th International Conference on Quality Software, QSIC 2010, Zhangjiajie, China,
14-15 July 2010, pages 3—12. IEEE Computer Society, 2010. doi:10.1109/QSIC.2010.53.
Ivan Bratko. Learning Qualitative Models. Pearson Education, 4 edition, 2012.

Bert Bredeweg, Floris Linnebank, Anders Bouwer, and Jochem Liem. Garp3 — workbench
for qualitative modelling and simulation. Ecological Informatics, 4(5):263-281, 2009. Special
Issue: Qualitative models of ecological systems. doi:10.1016/j.ecoinf.2009.09.009.
Qiong Chen and Nan Li. Model predictive control for energy-efficient optimization of radiant
ceiling cooling systems. Building and Environment, 205:108272, 2021.

Daniel Dvorak and Benjamin Kuipers. Process monitoring and diagnosis: a model-based
approach. IEEE expert, 6(3):67-74, 1991. doi:10.1109/64.87688.

Kenneth D. Forbus. Qualitative process theory. Artificial Intelligence, 24(1-3):85-168, Decem-
ber 1984. doi:10.1016/0004-3702(84)90038-9.

Peter Fritzson. Modelica - a language for equation-based physical modeling and high per-
formance simulation. In Proceedings of the 4th International Workshop on Applied Parallel
Computing, Large Scale Scientific and Industrial Problems, PARA 98, pages 149-160, London,
UK, UK, 1998. Springer-Verlag. doi:10.1007/BFB0095332.

Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. A correction to the algorithm
in Reiter’s theory of diagnosis. AI, 41(1):79-88, 1989. doi:10.1016/0004-3702(89)90079-9.
Johan De Kleer and John Seely Brown. A qualitative physics based on confluences. Artificial
Intelligence, 24(1-3):7-83, December 1984. doi:10.1016/0004-3702(84)90037-7.

Matthew Klenk, Johan de Kleer, Daniel G. Bobrow, and Bill Janssen. Using modelica models
for qualitative reasoning. In Proceedings of the 27th International Workshop on Qualitative
Reasoning (QR 2013), pages 1-8, 2013.

4:13

DX 2025

https://doi.org/10.1016/j.entcs.2009.09.051
https://doi.org/10.1016/j.jobe.2021.102254
https://doi.org/10.1016/S0004-3702(97)00050-7
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1109/QSIC.2010.53
https://doi.org/10.1016/j.ecoinf.2009.09.009
https://doi.org/10.1109/64.87688
https://doi.org/10.1016/0004-3702(84)90038-9
https://doi.org/10.1007/BFB0095332
https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1016/0004-3702(84)90037-7

4:14

Qualitative Simulation Models for Monitoring

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Matthew Klenk, Johan de Kleer, Daniel G. Bobrow, and Bill Janssen. Qualitative reasoning
with modelica models. In Proceedings of the Twenty-Fighth AAAI Conference on Artificial
Intelligence, pages 1084-1090. AAAT Press, 2014. doi:10.1609/AAAT.V28I1.8876.
Benjamin Kuipers. The limits of qualitative simulation. In IJCAI, 1985.

Benjamin Kuipers. Qualitative reasoning: Modeling and simulation with incomplete knowledge.
Automatica, 25(4):571-585, July 1989. doi:10.1016/0005-1098(89)90099-X.

Benjamin J. Kuipers. Qualitative simulation. Artificial Intelligence, 29(3):289-338, 1986.
doi:10.1016/0004-3702(86)90073-1.

Benjamin J. Kuipers. Qualitative simulation, 2001. In Encyclopedia of Physical Science and
Technology, pages. 287-300.

Franz Lackinger and Wolfgang Nejdl. Integrating model-based monitoring and diagnosis of
complex dynamic systems. In John Mylopoulos and Raymond Reiter, editors, Proceedings of
the 12th International Joint Conference on Artificial Intelligence. Sydney, Australia, August 24-
30, 1991, pages 1123-1128. Morgan Kaufmann, 1991. URL: http://ijcai.org/Proceedings/
91-2/Papers/074 .pdf.

Bruno Lucas, Jean Michel Evrard, and Jean Pierre Lorre. A qualitative diagnosis method for
a continuous process monitor system. In Proceedings of the IMACS International Workshop
on Qualitative Reasoning and Decision Technologies -QUARDET’93. CIMNE, 1993.
Bernhard Rinner and Benjamin Kuipers. Monitoring piecewise continuous behaviors by
refining semi-quantative trackers. In Thomas Dean, editor, Proceedings of the Sizteenth
International Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July
81 - August 6, 1999. 2 Volumes, 1450 pages, pages 1080-1086. Morgan Kaufmann, 1999. URL:
http://ijcai.org/Proceedings/99-2/Papers/059.pdf.

Siddharth Subhramanian and Raymond J. Mooney. Multiple fault-diagnosis using general
qualitative models with fault modes. In Working Papers of the 5th International Workshop on
Principles of Diagnosis, pages 321-325, New Paltz, NY, October 1994.

Louise Travé-Massuyes, Liliana Ironi, and Philippe Dague. Mathematical foundations of
qualitative reasoning. AI Magazine, 24(4):91-106, 2003. doi:10.1609/AIMAG.V24I4.1733.
Jan Tretmans. Conformance testing with labelled transition systems: Implementation
relations and test generation. Comput. Networks ISDN Syst., 29(1):49-79, 1996. doi:
10.1016/S0169-7552(96)00017-7.

Timothy Wiley, Claude Sammut, and Ivan Bratko. Using planning with qualitative simulation
for multistrategy learning of robotic behaviors. In Proceedings of the 27th International
Workshop on Qualitative Reasoning, pages 24-30, 2013.

Timothy Wiley, Claude Sammut, and Ivan Bratko. Qualitative simulation with answer set
programming. In Furopean Conference on Artificial Intelligence (ECAI), May 2014.
Timothy Colin Wiley. A planning and learning hierarchy for the online acquisition of robot
behaviors, 2017. PhD Thesis Defence Paper.

https://doi.org/10.1609/AAAI.V28I1.8876
https://doi.org/10.1016/0005-1098(89)90099-X
https://doi.org/10.1016/0004-3702(86)90073-1
http://ijcai.org/Proceedings/91-2/Papers/074.pdf
http://ijcai.org/Proceedings/91-2/Papers/074.pdf
http://ijcai.org/Proceedings/99-2/Papers/059.pdf
https://doi.org/10.1609/AIMAG.V24I4.1733
https://doi.org/10.1016/S0169-7552(96)00017-7
https://doi.org/10.1016/S0169-7552(96)00017-7

Assessing Diagnosis Algorithms: Of Sampling,
Baselines, Metrics and Oracles

Ingo Pill =&
Institute of Software Engineering and Artificial Intelligence, TU Graz, Austria

Johan de Kleer @&
c-infinity, Mountain View, CA, USA

—— Abstract

Assessing and comparing diagnosis algorithms is a surprisingly complex challenge. We have to make
decisions ranging from identifying the implications of the chosen baseline, via defining and ensuring
a representative sampling strategy, to the choice of metric best suited to capture the computational,
probing, or repair costs as well as the deviations from the baseline. We discuss several aspects of the
overall challenge, identify related issues, and evaluate a special economic metric.

2012 ACM Subject Classification Computing methodologies — Causal reasoning and diagnostics
Keywords and phrases Model-based Diagnosis, Diagnosis, Algorithms

Digital Object Identifier 10.4230/0ASIcs.DX.2025.5

1 Introduction

Given a symbolic or subsymbolic description of a system’s structure along with a set of
observations, the task of a diagnostic algorithm is to identify which system components might
be faulty so that their failure explains the observed behavior. In this paper, we address the
question of how to evaluate the quality of such an algorithm’s conclusions and its actions.

At first glance, this might seem to be a straightforward task, but it is surprisingly difficult.
As a thought experiment, imagine that we have all the faulty exemplars of a system that
might ever exist their actual faults. For this exhaustive sample set, we then employ our
diagnostic algorithm and determine the costs that the algorithm incurs while locating the
actual fault(s).

There are several inherent difficulties with this simple concept: (1) it is impossible to
implement in practice due to the required exhaustive set of faulty exemplars. (2) We need
to specify what we mean by “costs.” That is, whether we are interested in computational,
probing, or economic costs. If we are interested in a combination, we need to define a weighted
portfolio metric. In practice, the ideal cost function depends on the actual application scenario,
so that it is (3) impossible to anticipate a specific user’s needs and preferences in terms of
costs. (4) A user will most certainly not have the resources to perform their own detailed
evaluation of all combinations of available algorithms, potential cost functions, and faulty
exemplars. Consequently, an evaluation will suffer from limitations in terms of sampling and
quantification of costs and quality. Those limitations affect, in turn, the representativeness
of the conclusions that we can draw from the experiments.

In practice, diagnostic algorithms are usually evaluated with simulated data. In particular,
we take a simulation model of one or more systems, inject some fault(s) [22, 20], run the
simulation for a (set of) specific input scenarios [22, 14], and then deploy the diagnostic
algorithm to determine the incurred costs; we repeat this until we decide to have enough
samples. That is, until we gained enough confidence in the representativeness of the results.
We assume implicitly that the diagnostic algorithm is deterministic. Otherwise, we would
need to run the algorithm multiple times for each diagnosis problem.

? Ingo Pill and Johap de Kleer;)

37 icensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 5; pp. 5:1-5:19

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ingo.pill@gmail.com
http://www.ist.tugraz.at/pill
https://orcid.org/0000-0002-8420-6377
mailto:johan@c-infinity.ai
http://www.c-infinity.ai
https://orcid.org/0000-0002-0465-7566
https://doi.org/10.4230/OASIcs.DX.2025.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

5:2

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

Further issues are related to the observability of signals, to uncontrollable contingencies
such as noise that we face in the real world, or to an algorithm’s individual characteristics
such as whether it is based on a precise [4, 19] or probabilistic framework [12]. These issues
most certainly affect the incurred costs, but it is their effect on the algorithm’s results’ quality
that is most noticeable. A particularly intriguing challenge in this direction is that of defining
the baseline against which we compare an algorithm’s results. Related to these issues, we

maybe can diagnose some fault(s) only after a delay [3] that the fault(s) need(s) to
manifest [26] on observable signals.

have to take into account that an algorithm can trade precision with resource expendi-
ture [1]. This can certainly result in incomplete or over-approximated sets of diagnoses
that individually over- or under-approximate the fault situation. This requires us to decide
how to individually penalize delays, approximations, erroneous, and absent diagnoses.

might not be able to isolate the actual fault(s) from the available data [11]. For example,
if the fault is not triggered by the observed input scenarios. A fault may also remain
hidden in observed signals while manifesting only in unobserved ones — a phenomenon
that can be either triggered or suppressed by interactions among multiple faults. In
extreme cases, some specific fault combinations could even result in an equivalent mutant.
That is, a mutated system that is indistinguishable in its I/O behavior from the original
one [7].

have to define the desired baseline: Should the fault(s) injected into a simulation model
(or the faults present in a real system) be considered as the ideal result which is obviously
problematic for equivalent mutants (see Sec. 2.4), or should we seek to define a well-
founded gold standard of diagnoses? To obtain the latter, we would take into account all
the limitations of the available data and specify exactly what is theoretically diagnosable
from the available (limited) observations OBS and the structural model SD [17].

In this paper, we isolate and discuss a variety of challenges that we face when aiming
to assess diagnostic algorithms. Motivated by those discussions, we formulate definitions
and outline metrics that allow us to systematically address the evaluation of diagnosis
algorithms. Our ulterior aim is to support educated and quantitatively comparable answers
to the fundamental question Did a specific algorithm return the correct result, and if not,
how good are the results?. Our discussions aim to address evaluation needs that range from
simple single-algorithm assessment to multi-algorithm comparisons for specific purposes,
and finally to comprehensive evaluations in general contexts like competitions with multiple
benchmarks.

We do not aim at a qualitative analysis that focuses on algorithmic concepts. We rather
aim at an empirical evaluation of an algorithm’s results that is (1) mostly agnostic of the
implemented symbolic or subsymbolic concepts and (2) supports a quantitative assessment
of an algorithm’s results in terms of the quality of the conclusions and their costs. When
we say mostly agnostic, we refer to the requirement of having to know how to interpret an
algorithm’s results. For example, algorithms like [4, 25, 19] report ambiguity groups formed
by a subset-minimal diagnosis and its supersets implicitly in the results.

We organize our paper as follows. We analyze a variety of issues to illustrate the
complexity of the task in Section 2. We then raise the discussion to a more formal level in
Section 3, isolating appropriate notions and definitions that allow us to define and tackle two
specific subtasks. Before we conclude in Section 5, we discuss in Section 4 a special economic
metric that captures the effectiveness of the repair process and has been used in previous
DX competitions [8].

l. Pill and J. de Kleer

2 Why is the representative evaluation/comparison of a diagnosis
algorithm not as straightforward as it seems?

In this section, we seek to identify and illustrate a variety of issues that make the tasks of
evaluating and comparing diagnosis algorithms not as straightforward and simple as they
would seem at first glance. In the following subsections, we walk through a set of illustrating
examples to expose individual challenges that we have to address. The observations we make
in these sections will support us in specifying precise definitions in Section 3 that will allow
us to lead formal discussions of the concepts envisaged in Sections 3.2 and 4.

2.1 Metrics based on sampling and the notion of ambiguity groups

Suppose that we want to design a good metric for single fault diagnosis algorithms. Assume
that we have perfect measurements, which is really only possible in digital circuits. Let the
components of the system be X = {x1,...,x,}. Determining the samples to use to fairly test
a diagnostic engine for a competition is a very complex problem that deserves a separate
treatment, so let us assume for now that the set of samples is given. Let a simple diagnostic
algorithm A return only one fault for a specific diagnosis problem s defined by an exemplar
SD (with a known fault) and some observations OBS. If A returns the actual fault, the score
r(A, s) achieved for sample s is 1 and otherwise it is 0. An overall score S(A) of algorithm A
can, in turn, be defined as:

EsesamplesT(Av S)
|samples|

5(4) = ; (1)

such that we would sample over a set of diagnosis problems. Intuitively, the overall score

estimates the probability of A producing the correct diagnosis for a random sample s €

samples. This simple assessment has numerous shortcomings:

1. Probabilities: How to take into account that different components fail at different rates?

2. Ambiguity Groups: Sometimes the same symptoms can arise from very different system
failures and combinations of faults.

3. Multiple Faults: How to take into account that a system can suffer from multiple
simultaneous faults?

4. Fualse Positives: The sampling approach obviously penalizes false negatives (missed

diagnoses), but does not adequately penalize false positives (reporting invalid diagnoses).

It is easy to see that the way we sample for computing S(A) has a great impact on

the overall score. A diagnostic algorithm is evaluated against a set of benchmark samples.

Imagine a simple system of 4 components {x1, x2, 23,24} with priors p(z1) = 0.001, p(z2) =
0.01, p(z3) = 0.1, p(x4) = 0.889. If we sampled the fault scenarios representatively in the set
of components, i.e., considering an equal distribution, an algorithm A; that always scored
correctly for components x1, x2, x3 but not for x4 would achieve a much better overall score
S(A;7) than A, that scored correctly on x4, but not for 1, x2,25. And it does so, even
though it is much less useful in practice, i.e., since it scores well, s.t. r(As, s) = 1 for rare
samples only. A possible solution to circumvent this would be to draw samples according to
the prior distribution, but this requires far too many samples (i.e., expensive simulations)
and the score S(A) would not be generalizable for varying priors.

An exponentially more efficient approach is to sample over each of the possible faults
and weigh each sample with its prior. This greatly reduces the number of samples needed to
obtain a reasonable score S(A):

5:3

DX 2025

5:4

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

S(4) = 3 pla) ZrEsomrtesn (4, 5))

- |samples(x)]

Due to) p(z) = 1, we see that S(A) will be 1 iff 7(A, s) is always correct and 0 if it is
always wrong. But this is a poor approach, since ambiguity groups introduce considerably
more complexity. An ambiguity group is a set of diagnoses among which a diagnoser cannot
distinguish given a specific set of observations. For example, consider diagnosing a sequence of
n digital buffers where we can observe the input of buffer,/z; and the output of buffer,,/x.,.
If the input is 0/low/L, and the output is 1/high/T, we know that one of the buffers is
faulted, but not which one. So all n buffers form an ambiguity group. A similar challenge
arises in the analog case where there are n resistors in a row, or the two inverter example from
Section 2.4 illustrated in Fig. 1. Let us assume for now that the fault is in x;. Considering
the effects that an ambiguity group entails, we need to modify r(A4, s). That is, requiring
A to return x; to achieve r(A, s) = 1 makes no sense. Indeed, a diagnoser should not be
penalized because it returns a different element of the ambiguity group. We need to redefine
what (A4, s) returns. Let G(s) = {z|x is a diagnosis of s}. If we require r(A,s) to return
x, it will be right only m of the time. If we require r(A,s) to return one element of
G(s), a diagnoser may always pick the same element of the ambiguity group, making it
useless for diagnosing other faults in that ambiguity group. If we require r(A, s) to return
the entire G(s), then the diagnoser never gets partial credit. One approach is to give the
diagnoser credit for the fraction of the ambiguity group it returns. So, for example, if there
are two members in the ambiguity group and the diagnoser returns only one member of
the ambiguity group, it would receive a score of % for that sample s. Rewriting the prior
equation to capture this intuition, we obtain

r(A,s
Zséallsam,ples p(G(S)) ‘ ‘((;(S)‘)l
ZsEallsamples p(G(s)

where we assume the diagnoser is sound. This reduces the prior equation in the case there
are no interesting ambiguity groups (of size greater than 1.)

In the multiple fault case, these challenges become only more difficult. Assume that we
have a priori probability distribution over the set of diagnoses A; € 2X. Following the single
fault case, we would like to write (where the A; can be of any cardinality):

S(4) = (3)

zsesarn les(A-)T(Aas)
A) = A, s 4
S(4) ;p(i) |samples(A;)|)

But this has the same kinds of problems with ambiguity groups as discussed earlier. Consider
the n = 10 buffer example. It has a large number of multiple faults in the ambiguity group as
well: (130) + (150) + ... A worse challenge arises in the analog case where there are n resistors
in a row where the ambiguity group can be of size 2" — 1 because any subset of the resistors
can be a diagnosis.

Contributing to this confusion is the fact that we have been mixing together two distinct
ideas: (1) the construction of a fair benchmark and (2) the fair evaluation of a diagnostic
algorithm on a benchmark. There are two important questions: (1) how to construct a
benchmark that truely reflects actual occurring faults, and (2) given a set of samples, how
do we fairly evaluate a diagnostic algorithm on this benchmark. Designers of a benchmark
must concern themselves with the first question. This paper is primarily focused on the
second question. So what we start with is the benchmark which is simply a set of samples

l. Pill and J. de Kleer

(input-output pairs). Let G(s) = {A;|A; is a diagnosis of s}. This defines the ambiguity
group of a sample. The prior p(G(s)) = ZAiGG(s) p(s). The prior single fault equation
remains unchanged with the updated definition of G(s)

Some diagnostic algorithms return a posterior probability V' (A) with each diagnosis. This
requires a new approach, which we will discuss later.

So far we have penalized a diagnoser for false negatives, but not directly for false positives.

But what should happen if the diagnoser returns a false positive, i.e., a diagnoser returns
a non-diagnosis. An approach for this has been well studied in machine learning. One can
construct a confusion matrix with the diagnoser’s results on the vertical axis and the actual
faults on the horizontal. (This applies for both single faults and multiple faults.) Then
accuracy, true positive rate, false positive rate, and precision can be defined in the usual
way as in ML. This also needs to be adapted for ambiguity groups. In ML techniques like
Top-k-accuracy can be used.

An approach which avoids the problems we have seen thus far is to base a metric on the
difference between the true distribution of faults and the one determined by the diagnostic
algorithm.

Let Q(z) be the gold standard — the probability distribution which best approximates
the state of affairs the single fault diagnoser encounters. Let P(x) be the distribution the
diagnoser reports. The most familiar metric is cross-entropy — which is used widely in ML
to compare the predicted probability distributions. In our case, we want to compare how
close the calculated probability distribution P(z) is to the perfect one Q(x). For this case,
KL-divergence is a better metric:

P(x)

Dkr(PllQ) EIEXZOQQ(x) (5)
If P(z) and Q(z) are identical, KL-divergence is 0, unlike cross-entropy. One problem is
that if the diagnoser assigns non-zero probability to a possibility which never occurs, then
KL-divergence is indeterminate. So this is problematic as well.

We hope we have convinced you that all the sampling based metrics described in this
section are problematic measures of a diagnoser’s capabilities. Although these metrics are
often used because they appear to make sense on the surface, none of them is a decent scoring
mechanism for a diagnostic algorithm. Instead, we argue diagnostic algorithms need to be
scored based on the costs they incur in use.

Complementing an understanding of the problems associated with the metrics, we hope
that we have convinced you also that the sampling strategy can have a strong impact on
how we perceive some algorithms’ performances. When designing benchmarks, we thus also
need to anticipate the issues discussed in this section and define a set of samples that keeps
those issues within certain and well-understood limits. In this respect, we would like to point
out also that there are diagnosis algorithms that consider multiple samples in one diagnostic
process [24], such that SD would stay the same for all s but OBS would change. As Pill
and Wotawa mused in [23], supposedly representative concepts for generating test suites like

combinatorial testing could help with defining representative sample sets for such algorithms.

Ideally, their employment would allow us in turn to explain not only some occurred faults,
but to isolate all the faults present in a system via an integrated approach at constructing
representative 1/O scenarios and diagnosing the corresponding observations. Such related
work could help us not only in exploring options to assess multi-scenario diagnosis algorithms,
but also when facing the challenge of designing benchmarks for diagnosis algorithms in
general.

5:5

DX 2025

5:6

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

2.2 Metrics estimating repair costs

As we concluded in Sec. 2.1, sampling has a major impact on how an algorithm performs.
But there are also a variety of concepts for assessing the quality of a diagnostic process, and
our choice can significantly influence how we perceive an algorithm to perform for a specific
sample s (and in general). In this subsection, our focus is on exploring the effects that a
diagnosis algorithm’s results have on the repair process.

Let us start with single fault diagnosis scenarios, and this time, the algorithm returns
a probability distribution p(z1), ..., p(z,) over the system’s components z; € X. These are
the posterior probabilities given some specific observations. For example, a system of three
components {x1,ze, 3} might have posterior probabilities p(z1) = 0.1, p(z2) = 0.6, p(x3) =
0.3. Assume for the moment that these posterior probabilities are the true ones. A simple
repair approach might now replace x; in decreasing posterior probability order. We first
replace z2 (due to the highest posterior probability), and if the symptoms are not gone,
we consider x3, and lastly z1. Assuming the cost of a replacement rep(z;) was unity, the
estimated repair costs C for these posterior probabilities are rep(zz) +rep(xs) * (1 — p(x2)) +
rep(z1)* (1 —p(xa) —p(xs)) = 140.440.1. More formally, we can express C via the following
equation for a given list L of diagnoses A; that were sorted with decreasing probability.

C= E0<i§|L|(7“eP(5Ci) * (1 = Yo<j<in())) (6)

This simple repair process takes advantage of the fact that repairing a single component
and making all repairs suggested by a diagnosis A; is the same in a single-fault scenario.
Obviously, we need to distinguish between the two for multi-fault scenarios though, which,
in turn, requires us to adapt the repair strategy. Before we reason about such an update, let
us first explore a sometimes hidden assumption though. That is, the assumption of whether
we have Perfect Fault Understanding (PFU) when inspecting a component, or not.

In particular, similar to perfect bug understanding from the software engineering commu-

nity (as it is relevant in a diagnostic context when assessing spectrum-based fault localization
metrics), we have to decide whether or not we can assume the ability to recognize faults with
complete certainty when inspecting some component. A simple illustrating scenario would
be that of when we would inspect a software program by looking at a part of the code (the
component), recognize the faulty code in it, and then fix the component’s code accordingly.
In the single fault case, we can observe whether the problematic behavior is gone when
executing the system after the repair of some component z; (as suggested by a single-fault
diagnosis A). So, without requiring PFU, we could just replace z; and avoid a detailed
inspection and fault-oriented repair of x;.
PFU would be an important assumption in multi-fault scenarios insofar, since we would need
to replace all x; in a diagnosis A to supposedly make the observed symptoms disappear. So,
when checking the quality of the individual repairs via observing the system’s behavior, we
would first have to repair all z; € A, and then we would observe executions of the supposedly
fault-free system. Consequently, judging the situation after inspecting/repairing a single
component x; from A would require PFU of z;.

A repair strategy for multi-fault scenarios could exploit PFU as follows. Choose a
component x; that appears in many diagnoses and then investigate and, if needed, repair x;.
If z; was found to be correct in the inspection (due to PFU), all diagnoses A; containing
x; can be discarded s.t. they get a probability of 0, and the probabilities P(©) for all
diagnoses that are still possible (with search space © = 2X) should be updated accordingly.
We repeat this until the symptoms have gone, there is no diagnosis left, or until there is no
component left to repair. Obviously, estimating the costs C of this repair process is a bit

l. Pill and J. de Kleer

more complicated than for a single fault scenario. That is, we need to constantly update
P(2%) after investigating some x;, and we have to statistically approximate the costs incurred
when estimating C.

If we do not have PFU (like when we just swap components without inspection), we
could simply walk through the list of diagnoses A; according to their probabilities and repair
for each investigated A; all components x; € A;. Extending our Eq. 6, we can approximate
the average repair costs in this case as

C = Yo<i<iz|(Bapea,rep(rr)) * (1 — Zo<j<ip(Ay))), (7)

with rep(zy) referring to the repair costs of component ;. When following this process, one
specific downside is that a certain component x; might get repaired more than once. That
is, if it is contained in more than one A; that we had to investigate before arriving at the
actual diagnosis (so that the system is finally repaired).

A supposedly better repair process would keep track of whether individual components
have been repaired before, so as to avoid unnecessary repairs. However, this requires that a
repaired component is not destroyed again during the repair process. That is, before all x;
in the actual diagnosis have been repaired. In practice, this can easily happen, when the
interaction of faults leads to the immediate destruction of a repaired component x; by some
x) that has not yet been repaired. A simple example would be that of a fuse. The fuse could
be immediately destroyed again if the problem that triggered it has not yet been taken care
of. Considering such dependencies, the more naive and also supposedly more costly process
could even be better suited (and cheaper) in practice for many applications.

Please note that the metrics we considered in this subsection are simplistic variants of
the economic metric discussed in Section 4.

2.3 Metrics tailoring to specific evaluation requirements

When researchers present a new algorithm, they often evaluate it in the context of a family
of relevant algorithms and use specific metrics that allow them to show the validity and
effectiveness of the proposed improvements over the state-of-the-art. This approach enables
a clear and focused presentation of these improvements and allows the authors to adhere to
the page limits of a conference at the same time. However, it comes with certain limitations.

Let us illustrate them with the example of RC-Tree [19]. RC-Tree is a diagnosis algorithm
that implements a conflict-driven computation as first proposed by Reiter [25] as well as
de Kleer and Williams [4] in their seminal papers. The computational concept behind
RC-Tree is close to that of HS-DAG [10], but due to some additional reasoning in terms of a
divide-and-conquer exploration of the search space, RC-Tree can avoid all redundancy in the
search. Intuitively, any diagnosis candidate gets generated only via one tree-based exploration
sequence (in contrast to HS-DAG that allows permutations), which results in a narrower
search without losing important properties like completeness, soundness, being an anytime
algorithm, or supporting an on-the-fly calculation of the conflicts. When evaluating RC-Tree,
the authors proved (1) that it returns diagnoses adhering to Reiter’s theory in a sound and
complete manner (see Defs. 4 and 5 in Section 3.1), and they conducted (2) an empirical
evaluation that isolated the performance advantages over HS-DAG as encountered in practice.
The algorithm’s run-time and the number of evaluated diagnosis candidates (which relate
to tree nodes and thus memory consumption) served as metrics in those experiments. The
resulting evaluation certainly meets one’s expectations in terms of elucidating the authors’
contributions. But it does not provide us with a holistic picture on how this algorithm

5:7

DX 2025

5:8

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

compares to the entire algorithmic landscape. That is, in comparison to completely orthogonal
concepts — like subsymbolic algorithms that would approximate probability distributions (see
Section 2.1).

The use of metrics that focus, e.g., on repair costs (see Sec. 2.2) could provide a clearer
picture, but those metrics are not suited for highlighting RC-Tree’s algorithmic improvements
over the state-of-the-art. Experts can draw on their expertise to maintain their own educated
picture of the algorithmic landscape. For example, since RC-Tree returns the same diagnoses
as HS-DAG (which has been around for about four decades), we can infer that the repair
costs and other aspects can be considered to be the same and that there is only a difference in
the computational costs. Consequently, this allows an expert to put RC-Tree into perspective.
A non-expert would hardly have the knowledge to make such deductions. Metrics and
evaluations that are more informative from a global perspective could thus help them in
establishing a holistic picture as quickly as possible. Only such a holistic picture would allow
a diagnostician or engineer to make an educated decision when faced with the challenge of
having to select the most suitable diagnosis algorithm for a specific diagnosis problem.

2.4 Defining the baseline: On the ideal results of a diagnosis algorithm

When we assess the performance of a diagnosis algorithm, we need to think not only about
sampling and metrics, but we also need to know how the ideal results should look like. In
this subsection, we focus on the latter, and we hope to convince you that this supposedly
simple task is not as straightforward to address as it seems.

In order to illustrate some of the issues, let us have a look at a simple example in the
form of the circuit illustrated in Fig. 1. It is a simplified variant of the n-buffer example
from Sec. 2.1 and contains. two inverters. Assume that we can observe the input in; and
the output outs and let us consider three scenarios for an input value of in; = T /1/high.

It is easy to see that the nominal output (such that both inverters work correctly) is
oute = T. If we observe this expected output in practice, we must recall though that this
would be the case also for some fault scenarios. That is, observability limitations (like
that can’t observe out;) might prohibit us to distinguish the nominal case from some fault
scenarios. For our example, this would be the case for Fault Scenario 1 where Inverter 1
suffers from a stuck-at-zero fault so that out; is always L. The same is true for for Fault
Scenario 2 where Inverter 2 suffers from a stuck-at-one fault. In both cases, the fault does
not manifest in the observations, but this would require the input to bein; = L/0/low.
Consequently, the nominal case, Fault Scenario 1 and Fault Scenario 2 form an ambiguity
group (see Sec. 2.1). A consistency-based diagnosis algorithm like RC-Tree [19], HS-DAG [10],
or GDE [4] would report from this ambiguity group only the empty diagnosis which represents
nominal behavior. In fact, the underlying computation concept of those algorithms entails
that when using a weak fault model, any superset of a diagnosis A is also an explanation.
Thus they form sort of an ambiguity group with A by default and are, in turn, not explicitly

in out, in, out,

1 O 1 O

ok,/sa0, / sal, ok,/ sa0,/ sal,

Figure 1 A simple electronic circuit with two inverters, taken from [21].

l. Pill and J. de Kleer

reported. From this example, we can easily see that we need to know how to interpret a
specific algorithm’s results in terms of aspects like implicit ambiguity groups, and we need to
decide how we would formalize this in the baseline.

Let us now consider Fault Scenario 3 which illustrates a special case of an ambiguity

group. In this fault scenario, both inverters malfunction so that they act as buffers and
pass their input values along instead of inverting them. For this double fault, we can easily
observe that there is no input that can reveal it. That is, unless we would improve the
observability. Either via monitoring the intermediate signal out; (= ing), or by adding a
connection from out; to some circuit part that is connected to a different observable output.
In fact, we can observe that the system behaves ezactly as intended on its observable interfaces
not only for Fault Scenario 3, but for all I/O scenarios. In particular, the two faults cancel
each other’s negative effects on the system’s output so that there cannot be any evidence of
this double fault on the observable signals. Since the mutated system is I/O-conformant, we
can refer to it as equivalent mutant [7].
From a designer’s perspective, such an equivalent mutant is among equivalent design choices
for implementing the desired I/O behavior. This presents us with quite interesting challenges
from a diagnostic perspective. That is,we need to explore the question of whether a diagnosis
algorithm is supposed to report equivalent mutants as diagnoses or not, and, potentially, we
need to identify the set of equivalent mutants.

For elucidating further issues, let us consider two general concepts for defining a baseline,
i.e., (1) using the ground truth, and (2) defining/computing a golden set of diagnoses.

For the first option, we would use ground truth knowledge about the faults that are
present in a system and would expect an algorithm to report it. Assume that we, e.g., have
a simulation-based setup like we discussed it in the Introduction. Since we know which faults
we injected and when, we could simply consider this ground truth as gold standard for the
diagnosis algorithm’s results. This choice would be certainly intuitive and natural, but it
comes with several problems, as we can illustrate using the above fault scenarios.

Consider Fault Scenario 3, where, no matter the input, a diagnosis algorithm is likely to
completely fail if we do not consider implicit ambiguity groups. That is, since it will most
probably report the empty diagnosis instead of the double fault.

But there are more issues. So, what if the faults have not manifested yet and there is
potential subsequent behavior for nominal and faulty cases? That is, despite the fault being
present we could have (a) for a stateless system that we might not yet have seen an input
combination that manifests the fault(s) and (b) for a stateful system that we did not yet
experience the delay that is necessary for the manifestation. While the baseline would indeed
require the faults’ detection, the question is on which basis an algorithm would justify that
it reports a related diagnosis? Would we consider the algorithm then to be (a) clairvoyant
(see Sec. 3), does it simply report (b) a statistic assessment with corresponding probabilities
for all the possible continuations and their fault combinations/diagnoses, or (c¢) should the
diagnosis actually be considered spurious — despite being defined in the baseline?

Reflecting on these issues, we might thus rather choose to define the baseline via computing
a well-founded set of diagnoses that takes into account limitations in terms of observability
and diagnosability. Although this approach would allow us to address some of the issues
mentioned above, it comes with increased computational costs and causes its own problems.
Let us consider first the diagnosis of a stateless system like the two-inverter circuit. If a
system is stateless, its behavior depends only on the current input which means in a diagnostic
context that we can diagnose each time step individually. The same holds then also for
the computation of the baseline for which we can either use a proven algorithm or manual

5:9

DX 2025

5:10

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

analysis. The split into independent computations allows us to address a potential scalability
issue that could otherwise arise with larger systems and long computation sequences and
their traces. With the focus on individual time steps, the sizes of SD and OBS are minimized
for each individual computation. Still, we need either an algorithm that can compute the
baseline, or we need to manually inspect the diagnosis problem(s).

For a stateful system, the computational demands might be even higher. That is, we have
to consider the entire history of observations and can’t split the execution into smaller
problems for each time step. The simple reason is that this history is reflected in an internal
(potentially unobservable) state [18] that is relevant for the system’s I/O relation. Like the
authors did for [18, 9], we can still use one health state variable for the entire execution. And
this allows us to constrain the exponential diagnosis search space to 2% instead of 2X*7 (for
a weak fault model and a temporal horizon of length T'). We might also not loose timing
information when a fault manifests since this information might be present in the underlying
computation (like in the conflicts when using RC-Tree).But the models for SD and OBS will
still grow linearly with 7T'.

It is important to note that these scalability issues are further exacerbated when we evaluate
diagnosis algorithms that consider not only one but a set of executions [24] — like when a
diagnostic algorithm examines all failed tests after executing a test suite [23].

For our final argument, assume that we are investigating a live scenario and that we
managed to compute the gold standard of diagnoses for all the individual prefixes. As we
suggested in the introduction, we now have to decide how to penalize the various types of
deviation from the baseline. We have, for instance, that the diagnoses reported could be
over- or under-approximations of diagnoses in the baseline. Or there could be a delay in
detecting a diagnosis, which would require us to compare the diagnoses reported for time
step t; with the baseline for time step ¢; # ¢;. Accommodating these and a variety of other
deviations entails another increase in the computational costs and it illustrates that we must
not consider metrics and baselines in isolation. In Section 3.1, we will define the notions of
near-soundness and near-completeness that will allow us to discuss this in more detail and to
support automated reasoning in this context.

3 A more formal take on the problem at hand

In this section, we move our discussion to a more formal level. We start by developing some
formal definitions in Section 3.1. Based on these definitions, in Section 3.2, we look at how
we can answer the questions of whether a specific diagnosis algorithm returned the correct
result for some diagnosis problem, and if not, how good the results would be. In particular,
we propose to implement an oracle for providing a yes/no answer, and we design a variety of
metrics for quantifying how far off an algorithm is from reporting the ideal results. These
metrics can be used to derive an answer for the second (part of the) question, but also in the
isolation of a yes/no answer to the first (part).

3.1 Some definitions

Note that the notation for some of our definitions deviates from what the reader might be
familiar with from the literature and papers like [4, 25, 19]. The purpose of these deviations
is to accommodate the results from as many diagnosis algorithms/approaches as possible,
including results like diagnosis probability distributions that were computed under the
consideration of strong fault models.

l. Pill and J. de Kleer

Assume that a system SD consists of components z; € X, and that we have some
observations OBS about the behavior of SD'. As indicated in Section 2.1 and following the
literature [4, 25], we can define from SD, X and OBS a diagnosis problem (SD, X, OBS)
where we, e.g., sampled over such diagnosis problems in Eq. 1. A diagnosis A C X for a
diagnosis problem points us to a subset of faulty components that can explain OBS. To this
end, a diagnosis assigns each component z; € X a mode m; € M;, where M; is the finite set
of modes in which a component z; can be.

M; must contain the nominal mode m,,,,, and at least one fault mode. This can be the
general fault mode mge,, but also one or more concrete fault modes my. The general fault
mode Mmye, implements a weak fault model [4, 25] that does not place any restrictions on the
behavior of x; in the faulty case. In contrast, concrete fault modes pose concrete constraints
on the behavior of x; also in the faulty case. Technically, there is no requirement to describe
the exact behavior of a strong fault model but only some constraint. In practice, though,
we tend to do so and define concrete faulty behavior — like a stuck-at-0 fault for a logic
gate. As the respective authors outlined in [5, 25], exact strong fault models have advantages
and disadvantages. For example, they indicate to a user what exactly happened. This
information is certainly welcome during the inspection and repair of the system. When
diagnosing specifications or design ideas, using a strong fault model allows us to even suggest
repairs [18], which we can exploit in generative model-based diagnosis for design purposes as
suggested in [17]. But the advantages are secured at the cost of an increased search space,
since we now have not only two modes per component, but multiple ones. On an algorithmic
level, we are then also limited by the chosen fault modes in our diagnostic search.

We consider nominal mode assignments in a diagnosis A to be optional, so that we require only
those tuples (z;, m;) to be specified in A that assign a non-nominal mode m; € M; \ {Mmpnom }
to some component x;. All components x; € X for which A does not contain an assignment
tuple are assumed to be in nominal node. If we state that a diagnosis A is a subset of X,
like the definitions in [4, 25] suggest, we refer to the observation that A defines a subset of
components that are faulty.

» Definition 1 (diagnosis problem, diagnosis, subset-minimal diagnosis, diagnosis candidate).

Given a system SD, a set OBS of observations about SD’s behavior, a set of components
X, and for each x; € X a set of modes M; that x; can take and where M; contains x;’s
nominal mode Mpom and at least one fault mode. A diagnosis A for a diagnosis problem
(SD, X, OBS) is defined as a set of mode assignments (x;,my), such that component x; is
assigned mode my, € M; and there are no two assignments (x5, my) and (x;, my,) that refer
to the same component (s.t. x; = x;). We allow nominal mode assignments to be optional in
A, so that any x; € X where A contains no mode assignment (z;,%) is assigned Mpom by
default. A set of mode assignments, a.k.a. diagnosis candidate A becomes a diagnosis if, and
only if the diagnosis algorithm assigns it a probability higher than zero (s.t. p(A) > 0) such
that it supposedly can explain OBS. A diagnosis A is subset-minimal, if and only if there is
no diagnosis A" s.t. A’ C A.

Like in Section 2.1, we assume that the results of a diagnosis algorithm are given as
a probability distribution P(©) over the diagnosis space ©. The gold standard in terms
of the expected results of an algorithm will be referred to as Q(©), where we discuss in
Section 2.4 several concepts to define this baseline. If an algorithm algorithm does not report

1 As usual, we will also formally refer to a system model with SD and it will be clear from the context
whether we refer to the system in general or a model

5:11

DX 2025

5:12

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

probabilities but only a set of solutions, a naive concept to create a distribution is to assign
all diagnoses the same probability and non-diagnoses a probability of zero. More elaborate
approaches would consider the components’ priors and a diagnosis A’s cardinality when
computing p(A), but let us continue this discussion later in this section.

Based on the individual M; from Def. 1, the search space for diagnoses © varies in its size
and structure. Let us first consider the cases where Vz; € X : M; = {mpom, mgen}7 so that
we implement a weak fault model. In this case, P(0) and Q(©) are distributions over the
diagnosis space © = 2X. This space grows to M¥X if we implement strong fault models such
that M is a general set of modes for all x € X. If the fault sets vary between individual
components (which is likely to be the case in practice), we can use individual mode sets M;
and © = II,,cx M; for a more precise characterization.

» Definition 2 (diagnosis probability distribution). Given a diagnosis problem (SD, X, OBS)
as of Def. 1, the diagnosis search space © is defined by the individual mode sets M; for the
components x; € X as their cross product. A diagnosis probability distribution P(0©) assigns
each diagnosis candidate A’ € © a probability 0 < p(A’) <1 s.t. Tareop(A’) =1.

» Corollary 3. As per Def. 1, a diagnosis candidate A’ € © from a probability distribution
P(©) as of Def. 2 is a diagnosis iff its probability is higher than zero such that p(A’) > 0.

Soundness and completeness are important properties of any diagnosis algorithm A, since
they capture whether (1) the diagnoses reported by A are indeed diagnoses (in that they follow
a formal definition like our Def. 1), and whether (2) the algorithm will return all diagnoses if
it runs long enough. There’s an abundance of reasons why algorithms could be incomplete
or unsound. Obvious examples are approximating concepts like subsymbolic approaches, but
there are also well-founded analytic concepts. For example, if a diagnosis algorithm is tasked
to derive one minimum-cardinality diagnosis, we usually employ optimizations that result in
an incomplete search but where we can still guarantee that at least one minimum-cardinality
diagnosis survives and that A reports sound results [2, 6]. Another example would be that
of computing all minimal conflicts between SD and OBS (see [4, 25] for the underlying
theory), and where we subsequently employ an approximating algorithm like Staccato [1] for
computing diagnoses as the minimal hitting sets of the conflicts.

Assessing traits like completeness and soundness should thus be an integral part of any
approach that assesses the quality of a diagnosis algorithm and its results, especially if we do
not have detailed knowledge of the algorithm (or its implementation) but have to evaluate it
anyway. Having white-box access to an algorithm and its implementation provides us with a
powerful and intuitive approach to do so, i.e., by deriving formal proofs. In some contexts,
such as competitions, we may have only limited knowledge about the diagnosis engine
rather than detailed information about its implementation. But even if we would know the
algorithm’s details, we need to be aware that a proof would most likely target the algorithm’s
computational concept and seldomly its implementation. In this paper, we are thus interested
in assessing soundness and completeness in the context of a diagnosis algorithm’s results,
rather than proving these traits for the algorithm’s computational concept.

In the context of P(©) and Q(©), intuitively, soundness refers to the question whether a
diagnosis A reported in P(0©) (s.t. p(A) > 0) is also a diagnosis in Q(©). When evaluating
completeness, we need to verify that all diagnoses in Q(©) are also diagnoses in P(O).

» Definition 4 (soundness). Given the diagnosis search space ©, a diagnosis A € © reported
in P(©) is sound, iff it is indeed a diagnosis s.t. A is a diagnosis in Q(©). The results of a
diagnosis algorithm are sound, iff all diagnoses A; reported in P(©) are sound.

l. Pill and J. de Kleer

» Definition 5 (completeness). Given the diagnosis search space ©, the results of a diagnosis
algorithm A are complete, iff there is no A; € © that is a diagnosis in Q(O) but not a
diagnosis in P(©).

It is easy to see that the two definitions support any diagnosis search space, but they do

not take into account how the algorithms encode their results. In particular, as we observed
in Sec. 2.4, some algorithms mention some ambiguity groups implicitly. That is, when using
a weak fault model, algorithms like [25, 4, 19] report only A; for an ambiguity group defined
by a subset-minimal diagnosis A; and all its supersets. That is, since all of A;’s supersets
would qualify as diagnosis according to our Def. 1 by default.
Continuing our discussion on how to generate P(©), we thus might have to enrich the
reported set of diagnoses, like we suggested in Section 2.4. In the current case, we would
derive all the missing probabilities for diagnoses that are entailed by the reported ones. All
non-diagnoses are then finally assigned a probability of 0. Please note that other algorithms
might call for a much more elaborate post-processing.

It is intuitive that Definitions 5 and 4 leave no room for deviations between P(©) and
Q(0) when we look at the respective sets of diagnoses. When considering our discussion
in Section 2.4, the choices we make for defining the gold standard Q(©) could, however,
result in the situation that even the most precise algorithm could not achieve completeness
and soundness. Potential delays in diagnosability could be one of these reasons, i.e., when
we consider the known ground truth about injected faults to define Q(©) and thus do not
consider observability-related issues that would cause the faults to manifest on the observable
signals (and thus in OBS) only after some delay (see Sec. 2.4).

To this end, let us introduce temporal and cardinality-oriented error bounds. Via those
bounds, we can then define some maximum deviations in terms of temporal deviations or
over- and under-approximations of a diagnosis. Within those bounds, we will consider the
results to be near-complete and near-sound.

» Definition 6 (near-completeness). The results of a diagnosis algorithm A are near-complete
with respect to bounds ec € Ng and e € Ny, iff for every diagnosis A; in Q(©) for timestep
tj, there is some diagnosis Ay for timestep t; in P(©) such that

Ay is a sub- or superset of A;,

18] = [A4]| € €c, and

|l -]| < €T.

Near-completeness allows us to reason within a temporal scope for situations where we
compute diagnoses for each individual time step ¢; of a stateful system’s computation (see
our discussion in Sec. 2.4). For every diagnosis in Q(©) for time step ¢;, we then search for
matching diagnoses in P(©) for any time step ¢j_., < t; < tj+c,. This allows us to deal
with delayed observability as well as with the potential clairvoyance (see Def. 14) of, e.g.,
subsymbolic algorithms. If we do not want to consider temporal deviations, or for the usual
case of diagnosing the entire computation after it finished, we just have to set er to 0. Via
parameter €c, we can control the acceptance of over- or under-approximations of diagnoses
A; from @, such that P would contain only super- or subsets of A;. ec allows us to define a
limit on the difference in cardinality.

» Corollary 7. The results of a diagnosis algorithm A are complete as of Def. 5 if and only
if they are near-complete as of Def. 6 with respect to bounds ec = e = 0.

» Definition 8 (strict near-completeness). The results of a diagnosis algorithm A are strictly
near-complete iff the results are incomplete, but where there are some bounds ec and e for
which they are near-complete.

5:13

DX 2025

5:14

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

» Corollary 9. Let the results of a diagnosis algorithm A be near-complete, and let ec be
the minimum value for ec enabling near-completeness (er being a free variable) and er, . be

min

the corresponding minimum value for er (ec being a free variable). Then the results of A
are not necessarily near-complete for bounds ec and er

min min *

Similar to considering completeness within temporal and cardinality-oriented bounds, let
us consider also soundness within such well-defined bounds.

» Definition 10 (near-soundness). A diagnosis Ay from P(©) for time step t; is near-sound
with respect to bounds ec € Ng and er € Ny iff there is a diagnosis A; for time-step t; in
Q(O) such that

A; is a sub-or superset of Ay,

|Ai] = [Ak|| < ec, and

|] - l| < €.

The results of an algorithm for time step t; are near-sound, iff all of its diagnoses Ay,
from P(©) for time step t; are near-sound.

» Corollary 11. The results of a diagnosis algorithm A are sound as of Def. 4 if and only if
all reported diagnoses are near-sound as of Def. 10 with respect to bounds ec = ep =0 .

» Definition 12 (strict near-soundness). The results of a diagnosis algorithm A are strictly
near-sound iff there is at least one reported diagnosis Ay from P(O) for time-step t; that is
not sound as of Def. 4, and every such diagnosis is near-sound for some bounds ec and er
as of Def. 10.

» Corollary 13. Let the results of a diagnosis algoritm A be near-sound, and let ec,, , be the
minimum value for ec that enables near completeness (s.t. there is some er) and e, . be
the corresponding minimum value for ep (s.t. there is some e). Then the results of A are
not necessarily near-sound for bounds ec,,,, and er,

min °

When we discussed near-completeness as of Def. 6, we briefly mentioned that an algorithm
might be clairvoyant. Let us briefly formalize such clairvoyance and let us connect it to
strictly near-sound algorithms.

» Definition 14 (clairvoyance, clairvoyant diagnosis). A near-sound diagnosis Ay from P(©)
reported by algorithm A for time step t; is called a clairvoyant diagnosis, if and only if there
is a diagnosis A; in Q(©) for some time-step ti<j<iter S.t. A; is a sub- or superset of Ay
with ||A;] — |Ag|| < ec, but there is no such A; for ti_eq<j<i-

It is easy to see that a clairvoyant diagnosis means that the algorithm is by definition
unsound, 7.e., since there was no matching diagnosis for the same time step.

» Corollary 15. If the results of a diagnosis algorithm A contain a clairvoyant diagnosis A,
then the algorithm’s results are not sound. The results are strictly near-sound iff there exist
appropriate bounds er and e€c such that the results are near-sound with respect to those
bounds.

It is evident that the notions of near-completeness and near-soundness allow us to classify
and compare some algorithms’ performance for a diagnosis problem via inspecting e7 and ec.
That is, via their respective minimum parameters ep and e that are required for achieving
near-soundness and/or near-completeness. The lower the minimum values for the parameters,
the better the algorithm. Via er and - we can thus establish partial orders in the sense that

l. Pill and J. de Kleer

when we fix one of these parameters, the minimum values for the other parameter defines
a natural order regarding their performance. For obtaining a total order, we would need a
or we could take into account the entire set of

weighted metric considering e . and €ec

min min?

all (minimal) combinations. For a representative verdict, some (weighted) average over a set
of samples might need to be computed, implementing the discussion offered in Section 2.1.

Please note that the values for parameters ey and e¢c depend on each other, as can
be seen from Corollaries 9 and 13. A consequence that we can easily observe is that we
might need values for ey that are higher than er,

min

for enabling near-completeness and/or
near-soundness for some specific ¢ (and vice versa).

3.2 The challenge: of oracles and metrics

We motivated our work in the Introduction with the complexity of finding correct and
informative answers to the natural question of whether a specific diagnosis algorithm returned
the correct result for some diagnosis problem, and if not, how good the results are. As we
hope to have convinced you with our discussion in Section 2, providing the right answers is a
complex task that requires us to take into account a wide variety of aspects.

Let us now discuss potential solutions to the problem at hand. In principle, we can
observe that any solution needs to tackle two distinct problems:

Task 1: We need to implement an oracle that judges whether the results are OK or not.

Task 2: We need to quantify the quality of the results with a corresponding measure.

T1 and T2 can be addressed and answered independently, but we can also exploit synergies
and tackle both tasks together. So we could use a quantitative metric for T2 and implement
the oracle O for T1 by a qualitative interpretation of the value obtained by the metric.

An intuitive and straightforward solution for the latter would be to consider P(©) and
Q(©) and to sum up the absolute value of the differences between p(A;) and ¢(A;) when
iterating through the diagnosis space ©. We could adopt KL-convergence as of Eq. 5 in
Section 2.1, we could sum up the squared absolute value such as to penalize larger differences,
and we could adopt a large a variety of similar ideas with individual twists. That is, as long
as we ensure that the final value is 0 iff there is no deviation at all, we have a solution with
the desired property. Obviously, this concept is not very robust against the influence of noisy
computations. If we add some error bound € € RT to mitigate some of the effects (see Eq. 8
for such an oracle O), we would still not be able to address the disadvantage that the metric
(the sum in Eq. 8) does not distinguish between problems with different severity levels.

O(P,Q,¢) = T iff ¥a,colp(Ai) — ¢(A;)| < eand L otherwise (8)

Let us elucidate the issue by considering the two following cases. For Case 1, assume
that there is a very small deviation d; = |p(A;) — ¢(A;)| in the probabilities for some
A (p(A;) >0 Ag(A;) > 0. Case 1 refers thus to a scenario in which A; is a diagnosis in
both P(©) and Q(O), but in which we observe a slight deviation between p(A;) and ¢(A;).
In the context of a repair procedure, this difference might cause a change in the rank of
A;, which could in turn affect repair cost estimates (see Section 2.2). But we can easily
see that A neither missed to report diagnosis A; in Q(®©), nor is A; a spurious diagnosis.
Mathematically, we thus observe that the completeness and soundness of the results is not
negatively affected by the difference in probabilities. Now let us look at Case 2, in which the
probability for the same A, is 0 for either P(©) or Q(©) and is §; for the other. In Case 2,
while the difference is indeed the same as in Case 1, we can easily observe that the results
P(0©) are either incomplete or unsound, i.e., since A either failed to report a diagnosis (if

5:15

DX 2025

5:16

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

p(A;) = 0), or it reported a spurious and thus unsound diagnosis (if ¢(A; = 0)). The metric
can, however, not distinguish Case 2 from Case 1 so that A; contributes in either case with
the same d; to the computation.

An intuitive way to address the issue would be to employ a combination of such a simple
quantitative metric and a formal assessment of completeness and soundness. Following up
on our discussions in Sections 2.4 and 3.1, this might also call for inspecting near-soundness
and near-completeness as of Definitions 10 and 6 instead, since this would allow us, e.g., to
accommodate delays in the diagnosability of some faults.

In combination with this formal assessment, we could replace the metric in Eq. 8 with a
much simpler one. First, we rank the diagnoses for P(0) and Q(©) respectively, and then
subsequently count the A;s for which there is a difference in ranking (taking into account
ambiguity groups). This simplification would make the quantitative measure more robust
to noise and slight deviations in the probabilities that do not change the ranking, while
it already takes the effects on a repair process into account. There is an abundance of
similar metrics, and in Section 4 we discuss with the economic metric a much more elaborate
approach to quantify effects on the repair costs, and thus a metric that is closer in line with
our repair-cost estimate discussion from Section 2.2.

It is easy to see that the combination of a formal assessment with some quantitative
ranking could be realized in a combined metric that allows us to tackle T1 and T2 together,
but also in individual solutions for T1 and T2. We could use the assessment of soundness and
completeness for addressing T'1, and employ a quantitative metric for T2. Approaches for T1
following the concept described above require us to know Q(©). In reality, this assumption
is indeed a strong one and we may not be able to fulfill it in practice. Let us thus explore
whether we might be able to assess completeness and soundness without knowing Q(0).

So, we can verify the soundness of a single diagnosis Ay, for example, by checking if the

symptoms disappear after repairing all (necessary) x; as suggested by Ay. Connecting to our
discussions around PFU in Sec. 2.2), such a Ay is indeed sound. Furthermore, considering
Def. 1, we do not need to verify whether A is subset-minimal, since it is not required by
our definition. For these two reasons, in general, Ay should also be part of Q(©)). That is,
unless we break the hidden assumption that we consider the ambiguity groups of diagnoses
and their supersets in a sensible way such that Q(©) would miss to contain also the relevant
supersets of some diagnosis as diagnoses.
Please note that if we would desire subset-minimality in the diagnoses for a weak fault
model computation, it would not suffice to simply check whether P(©) contains another
diagnosis A; : A; C A — like some diagnosis algorithms do. That is, this check works out
for algorithms like RC-Tree [18] since they are sound and complete. But while completeness
is ensured in those algorithm’s construction, it is not necessarily the case in our context.

Verifying completeness is also sometimes possible without knowing the expected results.
For example, in cases where we have access to a precise system model that is suitable for
working with a SAT, SMT or constraint solver. Assuming that we have, e.g., a behavioral
model in some temporal language [18, 9] or a simple combinational circuit [4], we first compile
SD and OBS into a SAT problem as suggested in those papers (see also [13]), or into an
SMT problem/constraint problem [16]. We then add blocking clauses for all diagnoses from
P(©) and finally ask the solver to search ezhaustively for a new diagnosis [13, 15]. If one is
found, the results P(0©) are incomplete, and otherwise they are complete.

We hope that we could convince you that there are many ways to tackle the problem at
hand, despite all the challenges that we have to face. To illustrate this, we, indeed, discussed
several options to implement the desired oracle (T1), as well as to quantify the quality of the
results reported by a diagnosis algorithm (T2).

l. Pill and J. de Kleer

4 The Economic Metric

The intuition behind economic metrics for diagnostic algorithms is to evaluate their results
in the context of their use. Here we will focus on the task of a repair person who’s task it
is to return the system to its full functioning. (Many other analogous diagnostic metrics
are possible.) If diagnosis is completely accurate the diagnostician can simply replace the
components listed in the diagnosis. But if the diagnosis is not accurate the diagnostician may
replace components which are unfaulted, and in addition incur extra diagnostic expense to
restore the system to complete functioning. Thus they incur two types of wasted effort. The
report of DXC 2010 [8] outlined one approach which we first summarize and then augment
according to the ideas outlined earlier in this paper.

The diagnostic algorithm returns a set of diagnoses: Q = {w1,...,wi}. In addition it
provides a weight V(w) for each diagnosis. The weights typically represent probabilities. We
assume

Z V(w)=1
weN
The normalized utility including both types of wasted effort is (see [8] for details):
n(N+1) a(N+1)
f(n+1) f(r+1)

where f is the count of all components, w is a diagnosis, N is the number of healthy

My (w,w*) =1

*

components, n is the number of false negatives (|w* — w|), w* is the inserted fault, 7 is
the number of false positives (Jw — w*|). From this definition we can see that f = N + N
and n + n = |w* A w| where A indicates symmetric difference. m,y intuitively has the
desired properties. If there are no false positives or false negatives, m,y = 1. A system with
10 components for which the diagnoser finds the incorrect single fault, m,y; = 0.4. If the

diagnoser returns multiple diagnoses, the utility for the diagnoser on that task is:

Mun(w*) =Y V(w)muu(w*,w)
we

This was the exact metric used in prior DXC competitions. However, it does not accommodate
ambiguity groups. Therefore, to obtain a decent score at all, the diagnosers in prior
competitions needed to return as many elements of the ambiguity group each with its own
V(w). The final scores were thus much lower than expected. This was an unfortunate state

of affairs as at the point this was discovered the metrics had been fixed for the competitors.

The full discussion of the utility metric in the presence of ambiguity groups is outside the

scope of this paper. Generalizing the approach we used for the sampling approach we obtain:

Zseallsamples p(G(S))MUtl (S)
ZsEallsamples p(G(S))

S(A) = (9)

5 Conclusions

We hope that we have convinced you that choosing a metric for the evaluation of a diagnostic
algorithm is very complex. In addition, we argue that the best metrics for evaluating the
algorithms’ performance could be those that are based on the costs incurred by the diagnostic
algorithm in its context of use, like the economic metric. In particular, we observe that this

5:17

DX 2025

5:18

Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles

family of metrics provides us with an assessment that is agnostic to the algorithm itself and
connects directly to how we perceive its performance by considering the practical effects of
the derived results.

A complementing way to assess the results of a diagnostic algorithm is to look at their
completeness and soundness. In practice, we would want to consider some error bounds in
this context, as suggested by our notions of near-completeness and near-soundness. While
we discussed the intuitiveness of computations that take advantage of knowing the gold
standard, in specific circumstances, we can implement approaches that are able to circumvent
the strong requirement of having to know the ideal results.

Following up on our discussions of issues that have to be addressed and our suggestions
for concepts to solve the problems, future work will have to empirically evaluate available
and new metrics to provide us with a clear picture of the algorithmic landscape.

—— References

1 R. Abreu and A. J. C. van Gemund. A low-cost approximate minimal hitting set algorithm
and its application to model-based diagnosis. In 8th Symposium on Abstraction, Reformulation,
and Approzimation, SARA, 2009. URL: http://www.aaai.org/ocs/index.php/SARA/SARA09/
paper/view/834.

2 J. Biteus, M. Nyberg, and E. Frisk. An algorithm for computing the diagnoses with minimal
cardinality in a distributed system. Engineering Applications of Artificial Intelligence, 21(2):
269-276, 2008. doi:10.1016/j.engappai.2007.03.006.

3 A Boussif and M. Ghazel. Diagnosability analysis of input/output discrete-event systems
using model-checking. IFAC-PapersOnlLine, 48(7):71-78, 2015. doi:10.1016/j.ifacol.2015.
06.475.

4 J.deKleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence, 32(1):97-130,
1987. d0i:10.1016/0004-3702(87)90063-4.

5 J. de Kleer and B. C. Williams. Diagnosis with Behavioral Modes. In 11th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1324-1330, 1989.

6 Johan de Kleer. Hitting set algorithms for model-based diagnosis. In 22nd International
Workshop on Principles of Diagnosis (DX’11), 2011.

7 P.Delgado-Pérez and F. Chicano. An experimental and practical study on the equivalent mutant
connection: An evolutionary approach. Information and Software Technology, 124:106317,
2020. doi:10.1016/j.infsof.2020.106317.

8 A. Feldman, T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, J. de Kleer, L. Kuhn, and A. van
Gemund. Empirical evaluation of diagnostic algorithm performance using a generic framework.
International Journal of Prognostics and Health Management, pages 1-28, 2010.

9 A. Feldman, I. Pill, F. Wotawa, I. Matei, and J. de Kleer. Efficient model-based diagnosis
of sequential circuits. In 34th AAAI Conference on Artificial Intelligence (AAAI’20), pages
2814-2821. AAAI Press, 2020. doi:10.1609/AAAT.V34103.5670.

10 R. Greiner, B. A. Smith, and R. W. Wilkerson. A Correction to the Algorithm in Reiter’s Theory
of Diagnosis. Artificial Intelligence, 41(1):79-88, 1989. doi:10.1016/0004-3702(89)90079-9.

11 A. Hou. A theory of measurement in diagnosis from first principles. Artificial Intelligence,
65(2):281-328, February 1994. doi:10.1016/0004-3702(94)90019-1.

12 1. Matei, M. Zhenirovskyy, J. de Kleer, and A. Feldman. Classification-based Diagnosis Using
Synthetic Data from Uncertain Models. Annual Conference of the PHM Society, 10(1), 2018.

13 A. Metodi, R. Stern, M. Kalech, and M. Codish. Compiling Model-Based Diagnosis to Boolean
Satisfaction. In 26th AAAI Conference on Artificial Intelligence, pages 793—799, 2012.

14 E. Muskardin, I. Pill, and F. Wotawa. CatIO - A Framework for Model-Based Diagnosis of
Cyber-Physical Systems. In D. Helic, G. Leitner, M. Stettinger, A. Felfernig, and Z. W. Ras,
editors, Foundations of Intelligent Systems, pages 267276, 2020.

http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/834
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/834
https://doi.org/10.1016/j.engappai.2007.03.006
https://doi.org/10.1016/j.ifacol.2015.06.475
https://doi.org/10.1016/j.ifacol.2015.06.475
https://doi.org/10.1016/0004-3702(87)90063-4
https://doi.org/10.1016/j.infsof.2020.106317
https://doi.org/10.1609/AAAI.V34I03.5670
https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1016/0004-3702(94)90019-1

l. Pill and J. de Kleer

15

16

17

18

19

20

21

22

23

24

25

26

I. Nica, I. Pill, T. Quaritsch, and F. Wotawa. The Route to Success - A Performance
Comparison of Diagnosis Algorithms. In 23rd International Joint Conference on Artificial
Intelligence, pages 1039-1045, 2013.

I.-D. Nica and F. Wotawa. ConDiag - Computing minimal diagnoses using a constraint solver.

In 23rd International Workshop on Principles of Diagnosis, 2012.

I. Pill and J. de Kleer. Challenges for Model-Based Diagnosis. In 35th International Conference
on Principles of Diagnosis and Resilient Systems (DX 2024), volume 125 of Open Access Series
in Informatics (OASIcs), pages 6:1-6:20, 2024. doi:10.4230/0ASIcs.DX.2024.6.

I. Pill and T. Quaritsch. Behavioral diagnosis of LTL specifications at operator level. In 23rd
Int. Joint Conf. on Artificial Intelligence, pages 1053-1059, 2013.

I. Pill and T. Quaritsch. RC-Tree: A variant avoiding all the redundancy in Reiter’s minimal
hitting set algorithm. In IEEE Int. Symp. on Software Reliability Engineering Workshops
(ISSREW), pages 78-84, 2015.

I. Pill, I. Rubil, F. Wotawa, and M. Nica. SIMULTATE: A Toolset for Fault Injection and
Mutation Testing of Simulink Models. In IEEE 9th International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pages 168-173, 2016.

I. Pill and F. Wotawa. Spectrum-Based Fault Localization for Logic-Based Reasoning . In 2018
IEEEFE International Symposium on Software Reliability Engineering Workshops (ISSREW),
pages 192-199, 2018. doi:10.1109/ISSREW.2018.00006.

1. Pill and F. Wotawa. On Using an I/O Model for Creating an Abductive Diagnosis Model via
Combinatorial Exploration, Fault Injection, and Simulation. In 29th International Workshop
on Principles of Diagnosis (DX’18), 2018.

I. Pill and F. Wotawa. Exploiting observations from combinatorial testing for diagnostic
reasoning. In 30th Int. Workshop on Principles of Diagnosis, 2019.

I. Pill and F. Wotawa. Computing Multi-Scenario Diagnoses. In 31st International Workshop on

Principles of Diagnosis, DX ; Conference date: 26-09-2020, 2020. URL: http://dx-2020.o0rg/.

R. Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence, 32(1):57-95,
1987. d0i:10.1016/0004-3702(87)90062-2.

L. Ye, P. Dague, D. Longuet, L. B. Briones, and A. Madalinski. Fault manifestability
verification for discrete event systems. In 22nd European Conf. on Artificial Intelligence, pages
1718-1719, 2016. doi:10.3233/978-1-61499-672-9-1718.

5:19

DX 2025

https://doi.org/10.4230/OASIcs.DX.2024.6
https://doi.org/10.1109/ISSREW.2018.00006
http://dx-2020.org/
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.3233/978-1-61499-672-9-1718

Towards Predictive Maintenance in an Aluminum
Die-Casting Process Using Deep Learning
Clustering and Dimensionality Reduction

Miguel Cubero &
University of Valladolid, Spain

Luis Ignacio Jiménez & &
University of Valladolid, Spain

Daniel Lépez &
HORSE Powertrain, Valladolid, Spain

Belarmino Pulido' &4
University of Valladolid, Spain

Carlos Alonso-Gonzalez 94
University of Valladolid, Spain

—— Abstract

In the manufacturing industry, predictive maintenance requires the estimation of the health status
of key subsystems or components. In this study, we will look for degradation patterns in the piston
of an injection machine used in an aluminum die casting process operating in an automobile factory
in Valladolid (Spain). The injection machine produces a new engine block every 90 seconds and
each injection device provides 2000 measurements of various physical variables. This study faced
the challenge of finding piston head degradation patterns for an injection machine in the factory,
using time series data obtained from the controller, as a preliminary step to estimate the remaining
useful life (RUL) of the piston head. The proposed solution used advanced deep learning clustering
techniques to generate an index related with the progression of the degradation of the components.
The results indicated that degradation patterns can be identified. Later on, using an exponential
function an approximation of the RUL can be provided to the plant operator to achieve an ordered
piston replacement.

2012 ACM Subject Classification Computing methodologies — Cluster analysis; Computing meth-
odologies — Dimensionality reduction and manifold learning

Keywords and phrases Prognostics, Deep Learning, Clustering, UMAP, LOWESS regression
Digital Object Identifier 10.4230/0ASIcs.DX.2025.6

Funding This work has been partially supported by Spanish Ministerio de Ciencia e Innovacién
under Grant PID2021-1266590B-100.

Miguel Cubero: M. Cubero’s work has been supported by the 2024 Investigo Programme from the
Spanish Ministerio de Trabajo y Economia social using EU Next Generation Funds.

Acknowledgements Authors want to thank our former students David Garcia de Vicuna Lépez de
Ciordia and Daniel Veganzones for their help in early stages of this work; also, authors want to
acknowledge the people from the Informatics and Injection Sections of the factory for granting access
to the time series dataset, and for the help and support provided in understanding the injection

process.

1 Corresponding author

© Miguel Cubero, Luis Ignacio Jiménez, Daniel Lépez, Belarmino Pulido, and Carlos Alonso-Gonzélez;
37 licensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).

Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 6; pp. 6:1-6:16

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:miguel.cubero@uva.es
https://orcid.org/0009-0008-9719-5575
mailto:nacho.jimenez@uva.es
https://portaldelaciencia.uva.es/investigadores/275447/detalle
https://orcid.org/0000-0001-6386-9115
mailto:daniel.g.lopez@horse.tech
https://orcid.org/0009-0008-3498-0664
mailto:b.pulido@uva.es
https://portaldelaciencia.uva.es/investigadores/179777/detalle
https://orcid.org/0000-0003-2340-684X
mailto:calonso@uva.es
https://portaldelaciencia.uva.es/investigadores/178789/detalle
https://orcid.org/0000-0003-4136-9632
https://doi.org/10.4230/OASIcs.DX.2025.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

6:2

Towards Predictive Maintenance in an Aluminum Die-Casting Process

1 Introduction

Predictive manufacturing is one of the basic pillars of smart factories under the Industry
4.0 paradigm. This task is essential to improve industry competitiveness [23] and intelligent
systems are required to obtain “self-awareness”, “self-predicting”, “self-maintaining”, and
“self-learning”, which are inherent capabilities of predictive manufacturing [16]. Health
Management Systems (HMS) provide the conceptual framework to build these intelligent
systems, which must include all the necessary (and cooperating) tasks to get those capabilities:
health state estimation, monitoring, fault detection and diagnosis, prognostics, and predictive
maintenance. Prognostics and Health Management (PHM) is the technology commonly used
to develop HMS. Such technology aims to detect incipient faults, perform fault diagnosis,
and prognostics of failure [3]. Different authors have identified different tasks as essential
to develop PHM solutions [3, 1], being the most common: Human-Machine Interfaces, data
acquisition, detection, diagnostics, and prognosis modules. In this work we will focus mainly
on fault prognostics and predictive maintenance, aiming to extend the useful life of the
system, and helping in the optimization of maintenance activities [20].

There are two main approaches to solve the PHM problem: model-based and data-
driven [4, 24]. Model-based prognostics [8] use physics-based models that model physical
phenomena in order to predict how failure in a system or in its components will evolve. The
task has two steps: damage estimation, and damage prediction, which projects the current
health state forward in time to determine the End of Life (EOL), and the Remaining Useful
Life (RUL) of the system or component. Meanwhile, data-driven prognostics use available
data to build a black-box model for predicting the fault growth [10, 25]. In order to extract
features from the data that can be related to fault growth [19] different techniques can be
used, such as regression (e.g., Gaussian process regression), mapping (e.g., neural networks),
or statistics (e.g., relevance vector machines).

In the context of automotive industry, several subsystems or some of their components
are so complex that it is not possible to obtain accurate or usable first-principles models.
However, in smart factories, with their Cyber-Physical systems (CPSs), large amounts of
data are available, specially from a large variety of sensors or automata. The big data
obtained from those CPSs can be used to produce data-driven models for HMS purposes;
but such kind of models for large parts of a factory are hardly feasible. Instead, using a
divide and conquer strategy, smaller models for specific parts of the process or for specific
high-level tasks in the HMS (such as fault diagnosis or prognostics) can be obtained. In
discrete manufacturing, this is not a major problem because different stages can be clearly
isolated.

More specifically, in the domain of automotive manufacturing, several stages can be
clearly identified: the production of components (such as engines, gearboxes, etc.), wielding,
painting, and assembly. In addition, we can also identify several discrete processes within
each stage. This study focuses on one of these processes, required for producing car engines:
the aluminum die-casting process, which produces engine blocks. This process is so complex
that it is divided into different phases, one of them being the injection of aluminum to
produce each engine block. A new aluminum engine block is produced in less than two
minutes using an injection machine, whose components also suffer from wear, especially
moving parts such as pistons, which are subjected to extreme temperature and pressure
conditions. The automatic controller, embedded in each injection machine, measures several
physical variables during each aluminum injection. These process measurements for each
engine block are stored in the real time database as time series, together with some static
data related to the whole injection process, which are stored for maintenance purposes.

M. Cubero, L.I. Jiménez, D. Léopez, B. Pulido, and C. Alonso-Gonzalez

In this context, the research questions in this work were: first, is it possible to find
degradation patterns for pistons involved in the aluminum die-cast injection process, using
only the time series related to physical variables provided by the controller? Second, can
we perform an estimation of the RUL for the piston in the injection machine? To answer
the first question the calculation of a Fuzzy Progression Index (FPI) is proposed; this index
shows the evolution of the piston head wear in sequential stages, combining Autoencoders,
dimensionality reduction, and fuzzy clustering. The answer to the second question, the FPI
values were used to estimate the current wear state of the piston head, and a projection of
its remaining life span.

This study has been done using real data from an automotive factory in Valladolid, Spain;
more specifically from one of its injection stations during a three months period in 2023
where abnormal degradation patterns were suspected. From a factory management point
of view, finding those degradation patterns would help the predictive maintenance of the
system, thus reducing the downtime of the process due to pistons failures.

This manuscript is organized as follows: next section will provide a description of the
real case study used in this work. Later, background on the main techniques used in this
work will be introduced. Section 4 is focused on the proposal for the estimation of the wear
condition of the piston heads, while Section 5 will explain how to obtain an estimation of

the RUL for each piston head. In both sections we will provide the results on the case study.

Finally, some conclusions will be drawn.

2 Case study: the aluminum die-casting process in an automotive
factory in Valladolid, Spain

2.1 The injection process

Car manufacturing has several stages: Stamping (which creates the vehicle basic outer shell
out of large rolls of sheet metal), Body Shop (which is devoted to welding and the assembly
of the stamped panels from the previous stage), Painting of the car body, Assembly Line
(where wiring, electronics, windows, seats, etc. are assembled), Powertrain Assembly (where
engines and transmissions are installed), Quality Control and Testing, and finally Logistics
and Delivery. In addition, all the components required in these stages need to be produced,
such as engine blocks or gearboxes, before they can be assembled. Usually there are whole
factories devoted to the production of an specific element, such as the engine block.

This work is focused on the die-casting process, where injection machines produce engine
blocks from aluminum ingots, as can be seen in Figure 1. This work aims to build an
intelligent system to support quality control for the die-casting process, by means of a
degradation model, which can be used to warn the plant operator when the RUL of the
system is close. After the die-casting process, the produced engine blocks are tested in the
factory before they are delivered to the Powertrain Assembly stage.

Aluminum die-casting has several stages itself, which can be seen in Figure 2: the
aluminum is melted in a Melting tower, and it goes directly to the Casting stage; afterwards,
the engine blocks pass a Visual inspection; later on, each engine receives a Thermal treatment
to avoid leakages, and the exceeding aluminum is removed in the Machining stage. Finally,
to find potential liquid or gas leakages, each engine passes through the Leakage test. Engine
blocks that do not pass this test are sent backwards to the Melting tower.

Filling the mold is a process which also has several stages: first, the aluminum is fed
into the piston chamber. Second, there is a slow-speed phase, where the piston moves slowly
to almost completely fill the mold. Third, there is the low pressure, high-speed phase to

6:3

DX 2025

6:4

Towards Predictive Maintenance in an Aluminum Die-Casting Process

Figure 1 Aluminum die-casting machine.

MELTING TOWER ~ memp- CASTING memp VISUAL CONTROL ===p THERMAL TREATMENT
i \
— MACHINING > LEAK TEST

Figure 2 Die-casting process diagram.

completely fill the mold. Fourth, compaction stage uses high pressure to remove air or any
other gas from the mold. Later on, a vaccum valve is used to seal the mold. During all these
phases, the piston speed and pressure must be carefully controlled, because it is critical to
produce fine engine blocks. Finally, once the mold is open again, a layer of an oil-based
solution is sprayed on both the engine block, and the mold. Then, there is a cooling stage.

In this study, the information used belongs to three of the four initial stages: slow-speed,
high-speed, and compaction. All the data used from these stages are provided by the injection
machine.

2.2 The dataset

Each injection lasts less than 90 seconds, and in that span each injection device produces 2000
data for at least five measured signals for each piston: the space traveled, the current speed
and its desired set point, and finally, the pressure exerted by the piston on the mold and its
desired set point. Consequently, for each injection process, we have five time series made up
of 2000 points each?. In addition, the injection machine provides a text file summarizing the
injection process, and accordingly it labels each new engine block. If the generated label is
not OK, then the engine block is rejected, but most of the generated engines are labeled
as OK.

2 Details about measurement units and scales are intentionally omitted due to confidentiality issues.

M. Cubero, L.I. Jiménez, D. Léopez, B. Pulido, and C. Alonso-Gonzalez

Figure 3a shows the evolution of the five measurements recorded for the relevant parts of
one injection: the end of the slow speed, together with the fast speed, and the compaction
stages, as described in Section 2.1. However, depending on the settings fixed by each plant
operator, the time series had different parameters regarding the initial time point to be
measured, and the sampling time for the data series. Hence, we were forced to subsample
the original 2000 points to have the same number of points, with reference to the same
time instant, for all the injections. Consequently, the time series were reduced to 158 points

comprising the end of the slow-speed and the whole fast-speed stages for all the engine blocks.

After analyzing those data, the size of the time series was later reduced to 56 points, available
from the beginning of the fast-speed stage in the injection. Figure 3b shows the 56 points for
the same injection as in Figure 3a.

After training several Deep Learning configurations [7] only 20 time steps were considered
as relevant to distinguish different behaviours. From these reduced data, only the real speed
(v € R) and the real pressure (p € R), measurements were considered relevant. Additional
features, related to the temporal evolution of these two measurements were included. Each
feature will provide an additional 20 points time series for both v and p.

the standard deviation (five points sliding window), o € R,

71@21()5””(”, rs € R,

z(t+1)—2z(t)+x(t—1)
(L (2(t4+1)—a(1))?)?/?’
third order difference: z(t) — 3z(t — 1) 4+ 3x(t — 2) — z(t — 3), tod € R,
and lags of order 1 to 5: z(t) —z(t — k), k=1,2,3,4,5, lagy, € R.

relative speed:

curvature: ceR,

As a result, the dataset is made up of 20 time series, made up of 20 time steps each, for each
engine block: x; = {v;, 01,781, 1,tody,lag1,,lag,,lagi,, lagy,, lagi,, pi, 02,782, C2, toda,
la921) lag?z) lag?s) la9247 lag?s }

—— space — T 1] 6
6
reference_speed
—— actual speed
51 —— reference_piston_pressure
—— actual_pressure
1
4
8 2 —— space
=, —: 3 reference_speed
&)
= = —— actual_speed
) —— reference_piston_pressure
2 —— actual_pressure
1 1
L NN /\W
0 of =———
0 250 500 750 1000 1250 1500 1750 2000 0 10 20 30 40 50
Time Steps Time Steps

(a) Five time series covering relevant phases of the ~ (b) Time series for the fast speed phase of the
injection process for a single engine block. injection process for a single engine block.

Figure 3 Comparison of time series representations across different phases of the injection process
for a single engine block.

The dataset comprised data about engine blocks produced over a three-months span
(mid-January to mid-April, 2023) by a single injection machine, and labeled as OK by the
device. 20 pistons were used during that period of time, but the factory reported that four
of them did not meet the expected lifespan standard, and were replaced due to unforeseen
issues (the remaining 16 exhibited normal lifespans). A filtered dataset was established based
on these 16 pistons, resulting in a total of 29158 engine blocks. The generated dataset has
dimensions N x P x F, with N representing the 29158 engine blocks, P indicating the time
points collected for each time series, 20, and F' representing the number of time series used
for each block, 20.

6:5

DX 2025

6:6

Towards Predictive Maintenance in an Aluminum Die-Casting Process

3 Background: unsupervised machine and deep learning methods

Raw data is made up of five time series for each engine block, without labels on the different
stages of the life cycle of the piston to perform classified supervision, or numerical information
on the RUL of each engine block to train a regressor. Hence, it was necessary to look for
clusters on the time series previously described (the filtered speed and pressure, plus the
nine additional features, such as relative speed, curvature, etc., for each one of them).

Traditional time series clustering techniques can be used to find clusters for different
behaviors, partitioning the original data series using different distance or dissimilarity
measurements among the series, or features extracted from them. A detailed review of
classical techniques for time series clustering can be found in the work by Maharaj et al. [14].

Several classic methods were tested on the current dataset with no satisfactory results [9],
being unable to find significant difference between nominal and faulty behavior. Moreover,
using supervised deep-learning and information about the early and final stages of the piston
life cycle it was possible to separate both stages with more than 97% of accuracy [17], but it was
not possible to isolate other degradation stages with more than 65% of accuracy. Consequently,
different surveys on deep learning clustering techniques were explored [22, 2, 13, 12], where
different methods are proposed; the most common being the combination of autoencoder
followed by clustering of the latent space, and transformer-based embeddings also followed by
clustering. In the remainder of this section the methods and techniques selected for this work
will be summarized. It was decided to use the most promising one for time-series clustering
following [12].

3.1 Autoencoder

An autoencoder is a deep neural network designed to learn an efficient representation of the
input data, X, by means of an Encoder, E(X), that extracts the inputs features to a latent
representation, Z, and then uses a Decoder, D, which reconstructs X from the encoding Z,
while minimizing a loss function (L), which measures the difference between the input (X)

A

and the reconstructed output (X). This can be expressed as follows:

E:Z = EX)=f(W.X+b) (1)
D:X = D(Z)=g(WyZ+by) (2)
L = |xX-X| (3)

The behavior of the autoencoder can be summarized as:
X = D(E(X)) (4)

where f and g are activation functions, W,, W, are weight matrices and b, by are the biases.

A Dilated Convolutional Neural Network (DCNN) architecture [11] is employed to
implement the autoencoder model for time-series clustering. This architecture leverages
variations in the dilation parameter, which are determined by the length of the input time
series. Specifically, the dilation increases exponentially: at a rate of 4 for series shorter than
50 data points, and at a rate of 2 for longer series.

3.2 Dimensionality reduction

Uniform Manifold Approximation and Projection (UMAP) [15] is a non-linear stochastic
method based on graphs for dimensionality reduction. The algorithm is divided into two main
steps. First, it constructs a fuzzy graph between the data points: it computes a k-nearest

M. Cubero, L.I. Jiménez, D. Léopez, B. Pulido, and C. Alonso-Gonzalez

neighbor graph and then defines the probability that two points are connected. Next, it
creates the low-dimensional embedding by minimizing a cross-entropy loss, which pulls points
together or pushes them apart depending on their distances in the high-dimensional space.
This optimization is performed using stochastic gradient descent.

Let C be the set of all connections in the graph constructed from the high-dimensional
space. Let wy(c) and w;(c) denote the weights of a connection ¢ in the high- and low-
dimensional spaces, respectively. The cross-entropy is then computed as:

~

1 — wp(c)

5 wn(c)log(24()+ (1 = une)) log(;))

ceC

The objective is to minimize this function. The first term is minimized by increasing
wi(c), meaning the points are close together in the low-dimensional space. The second term
is minimized by decreasing w;(c), which pushes the corresponding points farther apart.

One major advantage of UMAP over other dimensionality reduction methods, such as
t-SNE [21], is that, by saving the model parameters, we can obtain the latent representation
in the low dimension space for each new block, without recomputing the UMAP model on
the whole training set.

UMAP includes several hyperparameters, such as the number of neighbors, the distance
metric used to construct the graph, the minimum allowed distance among points in the
embedding, and the target dimensionality.

In this work, UMAP will be applied to the latent space Z from the autoencoder, to reduce
its initial dimensionality, which is 50.

3.3 Clustering method

Fuzzy c-means (FCM) [18, 5] is a clustering technique that allows the probabilistic assignment
of an element to a set of clusters based on a minimization function. While there are several
proposals for optimization criteria, the most popular to date is associated with the least
square error function (6).

N C
=> > witlei— ¢ (6)

k=11i=1

Where N is the number of samples; C' is the number of clusters, w;; is the degree to which
element z; belongs to the cluster c;, m is the fuzzy factor, strictly greater than one, and
lz; — ¢;]|? is understood as the euclidean distance that separates the element z; from the
centroid of the cluster c¢;. Optimization is subject to the constraint Z Lwi =1 Vk €
[1,..., N] and solved using Lagrange multipliers. It is worth mentioning that if m tends to
one, the optimal partition is increasingly closer to an exclusive partition (K-means), and
when it tends to infinity the optimal partition approaches a matrix with all its values are
equal to 1/C. Usually m takes values in the range between [1 — 30].

In this work fuzzy c-means will be applied to the reduced space obtained after applying
UMAP to the autoencoder latent space.

3.4 LOWESS

In order to plot the evolution of the cluster assignment obtained after applying fuzzy c-means
for each new engine, which will be a really noisy value, LOWESS was selected to smooth the
visualization.

6:7

DX 2025

6:8

Towards Predictive Maintenance in an Aluminum Die-Casting Process

LOWESS, which stands for Locally Weighted Scatterplot Smoothing [6], is a robust locally
weighted regression method for smoothing scatterplots. Local regression is a nonparametric
approach for estimating a regression function or a surface.

Let’s say that we have a collection of points (x;,y;),i = 1,...,n, in a two dimensional
space, in which the fitted value at zj is the value of a polynomial fit to the data using
weighted least squares, where the weight for (x;, y;) is larger if a; is closer to zj and is
smaller if it is not. This fitting procedure is used to deal with deviant points distorting the
smoothed points.

In this work LOWESS was applied to the projection on a two, or three, dimensional space
for the UMAP output after applying fuzzy c-means.

4 Estimating the wear condition of the piston head with a Fuzzy
Progression Index and results on the case study

This section presents a methodology capable of estimating the degree of wear of a piston
head throughout its life cycle. For this purpose, a fuzzy index, Fuzzy Progression Index,
FPI, was proposed. FPI represents the wear state of the piston head. Information on the
piston wear state is not available in the training data, and there are only data related to the
number of injections performed by the piston in its life cycle. For these reasons, advanced
clustering techniques were chosen to obtain the FPI of a piston throughout its life cycle. This
section is devoted to presenting the proposed methodology from the raw data, indicating the
processing steps, and showing the experimental results obtained on the training set. The
next section will present the methodology to estimate the RUL of a piston from its FPI.

4.1 Experimental setup

The methodology for obtaining the FPI that shows the evolution of piston head wear consists
of three sequential stages, which are represented in Figure 4.

b T g bl
A min ”A - 1 1

A
b

A >
ENCODER | LATENT | DECODER
—> SPACE

DCNN DCNN

UMAP

Figure 4 Proposed methodology to estimate the piston wear state by means of FPI from the
data.

In the first stage, a DCNN-based autoencoder architecture is used to construct a latent
representation of the input data. The autoencoder, using dilated convolutions, is trained to
minimize the reconstruction error, thereby ensuring that the latent space effectively captures
the most relevant features of the original high-dimensional dataset, including local and
contextual patterns that might otherwise be lost with standard convolutional layers.

In the second stage, the dimensionality of the latent space generated by the autoencoder
is further reduced using Uniform Manifold Approximation and Projection, which provides
a compact and computationally tractable representation of the data while preserving its

M. Cubero, L.I. Jiménez, D. Léopez, B. Pulido, and C. Alonso-Gonzalez

underlying topological structure. In this study, the UMAP projection will generate a three-
dimensional region of high point density. The projection of the head piston for each newly
generated engine block shifts from one end of the region to the other, as the number of
injected blocks increases. Unfortunately, the displacement within the region is noisy, and
there is no simple correlation between the location of the projection in one region and the
degree of wear.

Finally, in the third stage, due to the noisy evolution of the piston head projection, fuzzy
clustering is performed on the reduced latent space using the FCM algorithm. This step
groups the engine blocks into distinct overlapping clusters. The trend of assignment of each
component to different clusters, based on the probabilities provided by the FCM, can be
used to define the Fuzzy Progression Index as follows:

C
1
FPI==5 i w
C;Z Wi (7)

Where C is the number of clusters, ¢ = 1 is the cluster associated with the initial state, i = C'
is the cluster representing the final state, and w; is the degree of membership to cluster .

FPI is correlated to the remaining percentage of life of the piston head, but unfortunately
it also presents a high variance. Therefore, LOWESS [6] method will be used to smooth
the data in order to obtain the trend of the FPI. The resulting curve serves as an indicator
of the piston life trend. Using the probabilistic nature of FCM assignments, the approach
captures the gradual transition between health states.

Table 1 summarizes the parameter configurations explored for the DCNN, UMAP, and
FCM techniques. For the FCM method, the values listed represent the various configurations
tested during the optimization process, which aims to improve the accuracy and stability
of the cluster assignments across the component data. By systematically adjusting these
parameters, the model seeks to enhance the clarity of the clustering structure, ensuring that
the transitions between health states are captured more effectively. This cluster representation
can be used to obtain a more robust representation of the component’s behavior over time,
providing a reliable foundation for subsequent analyses and decision-making processes. This
idea will be explained in Section 5.

4.2 Results for the FPI computation and cluster assignment on the case
study

To validate the proposed approach, the dataset was partitioned into training and test subsets,
following an 80-20% split, to ensure a fair comparison. The reader should notice that the
split was made at the piston level, i.e. we used for training all the measurements from 80% of
the available pistons, and 20% of the pistons were used for test, rather than doing a random
80-20% split of available measurements for each piston from the full set of pistons data. As a
result, a [13 — 3] piston split forms the basis for this work.

Several model configurations were explored for the training set. The upper part of
Figure 5a shows the resulting structure of the latent space generated by the autoencoder in
three dimensions for the training set; this structure can be interpreted as the characteristic
life cycle of a piston.

Once the structure was fixed, various numbers of clusters were explored, ranging from five
to twenty-five. This range was selected based on preliminary analyses, which indicated that
fewer than five clusters failed to capture the necessary complexity of the system degradation
patterns, while more than twenty-five clusters led to over-fitting and decreased generalization

6:9

DX 2025

6:10

Towards Predictive Maintenance in an Aluminum Die-Casting Process

Table 1 Hyperparameters and values explored.

Autoencoder

Input sequence length 20
Latent space dimension 50
Reconstruction loss functions MSE
DCNN parameters

Dilation 1,4, 16
Kernel size 3
Number of filters 40
Number of conv. layers per dilation value 2
Number of filters in the last convolution 320
UMAP

Number of output dimensions 3
FCM

Number of clusters 5-25
Fraction of the data used when estimating each y value | 0.3, 0.5, 0.7, 0.9
Fuzzy factor 2,25

performance. From these experiments, the optimal number of clusters was determined to
be 23, as this configuration achieved the best performance in the FCM method of FPI
optimization. The criterion for optimizing the number of clusters was to minimize the
prediction error at 15% of the remaining piston head life, along with the variance of these
estimates in the training set. The reader should notice that, in the absence of failure models,
the service life is estimated in terms of the percentage of the piston lifespan. In this case
study, pistons from different manufacturers were used. Although all of them showed similar
wear patterns over their service life, the expected lifespan is different among manufacturers.
To obtain an estimate of the RUL in temporal terms, it would be necessary to know the
average service life provided by each manufacturer for each type of piston.

The evolution of the piston head degradation over the piston life cycle for the training
set is shown in the upper part of Figure 5b, where different colors have been assigned to
the clusters, temporally ordered: with the gray color representing the initial cluster, and
the violet color representing the final cluster. As it can be seen in the lower part of both
Figures 5a and 5b, the results are very similar for the test dataset.

Using that fuzzy cluster results, the FPI values were generated for each engine block.
Figure 6 shows the evolution of these FPI values (represented as points) generated by six
pistons of the training set, and the LOWESS regression prediction for the pistons EOL.

5 A proposal for RUL estimation of the piston head

The values of LOWESS regression for each piston FPI have been valuable in determining
the optimal number of clusters. However, due to its local nature, LOWESS regression is
not a useful tool for predicting RUL outside of its training range, and it does not perform
a reliable extrapolation outside of that training range. This was a major handicap for its
online use, as the fitting is performed with the available parts, not with the complete curve.

To enhance the predictive capability of the previously calculated life trend, an additional
step is proposed, consisting of the use of an exponential approximation. By fitting an
exponential curve to the observed trend, using the number of clusters selected in the

M. Cubero, L.I. Jiménez, D. Léopez, B. Pulido, and C. Alonso-Gonzalez

101
s -
c
267
>
=]
w 4
54
0
0
2
N g
A6
§ 8
510
12 1 8 6 4 2 0 -2 10 8 6 4 2 0 -2
UMAP 1 UMAP 1
10
g -
<61
>
M
w 4
2 :
0
0
2
N g
R 6
<
10 2 1%
)
12 10 8 6 4 2 0 -2 12 10 8 6 4 2 0 -2
UMAP 1 UMAP 1

(a) Three-dimensional latent space inferred by the (b) Distribution of clusters generated by fuzzy c-

DCNN after applying UMAP over the training means over the latent space inferred by the DCNN

(top) and test (bottom) sets. after applying UMAP on the training (top) and
test (bottom) sets.

Figure 5 Comparison between the raw latent space (left) and the clustered latent space (right)
using UMAP representations for both training and test sets.

experiments described above, the approach aims to capture the underlying degradation
dynamics in a smoother way. This method provides a compact mathematical representation
of the FPI evolution, and facilitates the projection of future behavior.

5.1 A data-based model to predict the RUL from the Fuzzy Progression
Index

To obtain an exponential data-based model, an exponential function for each piston in the
training set was individually fit, and a threshold of this exponential function at the end
of the lifetime was obtained. From these thresholds, the mean threshold and its variance
were calculated. Next, the mean exponential function of the training set was computed.
This was the function used as a model of the FPI in the testing phase. Subsequently,
when evaluating the test set, a correction was applied to this mean exponential trend by
incorporating the already observed residual values for each individually generated part and
piston. This adjustment aims to refine the prediction by considering the previous piston

6:11

DX 2025

6:12

Towards Predictive Maintenance in an Aluminum Die-Casting Process

Data points === LOWESS Smoothed Curve

Fuzzy Progression Index

Fuzzy Progression Index

01 g 2 0 06 2 04 3
Wear Percentage Wear Percentage Wear Percentage

Figure 6 Sample of the trend calculated with LOWESS for six pistons from the training set.

behavior, which, in general, shows deviations that were not captured during the initial
adjustment process. This adjustment improves the accuracy of the RUL estimation of the
model through unobserved data.

5.2 Experimental results in the case study

Figure 7 presents the progressive estimation of the percentage of remaining parts for each
of the test pistons at various points throughout their life cycle. The FPI value of each
produced part is shown as a blue point, while the average trend for the exponential function
derived from the training set is shown as a dotted red line. The dark blue line represents the
corrected trend, obtained by adjusting the average exponential curve based on the residual
values associated with each part for the current piston. Additionally, the orange and green
vertical lines indicate the estimated range marking the end of the life cycle; specifically,
these points correspond to the intersection of the corrected trend and the threshold value,
considering both plus and minus one standard deviation. This visualization provides a clear
and interpretable summary of the model’s performance, highlighting the variability inherent
in the predictions and offering a practical estimation window for the remaining useful life of
the components.

In particular, it is observed that each piston in the test set falls into one of the three
possible estimation outcomes: underestimation, where the model predicts less remaining life
than is actually present; overestimation, where the predicted remaining life exceeds the true
value; and accurate prediction, where the estimation closely matches the actual remaining life.
This variability highlights both the strengths and limitations of the proposed methodology,
emphasizing the importance of understanding the conditions under which the model reliably
performs versus when it tends to deviate. Such insights are critical for refining the approach
and ensuring more consistent predictive performance across diverse operating scenarios.

In Table 2, the predicted threshold values for each chunk are presented, with the rows
shaded in grey specifically highlighting the chunks that correspond to the actual EOL cycle
for each piston in the test set.

Figure 7 and table 2 shows that only the third piston EOL is included in the estimated
interval, while piston 1 lasts an additional 18% on the predicted Upper Threshold, and
piston 2 lasts about 9% under the Lower Threshold. However, it is not easy to interpret these
results as under or over estimations for the RUL. The data used for training and testing

M. Cubero, L. 1. Jiménez, D. Lépez, B. Pulido,

o Data points
--- Mean Exponential Model

—— Mean Exponential Model + Residual Correction
Threshold: Mean # 1 Std Dev

and C. Alonso-Gonzalez

=== Threshold Entry Point Threshold Exit Point

Piston 1 Chunk 1

Piston 1 Chunk 2 Piston 1 Chunk 3

Fuzzy Progression Index
Fuzzy Progression Index
Fuzzy Progression Index

00 0.2 0.4 0.6 0.8 1.0 12 00 0.2 0.4 0.6 0.8 10 12 Y 0.2 0.4 0.6 0.8 10 12
Wear Estimated Percentage ‘Wear Estimated Percentage Wear Estimated Percentage

Piston 2 Chunk 1 Piston 2 Chunk 2 Piston 2 Chunk 3

\

Fuzzy Progression Index
Fuzzy Progression Index
Fuzzy Progression Index

04 06 8 10 12 X 02
‘Wear Estimated Percentage

Piston 3 Chunk 2

04 0.6 08 10 12 0.0 02
Wear Estimated Percentage

Piston 3 Chunk 1

04 0.6 08 10 12
‘Wear Estimated Percentage

Piston 3 Chunk 3

Fuzzy Progression Index
o« <

Fuzzy Progression Index
Fuzzy Progression Index

T
[
1

I 5

04 8 1.0 12 0.0 02 1

Wear Estimated Percentage

0.0 0.2

06 1 04 06 08
Wear Estimated Percentage ‘Wear Estimated Percentage

Figure 7 Progressive representation of the RUL estimate using the exponential approximation of
the life cycle trend line of the pistons in the test set.

Table 2 Threshold Input and Output Values per Piston and Chunk.

Piston | Chunk | Input Threshold | Output Threshold
1 1 0.865 0.961
1 2 0.865 0.961
1 3 0.904 1.004
2 1 0.900 1.000
2 2 0.948 1.052
2 3 0.978 1.087
3 1 0.904 1.004
3 2 0.939 1.043
3 3 0.987 1.096

were not obtained in a controlled environment where the maximum acceptable RUL was
pursued. These data come from standard factory operation where pistons are changed on a
preventive maintenance agenda, that requires changing the piston head after a fixed number
of operations. Moreover, the number of performed operations usually changes due to other
operational criteria, such as the convenience of performing a programmed stop to change the
piston head, or the detection of anomalies after the injection stage.

Even with these caveats, the proposed approach is considered as a potential valuable tool
for plant operators and managers, to perform predictive maintenance of the piston head.

6:13

DX 2025

6:14

Towards Predictive Maintenance in an Aluminum Die-Casting Process

6 Discussion and Conclusions

This work has developed a tool to estimate the Remaining Useful Life of the piston head in
an injection machine.

The problem of estimating the RUL has been divided into two stages. First, to find a
useful wear index, the Fuzzy Progression Indicator. Second, to use the actual index of each
piston to predict the RUL.

The Fuzzy Progression Indicator is a first step for estimating the EOL and the RUL, thus
being the bases for a predictive maintenance policy. This work has proposed to estimate
the FPI in a three-stage data-driven methodology, that has been validated by experimental
results. The first stage of the methodology builds a latent representation from the available
data using a state-of-the-art autoencoder architecture, DCNN. The second stage requires
a reduction of the latent space dimension. UMAP has been shown to be able to find a
three-dimensional projection related to the piston wear and tear state. The third stage relies
on fuzzy c-means to cluster the projected space, looking for overlapping regions that can be
related to different wear states. The membership vector of a projected point to the set of
clusters allowed to obtain an index that ideally moves from the value of 1/C, for a new piston,
with C' the total number of clusters, to a value of 1, for a totally worn piston. However, this
index shows high variance and cannot be directly used to estimate the RUL.

To estimate the RUL, this work proposed to fit an exponential average function to the
data of the training set. This function smooths out the highly variable FPI while still
providing an acceptable forecast of the RUL. The prediction of the exponential function is
corrected with the residuals of the actual index for the piston, which takes care, to some
degree, of the deviation observed in a new piston from the expected behavior.

Currently, piston maintenance is preventive, and the piston is replaced after a pre-set
number of injection operations, except when the piston wears out or fails early. The capability
to predict the Remaining Useful Life of the piston introduces two significant operational
benefits. Firstly, if piston degradation is detected prior to reaching the currently defined
injection cycle threshold, maintenance activities can be proactively scheduled. This action
would avoid unplanned downtime, which according to plant personnel, typically results in at
least 45 minutes of machine unavailability in the event of an unexpected piston replacement.
In contrast, planned maintenance can be executed within approximately 15 minutes. This
results in a net gain of 30 minutes of productive machine time. Secondly, by extending piston
usage beyond the conservative pre-set injection limit, based on actual condition rather than
fixed intervals, spare part consumption can be optimized. This approach contributes to a
reduction in the lifecycle cost of the component by decreasing its amortization per injection
cycle.

Although further research is still needed, the current results are considered acceptable by
plant managers in the sense that a plant preventive maintenance policy based on this tool
can be tested.

In the immediate future we plan to validate the approach with a new batch of production
data, which will include hundreds of life cycles to train and test. We will then implement a
formal scheme to manage uncertainty, potentially considering unscented Kalman filter or
particle filtering techniques.

M. Cubero, L.I. Jiménez, D. Léopez, B. Pulido, and C. Alonso-Gonzalez

—— References

1

10

11

12

13

14

15

16

Gerardo Acosta, Carlos Alonso Gonzélez, and Belarmino Pulido. Basic tasks for knowledge-
based supervision in process control. FEngineering Applications of Artificial Intelligence,
14(4):441-455, 2001.

Nagdev Amruthnath and Tarun Gupta. A research study on unsupervised machine learning
algorithms for early fault detection in predictive maintenance. In 2018 5th International
Conference on Industrial Engineering and Applications (ICIEA), pages 355—-361, 2018. doi:
10.1109/IEA.2018.8387124.

Vepa Atamuradov, Kamal Medjaher, Pierre Dersin, Benjamin Lamoureux, and Noureddine
Zerhouni. Prognostics and health management for maintenance practitioners-review, imple-
mentation and tools evaluation. International Journal of Prognostics and Health Management,
8(3):1-31, 2017.

Piero Baraldi, Francesco Cadini, Francesca Mangili, and Enrico Zio. Model-based and data-
driven prognostics under different available information. Probabilistic Engineering Mechanics,
32:66-79, 2013.

James C Bezdek. Pattern recognition with fuzzy objective function algorithms. Springer Science
& Business Media, 2013.

William S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal

of the American Statistical Association, 74(368):829-836, 1979. doi:10.1080/01621459.1979.

10481038.

Miguel Cubero, Diego Garcia-Alvarez, Luis Ignacio Jiménez, Daniel Lopez Gémez, Belarmino
Pulido, and Carlos Alonso Gonzélez. Deep-learning clustering to assess the health state in a
die-casting process in the automotive industry. In 6th "International Conference on Control
and Fault-Tolerant Systems (SYSTOL)', 2025.

Matthew J Daigle and Kai Goebel. A model-based prognostics approach applied to pneumatic
valves. International Journal of Prognostics and Health Management Volume 2 (color), 84,
2011.

David Garcia de Vicunia Lopez de Ciordia. Application of time-series clustering for Factory
4.0 (in Spanish). Master’s thesis, Escuela de Ingenieria Informatica de Valladolid, Universidad
de Valladolid, July 2024. Supervisors: B. Pulido, C. Alonso-Gonzalez.

Alberto Diez-Olivan, Javier Del Ser, Diego Galar, and Basilio Sierra. Data fusion and machine
learning for industrial prognosis: Trends and perspectives towards industry 4.0. Information
Fusion, 50:92-111, 2019. doi:10.1016/J.INFFUS.2018.10.005.

J. Y. Franceschi, A. Dieuleveut, and M. Jaggi. Unsupervised scalable representation learning
for multivariate time series. Advances in Neural Information Processing Systems, 32, 2019.
B. Lafabregue, J. Weber, P. Gangarski, and G. Forestier. End-to-end deep representation
learning for time series clustering: a comparative study. Data Mining and Knowledge Discovery,
36(1):29-81, 2022. doi:10.1007/S10618-021-00796-Y.

Han Li, Wei Zhao, Yuxi Zhang, and Enrico Zio. Remaining useful life prediction using
multi-scale deep convolutional neural network. Applied Soft Computing, 89:106113, 2020.
d0i:10.1016/J.AS0C.2020.106113.

Elizabeth Ann Maharaj, Pierpaolo D’Urso, and Jorge Caiado. Time series clustering and
classification. Chapman and Hall/CRC, 2019.

Leland Mclnnes, John Healy, Nathaniel Saul, and Lucas Grolberger. UMAP: uniform
manifold approximation and projection. Journal of Open Source Software, 3(29):861, 2018.
doi:10.21105/J0SS.00861.

Bojana Nikolic, Jelena Ignjatic, Suzic Nikola, Branislav Stevanov, Aleksandar Rikalovic,
et al. Predictive manufacturing systems in industry 4.0: Trends, benefits and challenges.
In Proceedings of 28th DAAAM International Symposium on Intelligent Manufacturing and
Automation, pages 796-802. DAAAM International, Vienna, Austria, 2017.

6:15

DX 2025

https://doi.org/10.1109/IEA.2018.8387124
https://doi.org/10.1109/IEA.2018.8387124
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1016/J.INFFUS.2018.10.005
https://doi.org/10.1007/S10618-021-00796-Y
https://doi.org/10.1016/J.ASOC.2020.106113
https://doi.org/10.21105/JOSS.00861

6:16

Towards Predictive Maintenance in an Aluminum Die-Casting Process

17

18

19

20

21

22

23

24

25

Anibal Hernando Novo. Health state estimation for an injection machine using deep-learning
(in Spanish). BSc thesis, Escuela de Ingenieria Informatica de Valladolid, Universidad de
Valladolid, July 2025. Supervisors: D. Garcia, B. Pulido.

Enrique H Ruspini. Numerical methods for fuzzy clustering. Information Sciences, 2(3):319-350,
1970. doi:10.1016/50020-0255(70)80056-1.

Girish Kumar Singh et al. Induction machine drive condition monitoring and diagnostic
research — A survey. Electric Power Systems Research, 64(2):145-158, 2003.

George J Vachtsevanos, Frank Lewis, Michael Roemer, Andrew Hess, and Biqing Wu. Intelligent
fault diagnosis and prognosis for engineering systems, volume 456. Wiley Online Library, 2006.
Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(11):2579-2605, 2008.

Z. Wang, W. Yan, and T. Oates. Time series classification from scratch with deep neural
networks: A strong baseline. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 1578-1585. IEEE, 2017.

Shu-Xin Zhou. The practical applications of industry 4.0 technology to a new plant for both
manufacturing technique and manufacturing process in new product introduction. [EEFE
Access, 9:149218-149226, 2021. doi:10.1109/ACCESS.2021.3124373.

Enrico Zio. Prognostics and health management of industrial equipment. Diagnostics and
prognostics of engineering systems: methods and techniques, pages 333-356, 2013.

Enrico Zio. Chapter 8 — Data-driven prognostics and health management (PHM) for predictive
maintenance of industrial components and systems. In Curtis Lee Smith, Katya Le Blanc,
and Diego Mandelli, editors, Risk-Informed Methods and Applications in Nuclear and Energy
Engineering, pages 113-137. Academic Press, 2024.

https://doi.org/10.1016/S0020-0255(70)80056-1
https://doi.org/10.1109/ACCESS.2021.3124373

One-Shot Learning in Hybrid System Identification:
A New Modular Paradigm

Swantje Plambeck &
Hamburg University of Technology, Germany

Maximilian Schmidt &
Hamburg University of Technology, Germany

Louise Travé-Massuyes &
LAAS-CNRS, Université de Toulouse, CNRS, France

Goerschwin Fey &
Hamburg University of Technology, Germany

—— Abstract

Identification of hybrid systems requires learning models that capture both discrete transitions and
continuous dynamics from observational data. Traditional approaches follow a stepwise process,
separating trace segmentation and mode-specific regression, which often leads to inconsistencies
due to unmodeled interdependencies. In this paper, we propose a new iterative learning paradigm
that jointly optimizes segmentation and flow function identification. The method incrementally
constructs a hybrid model by evaluating and expanding candidate flow functions over observed
traces, introducing new modes only when existing ones fail to explain the data. The approach is
modular and agnostic to the choice of the regression technique, allowing the identification of hybrid
systems with varying levels of complexity. Empirical results on benchmark examples demonstrate
that the proposed method produces more compact models compared to traditional techniques, while
supporting flexible integration of different regression methods. By favoring fewer, more generalizable
modes, the resulting models are not only likely to reduce complexity but also simplify diagnostic
reasoning, improve fault isolation, and enhance robustness by avoiding overfitting to spurious mode
changes.

2012 ACM Subject Classification Computer systems organization — Embedded and cyber-physical
systems; Computing methodologies — Symbolic and algebraic algorithms; Computing methodologies
— Learning paradigms; Computing methodologies — Modeling methodologies

Keywords and phrases Hybrid System, Model Learning, Symbolic Regression
Digital Object Identifier 10.4230/0OASIcs.DX.2025.7

Supplementary Material
Software (Source Code): https://github.com/TUHH-IES/SymbolicRegression4HA [13]
archived at swh:1:dir:00££8c08db289ab78af743dd7ce6b71dceccb37c

Funding This work is funded by BMBF project AGenC no. 011S22047A.

1 Introduction

Hybrid systems integrate continuous-time dynamics with discrete transitions and serve as
a fundamental modeling paradigm for a broad class of cyber-physical, manufacturing, and
embedded systems [1, 8]. The identification of hybrid systems from data is particularly
challenging due to the inherent coupling between discrete mode transitions and continuous
behavior. However, accurate and compact abstract models are essential for tasks such as
system verification, control synthesis, and fault diagnosis. Compactness is especially beneficial
for diagnosis, as it can streamline fault isolation, lower the computational load of diagnostic
reasoning, and mitigate the risk of ambiguity or overfitting to spurious or non-informative
mode changes.

? Swantje Plambeck,. Maximilian Sc}.unidt, Louise Travé-Massuyes, and Goerschwin Fey;

37 icensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 7; pp. 7:1-7:18

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:swantje.plambeck@tuhh.de
https://orcid.org/0000-0002-4875-5280
mailto:maximilian.schmidt@tuhh.de
https://orcid.org/0009-0005-4532-7669
mailto:louise@laas.fr
https://orcid.org/0000-0002-5322-8418
mailto:goerschwin.fey@tuhh.de
https://orcid.org/0000-0001-6433-6265
https://doi.org/10.4230/OASIcs.DX.2025.7
https://github.com/TUHH-IES/SymbolicRegression4HA
https://archive.softwareheritage.org/swh:1:dir:00ff8c08db289ab78af743dd7ce6b71dceccb37c;origin=https://github.com/TUHH-IES/SymbolicRegression4HA;visit=swh:1:snp:2ac263a6bb3ff1233ebbed02fef7b7e6cab8f402;anchor=swh:1:rev:7e6cb7feafb37cf67a592ee6108b91fb0e7dfba0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

7:2 One-Shot Learning in Hybrid System ldentification: A New Modular Paradigm

remaining subtraces

flow ‘ accurate

observed
B
traces (A) function () segments (©)
Identification of Detection of Refinement of
Flow Function Consistent Segments Flow Function

Figure 1 Illustration of the Proposed Learning Paradigm.

A hybrid system comprises a finite set of discrete modes, each associated with a distinct
continuous flow function. Transitions between modes are governed by discrete events, defined
through guard conditions, which depend on the state of the system or external inputs [3].

Data-driven identification aims to reconstruct the underlying hybrid model from observed
traces of the system. Traditional approaches to hybrid system identification typically adopt
a stepwise procedure [14]. First, the observed traces are segmented and grouped into regions
presumed to be generated by the same dynamic mode. Subsequently, regression techniques
are applied to fit a continuous flow function to each region representing the grouped segments.
However, this decoupled approach suffers from several limitations. Independent optimization
of the segmentation and regression often leads to inconsistencies, as the learned components
do not account for their mutual dependencies. In particular, inaccurate segmentation can
degrade the quality of the estimated dynamics, resulting in inaccurate models and poor
performance.

In our previous work, we propose a learning approach using symbolic regression [15, 16].
This approach identifies segments directly based on changes in the system dynamics. For
this purpose, symbolic regression is used, which allows adapting to given dynamics in a
flexible way by iterating on a flow function. Now, we present a new procedure that elaborates
on this idea comprising the overall learning paradigm of hybrid system identification. A
major advantage of our previous work is the detection of transition points based on a first
estimate of the flow function for the system dynamics. This encourages the development of a
new learning paradigm that, instead of resetting an identification, leverages a flow function
identified on a given segment to segment the remaining observed traces in one shot by finding
the consistent segments. In contrast to the previous work, this paradigm is independent of
the regression method used to identify the flow functions, i.e., the method does not restrict
to symbolic regression as presented in Plambeck et al. [15, 16].

We present a discussion on the learning process for hybrid systems facing interdependencies
in the learning process. With that, we provide a formalization of the underlying optimization
problem of data-driven identification for hybrid systems and revisit the traditional idea of
stepwise learning in this context. In addition, we propose an iterative learning paradigm for
hybrid systems that takes account the original optimization problem. Figure 1 illustrates the
proposed procedure. The approach begins by identifying a continuous flow function from an
initial segment of a trace (A). The flow function from Step (A) is then evaluated against
the remaining observed traces (B). Segments where the flow function exhibits sufficient
predictive accuracy are consistent with respect to the flow function and they are grouped
into a mode (C), while the remaining subtraces are treated as candidates for further mode
identification (A). This procedure is repeated until the complete trace is adequately explained
by one of the modes in the model. Step (C) finally refines the found flow function on all
consistent segments of the dynamic mode. To determine an appropriate initial segment, we

S. Plambeck, M. Schmidt, L. Travé-Massuyes, and G. Fey

employ a windowing strategy that increases the length of the segment until the error of the
prediction by the corresponding flow function is above a specified threshold. This strategy
maximizes segment size under a fixed accuracy constraint.

The proposed method offers several advantages over traditional techniques. By jointly
optimizing segmentation and model identification in an iterative loop, the algorithm ex-
ploits the interdependencies among the segments of traces and flow functions to guide the
learning process. The model is constructed incrementally, with new modes introduced only
when existing ones fail to capture the observed dynamics. This results in compact models
characterized by a minimal number of modes as well as large and coherent segments.

Our empirical results demonstrate that our approach has a flexible and modular design for
the integration of regression methods in the identification of flow functions. In addition, our
learning strategy identifies models with a smaller number of modes compared to a traditional
learning strategy, which is very well illustrated on a bouncing ball example.

The remainder of the paper is structured as follows: Section 2 reviews related work on
hybrid system identification. In Section 3, we introduce the necessary preliminary concepts
and notation. In Section 4, we present our learning approach in detail. Section 5 presents an
empirical evaluation of the proposed approach. We conclude the paper in Section 6.

2 Related Work

Detectlon of Grouplng of dentlﬁcatlon of Constructlon
Segments Segments Flow Functions of the Model

Figure 2 Traditional Approach to Hybrid Systems Identification.

Most existing approaches to hybrid system identification adopt a sequential pipeline, as
illustrated in Figure 2. In contrast to our approach, these methods defer mode identification —
i.e., the estimation of flow functions — after the segmentation of traces and the grouping of
segments. This introduces two intermediate representations (segments and segment groups)
that are constructed without directly considering the final goal of mode identification.

In this traditional process, the first step is the detection of transition points (1), which
partition the observed traces into segments. For the detection of transition points, existing
methods use a similarity measure, based on the distance between samples [2, 19], in the
frequency domain [11], or based on slices of observations [21]. However, these methods often
overlook the fact that complex trajectories generated by the same dynamics can occupy
different regions of the state space. In contrast, our approach avoids explicit transition
detection and instead identifies segments based on the consistency with a belief of the
underlying flow function.

The second step (2) involves grouping the segments that are presumed to belong to the
same mode. Common techniques for this step include clustering [2] and similarity-based
grouping [18]. Ly et al. [9] propose a clustering approach based on symbolic regression to
infer the structure of modes.

Finally, in step (3), flow functions are then identified for each group of segments. This
is typically done using regression techniques, including linear regression [21], polynomial
regression [18], or neural networks [11]. Often, existing methods restrict to a specific class of
functions, e.g., linear differential equations [21] or polynomials [18], or types of regression
models such as neural networks [11]. Several approaches are further limited to a single

7:3

DX 2025

7:4

One-Shot Learning in Hybrid System ldentification: A New Modular Paradigm

regression method, such as linear regression or symbolic expressions [9]. Our method, on the
contrary, is agnostic to the choice of the regressor and can incorporate various regression
models, as demonstrated in our evaluation.

The final step (4) is the construction of the complete hybrid system. This is done by
combining the identified flow functions into modes and forming transitions between them.
Transition conditions are typically learned in a separate step [18] or identified during the
construction of the hybrid system [11, 5].

3 Preliminaries

This section introduces the foundational concepts used throughout the paper. We start with
the definition of hybrid systems, which are the target of our learning approach. We then
introduce the system under learning and the traces, that we observe on this system.

3.1 Hybrid Systems

Hybrid systems combine continuous dynamics with discrete transitions, representing complex
behaviors that are common in many real-world systems.

» Definition 1 (Hybrid System [3]). A Hybrid System T is defined by a 5-tuple (X, Q, F, %, T)
where:
X ={x1,x9,...,2,} =TUS is the set of system variables, consisting of input variables
I and state variables S.
Q is the finite set of discrete modes.
F is the set of flow functions. Fach flow function f, € F defines the continuous flow,
i.e., dynamics within mode q € Q by specifying the outputs as a function of the current
state and inputs, i.e., O = fo(S,I), where O C S are the output variables of the system.
Y is a set of events. Each event is guarded by a condition ¢ : X — {true, false} on the
variables in X. An event is active if the condition evaluates to true.
T :Q x X — @ defines transitions between modes Q. A transition is triggered if the
corresponding event o € X is active.

This definition combines continuous behavior with discrete transitions. The continuous
behavior is governed by mode-specific flow functions, whereas transitions between modes are
triggered by the guard conditions on system variables, including external control signals.

Throughout this work, we assume that flow functions are time-invariant, i.e., the functions
in F depend only on the current state and input values, not explicitly on the time. However,
time-dependent behavior can be modeled by introducing time-shifted versions of state
variables as an additional input to the flow function.

3.2 System & Observations

The system under learning is observed through a finite collection of execution traces
0 ={01,0,,...,0,}. Each trace O; consists of a time series of sampled variable vec-
tors from X. Formally, O;[i] = [x1,22,...,%,] denotes the ith sample in trace O, where
j=1,...,mandi=1,...,k; with k; being the length of the jth trace.

The goal is to identify a hybrid system I' that explains the observed traces, capturing
both the continuous dynamics and the discrete mode transitions of the underlying system
behavior.

S. Plambeck, M. Schmidt, L. Travé-Massuyes, and G. Fey

Flow Functions

[Domain of Flow Function

[Guard Conditionsj

[Set of Observed Traces

Hybrid System

Figure 3 Illustration for the Problem of Hybrid System Identification.

4 A New Paradigm for Hybrid System Identification

Identifying hybrid systems from data is challenging due to the inherently complex structure.

A complete model must capture discrete modes, continuous dynamics (flow functions), and
the conditional transitions that govern mode switching. We analyze the goal of hybrid
system identification and propose a formalization of the learning problem. Afterward, we
discuss the limitations of traditional approaches to hybrid system identification with respect
to the original learning problem. Finally, we present our new paradigm for hybrid system
identification that integrates the learning of flow functions and segmentation into a unified
framework.

4.1 Problem Definition and Objectives for Hybrid System lIdentification

The learning process for hybrid system identification starts with a set of observed traces.

Additionally, a domain ® of candidate flow functions is given at the beginning of the learning
process. The set of candidate flow functions ® contains all flow functions that can be used

to model the continuous dynamics of the system and is, e.g., defined by the application.

The goal is to identify a hybrid system I' that explains the observed traces using a minimal
number of flow functions. As illustrated in Figure 3, the task is framed as a multi-objective
optimization problem: minimizing the model complexity (e.g., the number of modes or flow
functions) while maximizing the accuracy of the learned system on the observed data. We
define a required accuracy by a threshold e for the deviation between the observed traces
and the identified hybrid model. This reduces the learning problem to a minimization of the
number of flow functions under this accuracy constraint:

min |F| st. E(F,S) <e, (1)
FC®,
SeP(O)

where E denotes an error function that evaluates the deviation between the behavior found
from the flow functions F on the segments S composing a segmentation from the set P(O)
of all possible segmentations of the observed traces O. In this formalization, a minimal exact
solution, i.e., € = 0 exists only if the observed traces are free of noise and the domain of
candidate flow functions ® covers the original system dynamics.

7:5

DX 2025

7:6

One-Shot Learning in Hybrid System ldentification: A New Modular Paradigm

4.2 Traditional Identification of Hybrid Systems

The traditional approach to learning hybrid systems uses a sequential procedure as shown in

Figure 2:

1. Transition detection: Identify potential transition points in each trace.

2. Segment grouping: Cluster segments between transitions into groups that are assumed to
represent the same mode.

3. Flow function identification: Learn one flow function per segment group.

4. Model construction: Construct the hybrid system by combining the learned functions
and define transitions.

In this approach, the individual steps are independent of each other and can be formulated
as follows. First, the set t of transition points is identified as

¢ = (1) | 9(O;fi]) is true}, (2)

where ¢ is a predicate for transition detection. Every transition point is represented by a
tuple (j,4) with j identifying the trace O; and ¢ giving an index ¢ in this trace. Using the
transition points, all traces are cut into segments S:

S= U A0kt i) Y [(G i), (G iks)] €), (3)

JE[L,...,m]

where t is sorted such that ig <13 <--- <1i,;. S is one possible segmentation of the traces,
i.e., S € P(O), based on the identified transition points. Segments form a group g, if they
are sufficiently similar, i.e.,

g=HSCS|a(S) =7}, (4)

where ¢ is a similarity function used to compare segments and 7 is a similarity threshold.
Note that similar dynamics do not necessarily create similar traces, which is one issue that our
approach addresses. Every segment is assigned to a single group only, i.e., g; N g; = 0 Vi # j.
The groups form the set

G={91,---,917} (5)

such that every group contains the learning data for one flow function. The set of flow
functions F is found as follows:

F = {argmine(f,g) Vg € G}, (6)
fed

where e(f, g) is the approximation error of function f on group g, e.g., the mean squared
error between the output of the flow function and the observed output on the learning data.

The process defined by Equation (2) to Equation (6) is problematic as the identification
of flow functions is postponed to the last step. Segments and groups form intermediate
learning results that are not informed by the final goal of identifying accurate and compact
flow functions, which is not inline with the original learning problem in Equation (1).
This separation of concerns introduces strong interdependencies: transition points are only
meaningful in light of changes in dynamics and accurate flow functions can only be learned
from meaningful segments.

S. Plambeck, M. Schmidt, L. Travé-Massuyes, and G. Fey

4.3 Proposed ldentification Process for Hybrid Systems

To address these limitations, we propose a new learning framework that integrates flow
function identification into the segmentation and grouping process. Rather than treating
the components of the hybrid system as separate inference steps, our method, as shown in
Figure 1, alternates between the identification of flow functions (A) and the detection of
segments (B) using partial model information to guide the refinement of each component. This
iterative approach directly targets the optimization problem in Equation (1) by prioritizing
minimality: new modes are introduced only when the existing set of flow functions cannot
explain the data with sufficient accuracy. This design aligns the learning process with the
goal of minimality in model structure. Our approach does not guarantee finding an optimal
solution for Equation (1). Instead, we optimize the length of individual segments under the
constraint that a single flow function represents the complete segment. With this procedure,
the number of segments needed to cover all traces is reduced. Finally, a smaller number of
segments facilitates a smaller number of flow functions.

Currently, our framework focuses on the identification of flow functions and their associated
modes. The inference of transition conditions is treated as a separate post-processing step,
to be learned independently once the mode structure is established.

Our iterative learning approach is described as follows:

A Identification of Flow Function: Find a segment of maximal length starting from
a first trace such that a flow function exists, that achieves a sufficient accuracy on this
segment. Identify the flow function for the found segment.
B Detection of Accurate Segments: Assess the accuracy of the identified flow
function on all observed traces.
If accuracy sufficient: Stop, and finalize the modes.
If accuracy insufficient:
C Refinement of Flow Function: Refine the flow function on segments with
sufficient accuracy and keep this flow function for the mode.
Back to A Continue with the remaining subtraces, returning to Step A.

At each iteration on the set of traces, a single flow function is learned and then used
to identify segments where the flow function is valid, i.e., achieves sufficient accuracy and
subtraces where the accuracy of the flow function is insufficient. The data for all segments
with sufficient accuracy is used to refine the flow function for this mode. The process repeats
on the remaining data until all segments have been assigned to a mode.

In relation to Figure 1, we formulate one iteration of the approach. The identification of
a flow function (A) is given as

J = argmin e(fa Oj [Ovl*])a (7)
fe®
where e(f, 0;[0,1*]) is the approximation error which is determined for the function f on the
segment O;[0,1*] of length I* of an arbitrary trace O; € O. The length [* is maximized in
an iterative manner together with the identification of the flow function f:

l(k) _ linit it k= 0) (8)
N\ max{n <k; | e(f*V,0,[0,n]) <€} ifk >0,
f® = argmine(f, 0,[0,1%]), k > 0, (9)
fed

77

DX 2025

7:8

One-Shot Learning in Hybrid System ldentification: A New Modular Paradigm

where given a flow function f*=1 from the previous iteration, the length {(¥) is determined as

the maximum length of a segment where the flow function f*~1 achieves sufficient accuracy.
The flow function f*) is then learned on this segment of length [(*¥). The parameter i is
the initial length of the segment, and &; is the length of the trace O;. The segment length
I* is the fixed point of Equation (8) and Equation (9), i.e., where I(¥) = [(*+1)_ This is the
maximum length of a segment that achieves a sufficient accuracy on the trace O;.

The detection of accurate segments (B) finds Sa as a set of segments from the traces in
O where the function f achieves sufficient accuracy:

Sa = [J{0O;li] | e(f,05li]) < e with i € [1,..., k;]}. (10)

JEM

Finally, we use S4 to refine a final flow function f (C) which represents a new dynamic for
the segments of Sa:

f=argmine(f,Sa). (11)
fee

The next iteration of the algorithm starts on an updated set of observations

0 = [J{05li] | e(f, 0;li]) > € with i € [1, ..., k;]}. (12)
JjeEM

In this set, all subtraces of the traces in O where the flow function f does not achieve
sufficient accuracy, form input traces for the next iteration. These are the subtraces that are
not included in the set of segments S 4.

The iterative process continues until all traces in @ have been covered, i.e., O = (.

Compared to the traditional approach (Equation (2)-Equation (6)), this formulation
eliminates the explicit representation of transition points and segment groups. Instead,
transitions emerge naturally from the explanatory limits of each flow function on the data.
Mode identification and segmentation are no longer treated as independent pre-processing
steps but are tightly coupled through accuracy-driven inference. The condition for the
detection of a transition point (formulated as ¢ in the traditional approach) is based directly
on the accuracy of the identified flow function. Consequently, this procedure addresses the
original problem in Equation (1) more directly than the traditional approach.

4.4 An Algorithmic Approach to the Proposed Method

We concretize the learning process in Algorithm 1, which describes the steps of the learning
process.

The algorithm begins with an arbitrary trajectory from O. For the sake of reproducibility,
we choose the first trace O in Line 2. A belief flow function f is learned over a growing
time window starting at the beginning of Oy with an initial length of l;,;+ in the loop from
Line 4 to Line 8. The window is expanded in increments of size /s, until the approximation
error exceeds the threshold e. The resulting function f is assumed to characterize a new
dynamic. All trace segments where f achieves an error below € are considered additional
instances of this dynamic and are used to find a final f for the found mode. This set S4 of
segments is determined by the function getAccurateSegments in Line 9. The set S4 is then
used to refine the flow function in Line 10, which identifies the new dynamic. Afterward,
all identified segments are removed from the traces in Line 12 which reduces existing traces
or splits traces into multiple new traces. Figure 4 visualizes the effect of the function
removeAccurateSegments. Starting from the traces O1, Oa, and Os, the segments where the

S. Plambeck, M. Schmidt, L. Travé-Massuyes, and G. Fey

Algorithm 1 Identification of Hybrid Systems.

Data: O
Result: F
1 while O # () do
2 Oy + O[0];
3 iend < liniﬁ [0.0;
4 while icng < |Oo| A e < e do
5 window — Og[0, tendl;
6 f , € + learnFlowFunction(window);
7 tend < lend + lstep;
8 end
9 Sa = getAccurateSegments(O, f, €);
10 f < refineFlowFunction(Sa);
11 F+— FU{f}
12 O «+ removeAccurateSegments(O, S4);
13 end

O, <e >e <e Ze€
O, >e€ <e > €
O3 <e€ > € <e€
!
o o1
0}, oy
O3

Figure 4 Segmentation using the Belief Flow Function.

error is smaller than e are removed. These segments are covered by the flow function f. The
new set of traces is O = {01, 0, 0}, 04, 04}. The process repeats until all observed data
have been covered, i.e., O = ().

5 Empirical Analysis

This section presents an empirical evaluation of our learning approach as introduced in
Algorithm 1. The approach is independent of the specific regression method used for
learnFlowFunction and refineFlowFunction. To demonstrate this flexibility, we apply our
learning approach with three distinct regression methods, each operating over different
classes of flow functions. The results illustrate the versatility of the approach across diverse
regression methods and hybrid system types.

The structure of this section is as follows: we first describe the learning methods employed,

followed by a description of the evaluation examples and, finally, a presentation and discussion
of the results.

7:9

DX 2025

7:10

One-Shot Learning in Hybrid System ldentification: A New Modular Paradigm

Initialize Evaluate
population population

Number of
generations
reached?

Update population
with
genetic operations

Return best
expression

No

Figure 5 Genetic Programming for Symbolic Regression.

5.1 Learning Methods

The learning approach presented in this paper is modular and allows the integration of
different regression methods for the identification of flow functions. We consider three
methods during evaluation of our learning approach:

Linear regression (LR) for learning simple, interpretable linear flow functions.

Symbolic regression (SR) to identify more expressive symbolic representations.

Linear matrix (LM) differential equations for systems with multidimensional state spaces.

For symbolic and linear regression, we restrict our evaluation to hybrid systems with
a single output variable that corresponds directly to the state variable, i.e., O = S and
|O] = 1. The third regression method, i.e., linear matrix differential equations, applies to a
multidimensional state.

Linear Regression

Linear regression learns flow functions in the form of affine linear mappings: 0o = w’1i + b,
where i is the input vector, w is the learned weight vector, and b is the bias term. This method
offers high computational efficiency and interpretability, but is limited in expressiveness due to
the restriction to linear functions. We use the implementation provided by the scikit-learn
library [12], which solves the regression problem using ordinary or non-negative least squares.

Symbolic Regression

Symbolic regression aims to learn expressions of the form o = r(i), where r is a symbolic
expression composed of a predefined set B of basic functions and operators [6]. Candidate
expressions are evaluated based on a fitness metric that balances accuracy in the training data
and expression complexity. A regularization term — weighted by a parsimony coeflicient p —
is typically included to prevent expression bloat [17].

In our experiments, we use the PySR framework [4], which implements symbolic regression
via genetic programming. The algorithm maintains a population of size p of expressions,
which evolves over multiple generations through selection, mutation, and crossover. Figure 5
illustrates this evolutionary process.

Linear Matrix Differential Equations

With a third regression method, we model time-continuous, multidimensional linear models,
specifically linear matrix differential equations. These are common in system identification,
particularly in ARX models [7], and are of the form:

ylt] = Ayl[t] + Bult], (13)

where y[t] and ut] denote the state and input vectors, respectively, and A and B are the
system and input matrices.

S. Plambeck, M. Schmidt, L. Travé-Massuyes, and G. Fey

-~<- T —— 5y

10 |

\

o
OKemm === S
o
[\

D

N
e I

o
—
o

Sampling Step

Figure 6 Piecewise Linear Function with Three Segments. The value of y is scaled for better
visibility.

Given a set of observed traces O, the goal is to identify the matrices A and B that
best explain the observed dynamics. This is achieved by solving the following least-squares
optimization problem:

min|| Y[t + 1] — AY[¢]|l, (14)
where YTt] is constructed from all observed state and input vectors at time ¢:

_ [l e Inll

Yolll =\ yui o uif

(15)

The least squares solution is obtained using the linear regression implementation of
scikit-learn [12].

Traditional Baseline Method

In addition to the analysis of the presented learning approach, we compare to the results of
hybrid system identification with FaMoS [14]. FaMoS follows the traditional approach to
hybrid system identification as given in Figure 2. The approach uses the Euclidean distance
of windows of previous samples and upcomig samples of a trace for every sampling step
for the segmentation of traces in Step (2). The segments are then grouped based on the
similarity of the segments in Step (3) using dynamic time warping [10]. Flow functions are
identified as linear matrix difference equations in Step (3).

5.2 Examples

We illustrate our learning approach with two representative examples: a piecewise linear
function and a bouncing ball system. The first example serves as a simple baseline that allows
a straightforward identification of the flow functions. The second example, the bouncing
ball, is a classical benchmark in system identification. Although the bouncing ball exhibits
discontinuities in velocity, it can be modeled using a single flow function. In addition, we
demonstrate the applicability of different learning methods for both examples and compare
identified flow functions with the original system dynamics.

7:11

DX 2025

7:12

One-Shot Learning in Hybrid System ldentification: A New Modular Paradigm

20 | |

| | | |
0 0 200 400 600 800 1,000

t

Figure 7 Bouncing Ball with Height over Time.

Piecewise Linear Function

As a simple baseline, we consider a piecewise linear function with three segments. The
function is defined as follows:

03 -z a:<1§0
flry=y=«1 DV<pc (16)
—-03-z+3 % <z<10.

The observation of the output variable y = f(x) and the input variable z over time is
shown in Figure 6. The system is excited with a repeating input signal x, which is increasing
and resetting linearly.

Bouncing Ball

The bouncing ball is a well-known example for system identification. The system consists of
a ball dropped from an initial height, bouncing on the ground. We use a simulation of the
bouncing ball in Matlab [20] with a sampling time of At = 0.01s. The height = of the ball
observed over time is shown in Figure 7.

The system dynamics are governed by the matrix differential equation:

()=o) () (%) o

where g denotes the gravitational acceleration and v is the velocity of the ball.
We observe the system with a fixed sampling rate and, thus, learn a discrete difference
equation as follows:

x(t) 1 A\ (z(t-1) 0
= - At. 1
(i) =6)G+ (5 ()
For model learning with symbolic regression and linear regression, one dimensional flow
functions are learned. Thus, the height of the ball over time is approximated by the height

of the ball at the previous sampling step and the height at the second-last sampling step.
We provide a time history and approximate the height of the ball as follows:

J;(t):2-x(t—1)—x(t—2)—g-At. (19)

S. Plambeck, M. Schmidt, L. Travé-Massuyes, and G. Fey

Table 1 Learning Parameters for Hybrid System Identification (Algorithm 1) and Symbolic
Regression.

. Symbolic

Example Algorithm 1 Regression

€ linit lstep P n p

Piecewise Linear 0.01 5 1 09 10 31

Bouncing Ball 0.5 10 10 09 10 31

Table 2 Results of Model Learning.

Example Method Flow Functions MSE Lfearn.lng
Time in s
filz) =03-2—-22-1071°
Piecewise LR fo(z) =10 2.198 - 1072 0.159
Linear fa(z) =-03-x2+3.0
fi(z)= 03-x
= 05+05
SR (@) + 119210715 568.016
fa(z) = 3.066 — (—1.264)-
(—0.237) - (z + 0.220)
= 1. .z — 0. .
. LR {fl(xm) T 1.99 10~ 0.268
Bouncing +0.003
Ball SR {fl(m, ©2) = T + T1 — 2 2.025 - 10~ 570.75

fi(z,v) = < 1 0001) (x(t)>
. —0.023 0.984 vit) (8.749'103) 0.038
1

L (0001 _ a(4.573-1072
0225 \o(

Table 1 lists the parameters used in the experiments. In our learning approach from
Algorithm 1, € denotes the error threshold, l;,;; the initial segment length, and lg., the
increment of the segment length. For symbolic regression, p is the parsimony coefficient, n

Setup & Parameters

the number of generations, and p the population size.

5.3 Identification with Linear Regression

We apply our learning approach with linear regression to both the piecewise-linear function
and the bouncing ball system. As shown in Table 2, three distinct flow functions are identified
for the piecewise linear function, each corresponding to one mode. The learned functions
match the true system except for a minor difference in the first flow function. The maximum
length of the found segments is [* = 33, which is equivalent to the sampling step of the
ground truth transition point.

Similar results are obtained for the bouncing ball. Here, the error is slightly larger, but
also a larger error threshold € is used. The learned flow function differs in the slope and
offset from the original function. The linear function based on the heights x; and zo of
the last and second-last sampling step is learned, respectively. This is an approximation of

7:13

DX 2025

7:14

One-Shot Learning in Hybrid System ldentification: A New Modular Paradigm

the actual differential equation of the bouncing ball. Due to the high sampling rate, the
approximation is very close to the actual differential equation. This is also shown in Figure 8.
Figure 8a shows the learned flow function compared to the ground truth. The learned flow
function is close to the ground truth. Figure 8b shows the absolute error of the learned flow
function compared to the ground truth. The error is small, but varies over time due to the
mismatch of the slope and offset of the learned flow function compared to the ground truth.
Larger errors occur at the transition points, where the ball bounces on the ground and the
simulation resolution is not sufficient to capture the dynamics of the bouncing ball.

Further, the variant of our approach with linear regression has a very low learning time.

5.4 Identification with Symbolic Regression

Symbolic regression offers greater flexibility compared to linear regression, enabling the
identification of a wider class of functions depending on the available operators and basis
functions. For both the piecewise-linear function and the bouncing ball, we use addition,
subtraction, and multiplication as primitives. In addition, symbolic regression identifies
constants for the learned expressions.

The results of the model learning are shown in Table 2. For the piecewise-linear function,
we learn three flow functions, which are the three modes of the piecewise-linear function. The
first two flow functions are equivalent to the original function. However, instead of 1 for the
second flow function, 0.5 + 0.5 is learned. Symbolic regression does not simplify expressions
internally, as this could hinder exploration of the search space in the genetic algorithm. We
simplify the expression after learning, which results in the following set of flow functions:

fa(x) =1.0 . (20)
f3(z) =~30-03-z

The slope and offset of the third flow function deviate only in the range 10~® from the
original function. Again, the maximum length of the found segments is [* = 33, which is
equivalent to the ground truth transition point.

Similar results are obtained for the bouncing ball. The coefficients for the features x;
and x, are learned correctly, although x; + 21 is learned instead of 2 - z;. Compared to the
original function, the constant offset is not learned. However, the mean squared error is close
to the error of the linear regression. Figure 8a shows the learned flow function compared to
the ground truth. The learned flow function is close to the ground truth. Figure 8b shows
the absolute error of the learned flow function compared to the ground truth. The error is
small for both linear regression and symbolic regression, and the error of linear regression is
on average smaller than the error of symbolic regression. The error with symbolic regression
is constant because only the constant offset is not learned correctly. Larger errors occur at
the transition points, where the ball bounces on the ground and the simulation resolution is
not sufficient to capture the dynamics of the bouncing ball.

Overall, linear regression achieves lower errors and significantly faster learning time than
symbolic regression. This is due to the larger search space ® of symbolic regression and
its dependence on heuristic optimization (here, genetic programming), in contrast to the
closed-form solution used in linear regression.

S. Plambeck, M. Schmidt, L. Travé-Massuyés, and G. Fey

—~—SR -~-- LR ---- LM ... FaMoS ... QT
20 -
%104
O, . . . |
0 250 500 750 1,000

Sampling Step

(a) Bouncing Ball Height « for our Learning Approach with Linear Regression (LR), Symbolic Regression

(SR), and Linear Matrix Regression (LM) as well as FaMoS [14]. Additionally, the ground truth (GT) is
shown.

—~— SR ----LR ----LM - FaMoS
14 |
0.1 =~ P B I e
N e S 7 N e
1-1072 NS R S H
\1!- - \.‘i’ - 1i -
& Y _1;_ _____ - Tl ¥ \\‘~~\]'{i1 A
11073 —~——"— ——— ~— > Fm—
\ I/ 1 Ny AN] // 1
\” vy N ’
110741 | N I
i y !l: Y
5] \ Ty Y
—_5 ' ' | | H
1-10 \ 1,'
| |
T T | T
0 250 500 750 1,000

Sampling Step
(b) Bouncing Ball Absolute Error in Height x for our Learning Approach with Linear Regression (LR)

and Symbolic Regression (SR), and Linear Matrix Regression (LM) as well as FaMoS [14] (Note that the
FaMos curve coincides with that of LM).

Figure 8 Bouncing Ball Height « and Error for our Learning Approach with Linear Regression
(LR), Symbolic Regression (SR), and Linear Matrix Regression (LM) as well as FaMoS [14].

DX

7:15

2025

7:16

One-Shot Learning in Hybrid System ldentification: A New Modular Paradigm

Table 3 Learning Results for the Bouncing Ball with FaMoS [14].

Flow Function MSE Learning Time in s
B 1.0 0.008 z(t)
film o) = (0.0 1.0) (u(t))
< 0.0 > ot +1)
=+ =
—0.006 v(t+1)
0.999 0.007 x(t)
f2($, U) =
(—0.082 0.975) (v(t)) (4_021 . 105> 0.012
< 0.0) <x(t+ 1)) 2217 107 '
+ =
0.036 v(t+1)
' B 1.0 0.0 x(t)
fa(mv) = (—0.177 0.947 (v(t))
1
1

< 0.0) (m(
+ =
0.052 o

5.5 Identification of Linear Matrix Differential Equations

We perform our learning approach with linear matrix regression for the bouncing ball. The
goal is to learn the two-dimensional state space of the ball as given in Equation (18). The
results are shown in Table 2 and visualized in Figure 8a and Figure 8b.

The first line of the matrix differential equation is learned correctly except for the constant
offset. The second line of the matrix differential equation differs from the original function.
Instead of a constant reduction of the velocity, a factor smaller than one is learned for the
previous velocity.

The MSE of the learned matrix differential equation for the height of the ball is higher
compared to the results of one-dimensional linear regression and symbolic regression. The
learning problem here is more complex as a two-dimensional state is learned. This regression
method enables hybrid system identification for a higher-dimensional state space. The
learning time for linear matrix regression is small.

5.6 Comparison to Traditional Learning of Hybrid Automata

Finally, we compare our learning approach with traditional learning of hybrid automata. We
use the bouncing ball example and learn a hybrid automaton with the FaMoS tool [14]. The
results are shown in Table 3.

The learning time of FaMoS is low and the MSE is small. FaMoS achieves a slightly lower
MSE than all variants of our approach, which is due to the fact that FaMoS normalizes the
data before learning and, thus, the MSE is evaluated on normalized data. The prediction of
the state space with the learned flow function and the ground truth is shown in Figure 8a as
a dotted green line and is very close to the ground truth. Figure 8b shows the denormalized
absolute error of the learned flow function compared to the ground truth. The error is
very similar to the error of our learning approach with linear matrix regression. However,
instead of a single flow function, three flow functions are learned with FaMoS. All three flow
functions are similar and are close to the ground truth, but not exactly equivalent to the
original functions. This example shows that our approach can achieve a smaller number of
flow functions and, thus, a smaller model. The traditional approach executed by FaMoS

S. Plambeck, M. Schmidt, L. Travé-Massuyes, and G. Fey

detects transition points at the bouncing points of the ball, i.e., whenever x = 0. For the
given learning data, transition points are detected at the sampling steps 361 and 695. The
flow functions are learned on the segments individually. The grouping step in FaMoS is not
able to group the segments correctly, as they are not similar when comparing the curves
of the segments. Thus, FaMoS fails to recognize identical dynamics in the segments. Our
learning approach instead groups segments based on the flow functions and, thus, needs only
a single flow function to represent the dynamics of the bouncing ball.

6 Discussion & Conclusion

In this work, we present a method to learn the flow functions of hybrid systems from
observations integrating where the individual flow functions are valid. Revisiting the tradi-
tional sequential learning approach for hybrid systems, we propose a new iterative learning
paradigm. This iterative process allows us to use the learned flow functions as intermediate
results within the learning process. This ensures that transition points between dynamic
modes are detected only if the current flow function is not able to explain the observations.
Our learning approach, thus, is closer to the actual optimization problem of hybrid system
identification and specifically focuses on the identification of hybrid systems with a small
number of modes. We propose a template algorithm which is agnostic to the actual set of
flow functions and learning methods used. Our empirical evaluation instantiates the template
algorithm with symbolic regression, linear regression, and linear matrix identification. The
results show that the approach identifies simple flow functions with high accuracy. Further,
we demonstrate that the approach is able to identify hybrid systems with fewer modes
compared to a traditional sequential learning approach on a bouncing ball benchmark.

Future work extends the current approach to involve the identification of events and
transition conditions as well as reset relations, which enable the reset of system variables at
the transition between modes.

—— References

1 Rajeev Alur. Principles of Cyber-Physical Systems. Technical report, MIT Press, 2015.
Nathalie Barbosa Roa, Louise Travé-Massuyes, and Victor H. Grisales-Palacio. Dyclee:
Dynamic clustering for tracking evolving environments. Pattern Recognition, 94:162-186, 2019.
doi:10.1016/j.patcog.2019.05.024.

3 Michael S. Branicky. Introduction to Hybrid Systems, pages 91-116. Birkh&user, Boston, 2005.

4 Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl,
2023. doi:10.48550/arXiv.2305.01582.

5 Nemanja Hranisavljevic, Alexander Maier, and Oliver Niggemann. Discretization of hybrid
CPPS data into timed automaton using restricted Boltzmann machines. Engineering Applica-
tions of Artificial Intelligence, 95:103826, 2020. doi:10.1016/j.engappai.2020.103826.

6 John R. Koza. On the programming of computers by means of natural selection. Koza, John
R. Genetic programming. MIT Press, Cambridge, Mass. u.a., 1992.

7 Lennart Ljung. System Identification: Theory for the User. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1986.

8 J. Lunze and F. Lamnabhi-Lagarrigue. Handbook of Hybrid Systems Control: Theory, Tools,
Applications. Cambridge University Press, Cambridge, 2009.

9 Daniel L. Ly and Hod Lipson. Learning Symbolic Representations of Hybrid Dynamical
Systems. Journal of Machine Learning Research, 13(115):3585-3618, 2012. doi:10.5555/
2503308.2503356.

7:17

DX 2025

https://doi.org/10.1016/j.patcog.2019.05.024
https://doi.org/10.48550/arXiv.2305.01582
https://doi.org/10.1016/j.engappai.2020.103826
https://doi.org/10.5555/2503308.2503356
https://doi.org/10.5555/2503308.2503356

7:18

One-Shot Learning in Hybrid System ldentification: A New Modular Paradigm

10

11

12

13

14

15

16

17

18

19

20

21

Meinard Miiller. Dynamic Time Warping, chapter 4, pages 69-84. Springer-Verlag, Heidelberg,
2007.

Oliver Niggemann, Benno Stein, Asmir Vodencarevic, Alexander Maier, and Hans Kleine
Biining. Learning behavior models for hybrid timed systems. AAAI Conference on Artificial
Intelligence, 26(1):1083-1090, 2012. doi:10.1609/aaai.v26i1.8296.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011. doi:10.5555/1953048.2078195.

Swantje Plambeck. SymbolicRegressiondHA. Software, BMBF project AGenC no.
161S22047A, swhld: swh:1:dir:00££8c08db289ab78af743dd7ce6b71dceccb37c (visited on
2025-10-21). URL: https://github.com/TUHH-IES/SymbolicRegression4HA, doi:10.4230/
artifacts.24971.

Swantje Plambeck, Aaron Bracht, Nemanja Hranisavljevic, and Goerschwin Fey. Famos —
fast model learning for hybrid cyber-physical systems using decision trees. In International
Conference on Hybrid Systems: Computation and Control (HSCC), 2024. doi:10.1145/
3641513.3650131.

Swantje Plambeck, Maximilian Schmidt, Goerschwin Fey, Audine Subias, and Louise Travé-
Massuyes. Dynamics-based identification of hybrid systems using symbolic regression. In
Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 2024.
doi:10.1109/SEAA64295.2024.00019.

Swantje Plambeck, Maximilian Schmidt, Audine Subias, Louise Travé-Massuyes, and Goer-
schwin Fey. Usability of Symbolic Regression for Hybrid System Identification - System Classes
and Parameters. In 85th International Conference on Principles of Diagnosis and Resilient
Systems (DX 2024), 2024. doi:10.4230/0ASIcs.DX.2024.30.

Riccardo Poli, William B Langdon, and Nicholas F McPhee. A Field Guide to Genetic
Programming, volume 10. Springer, 2008. URL: http://www.gp-field-guide.org.uk/.
Iman Saberi, Fathiyeh Faghih, and Farzad Sobhi Bavil. A passive online technique for learning
hybrid automata from input/output traces. ACM Transactions on Embedded Computing
Systems, 22(1):1-24, 2021. doi:10.1145/3556543.

Martin Tappler, Edi Muskardin, Bernhard K. Aichernig, and Bettina Kénighofer. Learning
environment models with continuous stochastic dynamics, 2023. doi:10.48550/arXiv.2306.
17204.

Inc. The MathWorks. Model a bouncing ball in continuous time, 2025. URL: https://
de.mathworks.com/help/stateflow/ug/modeling-a-bouncing-ball-in-continuous-time.
html.

Xiaodong Yang, Omar Ali Beg, Matthew Kenigsberg, and Taylor T. Johnson. A framework
for identification and validation of affine hybrid automata from input-output traces. ACM
Transactions on Cyber-Physical Systems, 6(2):1-24, 2022. doi:10.1145/3470455.

https://doi.org/10.1609/aaai.v26i1.8296
https://doi.org/10.5555/1953048.2078195
https://archive.softwareheritage.org/swh:1:dir:00ff8c08db289ab78af743dd7ce6b71dceccb37c;origin=https://github.com/TUHH-IES/SymbolicRegression4HA;visit=swh:1:snp:2ac263a6bb3ff1233ebbed02fef7b7e6cab8f402;anchor=swh:1:rev:7e6cb7feafb37cf67a592ee6108b91fb0e7dfba0
https://github.com/TUHH-IES/SymbolicRegression4HA
https://doi.org/10.4230/artifacts.24971
https://doi.org/10.4230/artifacts.24971
https://doi.org/10.1145/3641513.3650131
https://doi.org/10.1145/3641513.3650131
https://doi.org/10.1109/SEAA64295.2024.00019
https://doi.org/10.4230/OASIcs.DX.2024.30
http://www.gp-field-guide.org.uk/
https://doi.org/10.1145/3556543
https://doi.org/10.48550/arXiv.2306.17204
https://doi.org/10.48550/arXiv.2306.17204
https://de.mathworks.com/help/stateflow/ug/modeling-a-bouncing-ball-in-continuous-time.html
https://de.mathworks.com/help/stateflow/ug/modeling-a-bouncing-ball-in-continuous-time.html
https://de.mathworks.com/help/stateflow/ug/modeling-a-bouncing-ball-in-continuous-time.html
https://doi.org/10.1145/3470455

Safe to Fly? Real-Time Flight Mission Feasibility
Assessment for Drone Package Delivery Operations

Abenezer Taye =
Mechanical and Aerospace Engineering Department, School of Engineering and Applied Science,
George Washington University, Washington DC, USA

Austin Coursey &
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Marcos Quinones-Grueiro &
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Chao Hu =

School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut,
Storrs, CT, USA

Gautam Biswas =
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Peng Wei 2
Mechanical and Aerospace Engineering Department, School of Engineering and Applied Science,
George Washington University, Washington DC, USA

—— Abstract

Ensuring flight safety for small unmanned aerial systems (sUAS) requires continuous in-flight
monitoring and decision-making, as unexpected events can alter power consumption and deplete
battery energy faster than anticipated. Such events may result in insufficient battery capacity
to complete a mission, thereby compromising flight safety. In this paper, we present an online
feasibility assessment and contingency management framework that continuously monitors the
aircraft’s battery state and the energy required to complete the flight in real-time, which enables
informed decision-making to enhance flight safety. The framework consists of two main components:
power consumption prediction and battery voltage trajectory prediction. The power consumption
prediction is conducted using a model that is based on momentum theory, while the voltage trajectory
prediction is performed using a Neural Ordinary Differential Equation (Neural ODE)-based data-
driven model. By integrating these two components, the framework evaluates the feasibility of a flight
mission in real time and determines whether to proceed with the mission or initiate rerouting. We
evaluate the framework’s performance in a drone delivery scenario in the Dallas-Fort Worth (DFW)
area, where the aircraft encounters an unexpected energy depletion event mid-flight. The proposed
framework is tasked with assessing the feasibility of completing the mission and, if necessary,
rerouting the aircraft for an emergency landing. The results demonstrate that the framework
accurately and efficiently detects energy insufficiencies in real-time and re-routes the aircraft to a
predefined emergency landing site.

2012 ACM Subject Classification Computing methodologies — Control methods; Computing
methodologies — Model development and analysis

Keywords and phrases Battery Modeling, Neural ODE, Unmanned Aerial Vehicles
Digital Object Identifier 10.4230/0ASIcs.DX.2025.8

Funding This work was supported by NASA award #80NSSC21M0087-21-S06.

© Abenezer Taye, Austin Coursey, Marcos Quinones-Grueiro, Chao Hu, Gautam Biswas, and Peng Wei;
5y

licensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 8; pp. 8:1-8:20

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:abenezertaye@gwu.edu
https://orcid.org/0009-0001-3469-0949
mailto:austin.c.coursey@vanderbilt.edu
https://orcid.org/0000-0003-1774-6442
mailto:marcos.quinones.grueiro@vanderbilt.edu
https://orcid.org/0000-0001-5391-6774
mailto:chao.hu@uconn.edu
mailto:gautam.biswas@vanderbilt.edu
https://orcid.org/0000-0002-2752-3878
mailto:pwei@gwu.edu
https://orcid.org/0000-0001-8492-5411
https://doi.org/10.4230/OASIcs.DX.2025.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

8:2

Real-Time Flight Mission Feasibility Assessment for UAVs

1 Introduction

1.1 Motivation

Drone package delivery using small unmanned aerial systems (sUAS) is rapidly advancing
and nearing widespread implementation. The FAA recently granted approval for companies
such as Zipline and Wing Aviation to operate commercial drones in the Dallas-Fort Worth
(DFW) area without requiring visual observers, enabling beyond-visual-line-of-sight (BVLOS)
operations [11, 12, 16]. This historic authorization represents a significant shift in the
regulatory landscape, paving the way for the safe and routine integration of drone deliveries
into the national airspace.

Despite these advancements, ensuring the safety of drone delivery operations remains a
critical challenge, particularly due to various operational hazards [24]. Among these, hazards
related to aircraft components pose a significant risk to the reliability of advanced air mobility
(AAM) operations such as drone package delivery. In this work, we specifically focus on one
such hazard, which is the risk of insufficient battery capacity to complete a flight mission.

Due to the dynamic and uncertain nature of flight operations, even if pre-departure
feasibility assessments account for all known factors, unexpected events during flight can still
lead to insufficient battery energy. Various operational factors that happen during flight can
influence the power consumption of the aircraft and deplete the battery energy faster than
anticipated. For example, a mid-flight incident such as a bird strike may damage a propeller,
reducing thrust efficiency and increasing power demand [9]. Similarly, if the electronic speed
controller (ESC) or battery overheats beyond a safe threshold, the system may impose a
speed restriction [13], limiting the aircraft’s operational envelope and requiring rerouting to
the nearest landing site.

To mitigate these risks and enhance flight safety, we propose a real-time flight mission
monitoring scheme that continuously evaluates the feasibility of a package delivery mission
based on the available battery energy. The intended operation of this framework in a
real-world drone package delivery scenario is illustrated in Figure 1. The monitoring system
is activated immediately after takeoff and periodically assesses whether the mission remains
feasible. This enables timely adjustments, such as rerouting to a nearby warehouse or an
emergency landing site, to ensure safe operation throughout the flight until the aircraft
reaches its destination.

1.2 Related Work

The two areas related to our overall problem are battery state prediction and battery
feasibility-based flight planning. Here we summarize the previous works related to these
two areas.

1.2.1 Battery State Prediction

Existing battery state prediction methods can be broadly categorized into two approaches:
model-based and data-driven methods. Model-based approaches rely on physical models
of the battery to predict key states, primarily future trajectories of terminal voltage and
state of charge (SoC). These methods typically use either equivalent circuit models or
electrochemical-based models, combined with estimators, to forecast battery states over time.

Equivalent circuit models represent the battery’s internal dynamics using electrical
components such as resistors and capacitors. Common models include the Rint model, the
RC model, and the Thévenin model [14]. These models simplify the battery’s behavior but

A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei

<@ Delivery Drone ﬁ Delivery Location ||~ gml| Depot Location —====== Mission Feasibility

Figure 1 Schematic diagram representation of the feasibility assessment procedure.

still require parameter estimation and state estimation techniques for accurate predictions. In
contrast, electrochemical-based models simulate the battery’s internal chemistry using porous
electrode theory [15] and describe its dynamics through partial differential equations (PDEs).
There are multiple versions of these models, varying in complexity depending on the target
application, with the most widely used being [8] and [10]. While model-based methods offer
high accuracy and interpretability, they require simulating complex, nonlinear battery models,
making them computationally expensive and impractical for real-time in-flight applications.

To address this limitation, data-driven approaches have been developed. These methods
use machine learning techniques to predict battery states with reduced computational cost.
Among the most common are long short-term memory (LSTM) networks [5], support vector
machines (SVM) [18], and fuzzy inference systems (FIS) [17]. Data-driven approaches are
more computationally efficient [3], making them suitable for real-time applications such as
in-flight battery state prediction. However, their accuracy tends to degrade as the prediction
horizon increases, limiting their reliability for long-term planning applications.

1.2.2 Battery Feasibility Based Flight Planning

The proposed framework aims to perform online battery state prediction for sUAS operations
and assess mission feasibility. Several studies have explored similar goals. For instance, Shibl
et al. [22] developed a battery management system for sUAS that employs deep neural
networks (DNN) and LSTM networks to predict the SoC and the state of health (SoH).
This system enhances battery monitoring and aids in mission planning based on the current
battery state. Similarly, [4] proposed a method for assessing mission feasibility by considering
battery performance and planning optimal routes to ensure successful mission completion.
In another study, Shi et al. [20] introduced a cloud-based framework for the co-estimation of
SoC and SoH, leveraging transformer-based deep learning techniques to provide accurate
and real-time battery state predictions. Additionally, [21] explored a risk-aware approach for
unmanned aerial vehicle and unmanned ground vehicle rendezvous planning using a chance-

8:3

DX 2025

8:4

Real-Time Flight Mission Feasibility Assessment for UAVs

constrained Markov Decision Process. Their method accounts for the stochastic nature of
energy consumption and optimizes rendezvous points to enhance mission feasibility and
safety. Furthermore, Choudhry et al. [7] developed a deep energy model utilizing Temporal
Convolutional Networks to predict energy consumption. They introduced a Conditional
Value-at-Risk (CVaR) metric to assess the risk of battery depletion during flights, providing
a framework for risk-aware mission planning and feasibility assessment.

However, none of these studies approach battery feasibility-based flight planning from the
perspective of forecasting the future voltage trajectory. In contrast, our framework introduces
a two-stage pipeline that first predicts the power consumption profile of the aircraft for the
planned mission and then leverages a data-driven battery model to forecast the corresponding
voltage trajectory. This approach enables a more realistic and forward-looking assessment
of mission feasibility, unlike prior methods that rely solely on the current battery state or
coarse approximations of future energy demands.

2 Problem Formulation

Ensuring the real-time feasibility of flight missions is critical for safe and reliable operations,
particularly in applications such as package delivery. The framework proposed in this paper
periodically assesses battery feasibility during flight to determine whether the aircraft can
successfully reach its destination or if it needs to reroute to an alternate landing site. This
section outlines the formulations of the two key components of the feasibility assessment
framework — the aircraft model and the battery model — and provides a formal description of
the problem addressed in this work.

2.1 Aircraft Model

The aircraft operates in a three-dimensional environment with latitude, longitude, and
altitude. The specific aircraft model considered in this paper is an octo-rotor, whose detailed
dynamics is provided in [1]. For brevity, we summarize the aircraft dynamics here. At any
time ¢, the aircraft’s state in inertial space is represented as x; € R3, and its evolution follows
the system dynamics:

Ct = f(Ct, Ut), (1)

where f : R™ x R — R" is a continuous function. The vector { represents the aircraft’s states,
including its position (z,y, z), velocities (&,y, 2), angular positions [¢, 0,], and angular
velocities [p, ¢, r]. The control input u; ensures that the aircraft follows a predefined sequence
of waypoints from the initial to the final destination.

2.2 Battery Model

The battery model utilized in this study is an electrochemical model of lithium-ion batteries,
as described in [8], which are a popular choice for powering unmanned aerial vehicles. In
this model, the battery’s current draw, denoted by I, serves as the input, while the battery
voltage Vj, temperature Ty, and state of charge (SoC) represent the system states. The
battery dynamics are governed by the following system equation:

ét =g(& Iv), (2)

where g : R™ x R — R™ is a continuous function. The state vector & represents the battery’s
internal states.

A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei

2.3 Problem Description

Consider an aircraft whose airframe and battery dynamics are given by Equation 1 and 2,
respectively. The aircraft is assigned to deliver a package from an initial warehouse location
X = (Tw, Yuws Zw) t0 a designated delivery site xq = (4, ya, 24). Once the aircraft completes
takeoff, the framework presented in this paper needs to perform a periodic feasibility check
every 7 seconds to ensure that the mission remains viable under real-time aircraft and
environmental conditions. At each reassessment step, where x; represents the position
of the aircraft at the time of feasibility assessment, the condition for mission success is
evaluated using:

‘/éuccess (t | Xt) > V;:hresha vt € [ta t+ T] (3)

If the battery voltage trajectory is greater than or equal to a predefined feasibility voltage
threshold (Vinresh) value, the aircraft continues its flight. However, if at any point in time, the
battery voltage drops below the threshold, the aircraft must reroute to the nearest warehouse
or designated emergency landing site.

3 Method

To address the problem described in the previous section, we propose the framework shown
in Figure 2, where, at each decision-making step, three major tasks are performed: 1) power
consumption prediction, 2) battery voltage and SoC prediction, and 3) feasibility assessment
and decision making. The remainder of this section discusses these three major tasks of the

p
L Convert Power Profile
to Current Profile

N -

Neural ODE based
Battery Model

v X i
2 ¢ Proceed? < T@TPerform Feasibility e

' Assessment
' Reroute

framework in detail.

: B Tnitial and Final Flight Plan
> ->
i Q, Locations Generator

0—0 [dentify Flight _)(f)', cori?lvﬁrtion
Segments %‘.’i’ P

Figure 2 Schematic diagram of the feasibility assessment procedure.

3.1 Power Profile Prediction

Accurate prediction of power consumption for a future flight trajectory is critical for assessing
the feasibility of a mission. The proposed framework predicts the power consumption of a
future flight trajectory using the following procedure. First, a flight plan is generated for the
remaining flight using the initial and final locations. This flight plan comprises waypoints

8:5

DX 2025

8:6

Real-Time Flight Mission Feasibility Assessment for UAVs

between these initial and final locations along with the velocity profile of the aircraft. Next,
the framework identifies distinct flight segments — such as takeoff, cruise, and landing — and
computes the power consumption and flight duration for each flight segment using the power
consumption model which is discussed in the following subsection.

3.1.1 Aircraft Power Consumption Model

To determine the power required for future flight operations, the ideal approach would be
to simulate the detailed aircraft dynamic model and collect the power required for future
flight duration. However, since the detailed aircraft dynamic model is complex and highly
nonlinear, doing so is computationally expensive. To address this challenge, we adopt a power
consumption model for rotary-wing aircraft from [23]. This model is based on momentum
theory and incorporates aerodynamic equations for each flight maneuver including, climb,
hover, horizontal flight, and descent.

w3
Poverziv 4
" Mh + V2p A)
W [V, V2 w
Pcim = — | 5 —=)
timb c<2+ 4+2pAt> (5)

wi-ve v w
LA [LY 6
Me 2 + 4 + 20A; |’ (6)

P, descent —

where V, and V; are vertical climb speed and vertical descent speed values, respectively. In
addition, 7 is the efficiency factor of the propulsion system, p is the air density, W is the
total weight of the aircraft, and A; is the sum of the n-disc actuator areas. In addition, the
instantaneous power for horizontal flight is given as:

(Vhor Sin(av) + Uhor) ’ (7)

Phorizontal =
Thor

where a, is the angle of attack and 7y, and the horizontal efficiency. In addition, the induced
velocity in horizontal flight vy, is given by:

V}120r V}:lor w 2
Vhor = -) + 4 + (2pAt) . (8)

All the aircraft-related parameters mentioned in the equations above are given in Table 1.

3.1.2 Flight Duration Estimation

The aircraft power consumption model outlined above provides the instantaneous power
required by the aircraft during a given timestamp in a specific flight phase. However, to
predict the power profile for each flight segment, we must also determine the duration of
each segment. Here, we discuss the approach used to estimate the flight duration of each
flight segment. During a climb or descent, the aircraft changes altitude at a constant speed,
and the total time required to reach the desired attitude is given by:

hiv1 — hy

)
‘/climb/descend

9)

Tclimb/descend,i =

A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei

Table 1 Aircraft- and battery-related parameters.

Aircraft Parameters Battery Parameters
P Air density (1.225 kg/m?) Rint Internal resistance (0.05 €2)
Ay Rotor disk area (1.31 m?) n Battery efficiency (0.95)
w Aircraft weight (10 kg) Cn Nominal capacity (22000 mAh)
Ne Climb efficiency (0.85) ko Open-circuit voltage constant (22.83)
Qo Horizontal drag coefficient (0.25) k1 Open-circuit voltage constant (0.39)
Nd Descent efficiency (0.75) ko Open-circuit voltage constant (—0.78)
Thor Horizontal efficiency (0.88) Vihresh Battery voltage threshold (18 V)

where h;1 — h; represents the altitude change and Vijimp 0 (Vgescend) i the predefined climb
(or descent) speed. Similarly, once the aircraft reaches cruising altitude, the aircraft moves
with a constant horizontal velocity. The cruise time for a given segment is computed as:

d;

chruise

; (10)

Tcruise,i =

where d; is the horizontal distance of the segment and Vi yise is the predefined cruise speed.

Finally, the overall flight power profile is obtained by concatenating the power profiles for
the climb, cruise, and descent segments, each computed over its respective flight duration:

Pﬂight - [Pclimba Pcruisca Pdcsccnd]~ (11)

3.2 Power to Current Conversion

After predicting the power profile for the entire flight, we need to convert it into a current
profile to use as input for our Neural ODE-based battery model. However, this conversion is
not straightforward, as both voltage and current are unknown in our problem setting. To
address this, we adopt the Rint-based equivalent circuit model [14]. This model represents
the battery as an ideal voltage source in series with a single resistor and is described by the
following equation:

V(t) = VOC(t) - I(t)Rinta (12)

where V(t) is the battery voltage, V,.(¢) is the open circuit voltage, and R;, represents
the internal resistance of the battery. By rewriting this equation using the relationship
P(t) =V (t) - I(t), we obtain the following quadratic equation:

I(t)? Rint — Voo (H) (1) + P(t) = 0. (13)

In the above equation, V,(t) is determined from the OCV-SoC curve of the battery, assuming
the SoC of the battery at a given time is known. In this study, we use the Nernst model to
represent the OCV-SoC relationship, which is commonly applied to Li-ion and Li-Po batteries:

Voc(S0C) = ko + k1 In(SoC) + kg In(1 — SoC), (14)

where the parameters ky = 22.83, k; = 0.39, and k; = —0.78 are obtained by fitting
battery data [2]. Figure 3 shows the fitted OCV-SoC curve. Once the SoC is determined,
this curve is used to obtain the corresponding open-circuit voltage of the battery. The

8:7

DX 2025

8:8

Real-Time Flight Mission Feasibility Assessment for UAVs

X Battery Data
269 —— OCV-SoC Curve

24 1

Open Circuit Voltage (V)
[N}
wW

22 1
21 A
20 1
X
0 20 40 60 80 100

State of Charge (%)

Figure 3 Fitted SoC vs OCV Curve for the 65S1P 22Ah Battery.

SoC at any given time is estimated using coulomb counting (also known as Ampere-Hour
integration), which estimates the SoC by measuring the amount of charge and discharge
using the following equation:

SoC(t) = SoCl(t) — - | I(t)dt, (15)
Cn Ji,
where SoC(ty) is the initial state of charge, n represents the coulumbic efficiency, C,, represents
the battery capacity or rated capacity, and I(t) is the instantaneous current discharged from
the battery.

Finally, the derived current profile, along with the current battery voltage value and the
future flight time horizon, is fed into the data-driven battery model. This learning-based
model predicts the voltage and SoC evolution along the anticipated flight trajectory. A
detailed description of the learning-based battery modeling is provided in Section 4.

3.3 Feasibility Assessment and Decision Making

After computing the power required to complete the remaining trajectory and predicting
the battery’s voltage trajectory, we assess mission success using the criterion provided in
Equation 3. At each reassessment step, if the predicted voltage trajectory remains greater
than or equal to the predefined threshold Vipresn throughout the entire prediction horizon,
the aircraft continues its flight as planned. However, if the predicted voltage falls below the
threshold at any point, the aircraft must reroute to the nearest warehouse or designated
emergency landing site. The closest alternate landing site is determined by:

— in d(x;, %), 1
X = arg min d(x;, X (16)

where & represents the set of predefined emergency landing sites, and d(x(t),x.) is the
distance between the current position of the aircraft and each landing site. Once a new
landing site is identified, the aircraft adjusts its trajectory accordingly and proceeds toward
the new landing site. A feasibility assessment is then conducted for the updated trajectory
to ensure that the aircraft can safely reach the new destination.

A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei

Algorithm 1 Power-to-Current Conversion Process.

Procedure Power-to-CurrentConversion():

Input : Power profile P(t), Battery parameters (Rint, 1, Cn, ko, k1, and ko)
Output : Current profile I(t)

1 for each timestep t do

2 Compute open circuit voltage (OCV) from SoC using equation 14

Voc(t) < ko + k1 In(SoC(t)) + k2 In(1 — SoC(t))

3 Solve quadratic equation 13

~Voe(t) + v/ Vo (t)2 — 4Rt P(t)
2Rint

I(t) +

4 Update SoC using Coulomb counting

SoC(t + At) + SoC(t) — L I(t)At

5 End of operation

4 Battery Modeling

To enable accurate, data-driven modeling of battery voltage under future current loads, we
implemented a Neural Ordinary Differential Equation (Neural ODE) approach [6]. Neural
ODEs generalize traditional neural networks by replacing discrete layer-wise transformations
with a continuous-time formulation, where the hidden state h(t) evolves according to a
learned differential equation:

dh
= 1(h(0),1:0) a7
Here, f is a neural network parameterized by 6 that defines the dynamics of the hidden
state over time. In the context of battery modeling, the input current profile and initial
voltage are encoded into the initial hidden state h(0), which is then evolved forward in time
using an ODE solver. At each time step, the evolving hidden state is used to predict the
corresponding battery voltage. This framework naturally supports irregular time sampling
and produces smooth, physically coherent predictions, making it particularly effective for
capturing the dynamics of battery behavior under variable loads.

In this section, we describe the procedures followed to develop the Neural-ODE-based
battery model. The overall training workflow for the Neural ODE-based battery model
is illustrated in the schematic diagram shown in Figure 4. As depicted in the figure, the
modeling process includes dataset generation, construction of training and test sets, model
training using the training set, and performance evaluation using the test set.

4.1 Dataset Generation

To develop and validate a data-driven battery voltage prediction model, we adopted a data
generation procedure designed to capture the dynamic behavior of a lithium-ion battery under
diverse load conditions. This procedure integrates a high-fidelity electrochemical battery

8:9

DX 2025

8:10

Real-Time Flight Mission Feasibility Assessment for UAVs

|B$“§3\I Evaluate model
E:~@ performance
|B—_

—

h

Trained Battery Model

\ 4

Simulator V)
1(t) V@
Current Voltage Traini
{ Training
E‘% Set

A '

Y

Figure 4 Neural ODE-based battery model training processes.

model with a current profile generation mechanism to emulate realistic operational scenarios
in drone package delivery missions. The goal is to produce realistic current and voltage profiles
that reflect battery performance during flight operations. The data generation approach
consists of three main stages: (%) flight mission current profile generation, (7) simulation of
battery voltage, and (7i) dataset construction.

4.1.1 Flight Mission Current Profile Generation

The current profile generation process produces two types of profiles: full-flight mission

profiles and mid-flight constant profiles. Full-flight profiles capture both the takeoff and

cruise phases of the aircraft operations, where the takeoff phase is characterized by a higher

power demand, while the cruise phase exhibits a lower current draw. Mathematically, the

generated current profile at time ¢, denoted as I(t), is defined as:

I(t) _ {Itakcof'f7 0 <it< Ttakcoff (18)
Tervises Trakeoft <t < Tiotal

where Liakeor ~ U(140,225) A and I.uise ~ U(50,70) A, with U(a,b) denoting a uniform
distribution. The takeoff duration, Tiakeoft, is randomly sampled within the range [1,10]
seconds, ensuring variability in the generated profiles. Mid-flight profiles, on the other hand,
are created by assigning the initial voltage at various points during a full-flight mission
and applying a constant current profile from that point onward. This approach enables the
evaluation of battery response under different initial conditions.

4.1.2 Battery Voltage Simulation

To simulate the voltage response corresponding to the generated current profiles, we employ an
electrochemical battery model [8]. The simulation procedure involves initializing the battery
state, iterating over the generated current profiles, and computing the corresponding voltage
response. The resulting dataset consists of 1,000 pairs of current and voltage trajectories
and is systematically divided into training and test sets using a 70% — 30% split. Each
entry in the dataset comprises the input current trajectory I(t), the corresponding voltage
response V (t), and the associated time horizon T'. Figure 5 illustrates representative samples
from the generated dataset, with current trajectories shown in blue and their corresponding
voltage responses in black.

4.2 Neural ODE Training

In this subsection, we provide details on the data preprocessing steps, as well as the
architectural and training specifications of our Neural ODE-based battery model.

A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei

180.0 160.0 4

175.0 4 55.0
16001 140.0

150.0 4 J
< 540 140.0
) 1200 4
125.0 5304 1200

Current (A

100.0 100.0 4 100.0

75.01 80.0 4 80.0 4

50.0 4 ; ; 60.0 1 60.0 4

T T T T T T T T T T
Time (s) 20 30 40 50 0 20 40 60 0 20 40 60

24.04 26.0 4

235 1 25.0

23.04

201 ; ; 2254 20
0 20 40 60 i i i i i i i i i i
Time (5) 200 300 400 500 0 20 40 60 0 20 40 60

Figure 5 Representative current profiles (top row) and their corresponding voltage responses
(bottom row).

4.2.1 Data Preprocessing

To ensure robust generalization across various scales of input data and to mitigate numerical
instability during training, the input current and output voltage sequences are standardized
using the training dataset’s mean and standard deviation. The model operates on normalized
time in the range [0, 1] for each sequence.

4.2.2 Neural ODE Model Architecture

Our Neural ODE model consists of two primary components: a neural network-based ODE
function and an ODE solver. The ODE function is implemented as a fully connected
feedforward neural network with three hidden layers, each employing ReLLU activation
functions, and outputs the derivative of the voltage. The network takes as input the initial
battery voltage, the input current, and the time horizon, enabling it to learn a continuous-
time differential equation that governs the voltage dynamics. This learned function is then
integrated over time using a fourth-order Runge-Kutta (RK4) solver to generate the battery
voltage trajectory. The model is trained using a composite loss function that combines mean
squared error (MSE) and root mean squared error (RMSE) between the predicted and ground
truth voltage values. After training, the model is evaluated on test current profiles to assess
its accuracy in predicting voltage trajectories. The architectural and training hyperparameter
details of the model are provided in Tables 2 and 3, respectively. These parameters were
identified through a series of empirical experiments, where different configurations were
systematically tested to achieve optimal trade-offs between model complexity, training
efficiency, and predictive performance.

5 Results and Discussion

5.1 Scenario Description

The scenario designed in this paper to evaluate the performance of the proposed real-time
feasibility assessment and contingency management framework involves a drone package
delivery operation within the Dallas-Fort Worth (DFW) metropolitan area, as illustrated

8:11

DX 2025

8:12 Real-Time Flight Mission Feasibility Assessment for UAVs

Table 2 Architecture of the ODE function. Table 3 Training hyperparameters.
Layer # Neurons Activation Hyperparameter Value
Input 3 - Optimizer Adam
Layer 1 128 ReLU Learning Rate 0.001
Layer 2 128 ReLLU Batch Size 4

Layer 3 64 ReLU ODE Solver RK4
Output 1 None Epochs 100

in Figure 6. In this scenario, a single aircraft departs from a designated warehouse located
at 33°08'48"N, 96°48'22"W, flying towards an assigned delivery location at 33°09’05”N,
96°47'15"W. We assume all necessary pre-departure feasibility assessments have already
been completed, and the mission has been cleared for execution. Once airborne, the online
feasibility assessment method developed in this study, which is assumed to run offboard,
operates at regular intervals of 5 seconds.

Additionally, to assess the effectiveness of our proposed approach in supporting online
decision-making and contingency management, we introduce a realistic in-flight anomaly
scenario. In this case, the aircraft experiences an anomaly upon reaching the midpoint of
the mission, located at coordinates 33°08’56.5”N, 96°47'48.5”W. Due to thermal stress
affecting the electronic speed controller (ESC), the cruise speed must be reduced from the
nominal 5 m/s to 3 m/s. This reduction significantly extends the expected flight duration
and increases energy consumption, potentially rendering the original flight plan infeasible.

In response, the aircraft must perform a feasibility assessment under the new flight
condition and dynamically reroute to one of several predefined emergency landing sites
to ensure safety. These alternative landing sites are located at 33°08'40”N, 96°48'12"W;
33°09'04""N, 96°47'45"W; and 33°09'12”N, 96°47'11”W. As shown in Figure 6, these
locations are labeled Emergency Landing 1, Emergency Landing 2, and Emergency Landing 3,
respectively. This scenario provides a rigorous testbed for evaluating the framework’s
capability to forecast infeasibility and adapt flight decisions in real time.

5.2 Results

Because our framework conducts the feasibility assessment in two steps — first predicting the
power profile and then predicting the battery voltage — we evaluate the accuracy of each
step independently. To validate the predicted power profiles, we use the detailed aircraft
model presented in [1] as our ground truth. Similarly, for battery voltage performance
evaluation, we employ the detailed electrochemical Li-ion battery model described in [§]
as the reference. Furthermore, since the online feasibility assessment occurs at fixed time
intervals, voltage predictions made at each timestep are visualized using distinct colors,
with each color corresponding to the prediction profile generated at a specific feasibility
assessment timestep.

5.2.1 Power Consumption Prediction Results

As discussed in Section 5.1, our package delivery scenario involves two main flight phases:
one before the mid-flight incident and another after the incident. Before the mid-flight
incident, the aircraft is executing the original flight plan which is from the warehouse to
the assigned destination (referred to as “Long”). However, once the mid-flight incident is

A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei

Q]]

Emergency Landing 3

4

Box Lake

Emergency Landing 2
Mai et

Ro
1 p@
— i
d

— | P . .
" T N\ Pingyl Destination
s L=
i &\ (=%
’ o Hedge Street: m‘-g." — £
J I_f_—ﬁ L G f—
— 289 -j.?bwl) — i
) — ¥ —] ~Amber-Valley
—

= “la!:.[Road ‘ T
T e | |
{ Pt

Greekwood-Dri
———\\

t Warehouse

=7
il jill

'| ,Lll__E'mergenEyl .Landllng_ _1 ol T

—]

-

J-Arthur-Rde==

< |||~ ~=Brandenbera-Dr:

Figure 6 The developed package delivery scenario illustrating the original flight plan, warehouse,
destination, and the three emergency landing sites.

identified and the speed change is applied, the aircraft needs to assess the feasibility of the
original flight plan with the newly updated speed and if it’s not feasible, identify the nearest
emergency landing site from the already pre-defined set of locations and fly towards it while
still performing the feasibility assessment at every 5 seconds.

Following the mid-flight incident, four alternative flight plans are considered, each cor-
responding to a potential landing site: the original destination and the three emergency
landing sites. These include: (i) the flight plan to the original destination after the incident,
which is expected to be infeasible and is labeled “Infeasible”; (ii) the flight plan to the nearest
emergency landing site, labeled “Short”; and (iii) the flight plans to the other two emergency
landing sites, labeled “EM1” and “EM3”, respectively.

Figure 7 presents a comparison between the actual aircraft power consumption profiles
and the approximated power profiles for three flight plans: “Long”, “Infeasible”, and “Short”.
These approximations are obtained using the method described in Section 3.1. Since the
mid-flight incident requiring cruise speed reduction occurs at 288 seconds, the second and
third plots show the power profiles only for the remaining flight duration from the moment
the speed reduction is applied. Furthermore, the lower three plots in Figure 7 compare the
actual current profiles against those derived from the predicted power trajectories using the
conversion technique outlined in Section 3.2. This analysis enables a direct evaluation of the
prediction pipeline’s ability to infer current demands under altered flight conditions.

Because the reliability of our decision-making and contingency management framework
heavily depends on the predictive accuracy of the power consumption model and the power-to-
current conversion process, we evaluate the performance of these key components in Table 4.
The table presents the results of 30 simulation runs for each of all flight plans. For each case,
we report the average root mean squared error (RMSE) and mean absolute error (MAE)
between the model-based reference approach and the method proposed in this paper. The
results demonstrate that the proposed framework is capable of predicting both power and
current profiles with reasonable accuracy.

8:13

DX 2025

8:14 Real-Time Flight Mission Feasibility Assessment for UAVs

Long Power Profile Infeasible Power Profile Short Power Profile
6000 1 —— Projected
- Actual 16007 1600 -
; I
g 4000 A 1500 -
e 1500
2000 - 1400
0 250 500 400 600 300 350 400
Time (s) Time (s) Time (s)
Long Current Profile Infeasible Current Profile Short Current Profile
—— Projected 66
g 200 A Actual
5 64
S 100 A
i 62
T T T T T T T T
0 250 500 400 600 300 350 400
Time (s) Time (s) Time (s)

Figure 7 Power and current profiles for the three flight plans (Long, Infeasible, and Short). The
top three plots illustrate the power profiles corresponding to each flight plan, while the bottom three
plots show the current profiles derived from these power profiles.

5.2.2 Voltage Prediction Results

Once the current profiles for the future flight duration at each timestep are obtained, they
are fed into the trained data-driven battery model to predict the corresponding voltage
trajectories. Figures 8 and 9 present the predicted voltage trajectories for all flight plans
using the Neural-ODE-based approach, alongside the reference battery voltage trajectories
generated by simulating the detailed battery model. For each voltage prediction shown in
Figures 8 and 9, feasibility assessment is performed at 5-second intervals using the criterion
described in Section 1. The minimum voltage threshold for mission feasibility is set at 18 V,
meaning the predicted voltage trajectory must remain above this threshold throughout the
entire operational time horizon for the mission to be considered safe.

As illustrated in Figure 8, the predicted voltage trajectory for the original flight plan
remains above the 18 V threshold at all times and is therefore considered feasible — until
the mid-flight incident occurs. However, as shown in the middle plot of Figure 8, once the
incident triggers a reduction in cruise speed to 3 m/s, the voltage trajectory violates the
threshold at approximately 680 seconds. This indicates that the aircraft can no longer safely
complete its flight to the assigned destination. Consequently, the mission is rerouted to the
emergency landing site, and feasibility is re-evaluated using the current profile for the short
flight plan with the Neural-ODE-based battery model. The result, shown in the final plot of
Figure 8, demonstrates that the revised mission remains feasible under the updated flight
conditions, thereby ensuring the safety of the aircraft.

To provide a more comprehensive understanding of the mid-flight incident and the
rationale behind the chosen contingency plan, Figure 9 presents the voltage predictions for
the two alternative flight plans directed toward the other emergency landing sites (“EM1” and

A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei

Table 4 Comparison of prediction accuracy (RMSE and MAE) for power and current profiles
across all flight plans: Long, Infeasible, Short, EM1, and EMS3.

Profile Error Type Long Infeasible Short EM1 EM3
RMSE 295.01 83.82 39.41 75.36 75.37
Power (W)
MAE 68.80 74.84 35.06 66.89 66.80
RMSE 3.76 0.63 0.60 0.63 0.63
Current (A)
MAE 0.94 0.39 0.38 0.39 0.39
Long Voltage Profile Infeasible Voltage Profile Short Voltage Profile
50
Actual 21 - 21 A
oy -=-' Neural-ODE 40 gy
— 20 <
% 22 1 27 30 _i
g 19 1 g
= 20 .2,
> N\ 19 1 o
20 1 18 o] =
\ 10
L i ———— 17 R e ———
0 250 500 400 600 300 350 400
Time (s) Time (s) Time (s)

Figure 8 Voltage predictions for the three flight plans (Long, Infeasible, and Short), performed
at 5-second intervals. Each voltage profile corresponds to a specific prediction index, representing
the voltage trajectory forecasted at a given feasibility assessment timestep.

“EM3”). The results clearly demonstrate that both of these trajectories become infeasible, as
the predicted battery voltage drops below the minimum operational threshold. This confirms

the validity of the selected rerouting strategy to the nearest emergency landing site (“Short”).

Furthermore, Figure 10 offers a spatial visualization of the voltage predictions overlaid on
the mission map. In this figure, each flight plan is illustrated using a heatmap that encodes
predicted battery voltage along the flight trajectory. As shown, the battery begins fully
charged at the warehouse, but following the mid-flight incident, the voltage predictions for
all flight plans — except for the one directed to Emergency Landing 2 — fall below the critical
threshold of 18 V at some point along the trajectory. This spatial voltage analysis further
reinforces the feasibility of the re-routing decision and highlights the framework’s efficacy in
supporting real-time contingency management.

To evaluate the performance of the Neural-ODE-based battery model used for online

feasibility assessment, we examine both its prediction accuracy and computational efficiency.

For benchmarking purposes, we developed a physics-informed neural network (PINN) [19]
based battery model, which is considered a state-of-the-art approach for learning battery
dynamics. The PINN model implemented in this study combines a long short-term memory
(LSTM) network with an equivalent circuit-based battery model adopted from [14]. This
approach enhances the predictive capabilities of the data-driven LSTM by embedding
physical laws — specifically, the voltage-current relationships described by the equivalent
circuit — directly into the training process. Rather than relying solely on data, the PINN

8:15

DX 2025

8:16

Real-Time Flight Mission Feasibility Assessment for UAVs

EM1 Voltage Profile EM3 Voltage Profile

50
21 1 — Actual
=== Neural-ODE 40 x
3
=
30 <
S
20 _E)_)'
°
10"~
T T : T T :
400 600 400 600
Time (s) Time (s)

Figure 9 Voltage predictions for flight plans going to emergency landing 1 and emergency
landing 3. Each voltage profile corresponds to a specific prediction index, representing the voltage
trajectory forecasted at a given feasibility assessment timestep.

Emergency Landing 2 i Emergency Landing 3

o

al =

% o \ Pin Des‘gl_natlon
ﬁ% — l“r‘:';
—3 g
=3
- -y .
,rrV ~ Mid-flight Incident - e

- F ﬂ
Voltage iVi -
17.27 19.30 21.34 23.37 2541 E

e e

Figure 10 Spatial visualization of voltage predictions along each flight trajectory. Arrows indicate
the aircraft’s flight direction before and after the mid-flight incident.

= |
\ Emergenﬁy Landing 1 %

minimizes a composite loss function that penalizes both data mismatch and violations of
the governing physical equations. This integration of domain knowledge improves model
generalization, increases robustness to noise, and enables physically consistent predictions
even in extrapolated conditions.

Figure 11 presents a comparison between the Neural-ODE and PINN-based approaches
for the three flight plans. As shown in the left plot, the Neural-ODE-based model consistently
outperforms the PINN model in terms of prediction accuracy across all predictions. These
differences in prediction accuracy have important implications for the safety and efficiency
of aircraft operations. Specifically, for the long flight plan, the PINN-based feasibility

A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei

Long Voltage Profile Infeasible Voltage Profile Short Voltage Profile

Actual
24 - === Neural-ODE
— -=- PINN
2
o 22
)
=
§ 20 A
N
18 - Sy .
T T T - T T T T T
0 250 500 400 600 300 350 400
Time (s) Time (s) Time (s)

Figure 11 Performance comparison between the Neural-ODE and PINN-based battery models
relative to the actual voltage trajectories across all three flight plans.

08 I PINN RMSE 120 N PINN
= PINN MAE ’g [Neural-ODE
~ I Neural-ODE RMSE L 100 A I Model-Based
~ 0.6 1 B Neural-ODE MAE "é
§ i 80 1
L
o 0.4 4 -‘S 60 4
a0 =
8 3
E= 5 |
>O o 40
0.2 E
O 20 A
0.0 - 0-
Long Infeasible Short Long Infeasible Short
Trajectory Type Trajectory Type

Figure 12 Comparison of accuracy and computational cost between the Neural-ODE and PINN-
based battery models. The left plot shows prediction accuracy relative to the ground truth voltage
trajectories for all three flight plans, while the right plot presents the average computational time
required for feasibility assessments.

assessment would incorrectly classify the mission as infeasible due to its prediction inaccuracies.
Conversely, in the case of the infeasible flight plan, the PINN model would fail to detect
the voltage threshold violation, potentially resulting in an unsafe decision to proceed with
the mission.

In addition to accuracy, computational efficiency is a critical factor, as the framework is
intended for real-time use during flight, where computational resources are limited. To assess
this, the right plot in Figure 12 shows the average computational time required to perform
feasibility assessments for the three flight plans (Long, Infeasible, and Short), comparing
the model-based approach with the proposed Neural-ODE approach. All experiments were
conducted on a 3.20 GHz Intel Xeon(R) CPU with 125.4 GB of RAM. The results show that
the proposed approach is approximately 36 times faster than the model-based method in the
long flight plan case, with a maximum computation time of 3.76 seconds. This demonstrates
that the proposed framework is well-suited for in-flight operation, where feasibility assessments
must be performed every 5 seconds.

8:17

DX 2025

8:18

Real-Time Flight Mission Feasibility Assessment for UAVs

5.3 Discussion and Lessons Learned

This study provides key insights that may guide future researchers in developing real-time
flight mission feasibility assessment frameworks. By implementing and evaluating our
proposed framework in a realistic drone package delivery scenario, we identified several
important observations and lessons learned.
Decoupling feasibility assessment into power consumption and voltage tra-
jectory prediction enhances flexibility and accuracy. The proposed framework
decomposes the feasibility assessment process into two stages: power consumption predic-
tion and voltage trajectory prediction. This separation allows greater flexibility in selecting
and improving prediction models, leading to higher accuracy and computational efficiency.
As demonstrated in the results, this structured approach achieves both prediction accuracy
and computational efficiency required for real-time feasibility assessment.
The choice of the power consumption model significantly impacts performance.
The efficacy of feasibility assessment is highly dependent on the accuracy of the power
consumption model. In this work, we adopted a momentum theory-based power consump-
tion model for multirotor aircraft and fine-tuned it using experimental data. The decision
to develop or adopt a power consumption model should consider key factors such as
accuracy requirements, computational efficiency, and environmental conditions (e.g., wind
effects). Selecting an appropriate model is crucial for ensuring reliable power predictions.
Power-to-current conversion must account for battery behavior. Given the
extended prediction horizon required in our study (approximately 10 minutes), power-
to-current conversion must incorporate battery dynamics. Our approach utilizes an
open-circuit voltage (OCV) vs state of charge (SoC) relationship modeled using the
Nernst equation, combined with Coulomb counting, to achieve an accurate conversion.
Careful modeling of this process is essential to maintain prediction reliability over long-
duration flights.
The choice of battery modeling technique affects prediction accuracy. Given
that battery behavior is inherently governed by differential equations, we adopted a
Neural ODE-based model to learn the underlying battery dynamics. To benchmark its
performance, we compared it against other time-series prediction techniques, including
physics-informed neural networks (PINNs), which combine long short-term memory
(LSTM) networks with an equivalent circuit-based battery model. Our results indicate
that the Neural ODE-based approach more accurately captures battery voltage trajectories,
making it a promising candidate for the feasibility assessment of dynamical systems.

6 Conclusion

In this paper, we address the problem of online flight mission feasibility assessment for
sUAS operations. Unexpected in-flight events can introduce significant safety risks if not
properly managed. To mitigate these risks, we propose a framework that continuously
monitors battery status and makes real-time decisions to prevent energy insufficiency. The
framework consists of two main components: power consumption prediction and battery
voltage trajectory prediction. Power consumption prediction is performed using a model
based on momentum theory, while voltage trajectory prediction leverages a Neural Ordinary
Differential Equation (Neural ODE)-based data-driven model. By integrating these two
components, the system evaluates mission feasibility in real time and determines whether
to continue the flight or initiate rerouting. We evaluate the framework’s performance in a
drone delivery scenario in the Dallas—Fort Worth (DFW) area, where the aircraft encounters

A. Taye, A. Coursey, M. Quinones-Grueiro, C. Hu, G. Biswas, and P. Wei

an unexpected energy depletion event mid-flight. The results show that the framework

accurately predicts power profiles and voltage trajectories for the remaining flight duration.
Additionally, its computational efficiency makes it feasible for real-time flight monitoring and
contingency management. Future work will incorporate additional sources of uncertainty,

such as wind disturbances and noise in the battery model, to improve prediction accuracy
and decision-making capabilities. We will also extend the battery model to account for
degradation and state of health effects.

—— References

1

10

11

12

13

14

Ibrahim Ahmed, Marcos Quinones-Grueiro, and Gautam Biswas. A high-fidelity simulation
test-bed for fault-tolerant octo-rotor control using reinforcement learning. In 2022 IEEE/AIAA
41st Digital Avionics Systems Conference (DASC), pages 1-10. IEEE, 2022. doi:10.1109/
DASC55683.2022.9925862.

AMPOW. Lipo voltage chart: Show the relationship of voltage and capacity, 2023. Accessed:
2025-03-06. URL: https://blog.ampow.com/lipo-voltage-chart/.

Luca Biggio, Tommaso Bendinelli, Chetan Kulkarni, and Olga Fink. Ageing-aware battery
discharge prediction with deep learning. Applied Energy, 346:121229, 2023.

Zdenék Boucek and Miroslav Flidr. Mission planner for uav battery replacement. In 202/
IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems
(MFI), pages 1-6. IEEE, 2024.

Ephrem Chemali, Phillip J Kollmeyer, Matthias Preindl, Ryan Ahmed, and Ali Emadi.
Long short-term memory networks for accurate state-of-charge estimation of li-ion batteries.
IEEE Transactions on Industrial Electronics, 65(8):6730-6739, 2017. doi:10.1109/TIE.2017.
2787586.

Ricky T'Q Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Arnav Choudhry, Brady Moon, Jay Patrikar, Constantine Samaras, and Sebastian Scherer.
Cvar-based flight energy risk assessment for multirotor uavs using a deep energy model. In
2021 IEEE International Conference on Robotics and Automation (ICRA), pages 262-268.
IEEE, 2021. doi:10.1109/ICRA48506.2021.9561658.

Matthew Daigle and Chetan S Kulkarni. Electrochemistry-based battery modeling for prognos-
tics. In Annual Conference of the PHM Society, volume 5(1), 2013. doi:10.36001/phmcont .
2013.v5i1.2252.

Aditya Devta, Isabel C Metz, and Sophie F Armanini. Experimental evaluation of bird strikes in
urban air mobility. arXiv preprint arXiv:2308.13022, 2023. doi:10.48550/arXiv.2308.13022.
Marc Doyle, Thomas F Fuller, and John Newman. Modeling of galvanostatic charge and dis-
charge of the lithium /polymer /insertion cell. Journal of the Electrochemical society, 140(6):1526,
1993.

Federal Aviation Administration. Package delivery by drone (part 135), 2023. Accessed: 2024-
10-19. URL: https://wuw.faa.gov/uas/advanced_operations/package_delivery_drone.
Federal Aviation Administration. Faa makes drone history in dallas area, 2024. Accessed: 2024-
10-19. URL: https://www.faa.gov/newsroom/faa-makes-drone-history-dallas-area.
George E Gorospe Jr, Chetan S Kulkarni, Edward Hogge, Andrew Hsu, and Natalie Ownby.
A study of the degradation of electronic speed controllers for brushless dc motors. In Asia
Pacific Conference of the Prognostics and Health Management Society 2017, volume ARC-E-
DAA-TN42858, 2017.

Hongwen He, Rui Xiong, and Jinxin Fan. Evaluation of lithium-ion battery equivalent circuit
models for state of charge estimation by an experimental approach. energies, 4(4):582-598,
2011.

8:19

DX 2025

https://doi.org/10.1109/DASC55683.2022.9925862
https://doi.org/10.1109/DASC55683.2022.9925862
https://blog.ampow.com/lipo-voltage-chart/
https://doi.org/10.1109/TIE.2017.2787586
https://doi.org/10.1109/TIE.2017.2787586
https://doi.org/10.1109/ICRA48506.2021.9561658
https://doi.org/10.36001/phmconf.2013.v5i1.2252
https://doi.org/10.36001/phmconf.2013.v5i1.2252
https://doi.org/10.48550/arXiv.2308.13022
https://www.faa.gov/uas/advanced_operations/package_delivery_drone
https://www.faa.gov/newsroom/faa-makes-drone-history-dallas-area

8:20

Real-Time Flight Mission Feasibility Assessment for UAVs

15

16

17

18

19

20

21

22

23

24

Dickson NT How, MA Hannan, MS Hossain Lipu, and Pin Jern Ker. State of charge estimation
for lithium-ion batteries using model-based and data-driven methods: A review. Ieee Access,
7:136116-136136, 2019. doi:10.1109/ACCESS.2019.2942213.

Yves Le Marquand. Faa authorises zipline and wing for bvlos operations in dallas,
2023. Accessed: 2024-10-19. URL: https://www.revolution.aero/news/2024/07/30/
faa-authorises-zipline-and-wing-for-bvlos-operations-in-dallas/.

Jon Ander Martin, Justin N Ouwerkerk, Anthony P Lamping, and Kelly Cohen. Comparison
of battery modeling regression methods for application to unmanned aerial vehicles. Complex
Engineering Systems, 2, 2022.

Adnan Nuhic, Tarik Terzimehic, Thomas Soczka-Guth, Michael Buchholz, and Klaus Dietmayer.
Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven
methods. Journal of power sources, 239:680-688, 2013.

Magziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational physics, 378:686-707, 2019. doi:
10.1016/J.JCP.2018.10.045.

Dapai Shi, Jingyuan Zhao, Zhenghong Wang, Heng Zhao, Chika Eze, Junbin Wang, Yubo
Lian, and Andrew F Burke. Cloud-based deep learning for co-estimation of battery state of
charge and state of health. Energies, 16(9):3855, 2023.

Guangyao Shi, Nare Karapetyan, Ahmad Bilal Asghar, Jean-Paul Reddinger, James Dotter-
weich, James Humann, and Pratap Tokekar. Risk-aware uav-ugv rendezvous with chance-
constrained markov decision process. In 2022 IEEE 61st Conference on Decision and Control
(CDC), pages 180-187. IEEE, 2022. doi:10.1109/CDC51059.2022.9993358.

Mostafa M Shibl, Loay S Ismail, and Ahmed M Massoud. A machine learning-based battery
management system for state-of-charge prediction and state-of-health estimation for unmanned
aerial vehicles. Journal of Energy Storage, 66:107380, 2023.

Gina Sierra, M Orchard, Kai Goebel, and C Kulkarni. Battery health management for
small-size rotary-wing electric unmanned aerial vehicles: An efficient approach for constrained
computing platforms. Reliability Engineering & System Safety, 182:166-178, 2019. doi:
10.1016/J.RESS.2018.04.030.

Ellis L Thompson, Abenezer G Taye, Wei Guo, Peng Wei, Marcos Quinones, Ibrahim Ahmed,
Gautam Biswas, Jesse Quattrociocchi, Steven Carr, Ufuk Topcu, et al. A survey of evtol
aircraft and aam operation hazards. In AIAA AVIATION 2022 Forum, page 3539, 2022.

https://doi.org/10.1109/ACCESS.2019.2942213
https://www.revolution.aero/news/2024/07/30/faa-authorises-zipline-and-wing-for-bvlos-operations-in-dallas/
https://www.revolution.aero/news/2024/07/30/faa-authorises-zipline-and-wing-for-bvlos-operations-in-dallas/
https://doi.org/10.1016/J.JCP.2018.10.045
https://doi.org/10.1016/J.JCP.2018.10.045
https://doi.org/10.1109/CDC51059.2022.9993358
https://doi.org/10.1016/J.RESS.2018.04.030
https://doi.org/10.1016/J.RESS.2018.04.030

Optimized Spectral Fault Receptive Fields for
Diagnosis-Informed Prognosis

Stan Muifioz Gutiérrez' =
Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

Franz Wotawa? =

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

—— Abstract
This paper introduces Spectral Fault Receptive Fields (SFRFs), a biologically inspired technique for

degradation state assessment in bearing fault diagnosis and remaining useful life (RUL) estimation.
Drawing on the center-surround organization of retinal ganglion cell receptive fields, we propose a
frequency-domain feature extraction algorithm that enhances the detection of fault signatures in
vibration signals. SFRFs are designed as antagonistic spectral filters centered on characteristic fault
frequencies, with inhibitory surrounds that enable robust characterization of incipient faults under
variable operating conditions. A multi-objective evolutionary optimization strategy based on NSGA-
IT algorithm is employed to tune the receptive field parameters by simultaneously minimizing RUL
prediction error, maximizing feature monotonicity, and promoting smooth degradation trajectories.
The method is demonstrated on the XJTU-SY bearing run-to-failure dataset, confirming its suitability
for constructing condition indicators in health monitoring applications. Key contributions include:
(i) the introduction of SFRFs, inspired by the biology of vision in the primate retina; (ii) an
evolutionary optimization framework guided by condition monitoring and prognosis criteria; and
(iii) experimental evidence supporting the detection of early-stage faults and their precursors.
Furthermore, we confirm that our diagnosis-informed spectral representation achieves accurate RUL
prediction using a bagging regressor. The results highlight the interpretability and principled design
of SFRFs, bridging signal processing, biological sensing principles, and data-driven prognostics in
rotating machinery.

2012 ACM Subject Classification Computing methodologies — Causal reasoning and diagnostics;
General and reference — Reliability; Computing methodologies — Genetic algorithms; Computing
methodologies — Machine learning; Hardware — Failure prediction

Keywords and phrases Health Perception, Spectral Fault Receptive Fields, Remaining Useful Life,
Incipient Fault Diagnosis, Prognostics and Health Management, Condition Monitoring, Evolutionary
Multi-Objective Optimization, Bagged Regression Tree Ensemble, Bearing Fault Diagnosis

Digital Object Identifier 10.4230/OASIcs.DX.2025.9
Related Version Previous Version: https://doi.org/10.48550/arXiv.2506.12375

Supplementary Material
Software (MATLAB Notebook): https://doi.org/10.5281/zenodo.15660819 [24]
Other (Poster): https://doi.org/10.5281/zenodo. 17141147

Funding This study was conducted within the framework of the ARCHIMEDES project, which is
supported by the Chips Joint Undertaking and its members, including top-up funding from National
Authorities under Grant Agreement No. 101112295 and the FFG under Grant Agreement No.
F0999899377.

Acknowledgements SMG thanks Mike Denham for introducing him to the Biology of Vision and

Tan Parmee for introducing him to Evolutionary Multi-Objective Engineering Design.

L Authors are listed in alphabetical order.
2 Corresponding author

© Stan Mufioz Gutiérrez and Franz Wotawa;

37 licensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 9; pp. 9:1-9:20

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

Co-funded by
the European Union

mailto:munozgutierrez@tugraz.at
https://orcid.org/0000-0001-6259-1609
mailto:wotawa@tugraz.at
https://orcid.org/0000-0002-0462-2283
https://doi.org/10.4230/OASIcs.DX.2025.9
https://doi.org/10.48550/arXiv.2506.12375
https://doi.org/10.5281/zenodo.15660819
https://doi.org/10.5281/zenodo.17141147
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

9:2

Spectral Fault Receptive Fields

1 Introduction

In modern engineering, reliability is a central concern, distinguished from quality by its
emphasis not only on compliance with specifications at “time zero,” but also on sustained
performance throughout an artifact’s operational life. Central to reliability is the assessment
and modeling of degradation rates and time to failure [19]. Reliability pertains to the
performance and operation of systems and their components, aiming to deliver solutions that
can operate without failure, nor be the cause of failure, over a specified time horizon and in
accordance with specifications that define both constraints and operational conditions.

Rotary machines are ubiquitous in industrial and transportation contexts. Bearings, as key
components of these machines, play a crucial role in ensuring reliable operation. Accurately
estimating the degradation state of bearings throughout their operational life is essential for
rational decision-making by both humans and automated systems. Such decisions include
scheduling maintenance actions, investigating accelerated degradation trends, predicting
component failure times, implementing closed-loop control for safety and energy efficiency,
and, when done effectively, extending component lifetimes through feedback-driven control
based on degradation state estimation.

As part of Project Archimedes, we investigate intelligent, data-driven methods for precise
degradation state estimation and remaining useful life prediction, aiming to support decisions
that extend the operational lifespan of electric vehicle powertrains (EVPs). A significant
challenge in this research area is that existing knowledge on bearing diagnostics primarily
pertains to bearings operating under constant conditions, which does not reflect the dynamic
speed and load variations encountered in electric vehicle drives amid disturbances and aleatoric
uncertainties. Although our study does not explicitly address these dynamic conditions, our
approach is designed to integrate such parameters, whose implications we briefly discuss.
Another critical challenge is the limited availability of open datasets; currently, only a few
datasets capture run-to-failure data for electric drive components, which constrains research
progress. For this study, we utilize the XJTU-SY dataset [36], one of the few publicly available
run-to-failure datasets for rolling element bearings, to validate our proposed methods.

The work presented in this paper focuses on bearings, which are integral to the mechanisms
that connect the electric drive to the transmission and enable vehicle propulsion. However,
we have developed our model to be generalizable to some extent, making it potentially
applicable to other aspects of the electric drive, such as electric winding faults, irreversible
demagnetization of permanent magnets, and inverter degradation dynamics, assuming suitable
adaptations are implemented.

Our work introduces a novel technique based on consolidated knowledge within the field
of vibration analysis. Although many recent research efforts adopt tabula rasa methodologies,
bypassing established domain knowledge in favor of black-box systems that often achieve
high performance, these solutions frequently lack transparency and interpretability. In
safety-critical domains such as electric drives, transparency is essential; certification requires
that system behavior be understandable and trustworthy.

Our method, named Spectral Fault Receptive Fields, offers an interpretable technique to
degradation state estimation, with condition indicators that correspond directly to specific
failure modes in bearings. We evaluated the system primarily using the monotonicity criterion,
and further incorporated smoothness and remaining useful life (RUL)-based metrics for
parameter selection. Through qualitative comparison, we demonstrated clear improvements
resulting from explicit multi-objective optimization of several system parameters, thereby
validating the effectiveness of the approach.

S. Muiioz Gutiérrez and F. Wotawa

This paper is organized to guide the reader through the development and validation of
our approach. In Section 2, we review related work in diagnostics, prognostics, and health
monitoring of engineered systems. Section 3 introduces the problem domain and dataset used
for experimental evaluation. Section 4 details the design of Spectral Fault Receptive Fields
(SFRFs), inspired by biological vision, as a novel feature extraction method for condition
monitoring and remaining useful life prediction. Section 5 presents empirical evaluations and
multi-objective optimization results demonstrating the proposed method’s effectiveness. The
discussion in Section 6 reflects on the biological foundations, parameter tuning, and future
research directions. Finally, Section 7 concludes the paper by summarizing key contributions
and implications for predictive maintenance.

2 Related Work

Traditionally, reliability assessments were based primarily on empirical field data derived
statistically [5, 18]. These approaches were typically static, focused solely on random failures,
often neglected underlying failure mechanisms, did not account for differences among vendors
or specific devices in lifetime predictions, and excluded real-time condition monitoring [18]. In
contrast, modern diagnostics and prognostics frameworks emphasize continuous degradation
monitoring of components and systems. They employ a range of modeling strategies,
including failure progression rates, physics-of-failure, statistical and probabilistic methods,
and modeling of failure propagation between interconnected subsystems. This entails a more
comprehensive and dynamic assessment of system health [35]. When the primary focus is on
selecting optimal maintenance actions, predictive maintenance (PdM) serves as an appropriate
conceptual framework. However, research in this area typically concentrates on two aspects,
which are seldom addressed simultaneously: (1) predicting the time to failure, referred

to as remaining useful life (RUL) prediction, and (2) optimizing maintenance strategies.

Prognostics and health management (PHM) is conducive to informed decision-making and
actions to keep systems in optimal operating condition. PHM is an integrated, modular
process that includes system analysis, data acquisition, data processing, fault detection,
fault diagnostics, failure prognostics, decision making, and maintenance scheduling [34]. A
typical predictive maintenance workflow consists of the following steps: (1) data acquisition
and organization, (2) data preprocessing, (3) development of a fault detection or prediction
model, and (4) deployment and integration [16]. In this study, we focus primarily on step (3),
which practitioners often divide into two sub-tasks: (i) the design of condition indicators and
(ii) model training for fault detection or prediction tasks. The design of condition indicators
(CIs) encompasses the computation and selection of features that correlate with the state of
health of the system. A health indicator (HI) combines multiple condition indicators into a
single efficient indicator that is highly informative of degradation [16, 25]. The separation of
sub-tasks (i) and (ii) is instrumental in tackling the complexity of the problem, but often
leads to suboptimality or extensive iterative improvements. We will address this concern in
our contribution by means of multi-objective optimization methods that can inform the HI
design, factoring in its prognostic efficacy.

For bearings, degradation is irreversible. Tracking the degradation state throughout the
component’s operational life can be effectively achieved with suitable sensors and signal
processing techniques. The most prevalent failure mechanism under nominal conditions
(where bearings are correctly installed and lubricated) is subsurface-originated spalling,
which can be detected at an early stage using acoustic emission sensors[10]. Oil analysis
sensors are highly effective for early detection of degradation in bearings and gearboxes,

9:3

DX 2025

9:4

Spectral Fault Receptive Fields

as they quantify the accumulation of debris from the onset of wear processes [9]. While
primarily limited to surface-related defects, the use of MEMS-based accelerometer sensors
in our application domain enables cost-effective health monitoring solutions. Consequently,
there is strong research interest in developing representations and algorithms capable of
capturing early degradation and detecting incipient faults. Accelerometers are the standard
transducers for helicopter gearbox condition monitoring, providing essential input to health
and usage monitoring (HUM) systems. A healthy transmission exhibits a characteristic
fingerprint, referred to as the regular meshing components of the signal [30]. For rolling
bearings, the characteristic frequencies of their components are well established [29, 32], and
their computation is readily available in standard predictive maintenance solutions [15]. Our
work leverages this domain knowledge by explicitly computing representations that focus
on the characteristic frequencies of bearing elements, aligning with established practices in
vibration analysis and intelligent fault diagnosis for rotating machinery.

Faults can be classified based on their severity into three main categories: (1) abrupt,
also known as stepwise fault; (2) incipient, also known as drifting; and (3) intermittent [26].
Incipient faults in bearings have weak signal signatures that are difficult to detect due to
their stochastic nature, multiple transmission paths, and the aleatoric uncertainty present in
mechanical systems [11]. Because of this, despite their well-understood spectral signatures,
incipient fault detection remains an active area of research. Vibration signal analysis and
modeling typically utilize degradation models that define at least two primary stages: (1) a
flat, horizontal region corresponding to the healthy state, where remaining useful life (RUL)
prediction is generally unreliable and arguably unnecessary, and (2) a degraded unhealthy
state, which is the main focus of most analytical techniques for delivering accurate RUL
estimates [13]. Piecewise linear models are often used to model this change in degradation
dynamics [28]. Current research in bearing condition monitoring and prognosis is increasingly
focused on extending the prediction horizon to encompass as much of the component’s
operational life as possible. In our present paper, we devise biologically inspired condition
indicators that address the characterization of early degradation stages and not only correlate
with manifested abrupt abnormalities.

There is a wide availability of vibration-based condition indicators in the literature.
A taxonomy by Yan et al. [37] classifies them according to the representation domain:
(1) time domain, (2) frequency domain, (3) time-frequency, and (4) wavelet. While this
classification is not exhaustive, excluding some nonlinear feature extraction methods such as
chaos-theoretic-based [11] and information-theoretic-based [32, 2], it nevertheless effectively
represents the dominant approaches in the field. Among the most widely adopted character-
izations are two statistical properties that can be computed regardless of the representational
domain: (1) kurtosis-based, often spectral, and (2) RMS-based (with safety and vibration
severity assessed by this metric, as in ISO 10816 [12]). Both are effective and can be used
complementarily for different stages of the degradation process [6], while proven effective
across diagnostic [23], condition monitoring [21], or prognostic [20] tasks. Our contribution
builds on the frequency spectrum of vibration signals and is specifically designed for a low
computational footprint, ensuring that it does not add significantly to the computational
cost of the fast Fourier transform (FFT).

Our primary objective in this work is to engineer health perception systems capable
of actively tracking the degradation state of bearings in alignment with defined cost and
reliability constraints, thereby enabling accurate estimation of RUL. We adopt the term
perception to underscore the biological inspiration behind our approach to CI construction.
In biological systems, effective perception, of both the self and the environment, is essential

S. Muiioz Gutiérrez and F. Wotawa

to survival: proprioception, homeostatic regulation [1], and autonomic functions support
internal integrity and health, while environmental perception enables adaptive responses.
Our approach subscribes to the principles of autopoiesis [17] and biological autonomy [22],
where integrity is understood as an emergent property of systemic organization and constraint
equilibria. This aligns well with closed-loop lifetime and degradation control algorithms [7].

To guide the construction of Cls, we draw inspiration from the biology of vision, specifically,
the theory of center-surround opponency in the trichromatic visual system of primates, and
adopt an adapted version of the difference-of-Gaussians (DoG) model, widely applied in both
biological and artificial vision domains [33]. Derived from a novel transfer of computational
models, we faced in our work the problem of appropriate parameterization of our Difference
of Gaussians (DoG) method. Selecting the spectro-spatial scales relevant to bearing faults
was achieved by relying on engineering judgement informed by field experience, a process
we refer to as empirical parameter selection. We provide evidence that a DoG configured
with these empirically chosen parameters encodes Cls effectively. To refine the model further
for predictive-maintenance and prognostics applications, we optimised its parameters with a
multiobjective genetic algorithm [4] guided by established condition-monitoring and prognosis
criteria. Criteria must be quantifiable and provide foundations for certification [31]. Our
results reveal a tradeoff, present among local Pareto-optimal front members, between the
monotonicity criterion, widely advocated for health indicators [6, 27, 3, 8], and the accuracy
of remaining-useful-life (RUL) predictions measured via normalised mean-squared error
(MSE). Related work by Qin et al. [27] employs genetic programming to evolve an arithmetic
condition indicator optimised for monotonicity within a Wiener stochastic framework that is
subsequently refined through expectation-maximisation.

3 Problem Domain and Dataset

3.1 XJTU-SY Bearing dataset

The experimental evaluation uses the XJTU-SY[36] run-to-failure bearing dataset, consisting
of three bearing groups operated at fixed speeds and loads. Vibration signals were recorded
with acceleration sensors along horizontal and vertical axes. Key bearing parameters include:
inner raceway diameter (Dy = 29.30 mm), outer raceway diameter (Do = 39.80 mm), pitch
diameter (Dp = 34.55 mm), ball diameter (Dp = 7.92 mm), and contact angle (¢ = 0°),
as illustrated in Figure 1. Bearings are uniquely labeled (e.g., “Bearingl 1”), with data
organized into snapshots (vibration signal temporal windows) taken at regular intervals.

3.2 \Vibration Signatures of Bearings

We are interested in monitoring the degradation of the different elements of a bearing to
detect incipient faults. Surface defects in these elements produce well-understood vibration
signatures at characteristic frequencies, determined by the bearing’s geometry and operational
speed. Vibration signature analysis fundamentally depends on monitoring changes in vibration
near the characteristic frequencies of bearings. As degradation progresses, the activity
within these frequency bands evolves, reflecting the bearing’s health state. Building on this
established principle, our processing pipeline begins by computing these characteristic bands.
While increased excitation in these bands is a hallmark of bearing defects, such activity can
also be present throughout the bearing’s operational life. For clarity and brevity, we refer to
these as fault frequency bands, though their activity is not exclusively associated with faulty
conditions, as some excitation is present throughout the bearing’s operational life. Figure 2
shows the default sidebands obtained by MATLAB.

9:5

DX 2025

9:6

Spectral Fault Receptive Fields

Table 1 Characteristic frequencies related to bear-
ing faults. BPFO = Ball Pass Frequency Outer Race;
BPFI = Ball Pass Frequency Inner Race; BSF =
Ball Spin Frequency; FTF = Fundamental Train
Frequency (Cage). Np: number of rolling elements;
Dp: ball diameter; D), = #1: pitch diameter ;
¢: contact angle; f: shaft rotational frequency.

Acronym Equation

BPFO fepro = fr i [1 — B2 cos ¢]

BPFI forrr = f 5 [1+ %‘E cos ¢] Figure 1 Schematic diagram of bearing
BSF fBsF = fr%% 1— (%ﬁ cos ¢)2] geometry and parameters.

FTF frrr = % [— g—f, cos ¢]

Fault Frequency Bands Fault Frequency Bands

iy 2 & £ hd i P 2
- o - - I & & - =
o
£ & & €
0 50 100 150 200 250 300 350 0 50 100 150 200 250
Frequency Frequency
Figure 2 Fault Frequency Bands for the first Figure 3 Fault Frequency Sidebands. Nota-

and second harmonics. Notation: nF: the n-th tion: nFb-mFc: the m-th negative sideband of
harmonic for frequency F, F' € {Fo,Fi,Fc,Fb}. n-th (central) harmonic frequency of Fb (nFb-
Frequencies are Fo: BPFO (fgpro = 107.9074), mFc is obtained as n X F, — m x F;), nFb4+mFc:
Fi: BPFI (feprr = 172.0926), Fc: FTF (frrr = the m-th positive sideband of n-th (central) har-
13.4884H z), and Fb: BSF (fssr = 72.3300). monic frequency of Fb (obtained with the sum).

For inner race defects, the fault interacts with the shaft’s rotational speed because load
distribution changes during each rotation, causing amplitude modulation. In this modulation,
the characteristic inner race fault frequency acts as the carrier, while the shaft rotational
frequency serves as the modulating signal. Similarly, amplitude modulation occurs between
the ball spin frequency (BSF) and the fundamental train frequency (FTF), with the BSF as
the carrier. This arises as the ball moves in and out of the load zone during cage rotation.
Figure 3 illustrates the first-order sidebands associated with these phenomena.

4 Spectral Fault Receptive Fields

For each one of the faults, we will construct fault detectors inspired by the primate retinal
ganglion cell receptive fields. Receptive fields in the primate retina are specific regions of
the visual field where the presence of a stimulus (such as light or its absence) can excite
(or inhibit) the activity of a ganglion cell. Although the retina encodes visual information

S. Muiioz Gutiérrez and F. Wotawa

MC
MCgo e me | 1

optic nerve

INL (H1,FMB,IMB,...)

GCL

OFF-MG

parafoveal retina

SC MC
1
=
E Center
§ ----------
wavelength — ‘
ON-Center OFF-Surround Surround
Cones spectral sensitivity Green-Red Receptive Field DoG model

Figure 4 Encoding pathway underlying receptive field formation in primate retinal midget
(P) ganglion cells. Insets: (A) eye anatomy highlighting retina, fovea, and image formation;
(B) micrograph of peri-papillary retina layers (modified from [14]); (C) ON- and OFF-MG network
in parafovea showing LLC and MC cone synapses, H1 horizontal cells, flat and invaginating midget
bipolar cells; (D) spectral sensitivity of cone types; (E) foveal cone mosaic depicting green-center
red-surround receptive field; (F) DoG model illustrating center-surround color contrast.

through many parallel channels (processing chromatic, spatial, and temporal information),
many image-forming retinal ganglion cells share a fundamental property: a center-surround
spatial and chromatic organization. This type of processing encodes information about
spatial and, for some cells, also chromatic contrast or differential excitation within the
receptive field’s spatial extent. Figure 4 illustrates the mechanisms of biological receptive
fields inspiring our design of fault detectors that mimic center-surround contrast processing.

4.1 Frequency Masks

To define the fault detectors, we utilize the frequency bands described in Section 3.2. Inspired
by the center-surround organization of ganglion cell receptive fields, we introduce two distinct
spectral extents, that is, frequency bands, with a narrower band representing the center and a
broader band representing the surround. We implement the receptive fields in the frequency
domain. Operating in this domain allows us to use a Gaussian function as the gain profile,
which we call a spectral mask; this can be interpreted as implicit bandpass filtering.

9:7

DX 2025

9:8 Spectral Fault Receptive Fields

Table 2 Characteristic frequencies for bearing faults including harmonics and sidebands. Notation
Np: number of harmonics, and Ns: number of sidebands.

Fault Mode Characteristic Frequencies

Outer race Fo ={nfspro | n=1..Np}

Inner race Fr={nfepr1 +sfr | n=1..Np, s = —N,..N,}
Ball Fe ={nfesr + sferr | n =1..Np, s = —N;..Ns}
Cage Fo ={nferr | n=1..Np}

The set M of admissible spectral masks is defined as M = {m : R{ — [0,1]}. We restrict
the domain to the non-negative real numbers because the spectral masks will act as a gain
that will be multiplied by the absolute magnitude of the frequency components. Let M C M
be a finite subset of masks. We define the disjunction over M as the pointwise maximum
over magnitudes as:

\/M € M, specifically, \/M(f) = max m(f).

meM

Given the frequency band B = [fimin, fmax), and the parameter k,, the Gaussian frequency
mask G(f) is defined as:

G(f; B, ky) = exp (; (f‘f(B))> 1)

f

with f.(B) = f;#’ and oy = % The parameter k,, called the sigma rule,
determines how the limits of the frequency bands are handled. A sigma rule of 3 corresponds
t0 99.7% of the area under the Gaussian falling within the specified frequency band.

4.2 SFRFs Computation

An advantage of filtering in the frequency domain is that it enables all operations to
be computed simultaneously by precomputing a single gain mask across the spectrum
for each operational mode. This strategy is particularly efficient because, although the
characteristic frequencies of interest shift with the shaft speed, the frequency-domain filters
can be generated in advance, and applying the filter is equivalent to a Hadamard product
(elementwise multiplication) between the spectrum of the vibration signals and the mask
corresponding to the appropriate operational mode.

The characteristic frequencies for each fault mode are defined as shown in Table 2.
We define the corresponding frequency bands as B(E,W) = {[f — %, f+ %] | f € F}.
Given the set the characteristic frequencies F € {Fo, Fr, Fp, Fc}, and shape parameters
oc = We, ke) for the center and og = (Ws, rg) for the surround. Then given o = (W, k) €
{oc, 05} we can define a receptive field gain function as:

G5 € M, specifically, G% =\/{G(f; B,r): B € B(F,W)}.

We refer to We as the center bandwidth and Wg as the surround bandwidth.
The Difference of Gaussians used to compute the SFRF is then given by:

fs

DoG — / T 1057 () - ki G5 (P IAL)] df)

S. Muiioz Gutiérrez and F. Wotawa

DoG at a fault characteristic frequency f Effect of varying sigma rule and inhibition factor
i H WS = 3WC

o=
X
T
I
Ju—

HHZO Rg =

f € {BPFO, BPFI, BSF, FTF}

Figure 5 Parameters of the Difference of Gaussians (DoG) model. Left: Illustration of a DoG
model centered at a fault characteristic frequency. For the receptive field gain functions G%, these
are defined for the applicable harmonics and sidebands (see Tables 1 and 2). Right: Effect of varying
the sigma rule k» (ko = ko = ks) and the inhibition factor kg under the condition Ws = 3We.

/ G35 (/) |A(f)] df = 1.1816 fr=35Hz f=T233Hz
0

Spectral response by surround receptive field gain function

/ G55 (1) |A(S)] df = 0.38463
0

975

Spectral response by center receptive field gain function

fr=375Hz f=775Hz

DoG = —9.2x 1073

fr =40 Hz f =82.66 Hz

0 frequency Hz 900
Amplitude spectrum of signal snapshot S =0 (‘) 10(] 2(‘)0 3(‘)0 4(‘)0 5(‘)(] ()'(‘)(] 7(‘]() 8(‘]0 900
JA(f)| = [FFT(s%= "’)‘ 5= ”" Frequency (Hz)
Detailed computation of DoG response for snapshot Sk=0 Effect of speed f,. on the Receptive Field Gain Function
f=BSF, N =10, Ny =2, ryy = &, [=BSF, N, =10, Ny =2, kpr = 3,
Ws = 8We, We = 4 Hz, ko = ks = 2 W = 8Ws, We =4 Hz, ke = ks = 3

Figure 6 Computation of DoG for snapshot S*=° and fault type Ball, and effect of speed on
receptive field gain function (RFGF). Left, bottom to top: unfiltered amplitude spectrum, spectrum
filtered by center RFGF G%°, and spectrum filtered by surround RFGF G7°. Numeric integrals and
final DoG computation included. Right: Effect of shaft speed f. on DoG RFGF, G7° — kuG7°.

9:9

DX 2025

9:10

Spectral Fault Receptive Fields

where f denotes frequency in the vibration spectrum, fs the sampling frequency, and
A(f) = S®)(f) is the Fourier transform of the k™" accelerometer signal snapshot S®*). The
parameters k¢ and kg control the width (sigma rule) of the center and surround Gaussians,
respectively, and kg is the inhibition factor. Figure 5 illustrates these parameters and
their effect in the shape of the gain profiles. Figure 6 illustrates the DoG computation and
the adaptation of the receptive field gain functions with shaft speed. Figure 7 depicts the
processing pipeline and detail SFRFs computation.

5 Experimental Evaluation

In this section, we evaluate the suitability of SFRFs for condition monitoring. Traditionally,
condition monitoring relies heavily on identifying condition indicators and health indices that
effectively capture the degradation trend of a system. This effectiveness is often assessed
using metrics such as monotonicity, prognosability, and trendability. However, the XJTU-
SY dataset contains only five samples per operational condition, which is insufficient for
meaningful analysis of prognosability and trendability, since these metrics require larger
datasets. Therefore, we selected monotonicity as the primary evaluation criterion. This
choice is justified because, if a signal is to reliably capture degradation and we assume
no regenerative processes, as is typical in the mechanical system under study, there must
be a consistent correlation between the values of the condition indicators or health index
and the operational time of the machine. However, it is important to note that expecting
perfect monotonicity is unrealistic. Aleatoric uncertainties, unknown inputs, and varying
environmental contexts naturally introduce fluctuations into the estimations. For this reason,
we also consider the smoothness of the condition indicator as an additional evaluation metric.

5.1 Empirical Selection of Parameters

We report the qualitative behavior of condition indicators C'*) obtained using SFRFs for
different fault types on the bearing labeled Bearingl 1. Since SFRF is a novel technique
with many unknowns, we first present results based on empirical choices.

Inspired by the qualitative behavior of receptive fields of primate parvocellular ganglion
cells, we chose a center contribution stronger and narrower than the surround. Two parameter
sets control the frequency span: bandwidths Wg, Wg, and frequency attenuation sharpness
given by sigma rules k¢ and kg. Bandwidth selection focused on limiting spatial overlap
among fault bands while capturing natural frequency deviations near characteristic fault
frequencies within the constraints of the dataset’s maximum frequency resolution (0.78125 Hz).
We adopt a center-to-surround bandwidth ratio of 1:3, with W¢ = 4 Hz and Wg = 12 Hz.
The sigma parameters are set as k¢ = kg = 2. For the DoG computation, N, = 10 harmonics

and N, = 2 sidebands are used, with inhibition factor Ky = 1.

5.2 Evaluation of SFRF with Empirical Parameters

We computed the SFRFs response to horizontal and vertical acceleration and visualized the
temporal behavior of the SFRFs to assess whether they can capture the degradation trend of
the bearing. Figure 8 shows the temporal behavior of the four SFRFs. It can be observed
that all SFRFs are capable of detecting a sudden transition in the temporal evolution. This
behavior is reasonably interpreted as the manifestation of a defect, with the degradation
trajectories for the inner and outer race SFRFs differing significantly around time 80.

9:11

.z

S. Muiioz Gutiérrez and F. Wotawa

‘s1ogotrered JY S pue ‘AIjowosd urresq ‘wnijoads uorjeiqia ‘peads 4Jeys Juisn uoryeindurod
AYAS Jo mota popordxe :dof, "S[) UWLIOJ 0} S[OUURYD SYOBIS PuUR ‘IOPN(Q ® Ul S10900A painduwod se109s ‘Jouueyd 1od sy S pue I,44 seindwoo surjedid :9y3ux
woyjog Yy Aq pexepul sjoysdeus SI9)JoUWOIL[ddR OM] WIOIJ S[RUSIS UOIRIGIA :1Jo] woljog oulpdid Jurssedord pue sy S Jo uonpeindwo)) 2 a.nSi4

M0 Dy pue ‘s 09 = 7 ‘S 8T = M ZHY 9°6g = °f :(y)§ stoysdeus [eusig

soytmtag iy
ASRRTIE Sthr . WS
aurfadid Buissenol g |CRIUREYY
BRI o/
[o UAS [TT.s Ldd @S |
w
I, J g
[2] | (oL ECED [T.s Lo WS |
RY @ ECES Hles Ldd @S [ejuozLIoy
Wy — °
mNOuOﬂAQpQ~OUU<

wnayoads [eusig

noa

- N
=
1

5
il
s

414 |+t poads 1090y

Anpwoar) Sutreog

1

Surreagy

1

103U0p)

N N\ =
qUS '//’ -

“f poadg

sIojoweRIR] JHAS

10)) Spat, oA1pde0ay] e [eapoadg

DX 2025

9:12

Spectral Fault Receptive Fields

Condition Indicator C, o Condition Indicator C,

0.2 T T T T T T 0.4 T
b
g .o
0 | NP Mg PRSI Sy 03 R
-~ .o R
oo .
.l ".'..v.s . . | 02r ¢ eee S .
0. L <. oo
5 . o oir ..
04 s o 3
2 loag?e ® o\""" . V..
[53 0% T pn 00 S
-06
-0.1
-0.8 02
.
.
P ! ! 03 ! ! ! ! ! !
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Snapshot index & Snapshot index &
Condition Indicator C, g Condition Indicator C, ¢
1 0.03
.
08 = 1 0.025 [.
.
.
06 1 0.02 - .
..
S, e,
cﬂ 04+ 9 0.015 .:'...’_'- . R
é‘ & . - . . '-. o,
< R R I A
02r 3 % 1 001 | e de . % .
. ® 00...'- o . ..
N By R
1's W’MM? % h 1 0.005 - *,,
s qfee o .
.
: :

02 L L L L L L 0 L L L L L L
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Snapshot index k Snapshot index k

Figure 8 Temporal behavior of condition indicators for the four fault types and vertical vibrations
of bearing Bearingl 1, under operating conditions of shaft speed f, = 35 Hz and load 12 kN.

Another observation from the ball CI C, p in Figure 8 is its early response to an event,
around time 65, before outer (C, o) and inner race (C, ;) CIs exhibit any noticeable change.
This behavior may reasonably be interpreted as indicating either the onset of a less severe
defect or a precursor to the severe fault, detected at about time 80 by all CIs. Notably,
this abrupt change in the degradation trajectory is also perceived by the cage CI (Cy.c).
The cage CI, in particular, captures the early degradation pattern effectively, displaying a
consistent trend from the beginning up to the early event. This suggests that, even with a
crude heuristic parameter selection, the combination of cage and ball CIs may offer a reliable
monitoring of degradation since the very beginning of the operational life of the bearing.

5.3 Optimizing for Condition Monitoring and Prognosis

Our qualitative results are encouraging but also highlight several issues with the current
method, the most notable being the varying sensitivity of different CIs to degradation events.
Evolutionary multi-objective optimization techniques are particularly well-suited for scenarios
where theoretical guidance is limited, as they require minimal assumptions and can efficiently
explore complex parameter spaces. In this context, we formulated the exploration of the
SFRFs parameter space as an optimization problem, explicitly quantifying our condition
monitoring and prognosis criteria and defining them as objectives to be optimized. Table 3
presents these three objectives. The first objective directly assesses the model’s predictive
accuracy by quantifying the error in remaining useful life (RUL) estimation. The second
objective encourages consistent sensitivity to degradation across the component’s lifetime.

S. Muiioz Gutiérrez and F. Wotawa

Table 3 Optimization objectives for NSGA-II. Notation: Cls are concatenated into a time-varying
condition indicator vector z) (subsampled from C*) of dimension F (4 Cls from C,(Lk) and 4 Cls
from Cgk))7 p; is the Spearman correlation between feature j and snapshot time, and Ax;t) is the
first difference of the j-th SFRFs at time ¢, 3 is the observed RUL at time ¢ while §* the predicted

RUL, both quantities are normalized by the maximum RUL.

Objective ‘ Equation
RUL Error (MSE) % Zfil(y(t) —§®)2
o 1/F
Monotonicity (Hj:1 |Pj|)
, 1/F
Smoothness (MAD) (Hle mectlian (‘Ax;t) _ megian (Amét)) D)

The third objective penalizes jitter along the degradation trajectory, thereby promoting
smoother and more interpretable trends. We chose to use the geometric mean rather than
conventional averaging to ensure that no individual CI is overlooked during the optimization
process. Although it is theoretically possible to avoid aggregating the behaviors altogether
and instead treat each CI as an independent objective, this alternative was not pursued in the
present study. In retrospect, formulating the optimization of different SFRFs as independent
optimization problems may represent a better path, since their computations do not depend
on one another. We leave this possibility open for exploration in future work.

A key advantage of surrogate models lies in the efficient computation of objectives, which
is essential given the population-based nature of evolutionary algorithms, where a single run
may involve thousands of evaluations. To predict the RUL, we trained a bagging regression
ensemble model on a sub-sampled degradation trajectory of Bearingl 1. This strategy offers
several benefits: (1) bagging regressors, as ensemble methods, provide robust predictions with
a reduced risk of overfitting; (2) they perform well even with limited data; and (3) they are
computationally efficient, making them well-suited as surrogate models during optimization.

However, this decision also introduces a notable challenge: bagging regressors are inher-
ently nondeterministic, which can lead to fluctuations in the Pareto front during optimization.
We consider this acceptable, even somewhat beneficial, as the stochasticity helps mitigate
overfitting and discourages convergence toward non-robust regions of the parameter space,
which is particularly important when working with limited data.

We performed the optimization of SFRFs parameters with MATLAB’s gamultiobj function
using the algorithm’s default settings and the following domain bounds for the parameters:
Ko, ks € [n=2, nz} kg € [0,1] with n = 3. Figure 9 presents the local Pareto-optimal front
after 155 iterations, at which point the convergence criterion was satisfied (i.e., the change in
the spread of Pareto solutions is less than 1 x 1074). NSGA-II identifies a diverse set of non-
dominated solutions. As the optimization function performs minimization in all objectives,
we changed the sign of monotonicity and smoothness to enforce their maximization.

Several findings are noteworthy. First, all Pareto-optimal individuals cluster within a
region where the sigma rule center spreads up to a maximum of 6, while the sigma rule
surround spreads up to a maximum of 2. This aligns with our expectation that the surround
performs better when covering a wider frequency bandwidth (the higher the sigma rule, the
stricter the Gaussian). However, it is somewhat surprising that this was not already enforced
by setting the surround bandwidth Wg to be three times that of the center We.

We observe that most objectives conflict with each other. The algorithm’s selection
mechanism, which emphasizes boundary individuals through its use of crowding distance,
tends to favor solutions at the extremes of the objective space in order to maximize diversity
across the Pareto front. Despite leveraging interactive visualizations, we did not identify the

9:13

DX 2025

9:14

Spectral Fault Receptive Fields

Local pareto front in objective space Local pareto front in decision space
03

Smoothness
(MAD)
(MSE)

RUL error

Monotonicity M 2 RUL error
(Spearman’s rank) (MSE)
Local pareto front in decision space Local pareto front in decision space

Monotonicity
(Spearman’s rank)
Smoothness
(MAD)

Figure 9 The local Pareto-optimal front identified by NSGA-II after 155 iterations and 7,750
function evaluations. Top left panel visualizes individuals in the objective space. The remaining
panels depict the parameter space, with solution colors encoding different objectives (in the color
bars, the sign of monotonicity and smoothness is reversed, deep blue colored solutions are better).

anticipated cooperation between monotonicity and RUL prediction accuracy. Specifically,
solutions exhibiting high monotonicity (deep blue in the monotonicity inset) often perform
poorly in terms of RUL prediction, and vice versa, those with low RUL error (deep blue in
the RUL error domain) tend to score low in monotonicity.

This limitation is particularly evident in the case of our cage CI, which, despite being
highly informative of degradation throughout the entire operational life, would be penalized
by conventional monotonicity metrics. Its triangular shape, coupled with relatively low
energy content and a noisy appearance, would result in a low monotonicity score. However,
the fundamental issue extends beyond this specific example and lies in the distinction
between local and global trends, as well as in the methodology used to compute monotonicity.
Traditional condition indicators are computed episodically rather than as states of dynamical
processes. In simple degradation models, the health condition is typically evaluated based on
a single temporal snapshot, without consideration for the underlying trend or the temporal
evolution of the indicator. This highlights the need for monotonicity metrics or health
indicators that account for temporal dynamics on multiple temporal scales.

These findings suggest that Cls should be evaluated as dynamic processes, not merely as
isolated episodes. This supports the adoption of stochastic differential equations as robust
models for degradation processes. Moving forward, our future research should focus on
stochastic model identification and the tracking of their parameters, which may provide a
more nuanced and accurate assessment of system health and more rational RUL estimations.

We repeated our qualitative evaluation of the Cls, this time selecting the individual from
the Pareto front that achieved the best RUL prediction performance. This individual is
characterized by the following parameters: ko = 1.0253, kg = 0.8905, and xy = 0.8647.

S. Muiioz Gutiérrez and F. Wotawa

Receptive field gain functions for best RUL-predicting pareto front individual

Spectral mask for outer race fault Spectral mask for inner race fault
1 T T T T T T T 1
=20 osh 2 osh
o z;
T =
N 23 9 < of 1
I I
(S &)
! 1(;0 12‘0 11;0 1é0 1é0 2(;0 22‘0 K 1(;0 12‘0 11‘10 1f;0 18‘0 2(;0 2é0
Frequency (Hz) Frequency (Hz)
Spectral mask for ball fault Spectral mask for cage fault
1 i i i i i i i 1 T T
*éi;ff 05| *ézéff o5k
T iz
! |
Y ,
R 0o 1SR o /\MA/\/
©)
B

100 120 140 160 180 200 220 100 120 140 160 180 200 220

Frequency (Hz) Frequency (Hz)

Figure 10 DoG RFGFs for the best RUL-predicting individual on the local Pareto-optimal front.

Operating conditons: shaft speed f,. = 35 Hz and load 12 kN. Only the 90-230 Hz band is shown.

Figure 10 illustrates the RFGFs corresponding to this optimal parameter set within the local
Pareto-optimal front, as determined by the lowest RUL prediction error. The receptive fields
exhibit an excitatory center but primarily operate within the inhibitory region. Notably, a
cumulative effect, kept in check by the max operator, emerges when the Gaussian surrounds
overlap, particularly for the ball and cage CIs (see bottom insets). This overlap causes the
receptive fields to compute spectral contrast across the local spectrum. As we established
broad parameter ranges for the genetic algorithm to explore candidate solutions, including
configurations with weak or no inhibition, the observed convergence towards solutions with
strong and wide inhibitory surrounds indicates a positive relationship between spectral
contrast and the criteria for condition monitoring and prognosis. If traditional approaches
relying solely on filtering characteristic frequencies were superior, the genetic algorithm would
have favored those simpler solutions. Instead, it evolved more complex inhibitory surrounds
essential for effective contrast computation, highlighting the importance of antagonistic
spectral filtering in enhancing degradation state assessment.

Regarding the utility of SFRFs as Cls, Figure 11 presents a comparison between the
empirically obtained Cls analyzed in the previous section and those corresponding to the
most performant RUL prediction solution. The evolved CIs better characterize degradation

trends and more clearly signal the onset of defects compared to their empirical counterparts.

Notably, the ability of the cage CI to correlate with degradation from the beginning of the
bearing’s operational life is further enhanced by the evolutionary algorithm.

To test our hypothesis that RUL predictions should account for the temporal evolution
of condition indicators, we conducted experiments in which we varied the order of the
condition indicators used for prediction. Following standard dynamical systems terminology,
we refer to the zero-order indicator as the instantaneous condition indicator (although it is

9:15

DX 2025

9:16 Spectral Fault Receptive Fields

Outer race CI Inner race CI
0 0] —
\ﬁ -5 \M
) -5 ;, =~ -10 %
) ° <3S
-15
o
-10 -20
0 50 100 150 0 50 100 150
Snapshot index k Snapshot index k
Ball CI Cage CI
2 0.05
. \M M
fe -
a 2 -0.05
S o \ © s,
S 01t XA ok
o® o ©
o °0
4 -0.15
0 50 100 150 0 50 100 150
Snapshot index k Snapshot index k

e Empirical parameters o Optimized parameters

Figure 11 Comparison of Cls obtained with empirical parameters (blue filled circles) versus the
best RUL-predicting local Pareto-optimal solution (open red circles).

computed from a signal snapshot of 1.28 seconds) represented by the eight ClIs (four fault
types across two vibration signals). The first-order indicator is a 16-dimensional vector
formed by concatenating the current ClIs with those from the previous time step. More
generally, the n-th order CI corresponds to an 8(n + 1)-dimensional vector comprising the
current CI and a buffer containing the previous n sets of CIs. This formulation allows the
model to incorporate temporal context and memory into the RUL prediction process.

Figure 12 illustrates the effect of varying the SFRF order on prediction performance. The
left inset shows the resubstitution loss of bagging regressor models trained with different
orders. Due to the model’s nondeterministic nature, we repeated the training 30 times
and used box plots to represent the distribution of errors for each order. We observe that
using a second-order SFRF condition indicator vector can reduce the resubstitution loss by
approximately half. The right-hand visualization demonstrates the impact of SFRF order on
RUL prediction accuracy; notably, the 10th-order predictor exhibits a marked improvement,
closely tracking the true RUL across the entire operational life.

While these results are encouraging, they reflect only the training loss and must be
substantiated through rigorous cross-validation methodologies. Nevertheless, the findings
underscore the potential value of incorporating temporal memory into RUL estimation.

6 Discussion

Drawing inspiration from the biology of vision, we have explored the implementation of SFRFs
based on the characteristic frequencies of bearing elements, their harmonics, and known
amplitude modulation phenomena. This leads to implicit spectral filters that adapt naturally
to varying speed conditions (see Figure 6). SFRFs compute spectral activity contrast in a

S. Muiioz Gutiérrez and F. Wotawa

True vs predicted RUL (training)

Dis?{)ljbution of RUL error by CIs order
10T e

1 :
True RUL
ol 0.9 B Oth order SFRFs - mse = 16-03

é \ 10th order SFRFs - mse = 2e-04
;JD) st 0.8 \
kol =
g | 1 /o os
O 6 +
= 3
st IS 05
Sl é T 04r
»n é T E
”g sk é‘ % = 03F
2 s L 3
Q + ¥ 02
F2f ® TTs s |

1 % eopdad ot
N N N N O A o ! ! ! ! !)
SN YUY XD DA DB, NN 0.0 0 D 0 20 40 60 80 100 120 140
Order Snapshot index k

Figure 12 Training (resubstitution) MSE error with increasing orders and comparison of RUL
estimations between Oth order and 10th order SFRFs.

manner analogous to how visual systems encode chromatic information. However, instead of
excitation by light and preferential responses to different wavelengths by photopigments in
cone photoreceptors, we analyze vibration signals transformed into the frequency domain.
By monitoring the characteristic frequencies associated with different bearing components,
SFRFs enable us to track degradation trends throughout the operational life of the machinery.
Our particular implementation relies on the computation of Gaussian spectral filters centered
at the characteristic frequencies, numerical integration of frequency bins across the spectrum,
and the evaluation of spectral contrast, which depends on integrated energy within a narrow
bandwidth we call the center, and a wider bandwidth, the surround. The DoG model,
adapted to our domain, was formally defined and implemented. Its definition aims for
computational efficiency. Our qualitative evaluation of the SFRFs for monitoring health
state demonstrates their potential as effective condition indicators. The trends observed
throughout the operational history indicate that SFRFs can detect abrupt defect events.
Furthermore, they appear capable of capturing the gradual evolution of degradation. In
addition, these findings support using SFRFs for fault detection and potentially diagnosis, as
their outputs correspond to specific failure modes. However, a decision layer is essential to
harmonize the degradation trends from different CIs. This integration is reserved for future
research, as it requires further development and validation. Alternatively, the multi-objective
algorithm could explicitly optimize diagnostic performance if suitable datasets are available.

Different SFRFs exhibit unique behaviors and require appropriate parameter tuning to
maximize their effectiveness. Building on these insights, we established quantitative criteria
to assess the suitability of various parameters in the Difference of Gaussians (DoG) model,
ensuring the extraction of features that are relevant for condition monitoring and prognosis.
We use a multiobjective genetic algorithm to compute an approximate Pareto-optimal set
of solutions. To guide the optimization, we incorporated three objectives: first, the RUL
prediction error, evaluated using fast surrogate RUL estimators instantiated as bagging
regressor models; second, monotonicity, which is widely recognized in the PHM community
as a crucial metric for feature selection in prognostic pipelines; and third, smoothness, which
targets the desirable property of stability in condition monitoring indicators. We contrasted
the quality of the best predictor against the empirical counterpart, demonstrating the value
of the optimization stage. We also observed, through analysis of the cage Cls, that certain
feature indicators may provide valuable information for condition monitoring and prognosis,

9:17

DX 2025

9:18

Spectral Fault Receptive Fields

yet may be overlooked or rejected when evaluated solely by standard monotonicity metrics.
This highlights the need for the development of more sophisticated evaluation criteria that
can capture the full prognostic value of such features. Motivated by this observation, we
investigated the impact of incorporating local temporal trends by stacking the CIs in a
memory buffer. We assessed RUL predictions across different orders, and our results confirm
that incorporating temporal context significantly reduces prediction error.

We acknowledge the preliminary nature of our contribution. Notably, the distinct
spectrotemporal properties exhibited by different SFRFs suggest that their parameters
should be tuned independently, as a one-size-fits-all approach may be overly simplistic.
Drawing further inspiration from biology, it is well established that retinal ganglion cells
operate in parallel channels, each capturing diverse spectro-spatio-temporal properties and
contributing to a robust and flexible representation. Similarly, future research could explore
the simultaneous deployment of a diversity of solutions along the Pareto front through
ensemble techniques. By orchestrating and interpreting the responses of multiple SFRFs,
it may be possible to achieve more comprehensive and adaptable representations, where
individual SFRFs provide complementary, partial views tailored to specific objectives. For
instance, some SFRFs may be better suited for condition monitoring, others for RUL
prediction, and their relative importance or activity could adapt dynamically depending on
the degradation state. Currently, FF'T computation is the most resource-intensive step in
the pipeline. However, next-generation sensors could be designed to shift the focus from
general-purpose accelerometers to resonant arrays that respond preferentially to the engine’s
spectral fingerprint, potentially eliminating the need for FFT altogether.

7 Conclusions

This study demonstrates the value of drawing inspiration from nature to develop robust and
reliable systems. Spectral fault receptive fields show considerable promise as foundational
elements for condition monitoring and prognosis. They also have a minimal computational
footprint, making them well-suited for onboard deployment in EVPs. Our qualitative
evaluation indicates that, particularly in their optimized form, SFRFs are well-suited for
both condition monitoring and remaining useful life (RUL) estimation.

We conclude that by integrating established vibrational analysis techniques with concep-
tual models from biological perception, and with the help of evolutionary algorithms, it is
possible to devise effective solutions for tracking degradation states throughout the opera-
tional life of bearings. These types of biologically inspired solutions open new possibilities
for advancing predictive maintenance and enhancing the reliability of industrial machinery.

—— References

1 Peter M. Asaro. From Mechanisms of Adaptation to Intelligence Amplifiers: The Philosophy
of W. Ross Ashby. In Philip Husbands, Michael Wheeler, and Owen Holland, editors,
The Mechanical Mind in History, pages 153-176. MIT Press, Cambridge, MA, 2008. doi:
10.7551/mitpress/7626.003.0008.

2 Wahyu Caesarendra, Buyung Kosasih, Kiet Tieu, and Craig A.S. Moodie. An application of
nonlinear feature extraction - A case study for low speed slewing bearing condition monitoring
and prognosis. In 2013 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, pages 1713-1718, 2013. doi:10.1109/AIM.2013.6584344.

3 Xiao-Dan Chen, Ke Li, Shao-Fan Wang, and Hao-Bo Liu. Switching Unscented Kalman Filters
With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings.
IEEE Sensors Journal, 24(20):32577-32595, 2024. doi:10.1109/JSEN.2024.3445934.

https://doi.org/10.7551/mitpress/7626.003.0008
https://doi.org/10.7551/mitpress/7626.003.0008
https://doi.org/10.1109/AIM.2013.6584344
https://doi.org/10.1109/JSEN.2024.3445934

S. Muiioz Gutiérrez and F. Wotawa

10

11

12

13

14

15

16

17

18

19

20

21

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182-197, 2002. doi:10.1109/4235.996017.

Department of Defense, Washington, DC. MIL-HDBK-217F: Military Handbook — Reliability
Prediction of FElectronic Equipment, 1991. Superseding MIL-HDBK-217E, Notice 1, 2 January
1990.

S.J. Engel, B.J. Gilmartin, K. Bongort, and A. Hess. Prognostics, the real issues involved
with predicting life remaining. In 2000 IEEE Aerospace Conference. Proceedings (Cat.
No.00TH8484), volume 6, pages 457-469 vol.6, 2000. doi:10.1109/AERO.2000.877920.
Mbénica S Felix, John J Martinez, and Christophe Bérenguer. Remaining Useful Life (RUL)
Control of Controlled Systems under Degradation. Authorea Preprints, 2024. Submitted
to International Journal of Robust and Nonlinear Control. doi:10.22541/au.172146328.
87517875/v1.

Ying Fu, Ye Kwon Huh, and Kaibo Liu. Degradation Modeling and Prognostic Analysis
Under Unknown Failure Modes. IEEE Transactions on Automation Science and Engineering,
22:11012-11025, 2025. doi:10.1109/TASE.2025.3530845.

Gill Sensors & Controls. WearDetect explained (5 minute video), 2024. Accessed: 2025-06-10.
URL: https://gillsc.com/weardetect-explained-5-minute-video/.

Einar Lgvli Hidle. Early Detection of Subsurface Cracks in Rolling Element Bearings using the
Acoustic Emission Time Series. Master’s thesis, Norwegian University of Science and Technology
(NTNU), 2021. URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2826382.
Jinqiu Hu, Laibin Zhang, Wei Liang, and Zhaohui Wang. Incipient mechanical fault detection
based on multifractal and MTS methods. Petroleum Science, 6(2):208-216, 2009. doi:
10.1007/s12182-009-0034-8

International Organization for Standardization. ISO 20816-3:2022. Mechanical vibration —
Measurement and evaluation of machine vibration — Part 3: Industrial machines with nominal
power above 15 kW and nominal speeds between 120 r/min and 30 000 r/min, 2022.

Yaguo Lei, Naipeng Li, Liang Guo, Ningbo Li, Tao Yan, and Jing Lin. Machinery health
prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems
and Signal Processing, 104:799-834, 2018. doi:10.1016/j.ymssp.2017.11.016.

Librepath. Micrograph showing optic nerve head and retina. H&E stain. https://commons.

wikimedia.org/wiki/File:Retina_--_high_mag. jpg, 2015. Creative Commons Attribution-
Share Alike 3.0 Unported license (CC BY-SA 3.0).

MathWorks. Predictive Maintenance Toolbox User’s Guide R2024b. MathWorks, 2018. URL:
www.mathworks. com.

MathWorks. Predictive Maintenance Toolbox Getting Started Guide. MathWorks, 2024. Release
R2024b, originally published 2018. URL: https://www.mathworks.com/help/predmaint/
index.html.

Humberto R. Maturana and Francisco J. Varela. De mdquinas y seres vivos: Autopoiesis: La
organizacion de lo vivo. Editorial Universitaria. LUMEN., Santiago, Chile, 1972.

James G. McLeish. Enhancing MIL-HDBK-217 reliability predictions with physics of failure
methods. In 2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS),
pages 1-6, 2010. doi:10.1109/RAMS.2010.5448044.

J. W. McPherson. Reliability Physics and Engineering: Time-To-Failure Modeling. Springer,
Cham, 3rd edition, 2019.

Kamal Medjaher, Diego Alejandro Tobon-Mejia, and Noureddine Zerhouni. Remaining Useful
Life Estimation of Critical Components With Application to Bearings. IEEE Transactions on
Reliability, 61(2):292-302, 2012. doi:10.1109/TR.2012.2194175.

Jiadong Meng, Changfeng Yan, Guangyi Chen, Yaofeng Liu, and Lixiao Wu. Health Indicator
of Bearing Constructed by rms-CUMSUM and GRRMD-CUMSUM With Multifeatures of
Envelope Spectrum. IEEE Transactions on Instrumentation and Measurement, 70:1-16, 2021.
doi:10.1109/TIM.2021.3054000

9:19

DX 2025

https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/AERO.2000.877920
https://doi.org/10.22541/au.172146328.87517875/v1
https://doi.org/10.22541/au.172146328.87517875/v1
https://doi.org/10.1109/TASE.2025.3530845
https://gillsc.com/weardetect-explained-5-minute-video/
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2826382
https://doi.org/10.1007/s12182-009-0034-8
https://doi.org/10.1007/s12182-009-0034-8
https://doi.org/10.1016/j.ymssp.2017.11.016
https://commons.wikimedia.org/wiki/File:Retina_--_high_mag.jpg
https://commons.wikimedia.org/wiki/File:Retina_--_high_mag.jpg
www.mathworks.com
https://www.mathworks.com/help/predmaint/index.html
https://www.mathworks.com/help/predmaint/index.html
https://doi.org/10.1109/RAMS.2010.5448044
https://doi.org/10.1109/TR.2012.2194175
https://doi.org/10.1109/TIM.2021.3054000

9:20

Spectral Fault Receptive Fields

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Alvaro Moreno and Matteo Mossio. Biological Autonomy: A Philosophical and Theoretical
Enquiry. Springer, Dordrecht, 2015. doi:10.1007/978-94-017-9837-2.

Ali Moshrefzadeh and Alessandro Fasana. The Autogram: An effective approach for selecting
the optimal demodulation band in rolling element bearings diagnosis. Mechanical Systems
and Signal Processing, 105:294-318, 2018. doi:10.1016/j.ymssp.2017.12.009.

Stan Munoz Gutiérrez and Franz Wotawa. A qualitative study on the applicability and
optimization of spectral fault receptive fields for condition monitoring and prognosis, June
2025. Zenodo. doi:10.5281/zenodo.15660819.

Danh Ngoc Nguyen, Laurence Dieulle, and Antoine Grall. Remaining Useful Lifetime Prognosis
of Controlled Systems: A Case of Stochastically Deteriorating Actuator. Mathematical Problems
in Engineering, 2015:1-16, 2015. doi:10.1155/2015/356916.

You-Jin Park, Shu-Kai S. Fan, and Chia-Yu Hsu. A Review on Fault Detection and Process
Diagnostics in Industrial Processes. Processes, 8(9), 2020. doi:10.3390/pr8091123.

Aisong Qin, Qinghua Zhang, Qin Hu, Guoxi Sun, Jun He, and Shuiquan Lin. Remaining
Useful Life Prediction for Rotating Machinery Based on Optimal Degradation Indicator. Shock
and Vibration, 2017:Article ID 6754968, 12 pages, 2017. doi:10.1155/2017/6754968.

Yi Qin, Jiahong Yang, Jianghong Zhou, Huayan Pu, and Yongfang Mao. A new supervised
multi-head self-attention autoencoder for health indicator construction and similarity-based
machinery RUL prediction. Advanced Engineering Informatics, 56:101973, 2023. doi:10.
1016/j.aei.2023.101973.

Robert B Randall. State of the art in monitoring rotating machinery-part 1. Sound and
vibration, 38(3):14-21, 2004.

Paul D Samuel and Darryll J Pines. A review of vibration-based techniques for helicopter
transmission diagnostics. Journal of Sound and Vibration, 282(1):475-508, 2005. doi:10.
1016/j.jsv.2004.02.058.

Abhinav Saxena, Jose Celaya, Edward Balaban, Kai Goebel, Bhaskar Saha, Sankalita Saha,
and Mark Schwabacher. Metrics for evaluating performance of prognostic techniques. In
2008 International Conference on Prognostics and Health Management, pages 1-17, 2008.
doi:10.1109/PHM.2008.4711436.

D. F. Shi, W. J. Wang, and L. S. Qu. Defect Detection for Bearings Using Envelope Spectra
of Wavelet Transform . Journal of Vibration and Acoustics, 126(4):567-573, December 2004.
doi:10.1115/1.1804995.

Manula A. Somaratna and Alan W. Freeman. The receptive field construction of midget
ganglion cells in primate retina. Journal of Neurophysiology, 133(1):268-285, 2025. doi:
10.1152/3jn.00302.2024.

Moncef Soualhi, Khanh T.P. Nguyen, Kamal Medjaher, Fatiha Nejjari, Vicenc Puig, Joaquim
Blesa, Joseba Quevedo, and Francesc Marlasca. Dealing with prognostics uncertainties:
Combination of direct and recursive remaining useful life estimations. Computers in Industry,
144:103766, 2023. doi:10.1016/j.compind.2022.103766.

George Vachtsevanos, Frank Lewis, Michael Roemer, Andrew Hess, and Biqing Wu. Intelligent
Fault Diagnosis and Prognosis for Engineering Systems. Wiley, Hoboken, NJ, USA, 2006.
Biao Wang, Yaguo Lei, Naipeng Li, and Ningbo Li. A Hybrid Prognostics Approach for
Estimating Remaining Useful Life of Rolling Element Bearings. IEFEE Transactions on
Reliability, 69(1):401-412, 2020. doi:10.1109/TR.2018.2882682.

Weizhong Yan, Hai Qiu, and Naresh Iyer. Feature Extraction for Bearing Prognostics and
Health Management (PHM)-A Survey. Technical report, Air Force Research Laboratory
(AFRL/RXLMN), 2008.

https://doi.org/10.1007/978-94-017-9837-2
https://doi.org/10.1016/j.ymssp.2017.12.009
https://doi.org/10.5281/zenodo.15660819
https://doi.org/10.1155/2015/356916
https://doi.org/10.3390/pr8091123
https://doi.org/10.1155/2017/6754968
https://doi.org/10.1016/j.aei.2023.101973
https://doi.org/10.1016/j.aei.2023.101973
https://doi.org/10.1016/j.jsv.2004.02.058
https://doi.org/10.1016/j.jsv.2004.02.058
https://doi.org/10.1109/PHM.2008.4711436
https://doi.org/10.1115/1.1804995
https://doi.org/10.1152/jn.00302.2024
https://doi.org/10.1152/jn.00302.2024
https://doi.org/10.1016/j.compind.2022.103766
https://doi.org/10.1109/TR.2018.2882682

Automating Control System Design: Using
Language Models for Expert Knowledge in
Decentralized Controller Auto-Tuning

Marlon J. Ares-Milian =
School of Computer Science, University College Cork, Ireland

Gregory Provan &
School of Computer Science, University College Cork, Ireland

Marcos Quinones-Grueiro &
Vanderbilt University, Nashville, TN, USA

—— Abstract

Fully-automated optimal controller design for engineering systems is a challenging task. While,
optimization-based, automated control parameter tuning techniques have been widely discussed in
the literature, most works do not discuss expert knowledge requirements for system design, which
result in significant human intervention. In this work, we discuss a multistage controller tuning
framework for decentralized control that highlights expert knowledge requirements in automated
controller design. We propose a methodology to automate the input-output pairing and stage
definition steps in the framework using Large Language Models (LLMs) for a family of multi-tank
benchmarks. We achieve this by proposing a mathematical language to describe the system and
design an algorithm to bind this mathematical representation to the input prompt space of an LLM.
We demonstrate that our methodology can produce consistent expert knowledge outputs from the
LLM with over 97% accuracy for the multi-tank benchmarks. We also empirically show that, correct
stage definition by the LLM can improve tuned controller performance by up to 52%.

2012 ACM Subject Classification Computing methodologies — Knowledge representation and
reasoning

Keywords and phrases controller auto-tuning, automated system design, large language models
Digital Object Identifier 10.4230/0ASIcs.DX.2025.10

Supplementary Material Software (Source Code): https://github.com/mjares/DX2025_LLMs_
ExpertKnowledge.git, archived at swh:1:dir:81a0af39fd36f5d0feldaae775b1e460067£d364

Funding This work was supported by Science Foundation Ireland under Grant 13/RC/2094.

1 Introduction

Most modern engineering issues are framed as systems. For example, vehicles, robots,
and industrial machines are all systems, albeit different, and each have sub-systems and
components that work in close relation to achieve their intended functions. The development
of modern engineering systems goes through three main stages: design, production, and
operation. Proper design is the focus of this paper, since it enables engineering systems to
meet desired performance objectives, e.g.: development and operational costs, safe operation,
and robustness, while also supporting validation and verification, enhancing the production
and operation stages [8]. However, optimal system design is a very challenging task due to
the extensive space of system configurations, components, and parameters [18] that must be
explored. In spite of all the advances in automation to date, solving the design problem often
requires significant human expertise and iterative design protocols [7]. Therefore, a strong
motivation exists to develop automated optimal design methodologies that meet desired

objectives while reducing the tedious, time-consuming, and costly aspects of manual design.
© Marlon J. Ares-Milian, Gregory Provan, and Marcos Quinones-Grueiro;
37 licensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 10; pp. 10:1-10:20

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:122100743@umail.ucc.ie
https://orcid.org/0000-0003-4373-0161
mailto:gprovan@cs.ucc.ie
https://orcid.org/0000-0003-3678-046X
mailto:marcos.quinones.grueiro@vanderbilt.edu
https://orcid.org/0000-0001-5391-6774
https://doi.org/10.4230/OASIcs.DX.2025.10
https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git
https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git
https://archive.softwareheritage.org/swh:1:dir:81a0af39fd36f5d0fe1daae775b1e460067fd364;origin=https://github.com/mjares/DX2025_LLMs_ExpertKnowledge;visit=swh:1:snp:624e3911de2cb97811b20f39e947fb711d1f9853;anchor=swh:1:rev:74b7ea8a268bdaf10ca708b1a68ce54372651200
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

10:2

Automating Control System Design Using Language Models

With the development of cyber-physical systems and the internet of things, automation has
become ubiquitous in modern engineering systems [8] and the key component for automation
in any modern system is the controller. A controller (or control algorithm) refers to the
sub-system that receives information from real or estimated measurements and operates
the actuators in order to regulate system variables with different objectives. The design of
controllers for engineering is a complex task, consisting of multiple components and steps.
Controllers are usually defined by parametric functions, which results in a problem well-known
as controller tuning: the design step where controller parameters are adjusted (or tuned)
to meet desired performance objectives. Traditional controller tuning is done manually,
requiring an iterative design process based on expert knowledge. This is an inefficient
approach that usually results in sub-optimal solutions, which has motivated significant
research on automated design of controller parameters, known as controller auto-tuning.

Many modern controller auto-tuning solutions resort to an iterative optimization approach
in which some performance objectives are evaluated (either in simulation or hardware) and
the controller parameter space is explored using some optimization algorithm until the best set
of parameters is obtained; this is done through some combination of system-model knowledge,
expert knowledge, and historical data, and includes tools like reinforcement learning [13],
evolutionary optimization [16], and Bayesian optimization [17]. Even though the controller
parameter search itself has been widely automated, the controller design problem (including
controller parameter design) still requires abundant expert knowledge in different steps of the
process that are often ignored in the associated literature [2]. Some of the open challenges
in fully automated controller design include aspects of the parameter optimization problem
definition like defining constraints, defining and restricting the search space, and defining
the cost function, as well as other aspects of the control system design such as control loop
definition (also known as input-output pairing) [12]; all of these are currently solved, in
the majority of cases, using expert knowledge. In this work, we propose a methodology to
automate expert knowledge for a subset of steps in the control system design problem: input-
output (I/O) pairing and stage definition for a multistage controller auto-tuning framework.
We use Large Language Models (LLMs) to meet these expert knowledge requirements.

LLMs are deep learning models trained over a large volume of natural language data
spanning multiple topics and scientific disciplines while following task-agnostic architec-
tures [5]. Therefore, they are often used as a form of zero-shot or few-shot transferable
models with a variety of applications [14][7][19]. This makes LLMs a prime target for auto-
mating expert knowledge, a task that is often unstructured and heavily relies on natural
language interactions. While LLMs have shown positive results, multiple challenges persist in
terms of LLM output formatting, consistency, and accuracy, generalization to more complex
topics/benchmarks, factually incorrect responses, etc. Therefore, multiple works have focused
on how to maximize performance from an already trained LLM, with prompt engineering
(PE) being the most discussed approach. PE is based on the fact that a well-designed (natural
language) prompt can dramatically improve the quality of the output in an LLM [10]. In this
paper, we discuss a PE methodology to automate expert knowledge in control system design.

The contributions of this work are as follows: (1) We highlight existing challenges in
automated controller design and automate expert knowledge using LLMs. We focus on expert
knowledge requirements for I/O pairing and stage definition in a multistage decentralized
controller auto-tuning framework. (2) We define a mathematical language based on system
topology to describe a family of industrial multi-tank benchmarks. (3) We propose a system-
informed prompt engineering algorithm to bind the mathematical language to the input
prompt space of an LLM in order to automate expert knowledge for controller design. (4) We
empirically evaluate the effectiveness of LLMs for substituting expert knowledge in I/0O

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

pairing and stage definition tasks for a family of multi-tank benchmarks using performance
metrics like: proper formatting of output prompt and correct expert knowledge provided. We
show that the LLM can produce expert knowledge recommendations with over 97% accuracy
with consistent formatting for I/O pairing and stage definition. (5) We empirically evaluate,
for the first time (to the best of our knowledge), the relevance of controller tuning order
on performance of tuned controllers, when tuning decentralized controllers independently
and sequentially, for a family of multi-tank benchmarks. We show that, depending on the
complexity of the system, and the degree of coupling between its components, a correct stage
definition can improve the tuned controller performance by up to 52%

2 Related Work

2.1 Automated Controller Design

When discussing automated controller design, most works focus on controller auto-tuning,
which is popularly framed as a derivative-free optimization problem [16][17]. While gradient-
based methods are also used for controller auto-tuning [13], derivative-free formulations have
the desired advantage of making little or no assumptions on objective or constraint functions.

Multiple authors have proposed metaheuristic approaches to controller auto-tuning,
with [16] doing a detailed survey on evolutionary optimization algorithms for multiple-input-
multiple-output processes. However, Bayesian optimization (BO) approaches have become
quite popular in recent years, due to their high sample efficiency [2] and overall performance.
For example [17] present a joint tuning methodology that uses BO to simultaneously tune an
LQR controller, an unscented Kalman Filter (UKF), and a guidance and navigation system
for an autonomous underwater vehicle (UUV), yielding satisfactory results across multiple
objectives. Most of the available solutions focus strictly on the parameter search itself and
how to solve it using some optimization tool, leaving the design of the optimization problem,
or the control algorithm, as an expert knowledge requirement.

In their work, [2] also propose a Bayesian optimization solution for controller auto-tuning
of PID controllers in an underwater vehicle, improving the computational complexity of the
controller tuning task by decomposing the search space into smaller dimension subspaces. In
order to do so, they propose a multistage framework that aims to formalize all the necessary
steps in automated controller design. This formalization highlights a variety of existing
challenges in automated controller design that are often ignored, or underexplored in recent
works. Examples of these challenges are how to define the parameter search space, the
constraints, or the cost function for the optimization problem, issues that are often not
discussed, or attributed to expert knowledge. Similarly, how to define the stages in the
multistage framework defined in [2] is still one of the open problems highlighted in the paper.

An attempt to address one of these expert knowledge requirements can be found in [12],
where an optimal control formulation is proposed in order to simultaneously optimize the
controller parameters and produce an I/O pairing for the system. I/O pairing, or control
loop design, is often assumed to be already defined in most controller auto-tuning works [17],
when, in reality, it is usually performed through expert knowledge.

Overall, state-of-the-art research on automated controller design is significantly challenged
by expert knowledge requirements across different stages of the problem.

2.2 LLMs in System Design

Several papers have used LLMs for some aspect of system design, but fundamentally most
approaches still adopt significant manual modeling, employing LLMs after the design process.

10:3

DX 2025

10:4

Automating Control System Design Using Language Models

[14] uses a five-step LLM-based prompting approach that requires as inputs a piping
and instrumentation diagram (P&ID) and natural language prompts. They evaluate the
approach on a one-tank, one three-tank, and one four-tank system. Our approach differs
in that we focus on control tuning and not diagnostics, we use a formal language for LLM
prompting that provides guarantees about optimality of controller design, and we focus on
control-model optimization and not just model generation.

A closely related approach, SmartControl [19], automatically determines the most suitable
PID parameters to achieve the specified performance targets using PSO and DE algorithms.
This process includes selecting the optimal gains that will ensure the system’s fast and stable
response. After optimization, the closed-loop step response is simulated and basic performance
metrics (such as settling time, rise time, overshoot, etc.) are calculated and presented to
the user via an interactive graphical interface. SmartControl emphasizes interactive design,
allowing users to engage directly with the LLM agent to refine the controller design. The
approach in the provided paper is more automated; the LLM generates the I/O pairing and
stage definitions without direct user interaction during that phase.

ControlAgent [7] employs a range of techniques for integrating domain knowledge, e.g., a
knowledge graph or other structured representation of control engineering principles. Our
approach aims for full automation once the initial system description is provided; in contrast,
ControlAgent involves more interactive elements, allowing users to refine the design process
through feedback or iterative refinement with the LLM.

2.3 Systems Modeling using Component-Based Languages

Several frameworks exist to define systems based on interconnected component models, e.g.,
bond graphs, Simulink, and Modelica. The proposed approach is a fundamentally different
framework from such approaches, most of which rely on manually-defined component models.

The approach is most similar to bond graphs (which focuses on representing energy flow
and causality), although the current usage is quite different. In a bond graph, nodes consist of
a standardized set of elements (e.g., C for capacitance, I for inertia, etc.) and edges/junctions
represent system components and their interactions. The resulting graph allows for deriving
system equations and performing simulations. Our proposed graph model is simpler than a
bond graph model, as it does not specify the inherent physical properties of the nodes.

The two approaches are not mutually exclusive. One could conceivably use bond graphs
to model a multi-tank system and then use the resulting model (or a simplified representation
of it) as input to the LLM-based system for automated control design. The bond graph
would provide a structured representation of the system’s dynamics, while the LLM would
handle the more complex task of selecting appropriate control strategies and parameters.
The paper, however, focuses solely on the LLM-based approach without explicit integration
of bond graphs. The paper’s graph representation is a simplified topological representation,
not a full bond graph model.

3 Preliminaries

3.1 Decentralized parametric control

Let’s define a controller by a tuple C = (U, Y,U) where Y C R™ is the space of system
measurements/outputs (e.g.: level in a tank, altitude in a drone), Y C R™ is the space of
system inputs (e.g. liquid flow from a pump, propeller commands in a quadcopter), and
U: V! xU™! — U is a control algorithm that produces a system input at every timestamp ¢

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

considering system inputs and outputs from previous system interactions. We are interested
in a family of control frameworks called decentralized parametric controllers, which are
commonly used in industrial and robotic systems [2].

A parametric control algorithm is a parametric function U : V! x U!~! x E — U such
that u(t) = U(y(0),...,y(t),u(0),...,u(t — 1),&), with y(t) € Y,u(t) € U, € € =, where
the control algorithm is defined by a set of parameters & that must be previously adjusted
(tuned). Parametric controllers are very common, with the proportional-integral-derivative
controller and its P, I, and D parameters being the industry standard [16].

A decentralized control approach is defined by a set of independent control algorithms
C ={Uy,Us,...,U,,} where every control algorithm U; matches a single system input u;
with a single system output y;, and the changes in that system input are only conditioned

by the corresponding system output, i.e.: u;(t) = U(y;(0),...,yi(t),u;(0), ..., u;(t — 1),§,;).

This is a common simplification in control system design [2] with assumptions regarding
system coupling. The implications of these assumptions are discussed further in this paper.

3.2 Directed graphs

A graph is defined by a tuple G = (V| E) where v; € V is a set of elements called vertices
v; € Nand e € F is a set of pairs e = (v;,v,);v;,v; € V called edges [6]. An edge describes
a relationship between two vertices, we can say that an edge joins two vertices. For the
purpose of this work, we are interested in graphs with the following properties:
Directed: In a directed graph, the edges are ordered pairs and have an implied direction,
ie.: e; = (v1,v2) # ea = (v2,v1). An edge in a directed graph is called a directed edge.
Simple: A simple graph is a graph without loops. A loop in a graph is defined as an
edge that joins a vertex to itself, i.e.: e = (v;,v;);v; = vj.
Edge-Labeled: In an edge-labeled graph G = (V, E, L), a labeling function [: E — L is
defined to assign a label from the label set L to each edge in the edge set.

Let’s discuss some graph theory concepts that will be relevant in the rest of this work [4].

» Definition 1 (Directed Path). A directed path is a sequence of distinct edges
{e1,€2,...,en_1} in a graph G = (V,E) that joins a sequence of distinct vertices
{v1,v2,...,0,} such that e; = (vi,vi41),€; € E,{v;,v;41} €V is a directed edge.

» Definition 2 (Strongly Connected Component). A directed graph is considered to be strongly
connected if every vertex is reachable from every other vertex in the graph, i.e.: for any
vertex pair (v;,v;) € V., there is at least one directed path that goes from v; to v;. A strongly
connected component of a graph G = (V, E) is a subgraph G' C G that is strongly connected,
and is maximal with this property, i.e.: no additional edges or vertices from G can be included
in G’ without breaking its property of being strongly connected.

Strongly connected components in a graph can be computed in linear time by a variety of
algorithms (e.g.: depth-first-search algorithms) [4].

3.3 Large Language Models

Let us define the prompt space Z [11]. The elements in Z are a composition of tokens selected
from a token vocabulary t € T, where z = {t1,ta,...,t,} can be a sequence of tokens of any
length m € N. An LLM is then defined as a transformation LLM : Z — Z,z, = LLM (z;)
where, for a given input prompt z;, the model produces an output prompt z,.

10:5

DX 2025

10:6

Automating Control System Design Using Language Models

A common feature in LLM APIs is the system prompt. A system prompt z5 € Z permeates
every interaction [20] with the LLM, providing context, setting the role and the tone for the
LLM responses, ensuring output prompt formatting, etc. Particular implementations of the
system prompt vary depending on the LLM; in some cases it is provided as an initial prompt
before the input prompt [11], while in other cases a dedicated system token is implemented.
For the purpose of this work, we are interested in LLMs with system prompt (z5) options,
ie: LLM : Zx Z — Z,2z, = LLM (25, z;). In Section 4.4, we define bindings from a graph
language describing a family of physical systems to the input and system prompt spaces.

3.4 Bayesian optimization

Bayesian optimization is a technique for globally optimizing black-box functions that are
expensive to evaluate [9]. We consider the global minimization problem: £ = argmin f¢(£),
£e€E

with input space = and objective function fs : = — R. We consider costly-to-evaluate
functions f¢ for which we have a limited number of evaluations available before we propose an
optimum £* in at most J,,q iterations. We assume we have access only to noisy evaluations
of the objective | = f¢ + ¢, where ¢ ~ N(0,02) is i.i.d. Gaussian noise with variance o2.
Finally, we make no assumptions regarding gradients or convexity properties of fe.

The main steps of a BO routine in iteration j involve (1) response surface learning,
(2) optimal input selection &, , and (3) evaluation of the objective function f¢ at &, .

The BO framework uses the predictive mean and variance of a Gaussian Process (GP) [15]
model to formulate an acquisition function that trades off exploitation, testing promising
controller parameters given the current knowledge, with exploration, sampling unexplored
regions of the design space. The BO algorithm can be initiated without any past observations,
but it is usually more efficient to calibrate the GP model hyper-parameters and calculate a
prior by first collecting an initial set of observations.

4 Methodology

4.1 Controller tuning framework

We define the controller tuning task as a multi-objective optimization (MOQ) problem:
minL(§) = [£1(§), - L, (€)], st £€5, 1)

where & € R™¢ are controller parameters and L(£) are objectives. We consider an MOO
problem for a more general definition; however, controller auto-tuning is commonly framed
as a scalar objective optimization problem. Our proposed framework is fully compatible with
both the multi-objective and scalar-objective definitions of the problem. We assume a system
with decentralized parametric controllers; other than that, the proposed framework makes
no assumptions on the parameter and objective spaces. This general tuning problem can
be redefined as a multistage optimization problem where a subset of controllers is tuned at
every stage. Each stage can be defined as an MOO sub-task. Fig. 1 illustrates the process.

At stage i = 1,2,...,n, of the tuning process, a subset of control parameters (' C Z)
are tuned to minimize some stage-specific objectives (L), given reference signal R’. The rest
of the control parameters are fixed at a previous stage, or before the tuning process begins,
through the constraint parameters (€', P'). At each stage, a subset (£°,,,) of the optimal
control parameters (£,,;,,) is produced as a result of an MOO sub-task described below.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

The I/O pairing and the definition of the stages are task-specific steps, both of which are
commonly solved using expert knowledge [2][16]. The main contribution of this work is a
methodology to automate this expert knowledge requirement and produce an I/O pairing

and stage definition using LLMs. Further details on these steps can be found in Section 4.3.

Control Loop and Stage Definition

Input-Output Stage
Pairing Definition

l

4 Stage 1)
J

Search Space Fixed Values
g-gp=0

R! f}nin

=]

Cost
L= [£; (@), - Ly, (D]
/

!

Stage 2

[Search Space][Fixed Values

~N
g2cs (s-F)P2=0] ffnin G)
L Cost] !"m
~/

L% = [£1(8), . Ln, (D]
'
)
4 Stagen,
g

Search Space Fixed Values
R™g [s] [(§-gw)P=0] fmin

Cost

L' = [£,(8), ...Lw({)]

{

Figure 1 Controller tuning as a Multistage Problem.

The controller tuning optimization task is decomposed into sub-tasks defined as:

min L*(€) = [£1(8), - £, (6)) (2a)
st. £€E (2b)
(€& =0 (2)

where (2c) is a constraint that sets control parameters to specified values (él) from a previous
stage or from before the tuning process begins.

These optimization sub-tasks can be solved using any optimization algorithm, as long as
the cost function and search space are properly defined. For the purpose of this work, we use
Bayesian Optimization to solve the optimization sub-tasks; we refer the reader to [2] for a

more detailed discussion on the optimization sub-tasks and the use of Bayesian Optimization.

4.2 Graph Language For System Representation

We now define a language, in the form of an enhanced system graph, to describe physical
systems in terms of reservoirs, actuators, and connections:

» Definition 3 (Enhanced System Graph). An enhanced system graph is a directed, simple
(no loops), edge-labeled graph G = (V, E, L) that describes relationships between tanks and
pumps in a multi-tank system. The graph is separated into two subgraphs G = GAUGT where
GA = (VA EA, LA) is the actuator subgraph and GT = (VT ,ET L") is the tank subgraph.

10:7

DX 2025

10:8

Automating Control System Design Using Language Models

Let’s first discuss the tank subgraph G7 which describes relations between the different
tanks. Each vertex in the set VT = {1,2,... Nr}, viT € N, represents a tank in the system,
where tank labels (vertices) are assigned arbitrarily, and Np is the number of tanks in the
system. The edge set ET C VT x VT el = (v, vT) represents a liquid flow connection
between the tanks. The direction of the edges represents possible flow directions. A regular
directed edge (v}, vT) represents liquid flow that is only feasible from tank v to tank v]T,
for example, the drain of a gravity-drained tank that feeds a tank below it. A bidirectional

edge {(v]",v]), (v],v])} represents an interconnection between tanks where liquid flow can
occur in both directions, for example, two horizontally aligned tanks connected by a pipe.
Based on the edge directionality and the semantics of edges, we can assign a labeling to
edges for constructing LLM prompts. The edge-label set LT = {above, below, interconnected}
provides the necessary information about the relationships between the tanks for prompt

engineering. The labeling function (7 (e) is defined for any edge e € ET, e = (v;,v;):

interconnected (vj,v;) € ET
1T (e) = < above (vj,v:) € BT ANy < v (3)
below (vj,vi) &€ ET ANy > v;

where an edge is labeled interconnected if it is bidirectional (i.e.: the opposite direction edge
is also in the graph) and above or below if the edge is not bidirectional (i.e.: the opposite
direction edge is not in the graph). An edge e = (v;,v;) is labeled above if vertex v; is of
lower numerical value than vertex v; and below if the opposite is true. Note that the value
of the vertices, which effectively act as labels for the tanks, are assigned arbitrarily, and the
purpose of this labeling strategy is to ensure a consistent distinction between types of edges,
which becomes relevant when building natural language prompts for the LLM. Therefore,
the distinction between above and below edges is done without loss of generality.

We then define the actuator subgraph G4 = (V4, E4, L4) where each vertex in V4 =
{1,2,... Na},v#* € N represents an actuator in the multi-tank system, e.g.: a pump. Every
edge in B4 C VA x VT represents a connection between an actuator and a tank, where an edge
e = (vf, ’U]T) € E4 is always directed from an actuator vertex to a tank vertex. One actuator
vertex can be connected to multiple tank vertices. The labeling function for the actuator
subgraph [: V4 — L4 maps each actuator vertex to a corresponding vertex label that
describes attributes of the fluid going through the actuator which may include: temperature
of the fluid, composition or concentration of the fluid, etc.; e.g.: I4(v) = hot water.

Fig. 2a shows an example three-tank system and its corresponding graph representation
(Fig. 2b). Elements from the tank subgraph are presented in continuous lines while the
actuator subgraph is represented by discontinuous lines.

Pump 1

Tank 1 /70N
Pump 3 Pump 2 N 1

Tank 3 Tank 2

(a) (b)

Figure 2 Graph representation (b) of an example 3-tank system (a).

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

4.3 Input Output Pairing and Stage Definition

In this section we formalize the concepts of I/O pairing and stage definition, and how they
relate to the controller auto-tuning framework defined in Section 4.1.

4.3.1 Input-Output Pairing

Let us consider a system with input space & C R™ consisting of n, system inputs, corres-
ponding to the output of n, decentralized controllers. Let us also consider an output space
Y C R™ consisting of n, outputs, corresponding to known system variables (either by direct
measurement or estimation). In the context of decentralized controllers, we define an I/0O
pairing as a matrix M7/©0 ¢ Mo, xn,» mfj/O € {0,1} where mfj/o = 1 if input u; and output
ilj/ © = 0 otherwise. In practice, an input and an output being paired
means that the value of the output is used to compute the paired system input through the

respective control algorithm. Every input must be paired with an output exactly once.

y; are paired, and m

Let us illustrate this concept using the example from Fig. 2. This three tank system is
fed by three input pumps, pump 1 feeds tank one with an input flow uq, pump 2 feeds tank
two with an input flow ug, and pump 3 feeds tank three with an input flow ug. The levels in
the three tanks are measured, resulting in the respective outputs yi, y2, and y3. The I/O
pairing task in this case is trivial, since it is obvious we want to control the level in tank
i using the pump that feeds tank 7. Assuming a set of inputs: {FlowPumpl, FlowPump2,
FlowPump3}, respectively {ui,us,us}, and a set of outputs: {LevelTankl, LevelTank2,
LevelTank3}, respectively {y1,y2,ys}; Fig. 3 shows example I/O pairings for the system.

Y1 Y2 Y3 Y1 Y2 Y3
w /1 0 0 ww 0 1 0
Uz (0 1 O) Uz (1 0 0)
uz N0 0 1 us N0 0 1
(a) Correct Input-Output Pairing. (b) Incorrect Input-Output Pairing.

Figure 3 Example Input-Output Pairings.

I/0O pairing is equivalent in the literature to control loop design [12] since, pairing an input
and an output defines a feedback loop for the corresponding controller. Following the correct
input-output pairing (Fig. 3a), we define three control loops: {FlowPumpl-LevelTankl1,
FlowPump2-Level Tank2, FlowPump3-LevelTank3}. We formalize a control loop as a tuple
m; = (u3,y;) and tuning a control loop refers to tuning the corresponding controller.

4.3.2 Stage Definition

Once we determine an I/O pairing in the system, we must define the stages for the multistage
optimization problem presented in Section 4.1. This involves defining the total number of
stages ng and, for every stage ¢, the controller tuned at this stage and the control parameters
fixed from previous stages. This information is then summarized into the stage-specific
parameters (Z¢,€", P?) for each optimization subtask (2). In order to produce a concise
description of the stages in the framework, we define a stage matrix M°P € M,, 9 XN miSjD €
{0,1,2} where every row represents a stage, and every column represents a control loop. An

element in the matrix mg;” is 1 if the controller for control loop j is tuned at stage i, 0 if

10:9

DX 2025

10:10

Automating Control System Design Using Language Models

control loop j is open at stage i, and 2 if control loop j is closed at stage i using control
parameters tuned in a previous stage. For the purpose of this work, every controller must be
tuned exactly once, and at least one controller must be tuned at every stage.

What is a correct stage definition, as well as the relevance of this process, is task-specific,
and is often determined from expert knowledge based on the couplings (I/O interactions)
in the system. Ideally, the output of a control loop m; = (u,,y;) should only be affected by
the corresponding input u;. However, this is often not the case and output y; is affected by
variations in the inputs of other loops ur;; when this happens, we say loop ; is coupled
with loop m, = (ug,y;). This relationship is not symmetric, if control loop m; is coupled
with control loop 7, control loop 7 can be decoupled from m;, where variations in input wu;
do not affect output y;. In the context of controller tuning, we tune control loops that are
isolated (i.e.: not coupled to any loops) first and then tune the coupled loops. When tuning
a controller for a coupled loop 7, if possible, we want all the loops that 7; is coupled with
to be closed using control parameters tuned in previous stages, which minimizes variations
in the variables from the coupled loops, making 7; behave like a decoupled loop. Following
this methodology we can see that correct stage definition for a system is not always unique.

Let us illustrate the concept of stage definition using the example from Fig. 2. The control
loops in the system are (Section 4.3.1): {FlowPumpl-LevelTankl, FlowPump2-LevelTank2,
FlowPump3-LevelTank3}, for simplicity, {(u1,y1), (u2,y2), (us,ys)}. In this case, the correct
stage definition should start by tuning the control loop corresponding to tank 1 (uq,y;). This
is an isolated loop in the system since, due to the connection between tank 1 and 3 being
gravity-based, no variations in the pumps feeding tank 2 and 3 can affect the level in 1, while
variations in the pump feeding tank 1 can affect the level in tanks 2 and 3. Tanks 2 and 3 are
interconnected and flow between them can go in either direction, making loops (us,y2) and
(us, ys) coupled both ways; therefore, these loops can be tuned in any order. In summary,
any stage definition that tunes control loop (u1,y1) in the first stage, and maintains this
loop closed for further stages, is considered correct. Fig. 4 shows an example of a correct
and incorrect stage definitions of the system, replacing {0, 1,2} with {open, tuned, closed}.

(u1,y1) (u2,y2) (u3,y3) (u1,y1) (u2,y2) (us,y3)
Stage1l [tuned open open Stagel [open tuned open
Stage2 | closed open. tuned Stage2 | tuned closed open,
Stage3 \closed tuned closed Stage3 \closed closed tuned
(a) Example Correct Stage Definition. (b) Example Incorrect Stage Definition.

Figure 4 Example Stage Definitions.

4.4 LLM prompt design

In this section we discuss how to design input and system prompts (Section 3.3) for an LLM
in order to automate I/O pairing and stage definition, given limited structural knowledge of
the system, for a family of multi-tank systems. We present an algorithm for input prompt
design given the graph representation of the system defined in Section 4.2.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

A system with three gravity drained tanks filled with fluid. Tank 1 is positioned above tank 3
and the drain of tank 1 feeds tank 3 as an input flow. Tank 2 and tank 3 are horizontally
aligned and interconnected by a pipe. The system is fed by 3 pumps, producing input flows.
Pump 1 feeds tank 1. Pump 2 feeds tank 2. Pump 3 feeds tank 3.

Inputs: [FlowPumpl, FlowPump2, FlowPump3|

Outputs: [LevelTankl, LevelTank2, Level Tank3]

3 control loops with 3 PID controllers:

[FlowPumpl-LevelTank1, FlowPump2-LevelTank2, FlowPump3-Level Tank3]

Propose a methodology to tune the controllers sequentially

Figure 5 Input Prompt for Stage Definition.

4.4.1 Input prompt design

In this section we describe the methodology (Algorithm 1) used to design an input prompt
for stage definition in a multi-tank system assuming a graph representation (Def. 3) of the
system is available. The resulting input prompt consists of 6 distinct sections: introduction,
hierarchical relations, interconnections, actuators, input-output-loop list, and task instruction.

We start by introducing the system and the number of tanks (Ny = |[VT|) in it and
then describe the hierarchical relations between tanks. In order to do this, we define a
set of single direction edges, Eg = {(v;,v;) € ET | (vj,v;) ¢ ET}. Every edge in Ey
represents a hierarchical relation between tanks where only one flow direction is feasible,
whether it is due to gravity or a pump forcing a fixed flow. This section of the prompt
design algorithm generates a sequence of |Ep| sentences (one for each element in Fp) that
describe the hierarchical relations between pairs of tanks using the corresponding labels
1T (e;) € {above, below}. The set Ep is ordered from lowest to highest according to min(v;, v;)
(min is the minimum between v; and v;). The edge ordering of set E is done for consistency,
which we have found to impact performance significantly when designing the prompt.

We then describe groups of tanks that are interconnected. To do so, we define a set of
subgraphs G; = {G} C G | |G}| > 1 A G is strongly connected}. For every connected sub-
graph G, we produce a sentence highlighting interconnection between the tanks represented
by the subgraph. The tanks don’t need to be horizontally aligned, we use this sentence
structure to stay consistent with the vertical alignment description of the system hierarchy.

Afterwards, we describe the actuators in the system and their relationship with the
corresponding tanks. For the purpose of this work, we only consider the family of systems
with actuators as pumps, however, the actuator space can be easily expanded by making
the actuator label space LA more expressive. First we list the number of pumps N4 = [Va|.
Then, we add a sentence to the prompt for each actuator v; € VA, where we list the set of
tanks T; = {t} .2 ,...,t7 } that are fed by pump v;. If the fluid through the actuator has

associated attributes, these are added to each actuator sentence by means of 1(v;).

Subsequently, we provide an ordered list of inputs and outputs in the system and, for the
case of the stage definition task, we also provide a description of the control loops. Finally,
instructions about the task (stage definition or I/O pairing) are provided. Fig. 5 shows the
resulting input prompt for stage definition designed for the example system in Fig. 2.

10:11

DX 2025

10:12

Automating Control System Design Using Language Models

Algorithm 1 Input Prompt Design Methodology.

1 Input: G
2 prompt < “A system with { Nt} gravity drained tanks filled with fluid.”
/* Describe hierarchical relations */
3 foreach e; = (v;,,v;,) € Eg do
prompt < prompt + “Tank {min(v;,,vs,)} is positioned {I7(e;)} tank
{max (v, v;,)} and the drain of tank {v;, } feeds tank {v;,} as an input flow.”

5 end
/* Describe interconnection between tanks */
6 foreach G} € G; do
prompt < prompt + “Tank {v; }, tank {v;,}, ..., and tank {v; } are horizontally
aligned and interconnected by a pipe.”

8 end

/* Describe actuator relations x/
9 prompt < prompt + “The system is fed by { N4} pumps, producing input flows.”
10 foreach v; € V4 do
11 prompt < prompt + “Pump {v;} feeds tank {t} }, tank {2 }, ...
12 if [4(v;) # @ then
13 ‘ prompt < prompt + “ with {I4(v;)}.

”

14 end
/* System Inputs, Outputs, Loops, and Task x/
15 prompt < prompt + {List of Inputs and Outputs}
16 if task = StageDefinition then
17 prompt < prompt + “{N, } control loops with {N,} PID controllers”
18 prompt < prompt + {List of Control Loops}
19 prompt < prompt+ “Propose a methodology to tune the controllers sequentially”.
20 else if task = IOPairing then
21 prompt < prompt+ “Propose an input-output pairing for the system”.
22 Output: prompt

4.4.2 System Prompt Design

A well-designed system prompt can enhance the performance of the LLM interaction. The
system prompt design strategy consists of four sections: a role statement, a description of
the task, output formatting instructions, and an output format example.

The role statement is a common practice in system prompt design, usually implemented
with a single sentence in the form: “You are {role}”. In this case we define the role as “expert
control engineer”. We then describe the desired task (I/O pairing or stage definition).

The large output prompt space Z, along with the stochastic nature of the LLM (assuming
non-zero temperature), results in challenges when processing the LLM output programmatic-
ally in a fully automated framework. For example, in the case of I/O pairing, we want to
produce a matrix like the one in Fig. 3 from a natural language output z, € Z. To parse
this output correctly, a consistent output prompt formatting is desired. We ensure this by
adding formatting instructions to the system prompt, as well as an example desired output.

System prompts are independent from the particular configuration of the multi-tank
system, and their design depends on the desired task. Figures 6a and 6b show the system
prompts used for the I/O pairing and stage definition tasks respectively.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

You are an expert control engineer. Provide
a matrix showing recommended input-output
pairings for a system. Your answer must con-
tain a table wrapped in <ans></ans> and
nothing more. The table must be formatted
exactly as described below:

- Columns: System Outputs

- Rows: System Inputs

- Cells: “1”=input and output are paired,
“0”=input and output are not paired

All inputs must be paired exactly once.
Example:

<ans>

[Outputl] [Output2] [Output3] ... [OutputN]
Input1010...0

Input2100... 0

InputS001 ... 0
</ans>

You are an expert control engineer. Your
task is to provide a matrix showing sequen-
tial PID controller tuning order. Upstream
control loops should be tuned first. Your
answer must contain a table wrapped in
<ans></ans> and nothing more. The table
must be formatted exactly as described be-
low:

- Columns: PID controllers by control loop
- Rows: Tuning steps

- Cells: “1”’=tuned at this step, “0”=opened
at this step, “2”=tuned in previous step

At least one controller must be tuned per
step. Each controller is tuned exactly once.
Example:

<ans>

[Loopl] [Loop2] [Loop3] ... [LoopN]

Stepl 010 ... 0

Step2120...0

StepS021...2
</ans>

(a) System prompt for Input-Output Pairing. (b) System prompt for Stage Definition.

5 Experimental Design

5.1 Performance Metrics

In order to evaluate the proposed I/O pairing and stage definition methodologies we use
multiple performance metrics which evaluate output prompt formatting and accuracy, as
well as auto-tuned controller performance.

5.1.1 Performance Metrics for LLM output

Consider a system benchmark b, e.g.: three cascading tanks, two interconnected tanks,
and a task v € {IOPairing, StageDe finition}. Let’s then assume an LLM is prompted
with the corresponding system (z7) and input (zf ") prompts such that the output prompt
zo = LLM (27, zf ") is produced. Let us define the following set of performance metrics in

order to evaluate output prompt z,: correct formatting, accuracy, and percentage of accurate
over correctly formatted.

Correct Formatting. For a given task v and benchmark b, let us define a correctly formatted
set Zf,ﬂ with all the output prompts that match the restrictions imposed in the corresponding
system and input prompts [27,2;”]. An output prompt z, = LLM (2], z? "7 is considered
correctly formatted if z, € Zé’,’v. We are also interested in the average performance over a
set of N interactions (to account for the stochastic nature of the LLM). We define percent of

correctly formatted outputs as:

1, 2z, € Z%’W
b,
0, z ¢ Zp"

L
Uy = Z £ (zo) %100, zo = LLM (27, 227); Lp(z) = { (4)

N
1=1

10:13

DX 2025

10:14

Automating Control System Design Using Language Models

Accuracy. For a given task v and benchmark b, let us define a ground truth set Z%"Y
with all the output prompts that an expert would consider correct. An output prompt
2o = LLM(2,207) is considered accurate if it is in the ground truth set z, € Z57. An

output prompt must be correctly formatted in order to be accurate, i.e.: Zgﬂ C Zé’,’v.
Similarly to proper formatting, we are interested in the percent of accurate outputs:

1, z € Zg"y
b,
0, z ¢ Z3"7

U = Z L1 (z,) %100, zo = LLM (22, 2"7); Lp(zo) = { -

N et 2
=1

Accuracy over Correct Formatting. Finally, we define a metric for LLM outputs that is
only valid over multiple interactions with the LLM: U7, p = g—; % 100. The purpose of this
metric is to evaluate the ability of the LLM to produce accurate outputs, assuming that this
output is correct (hence ignoring incorrectly formatted responses). This is arguably the most
important metric for LLM outputs due to the fact that, if an output is incorrectly formatted,
the interaction with the LLM can be repeated z, = LLM (2], zf "7) until a correctly formatted
output z, € Z}?W is produced. This approach is viable since expert knowledge is not required
to verify the output formatting, however, a low correct formatting metric ¥ can lead to
higher inference costs due to unnecessary interactions.

5.1.2 Performance of tuned controllers

We are also interested in evaluating the performance of the tuned controllers given a stage
definition produced by the LLM. This performance metric is only valid for properly formatted
output prompts (z, € Zfﬂ). We are particularly interested in evaluating performance of
tuned controllers for different stage definitions in order to validate our hypotheses that stage
definition is critical to achieve good controller performance when auto-tuning decentralized
controllers sequentially, which, to the best of our knowledge, is a comparison that has not
been performed before. We do not evaluate the performance of the tuned controllers for
different I/O pairings since this is a well-known topic in the literature [12].

We measure performance of tuned controllers using the integral absolute error (IAE)
metric [16][12][2], a well known controller performance metric that evaluates the ability of
the system, using the tuned controllers, to minimize the error in the measured variables y
with respect to a reference trajectory yr. We use MATLAB bayesopt method to implement
a Bayesian optimization algorithm (with TAE as the cost function) and solve the controller
tuning problem described in Section 4.1 for different stage definitions proposed by the LLM
interactions. A detailed explanation of the full auto-tuning algorithm can be found in [2].

5.2 Multi-tank benchmarks

In this section, we will describe the different multi-tank configurations used to empirically
evaluate the proposed methodology. In order to highlight the details of each task, we use
three distinct set of benchmarks to evaluate: 1/0 pairing LLM output, stage definition LLM
output, and performance of tuned controllers for stage definition.

For 1/0 pairing evaluation we use 5 configurations of the multi-tank system which include:
(1) three cascaded tanks (Fig. 8a) and (2) four cascaded tanks (Fig. 8c). We also evaluate
I/O pairing on three system configurations taken from [12], where input-output pairing is
framed as an optimization problem, and solved iteratively. These configurations are: (3) a
well-known quadruple tank system (Fig. 9a), (4) a variation of the quadruple tank system
(Fig. 9b), and (5) a single tank system where both level and temperature in the tank are
controlled (Fig. 9¢). Table 1 shows the list of configurations for I/O pairing evaluation.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

For stage definition LLM output evaluation we use 7 configurations of the multi-tank
system: (1) two cascaded tanks (Fig. 7a), (2) alternative two cascaded tanks (Fig. 7b),
(3) two interconnected tanks (Fig. 7c), (4) three cascaded tanks (Fig. 8a) (5) alternative
three cascaded tanks (Fig. 8b), (6) the three tank system illustrated in Fig. 2, and (7) four
cascaded tanks (Fig. 8c). Table 2 shows the list of configurations for stage definition LLM
output evaluation. The pairs of configurations (1)-(2) and (4)-(5) respectively describe a
system with the same layout, but different tank labeling. We evaluate alternative labeling
of the same configurations to test robustness of the prompt design methodology to small
changes in the system description, which has shown to be a challenging task [3].

Pump 1 Pump 2

Tank 1 Tank 2

Pump 2 Pump 1 Pump 1 Pump 2

Tank 2 Tank 1 Tank 1 Tank 2

1 T T T

(a) (2T, 1a2). (b) (2T, 1b2). (c) (2T, 1-2ic).

Figure 7 Two-Tank Benchmarks for Empirical Evaluation.

Pump 1 Pump 2
Pump 1

Tank 1 Tank 2 Tank1 Pump 2

Pump 2 Pump 3 1

Tank 2

Pump 3

Tank 2 Tank 3 1

Pump 3 Pump 1

] l_©_ 1 1—©— Tank 3

Pump4

Tank 3 Tank 1

Tank 4

(a) (3T, 1a2, 2a3). (b) (3T, 1b3, 2a3). (c) (4T, 1a2, 2a3, 3ad).

Figure 8 Three and Four Cascaded Tanks Benchmarks for Empirical Evaluation.
Finally, we evaluate the performance of tuned controllers following different stage defini-
tions. We evaluate the performance for three benchmarks: (1) two cascaded tanks, (2) three

cascaded tanks, (3) four cascaded tanks. Tank labeling is not relevant in the case of control
performance evaluation.

0 |

Cold Liquid Pump Hot Liquid Pump
Tank 3 Tank4 Tank 3 Tank 4
Pump 1) Pump 2 pump 10 Pump 2
’ Tank 1 Tank 2 ’ Tank 1 Tank 2 ’ Tank1
(a) (4T, 1b3, 2b4) [12]. (b) (4T, 1b3, 2b4)*. (c) 1T Temperature [12].

Figure 9 Multi-tank Benchmarks taken from [12] for Empirical Evaluation.

10:15

DX 2025

10:16

Automating Control System Design Using Language Models

Controller performance is evaluated for different levels of coupling. For this purpose, we
define a coupling parameter ¢ that represents how coupled the control loops in the system
are. For the case of the cascaded configurations used, we model the coupling parameter ¢ as
a factor that linearly maps the diameters of the drain in the tanks. A high value of ¢ results
in a larger drain diameter, which results in higher drain flows for each tank, which in turn
results in higher input flows into the respective tanks below, translating into higher coupling
between tanks. Conversely, a small drain diameter might result in practically non-existent
coupling between the tanks, which would result in a set of isolated control loops, rendering
the motivation for proper stage definition null. We evaluate the controller performance for
three coupling levels: nominal coupling and 1.5 and 2 times nominal coupling.

Three stage definitions are evaluated, labeled: correct stage definition, incorrect stage
definition, and independent stage definition. Correct stage definition for the three cascaded
configurations refers to a solution that tunes the control loops following the hierarchy; i.e.:
the control loop for the tank on top is tuned first, then the tank below, and so on until
the bottom tank is reached, while at each stage, control loops tuned in previous stages are
closed and controllers are fixed to their tuned parameters. Incorrect stage definition refers
to a solution that tunes control loops in the opposite order to the correct stage definition
while maintaining control loops from previous stages closed. Independent stage definition
refers to the process of tuning a control loop independently at each stage, ie.: control tunings
from previous stages do not carry over to the current stage and every loop, except the loop
being tuned, is open at each stage. The tuning order in this case is not important. This is
technically also an incorrect stage definition for the cascaded configurations, however, we
include it as a separate case because it is a common approach to controller tuning in the
related literature [2][12]. Fig. 10 shows example stage definitions for the two cascaded tanks
system.

(u1,y1) (u2,92) (u1,91) (u2,92) (ui,91) (u2,92)

Stage1 (tuned open Stage1 [open tuned Stage1 (tuned open
Stage2 \ closed tuned Stage2 \tuned closed Stage2 \ open tuned

(a) Correct Stage Definition. (b) Incorrect Stage Definition. (c) Independent Stage Definition.

Figure 10 Example Stage Definitions for Two Cascaded Tanks System.

6 Results and Discussion

In this section we empirically validate the proposed methodology and evaluate the 1/0O
pairing and stage definition tasks for multiple configurations of the multi-tanks system, using
performance metrics discussed in the previous section. All LLM experimental results were
produced using the Claude-Sonnet-3.7 and Claude-Sonnet-4 LLMs, accessed via Anthropic
API [1]. The temperature parameter for the API calls was set to 1.0, which promotes
stochasticity and variety in the LLM outputs. The associated codebase and results can be
found at https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git.

6.1 Input-Output Pairing

To evaluate the performance of the LLM-based methodology when proposing I/O pairings in
a given system, we consider the benchmarks described in Section 5.2. Every input-system
prompt pair was evaluated N = 100 times and percentage values were reported. Overall, we

https://github.com/mjares/DX2025_LLMs_ExpertKnowledge.git

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

Table 1 Analyzing performance for input-output pairing LLM responses.

Benchmark Correct Format (%) Accuracy (%) Accuracy/Format (%)
Sonnet3.7 Sonnet4 Sonnet3.7 Sonnet4 Sonnet3.7 Sonnet4
(1): (3T, 1a2, 2a3) 100 100 100 100 100 100
(2): (4T, 1a2, 2a3, 3ad) 100 100 100 100 100 100
(3): (4T, 1b3, 2b4)[12] 100 100 100 98 100 98
(4): (4T, 1b3, 2b4)* 100 100 99 100 99 100
(5): 1T Temperature [12] 100 100 08 100 98 100

Table 2 Analyzing performance for stage definition LLM responses.

Benchmark Correct Format (%) Accuracy (%) Accuracy/Format (%)
Sonnet3.7 Sonnet4d Sonnet3.7 Sonnet4 Sonnet3.7 Sonnet4
(1): (2T, 1a2) 98 100 98 99 100 99
(2): (2T, 1b2) 97 100 97 100 100 100
(3): (2T, 1-2ic) 100 100 100 100 100 100
(4): (3T, 1a2, 2a3) 93 100 93 100 100 100
(5): (3T, 1b3, 2a3) 96 100 96 100 100 100
(6): (3T, 1a3, 2-3ic) 96 100 94 98 97.9 98
(7): (4T, 1a2, 2a3, 3ad) 94 100 94 100 100 100

can see in Table 1 that the performance was high across all metrics, with 100% consistency
in terms of formatting, which is a challenging task. Accuracy was also high at over 98% for
all cases. This empirically shows that an LLM-based solution can yield expert knowledge
recommendations regarding I/O pairing for benchmarks within the family of multi-tank
systems. Furthermore, for the case of the benchmarks taken from [12], the I/O pairing
matches the one achieved by the optimization approach with over 98% accuracy, while
requiring less resources in terms of optimization problem formulation, expert interactions,
and, potentially, computational cost (assuming inference cost from an LLM interaction is
lower than the cost from solving the optimization problem).

6.2 Stage Definition

In order to evaluate the performance of the LLM-based methodology to define stages for
a multistage control tuning framework, we consider the system configurations described in
Section 5.2. Each input-system prompt pair was evaluated N = 100 times and percentage
values were reported. Table 2 shows a summary of the performance. While formatting was
not as consistent as the I/O pairing case, we can see a very high accuracy/formatting metric
with 100% accuracy in most benchmarks. As discussed in Section 5.1.1, accuracy/formatting
should be the priority metric, since incorrect formatting can be automatically detected,
repeating the interaction with the LLM until a correctly formatted output is produced.

6.2.1 Comparing performance of tuned controllers for different stage
definitions

In this section, we empirically compare the performance of tuned controllers described
in Section 5.2. Controllers are tuned Ng = 10 times for every combination of system
configuration, coupling level, and stage definition, and box-plot results over the 10 runs are

10:17

DX 2025

10:18

Automating Control System Design Using Language Models

Two Cascaded Tanks 60 Three Cascaded Tanks

CICorrect Stages [ICorrect Stages T

Cincorrect Stages [Cincorrect Stages T
’LEIO Independent Stages {7 50 {_IIndependent Stages
< <
3’ :40
5 [
X | 1 g I 1

T T
£ £ 30
S 7 =}
g g =
o S
=%} 6 =%
—_— - 1 == -+
5 10 ' '
@=Nominal @=1.5xNominal ¢=2xNominal ¢=Nominal ¢=1.5xNominal ¢=2xNominal
(a) (b)
Four Cascaded Tanks

140
[CICorrect Stages
Clincorrect Stages

o 120 Independent Stages
<
=100
o
2 %
<
£ T T
£ o o D=
S 60 J_ —
o 1

40

= o =
20
@=Nominal @=1.5xNominal ~ @=2xNominal
(c)
Figure 11 Comparing performance of tuned controllers for different stage definitions and coupling

levels.

reported in Fig. 11. Performance is measured in integral absolute error (IAE), and lower error
values are desired. Overall, we can see that, as the complexity of the system increases, i.e.:
input-output space dimensions, number of components (tanks), etc., the impact of the stage
definition on performance increases. In Fig. 11c, which is the most complex system evaluated
(four cascaded tanks), there is a distinct difference between the performance achieved when
following the correct stage definition and the incorrect stage definitions; however, for the
lower complexity benchmarks (Figures 11a and 11b) the difference is not obvious, with the
two cascaded tank system showing the largest overlap between stage definitions. Similarly, for
every benchmark, an increase in coupling (represented by the ¢ parameter) is also associated
with higher differences between the performances achieved under the correct and incorrect
stage definitions; this is an expected result, as stated in Section 5.2. When we compare
performance improvement for the three tank benchmark, we can see there is a significant
performance improvement when the coupling in the system is high, but there is barely any
difference between stage definitions when the coupling is lower. In general, the greatest
improvement can be seen for the four cascaded tank benchmark at 2 times nominal coupling
(Figure 11c) where a correct stage definition can reduce the error of the tuned controllers by
52% with respect to the incorrect stage definitions.

6.3 Discussion, Limitations, and Future Works

We have evaluated the proposed methodology for a variety of multi-tank benchmarks
(Figures 7, 8, and 9), including a benchmark where temperature and level in a tank are
controlled simultaneously (Fig. 9c¢), and a set of cascading tank benchmarks with different
levels of coupling (Fig. 11). We have empirically shown that, for these benchmarks,
stage definition can have significant impact on the performance of the tuned controllers.

M. J. Ares-Milian, G. Provan, and M. Quinones-Grueiro

Furthermore, we have shown that the proposed methodology for stage definition using LLMs
can propose the correct stage definition and I/O pairing with a high degree of consistency
and accuracy.

We acknowledge that, even though the actuator label space (L“(e)) can integrate notions
of temperature control, as well as other potential extensions (e.g.: liquid composition/concen-
tration), the proposed methodology is mostly centered around the problem of level control in a
family of systems consisting of reservoirs, pumps, and connections. In spite of this limitation,
this is a first step towards a system-informed general methodology for prompt engineering
with the purpose of expert knowledge automation. An extension of these results to a wider
variety of benchmarks would require a redefinition of the mathematical language and the
prompt engineering algorithm; however, the core elements of the methodology would persist:
a graph representation of the system components and interactions, and a prompt engineering
algorithm that binds this graph language to the input prompt space of an LLM. Future works
should focus on proposing a generalized mathematical language and prompt engineering
algorithm, or, if this is not possible, a set of general guidelines for developing these graph
representations and prompt engineering algorithms for different families of benchmarks.

We have proposed a simple topology-based graph representation of the system since we
are aiming for a solution that requires minimal expert interaction and knowledge of the
system, which would be a limitation for more complex system representations such as bond
graphs, process graphs, or structural analysis. However, a generalization of this methodology
for systems other than the multi-tank benchmarks will most likely require more complex
representations of the system, such as the ones mentioned above.

We have focused on systems with centralized control since I/O pairing and stage definition
for sequential controller tuning would rarely be relevant in a centralized control approach.
Furthermore, decentralized parametric controllers, or a hybrid between decentralized and
supervisory control are industry standard solutions. However, future works should focus on
extending the methodology to consider systems with centralized /supervisory control, as well
as systems with integrated decoupling strategies.

This work is also limited by the lack of formal definition of what is a correct I/O pairing
or stage definition apart from what is referenced as expert knowledge in the associated
literature. Therefore, future works will provide a formal framework to measure validity of
expert knowledge in terms of I/O pairing and stage definition.

7 Conclusions

This paper addresses controller-tuning aspects of automated engineering system design. We
proposed a mathematical language to describe a family of multi-tank benchmarks based on
system topology. We implemented an algorithm to bind this mathematical language to the
input prompt space of a Large Language Model as a form of prompt engineering. Following
this methodology, we automated expert knowledge requirements in decentralized controller
auto-tuning related to I/O pairing and stage definition for a multistage tuning framework.
Our proposed methodology showed an accuracy of over 97% for both I/O pairing and stage
definition, with consistent output formatting. Furthermore, we empirically evaluated the
performance of tuned controllers for different stage definitions in a family of multi-tank
benchmarks and showed that, depending on the complexity of the system, and degree of
coupling between control loops, a correct stage definition can improve performance over
the incorrect stage definitions by up to 52%. Future works will extend the mathematical
language and the prompt engineering algorithm to a wider variety of benchmarks.

10:19

DX 2025

10:20

Automating Control System Design Using Language Models

—— References

10

11

12

13

14

15

16

17

18

19

20

Anthropic api. URL: https://console.anthropic.com.

Marlon J. Ares-Milian, Gregory Provan, and Marcos Quinones-Grueiro. Towards automated
controller parameter design in cyber-physical systems: Improving computational cost. In 2025
IEEE International Conference on Smart Computing, SMARTCOMP 2025, 2025.

Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi, and Matt Thomson. What’s the magic
word? a control theory of llm prompting, October 2023. doi:10.48550/arXiv.2310.04444.
B. Ould Bouamama, G. Biswas, R. Loureiro, and R. Merzouki. Graphical methods for diagnosis
of dynamic systems: Review, 2014. doi:10.1016/j.arcontrol.2014.09.004.

Tom B Brown, Benjamin Mann, Nick Ryder, and Melanie Subbiah et. al. Language models
are few-shot learners. In NeurIPS 2020, 2020.

Y. Chen, R. Goebel, G. Lin, B. Su, Y. Xu, and A. Zhang. An improved approximation
algorithm for the minimum 3-path partition problem. Journal of Combinatorial Optimization,
38:150-164, 2019. doi:10.1007/s10878-018-00372-z.

Xingang Guo, Darioush Keivan, Usman Syed, Lianhui Qin, Huan Zhang, Geir Dullerud, Peter
Seiler, and Bin Hu. Controlagent: Automating control system design via novel integration
of llm agents and domain expertise. arXiv preprint arXiv:2410.19811, 2024. doi:10.48550/
arXiv.2410.19811.

P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama, and S. Achiche. Design,
modelling, simulation and integration of cyber physical systems: Methods and applications.
Computers in Industry, 82:273-289, October 2016. doi:10.1016/j.compind.2016.05.006.
H J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve
in the presence of noise. Journal of Basic Engineering, 1964.

Jiang Lu, Pinghua Gong, Jieping Ye, Jianwei Zhang, and Changshui Zhang. A survey on
machine learning from few samples, September 2020. arXiv:2009.02653.

Yifan Luo, Yiming Tang, Chengfeng Shen, Zhenan Zhou null, and Bin Dong. Prompt
engineering through the lens of optimal control. Journal of Machine Learning, 2:241-258,
January 2023. doi:10.4208/jml.231023.

Vasileios K. Mappas, Vassilios S. Vassiliadis, Bogdan Dorneanu, Alexander F. Routh, and
Harvey Arellano-Garcia. Automated control loop selection via multistage optimal control
formulation and nonlinear programming. Chemical Engineering Research and Design, 195:76—
95, July 2023. doi:10.1016/j.cherd.2023.05.041.

Sammyak Mate, Pawankumar Pal, Anshumali Jaiswal, and Sharad Bhartiya. Simultaneous
tuning of multiple pid controllers for multivariable systems using deep reinforcement learning.
Digital Chemical Engineering, 9, December 2023. doi:10.1016/j.dche.2023.100131.

Silke Merkelbach, Alexander Diedrich, Anna Sztyber-Betley, Louise Travé-Massuyes, Elodie
Chanthery, Oliver Niggemann, and Roman Dumitrescu. Using multi-modal llms to create
models for fault diagnosis. In The 35th International Conference on Principles of Diagnosis and
Resilient Systems (DX’24), volume 125, November 2024. doi:10.4230/0ASIcs.DX.2024.6.
C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. USA:MIT
Press, January 2006.

Alejandro Rodriguez-Molina, Efrén Mezura-Montes, Miguel G. Villarreal-Cervantes, and Mario
Aldape-Pérez. Multi-objective meta-heuristic optimization in intelligent control: A survey on
the controller tuning problem. Applied Soft Computing Journal, 93, August 2020.

D. Stenger, M. Nitsch, and D. Abel. Joint constrained bayesian optimization of planning,
guidance, control, and state estimation of an autonomous underwater vehicle. In ECC 2022,
2022.

Prerit Terway, Kenza Hamidouche, and Niraj K. Jha. Dispatch: Design space exploration of
cyber-physical systems, September 2020. arXiv:2009.10214.

K. Tohma, H. 1. Okur, H. Giirsoy-Demir, M. N. Aydn, and C. Yeroglu. Smartcontrol: Interactive
pid controller design powered by llm agents and control system expertise. SoftwareX, 31:102194,
2025. doi:10.1016/J.S0FTX.2025.102194.

Collin Zhang, John X. Morris, and Vitaly Shmatikov. Extracting prompts by inverting llm
outputs, May 2024. doi:10.48550/arXiv.2405.15012.

https://console.anthropic.com
https://doi.org/10.48550/arXiv.2310.04444
https://doi.org/10.1016/j.arcontrol.2014.09.004
https://doi.org/10.1007/s10878-018-00372-z
https://doi.org/10.48550/arXiv.2410.19811
https://doi.org/10.48550/arXiv.2410.19811
https://doi.org/10.1016/j.compind.2016.05.006
https://arxiv.org/abs/2009.02653
https://doi.org/10.4208/jml.231023
https://doi.org/10.1016/j.cherd.2023.05.041
https://doi.org/10.1016/j.dche.2023.100131
https://doi.org/10.4230/OASIcs.DX.2024.6
https://arxiv.org/abs/2009.10214
https://doi.org/10.1016/J.SOFTX.2025.102194
https://doi.org/10.48550/arXiv.2405.15012

A Data-Driven Particle Filter Approach for
System-Level Prediction of Remaining Useful Life
Abel Diaz-Gonzalez &

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Austin Coursey &
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Marcos Quinones-Grueiro
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Gautam Biswas
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

—— Abstract

Accurate estimation of the remaining useful life (RUL) of industrial systems is a critical component
of predictive maintenance strategies. This work presents a data-driven method for RUL prediction
that also quantifies uncertainty, drawing inspiration from model-based particle filtering techniques.
Instead of simulating system state transitions, we model degradation as a stochastic process governed
by performance metrics and use a Bayesian particle filtering framework to infer its underlying
parameters. Our approach bypasses traditional state-space modeling by directly estimating the
end-of-life distribution from observed performance data. Key characteristics of the filter, such as
propagation noise and observation correction strength, are adapted over time based on current
observations and past predictive performance, enabling better capture of future uncertainty. We
evaluate the proposed method using an unmanned aerial vehicle simulation dataset developed for
system-level prognostics research, which includes high-fidelity degradation signals and ground-truth
system performance metrics for validating predictive accuracy.

2012 ACM Subject Classification Applied computing — Aerospace; Computing methodologies —
Artificial intelligence; Computing methodologies — Machine learning approaches

Keywords and phrases remaining useful life, particle filter methods, data-driven methods, system-
level prognostics, performance metrics

Digital Object Identifier 10.4230/0ASIcs.DX.2025.11

Funding Abel Diaz-Gonzalez: NASA University Leadership Initiative (ULI)

1 Introduction

Industrial systems inevitably degrade over time, posing a risk of failure and unexpected
downtime. Accurate estimation of a system’s remaining useful life (RUL) is essential for
implementing predictive maintenance strategies that improve operational efficiency, reduce
unplanned outages, and lower life-cycle costs [12].

Prognostic techniques for RUL estimation are typically classified into model-based, data-
driven, and hybrid approaches [9]. Model-based techniques leverage physical principles to
construct degradation models and can yield interpretable and reliable predictions when
the underlying models are accurate and well-calibrated. However, they require extensive
domain knowledge and are often impractical for systems with complex or poorly understood
dynamics [6]. In contrast, data-driven methods, including deep neural networks, learn
degradation patterns directly from sensor data and are well-suited for modern applications
where large volumes of operational data are available [10, 5]. Despite their success, these
methods often lack interpretability and provide limited tools for quantifying predictive
uncertainty, which is critical for risk-aware decision-making. Hybrid approaches combine
? Abel Diaz-Gonzale.z, Austin Cours.ey, Marcos Quinones-Grueiro, and Gautam Biswas;

37 icensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 11; pp.11:1-11:13

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:abel.diaz.gonzalez@vanderbilt.edu
https://orcid.org/0000-0001-6226-1925
mailto:austin.c.coursey@vanderbilt.edu
https://orcid.org/0000-0003-1774-6442
https://orcid.org/0000-0001-5391-6774
https://orcid.org/0000-0002-2752-3878
https://doi.org/10.4230/OASIcs.DX.2025.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

11:2

Data-Driven Particle Filter for System-Level RUL Prediction

elements of both paradigms to exploit the complementary advantages of physics-based
modeling and data-driven learning. By incorporating domain knowledge into data-driven
frameworks, hybrid methods can improve prediction accuracy, robustness, and extrapolation
capability. However, they also inherit the limitations of both families of techniques, such
as the modeling cost of physics-based approaches and the data requirements of data-driven
methods, which makes their implementation challenging in practice.

In this paper, we introduce a novel prognostic framework that adapts the particle
filter (PF) methodology to a data-driven setting. In traditional model-based prognostics,
PFs are used to estimate the hidden state of a system over time by recursively applying a
known or learned state transition model. However, in data-driven applications, these models
must be inferred from data, and even small errors in the learned dynamics can compound
over time, degrading predictive accuracy. To avoid this issue, our method does not rely on
recursive state estimation. Instead, it directly models the distribution of the performance
metrics that define the system’s end of life (EOL). We assume that these performance values
are available both online and in historical run-to-failure datasets. How they are obtained
from raw system observations, whether through direct measurement or a separate modeling
stage, is outside the scope of this work. Given these inputs, we represent degradation as
a stochastic process indexed by performance level rather than time, allowing for flexible
and interpretable modeling of failure progression. To demonstrate the method, we use an
extension of the Gamma process proposed by [11], which models the distribution of time
required to reach a given performance value.

The parameters of this process, which govern the system’s degradation behavior, are
treated as latent variables within a Bayesian framework and are inferred from the observed
performance values using particle filtering. Our method builds on the probabilistic foundation
of particle filtering but repurposes it to estimate the EOL distribution directly from past
and current observations. This formulation captures both stochastic uncertainty, arising
from inherent randomness in the degradation process, and epistemic uncertainty, due to
limited knowledge about future evolution. As the system progresses, particle weights are
updated through a modified correction step that remains faithful to the particle filtering
framework but accounts for future uncertainty by adjusting the “strength” of the correction.
Observations made early in the degradation timeline, when future outcomes are still highly
uncertain, have a weaker influence on particle weights, while those made closer to failure carry
more weight. Both the propagation noise, used to sample hypothetical values of the latent
process parameters, and the correction strength are learned from historical run-to-failure
data, enabling a data-driven and theoretically grounded approach to modeling uncertainty
across the degradation timeline.

The method can be applied in parallel to multiple performance metrics that reflect
different aspects of system degradation. For each metric, we estimate a dedicated EOL
distribution based on a predefined threshold. The final RUL prediction for the system is
then obtained using standard aggregation rules. In this work, we select the earliest predicted
failure time across all metrics.

The main contributions of this work are as follows:

A data-driven prognostic framework inspired by model-based filtering, which directly

estimates RUL and its uncertainty from performance metrics without relying on system

models or expert knowledge.

A learning-based particle filtering scheme that infers degradation behavior and adapts

uncertainty handling from historical run-to-failure data, offering improved interpretability

over black-box methods.

A. Diaz-Gonzalez, A. Coursey, M. Quinones-Grueiro, and G. Biswas

We evaluate our approach using a custom dataset generated in Simulink, which provides
ground-truth system-level performance metrics under run-to-failure conditions. By modeling
degradation as a stochastic process indexed by performance level and treating its governing
parameters as latent variables, our method uses particle filtering not for state tracking, but
for sequential inference of these degradation parameters. The resulting EOL predictions
are expressed as probabilistic mixtures over learned process trajectories, providing both
interpretable and uncertainty-aware RUL estimates. This formulation offers a principled
alternative to black-box models, with improved transparency and statistical grounding.

2 EOL Particle Filter

Performance metrics used to define the EOL process typically exhibit a monotonic trend [13];
performance degrades over time, and does not recover except following maintenance. We
assume this monotonicity in our analysis and treat noise-induced fluctuations as minor
deviations. We then linearly scale these monotonic metrics so that the performance level s
ranges from 1 (fully healthy) to 0 (the EOL threshold).

Consider the stochastic process {T%}sc,1] that models the time at which the scaled
performance metric reaches the level s. Notice that the distribution of the time to performance
metric EOL is given by the random variable Tj. To model unit-specific degradation behaviour,
we introduce latent degradation parameters X that govern the evolution of the stochastic
process Ts. The parameters X capture intrinsic degradation characteristics that remain fixed
for each unit over its lifetime. Different units may follow distinct degradation trajectories,
and this unit-to-unit variability is encoded through variation across their corresponding
latent parameters X. In practice, the true values of the parameters X are unknown and
must be inferred from data. Once the true parameter vector is identified, i.e., X = z*, the
process {Ts(2*)}se0,1] defines a distribution over the times at which each performance level
s is reached. The randomness inherent in Ts(x*) captures stochastic uncertainty in the
degradation process.

Accurately estimating x* typically requires a dense sequence of observations spanning
the full performance range. However, such data is only available at the end of a unit’s life,
when predictions are no longer needed. For online predictions prior to failure, it is crucial to
account for the uncertainty in the estimation of x* due to missing future observations. To
address this, we adopt a Bayesian framework in which the latent degradation parameters X
are treated as latent random variables with a prior distribution that is updated over time as
new observations are collected. At each time step k, we maintain a posterior approximation
denoted X, allowing us to infer the likely values of x* as additional measurements y; become
available. The stochasticity of X} captures epistemic uncertainty arising from incomplete
information. We employ particle filtering to perform this sequential Bayesian inference in
real time as the system evolves.

2.1 Particle Filters

PFs are a class of Bayesian filters that use sequential Monte Carlo sampling to approximate the

posterior distribution of latent variables with a set of weighted samples or “particles” [7, 14].

While classical filters such as the Kalman Filter are optimal under linear and Gaussian
assumptions, PFs offer a more flexible and nonparametric alternative that performs well in
nonlinear and non-Gaussian settings. In our work, we adapt the particle filtering framework to

sequentially infer the latent degradation parameter X as more observations become available.
This allows us to capture both epistemic and stochastic uncertainty in EOL predictions.

Below we present the details of this degradation model and the inference procedure.

11:3

DX 2025

11:4

Data-Driven Particle Filter for System-Level RUL Prediction

Bayesian filtering provides a principled framework for sequentially updating our knowledge
about a sequence of latent variables as new indirect observations of these variables arrive. At
time step k, the goal is to estimate the posterior distribution of the latent variable X given
all observations yo.; up to current time k. This posterior is often referred to as the belief
distribution and is computed in two recursive steps:

belp(zr) == p(Xp = 21 | York—1 = Yo:k—1)
/ p(zr | xr_1) belp_1(z)_1)dzr_1 (prediction) (1)
bely(zr) == p(Xp = 2 | Yo-r = vo:r) X p(yk | 1) belp(zy) (correction) (2)

The belief distribution bel), thus captures the current probabilistic estimate of Xj,. Notice
that the particle filtering framework depends only on the transition, sensor models:

p(xk | 2r—1) = p(Xk = 21 | Xp—1 = 2k—1) (transition model),

Py | ox) == p(Yr = yr | Xp = 1) (sensor model).

and the initial distribution of the latent variable bely(z) = p(Xo =).
In our setting, the latent process parameters are static, so ideally we have X = X for all
k > 1. However, similar to standard particle filtering, we adopt a pseudo-transition model
with Gaussian propagation noise to maintain particle diversity and mitigate degeneracy.
Each observation yr = (tx,sx) provides an indirect measurement of the underlying
degradation parameters X through the stochastic process Ts. This leads to the following
sensor and transition models:

p(yk | zk) = P(Ts, =t | X = x1),
p(xy | 2p—1) = N(xp-1,%), (3)

where the transition model injects artificial Gaussian noise centered at the previous state.
As usual in particle filtering, for simplification, we assume the covariance matrix ¥ to be
diagonal, which corresponds to injecting independent noise into each state component. Its
diagonal entries control the strength of the perturbation, allowing the filter to explore broader
regions of the parameter space when uncertainty is high, and to concentrate the posterior
distribution as more informative data become available.

The algorithm then follows the standard bootstrap PF framework [7, 8], with a modified
correction step tailored for parameter inference. This modification arises from the fact that,
unlike in standard particle filtering, not all observations provide the same level of insight
into the degradation parameters. Early in the system’s life, observations tend to be less
informative, as much of the uncertainty lies in the unobserved future. Consequently, particles
that appear unlikely based on current data may still correspond to plausible future scenarios
and should not be prematurely discarded. Conversely, near the EOL, observations become
more informative and should exert greater influence on particle selection.

To account for this, we introduce a tempering parameter x > 0, referred to as the
observation correction strength, which modulates the influence of the sensor model. We
temper the likelihood function by raising it to the power k, yielding tempered importance
weights:

o\ = P(Ty, =t | Xp = 2", (4)

A. Diaz-Gonzalez, A. Coursey, M. Quinones-Grueiro, and G. Biswas

This approach follows the power posterior formulation in Bayesian inference, where the
likelihood is scaled to adjust its impact on the posterior. When £ < 1, the update is softened
to preserve particle diversity under high uncertainty. When x > 1, the correction becomes
sharper and more selective. The standard PF corresponds to the special case k = 1.

In our framework, both the observation correction strength s and the variances in the
diagonal matrix ¥ are learned offline from historical data as a function of the observation.
Offline data is also used to construct the initial distribution p(Xo). Specifically, we obtain
a parameter estimate xéz) for each training unit by maximizing the likelihood of its run-to-
failure data, for ¢ = 1,2,...,n. These estimates are then augmented with Gaussian noise
to generate the desired number of particles N, which approximates the initial distribution
p(Xo) as:

N

1
(XO = ac N Z 596(()1) (5)

where §, is the Dirac measure centered at z. This corresponds to a standard PF initialization,
where all particles are equally weighted. The variance of the Gaussian noise used for
augmentation is treated as a hyperparameter of the algorithm.
Then the RUL prediction PF we propose can be written as:

1. Initialization, k = 0. ‘

Fori=1,..., N, we consider xél) and set k = 1.
2. Prediction step

Fori=1,..., N, samplex NN(xk 1)
3. Correction step

Fori=1,..., N, evaluate the importance weights:
) = plye | 5)"

Normalise the importance weights.
~(4)
wl(ci) _ W
N =)
Z_] 1 W

4. Selection step
Resample with replacement N particles {xg)}fil from the set {x } v, according to
the importance weights {wk W

5. Set k < k+ 1 and go to step 2.

2.2 Predictive distribution

At each time step k, particle filtering maintains an empirical approximation bel,(z) of the
posterior distribution over the latent degradation parameters. This distribution represents
the current belief about the true degradation parameter X. In practice, PFs approximate
this belief using a discrete posterior distribution composed of Dirac delta functions centered
at the particles:

belk Zw 5()

where w,(ci) is the importance weights associated with the particle x,(f) .

11:5

DX 2025

11:6

Data-Driven Particle Filter for System-Level RUL Prediction

We use this empirical belief distribution to compute the predictive probability distribution
of Ty, marginalizing over the posterior distribution of Xj:

P(Ts =t|yox) = /P(t | 21) P(2k | Yo:r) drk

_ / P(t | xx) bely (wx) day

““E:u%)P To(Xi) =t | Xi = z)
=1

N
=2 i PT(a) =1). (6)

The result is a weighted mixture distribution, where each component corresponds to the
performance metric stochastic process where the degradation parameter is the particle, that

is, T (x,(j)) for each particle x,(j). This can be interpreted as:

FEach particle 1:,(:) represents a distinct hypothesis about the unit’s degradation behavior.

Its weight w,(f) reflects the current confidence in that hypothesis.

2.3 EOL prediction

In particular, the EOL predictive distribution at time step k£ can be approximated by
N . .
P(Ty =t | yox) = Y _wf P(Ty(z})) = 1). (7)

From the distribution of the stochastic process {Ts}c[0,1], we compute the EOL prediction
at time k as the mean of the EOL predictive distribution:

EOLy == E[T} | you] = }:uﬁ”ﬁ (=), (8)

In general, the distribution P(Ty =t | yo.x) does not have a closed-form solution, but we
can use any numerical method to approximate confidence intervals. To compute a confidence
interval at level ¢, we find the quantiles a and b such that

1—¢
P(T0<Q)ZT7

144
m%<m={},

so that P(a < Tp < b) = £.

Finally, the EOL prediction and confidence interval at time step k of the system are
computed by applying any aggregation of the corresponding performance predictions. In this
work, we use the earliest among the estimated quantities (i.e., mean and quantiles) across all
performance metrics as the final prediction and uncertainty bounds.

Figure 1 provides a visual overview of the proposed RUL prediction method at three
different time points. Each row corresponds to a distinct stage in the system’s lifecycle.

The left panel in each row displays the predicted RUL of the system, along with a
95% confidence interval computed from the empirical particle distribution. As the system
approaches the end of its operational life, the uncertainty decreases and the predictions

A. Diaz-Gonzalez, A. Coursey, M. Quinones-Grueiro, and G. Biswas

become more confident. The green dashed line indicates the ground-truth RUL, while the
solid blue line and shaded salmon region represent the predicted RUL and its confidence
interval, respectively.

The center and right panels depict the predictive probability densities of the stochastic
process {Ts}se[O,l]a each corresponding to a different performance metric, and are based on
their respective current PF estimate of the latent degradation parameters X. Yellow, orange,
and white points indicate past, current, and future observations, respectively. The horizontal
orange bars at the bottom mark the 95% confidence interval of the predicted end-of-life
distributions at the current time, and the vertical blue line denotes the predicted RUL. Both
are aggregated to produce the RUL prediction and confidence interval shown in the left panel.
A brighter point (¢, s) in the plot indicates a higher likelihood of reaching performance level s
at time ¢. At the second time point, for example, a bimodal predictive distribution emerges,
suggesting multiple plausible degradation trajectories consistent with the current particle
estimates.

PF Predictive Distribution(performance 1) PF Predictive Distribution(performance 2)
10 10

—-- true
pred
- . unc

pdf

RUL
@
8
S
/
S
/
/
/
/
/
/
/
scaled performance

pf
scaled performance

o 20 40 60 80
time:

(a) Visualization at an early time step.

RUL prediction PF Prediclive Distribution(performance 1) PF Predictive Dislribution(performance 2)
10 10

——- true
— pred
unc

RUL

scaled performance
paf

scaled performance

0.0
o 20 40 60 80

ume tme

(b) Visualization at a mid-lifecycle time step.

RUL prediction

—-- uue
140 — prea
B unc

PF Predictive Distribution(performance 1) PF Predictive Distribution(performance 2)
10 10

RUL

scaled performance
odf

scaled performance

0.0

time time

(c) Visualization near EOL.

Figure 1 Evolution of RUL prediction and predictive probability densities over three stages of a
system’s life. Each row corresponds to a different time step during the run-to-failure simulation.

11:7

DX 2025

11:8

Data-Driven Particle Filter for System-Level RUL Prediction

3 Performance Model

Following [11], we use the commonly encountered Gamma family of end-of-life distributions
to illustrate our method and present the results. While that work also considers the Weibull
distribution, we focus on the Gamma distribution for simplicity. Another key difference
is that their model is applied to the health index that aggregates all performance metrics
and units distributions, whereas we use it to capture the stochasticity of individual unit
performance values separately.

We extend the parametric model presented in equation (11) of [11] to increase its flexibility.
In the original formulation, all performance trajectories begin at the fully healthy state s = 1,
and the initial variance of the process (at ¢ = 0) is zero. To relax these constraints, we
introduce two additional parameters: a, which decouples the initial performance value from
s =1, and p, which allows the model to capture non-zero variance at early stages.

We define the performance degradation model as:

s(t) =a(l—[b(t—pw)?), b~ InvGamma(f,\), (9)

where s(t) represents the performance level at time ¢, and b is a random variable following
an inverse Gamma distribution.

The parameters of the model are summarized as:

« > 0: controls the initial performance level,

p > 0: controls the curvature or steepness of the degradation curve,

1 < 0: shifts the gamma function from zero to a negative value allowing the degradation

to not start with zero variance,

B, A > 0: shape and rate (inverse scale) parameters of the inverse Gamma distribution.

From this performance model, and following a procedure similar to [11], the distribution
of the time T to reach a given performance level s can be derived as follows:

P(Ty > 1) = P(s(t) >) = P (a (1= [b(t — p)]*) > s)
:P([b(t—ﬂ)]p<l_z)zp<b<(1_;)l/p>

t—p
1 t—p
=pP(->—©L).
(5> 7= z;>1/p)

Since b ~ InvGamma(f, \), we have % ~ Gamma(f, \). Therefore,

p <0 =2 (5 < 7 m) = w (P g

s X
« «

where v denotes the lower incomplete Gamma function. Hence, the stochastic process Ty
representing the time to reach performance level s follows the shifted Gamma distribution:

A
-2

In particular, the EOL distribution corresponds to s = 0, is given by:

T, ~ Gamma (§, As, n), where A;=

Ty ~ Gamma (8, \, 1) .
Finally, we collect all the parameters of the degradation model into a single vector:

X: (/63A7p7l’l"a)7

which defines the latent degradation parameters of the stochastic process. The PF is then
used to infer the value of X that best explains the observed data.

A. Diaz-Gonzalez, A. Coursey, M. Quinones-Grueiro, and G. Biswas

3.1 Dataset

To generate realistic degradation data for evaluating our proposed method, we used a
MATLAB implementation of the octo-rotor simulation model introduced in [1]. This high-
fidelity framework emulates a fault-tolerant unmanned aerial vehicle (UAV) system by
modeling detailed dynamics, control mechanisms, and component degradation under realistic
flight conditions. The simulator incorporates empirically validated degradation behaviors for
key components such as motor internal resistance, battery capacity, and internal resistance,
capturing both component aging and environmental interactions.

Using this platform and the original degradation profiles, we created a custom dataset
aligned with our experimental goals. Each UAV is modeled with nine degrading components:
eight motors (each with degrading internal resistance) and one battery (modeled with
degrading charge capacity and internal resistance). We simulated run-to-failure trajectories
for 20 UAVs, each performing repeated missions along a square 1km flight path at a fixed
altitude of 50meters. The missions include full take-off and landing cycles and are conducted
under a constant 10 m/s wind disturbance in the negative z-direction. This simulation
environment provides a controlled yet complex test bed for validating prognostic methods
under realistic operational and degradation conditions.

Two performance metrics were monitored throughout each UAV’s run-to-failure simulation:
a component-level metric, the battery state of charge (SOC), and a system-level metric, the
cumulative position error over the flight trajectory. The position error was computed as
the accumulated distance between the UAV’s measured position and its projection onto the
intended straight-line path between consecutive waypoints. After each flight, these metrics
were recorded, and the simulation continued until either metric exceeded a predefined failure
threshold. Specifically, the failure threshold for SOC was set to 0.3, while the threshold for
cumulative position error was defined as the equivalent of 1 meter per second of expected
flight time.

Figure 2 illustrates the evolution of both SOC and cumulative position error across the
20 simulated UAVs, with dashed lines indicating the failure thresholds for each metric.

soc cum_poserror
900

0.50

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
time (cycle) time (cycle)

(a) Battery SOC. The dashed black line marks the ~ (b) Cumulative position error. The dashed black
failure threshold at 0.3. line indicates the failure threshold of 884 meters.

Figure 2 Evolution of system-level performance metrics for 20 UAVs throughout their run-to-
failure simulations.

As a post-processing step, the final flight in which failure occurred was removed from
each trajectory, and both performance metrics were normalized to the interval [0,1]. The
maximum healthy value observed across the dataset was mapped to 1, and the respective

11:9

DX 2025

11:10

Data-Driven Particle Filter for System-Level RUL Prediction

failure threshold to 0. Among the 20 UAVs, failure was triggered by the cumulative position
error in 9 cases, and by SOC depletion in 11 cases. We randomly selected 15 UAVs for
training and 5 for testing.

4 Results

We applied our method described in Section 2 using the degradation model described in
Section 3 to our generated dataset described in Section 3.1. Then we have our latent space
= (B, \, p, p, @), defined by the degradation model (9).

4.1 Training

The first step of our method is to estimate the initial distribution of the EOL particle
filter, denoted P(Xy). To do this, we learn an individual parameter vector xgl) for each
training unit ¢ = 1,2, ..., n by maximizing the likelihood of its degradation data and using
the performance degradation model defined in equation (9). In our dataset, the number of
training units is n = 15. So the initial estimation of the latent distribution P(Xy) is given
by equation (5) for the learned values x((f), 1=1,2,...,15.

Figure 3 shows the predictive distribution of the particle filter deduced in equation (6),

N
1
P(Ty(Xo) =t) ~ NZ =t), sc[0,1], t>0

for the initial step k¥ = 0 and without considering the augmentation step (i.e. N = n).
We include the augmentation step in the next subsection because the augmentation noise
variance is a hyperparameter.

soc cum_poserror

Gamma Mixture Process Gamma Mixture Process

0.00

Figure 3 Initial prediction probability density functions for the degradation gamma mixture
model learned from training data, shown for both performance metrics. These define the initial
belief distribution of the particle filter, belo(x) = p(Xo = z). Circled points denote the training data.
For illustration purposes, we have not included the augmentation step, so the number of particles N
is equal to the number of training units n. At this stage, no observations have been received and
the distribution is based solely on the particles learned from data.

4.2 Evaluation

To learn the correction strength and the variance of the PF propagation noise, we learned
a function f that maps the current observation to these six parameters: x (as defined in
equation (4)) and the diagonal entries of ¥ as defined in equation (3)) corresponding to the

A. Diaz-Gonzalez, A. Coursey, M. Quinones-Grueiro, and G. Biswas

noise of the degradation model parameters (3, A, p, i, «). The function is linear, except for
a softplus activation applied to the output to ensure positivity. Since the observation is
two-dimensional, yi = (tx, sx), and we included bias terms, we obtained a total of 3 x 6 = 18
hyperparameters for learning this function. An additional hyperparameter is used for the
variance of the augmentation noise employed to build the initial distribution, resulting in a
total of 19 hyperparameters.

We used Optuna [2] for hyperparameter optimization, employing its implementation of
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [4], which is well-suited
for efficiently exploring complex and non-convex search spaces. We applied leave-one-out
cross-validation. In each fold, the initial distribution was estimated using 14 out of the 15
training units, and the hyperparameters were optimized by evaluating performance on the
remaining unit. For the experiments, we set the number of particles at nparticies = 3010
(we added 10 to make the number of particles a multiple of the 14 training unit fold). We
applied our EOL particle filter method independently to both performance metrics: SOC
and cumulative position error and at each time step, we evaluated the predictive accuracy
using the log-likelihood of future observations under the predictive distribution of the EOL
particle filter, as defined in equation (6).

4.3 RUL Prediction

To assess performance, we used three standard prognostic metrics: one for RUL prediction
quality (root mean square error, RMSE) and two for uncertainty estimation (prediction

interval coverage probability, PICP, and prediction interval normalized width, PINAW).

RMSE captures overall prediction accuracy; PICP measures how often the ground-truth
RUL falls within the prediction interval; and PINAW captures how tight the interval is,
normalized over the range of RUL values.

Figure 4 shows the predicted RUL trajectories along with 95% confidence intervals for
both predictive and uncertainty variance across the 5 test UAVs. The experiment was
repeated 10 times to assess statistical robustness. The model effectively captures degradation
trends and represents both aleatoric and epistemic uncertainty. As the system approaches

EOL, the uncertainty naturally decreases due to the accumulation of informative observations.

Table 1 reports the numerical results over the full lifetime and the last 50 flights, highlighting
improved accuracy in late-stage predictions.

Table 1 RUL prediction performance on the simulated dataset using the proposed EOL PF
method.

Prediction window RMSE PICP PINAW

Full life 20.37 94.72% 39.95%
Last 50 flights 6.47 100.00% 57.711%

5 Conclusions

We introduced a data-driven particle filtering framework for system-level prognostics that

estimates remaining useful life and its uncertainty directly from performance observations.

Unlike traditional model-based approaches, our method operates without requiring a physical
model of the system. Instead, it learns a probabilistic degradation process offline from
historical data and updates this belief online using a modified PF. This structure naturally
captures both stochastic and epistemic uncertainty, while enhancing the interpretability

11:11

DX 2025

11:12

Data-Driven Particle Filter for System-Level RUL Prediction

Dataset: SystemlLevelProg (test). Num Exp: 10

160 === ftrue

— pred

140 4 A} unc

I pred var(95%)
unc var(95%)

120 1

100 A

80 1

RUL (cycle)

60

40

201

T T T T T T
0 100 200 300 400 500 600
time (cycle)

Figure 4 Predicted remaining useful life over flight cycles for the five test UAVs. The green
dashed line shows the true RUL, the solid blue line is the mean predicted RUL, and the black line
represents the mean of the 95% confidence interval across 10 repeated runs. The shaded regions show
the 95% confidence intervals for the predictive variance (blue) and uncertainty variance (salmon),
estimated using 1.95 standard deviations.

of purely data-driven models through performance-indexed degradation trajectories. We
evaluated the approach on a high-fidelity UAV simulation environment and demonstrated
that it produces accurate and uncertainty-aware predictions throughout the degradation
lifecycle.

In future work, we plan to evaluate our method on the N-CMAPSS benchmark [3]
and on real-world datasets to compare its performance against state-of-the-art approaches.
Although N-CMAPSS lacks explicit performance metric trajectories, we are developing a
strategy to infer them post hoc. We also plan to enhance the flexibility of the PF by learning
the correction strength and propagation noise parameters by using neural networks. Due
to the stochastic nature of PFs, this will likely require a differentiable approximation or
a reparameterization-style trick to enable gradient-based training. Such extensions could
improve both learning efficiency and expressiveness, allowing the model to better adapt to
complex, nonlinear degradation behaviors.

—— References

1 TIbrahim Ahmed, Marcos Quinones-Grueiro, and Gautam Biswas. A high-fidelity simulation
test-bed for fault-tolerant octo-rotor control using reinforcement learning. In 2022 IEEE/AIAA
41st Digital Avionics Systems Conference (DASC), pages 1-10. IEEE, 2022.

2 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pages 2623-2631,
2019. doi:10.1145/3292500.3330701.

3 Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, and Olga Fink. Aircraft engine run-to-
failure dataset under real flight conditions for prognostics and diagnostics. Data, 6(1):5, 2021.
doi:10.3390/DATA6010005.

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.3390/DATA6010005

A. Diaz-Gonzalez, A. Coursey, M. Quinones-Grueiro, and G. Biswas

10

11

12

13

14

Anne Auger and Nikolaus Hansen. A restart cma evolution strategy with increasing population
size. In 2005 IEEE congress on evolutionary computation, volume 2, pages 1769-1776. IEEE,
2005. doi:10.1109/CEC.2005.1554902.

Yuanhong Chang, Fudong Li, Jinglong Chen, Yulang Liu, and Zipeng Li. Efficient temporal flow
transformer accompanied with multi-head probsparse self-attention mechanism for remaining
useful life prognostics. Reliability Engineering € System Safety, 226:108701, 2022. doi:
10.1016/J.RESS.2022.108701.

Manuel Chao, Chetan Kulkarni, Kai Goebel, and Olga Fink. Fusing physics-based and deep
learning models for prognostics. Reliability Engineering & System Safety, 217:107961, 2022.
d0i:10.1016/J.RESS.2021.107961.

Arnaud Doucet, Nando de Freitas, and Neil Gordon. Sequential Monte Carlo Methods in
Practice. Springer, New York, 2001.

Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. IEE Proceedings F (Radar and Signal Processing),
140(2):107-113, 1993.

Jian Guo, Zhaojun Li, and Meiyan Li. A review on prognostics methods for engineering systems.
IEEE Transactions on Reliability, 69(3):1110-1129, 2019. doi:10.1109/TR.2019.2957965.
Cheng-Geng Huang, Hong-Zhong Huang, and Yan-Feng Li. A bidirectional lstm prognostics
method under multiple operational conditions. IEEE Transactions on Industrial Electronics,
66(11):8792-8802, 2019. doi:10.1109/TIE.2019.2891463.

Dersin Pierre, Kristupas Bajarunas, and Manuel Arias-Chao. Analytical modeling of health
indices for prognostics and health management. In PHM Society European Conference,
volume 8, pages 11-11, 2024.

Darius V Roman, Ross W Dickie, David Flynn, and Valentin Robu. A review of the role
of prognostics in predicting the remaining useful life of assets. In 27th European Safety and
Reliability Conference 2017, pages 897-904. CRC Press, 2017.

Abhinav Saxena, Jose Celaya, Bhaskar Saha, Sankalita Saha, and Kai Goebel. Metrics for
offline evaluation of prognostic performance. International Journal of Prognostics and health
management, 1(1):4-23, 2010.

Enrico Zio and Giovanni Peloni. Particle filtering prognostic estimation of the remaining useful
life of nonlinear components. Reliability Engineering & System Safety, 96(3):403-409, 2011.
doi:10.1016/J.RESS.2010.08.009.

11:13

DX 2025

https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1016/J.RESS.2022.108701
https://doi.org/10.1016/J.RESS.2022.108701
https://doi.org/10.1016/J.RESS.2021.107961
https://doi.org/10.1109/TR.2019.2957965
https://doi.org/10.1109/TIE.2019.2891463
https://doi.org/10.1016/J.RESS.2010.08.009

GEMMA-FD: Zero-Shot Fault Detection in Heat
Pumps Using Multimodal Language Models

Herbert Muehlburger =24

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria
Franz Wotawa 24

Institute of Software Engineering and Artificial Intelligence, Graz University of Technology, Austria

—— Abstract

Fault detection in heating systems is critical for ensuring energy efficiency and operational reliability.

Traditional approaches rely on labeled fault data and expert-defined rules, which are often unavailable
or costly to obtain. We introduce GEMMA-FD (GEMMA for Fault Detection), a novel zero-shot
framework for fault detection in heat pumps that leverages large language models (LLMs) without
requiring labeled anomalies or predefined fault signatures. Our method transforms multivariate sensor
time series into structured natural language prompts and augments them with visual features, such
as line plots of key variables, to facilitate multimodal reasoning. Using GEMMA-3, an open-weight
multimodal LLM, we classify heat pump system states as either normal or faulty. Experiments on a
real-world heat pump dataset show that GEMMA-FD can identify unseen faults with reasonable
precision, although its performance remains lower than a supervised XGBoost baseline trained on
the same prompts. Specifically, GEMMA-FD achieves a macro-F1 score of 0.252, compared to 0.69
for XGBoost, underscoring the trade-off between generalization and targeted accuracy. Nevertheless,
GEMMA-FD demonstrates the potential of foundation models for interpretable, multilingual fault
detection in cyber-physical systems, while highlighting the need for prompt engineering, few-shot
augmentation, and multimodal inputs to improve the classification of rare and complex fault types.

2012 ACM Subject Classification Computing methodologies — Machine learning; Computing
methodologies — Natural language processing; Software and its engineering — Software testing
and debugging; Computing methodologies — Knowledge representation and reasoning; Computing
methodologies — Anomaly detection; Computer systems organization — Embedded and cyber-
physical systems

Keywords and phrases fault detection, anomaly detection, cyber-physical systems, HVAC, heat
pumps, energy systems, large language models, zero-shot learning, open-weight LLMs, interpretable
AT, multimodal prompts, smart energy

Digital Object Identifier 10.4230/0ASIcs.DX.2025.12

Supplementary Material Software (Reproducibility package): https://doi.org/10.5281/zenodo.
16948128

Funding This work was partially funded by the FFG project ”Scalable Agents for Building Manage-
ment and Energy Efficiency” under grant number F0999923190.

Herbert Muehlburger: The position of this author is funded by the FFG project “The automated
ontology generator” under grant number FO999901761.

Acknowledgements We thank the anonymous reviewers for their constructive and valuable feedback.

1 Introduction

Heating, ventilation, and air conditioning (HVAC) systems account for over 30% of global
energy consumption, with heat pumps playing a critical role in modern energy-efficient
buildings [3]. As cyber-physical systems (CPS), heat pumps generate high-dimensional sensor
data that reflect complex operational states. Detecting faults in these systems is essential to
ensure energy efficiency, equipment longevity, and user comfort.
© Herbert Muehlburger and Franz Wotawa;

37 licensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 12; pp. 12:1-12:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:herbert.muehlburger@tugraz.at
https://www.tugraz.at/institute/sai/home
https://orcid.org/0000-0002-7672-0501
mailto:wotawa@tugraz.at
https://www.tugraz.at/institute/sai/home
https://orcid.org/0000-0002-0462-2283
https://doi.org/10.4230/OASIcs.DX.2025.12
https://doi.org/10.5281/zenodo.16948128
https://doi.org/10.5281/zenodo.16948128
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

12:2

Zero-Shot Fault Detection in Heat Pumps with LLMs

Traditional fault detection and diagnosis (FDD) approaches rely on physics-based models
or expert-defined rules [6], which require deep domain expertise and are difficult to scale.
Supervised machine learning (ML) has emerged as a scalable alternative [6,9], but it relies
on large volumes of labeled fault data — often unavailable in real-world CPS deployments. To
mitigate this issue, semi-supervised and weakly supervised methods [5,16] have been explored,
and regression-based field modeling approaches have also been proposed [8]. However, these
still depend on handcrafted features or partial annotations.

Recent advances in large language models (LLMs) offer a new paradigm for fault detection.
LLMs show strong generalization capabilities across diverse tasks, including structured
reasoning and zero-shot classification. Prior work has explored their use in CPS contexts,
such as prompt-based anomaly detection in battery systems [7], and time-series anomaly
detection using structured inputs [1]. In addition, Xu et al. [15] proposed a benchmark
called VisualTimeAnomaly that translates time series into visual representations, enabling
multimodal LLMs to reason about sensor dynamics. However, LLM performance often lags
behind deep learning models unless guided by carefully engineered prompts.

Meanwhile, foundation models for time series forecasting have shown that prompt struc-
ture and in-context reasoning play a key role in zero-shot generalization. TimesFM [4]
demonstrates strong forecasting performance using a decoder-only architecture trained on
time-series data, and TiRex [2] improves forecasting via context distillation and hybrid
memory attention. These developments highlight the importance of architectural and repres-
entational choices in zero-shot time-series tasks.

Building on these insights, we ask: can LLMs detect faults in heat pump systems using
only data from normal operation — without labeled fault data or expert rules?

To answer this, we introduce GEMMA-FD, a zero-shot, multimodal LLM framework for
fault detection in CPS. We reformulate sensor-based fault detection as a structured prompting
task: multivariate time series are converted into natural language descriptions enriched with
statistical summaries, trend cues, and operating modes. We augment these textual prompts
with visual inputs (e.g., heatmaps, line plots, histograms) to guide multimodal reasoning in
GEMMA-3 [13], an open-weight, vision-and-language multimodal LLM released by Google
DeepMind, in a purely zero-shot setting. No fine-tuning or labeled faults are required. Details
on prompt construction and visual summarization are described in Section 3.2.

Our evaluation shows that GEMMA-3 tends to identify normal operating states correctly,
but struggles to detect rare faults — reflecting the current limitations of zero-shot classification
in highly imbalanced CPS settings. Nevertheless, the model captures CPS dynamics to
a surprising extent and offers a reproducible, interpretable, and multilingual baseline for
low-resource FDD.

Our main contributions are:

We present GEMMA-FD, a zero-shot fault detection framework using GEMMA-3, which

transforms sensor time series into structured natural language prompts without requiring

labeled fault data.

We introduce prompt designs that incorporate domain-specific interpretations, sensor

correlations, and visual features (e.g., heatmaps, timeseries plots, histograms) to enhance

LLM reasoning over complex system behavior.

We benchmark GEMMA-3 against a supervised XGBoost baseline trained on the same

prompts, highlighting the trade-offs between zero-shot generalization and supervised

learning for rare fault detection.

We release a fully reproducible pipeline for heat pump fault detection with open-weight

LLMs, including data preprocessing, prompt generation, and evaluation code.

H. Muehlburger and F. Wotawa

The remainder of this paper is organized as follows: Section 2 reviews related work.
Section 3 details our methodology and dataset. Section 4 presents and discusses the exper-
imental results. Finally, Section 6 concludes the paper and outlines directions for future
research.

2 Related Work

Fault Detection and Diagnosis (FDD) in cyber-physical systems (CPS), including HVAC
and heat pump systems, has traditionally relied on model-based or data-driven methods.
Classical approaches use physics-based models or expert-defined rules [6], which require
significant domain knowledge and manual effort. As sensor data has become more abundant,
supervised machine learning (ML) methods have emerged [6], although they rely on labeled
fault data that are often costly and limited in diversity.

Several studies have benchmarked ML algorithms for heat pump FDD. Rahman et
al. [9] compared XGBoost, Random Forest, SVM, and k-NN, identifying XGBoost as the
most effective. Weigert et al. [14] utilized smart meter data for operational and anomaly
classification. Shin and Cho [11] predicted the Coeflicient of Performance (COP) to support
FDD. Other work, such as by Sunal et al. [12], applied deep learning to fault detection in
centrifugal pumps, offering insights transferable to HVAC systems. To reduce dependency
on labeled data, semi-supervised and weakly supervised methods have been explored [5,16].
Puttige et al. [8] demonstrated how regression and neural networks trained on field data can
model heat pump behavior effectively.

Time Series and LLM-based Anomaly Detection. Recent advances in large language models
(LLMs) have introduced new opportunities for time series anomaly detection. Alnegheimish
et al. [1] explored whether general-purpose LLMs can act as zero-shot anomaly detectors
and found that structured prompting is essential, though performance often trails deep
learning baselines. Xu et al. [15] proposed AnomalyTransformer, a self-attention-based
approach for modeling dependencies in time series anomalies. The same authors introduced
VisualTimeAnomaly, a benchmark that translates time series into visual representations to
evaluate multimodal LLM performance on TSAD tasks.

Foundation models tailored to time series have further advanced zero-shot reasoning.
TimesFM [4] presents a decoder-only transformer trained on large-scale time series for
forecasting tasks. TiRex [2] builds on this by improving in-context forecasting performance
across short and long horizons via context distillation and hybrid memory attention. While
both focus on forecasting, their findings inform how architectural and prompt design choices
affect zero-shot generalization for time-dependent tasks.

LLMs in Fault Detection. Muehlburger et al. [7] demonstrated prompt-based anomaly
detection in battery systems using open-weight LLMs, without requiring fine-tuning. In the
HVAC domain, Hofer and Wotawa [6] showed that supervised learning informed by expert
knowledge can yield high-performance FDD models for heat pumps.

Despite their generalization capacity, current LLMs often struggle with zero-shot classific-
ation of rare anomalies unless augmented with domain-specific cues, visual summaries, or
few-shot examples. Our work builds on these insights by introducing a fully prompt-based,
multimodal, zero-shot fault detection framework. We show that open-weight foundation
models can partially encode CPS operational manifolds through structured prompts and
visualizations — though further enhancement is needed for reliable minority-class classification.

12:3

DX 2025

12:4

Zero-Shot Fault Detection in Heat Pumps with LLMs

Sensor Time Series Data (CSV)

v

Sliding Window Segmentation

v

‘ Statistical Summaries & ‘

Visualization Generation

v

Prompt Construction (NL Summary +
Visualizations)

| !

‘ GEMMA-3 (Multimodal LLM, Zero-

‘ XGBoost (Supervised Baseline) ‘

Shot)
[LLM Output (Fault + Explanations) } [XGBoost Output }

Performance Comparison
(Macro-F1, Weighted-F1, Recall,
Precision)

Figure 1 Overview of the GEMMA-FD pipeline. Sensor data is windowed and summarized with
statistics and visualizations. Structured prompts are fed into GEMMA-3 for zero-shot inference,
while the same text is used in a supervised XGBoost baseline. Outputs are compared using standard
performance metrics.

To the best of our knowledge, this is the first application of an open-weight, zero-shot
LLM-based method for multilingual, interpretable, and label-free fault detection in heat
pump systems. We position GEMMA-FD as a diagnostic baseline, illuminating the strengths
and limitations of current foundation models in real-world CPS deployments.

3 Methodology

We compare two contrasting diagnostic pipelines for fault detection in heat pump systems:
a supervised baseline using XGBoost and a zero-shot multimodal baseline using GEMMA-
3. Both pipelines consume the same structured prompt format but differ in knowledge
acquisition: XGBoost is trained on labeled data, while GEMMA-3 infers labels in a zero-shot
setting without any task-specific training.
Supervised baseline (XGBoost): A gradient-boosted decision tree model trained on
structured prompt-label pairs derived from sensor data.

Zero-shot baseline (GEMMA-3): An open-weight multimodal large language model
(LLM) that receives structured prompts and visual summaries as input and performs
inference-only classification.

This setup allows us to assess the trade-off between supervised accuracy and zero-shot
generalization in low-resource diagnostics. Figure 1 illustrates the overall fault detection
pipeline (XGBoost had been trained before).

H. Muehlburger and F. Wotawa

3.1 Dataset and Pipeline Overview

We use multivariate time series data logged from an Austrian heat pump system. Each row in
the CSV logs represents a 1-minute snapshot of multiple synchronized sensor readings. The
dataset contains operational data of the heat pump system (AnlageA JKj), annotated into
four categories: betrieb_ok (normal operation), defrosting_issue, driver_temp_error,
and overheating_control_issue. The dataset contains in total 130,351 samples. For model
training and evaluation we split the data into training (70%, 91,245 samples), validation
(15%, 19,553), and test (15%, 19,553) sets using a stratified sampling strategy. We further
follow two different data pre-processing paths:

XGBoost path: Each row is treated as an individual sample for supervised training
and testing.

GEMMA-3 path: Data is segmented into overlapping 4-hour windows. Each window
is converted into a textual prompt and three visualizations.

All samples are transformed into structured natural language prompts (see Section 3.2).
For GEMMA-3, the prompt is enriched with composite images (heatmap, time series, and
histogram) to support multimodal reasoning.

The GEMMA-FD pipeline processes multivariate time series data logged from a real-world
heat pump system. Sensor readings are stored as CSV files, where each row represents a
1-minute interval of synchronized measurements across multiple physical variables (e.g.,
temperatures, flow rates, compressor speed). We implement two processing pathways:

A row-wise path for supervised learning (XGBoost) that treats each minute independ-
ently.

A windowed path for zero-shot prompting (GEMMA-3) that aggregates sensor readings
over a 4-hour sliding window to provide temporal context.

As illustrated in Algorithm 1 each sample (row or window) is transformed into a structured
textual prompt. For GEMMA-3, additional multimodal visual summaries (heatmap,
time series, histogram) are also generated and jointly passed to the model.

Algorithm 1 GEMMA-FD Pipeline Overview.

Require: Multivariate time series X; annotated row-wise labels (for supervised baseline)

1: if Supervised then

2 for each row z; in X do

3 Construct structured prompt P(z;) from features

4 end for

5: Train XGBoost on TF-IDF representations of P(x;)

6: else

7 for each time window W; in X do

8 Extract statistical summaries and trends

9 Generate time-series plot, heatmap, and histogram
10: Construct structured natural language prompt P(W;)
11: Pass P(W;) and corresponding image to GEMMA-3 for zero-shot classification
12: end for
13: end if

14: return Predicted class labels ¢

12:5

DX 2025

12:6

0 ~J O Ot

10
11

13
14

15
16
17

18

Zero-Shot Fault Detection in Heat Pumps with LLMs

3.2 Prompt Generation

To enable large language models (LLMs) to reason about system state, we convert raw heat

pump sensor data into structured textual summaries, using a sliding-window approach. Each

window corresponds to a fixed temporal segment (e.g., 4 hours) of multivariate time-series

data, which is then transformed into a prompt as follows:

Sensor statistics: For each relevant sensor (e.g., compressor speed, flow rate, inlet /outlet
temperatures), we compute the mean, minimum, and maximum over the window. These
are presented in natural language.

Trend detection: For selected sensors, we detect increasing or decreasing trends using
the first and last sample in the window.

Operating mode inference: If available, the categorical “wp-app-state 38" field is
used to infer the dominant operational mode (e.g., heating, standby, defrost).

Visual summary (multimodal input): A composite image is generated per window
containing: (i) a z-score normalized heatmap, (ii) raw time-series plots, and (iii) sensor
histograms. This image is passed to the LLM alongside the text.

Instructions for classification: We append an instruction block asking the LLM to
jointly analyze the image and text and classify the window into one of four predefined
fault categories.

These design choices aim to emulate how human experts summarize system behavior and
enable the LLM to leverage both symbolic and visual cues for anomaly detection. An example
prompt is shown below:

Listing 1 Zero-shot user-prompt for GEMMA-3 with statistical summaries and classification

instructions.

=== HEAT PUMP SENSOR WINDOW SUMMARY ===
Samples: 60 (2023-01-10 08:00 to 2023-01-10 12:00)
Most frequent operating mode: heating mode

Sensor statistics:
T2 Auflen: mean=2.41, min=-1.00, max=5.20
wp-comp-speed: mean=2800.33, min=2600.00, max=3200.00

Trends:

Compressor speed increased over the window.

Instructions:

The image below contains a Z-score normalized heatmap and time series
— plots for all sensors.

Analyze the numeric data and the image.

Look for abnormal periods, outliers, or persistent trends.

Classify the window as one of: [betrieb_ok, defrosting_issue,
— driver_temp_error, overheating_control_issue].

Output ONLY three function calls as specified. Reply in English and
< German.

H. Muehlburger and F. Wotawa

Listing 1 presents a representative user prompt automatically generated using lightweight
Python functions, while Listing 2 shows the corresponding system prompt provided to the
model. This fully automated setup eliminates the need for manual annotation and enables
scalable, LLM-based analysis of large, unlabeled datasets.

3.3 Model Configuration

We use a locally hosted, open-weight multimodal language model gemma3:4b, available
through the Ollama framework. This variant supports both text and image input and
is based on the GEMMA-3 architecture released by Google DeepMind in 2025. Table 1
summarizes key model characteristics.

Table 1 LLM configuration for windowed heat pump analysis.

Property Value

Model gemma3:4b (multimodal)

Parameters 4 billion

Weights Open-source (Google DeepMind GEMMA-3)
Inference engine Ollama v0.1.34

Modality Multimodal (image + text)

Context window 8,192 tokens

Hardware Apple MacBook Pro 14.2", M1 Pro, 10 Core CPU, 16 Core GPU
Average inference time ~2 seconds per window

Batching Single-sample (per window)

Prompt tuning None (zero-shot only)

All predictions were performed using zero-shot prompting, without any fine-tuning or
few-shot examples. Each prompt-image pair is sent independently to the model. The outputs
are parsed to extract fault labels and free-text explanations.

3.4 Zero-Shot Fault Detection with GEMMA-3

We select gemma3:4b, an open-weight, multimodal LLM released by Google DeepMind [13]
and served via the Ollama framework, to maximize reproducibility and local deployment
feasibility. This 4B-parameter model supports both text and image inputs and is well-suited
for vision-language inference tasks in constrained environments.

All experiments are conducted locally, with each sample consisting of a structured textual
prompt and three visualizations as described in Section 3.2. The model receives a diagnostic
system prompt specifying the output format; only the predicted label from the report
function call is used for evaluation, parsed via regular expressions.

Evaluation is performed on a stratified sample of 300 test prompts. This setup reflects
the label-scarce, zero-shot conditions of real-world fault detection. Our method is inspired in
part by VisualTimeAnomaly [15], which highlights the value of multimodal visualizations
for time series anomaly detection, and by Alnegheimish et al. [1], who emphasize the role of
structured prompt engineering for LLM-based time series analysis.

To enrich the LLM’s context, each inference window is described by a structured natural
language prompt and three visualizations: a z-score normalized heatmap of all sensor signals
(Figure 2a), a time series plot (Figure 2b), and histograms of value distributions for each
sensor (Figure 2¢). All visual inputs are directly derived from real-world heat pump sensor

12:7

DX 2025

12:8

10

12
13
14
15
16

18
19
20
21
22

24
25
26

27

29

Zero-Shot Fault Detection in Heat Pumps with LLMs

Listing 2 System prompt provided to GEMMA-3 for multimodal zero-shot fault classification

in heat pumps. The model outputs three Python function calls: report(), diagnostics(), and

diagnostics_de().

You are a diagnostic assistant for heat pump systems.

For each sample, you will receive:

- A plot (attached image) showing a 4-hour window of all sensor data (
— heatmap, time series, and histogram)

- A structured textual summary of that window

Your task:

- Use BOTH the plot and the textual summary to classify the system state
< during this period.

- Consider all short or persistent abnormalities, not just the overall
— trend.

- If you are unsure, explain your reasoning in the diagnostics output.

- All classes are equally likely.

Output format:

- Output exactly three Python function calls, in this order:
1. report(fault_type: str)
2. diagnostics(explanation: str) # (English)
3. diagnostics_de(explanation: str) # (German)

Valid fault types:

- betrieb_ok: No abnormalities detected during the 24h period.

defrosting_issue: Signs of persistent or recurring defrosting problems.

- driver_temp_error: Driver circuit temperature is out of expected range.

overheating_control_issue: Evidence of overheating or failed thermal
— regulation.

Example output:
report(’driver_temp_error’)
diagnostics(’Between 03:00 and 04:00, the driver temperature exceeded the
< normal range. The rest of the day appears normal.’)
diagnostics_de(’Zwischen 03:00 und 04:00 lag die Fahrertemperatur auf
— erhalb des Normalbereichs. Der Rest des Tages war unauffdllig.’)

IMPORTANT: Do not output any explanations or extra text outside of these
< three function calls. Do not include code blocks or define any
— functions.

H. Muehlburger and F. Wotawa

(a) Z-score normalized heatmap (b) Raw time-series (selected) (c) Representative histograms
i 2 35 atur mm Temperature
140
—— Compressor current Compressor current

1 5 30 % 120 Flow fate
=
c
225 100
. 0 @ 2 -
o S © c
2 = 5 8o
b 0 5 20 o
(%2} N E (]
7777777 -1 - 60
915
o 40
>
-2 10
20
i It -3 5
20 30 0 10 20 30 40 0 10 20 30 40
Time (index) Time (index) Value (arbitrary units)

Figure 2 Visual encodings used as multimodal inputs to GEMMA-3. Each time window
is represented as (a) a z-score normalized heatmap of sensor signals, (b) selected raw time-series plots,
and (c) representative histograms of sensor value distributions. The values shown are exemplary
and schematic for clarity; actual sensor values differ in scale and range but are visualized in the
same encoding format. This schematic representation highlights the multimodal input structure
(temporal, statistical, distributional) rather than domain-specific magnitudes.

data collected in Austria. The axis labels and variable names in the generated plots appear
in German, as they reflect the naming conventions of the original control system and are
passed to GEMMA-3 without translation to preserve semantic fidelity. These visuals capture
temporal and statistical patterns, supporting robust zero-shot anomaly and fault detection.
For the zero-shot fault detection experiments, we evaluated GEMMA-3 using a stratified
random sample of 300 test windows. To ensure class balance in the evaluation set, we
performed stratified sampling across all annotated system states. Each sample consisted of a
structured prompt and multimodal visualizations, as described previously.
The prediction workflow is as follows:
1. Stratify and sample N = 300 test windows from the full labeled dataset, preserving class
proportions.
2. For each sampled window, generate a structured prompt and corresponding visualizations.

w

Run the 11m_predict function, which queries GEMMA-3 via the Ollama inference
framework with each prompt-image pair.

Collect and store all raw LLM outputs for further analysis and reproducibility.

Parse predicted fault labels from the structured LLM output using regular expressions.
Save all predictions and explanations to CSV and TXT files for downstream analysis.
Compute classification metrics (precision, recall, F1-score) and confusion matrix on the
held-out samples.

8. Export results as LaTeX tables and plots for inclusion in the paper.

Nowo s

All LLM experiments are conducted with the model running locally to ensure full
reproducibility and data privacy. We restrict the evaluation to 300 test samples per run to
manage computational demands and facilitate interpretability of individual LLM predictions.

3.5 Supervised Baseline: XGBoost

For the supervised baseline, we train an XGBoost classifier using the full row-level dataset,
where each row corresponds to a sensor snapshot and is labeled with one of the four classes:
betrieb_ok, defrosting_issue, driver_temp_error, or overheating_ control_issue.
Individual CSV files for each class are parsed and transformed into prompt-label pairs
using domain-informed prompt generation. After concatenating the class-specific data, we

12:9

DX 2025

12:10

Zero-Shot Fault Detection in Heat Pumps with LLMs

split the combined dataset into training, validation, and test partitions. To address class
imbalance, the training set is balanced using random oversampling. Each prompt is then
vectorized using term frequency-inverse document frequency (TF-IDF) features, allowing up
to 2,000 unigrams and bigrams.

The XGBoost classifier (objective="multi:softprob") is trained on the balanced train-
ing data with hyperparameters set to 200 trees, a learning rate of 0.05, and a maximum
tree depth of 6. After training, the model is evaluated on the held-out test partition, with
classification metrics and confusion matrices generated to assess performance. This process
is summarized in the following steps:

1. Load and concatenate row-level CSV data for each fault class.
Generate structured prompt-label pairs per sample.

Stratify into train/validation/test splits.

Apply random oversampling to balance the training set.
Vectorize prompts with TF-IDF.

Train the XGBoost classifier and evaluate on the test set.

NSO R WD

Report class-wise precision, recall, F1-score, and confusion matrix.

This workflow describes our supervised baseline for comparison with zero-shot LLM-based
fault detection.

3.6 Evaluation Metrics and Protocol

We report precision, recall, and Fl-score for each class, as well as macro- and weighted
averages to account for class imbalance and fault rarity, following Seliya et al. [10]. Confusion
matrices visualize misclassifications.

Evaluation Protocols. For computational feasibility and qualitative inspection, GEMMA-3
was evaluated on 300 stratified, randomly-sampled windows from the test set, ensuring
balanced class representation. XGBoost was evaluated on the full test set of 19,553 samples.
Here are the details for the two settings:

Windowed Zero-Shot LLM (GEMMA-3): We selected a stratified random sample
of N = 300 test windows to ensure balanced class representation. Each sample was
processed into a structured prompt and multimodal visualization. This sample size was
chosen to balance computational feasibility and qualitative interpretability of individual
LLM outputs.

Row-Wise and XGBoost (Full Test Set): For the row-wise GEMMA-3 variant
and the supervised XGBoost baseline, we evaluated on the complete held-out test set
(n =~ 19,553 samples). No additional stratification was applied; all labeled samples were
included for the XGBoost training.
For each protocol, predictions were parsed, performance metrics computed, and confu-
sion matrices generated. This dual protocol quantifies both balanced and full-scale model
performance for zero-shot and supervised approaches.

Metric definitions. Precision (%) measures the proportion of correctly identified
faults among flagged cases; recall (TP_F%) measures the proportion of actual faults correctly

detected; Fl-score (2 X %ﬁf‘ég:ﬁ) is their harmonic mean.

H. Muehlburger and F. Wotawa

4 Results

This section presents a comparative analysis of fault detection in heat pump systems using
three approaches: (1) GEMMA-3 in a zero-shot setting with windowed, multimodal prompts,
(2) GEMMA-3 with row-wise, non-windowed prompts, and (3) a supervised XGBoost baseline.
We evaluate all methods on the same structured dataset, reporting class-wise precision, recall,
and Fl-scores, as well as macro- and weighted averages to account for class imbalance.
Quantitative results are complemented by qualitative analyses of LLM output.

4.1 Overall Performance

GEMMA-3, evaluated on a stratified random sample of 300 windowed test prompts, achieved
a macro-F1 score of 0.19 and a weighted F1 of 0.39 (Table 2), indicating reliable detection of
the dominant class but limited sensitivity to rare faults. XGBoost, in contrast, reached a
macro-F1 of 0.69 and a weighted F1 of 0.83 on the full test set (19,553 samples; Table 4),
demonstrating robust, balanced performance across all fault categories. These results
underscore the advantage of supervised learning with labeled data for comprehensive fault
detection, while highlighting the generalization challenge faced by zero-shot LLM-based
approaches.

We observe that GEMMA-3 achieves its highest recall on the normal class (betrieb_ok),
suggesting that it captures expected system behavior more reliably than anomalous regimes,
consistent with prior findings on LLM robustness to typical inputs [1].

4.2 Class-Wise Performance Trends

A detailed examination of class-wise metrics reveals that GEMMA-3 achieves its highest
recall for the majority class, betrieb_ok, but performs poorly on the minority fault classes.
Specificallyy, GEMMA-3 attains a recall of 0.345 for betrieb_ok, while recall drops to
zero for defrosting_issue and to 0.056 for driver_temp_error. The model achieves
a moderate recall of 0.500 for overheating_control_issue, but with low precision. In
contrast, the supervised XGBoost model shows high recall across all classes, including 0.818
for defrosting_issue, 0.934 for driver_temp_error, and 0.936 for overheating_control_
issue. This demonstrates that XGBoost not only identifies the majority class but also
maintains strong detection performance for rare faults.

4.3 Error Patterns and Limitations

Analysis of the confusion matrix for GEMMA-3 (Figure 3b) shows that the model predomin-
antly assigns samples to the majority class, betrieb_ok, resulting in frequent misclassification
of fault cases as normal operation. Both defrosting_issue and driver_temp_error are
rarely, if ever, correctly identified, with most of these cases assigned to the normal class.
For overheating_control_issue, GEMMA-3 correctly identifies some instances but also
produces a high number of false positives. In contrast, the confusion matrix for XGBoost
(Figure 3a) is dominated by high values along the diagonal, indicating correct classification
for all classes and minimal confusion between normal and fault types.

12:11

DX 2025

12:12

Zero-Shot Fault Detection in Heat Pumps with LLMs

XGBoost: Heat Pump Fault Classification GEMMAS3 LLM (windowed, multimodal): Heat Pump Fault Classification
betrieb_ok betrieb_ok - 7 5 19
) defrosting issue) defrosting issue 1 1 0 0
2 2
) £
_ _
] 5
=] driver.temp & driver_temp.error 4 2 0 1
overheating_controlissue {84 1 2
' g . .
- : - Z
= g 5 3
Predicted Label Predicted Label
(a) XGBoost on full test set. (b) GEMMA-3 on 300 sampled prompts.

Figure 3 Confusion matrices comparing supervised and zero-shot diagnostic performance.
(a) XGBoost achieves high accuracy across all fault classes with supervised training. (b) GEMMA-3,
operating in a zero-shot setting, displays strong bias toward the majority class (betrieb_ok), with
limited sensitivity to rare faults.

4.4 Performance Comparison

To further clarify the differences between approaches, we present a direct comparison of
zero-shot LLM classification with GEMMA-3 and supervised learning with XGBoost. Both
models are evaluated on identical input data and assessed using standard classification
metrics. The following subsections provide detailed results for each method.

4.4.1 Zero-Shot Inference with Windowing

Table 2 shows the results for the zero-shot setting, where GEMMA-3 was evaluated on 300
randomly selected windows of test prompts. The model output was parsed to extract the
predicted fault class. Figure 3b shows the confusion matrix for this evaluation.

Table 2 Classification performance of GEMMA-3 for zero-shot fault detection in heat pump
systems using structured prompts and windowed multimodal data. The model shows strong recall for
normal operation but limited accuracy for rare fault classes, underscoring the challenges of zero-shot
detection without labeled data.

Class Precision Recall F1 Support
betrieb_ ok 0.755 0.345 0.474 223
defrosting__issue 0.000 0.000 0.000 9
driver_ temp_ error 0.045 0.056 0.050 18
overheating__control__issue 0.148 0.500 0.228 50
micro avg 0.344 0.343 0.344 300
macro avg 0.237 0.225 0.188 300

weighted avg 0.589 0.343 0.393 300

H. Muehlburger and F. Wotawa

The model assigned the majority of samples to the betrieb_ok class, resulting in a recall of
0.345 for this category. For the rare fault classes, recall was near zero for defrosting_issue
and 0.056 for driver_temp_error, while recall for overheating_control_issue reached
0.500 but with low precision. The macro-F1 score was 0.188, and the weighted-F1 was 0.393,
indicating overall limited effectiveness in rare fault detection.

Table 3 Classification performance of GEMMA-3 for zero-shot fault detection in heat pump
systems using row-wise, non-windowed prompts. Compared to the windowed setting, the model
shows higher recall for some fault classes but still struggles to detect overheating_control_issue,
indicating limitations in distinguishing complex fault patterns without temporal context.

Class Precision Recall F1 Support
betrieb_ ok 0.743 0.706 0.724 14,051
defrosting_ issue 0.046 0.251 0.078 630
driver__temp__error 0.159 0.299 0.207 1,170
overheating_ control__issue 0.000 0.000 0.000 0
micro avg 0.549 0.658 0.598 15,851
macro avg 0.237 0.314 0.252 15,851
weighted avg 0.672 0.658 0.660 15,851

4.4.2 Row-Wise Zero-Shot Inference (No Windowing)

Table 3 reports classification performance for GEMMA-3 in a row-wise zero-shot setting,
where each time step is treated independently without temporal aggregation. The model
was evaluated on the entire test set (n = 15,851) using non-windowed prompts.

The highest Fl-score was achieved for the normal operating state betrieb_ok (F1 =
0.724), with precision and recall of 0.743 and 0.706, respectively. This indicates that the
model performs reasonably well for detecting normal operation. Fault classes, however,
exhibit significantly lower scores. For example, defrosting_issue achieved a recall of
0.251 but extremely low precision (0.046), indicating frequent false positives. Similarly,
driver_temp_error reached a recall of 0.299 with low precision (0.159), suggesting limited
fault discrimination ability.

Notably, the model completely failed to detect any instances of overheating_control_
issue, as indicated by zero precision, recall, and F1 score likely due to lack of context in
single-timestep prompts. This aligns with the observation that more complex temporal
patterns are difficult to infer without windowed context.

The macro-averaged Fl-score of 0.252 and the weighted average of 0.660 reflect the
model’s bias toward majority classes. Although the row-wise approach scales more easily
to large datasets, it fails to capture time-dependent anomaly patterns essential for robust
fault diagnosis. These findings highlight inherent challenges in employing multimodal LLMs
directly for fault detection tasks, especially for minority classes. Potential strategies to
enhance performance include targeted prompt-tuning, data augmentation techniques, or
incorporating ensemble methods to improve robustness and accuracy.

12:13

DX 2025

12:14

Zero-Shot Fault Detection in Heat Pumps with LLMs

4.4.3 Supervised XGBoost Baseline

The supervised XGBoost model was trained and evaluated on the same dataset as the LLM,
using class-weighted loss to address class imbalance. It achieved, as shown in Figure 4, a
macro-average F1 score of 0.693 and a weighted-average F1 score of 0.827. Recall exceeded
0.81 for all fault classes, with the highest values observed for overheating_control_issue
(0.936) and driver_temp_error (0.934).

Table 4 Classification performance of XGBoost trained on supervised fault labels for heat pump
fault detection. XGBoost demonstrates high precision and recall across all classes, including rare
faults, highlighting the effectiveness of supervised learning when labeled data are available.

Class Precision Recall F1 Support
betrieb_ ok 0.984 0.768 0.863 14,462
defrosting_ issue 0.378 0.818 0.517 648
driver__temp__error 0.398 0.934 0.558 1,206
overheating_ control__issue 0.750 0.936 0.833 3,237
macro avg 0.627 0.864 0.693 19,553
weighted avg 0.889 0.807 0.827 19,553

These results demonstrate that supervised, class-aware training yields strong diagnostic
performance, even when the input consists of structured natural language prompts identical
to those used by the LLM.

4.5 Error Analysis

A detailed examination of the GEMMA-3 results (Tables 2 and 3) reveal three dominant
error patterns:
Majority class bias: GEMMA-3 disproportionately predicts the betrieb_ok (normal
operation) class, even for samples labeled with faults. This leads to very low recall
for rare fault types such as defrosting_issue (0.000) and driver_temp_error (0.056),
reflecting a strong bias toward the majority class. This behavior is clearly visible in the
confusion matrix (Figure 3b).
Limited fault-specific detection: Fault samples are rarely classified with the correct
fault type, even when statistical summaries contain values outside expected ranges. This
suggests that GEMMA-3, operating under zero-shot conditions, struggles to associate
specific numerical patterns with fault semantics.
Overprediction of certain faults: For overheating control_issue, the model
exhibits moderate recall (0.500) but low precision (0.148). This pattern suggests that
the model often predicts this fault incorrectly (false positives), indicating a tendency to
overtrigger this class rather than true ambiguity at the decision boundary.

In contrast, the XGBoost baseline achieves high recall and precision for all classes,
including minority faults (Table 4). Its confusion matrix (Figure 3a) is dominated by correct
predictions, with minimal misclassification between fault types. This contrast highlights
the challenge of zero-shot LLM-based fault detection — namely, that generalization from
unlabeled normal data is insufficient for robust fault classification in complex cyber-physical
systems.

H. Muehlburger and F. Wotawa

These findings underscore the need for future work on:

Enhancing prompt design with explicit fault indicators and temporal patterns,
Applying few-shot learning to expose models to representative fault cases,

Leveraging visual modality inputs (e.g., plots) more effectively for multimodal reasoning.

4.6 Comparison and Insights

A direct comparison between GEMMA-3 and XGBoost highlights the fundamental trade-off

between label-free generalization and supervised precision in heat pump fault detection.
XGBoost consistently outperforms GEMMA-3, particularly on rare faults such as
defrosting_issue and driver_temp_error, achieving high F1l-scores across all classes
— even when trained on natural language prompts originally designed for LLMs. This
underscores the effectiveness of supervised learning when annotated data is available,
regardless of input format.
GEMMA-3 enables fully label-free fault detection, operating in a zero-shot regime
using structured prompts and visualizations. However, it struggles with class imbalance
and underperforms on minority fault types, limiting its current practical utility.
LLM-based diagnostics remain promising, especially for low-resource or rapidly
evolving environments. Hybrid strategies that integrate LLMs with few-shot exemplars,
domain knowledge, or statistical post-processing may help overcome zero-shot limitations.

These results emphasize that while foundation models enable flexible deployment without
labeled data, they are not yet reliable for safety-critical diagnostics. Improving multimodal
prompt design and combining statistical learning with LLM reasoning are key directions for
future research.

4.7 Future Directions

Out current framework already incorporates multimodal prompts — combining structured
text with visual representations such as heatmaps, time series, and histograms. Future work
could focus on leveraging these features more effectively. Enhancing prompt engineering
with explicit fault indicators and temporal patterns, as well as introducing few-shot learning
with annotated fault cases, may help address the low recall for rare fault types. In addition,
hybrid approaches that combine LLM-based reasoning with supervised or statistical models
could further improve robustness and accuracy. These directions aim to bridge the remaining
gap between zero-shot generalization and reliable fault detection in complex, real-world
cyber-physical systems.

In summary, supervised learning with XGBoost yields balanced detection across all fault
types, while GEMMA-3’s zero-shot, prompt-based classification is largely limited to majority-
class detection and fails to generalize to rare faults. These findings highlight the fundamental
trade-off between the flexibility of zero-shot LLMs and the reliability of supervised models,
motivating the improvements discussed in the next section.

5 Discussion and Limitations

Our results reveal a core trade-off in fault detection for cyber-physical systems: supervised
models like XGBoost achieve high accuracy across all classes (macro-F1 = 0.69) by leveraging
labeled data, while GEMMA-3 enables interpretable, multilingual zero-shot diagnostics
(macro-F1 = 0.24) without requiring any labeled faults. However, GEMMA-3 suffers from
majority-class bias and limited recall for rare anomalies.

12:15

DX 2025

12:16

Zero-Shot Fault Detection in Heat Pumps with LLMs

This performance gap underscores the limitations of zero-shot prompting when fault-
specific cues are weak or absent. Nonetheless, GEMMA-3 delivers natural language explana-
tions and can be deployed in settings where labeled data is scarce or unavailable, making it
a viable foundation for low-label diagnostic pipelines.

To improve zero-shot fault detection, we propose three extensions:

1. Enhance prompt engineering with explicit temporal and fault-indicative features.
2. Introduce few-shot prompts to provide representative fault exemplars during inference.
3. Incorporate retrieval-augmented generation (RAG) using domain-specific corpora

(e.g., technical manuals, field logs) to support root cause explanation.

In this study, we excluded RAG and fine-tuning to isolate the effects of prompt structure
and visual context. This allows us to establish GEMMA-FD as a reproducible zero-shot
baseline and benchmark for future hybrid approaches.

We also acknowledge the limitation of evaluating on a proprietary dataset. Future
work will expand to public HVAC datasets (e.g., UCI SECOM, AHU) and incorporate
unsupervised methods (e.g., Isolation Forest, LSTM Autoencoders) to assess generalizability
and complement LLM reasoning.

Our findings suggest that structured prompting with visual encodings provides a viable
entry point for fault detection in low-label regimes — but bridging the gap to robust deployment
will require hybrid approaches that combine LLMs with symbolic models, supervision, or
retrieval.

6 Conclusion and Qutlook

We introduced GEMMA-FD, a zero-shot, prompt-based framework for fault detection in
heat pumps using open-weight, multimodal large language models. By converting sensor
data windows into structured text and visual inputs, our approach enables interpretable fault
classification without labeled anomalies or expert rules.

While GEMMA-3 shows promise as a flexible, label-free diagnostic tool, it underperforms
supervised methods like XGBoost in precision and recall, particularly for rare fault types.
This illustrates the core trade-off between generalization and accuracy in CPS fault detection.

Looking forward, we see strong potential in hybrid approaches that combine the inter-
pretability and accessibility of LLMs with the precision of supervised models. Enhancements
such as few-shot adaptation, prompt ensembling, and retrieval-augmented generation can
bridge current gaps and improve fault isolation and explanation in real-world deployments.

Ethical Statement

This research does not involve any ethical concerns or conflicts of interest.

—— References

1 Sarah Alnegheimish, Linh Nguyen, Laure Berti-Equille, and Kalyan Veeramachaneni. Can
Large Language Models be Anomaly Detectors for Time Series? In 202/ IEEE 11th Inter-
national Conference on Data Science and Advanced Analytics (DSAA), pages 1-10, October
2024. doi:10.1109/DSAA61799.2024.10722786.

2 Andreas Auer, Patrick Podest, Daniel Klotz, Sebastian Bock, Giinter Klambauer, and Sepp
Hochreiter. TiRex: Zero-Shot Forecasting Across Long and Short Horizons with Enhanced
In-Context Learning, May 2025. doi:10.48550/arXiv.2505.23719.

https://doi.org/10.1109/DSAA61799.2024.10722786
https://doi.org/10.48550/arXiv.2505.23719

H. Muehlburger and F. Wotawa

10

11

12

13

14

15

16

Elaheh Bazdar, Fuzhan Nasiri, and Fariborz Haghighat. Optimal planning and configuration
of adiabatic-compressed air energy storage for urban buildings application: Techno-economic
and environmental assessment. Journal of Energy Storage, 76:109720, January 2024. doi:
10.1016/j.est.2023.109720.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation
model for time-series forecasting. In Proceedings of the 41st International Conference on

Machine Learning, volume 235 of ICML’2/, pages 10148-10167, Vienna, Austria, July 2024.

JMLR.org.

Hongliang Fei, Younghun Kim, Sambit Sahu, Milind Naphade, Sanjay K. Mamidipalli, and
John Hutchinson. Heat pump detection from coarse grained smart meter data with positive
and unlabeled learning. In Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’13, pages 1330-1338, New York, NY, USA,
August 2013. Association for Computing Machinery. doi:10.1145/2487575.2488203.

Birgit Hofer and Franz Wotawa. Detecting Soft Faults in Heat Pumps (Short Paper). OASIcs,
Volume 125, DX 2024, 125:22:1-22:10, 2024. doi:10.4230/0ASICS.DX.2024.22.

Herbert Muehlburger and Franz Wotawa. FaultLines - Evaluating the Efficacy of Open-Source
Large Language Models for Fault Detection in Cyber-Physical Systems*. In 2024 IEEE
International Conference on Artificial Intelligence Testing (AlTest), pages 4754, July 2024.
doi:10.1109/AITest62860.2024.00014.

Anjan Rao Puttige, Staffan Andersson, Ronny Ostin, and Thomas Olofsson. Application of
Regression and ANN Models for Heat Pumps with Field Measurements. Energies, 14(6):1750,
January 2021. doi:10.3390/en14061750.

Md Mahbubur Rahman, Reza Malekian, and Vilhelm Akerstroem. Fault Detection On Heat
Pump Operational Data Using Machine Learning Algorithms. In 2024 11th International
Conference on Internet of Things: Systems, Management and Security (IOTSMS), pages
204-211, September 2024. doi:10.1109/I0TSMS62296.2024.10710259.

Naeem Seliya, Taghi M. Khoshgoftaar, and Jason Van Hulse. A Study on the Relationships of
Classifier Performance Metrics. In 2009 21st IEEFE International Conference on Tools with
Artificial Intelligence, pages 59—66, November 2009. doi:10.1109/ICTAI.2009.25.

Ji-Hyun Shin and Young-Hum Cho. Machine-Learning-Based Coefficient of Performance
Prediction Model for Heat Pump Systems. Applied Sciences, 12(1):362, January 2022. doi:
10.3390/app12010362.

Cem Ekin Sunal, Vladimir Dyo, and Vladan Velisavljevic. Review of Machine Learning Based
Fault Detection for Centrifugal Pump Induction Motors. IEEE Access, 10:71344-71355, 2022.
doi:10.1109/ACCESS.2022.3187718.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, and Ramona
Merhej. Gemma 3 Technical Report, March 2025. doi:10.48550/arXiv.2503.19786.
Andreas Weigert, Konstantin Hopf, Nicolai Weinig, and Thorsten Staake. Detection of
heat pumps from smart meter and open data. Energy Informatics, 3(1):21, October 2020.
doi:10.1186/s42162-020-00124-6.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly Transformer: Time

Series Anomaly Detection with Association Discrepancy, June 2022. doi:10.48550/arXiv.

2110.02642.

Wei Yin, Guo-qing Wang, Wan-sheng Miao, Min Zhang, and Wei-guo Zhang. Semi-supervised
learning of decision making for parts faults to system-level failures diagnosis in avionics system.
In 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), pages 7C4-1-7C4-14,
October 2012. doi:10.1109/DASC.2012.6382418.

12:17

DX 2025

https://doi.org/10.1016/j.est.2023.109720
https://doi.org/10.1016/j.est.2023.109720
https://doi.org/10.1145/2487575.2488203
https://doi.org/10.4230/OASICS.DX.2024.22
https://doi.org/10.1109/AITest62860.2024.00014
https://doi.org/10.3390/en14061750
https://doi.org/10.1109/IOTSMS62296.2024.10710259
https://doi.org/10.1109/ICTAI.2009.25
https://doi.org/10.3390/app12010362
https://doi.org/10.3390/app12010362
https://doi.org/10.1109/ACCESS.2022.3187718
https://doi.org/10.48550/arXiv.2503.19786
https://doi.org/10.1186/s42162-020-00124-6
https://doi.org/10.48550/arXiv.2110.02642
https://doi.org/10.48550/arXiv.2110.02642
https://doi.org/10.1109/DASC.2012.6382418

Beyond Dynamic Bayesian Networks: Fusing
Temporal Logic Monitors with Probabilistic
Diagnosis

Chetan Kulkarni &

KBR Inc, NASA Ames Research Center, Moffett Field, CA, USA
Johann Schumann &

KBR Inc, NASA Ames Research Center, Moffett Field, CA, USA

—— Abstract

Conventional diagnostic systems often fail to account for temporal dynamics — such as duration,
frequency, or sequence of events — which are critical for accurate fault assessment. Existing solutions
that model time, like Dynamic Bayesian Networks (DBNs), typically suffer from computational
complexity and scalability issues.

This paper introduces a hybrid diagnostic architecture that integrates a standard Bayesian
Networks (BNs) with a powerful temporal reasoner R2U2 (Realizable Responsive Unobtrusive Unit).
By decoupling temporal logic from probabilistic inference, our approach allows the specialized R2U2
engine to efficiently process complex time-dependent conditions and provide nuanced inputs to the
BNs. The result is a more scalable, flexible, and robust framework for diagnosing failures in systems
where temporal behavior is a key factor. The paper will detail this architecture, its generation from
system models, and demonstrate its capabilities using a UAV electric powertrain example.

2012 ACM Subject Classification Computing methodologies — Causal reasoning and diagnostics;
Computing methodologies — Temporal reasoning; Mathematics of computing — Probabilistic
inference problems; Computing methodologies — Multiscale systems; Mathematics of computing —
Bayesian networks

Keywords and phrases Bayesian diagnostic network, temporal logic, fault diagnosis, temporal
reasoning, probabilistic inference, scalability

Digital Object Identifier 10.4230/0ASIcs.DX.2025.13
Category Short Paper

Acknowledgements This work was authored by employees of KBR Wyle Services, LLC under
Contract No. 80ARC020D0010 with the National Aeronautics and Space Administration. The
United States Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
worldwide license to reproduce, prepare derivative works, distribute copies to the public, and perform
publicly and display publicly, or allow others to do so, for United States Government purposes. All

other rights are reserved by the copyright owner.

1 Introduction

The ability to diagnose and resolve system malfunctions at their source is fundamental to
the reliability of any complex domain, a critical capability delivered by a robust diagnostics
framework. Although the term is frequently used interchangeably with Fault Detection
and Isolation (FDI), diagnostics is a distinct discipline; whereas FDI is concerned with the
identification and localization of a fault, diagnostics endeavors to determine the precise
nature and underlying cause of said failure. A comprehensive array of methodologies has
been developed to this end, spanning from elementary D-matrices that map test outcomes
to failure modes, to more sophisticated probabilistic models like Bayesian Networks (BNs)
© Chetan Kulkarni and Johann Schumann;

37 licensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 13; pp. 13:1-13:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:chetan.s.kulkarni@nasa.gov
mailto:johann.mschumanN@nasa.gov
https://doi.org/10.4230/OASIcs.DX.2025.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

13:2

Beyond Dynamic Bayesian Networks

and data-driven techniques such as Deep Neural Networks (DNNs). These approaches are
broadly classifiable as either model-based, which depend on an explicit representation of the
system, or model-free, which derive their logic from empirical data. Moreover, the field of
diagnostics is intrinsically linked with system safety and reliability disciplines, such as Fault
Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA), frequently serving as
the mechanism for the practical detection of failure modes identified therein.

A considerable limitation inherent in many conventional diagnostic methodologies is
their static character; while effective in representing the direct causal relationships between
signals and failure modes, they inadequately incorporate temporal dynamics. These temporal
considerations are, however, often indispensable for an accurate diagnosis. For example,
a transient voltage fluctuation may be considered insignificant, yet the same condition
constitutes a valid fault if it persists for a specified minimum duration. Likewise, subsequent
to a change in a system’s operational mode, certain error conditions may be anticipated and
must be disregarded for a defined interval to preclude erroneous fault indications. Other
temporal patterns, such as the occurrence frequency of anomalous data packets or the specific
sequence of events, can alter the diagnostic output. Although solutions like Dynamic Bayesian
Networks (DBNs) attempt to model these time-dependent relationships, their application is
often hindered by computational complexity and model size, which increases as the network
is unrolled over time, and they exhibit limitations in efficiently managing disparate temporal
intervals.

To surmount these challenges, a hybrid R2U2/BN diagnosis system is proposed for
advanced model-based temporal diagnosis. This framework integrates three principal compo-
nents: a standard diagnostic Bayesian Network, a high-capability temporal reasoner (R2U2),
and the potential for incorporating requirements specified in natural language. The novelty
of this approach resides in the symbiotic integration wherein the BN’s inputs (test signals)
and its outputs (health-state nodes) serve as inputs for the R2U2 reasoner. This reasoner,
in turn, supplies temporally processed information to the BN. This architecture facilitates
robust temporal pre-processing, enabling the formulation of complex logical conditions, or
“temporal tests,” such as “the voltage remained below a threshold for at least 10 seconds
or “the lidar system’s health metric was below 0.7 for a minimum of 2 seconds.” The
R2U2 component employs synchronous observers for Future Time Logic (FTL) that utilize a
three-valued logic (true, false, maybe). When propagated to the BN, this three-valued input
provides more nuanced insights for diagnostic reasoning, thereby overcoming the scalability
and interval-management deficiencies characteristic of DBNs.

The motivation for this hybrid architecture arises from the inherent limitations of DBNs.
By embedding temporal relationships directly into the probabilistic graph, DBNs suffer
from state-space explosion and computational intractability, which complicates modeling
sophisticated temporal patterns. The proposed R2U2/BN system provides a more scalable
solution by decoupling temporal reasoning from probabilistic inference. This separation of

b2

concerns allows the Bayesian Network to remain a compact model of causal failures, while
the specialized R2U2 reasoner efficiently handles the full expressive power of temporal logic.
The resulting framework is therefore more flexible and robust for diagnosing systems where
complex temporal dynamics are a critical component of the process.

The rest of this paper systematically develops our proposed diagnostic architecture.
Section 2 provides the necessary background on diagnostic Bayesian networks and the R2U2
monitoring engine. With this foundation, Section 3 introduces our novel methodology,
explaining how we combine temporal monitors with Bayesian networks and how these models
are generated from FMEA. We then provide context by comparing our work to existing
research in Section 4, before offering a final summary and outlining future research avenues
in Section 5.

C. Kulkarni and J. Schumann

2 Background

2.1 Diagnostic Bayesian Networks

As defined by Pearl [22], Bayesian Networks (BNs) are directed acyclic graphs that model
causal relationships between variables. In this framework, the nodes represent the variables
themselves, while the connecting arcs point from a cause to its direct effect. The probabilistic
strength of these causal links is captured by conditional probabilities. The example below,
also from [22], serves as a practical illustration of a BN in action.

Figure 1 shows a representative BN, where the complete joint probability distribution
p(z1, 22,23, 24, x5, x6) is the product of the conditional probabilities of each proposition
given its ancestors, Eq. (1).

p(x1,...,26) =p(xe|rs) p(as|re, £3) p(Ts]T1, T2, T3) P(23]21) P(22|21) P(2T1) (1)

The joint probability distribution could also be expressed with the following notation:

()

Figure 1 Example of directed acyclic graph used to create a Bayesian network.

n

p(@)=[[r(zla)) . (2)

Jj=1

where a; represents the set of ancestors of variable z;, and @ is the random vector containing
all variables x4, ..., 2, [23, 2]. For example, the term p(x4|z1, z2,23) becomes p(z4]ay).

Dependencies among propositions are described through the definition of sets of ancestors
(or parents) and descendants (or children). For example, the set {1, 22,23} contains the
ancestors of x4, while {x9, 23} contains the children of ;. This structural model allows
analysis over interventions, i.e., enable the computation of the joint probability density
function (pdf) conditioned on some specific assumptions over a specific variable in the
network [23]. Starting from the example in Figure 1, it is possible to evaluate the joint pdf
given, e.g., ro has been defined True:

Px,=1 (331,(E3, v 7‘/1"6) :p(l‘ﬁ‘l’s)p(deQ = 1,1’3)
p(134‘$17X2 = 17I3)p(x3|x1)
p(x1). (3)

A key challenge in applying Bayesian Networks is the effort required to assess all condi-
tional probabilities. Each node in the network needs a Conditional Probability Table (CPT)
that defines its state based on every possible combination of its parents’ values, meaning the

13:3

DX 2025

13:4

Beyond Dynamic Bayesian Networks

table’s size grows combinatorially with the number of parents. For instance, while we can
represent an intervention like forcing X5 = 1 by simply removing the edge from its parent xq
(as its state no longer depends on z1, see Eq. (3)), the initial construction of such dependency
tables for networks with many interconnected nodes remains a significant practical obstacle.

2.2 The R2U2 Monitoring Engine

The real-time R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) has been devel-
oped to continuously monitor system and safety properties of an aerospace system. R2U2 has
been implemented as an FPGA configuration [10]. and a software component. Hierarchical
and modular models within this framework [27, 28] are defined using Metric Temporal Logic
(MTL) [13] and mission-time Linear Temporal Logic (LTL) [25] for expressing Boolean for-
mulas and temporal properties. In the following, we give a high-level overview over the R2U2
framework and its implementation. For details on temporal reasoning, its implementation,
and semantics the reader is referred to [25, 10, 28].

2.2.1 Temporal Logic Observers

LTL and MTL formulas consist of propositional variables, the logic operators A, V, =, or —,
and temporal operators to express temporal relationships between events.

R2U2 is capable of handling formulas for the past-time fragment of temporal logic as well
as future time. Below, we briefly describe future-time operators and their informal semantics.
For LTL formulas p,q, we have Op (ALWAYSp), Op (EVENTUALLY p), X'p (NEXTTIME p),
pUq (p UNTILq), and pRq (p RELEASES ¢q). Their formal definition and concise semantics
is given in [25]. On an informal level, given Boolean variables p, ¢, the temporal operators
have the following meaning (see also Figure 2):

Arways p (Op) means that p must be true at all times along the timeline.

EVENTUALLY p (Op) means that p must be true at some time, either now or in the future.

NEXTTIME p (Xp) means that p must be true in the next time step; in this paper a time
step is a tick of the system clock aboard the UAV.

p UNTIL ¢q (pU q) signifies that either ¢ is true now, at the current time, or else p is true
now and p will remain ¢rue consistently until a future time when ¢ must be ¢rue. Note
that ¢ must be true sometime; p cannot simply be true forever.

p RELEASES ¢ (pR q) signifies that either both p and ¢ are true now or ¢ is true now and
remains true unless there comes a time in the future when p is also true, i.e., p A q is
true. Note that in this case there is no requirement that p will ever become true; ¢ could
simply be true forever. The RELEASE operator is often thought of as a “button push”
operator: pushing button p triggers event —q.

For MTL, each of the temporal operators are accompanied by upper and lower time
bounds that express the time period during which the operator must hold. Specifically, MTL
includes the operators U; ;1 p, Opij) P, P Uji j) ¢, and p Ry, 51 g, where the temporal operator
applies over the interval between time i and time j, inclusive (Figure 2).

Additionally, we use a mission bounded variant of LTL [25] where these time bounds are
implied to be the start and end of the mission of a UAV. Throughout this paper, time steps
corresponds to ticks of the system clock. So, a time bound of [0, 7] would designate the time
bound between 0 and 7 ticks of the system clock from now. Note that this bound is relative
to “now” so that continuously monitoring a formula {7 p would produce true at every
time step ¢ for which p holds anytime between 0 and 7 time steps after ¢, and false otherwise.

C. Kulkarni and J. Schumann

MTL Op Timeline

LTL Op Timeline

Opz.6p 0000000 OO
Xp O-@-0-0-0-0-0-0O-0O— [2.6] DA A 40 b dB SRS
200000000
Op Qro,7P o—0—-0—-0—-0—C0-C0—0—0O—
o 1 2 3 4 5 6 1 8
Op O—O0—0—0—0——8—O—0—
pUnsia O @-O-O-0O0-0O0-0 -
pUq 000 e OO OO0 - o T 2 3 45 6 7 %
pRq @—@—@—@- @ ——— - PRgid OO0 0 0 0@®O0 -
o 1 2 3 4 5 6 7 8

Figure 2 Pictorial representation of LTL temporal operators and MTL operators.

3 Temporal Bayesian Diagnosis with Temporal Logic Monitors

Our approach for diagnostic reasoning with temporal elements is based upon the synergistic
combination of an efficient reasoning algorithm for Bayesian networks and the R2U2 temporal
engine.

3.1 Tool Architecture and Modeling Process

Figure 3 gives a high-level overview of the architecture for our approach. Input signals S,
which are obtained at time point ¢ from sensors, software sensors, the system status, and
outputs of our diagnostic BN are first going through a signal processing stage, where the
values, usually floating point numbers, are scaled and subjected to thresholding to obtain
Boolean values. In our architecture, the thresholds and range limits are model-based and
assumed to be fixed. For example, a floating point signal Up,s; might be thresholded using
Upatt < 18V to obtain the Boolean value Ubatt_low. Signal processing is carried out with a
fixed basic rate, e.g., 10Hz.

The vector of Boolean values B, for time ¢ are now input to the R2U2 monitoring engine.
Here, formulas in past-time and future-time logic are evaluated to yield Boolean or 3-valued
(see Section 3.5.1) valuations V; of each of the formulas at ¢. These outputs comprise the
output of our diagnostic system and are also fed into the diagnostic BN.

For example, the formula Ugp,Ubatt_low could correspond to a failure-mode “battery-
too-weak-unusable”. On the other hand, a formula [y, Ubatt_low would filter out short
drops or glitches of the battery voltage, and the result would be used as a value for an
observable sensor node in the BN.

At each point in time ¢, the BN is evaluated and posterior probabilities are calculated.
These probabilities for selected nodes correspond to the presence of failure modes or can
correspond to component health; these values are direct outputs for our diagnosis system.

These posterior probabilities can also provide valuable information, when considered over
time: for example, knowing if subsystem C' has a poor health H(C') < 0.3 for an extended
period of time. Therefore, selected values are fed back into the signal processing to be able
to formalize such temporal properties.

Our proposed diagnostic architecture is purely model-driven and contains no machine-
learning elements. The process steps for configuring and tailoring our tool is outlined in
Figure 4. We derive diagnostic information from a comprehensive suite of models that are
developed during the design phase of a complex and potentially autonomous system (see

13:5

DX 2025

13:6

Beyond Dynamic Bayesian Networks

B D

B

Signal
Processing
R2U2
Temporal
Engine
Network

Diagnostic
Bayesian

Figure 3 High-level representation of our diagnostics architecture.

Req'ments [
FMEA Sl =
FTA -2z Z 3 5%
S a8 =<
w0 0 5 2 o
TIE 35 g =
Am3 g = . .
R — © ° Diagnostic

Engine

ﬁ ! S Config
; ; - o S
‘ \J @LE - g Sa LTL formulas g 2
e i QO 'FE o T 5 =

Qe signal proc a.

i §oa| (P £ o
= S =

Figure 4 Development of the configuration for our hybrid diagnostic engine: The diagnostic BN
and the temporal monitors are developed and generated from system requirements, FMEA, Fault
trees, and other models and documentaton. After compilation for efficient execution both parts are
merged into the machine-executable configuration.

Table 1 for an overview). Most notably, functional decomposition models, fault trees, and the
outputs of a Failure Mode and Effects Analysis (FMEA) are used to automatically construct
the diagnostic Bayesian Network. The probabilities for the Bayesian transitions are informed
by a combination of metrics, including Mean Time To Failure (MTTF) and Mean Time
Between Failures (MTBF), as well as operational conditions, system health, and subject
matter expert (SME) expertise.

These models, together with system and component requirements, Concept of Operations
(ConOPS), and safety/performance requirements are used to define the logic and temporal
monitors for R2U2. In the following sections, we describe in detail how the BN and temporal
monitors are constructed, before we discuss a realistic example.

3.2 BN Construction from Failure Mode and Effects Analysis (FMEA)

To develop an effective system-level diagnosis framework under uncertain conditions, we
integrate information from a Failure Mode and Effects Analysis (FMEA) with a Bayesian
Network (BN). This process unfolds in two main stages: first, we construct the graphical
structure of the BN, and second, we define its conditional probability tables (CPTs) which
quantify the relationships between different failure events.

The initial stage involves building the network’s structure by translating the qualitative
FMEA data into the BN’s components. Then systematically convert the identified causes,
failure modes, and effects from the FMEA into nodes within the network. This includes
creating “observable” nodes that represent real-world sensor data — such as a high-temperature
reading — which are critical for identifying and isolating the root cause of a failure. The

C. Kulkarni and J. Schumann 13:7

Table 1 Types of models typically used for an autonomous aerospace system like a UAV
(from [26]).

Model Context Description

Effect Fault Propagation Model Functions cross referenced in fault propaga-
tion model. This is used to capture the func-
tional degradation due to the presence of one
or more fault(s).

Implementation Functional Decomposition | Reference to blocks in the system model that

Model

implement one or more function(s) in the
functional decomposition model.

Ambiguity Set

Fault Impact, Refinement
Model

Represents a set of faults which cannot be
distinguished based on the triggering Tests.

Operational Im-
pact

Fault Impact,
Plan

Recovery

Reference to system variables and changes in
their operating range.

Requirement Active Diagnosis Proce- | Conditions on system variables in order to ex-
dures, Recovery Plan ecute active diagnosis procedures or recovery
plans.
Mode Require- | Active Diagnosis Proce- | Conditions on system modes in order to exe-
ment dures, Recovery plan cute active diagnosis procedures or recovery
plans.
TestRefs Active Diagnosis Proce- | Additional tests that can be evaluated when
dures an active diagnosis procedure is executed.
Trigger Condi- | Recovery Plan A set of faults related to triggering a recov-
tion ery plan. Any of the faults in the triggering

condition may be handled using the recovery
plan.

Mode Change

Recovery Plan

Mode change introduced by executing a re-
covery plan.

network is then assembled by drawing directed arcs that reflect the causal logic from the
FMEA, pointing from causes to their resulting failure modes and from failure modes to their
ultimate effects. A simple example of a BN structure build from FMEA of an UAV electric
powertrain is shown in Fig.5 for illustration.

Ve

MOSFET—

Figure 5 Example of a simple BN structure build from FMEA of UAV electric powertrain.

DX 2025

13:8

Beyond Dynamic Bayesian Networks

Table 2 Example of conditional probability table for a fault event with two known root causes.

X1 i) f

0 1
0 0 Pojoo Pijoo
0 1 Pojo1 Pijo1
10 poio Pijo
1 1 Pojr1 P11

With the Bayesian Network (BN) structure in place, we then assign probabilities to each
node. First, root nodes (those with no parent nodes) are given prior marginal probabilities.
Next, every other node is assigned a conditional probability based on its parent nodes, using
information derived from the FMEA. To determine these values, we can draw from several
sources, including historical failure data, the expertise of engineers, or established techniques
such as maximum entropy theory [11].

Once the BN is fully defined, it can be used to detect and localize a fault within a complex
system by turning observable nodes to True or False. The process starts when an observable
evidence node, or “symptom,” is triggered — for example, when a sensor value exceeds a set
threshold. This new evidence is fed into the network, which then uses Bayesian inference
to update the probability of every potential root cause. The cause that emerges with the
highest failure probability is identified as the source of the fault. We will address potential
complicating factors, such as environmental conditions and false alarms, in the next section.

3.3 Detailed Modeling Approach and Issues

The dependency among elements in FMEAs do not have to be restricted to deterministic
relationships in BNs [2], and this property intrinsically enhances the modeling of the diagnostic
system. Let us consider, for simplicity, a fault event f with two root causes, its ancestors,
x1 and xo. Table 2 is the conditional probability table of the model, where probabilities
are defined through three binary subscripts 4, j, k& € {0,1}. The term py;; defines the
probability of the outcome k given values 4, j, with k referring to the fault event f and i, j
referring to its ancestors x; and xs. For example, pijgo is the probability that f =1 given
both ancestors x;, xo are 0 (or False).

The fault event may happen, with low probability, because of external causes or unknown
events not described by its ancestors. Such external forcing was called Common Cause
Failures in [2], and following that idea, p19o > 0, and so pgjgg = 1 — p1j9o. On the opposite
side of the spectrum, the fault event may not happen even if both ancestors are activated
(true). This option describes the ability of a system to work partially or reconfigure, [2], or
describes a statistical relationship between the three elements, suggesting that root causes
do not deterministically trigger the failure, so pyj;1 < 1. As a result, the two ancestors
may occur without triggering the fault event, so pg11 > 0 and pyj11 =1 — pgj1 1. Different
ancestors may influence the fault event in different ways, e.g. according to the severity of the
root cause. This properties can be easily embedded in the network by assigning different
values to the probabilities conditioned over {X; =1, X5 =0} and {X; =0, X5 = 1}.

In addition to the cases of failures induced by external variables or prevented system
reconfiguration, the BN should also account for the performance of the measuring and/or
detection system. In the proposed architecture, the evidence used to perform inference
over the network is collected through sensors that measure variables connected (directly or

C. Kulkarni and J. Schumann

indirectly) to the fault event we aim to detect. The sensor performance or, similarly, the
ability of the detection system to identify anomalous sensor data, should be embedded in the
estimation of the CPT values. Reconnecting to the previous example, therefore, the element
Pojoo in Table 2 should account for false alarm rates, and p;j;; should include, on top of any
statistical relationship between the elements, the probability of mis-detection.

3.4 Efficient Evaluation of BN

Different BN inference algorithms can be used to compute a posterior probabilities. These
algorithms include junction tree propagation [14, 12, 29] conditioning [8], variable elimination
[17, 30], stochastic local search [21, 19], and arithmetic circuit evaluation [9, 5].

We select arithmetic circuit (AC) evaluation as our inference algorithm, which compiles
our diagnostic BN into an arithmetic circuit. Especially for real-time aerospace systems,
where there is a strong need to align the resource consumption of diagnostic computation to
resource bounds [20, 18] algorithms based upon arithmetic circuit evaluation are powerful,
as they provide predictable real-time performance [5]. An arithmetic circuit is a directed
acyclic graph (DAG) in which the leaf nodes A represent parameters and indicators while
other nodes represent addition and multiplication operators. Figure 6 shows a small BN and
its corresponding AC.

Figure 6 Small diagnostic Bayesian Network (A) and the corresponding arithmetic circuit (B)
(from [3]).

Posterior marginals in a Bayesian Network can be computed from the joint distribution
over all variables X; € X:

p(Xl,XQ, ..) = H)\g; H 91;‘“
Az Oz|u

where 0., are the parameters of the Bayesian network, i.e., the conditional probabilities
that a variable X is in state x given that its parents U are in the joint state u, i.e.,

13:9

DX 2025

13:10

Beyond Dynamic Bayesian Networks

p(X = z|U = u). Further,)\, indicates whether or not state z is consistent with BN inputs
or evidence. For efficient calculation, we rewrite the joint distribution into the corresponding
network polynomial f [9]:

X Az

Oz|u

An arithmetic circuit is a compact representation of a network polynomial [7] which, in
its in-compact form, is exponential in size and thus unrealistic in the general case. Hence,
answers to probabilistic queries, including marginals and most probable explanations (MPEs),
are computed using algorithms that operate directly on the arithmetic circuit. The marginal
probability (see Corollary 1 in [9]) for « given evidence e is calculated as

1 of
~ Pr(e) W (e)

Pr(z|e)

where Pr(e) is the probability of the evidence e. In a bottom-up pass over the circuit, the
probability of a particular evidence setting (or clamping of A parameters) is evaluated. A
subsequent top-down pass over the circuit computes the partial derivatives ;TJ;.

To evaluate the developed Bayesian Network (BN), we utilized the Samlam software
package [6]. Samlam is a powerful, Java-based tool from UCLA that provides a comprehensive
environment for modeling and reasoning with BNs. It includes a graphical user interface for
building network models and a robust reasoning engine. This engine supports various critical
functions, including classical inference, parameter estimation, sensitivity analysis (to assess
how changes in one node affect the entire network), and the computation of Most Probable
Explanations (MPE) [9, 7].

chem Flight_profile gpicand)
aht_p therm_
— 040% - stated — 1.46% - taten) — 307% - states — o
=1} 39.30% - statel (] 98.54% -statet -] 96.98% - state1 Jr——
‘ ‘ ‘ -] G
T oc ‘ [
= m::Z: tate || = 202% -statq o [1251% - statet
et statd winding_res

it ¥ [Seseddo |
bearing — 453% -staten) =
MOSFET
L B sserx -oater — 000% -staten

state '- 10000% -staket
Th Vb i Tm [l

b v T.

K X K K Ve e e
1 0% -stated [0% -staten [0% -stateo 1 0% -staten I 100% - staten 1 0% -stateo 0% - stated| 1 0% -state0
B 1007 - stater I 100% - statet I 100% - stated I 100% - stated 1 0% -stated| I 100% - statet I 100% - statet I 100% - statet

Figure 7 Evaluation of the BN using the tool Samlam [6].

We applied this framework to the powertrain BN, as shown in the schematic of Fig. 7.
In our evaluation, the sensor nodes are observable and clamped to their current values. The
resulting posterior probabilities of the other nodes are then calculated. For instance, in the
scenario depicted, all sensor readings are nominal except for an abnormal motor current, I,,.
The BN correctly infers a high posterior probability for the “bad motor bearing” fault mode,
identifying it as the likely root cause. It is important to note that this specific example does
not incorporate temporal monitors.

3.5 Defining Temporal Monitors

R2U2 monitors are used in our architecture to pre-process sensor signals (e.g., by thresholding)
and to watch conditions in sensor signals and outputs of the BN over time. In order to allow
simple signal processing, the input language for R2U2 can, in addition to Boolean Variables,
contain arithmetic expressions, like Upq; > 21.0V.

C. Kulkarni and J. Schumann

For diagnostic purposes, there exist a number of different kinds of monitor patterns,
including (see also Table 3):
Thresholding: such monitors perform simple signal processing tasks and determine if the
current signal value is above or below a certain threshold, or is within a given range.
Persistency: a condition is considered to be persistent if it is consecutively true for at least n
time steps: [0, C. Such formulas are used to filter out short dropout or nuisance signals.

Conditions: failure conditions might be only considered, when certain conditions hold, e.g.,
when the system is in a specific mode.

Transient blocking: upon a change in the system (e.g., a mode change), a failure condition
is blocked during a certain temporal interval

Occurrence: these types of monitors can determine if a signal or event occurs more than n
times within a given interval. This type of monitors can be used to trigger events based
upon failure rates, e.g., there should not be more than 3 ill-formed data packets within a
10s interval.

Expectations: these kinds of formulas can be used to monitor if certain events occur before,
during, or after a certain triggering event or condition. E.g., after touchdown, the engine
RPM should be within 30 seconds below 10s71.

Each of the variables of these formulas can be Boolean’s obtained by thresholding sensor
signals or the posterior probabilities of the failure-mode nodes of the diagnostic BN. This
capability allows use to write monitors, which depend on diagnoses. E.g., if the health of a
lidar sensor has been poor for at least the last minute, then only large measurement errors
causes the triggering of a failure mode. Such formulas can be used to customize the diagnosis
system based upon current diagnostic results and health status. If a subsystem has been
diagnosed with a poor health, it might be necessary to tolerate larger error margins in order
to avoid cascading of failure conditions.

Table 3 Typical temporal formulas for monitoring used in our example. Formulas are given in
past time (PT) or future time logic (FT).

’ Formula ‘ L ‘ description

Vi = OiminUsart < 12V PT | battery low voltage V; test succeeds,
if the battery voltage is lower than
12V continuously for at least the
last minute

MR := spin_motor — Q10secArpar > 100 FT | when motor is started, we expect
an increase in RPM of at least 100
within the next 10 seconds

HT := =strong__climb A OiminT > 200F PT | the motor should not be overly hot
for a longer period of time except
when in strong climb mode

B := =batt_overheat A ~O10min—Voarr < 12V FT | the battery is not overheated and
within the next 10 minutes, the bat-
tery voltage shall not fall below 12V

LB := UOiminH(lidar) < 0.5 PT | The LIDAR sensor is diagnosed as
bad, if it had poor health for more
than one consecutive minute

crit := Oiomin Veatt < 12V AQ1minH (lidar) < 0.5 | PT | the battery voltage has been low for
the last 10 minutes and the LIDAR
sensor is unhealthy

13:11

DX 2025

13:12

Beyond Dynamic Bayesian Networks

3.56.1 Synchronous Observers

Besides the (asynchronous) temporal observers described in Section 3.5 for past time and
future time linear temporal logic, R2U2 also provides synchronous observers for future time
logic. Whereas the observers for ptLTL can be valuated at each point in time, future-time
observers might need to be valuated at a later time, because R2U2 cannot look into the
future. For example, the ftLTL formula Q[19,p cannot be valuated at the beginning of the
interval, because it is not yet known if p will become true within the next 10 seconds. Thus,
this formula can, in the worst case, only valuated after 10 seconds. R2U2 provides that
information, but the use of ftLTL formulas for monitoring is not suitable for our application.

In contrast, synchronous observers can be valuated at each point in time. Introduced
in [24], they return one of three possible values: false, maybe, true. Their highly efficient
implementation in R2U2 makes them an ideal candidate for temporal monitors. In addition,
the three-values logic values can be directly carried over to the diagnostic Bayesian network.
Here, the observable sensor nodes now get a third state labeled “maybe”.

Its usefulness for diagnostic reasoning with synchronous future temporal monitors becomes
evident when we look at the following example. Encoding a monitor for “the UAV shall
reach an altitude of 300ft within 20 seconds if the ESC status is OK” as

M := (ESC == ok) A Qjgos (alt > 300ft)

provides valuable information at any point in time. Whereas the asynchronous observer
can only valuated after 20 seconds, the synchronous observer returns “maybe” even at the
beginning of the interval, indicating that the UAV can still reach the required altitude. Only
in the case, the ESC is not working, or the 20 second interval has passed, “false” is returned.
This additional piece of instantaneous information can be used to improve the diagnosis and
can also support autonomous decision-making: in the “maybe”-case, the flight might be
continued if the additional risk can be justified, whereas the “false” will need to cause an
abortion of the mission right away.

3.6 Practical Example

We illustrate our approach with a simple model of an electric powertrain for a UAS system.
As shown in Figure 8A, the system consists of a li-ion battery B, the brushless dc motor M
(only one shown here), and the electronic speed control ESC. For each of the components,
we measure temperature 7', voltage V and current I. In the high-fidelity simulator, which
uses physical and electro-chemical models, measurements are obtained in 10 second intervals.
Figure 8B shows the measurement signals which are typical for a nominal situation, where
between ¢ = 900s and ¢t = 1800s the motor load is increased, leading to increased currents I
and a slight rise in battery temperature. The battery voltage slowly decreases as the battery
discharges as load decreases based on operational modes. Toward the end of the scenario,
the battery is near-empty and discharges very quickly.

In the nominal scenario, voltages and currents at each component are the same. As shown
in Figure 5, our diagnostic BN has input nodes for temperatures, currents, and voltages,
and is capable of diagnosing battery-related issues (thermal runaway, low state-of-charge,
low state-of-health),, motor issues (bearing problems and change in the resistance of the
motor winding), as well as in the electronic controller (power MOSFET electronics, or
pulse-width-modulation (PWM) issues).

Figure 9 shows the original nominal signals for the battery, their discretizations with
R2U2, as well as the posterior probabilities for the SOC and SOH nodes. Most significantly,
a Viate < 21.0V is considered low battery voltage (V_batt_low) and V_batt_nom is a battery

C. Kulkarni and J. Schumann

26 T
| > Vi =04t]
‘g‘ D L Y I R Y S es Ny Viat
A2 Mo R AN R el MR AN
— Im & 227 —_—, |1

Mot S
otor — > Tn 18 ‘

=
1 > Ve 25
SR &

0.5

ESC — > T

Current[A]
n

Temperature[C]
—=NNNNN WL
COONADHOON
\ |
— A
R
111

— Vj

alllls
I

Battery 0

T 2000 3000
b B

time[sec]

4000

A

Figure 8 Electric Drive Train for a UAS: schematic (A), and sensor values for a nominal
scenario (B).

voltage between 20V and 26V. The figure shows that with lower voltage through increased
load, and through discharge, the BN nodes for SOC and SOH change, indicating a low
state of charge. Toward the end of the scenario, the battery is drained and the voltage
goes off-nominal. For this scenario, a simple BN is sufficient and no temporal operators are
necessary. In the next scenario, however, we need to deal with noisy signals: the battery
voltage signal can have drop-outs of up to 30 seconds. These dropouts, however, should not
count toward a highly discharged battery. In our framework, we subject the battery voltage
signal to the R2U2 formula

V_batt_low:= |:|07308(‘/bl1tt < 210V)

The noise in Figure 9 has been eliminated properly. If we want to filter out longer-lasting
periods of low voltage, like the time between ¢ = 900s and ¢ = 1800s in Figure 8B, the
R2U2 formula just needs to be adjusted; the additional memory overhead for processing the
temporal formula is minimal (just a ring buffer for 90 integer variables). This is in stark

contrast to using a dynamic BN, which would require to replicate the basic network 90 times.

24v
BVl v | vl __ [—Vea
20v — - theshold] 20V — -theshoid]
= — loa 5 — lea
< 3A P — V_nominal | < AT — V_nominal |
S 2AL — V_patt_low|] g 2 —V batt low|]
@ 1AL] a 14¢]
ir L 135 L
£ — = —+
I . i f 1 !
— Csoc — Csoc
— - threshold | — - threshold]
51 — 80C-good| | 57 — S0C-good| |
& U — Cson & U — Con
aF af
1k 4L
o : : | o : : |
0 1000 2000 3000 4000 0 1000 2000 3000 4000

A

time[s]

B

time[s]

Figure 9 Nominal scenario without and with noisy Vie:: signal. Temperature development (not
shown) is identical to the curve shown in Figure 8B.

13:13

DX 2025

13:14

Beyond Dynamic Bayesian Networks

Figure 10 illustrates a diagnostic scenario in which the order of events is important.
Initially, a flight is operating under nominal conditions. After some time, the motor current
(I,) begins to increase while the voltage (V;,,) stays constant. In response, the Bayesian
Network (BN) diagnoses a potential issue with the motor’s bearing or winding. The resulting
increase in friction and current then causes the motor temperature (7,,,) to rise. Once T),
surpasses a critical threshold, the posterior probability for both “bearing” and “winding”
failures becomes very high. This clearly points to a motor malfunction, but a static BN that
fails to consider the sequence of events cannot differentiate between these two failure modes,
leading to an ambiguous diagnosis.

In our framework, we add a past-time temporal formula to the output of the BN:

Bearing := (D[O,IOS](Pbearing >0.7A Pwinding > 0'7)8[0,10]0:'[0,203] Pbearing > 07)

\A Vi
Vi, Vin
I I
T
Th m
10 10
Pge@ —— Pge@ B
1| —— ol ©
PE@ i Py —
r Tt
01| — ug
0 20 40 60 80
A 0 20 40 60 80 B timels]

Figure 10 Failure scenarios (starting at t=30s). A: A faulty bearing causes an extended power
draw (I, high) and a drop in battery voltage. At t=60s, an overheating occurs (75, too high).
Probabilities for issues with the bearing and winding are high, making it impossible for the BN to
find the correct cause. The R2U2 result shows the correct result; the delay caused by the [J operator.
B: failure of the winding. Again, the temporal formula is used to disambiguate the failure situation.

Only if an issue with the motor bearing has been flagged continuously for at least 100s
and then, within 10 seconds, the bearing and the winding issues are flagged at the same time
for at least 20 seconds, we can disambiguate the situation and infer that the bearing issue is
the root cause. The 10 second grace time of the temporal “S” (Since) operator is used to
minimize transient effects observed due to change in operational modes.

The symmetric R2U2 formula for the winding issue would look like:

Winding = (D[O,IOS] (Pbearing >0.7A Pwinding > 0-7)5[0,10](D[O,ZOS]Pwinding > 07)

Figure 10 shows traces for both scenarios. Although a single DBN would be capable
of modeling this situation, the complex temporal dependencies would require a large and
complex DBN.

4 Related Work

Previous work has extensively utilized dynamic Bayesian networks (DBNs) for system
diagnosis and reliability assessment. Addressing the shortcomings of traditional model-based
approaches, Lerner et al. [15] proposed using a temporal causal graph (TCG) to structure a
DBN for representing dynamic variable relationships. This DBN framework has been applied

C. Kulkarni and J. Schumann

to several domains. In the field of reliability engineering, Lewis et al. [16] demonstrated
the use of DBNs for risk assessment and highlighted the importance of modeling the health
state of complex systems. Other related research includes the work of Arocha et al. [1],
who developed a method for identifying reasoning strategies in medical applications through
cognitive-semantic analysis.

In contrast to our approach, which prioritizes network size and efficiency, the methodology
presented by Cai et al [4]. illustrates the trade-offs inherent in using Dynamic Bayesian
Networks (DBNs). Their work effectively addresses the challenge of diagnosing complex
temporal faults — including transient, intermittent, and permanent failures — by explicitly
modeling a system’s dynamic degradation over time. To achieve this, their DBN employs
Markov chains, which replicate the network structure across multiple time slices. While this
allows them to classify fault types based on evolving posterior probabilities, this replication
is precisely what leads to significantly larger and more computationally intensive models — a
complexity our architecture is designed to avoid.

5 Conclusions

In this paper, we have introduced a powerful diagnostic system that successfully untangles
temporal dynamics from probabilistic reasoning. Our key innovation — decoupling the R2U2
temporal monitoring engine from a static Bayesian Network (BN) — offers the best of both
worlds: highly efficient evaluation of complex temporal conditions without the exponential
complexity and network replication inherent in traditional Dynamic BNs. This ensures the
core diagnostic model remains compact, transparent, and easy to maintain.

Looking ahead, our work will focus on making the developed methodology more accessible
and robust for additional complex systems. The most critical next step is to streamline
the modeling process itself. We will achieve this by integrating FRET, an open-source tool
that automatically translates requirements written in structured natural language to formal
temporal logic. This will dramatically accelerate development and eliminate the error-prone
task of manual formula definition. Simultaneously, we will refine the automated generation
of the Bayesian Network, deepening its integration with industry-standard modeling and
analysis tools to create a seamless, end-to-end diagnostic framework.

—— References

1 Jose F Arocha, Dongwen Wang, and Vimla L Patel. Identifying reasoning strategies in medical
decision making: a methodological guide. Journal of biomedical informatics, 38(2):154-171,
2005. doi:10.1016/J.JBI.2005.02.001.

2 A Bobbio, L Portinale, M Minichino, and E. Ciancamerla. Improving the analysis of dependable
systems by mappping fault trees into bayesian networks. In Reliability Engineering and Systems
Safety, volume 71, pages 249-260, 2001. doi:10.1016/50951-8320(00)00077-6.

3 Borzoo Bonakdarpour and Scott A. Smolka, editors. Runtime Verification - 5th International
Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings, volume 8734
of Lecture Notes in Computer Science. Springer, 2014. doi:10.1007/978-3-319-11164-3.

4 Baoping Cai, Yu Liu, and Min Xie. A dynamic-bayesian-network-based fault diagnosis
methodology considering transient and intermittent faults. IEEE Transactions on Automation
Science and Engineering, 14(1):276-285, 2016. doi:10.1109/TASE.2016.2574875.

5 Mark Chavira and Adnan Darwiche. Compiling Bayesian networks using variable elimination.

In IJCAI, pages 2443-2449. Morgan Kaufmann Publishers Inc., 2007. URL: http://ijcai.

org/Proceedings/07/Papers/393.pdf.

13:15

DX 2025

https://doi.org/10.1016/J.JBI.2005.02.001
https://doi.org/10.1016/S0951-8320(00)00077-6
https://doi.org/10.1007/978-3-319-11164-3
https://doi.org/10.1109/TASE.2016.2574875
http://ijcai.org/Proceedings/07/Papers/393.pdf
http://ijcai.org/Proceedings/07/Papers/393.pdf

13:16

Beyond Dynamic Bayesian Networks

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

A. Darwiche. Samlam: Sensitivity analysis, modeling, inference, and more. URL: http:
//reasoning.cs.ucla.edu/samiam/.

A. Darwiche. Modeling and reasoning with bayesian networks. In Modeling and Reasoning
with Bayesian Networks, 2009.

Adnan Darwiche. Recursive conditioning. Artificial Intelligence, 126(1-2):5-41, 2001. doi:
10.1016/S0004-3702(00) 00069-2.

Adnan Darwiche. A differential approach to inference in Bayesian networks. J. ACM, 50(3):280—
305, 2003. doi:10.1145/765568.765570.

Johannes Geist, Kristin Y. Rozier, and Johann Schumann. Runtime observer pairs and
bayesian network reasoners on-board FPGAs: Flight-certifiable system health management
for embedded systems. In Runtime Verification - 5th International Conference, RV 2014,
Toronto, ON, Canada, September 22-25, 2014. Proceedings, pages 215230, 2014. doi:10.
1007/978-3-319-11164-3_18.

Alvaro Garcia Eduardo Gilabert. Mapping fmea into bayesian networks. International Journal
of Performability Engineering, 7(6):525-537, 2011.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in causal probabilistic
network by local computations. Computational Statistics, Quarterly 4:269-282, 1990.

Ron Koymans. Specifying real-time properties with Metric Temporal Logic. Real-time systems,
2(4):255-299, 1990. doi:10.1007/BF01995674.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society,
50(2):157-224, 1988.

U. Lerner, R. Parr, D. Koller, and G. Biswas. Bayesian fault detection and diagnosis in
dynamic systems. In Proc. of the Seventeenth national Conference on Artificial Intelligence
(AAAI-00), pages 531-537, 2000. URL: citeseer.ist.psu.edu/lernerOObayesian.html.
Austin D Lewis and Katrina M Groth. A dynamic bayesian network structure for joint
diagnostics and prognostics of complex engineering systems. Algorithms, 13(3):64, 2020.
doi:10.3390/A13030064.

Zhaoyu Li and Bruce D’Ambrosio. Efficient inference in bayes networks as a combinatorial
optimization problem. International Journal of Approzimate Reasoning, 11(1):55-81, 1994.
doi:10.1016/0888-613X(94)90019-1.

O. J. Mengshoel. Designing resource-bounded reasoners using Bayesian networks: System
health monitoring and diagnosis. In DX, pages 330-337, 2007.

Ole J. Mengshoel, Dan Roth, and David C. Wilkins. Portfolios in stochastic local search:
Efficiently computing most probable explanations in Bayesian networks. J. Autom. Reason.,
46(2):103-160, 2011. doi:10.1007/510817-010-9170-5.

D.J. Musliner, J.A. Hendler, A.K. Agrawala, E.H. Durfee, J.K. Strosnider, and C. J. Paul.
The challenges of real-time AI. Computer, 28(1):58-66, 1995.

James D. Park and Adnan Darwiche. Complexity results and approximation strategies for
map explanations. J. Artif. Int. Res., 21(1):101-133, 2004. doi:10.1613/JAIR.1236.

J. Pearl. Bayesian networks: A model cf self-activated memory for evidential reasoning. In
7th Conference of the Cognitive Science Society, 1985.

J. Pearl. Causality: models, reasoning and inference. MIT Press Cambridge, MA, 2000.
Thomas Reinbacher, Jorg Brauer, Martin Horauer, Andreas Steininger, and Stefan Kowalewski.
Runtime verification of microcontroller binary code. Sci. Comput. Program., 80:109-129,
February 2014. doi:10.1016/j.scico.2012.10.015.

Thomas Reinbacher, Kristin Yvonne Rozier, and Johann Schumann. Temporal-logic based
runtime observer pairs for system health management of real-time systems. In Erika Abrahdm
and Klaus Havelund, editors, Tools and Algorithms for the Construction and Analysis of
Systems - 20th International Conference, TACAS 201/, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-183,

http://reasoning.cs.ucla.edu/samiam/
http://reasoning.cs.ucla.edu/samiam/
https://doi.org/10.1016/S0004-3702(00)00069-2
https://doi.org/10.1016/S0004-3702(00)00069-2
https://doi.org/10.1145/765568.765570
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1007/BF01995674
citeseer.ist.psu.edu/lerner00bayesian.html
https://doi.org/10.3390/A13030064
https://doi.org/10.1016/0888-613X(94)90019-1
https://doi.org/10.1007/S10817-010-9170-5
https://doi.org/10.1613/JAIR.1236
https://doi.org/10.1016/j.scico.2012.10.015

C. Kulkarni and J. Schumann

26

27

28

29

30

2014. Proceedings, volume 8413 of Lecture Notes in Computer Science, pages 357—-372. Springer,
2014. doi:10.1007/978-3-642-54862-8_24.

Johann Schumann, Nagabhushan Mahadevan, Adam Sweet, Anupa R. Bajwa, Michael Lowry,
and Gabor Karsai. Model-based System Health Management and Contingency Planning for
Autonomous UAS. In ATAA Scitech Forum, 2019. URL: https://arc.aiaa.org/doi/pdf/
10.2514/6.2019-1961.

Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya,
and Corey Ippolito. Towards real-time, on-board, hardware-supported sensor and software
health management for unmanned aerial systems. In Proceedings of the 2013 Annual Conference
of the Prognostics and Health Management Society (PHM2018), October 2013.

Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya,
and Corey Ippolito. Towards real-time, on-board, hardware-supported sensor and software
health management for unmanned aerial systems. International Journal of Prognostics and
Health Management, 6(21):1-27, 2015.

Prakash P. Shenoy. A valuation-based language for expert systems. International Journal of
Approzimate Reasoning, 3(5):383-411, 1989. doi:10.1016/0888-613X(89)90009-1.

Nevin Zhang and David Poole. A simple approach to Bayesian network computations. In
Proceedings of the Tenth Canadian Conference on Artificial Intelligence, pages 171-178. Morgan
Kaufmann, 1994.

13:17

DX 2025

https://doi.org/10.1007/978-3-642-54862-8_24
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-1961
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-1961
https://doi.org/10.1016/0888-613X(89)90009-1

The DX Competition 2025 and Its Benchmarks

Ingo Pill' @&
Institute of Software Engineering and Artificial Intelligence, TU Graz, Austria

Daniel Jung? 94
Department of Electrical Engineering, Linképing University, Sweden

Eldin Kurudzija® =
Institute of Space Propulsion, German Aerospace Center (DLR), Koln, Germany

Anna Sztyber-Betley* =
Warsaw University of Technology, Poland

Michatl Syfert =
Warsaw University of Technology, Poland

Kai Dresia &

Institute of Space Propulsion, German Aerospace Center (DLR), Lampoldhausen, Germany

Giinther Waxenegger-Wilfing &
Institute of Space Propulsion, German Aerospace Center (DLR), Hardthausen am Kocher, Germany
Institute of Computer Science, University of Wiirzburg, Germany

Johan de Kleer® @4
c-infinity, Mountain View, CA, USA

—— Abstract

Fault diagnosis has been addressed in many research communities, leading to a variety of available
fault diagnosis techniques. Deciding as a user which fault diagnosis methods are suitable for a
specific application is thus a nontrivial task. Benchmarks can provide the community with a holistic
understanding of the landscape of newly developed and available fault diagnosis methods when
making this decision. After a long hiatus, we revived the DX Competition with three fault diagnosis
benchmarks: SLIDe, LUMEN, and LiU-ICE. The purpose of the benchmarks is to inspire fault
diagnosis research with challenging problems in cyber-physical systems relevant for industry. The
benchmarks share a common code structure and we used similar performance metrics in order to
simplify the adaptation of diagnosis system solutions to the different case studies.

2012 ACM Subject Classification Computing methodologies — Causal reasoning and diagnostics
Keywords and phrases Diagnosis, Algorithms, Evaluation

Digital Object Identifier 10.4230/0ASIcs.DX.2025.14

Category DX Competition

Supplementary Material

Other (DXC’25 Homepage): https://conf.researchr.org/home/dx-2025#Competition

Other (DXC’25 Benchmarks, incl. Datasets and Instructions): https://vehsys.gitlab-pages.liu.
se/dx25benchmarks/

Chair DX Competition 2025
Chair LiU-ICE Benchmark
Chair LUMEN Benchmark
Chair SLIDe Benchmark
Co-Chair DX Competition 2025

ok W N

© Ingo Pill, Daniel Jung, Eldin Kurudzija, Anna Sztyber-Betley, Michal Syfert, Kai Dresia,
37 Giunther Waxenegger-Wilfing, and Johan de Kleer;

licensed under Creative Commons License CC-BY 4.0
36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 14; pp. 14:1-14:19

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ingo.pill@gmail.com
http://www.ist.tugraz.at/pill
https://orcid.org/0000-0002-8420-6377
mailto:daniel.jung@liu.se
https://liu.se/medarbetare/daner29
https://orcid.org/0000-0003-0808-052X
mailto:eldin.kurudzija@dlr.de
https://orcid.org/0000-0001-5409-3845
mailto:anna.sztyber@pw.edu.pl
https://orcid.org/0000-0002-6464-8194
mailto:michal.syfert@pw.edu.pl
https://orcid.org/0000-0001-7741-607X
mailto:kai.dresia@dlr.de
https://orcid.org/0000-0003-3229-5184
mailto:guenther.waxenegger@dlr.de
https://orcid.org/0000-0001-5381-6431
mailto:johan@c-infinity.ai
http://www.c-infinity.ai
https://orcid.org/0000-0002-0465-7566
https://doi.org/10.4230/OASIcs.DX.2025.14
https://conf.researchr.org/home/dx-2025#Competition
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

14:2

The DX Competition 2025 and Its Benchmarks

Acknowledgements We would like to thank all of our colleagues who contributed to making the DX
Competition 2025 happen and who worked with us on the benchmarks. This includes in particular
Erik Frisk, Mattias Krysander, Tobias Lindell, Tobias Traudt, Jan Deeken, Justin Hardi, Stefan
Schlechtriem, Michael Bérner, Dmitry Suslov, Robson dos Santos Hahn, Sebastian Klein, Wolfgang
Armbruster, Jan Haemisch, Christopher Groll, Max Axel Miiller, and Vincent Bareif3.

1 Introduction

Reasoning about the root causes for an encountered problem is a common task. Whenever
an order is not delivered, our car does not start, a program does not work, our multimedia
system stops working, when we feel ill, and in many other situations we are interested in the
reasons why something was or is not working as expected. Only once we know the source of
the problem can we begin to effectively address and solve it to mitigate the issue.

Diagnosis algorithms address this need, in that they tell us exactly which sets of mal-
functioning parts in a system can explain the unexpected behavior. The corresponding
approaches are sometimes dedicated to very specific scenarios [33, 38] and exploit specific
aspects of a diagnostic problem [35], but most concepts are general enough to be applicable
to a wide variety of systems. Whenever we refer to systems, we do so in the most abstract
sense in that we mean actually any artifact that we can reason about. The system targeted
by a diagnostic process might thus be digital, logical, analog, mechanical, cyber-physical,
biological, ecological, ethical, and economical, or it could also refer to, for instance, a social
system, a supply chain, or a process.

Thus, many research communities have been working on concepts and algorithms for
fault diagnosis, and they have been doing so based on a diverse set of underlying techniques.
This led to a large variety of available approaches that range from symbolic [42, 34, 7] to
sub-symbolic [25, 1], hybrid [28] and statistical [5, 36] ones, and which potentially aim at
diagnosing a single [34] or multiple [39] scenarios. In rare cases, they target even the isolation
of all faults that are present in a system [37] by generating and considering data that are
hopefully representative enough. Deciding as a user which fault diagnosis methods are suitable
for a specific application is thus a nontrivial task, and it is certainly not as straightforward
as it might look at first glance. In particular, we have to take into account that all methods
come with their own individual ramifications in terms of resource expenditure, required
knowledge, and achievable performance. Each solution is based on hidden assumptions, see,
e.g. [20], which affect the quality of the results computed in a given scenario.

One solution for providing the community with a holistic understanding of the landscape
of available and newly developed methods is the use of well-formulated benchmarks. They
allow the scientific community to propose different solutions to diagnostic systems and draw
on a well-founded comparison option to evaluate their performance. As we shall discuss in
Section 2, there is a variety of such benchmarks available. Individual papers tend to use
only a subset of those, usually in combination with paper-specific benchmarks. Furthermore,
we have to take into account that the computation hardware as well as available tools (like
SMT/SAT /constraint solvers or simulators) change significantly over time. All of these
aspects make it hard to maintain an accurate picture of old and new proposals. So, when
Reiter argued in his seminal paper [42] that solvers are too slow to search for diagnoses directly
(so not taking conflicts into account), he did not anticipate the technological evolution that
we have experienced since then and that allowed the advent of corresponding solutions [27]
with very competitive performance [30].

l. Pill et al.

After a long hiatus, we thus revived the DX Competition®, which is an important source
for evaluating new and old algorithms and putting their performance into perspective. In
2025, we started DXC’25 with a set of three benchmarks that focus on three individual
cyber-physical systems. As we explain in individual sections, the three case studies” combine
different diagnosis tasks, and they feature different properties, as summarized in Table 1.

Table 1 Characteristics of the DXC’25 benchmarks.

SLIDe LUMEN LiU-ICE
application steam line rocket engine combustion engine
docker container available Y Y Y
real/artificial data A A R
natural/injected faults I I I
attacks Y N N
intermittent faults N Y N
discrete/continuous C C C
fault data/system data/ FD, SD FD, SD, SIM FD, SD
simulator
challenges diag, nonlinear diag, nonlinear, sim2real diag, nonlinear

As we can see from the table, the benchmarks focus on persistent faults and cyber-attacks
in a variety of continuous nonlinear systems. For some, a simulator is available so that a
user can also create their own behavioral samples. For others, real and/or artificial data are
provided. All the technical details are available from our DXC’25 benchmark repository, so
that a reader may test their own solutions for all the benchmarks described in this paper.

The outline of this paper is as follows. First, related research and other fault diagnosis
benchmarks are discussed in Section 2. Then, presentations of each of the three DX
benchmarks are given: including a system description, a presentation of considered fault
scenarios, and provided resources. The case study SLIDe is presented in Section 3, LUMEN
in Section 4, and LiU-ICE in Section 5. A description of the benchmark implementation
environments is presented in Section 6 and the evaluation metrics used in the benchmarks
are summarized in Section 7. Finally, a summary is given in Section 8.

2 Related research

Various fault diagnosis benchmarks have been proposed. In contrast to text or vision
processing, technical fault diagnosis research still suffers due to data scarcity. This is
mainly attributed to two causes. First, industrial datasets often cannot be shared due to
confidentiality concerns. Second, fault diagnosis is a field of anomaly detection, where the
number of normal samples is significantly larger than the number of faulty samples. Therefore,
the community can still largely benefit from developing new benchmarks.

DX Community is grounded in logical and model-based approaches [42]. With the
advances in machine learning, the community is integrating data-driven approaches. As
pointed out in [56], industrial machine learning research (including fault diagnosis) must
carefully follow principles to achieve reliable results. One of the crucial aspects is the use of

5 https://conf.researchr.org/home/dx-2025#Competition
7 available from https://vehsys.gitlab-pages.liu.se/dx25benchmarks/

14:3

DX 2025

https://conf.researchr.org/home/dx-2025#Competition
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/

14:4

The DX Competition 2025 and Its Benchmarks

held-out test sets. It makes competitions particularly useful for the evaluation of the proposed
algorithms. The study in [19] showed that the performance of the solutions in the competition
had a clear connection to the assumptions made about different faults in the design of the
diagnostic system. Existing benchmarks, while helpful, carry the risk of overfitting to the
test set. This effect was observed in the recent Safeprocess competition [17, 18] based
on an internal combustion engine, where the results on the training data were generally
overestimating the results on the held-out evaluation set.

There are several benchmarks that have been widely adopted in the fault diagnosis
community. The Tennessee Eastman Process (TEP) [8] dataset is a simulation of a chemical
process widely used for control and diagnosis research. DAMADICS benchmark [3] is a study
of the intelligent industrial actuator. The CWRU dataset [45] serves for the comparison of
fault diagnosis of rolling bearings. NASA Ames developed the Advanced Diagnostics and
Prognostics Testbed [41] that has been used for benchmarks and competitions; see, e.g.,
[22]. NASA’s Prognostics Data Repository® is a collection of datasets for prognostics and
health management. It is a valuable resource for remaining useful life (RUL) prediction
benchmarking. A simulation-based wind turbine benchmark is proposed for fault diagnosis
and fault-tolerant control in [32]. The results of six participants in a competition using the
wind turbine benchmark are summarized in [31].

Recently, a few benchmarks were proposed inside the DX community. A leak detection
and localisation benchmark, including structural model of water distribution network, and
simulated dataset, was proposed in [51, 50]. An ensemble of benchmarks based on simulated
tank systems was presented in [2]. The set requirements for AI benchmarks in the domain
of Cyber-Physical Production Systems were formulated in [11], additionally introducing a
comprehensive benchmark, offering applicability on diagnosis, reconfiguration, and planning
approaches. A TuLAUT (Theory and Teaching of Automation Technology) website® provides
a curated collection of industrial datasets, including many fault diagnosis datasets.

The DX Competition has a history of successful editions [22, 21, 40, 47, 13], including
synthetic track based on faults injected into ISCAS85 circuits, industrial tracks ADAPT
and ADAPT-Lite, based on the Electrical Power System (EPS) testbed, software track, and
thermal fluid track, which presented problems in a building’s heating, ventilation, and air
conditioning (HVAC) domain. DXC competitions gave rise to or helped evaluate numerous
diagnostic algorithms, including FACT [43], HyDE [29], LYDIA [14], ProADAPT [26]
RODON [24], and Wizards of Oz [16].

The range of problems covered in fault diagnosis benchmarks is extensive (from software
and digital circuits to continuous processes from various domains), but it is still far from
exhaustive. The benchmarks vary in complexity and the task (diagnosis, prognosis, planning).
Due to data scarcity, primarily covering data with faults, many of the benchmarks rely
on simulated data. There is a lack of benchmarks offering data and a structured process
description.

3 SLIDe

SLIDe (Steam Line Intrusion Detection Benchmark) benchmark is devoted to the analysis of
diagnostic algorithms for the detection and isolation of process faults and the detection of
cyberattacks on a simulated fragment of the steam line of a fluidized bed boiler including

8 https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/
pcoe-data-set-repository/
9 https://tulaut.github.io/

https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://tulaut.github.io/

l. Pill et al.

the third and fourth stage of superheaters. It includes challenging scenarios that exhibit
sensor, actuator, and technological component faults as well as cyberattacks. To reflect the
industrial nature of the benchmark, we provide only a qualitative description of the process
with a list of measurements and a few prepared datasets representing different operating
conditions, but only for fault-free and attack-free states.

The 2-stages steam line superheaters simulator models the processes within the boiler
of a power unit. In each of these sections, there is an attemperator, a superheater, and
a cascade controller — the main controller controls the temperature of the steam after the
superheater, while the auxiliary controller, which controls the injection water valve, controls
the temperature after the cooler. The schematic diagram of the process is shown in Figure 1.

Figure 1 Process block diagram.

The benchmark simulator is implemented in Matlab. Control and measured variables are
shown in Figure 2. B denotes the fuel inflow to the boiler, F' steam flows, T" temperatures,
G positions of the injection valves, SP set points, and C'V control signals. Figure 2 shows
traces of control loops and process variables.

Loop 31 - SP and PV Loop 31-CV 8 Fs2
420 = 100
i %
— s
L s 120
§ | 50 85
410 1
405 0 80 1o
Loop 32 - SP and PV Loop 32 - CV 1521 V3
100
—
500 o 430
o 50
s 420 50
490
410
0 0
Loop 41 - SP and PV Loop 41 - €V] V4
w00 130 100
180 — 5Py 80 80
© M e 120 o
75 W “©
10
Loop 42 - SP and PV Loop 42 - CV Fs4
— 130
40 |— s
© ' * 120
535
° 10

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
1e3 1e3 1e3

(a) Control loops. (b) Process variables.

Figure 2 Control loops and process variables.

14:5

DX 2025

14:6 The DX Competition 2025 and Its Benchmarks

3.1 Process faults

The benchmark includes 16 process and sensor faults. The symbolic locations where process
faults can be introduced are shown in Figure 3.

%' %.
A Components —@
Actu:\tors =V,

—
) —
% Controller s

Monitoring

T

Ins Ins \

Figure 3 Symbolic designation of types and places of introduction of process faults.

Process faults are divided into the following types according to the entry points:
pf°: Incorrect operation of the measurement signal path.

pfA: Faulty operation of the actuator.

pfCV: Control signal path malfunction.

pf¢: Technological component fault.

3.2 Cyber-attacks

Each cyber attack is carried out according to a designed scenario — a specific method of
attack. Such a scenario consists of elementary impacts on individual system elements and
signals in communication channels called cyber faults. The symbolic locations for introducing
cyber faults in the simulator are shown in Figure 4.

u ~
~| Components —»M
Sersors]

PV

—»
—— | —
Controller
CV. - S

e

41

Monitoring

4

Figure 4 Symbolic designation of types and places of introduction of cyber faults.

We consider the following types of cyberattacks:

cf¢ — attack on the controller (change of operating mode, change of parameters),
cf® P — modification of set-points,

cfCV — modification of control variables,

cfPV — modification of controlled variables,

cf* — attack on the actuator (blockage, modification of operation, changes of operating
parameters).

Cyber faults should be isolated to the specific control loop, i.e. the competitor’s task is
to detect cyber faults and say which control loop is affected. It is possible for more than one
control loop to be affected by the same cyber-attack scenario. It is not necessary to isolate
the cyber fault to the specific component.

l. Pill et al.

3.3 Additional resources

Training datasets are available at the competition website!? Training and evaluation data
from the previous version of the benchmark are available [48]. Exemplary algorithms for
fault and cyber-attack detection and isolation can be found in [49, 53, 52].

4 LUMEN

Early launch vehicles such as the American Saturn 5 or the European rocket family Ariane,
were expendable. Diagnostics therefore focused on pre-flight tests and post-test evaluations
while no sophisticated system was used on-board. However, as the space industry shifts
towards reusability and cost reduction, on-board diagnostic systems for health monitoring
are essential for next-generation rocket engines. The RS-25, Space Shuttle’s Main Engine
(SSME), was the first reusable liquid rocket engine (LRE). For on-board diagnostics, dynamic
limit-checks (redlines) for critical engine parameters, e.g. rotational speed of the turbopumps
or combustion chamber pressure, were performed [6]. Those redlines were defined based on
engineering judgement and experience. Although this simple method works well for most
component faults, there are still severe problems: Sensor faults can cause unnecessary engine
shutdowns and component faults can remain undetected. During the operation of rocket
engines, sensors, such as pressure transducers and thermocouples, are subjected to high
thermal and mechanical stresses, which make them susceptible to failure. This is underlined
by the history of Space Shuttle ground test aborts, launch delays and the launch abort of
flight STS-51-F caused by faulty sensors [4]. In addition, undetected component faults can
result in catastrophic events [54]. For a more sophisticated diagnosis of the engine’s health,
vibration data was used on-board of the SSME to detect faults in the turbopumps which
are the most common source of failure in rocket engines [6]. Newer reusable launchers such
as SpaceX’s Fualcon 9 also use sophisticated systems for detecting off-nominal conditions
and initiating autonomous safe shutdowns [46]. The effectiveness of their health monitoring
system was demonstrated on various flights, e.g., during flight 84 where one of the nine
engines on the first stage of the rocket was shutdown due to an anomaly and the mission was
still successful. Following SpaceX’s lead, Europe and other nations are actively researching
and developing reusable rockets. The European rocket engine Prometheus, for example, is
being optimised for reusability and cost reduction. The diagnosis of the the engine’s health
plays a vital role in achieving this goal [44]. The development and testing of these diagnostic
systems involves component-level testing and ground tests, with the ultimate goal of ensuring
their suitability in-flight.

LUMEN (Liquid Upper stage deMonstrator ENgine) is a modular pump-fed liquid
oxygen (LOX) and liquid methane (LNG) rocket engine with 25 kN thrust, developed by
the Institute of Space Propulsion of the German Aerospace Center (DLR). The operational
envelope of LUMEN covers combustion chamber pressures from 40 bar to 80 bar and mixture
ratios between 3.0 to 3.8. DLR has successfully completed two hot-fire test campaigns of
LUMEN, demonstrating key capabilities such as stable combustion over a wide throttling
range of 38 bar to 78 bar [10]. With this achievement LUMEN is now fully operational and
available as a testbed for the development of intelligent control and diagnosis systems for
health monitoring.

Ohttps://conf.researchr.org/home/dx-2025

14:7

DX 2025

https://conf.researchr.org/home/dx-2025

14:8

The DX Competition 2025 and Its Benchmarks

4.1 System description

This benchmark is proposed as a challenging problem for fault diagnosis of safety-critical
technical systems with focus on the LUMEN engine. LUMEN, as shown schematically in
Figure 5, is operated in an expander-bleed cycle. Both propellants are pressurized by separate
turbopump units. While LOX is injected directly into the combustion chamber (MCC),
LNG is first used for the regenerative cooling of the combustion chamber in a counterflow
arrangement. The heated coolant flow is partially remixed with LNG to actively control the
fuel injection temperature. The remaining cooling mass flow is further heated within the
nozzle extension (NEM) and is then used to drive LOX and LNG turbines. Afterwards, the
turbine exhaust is vented without being combusted. The generated thrust and therefore the
operating point of LUMEN is defined by the combustion chamber pressure, the mixture ratio
and the cooling channel mass flow. LUMEN’s operating point is set by the position of the
control valves TFV, TOV and FCV in open-loop. A more detailed description of LUMEN
can be found in [9, 23, 55].

LOX Feed T TOV |} U TFV | LNG Feed
' ' ' H
Lo o8
LOX | LOX LNG
Pump Turbine Turbine

(a) Flow scheme of LUMEN.

(b) Thrust chamber of LUMEN during a hot-fire
test.

Figure 5 The LUMEN benchmark.

4.2 Challenges

The development of fault diagnosis systems for LUMEN is complicated for various reasons,
e.g. a limited amount of experimental data, measurement inaccuracies, nonlinear dynamics,
the wide throttling range and strong coupling of all components. The placement of sensors
is also constrained by extreme temperatures, high pressures and vibrations within the
engine, which can damage instrumentation and lead to unreliable measurements. In addition,
experimental data for fault scenarios can not be intentionally collected due to the inherent
risk of a catastrophic failure. As a result of the extreme operating conditions close to the
physical limits, the engine may also fail for unpredictable reasons. A number of challenges in
developing a diagnosis system are defined by these difficulties.

The required robustness to unknown faults due to the lack of data for failure scenarios is
one of the main challenges. The diagnosis system should detect any deviation from nominal
operation as fast as possible but also reason based on the symptoms whether a detected
fault can be isolated to known fault scenarios or is unknown. Another challenge poses the

l. Pill et al.

scarcity of experimental data. Accurate reduced-order simulation models offer the possibility
of generating representative data in controlled environments for both nominal operation and
fault scenarios. However, resulting from unavoidable modeling errors in reduced-order models,
the simulator is only an approximation of the real system. Closing this simulation-reality
gap is not trivial and needs to be addressed in the development of diagnosis systems for
rocket engines.

4.3 Provided resources

For developing the diagnosis system, a transient simulation model of LUMEN is provided.

The simulator accurately reproduces experimental results in both transient and steady-state
conditions with errors below 10 %. The simulator is based on differential-algebraic equations
(DAE) and built with EcosimPro, the state-of-the-art modeling tool for space applications,
and the European Space Propulsion System Simulation (ESPSS) library. The behavior
of each component is defined by a set of geometrical and physical parameters such as the
length, diameter and wall roughness of a pipe which cannot be changed in the simulator. For
performing transient simulations, a Python interface is provided which can be used to adjust
the position of the control valves and therefore change the operating point of LUMEN at
each time step. The output of the simulator consists of noisy measurements at positions in
which sensors are commonly placed within a flight-like rocket engine. In total, the output of
the simulator consists of eight pressure measurements, e.g. the combustion chamber pressure,
seven temperature measurements, e.g. the turbine inlet temperature, the rotational speed of
the two turbopumps, the command and position signal of each valve as well as five mass
flows at different positions, e.g. the injection fuel mass flow. As flowmeters are not used on

board of rocket engines, the provided mass flows are calculated based on other measurements.

The simulator can be used to generate both nominal trajectories and trajectories in which a
fault is introduced at an user-defined time. In total, 15 sensor faults, three actuator faults
and three components faults can be simulated.

To replicate the challenge of the adaption to the real system in this benchmark, we
introduce another simulation model that is not provided to the participants. The modified
simulator has a slightly different set of physical parameters and is a representation of the real
system in this benchmark. This real system simulator is used for evaluating the performance
of the diagnosis systems. To mimic the scarcity of available experimental data, a limited set
of nominal trajectories which is generated with the real system simulator is also provided. In
addition to the known fault scenarios, we use the real system simulator to generate trajectories
for fault scenarios which are unknown to the participants a priori. If the symptoms of these

faults differ from known faults, the diagnosis system should classify this fault as unknown.

An overview of the provided resources and the evaluation process is given in Figure 6. The
evaluation metrics are described in Section 7. For evaluating the diagnosis system solution, a
Docker container with evaluation code is provided as described in Section 6.

4.4 Fault scenarios

Component, sensor, and actuator faults can be introduced in the simulation model at each
time step. Sensor faults can be injected into all measurements by multiplying the measured
variable by a fault factor f € [0.8,1.2]. As the simulation is performed open loop, sensor
faults affect the measured signal and downstream calculations of the mass flows. Component
and actuator faults, on the other hand, influence the operation of the entire engine as a result
of strong coupling. The actuator fault is modeled as a stuck valve that does not change
position according to the command signal. This fault can be introduced in TFV, TOV and
FCV. In addition, three component faults with different magnitudes can be simulated:

14:9

DX 2025

14:10

The DX Competition 2025 and Its Benchmarks

—» Nominal trajectories Available to participants

Simulator

—» Fault scenarios

Parameter

modification

Limited set of

Diagnosis
system
nominal trajectories
. Evaluation i
Fault scenarios class —> Final score

Figure 6 Overview of the evaluation process for the LUMEN benchmark.

Real system

simulator

Blockage of the turbine inlet nozzle: This fault models a geometrical change in the
flow area of the inlet turbine nozzles that can result from stuck particles.
Leakage: This fault simulates a leakage mass flow downstream of the pump. It is
modeled with an additional valve that can be partially opened, and thus introduce a
leakage mass flow.
Increased pressure drop: This fault simulates an additional pressure drop within the
feedlines of the system. It is modeled with an additional valve that can be partially closed
to increase the pressure drop.
To illustrate the described effects of each type of fault, Figure 7 shows the normalized sensor
signals for the valve command for FCV, TFV and TOV, the fuel injection mass flow, the
combustion chamber pressure and the rotational speed of the fuel turbopump (FTP).

5 LiU-ICE

The first version of the Linkoping University Internal Combustion Engine (LiU-ICE) industrial
benchmark was initially presented in [17]. The benchmark is proposed as a challenging
industrial-relevant case study to support fault diagnosis research. Engine fault diagnosis
is a nontrivial task that is complicated by nonlinear dynamic behavior, with slow and fast
dynamics, a wide operating range, and both stationary and transient operation.

Developing a diagnosis system is complicated by system model inaccuracies, measurement
uncertainties, and limited training data from relevant fault scenarios. The objective of the
competition is to address these challenges by designing a diagnosis system for the air path of
an internal combustion engine.

5.1 System description

The benchmark consists of operational data collected from an internal combustion engine test
bench, see Figure 8a and a mathematical model, where the model parameters are unknown.
Figure 8b shows a schematic of the modeled part of the system, which is the air path through
the engine. The available sensor signals are as follows:

Ypic — Intercooler pressure

Y1ic — Intercooler temperature

Ypim — Intake manifold pressure

Ywas — Mass flow through the air filter

Yapos — Lhrottle actuator position

l. Pill et al.

== Nominal === Component Fault m— Actuator Fault === Sensor Fault
LoF T T T T — LoF T T T T ™
08 ’] § 0.9}]
E [% 0sf]
=) 1 £
5] gortl]
° o4t] £
= 2
§ — POV F06F 1
0.2 — TEV] '—‘g
— TOV 051 7]
0.0t L L L L L4 L L L L L
o T T T T T Loof T T T T —
g 10} 1~
% o 0951]
= 091 b E
_“E o .- 0.90 B
E ' 20s85F 1
o L 173
a 07 £ 080]
S .2
= S
2061 15075k]
”E ~
3 05 \ . . . 1 070 ! . . .]
20 40 60 80 100 20 40 60 80 100
Time (s) Time (s)

Figure 7 Examples of each fault type on normalized sensor signals. The fault is injected at
different t = 36 s. The valve commands are identical for each fault.

Y — Engine speed
Ypamb — Ambient pressure
YTamb — Ambient temperature

The known actuator signals are as follows:
um s — Requested injected fuel mass
Uyg — Requested wastegate actuator position

The available signals represent a set of standard signals that are available in a production
engine. Note that most signals are available in the air intake of the engine, see Figure 8b.
The airflow passes through an air filter before the compressor and the intercooler. A
throttle is used to control the pressure in the intake manifold where air enters the cylinders,
where it is mixed with fuel and ignited to generate torque. The exhaust gases pass through

the exhaust manifold and the turbo that drives the compressor before leaving the exhaust.

The wastegate is used to control how much of the exhaust gases pass through the turbo. The
engine control unit makes sure that the engine provides the desired torque while controlling
the stoichiometry of the air and fuel in the cylinder to optimize combustion and reduce
emissions.

5.2 Fault scenarios

Faults are introduced during operation, either by opening a valve that represents a leak or

by modifying a measurement signal in the engine control unit, representing a sensor fault.

The faults considered are the following:

14:11

DX 2025

14:12

The DX Competition 2025 and Its Benchmarks

flow flow

i Air Exhaust ?

Air Filter Exhaust

YWaf

Wastegate
Uwg
Ypamb
Exhaust man.
Intercooler O OO0 | Engine
Intake man.
Ypic «— 5 Ypim
: : Xyms
(a) The LiU-ICE test bench. (b) A schematic of the air path of an IC engine.

Figure 8 The LiU-ICE benchmark.

= fypic — A fault in the inter-cooler pressure sensor yp;.

= fypim — A fault in the intake manifold pressure sensor ypim

= fywar — A fault in the air mass flow sensor yyar

= fimi — A leakage in the intake manifold

Sensor faults are injected as multiplicative as y = (1+ f)x where y is the measurement signal,
x is the measured variable, and f # 0 represents a fault that scales the measured signal.
Since a sensor fault is introduced during operation, it can affect the operating conditions of
the system through feedback loops. The magnitude of the leakage fault fi,,; is defined by
the diameter of the valve orifice.

5.3 Provided resources

In the benchmark, a mathematical model of the system and training data from various fault
scenarios are provided. The mathematical model is in the form of semi-explicit differential
algebraic equations (DAE) of index 1. The component models are similar to what is described
in [12]. The provided model is implemented in the Fault Diagnosis Toolbox [15]. A structural
representation of the provided model is shown in Figure 9 where the blue dots represent
unknown variables, the red dots are fault signals, and the black dots are known signals.

5.3.1 Training data

The training data for this version of the LiU-ICE benchmark consist of 26 datasets and include
different magnitudes of each fault. Each data set is sampled at 20 Hz. All training data
sets in the benchmark have been collected using the Worldwide Harmonized Light Vehicle
Test Procedure (WLTP). The WLTP cycle is approximately 30 minutes long and covers
varying operating conditions and transient behavior that represent both urban and highway
driving. Each fault is introduced after approximately two minutes into each corresponding
dataset and is present for the rest of the cycle. A summary of the fault realizations is shown
in Table 2. For sensor faults, the fault signal f can be both positive and negative, that is,
the faulty signal is scaled up or down with respect to the true signal. Each data set starts
with nominal operation, and the fault is injected after approximately two minutes.

l. Pill et al.

LiU-ICE model
;.’:“ . - . 2,
E - 3 - L]
S -r,
S R
Fog | !,
. ",
g .Ta.:'] .
. A
oEen oo T .t
o E .
S E # o %
SE o'
O £ bty
w E : .
- i .. % -
Eoas . "
E P LR s
E §:, s bsd
E e Lo L]
E s, o s
E . . 4
;-. op o
Variables

Figure 9 A structural representation of the engine model.

To illustrate the effects of each fault, Figure 10 shows the sensor signals ypic, Ypim, and
Ywas for one realization of each fault. The sensor faults in the plots are +10% and the
leakage diameter is 6 mm. The injection of each fault is marked in the corresponding subplot
where the fault is most visible. The sensor faults are marked in the corresponding signal
and the leakage is highlighted in signal yp;, which measures close to the location of the
leakage. In the figure, the signals have been translated in time, so they are synchronized in
the drive cycles. Note that since the sensor faults are multiplicative, the same fault size for
the different sensor faults results in different excitation in the signals. Since the fault fy,q¢
is not visible in the plot, a zoomed in figure is shown in Figure 11.

For the final evaluation, a set of secret test data will be used to evaluate all participating
solutions. Note that the fault scenarios in the test data can be other driving cycles than the
WLTP cycle.

Training data sets are available on the competition website. The previous version of the
benchmark is described in [17].

6 Benchmark implementation environment

To simplify the implementation of diagnostic system solutions to the different benchmarks, a
standardized data format and code structure in Python are used. Each benchmark provides a
Docker container with a similar evaluation code and a template for the implemented diagnosis
system.

Table 2 Summary of training datasets with fault scenarios.

Fault Magnitudes

fypic -15%, -10%, -5%, 5%, 10%, 15%
Sfypim -16%,-10%, -5%, 5%, 10%, 15%
fowar -15%,-10%, -5%, 5%, 10%, 15%

fimi 4 mm, 6 mm

14:13

DX 2025

14:14 The DX Competition 2025 and Its Benchmarks

No fault
g +10%

g +10%
— 'ywal: +10%
e £y 6MM

Time

Ypim

Time

Ywat

Time

Figure 10 Examples of signals from different fault scenarios.

%108
I

No fault

e +10%
fypim: +10%

g +10%

fywas
e MM

\ - el

108 110 112 114 116 18 120

15
100 102 104 106
Time

Figure 11 A zoom in of the yway signal from Figure 10 to show the sensor fault fyuway.

The diagnosis system solution should be implemented in Python in a class using the

following template:
class DiagnosisSystemClass:
def __init__(self):
pass
def Initialize(self):
#initialize diagnosis system here
pass
def Input(self,sample):
#Update diagnosis using new sample
detection = [] # Set flag if fault is detected
isolation = [] # Ranking of diagnoses
return(detection,isolation)
found in DiagnosisSystemClass.py. Note that it is possible to update the class with
functionality needed for the solution. It is important that the inputs and outputs to the

above functions are not changed.

l. Pill et al.

The evaluation code provided is found in the file evaluate_diagnosis_system.py as
part of the benchmarks and calls the diagnosis system every time a new sample of data is
available. The diagnosis system requires to return if a fault is detected and a ranking of
the diagnoses is obtained. The evaluation of each fault scenario is stored in a csv file in the
results folder in the container.

7 Evaluation metrics

There are various performance metrics that can be used for evaluation of diagnosis systems,
where we outline in the following those chosen for DXC’25.

7.1 Diagnosis of faults

For each new sample, the diagnosis system should return a fault detection flag. When a
fault is detected, the system provides a ranked list of diagnoses with decreasing posterior
probability. The diagnosis system should have high fault detection accuracy and a low
false alarm rate. At the same time, it is important to isolate the true fault to select a
suitable countermeasure. The diagnosis system solutions are evaluated based on the following
performance metrics:
False alarm rate (FAR) — the percentage of samples in which the diagnosis system states
that a fault is detected when there is no fault in the system.
True detection rate (TDR) — the percentage of samples in which the diagnosis system
states that a fault is detected when there is a fault in the system.
Fault isolation accuracy (FIA) — the average probability given to the true diagnosis for
all samples when a fault is correctly detected.
All performance metrics are between 0 and 1. The metrics are kept simple to simplify the
comparison of different fault diagnosis solutions. The total score is calculated as a weighted
sum of these performance metrics as follows:

total score = ((1-FAR) + TDR + FIA)/3.

where a higher value represents better performance. Note that a naive solution can achieve
at least 0.3, e.g., by not triggering any alarm.)

7.2 Diagnosis of cyberattacks

In the SLIDe benchmark, diagnosis of cybernetic faults is also evaluated based on the
following performance metrics:
False alarm rate (FAR) — the percentage of samples in which the diagnosis system states
that a cybernetic attack is detected when there is no cyber attack in the system. We use
1 - FAR as a metric.
True detection rate (TDR) — the percentage of samples in which the diagnosis system
states that a cyber attack is detected when there is a cyber attack in the system.
Cyber attacks isolation accuracy (CIA)

The isolation accuracy of cybernetic faults (CTA) is divided into two parts:

True isolation rate (TIR) — the average probability assigned to the simulated attack
vector,

False isolation rate (FIR) — the average probability assigned to the loops that are not
attacked. We use 1 — FIR as the isolation accuracy score.

14:15

DX 2025

14:16

The DX Competition 2025 and Its Benchmarks

The isolation accuracy score is computed as the harmonic mean of TIR and 1 — FIR:

2.TIR-(1— FIR)

IA =
¢ TIR+ (1—FIR)

(1)

The metrics used for cyber attacks differ in their approach to isolation accuracy because
we also consider scenarios when multiple loops are attacked. The proposed metric better
evaluates the cases where only some of the attacked loops are isolated correctly in contrast

to only considering the probability of a correct diagnosis.

8 Summary

The three benchmarks described in this paper (and which are available from the DXC’25
benchmark repository!!) served as a starting point for reviving the DX competition after
a long hiatus. As we can easily deduce from the characteristics listed in Table 1, our aim
was to provide an initial set of challenges that is diverse but also close enough to foster the
testing of an approach for all benchmarks.

The benchmarks are continuously updated. Thus, we encourage prospective participants
and interested readers to reach out to us for the latest versions. We also plan to complement
the current benchmark set with additional ones that cover other types of system, such as
discrete ones. Of particular interest will be extensions that cover additional diagnostic
problems. This could include intermittent fault scenarios or the evaluation of a system’s
long-term performance (and degradation).

At the same time, we intend to expand the competition with challenges for approaches
that integrate diagnosis with control, repair, and potentially prognosis. Evaluating these
integrated approaches will, in particular, allow us to investigate the effectiveness of various
diagnosis concepts regarding their integration into design approaches for intelligent systems.

Being able to analyze and, in turn, anticipate the exact needs for diagnostic support in
the decision making of an intelligent autonomous system shall provide the community with
the background to make educated design decisions towards enabling resilience in a system.
That is, the ability to reasoning about problems and their mitigation at run-time enables
resilient systems to maintain their functionality not only for anticipated fault scenarios, but
also in situations and circumstances that could not be anticipated at design time.

—— References

1 J. L. Augustin and O. Niggemann. Graph Structural Residuals: A Learning Approach to
Diagnosis, 2023. doi:10.48550/arXiv.2308.06961.

2 K. Balzereit, A. Diedrich, J. Ginster, S. Windmann, and O. Niggemann. An ensemble of
benchmarks for the evaluation of AI methods for fault handling in CPPS. In 2021 IEEFE 19th
Int. Conf. on Industrial Informatics (INDIN), pages 1-6. IEEE, 2021.

3 M. Barty$, R. Patton, M. Syfert, S. de las Heras, and J. Quevedo. Introduction to the
DAMADICS actuator FDI benchmark study. Control Engineering Practice, 14(6):577-596,
2006.

4 T. W. Bickmore. Real-Time Sensor Data Validation. Contractor Report, NASA-CR-195295,
1994.

5 P. Chatterjee, J. Campos, R. Abreu, and S. Roy. Augmenting Automated Spectrum Based
Fault Localization for Multiple Faults. In 32nd Int. Joint Conf. on Artificial Intelligence
(IJCAI-23), pages 3140-3148, August 2023.

"nttps://vehsys.gitlab-pages.liu.se/dx25benchmarks/

https://doi.org/10.48550/arXiv.2308.06961
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/

l. Pill et al.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

M. Davidson and J. Stephens. Advanced health management system for the space shuttle
main engine. In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Ezhibit,
2004.

J. de Kleer and B. C. Williams. Diagnosis with Behavioral Modes. In 11th Int. Joint Conf. on
Artificial Intelligence (IJCAI), pages 1324-1330, 1989.

J. Downs and E. Vogel. A plant-wide industrial process control problem. Computers &
chemical engineering, 17(3):245-255, 1993.

K. Dresia, M. Borner, W. Armbruster, S. Klein, T. Traudt, D. Suslov, J. Hardi, G. Waxenegger-
Wilfing, and J. C. Deeken. Design and control challenges for the LUMEN LOX/LNG expander-
bleed rocket engine. In 34th Int. Symposium on Space Technology and Science (ISTS), 2023.
K. Dresia, T. Traudt, M. Borner, D. Suslov, W. Armbruster, R. dos Santos Hahn, E. Kurudzija,
C. Groll, M. A. Miiller, S. Klein, J. Hamisch, J. Deeken, J. Hardi, and S. Schlechtriem. Hot-fire
testing and system analysis of the LUMEN liquid upper stage demonstrator engine. In 3rd
Int. Conf. on Flight Vehicles, Aerothermodynamics and Re-entry (FAR), 2025.

J. Ehrhardt, M. Ramonat, R. Heesch, K. Balzereit, A. Diedrich, and O. Niggemann. An
AT benchmark for diagnosis, reconfiguration & planning. In 2022 IEEFE 27th Int. Conf. on
Emerging Technologies and Factory Automation (ETFA), pages 1-8, 2022.

L. Eriksson. Modeling and control of turbocharged SI and DI engines. Oil & Gas Science and
Technology-Revue de I'IFP, 62(4):523-538, 2007.

A. Feldman, J. de Kleer, T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, and
A. van Gemund. The diagnostic competitions. Al Magazine, 35(2):49-54, 2014. doi:
10.1609/AIMAG.V35I2.2532.

A. Feldman, G. Provan, and A. van Gemund. The Lydia approach to combinational model-
based diagnosis. Proc. Int. Workshop on Principles of Diagnosis, 9:403—-408, 2009.

E. Frisk, M. Krysander, and D. Jung. A toolbox for analysis and design of model based
diagnosis systems for large scale models. IFAC-PapersOnLine, 50(1):3287-3293, 2017.

A. Grastien and P. Kan-John. Wizards of Oz description of the 2009 DXC entry. Proc. Int.
Workshop on Principles of Diagnosis, 9:409-413, 2009.

D. Jung, E. Frisk, and M. Krysander. The LiU-ICE benchmark—an industrial fault diagnosis
case study. arXiv preprint, 2024. arXiv:2408.13269.

D. Jung, E. Frisk, M.s Krysander, A. Sztyber-Betley, F. Corrini, A. Arici, N. Anselmi,
M. Mazzoleni, J. Xu, S. Mo, Z. Xu, C. Yang, Z. Du, H. Safaeipour, M. Forouzanfar, V. Mirahi,
A. Pinnarelli, V. Puig, Q. Deng, Y. Liu, J. Liu, H. Ke, W. Zhu, S. Merkelbach, M. Ahang,
and H. Najjaran. A fault diagnosis benchmark of technical systems with incomplete data — six
solutions. Control Engineering Practice, 2025. to appear.

D. Jung, H. Khorasgani, E. Frisk, M. Krysander, and G. Biswas. Analysis of fault isolation
assumptions when comparing model-based design approaches of diagnosis systems. IFAC-
PapersOnLine, 48(21):1289-1296, 2015.

D. Jung and M. Krysander. Assumption-based Design of Hybrid Diagnosis Systems: Analyzing
Model-based and Data-driven Principles. In Annual Conf. of the PHM Society, 2024.

T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J. de Kleer, and A. Feldman. Second
international diagnostic competition (dxc’10), 2010.

T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J. de Kleer, A. van Gemund,
and A. Feldman. First international diagnosis competition-DXC’09. Proc. Int. Workshop on
Principles of Diagnosis DX, 9:383-396, 2009.

E. Kurudzija, K. Dresia, J. Martin, T. Traudt, J. C. Deeken, and G. Waxenegger-Wilfing.
Virtual sensing for fault detection within the LUMEN fuel turbopump test campaign. In 9th
Edition of the Space Propulsion Conference, Glasgow, Scotland., May 2024.

K. Lunde, R. Lunde, and B. Miinker. Model-based failure analysis with rodon. In ECAI 2006,
pages 647-651. IOS Press, 2006.

I. Matei, M. Zhenirovskyy, J. de Kleer, and A. Feldman. Classification-based Diagnosis Using
Synthetic Data from Uncertain Models. Annual Conference of the PHM Society, 10(1), 2018.

14:17

DX 2025

https://doi.org/10.1609/AIMAG.V35I2.2532
https://doi.org/10.1609/AIMAG.V35I2.2532
https://arxiv.org/abs/2408.13269

14:18

The DX Competition 2025 and Its Benchmarks

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

O. J. Mengshoel. Designing resource-bounded reasoners using bayesian networks: System
health monitoring and diagnosis. In Proc. of the 18th Int. Workshop on Principles of Diagnosis
(dz-07), pages 330-337, 2007.

A. Metodi, R. Stern, M. Kalech, and M. Codish. Compiling Model-Based Diagnosis to Boolean
Satisfaction. In 26th AAAI Conf. on Artificial Intelligence, pages 793-799, 2012.

L. Moddemann, H. Steude, A. Diedrich, I. Pill, and O. Niggemann. Extracting Knowledge
using Machine Learning for Anomaly Detection and Root-Cause Diagnosis. In 29th IEEFE Int.
Conf. on Emerging Technologies and Factory Automation (ETFA), 2024. to appear.

S. Narasimhan and L. Brownston. HyDE — A general framework for stochastic and hybrid
modelbased diagnosis. Proc. Int. Workshop on Principles of Diagnosis, 7:162-169, 2007.

I. Nica, I. Pill, T. Quaritsch, and F. Wotawa. The Route to Success — A Performance
Comparison of Diagnosis Algorithms. In 23rd International Joint Conference on Artificial
Intelligence, pages 1039-1045, 2013.

P. Odgaard and J. Stoustrup. Results of a wind turbine FDI competition. IFAC Proceedings
Volumes, 45(20):102-107, 2012.

P. Odgaard, J. Stoustrup, and M. Kinnaert. Fault-tolerant control of wind turbines: A
benchmark model. IEEE Transactions on control systems Technology, 21(4):1168-1182, 2013.
doi:10.1109/TCST.2013.2259235.

I. Pill and T. Quaritsch. Behavioral diagnosis of LTL specifications at operator level. In 23rd
Int. Joint Conf. on Artificial Intelligence, pages 1053-1059, 2013.

I. Pill and T. Quaritsch. RC-Tree: A variant avoiding all the redundancy in Reiter’s minimal
hitting set algorithm. In IEEE Int. Symp. on Software Reliability Engineering Workshops
(ISSREW), pages 78-84, 2015.

I. Pill, T. Quaritsch, and F. Wotawa. Parse tree structure in LTL requirements diagnosis. In
2015 IEEFE Int. Symp. on Software Reliability Engineering Workshops, pages 100-107, 2015.
I. Pill and F. Wotawa. Spectrum-Based Fault Localization for Logic-Based Reasoning. In
2018 IEEE Int. Symposium on Software Reliability Engineering Workshops (ISSREW), pages
192-199, 2018.

I. Pill and F. Wotawa. Exploiting observations from combinatorial testing for diagnostic
reasoning. In 30th Int. Workshop on Principles of Diagnosis, 2019.

I. Pill and F. Wotawa. Extending Automated FLTL Test Oracles with Diagnostic Support. In
IEEE Int. Symp.on Software Reliability Engineering Workshops, pages 354-361, 2019.

I. Pill and F. Wotawa. Computing Multi-Scenario Diagnoses. In 31st Int. Workshop on
Principles of Diagnosis, 2020.

S. Poll, J. de Kleer, R. Abreau, M. Daigle, A. Feldman, D. Garcia, and A Sweet. Third
international diagnostics competition—-DXC’11. In Proc. of the 22nd Int. Workshop on Principles
of Diagnosis, pages 267278, 2011.

S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C. Lee, O. Mengshoel, C. Neukom,
D. Nishikawa, J. Ossenfort, et al. Advanced diagnostics and prognostics testbed. In DX Int.
Workshop on Principles of Diagnosis, pages 178-185, 2007.

R. Reiter. A Theory of Diagnosis from First Principles. Art. Intelligence, 32(1):57-95, 1987.
doi:10.1016/0004-3702(87)90062-2.

I. Roychoudhury, G. Biswas, and X. Koutsoukos. Designing distributed diagnosers for complex
continuous systems. IEEE Trans. on Automation Science and Engineering, 6(2):277-290, 2009.
doi:10.1109/TASE.2008.2009094.

P. Simontacchia, R. Blasi, Edeline E., S. Sagnier, , A. Espinosa-Ramos, J. Breteau, and
P. Altenhofer. PROMETHEUS: Precursor of new low-cost rocket engine family. In Proc. of
the 8th European Conf. for Aeronatuics and Space Sciences (EUCASS), 2019.

W. A. Smith and R. B. Randall. Rolling element bearing diagnostics using the case western
reserve university data: A benchmark study. Mechanical Systems and Signal Processing,
64-65:100-131, 2015.

https://doi.org/10.1109/TCST.2013.2259235
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1109/TASE.2008.2009094

l. Pill et al.

46

47

48

49

50

51

52

53

54

55

56

SpaceX. Falcon User’s Guide. Space Exploration Technologies Corp., September 2021. (visited

on 05/09/2025). URL: https://www.spacex.com/media/falcon-users-guide-2021-09.pdf.

A. Sweet, A. Feldman, S. Narasimhan, M. Daigle, and S. Poll. Fourth international diagnostic
competition-DXC’13. In Proc. of the 24th Int. Workshop on Principles of Diagnosis, pages
224-229, 2013.

M. Syfert. Cyber-attack scenarios for super-heaters system, March 2023. doi:10.5281/zenodo.
7612269.
M. Syfert, P. Wnuk, A. Sztyber-Betley, and M. Pobocha. The Model of Ongoing Diagnosis of

Process Faults and Detection of Cybernetic Attacks for a Steam Line. Acta Physica Polonica
A, 146(4):438, 2024.

A. Sztyber, E. Chanthery, and L. Travé-Massuyes. Benchmark for fault diagnosis of water
distribution network. In 34rd Int. Workshop on Principle of Diagnosis — DX 2023, pages 1-8,
2023.

A. Sztyber, E. Chanthery, L. Travé-Massuyes, and C. G. Pérez-Zuniga. Water network
benchmarks for structural analysis algorithms in fault diagnosis. In 33rd Int. Workshop on
Principle of Diagnosis — DX 2022, 2022.

A. Sztyber, Z. Gorecka, J. M. Ko$cielny, and M. Syfert. Controller modelling as a tool for
cyber-attacks detection. In Z. Kowalczuk, editor, Intelligent and Safe Computer Systems in
Control and Diagnostics, pages 100-111, Cham, 2023. Springer International Publishing.

A. Sztyber-Betley, M. Syfert, J. M. Koscielny, and Z. Gérecka. Controller Cyber-Attack
Detection and Isolation. Sensors, 23(5), 2023. doi:10.3390/S23052778.

A. E. Tischer and R. C. Glover. Studies and Analyses of the Space Shuttle Main Engine.

Contractor Report, NASA-CR-183593, 1987.
T. Traudt, W. Armbruster, C.r Groll, R. H. Dos Santos Hahn, K. Dresia, M. Borner, S. Klein,

D. Suslov, E. Kurudzija, J. Haemisch, M. A. Miiller, J. C. Deeken, J. Hardi, and S. Schlechtriem.

LUMEN, the test bed for rocket engine components: Results of the acceptance tests and
overview on the engine test preparation. In 9th Edition of the Space Propulsion Conference,
May 2024.

D. Vranjes, J. Ehrhardt, R. Heesch, L. Moddemann, H. S. Steude, and O. Niggemann.

Design Principles for Falsifiable, Replicable and Reproducible Empirical Machine Learning
Research. In I. Pill, A. Natan, and F. Wotawa, editors, 35th Int. Conf. on Principles of
Diagnosis and Resilient Systems (DX 2024), volume 125 of Open Access Series in Informatics
(OASIcs), pages 7:1-7:13. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:
10.4230/0ASICS.DX.2024.7.

14:19

DX 2025

https://www.spacex.com/media/falcon-users-guide-2021-09.pdf
https://doi.org/10.5281/zenodo.7612269
https://doi.org/10.5281/zenodo.7612269
https://doi.org/10.3390/S23052778
https://doi.org/10.4230/OASICS.DX.2024.7
https://doi.org/10.4230/OASICS.DX.2024.7

Data-Driven Fault Detection and lIsolation
Enhanced with System Structural Relationships

Austin Coursey &
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Abel Diaz-Gonzalez &
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Marcos Quinones-Grueiro
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Gautam Biswas
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

—— Abstract

Fault detection and isolation are becoming increasingly important as modern systems become more

complex. To encourage the development of new fault detection solutions that can operate with
limited noisy data and an incomplete mathematical model, the DX 2025 LiU-ICE competition
for diagnosis of the air path of an internal combustion engine was introduced. In this paper, we
present our winning solution to this competition. Our fault detection architecture starts with a
semi-supervised Transformer Autoencoder trained to reconstruct nominal data. Detected faults are
then passed through a rule-based fault persistence filter that aims to suppress false positives. Once a
fault is detected, we use four neural networks trained to estimate features determined from structural
analysis of a partial system model. The residuals of these networks are fed to a supervised fault
classification network that estimates the fault probabilities. With this architecture, we achieved an
87% detection rate with a 0% false alarm rate on the provided competition data. Additionally, our
isolation architecture assigned the correct fault 73.8% probabilty on average. On unseen competition
data from a new driving cycle, we achieved a 100% detection rate and assigned the correct fault
66.2% probability on average. On the other hand, the Transformer Autoencoder failed to transfer to
the new driving conditions, causing many false alarms. We discuss ways future work can reduce this.

2012 ACM Subject Classification Computing methodologies — Anomaly detection; Applied com-
puting — Engineering; Computing methodologies — Neural networks

Keywords and phrases fault detection, fault isolation, autoencoder

Digital Object Identifier 10.4230/OASIcs.DX.2025.15

Category DX Competition

Supplementary Material Software: https://github.com/MACS-Research-Lab/vandy-dx2025

Funding This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. 2444112. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect

the views of the National Science Foundation.

1 Introduction

Modern systems, such as those in transportation, manufacturing, and energy, are becoming
increasingly complex and critical to daily life. As the complexity of these systems increases, the
number of potential faults often increases. These faults can lead to performance degradation,
safety risks, or even catastrophic failure [9]. Therefore, fault detection and isolation (FDI)
methods are essential to ensure the reliability, efficiency [5], and safety [26] of complex

systems.
© Austin Coursey, Abel Diaz-Gonzalez, Marcos Quinones-Grueiro, and Gautam Biswas;
37 licensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).
Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 15; pp. 15:1-15:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:austin.c.coursey@vanderbilt.edu
https://orcid.org/0000-0003-1774-6442
mailto:abel.diaz.gonzalez@vanderbilt.edu
https://orcid.org/0000-0001-6226-1925
https://orcid.org/0000-0001-5391-6774
https://orcid.org/0000-0002-2752-3878
https://doi.org/10.4230/OASIcs.DX.2025.15
https://github.com/MACS-Research-Lab/vandy-dx2025
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

15:2

Fault Detection and Isolation with System Structural Relationships

Traditional FDI approaches are model-based, developing system-specific methods [1].
Model-based methods have historically relied on analyzing the patterns of the difference
between observed sensor values and the output predicted by a mathematical model of the
system, known as residuals [10]. This framework serves as the foundation for many modern
model-based approaches, such as [25, 6]. Although model-based methods can be successful
in detecting and isolating faults, they are limited in scenarios without an accurate and
complete model of the system. In these scenarios, data-driven models can be applied if
behavioral data has been collected for the system. Data-driven fault detection and diagnosis
methods can be classified as supervised or unsupervised [1]. Supervised approaches leverage
labeled training data to discriminate between faulty and nominal data or to classify the fault
category, e.g., [24]. In many domains, obtaining labeled fault data is infeasible or prohibitively
expensive. In these cases, unsupervised or semi-supervised data-driven approaches have been
used requiring partially or no labeled data , e.g, [4]. While data-driven FDI approaches offer
promising solutions when a complete system model is unavailable, they can be combined
with model-based approaches when some knowledge of the system is available, such as in [22].
Despite the increasing number of FDI solutions, inaccuracies in the system model, limited
training data, and measurement noise complicate the task, and existing solutions do not
fully address these issues [14].

With these challenges in mind, the LiU-ICE benchmark was introduced as a DX 2025
competition [14]. This benchmark focuses on fault detection and isolation of the air path of
an internal combustion engine. It consists of an analytical model with unknown parameters
and data from nominal and four faulty scenarios with varying magnitudes. In this paper,
we present a solution to the LiU-ICE DX 2025 competition. Our solution consists of two
steps: fault detection and isolation. To detect faults, we use a semi-supervised Transformer
Autoencoder that aims to reconstruct the current data sample given a window of recent
samples. When the reconstruction error is higher than a threshold determined from nominal
data, the sample is flagged as a potential fault. Potential faults are filtered by a rule-based
persistence filter designed to suppress false alarms. After detection, we isolate faults. Using
structural analysis, we obtain Minimally Structurally Over-determined (MSO) sets. For
each MSO set, we train a feature estimation neural network that learns system relationships.
The residuals of each feature estimation network are fed to a supervised fault classifier that
estimates the probabilities of each fault.

The contributions of this paper are as follows.

We present a data-driven fault detection and isolation architecture enhanced with system
structural relationships that achieved first place in the LiU-ICE DX 2025 competition.

We perform an in-depth analysis of the strengths and limitations of our approach on
the provided competition data. On the evaluation data, we discuss the performance,
including autoencoder transfer issues that cause a high false alarm rate and potential
solutions.

The remainder of the paper is structured as follows. In Section 2, we give necessary
background about the competition, dataset, and performance metrics. In Section 3, we
describe our fault detection and isolation architecture. In Section 4.2, we describe the results
on the provided competition data and unseen evaluation data. In Section 5, we discuss
transfer issues on the unseen competition data and how future work can resolve this problem.
Finally, in Section 6, we conclude the paper.

A. Coursey, A. Diaz-Gonzalez, M. Quinones-Grueiro, and G. Biswas

Nominal Data Comparison

Intercooler Pressure Intercooler Temperature Intake Manifold Pressure Air Mass Flow Engine Speed
305
150000 300
150000 .04
3 | 2 0 % 100000 1 i 3 500
g 125000 g g g 0.02 1 s
100000 30000 7
T T 2357| T T T 0'00_\ T 1007\ T
0 1000 0 1000 0 1000 0 1000 0 1000
Time (s) Time (s) Time (s) Time (s) Time (s)
Throttle Position Wastegate Position Injected Fuel Mass Ambient Pressure Ambient Temperature
— ——r—
100 06]
0.004 300
v v 0.4 v o 100000 - o
= 50 = = = =
£ = 0.2 £ 0.002 S $ 298+
. 99000 1
0 T T 0.0 1 T T T T T T 2951 T T
0 1000 0 1000 0 1000 0 1000 0 1000
Time (s) Time (s) Time (s) Time (s) Time (s)
—— Nominal 1 —— Nominal 2
Figure 1 Comparison of two nominal driving cycles across all available signals.
Nominal Data vs Multiplicative Fault (Intercooler Pressure x 1.15)
Intercooler Pressure Intercooler Temperature Intake Manifold Pressure Air Mass Flow Engine Speed
305.0 T T
u 150000 g 0237 v
= = H =
8 g 30004 i z
100000 {4 2975
T T T T T T 0.00 < T T T
0 1000 0 1000 0 1000 0 1000 0 1000
Time (s) Time (s) Time (s) Time (s) Time (s)
Throttle Position Wastegate Position Injected Fuel Mass Ambient Pressure Ambient Temperature
. 100750 T
0.6 : T :
0.004 7 : 100500 -
g g 0.4 g H H
100250 A :
g £ 5 £ 0.002 A
100000 | fy
0.04 T T T T T T T T
0 1000 0 1000 0 1000 0 1000
Time (s) Time (s) Time (s) Time (s)
—— Nominal —— Faulty - Fault Injected

Figure 2 Comparison of a nominal driving cycle with a faulty driving cycle where are 15% higher
sensor fault is introduced in the intercooler pressure sensor around 120 seconds into the cycle.

2 Competition and Dataset Preliminaries

This paper describes a solution to the 2025 International Conference on Principles of Diagnosis
and Resilient Systems (DX’25) LiU-ICE industrial fault diagnosis benchmark competition [14]
first described in [17]. This competition calls for the development of a diagnosis system for
the air path of an internal combustion engine.

The data consists of ten signals measured on a real engine test bed at 20Hz. The ten
signals consist of eight sensor signals: the intercooler pressure, intercooler temperature,
intake manifold pressure, mass flow through the air filter, throttle actuator position, engine
speed, ambient pressure, and ambient temperature. There are also two actuator signals: the
requested injected fuel mass and the requested wastegate actuator position. Of these, we
removed the ambient pressure, ambient temperature, and intercooler temperature, as they
were difficult to reconstruct and led to worse fault detection performance. Figure 1 shows the
ten available signals on two nominal driving cycles. The intercooler temperature, ambient
pressure, and ambient temperature are different despite both being from nominal driving
cycles, further justifying their removal as a preprocessing step.

15:3

DX 2025

15:4

Fault Detection and Isolation with System Structural Relationships

In this challenge, there are four faults of varying magnitudes. There are three sensor
faults and one leakage fault. The three sensor faults are multiplicative faults in the sensors
measuring the air mass flow (WAF), intercooler pressure (PIC), and intake manifold pressure
(PIM). These were introduced by multiplying the sensor measurement by a constant value
of 0.8, 0.85, 0.9, 0.95, 1.05, 1.1, or 1.15 for the remaining duration of the driving cycle.
An example showing the PIC fault multiplied by 1.15 (denoted PIC 115 in the dataset) is
shown in Figure 2. After the fault was introduced around 120 seconds into the driving cycle,
the intercooler pressure sensor measurement increased. The leakage fault was in the intake
manifold (IML). A 4mm or 6mm leak was introduced by opening a valve.

The dataset for the competition consists of 25 driving cycles, 1 for each magnitude of
sensor fault (7 per fault), 1 for each of the two magnitudes of leakage fault, and 2 nominal
trajectories. In the faulty datasets, the fault was introduced around 120 seconds into the
cycle and persists until the end of the trajectory. For our experiments, we split the data into
sub-datasets used for different tasks in the remainder of the paper. These are as follows.

Nominal Dataset: the two full nominal trajectories representing the nominal state of
the system. This was used for training most models.

Validation Dataset: the full trajectories (nominal and faulty data) for the 4mm IML,
080 PIC, 090 PIC, 095 PIC, 105 PIC, 115 PIC, 085 PIM, 090 PIM, 095 PIM, 110 PIM, 115
PIM, 080 WAF, 090 WAF, 095 WAF, 105 WAF, and 115 WAF faults. This totals 16/23
faulty trajectories. This was used for calibrating parameters, calibrating hyperparameters,
and evaluating performance while developing our methodology.

Testing Dataset: the full trajectories (nominal and faulty data) for the 6mm IML, 085
PIC, 110 PIC, 080 PIM, 105 PIM, 085 WAF, and 110 WAF faults. This totals 7/23
faulty trajectories. This was used for the evaluation of the generalization performance of
our methodology to new fault magnitudes.

Full Faulty Dataset: the full trajectories (nominal and faulty data) of all 23 fault
magnitudes. This was used for the full evaluation of the methodology.

The competition is scored using three evaluation metrics, defined as follows.

False Alarm Rate (FAR): the percentage of faults detected when there is no fault in
the system.

True Detection Rate (TDR): the percentage of faults detected when there is a fault
in the system.

Fault Isolation Accuracy (FIA): the average probability given to the actual fault
when a fault is correctly detected. Note that this is not the fault classification accuracy.

The final score is determined by averaging the three evaluation metrics above (taking
1-FAR instead of the FAR).

3 Method

In this Section, we detail our unsupervised data-driven fault detection and supervised fault
isolation methodology. We include details about the general methodology, model training
process, and hyperparameter tuning process.

3.1 Fault Detection

First, we perform fault detection. Our fault detection architecture, shown in Figure 3,
consists of an autoencoding step to obtain an initial unsupervised fault label and a rule-based
filtering step to reduce false positives caused by noisy samples.

A. Coursey, A. Diaz-Gonzalez, M. Quinones-Grueiro, and G. Biswas

Transformer Autoencoder

mmdow of samples
l_‘_\

Current sample
reconstruction

N Transformer Transformer R

Encoder Decoder

xt—k .ee xt

_

-

Fault Persistence Filter l

Xe —X¢e| >T

Sliding window

n h n n
t—r — 1 t
L)
Y
If n% of an r-sample window is 1 (it reconstructs poorly), a fault has occurred and will persist.

Otherwise, a fault has not occurred.

Figure 3 Fault detection architecture.

3.1.1 Transformer Autoencoder

To detect faults, we train a Transformer Autoencoder model on the nominal training
trajectories. Autoencoder models are commonly used for unsupervised anomaly detection
[20]. Autoencoders compress data to a lower dimensional space then reconstruct the original
data from the lower-dimensional representation. By learning this task on nominal data in
a semi-supervised way, an autoencoder can learn a representation of the nominal behavior
of the system. It operates on the key assumption that the it will not generalize to unseen
data distributions and will therefore only reconstruct nominal data well. Then, if anomalous
(likely faulty) data is fed to the autoencoder, it will reconstruct it poorly. A threshold can
be set on the reconstruction error to assign binary fault detection classifications.

More formally, we have an encoder neural network ¢ : X — Z where X € R" is the space
of the measured data and Z € R* is the space of compressed representations and k < n. We
also have a decoder neural network v : Z — X that reconstructs the input data. Then, the
autoencoder operation can be formulated as follows

&= y(o(x)), (1)

where x € X is an input sample and Z is its reconstruction. An autoencoder is typically
trained to minimize the reconstruction error on nominal data, quantified using the mean-
squared error loss as follows

Lag(z) = ||z —]2 (2)

To determine whether the input z is faulty, its reconstruction error can be compared
against a threshold T determined by applying the autoencoder to nominal data, i.e., it is
faulty if |z — & > T.

The autoencoder framework allows for freedom in choosing the encoder and decoder
networks. For the system studied in this paper, we use Transformer neural networks.
Transformers [21] are sequence-based neural networks that use self-attention mechanisms

15:5

DX 2025

15:6

Fault Detection and Isolation with System Structural Relationships

Table 1 Transformer Autoencoder optimized hyperparameters.

Batch Size Latent Dim. Trans. Dim. Feedforward Dim. A Thresh. Dropout %
128 4 32 128 -0.02 28.1
Learn. Rate Num. Epochs Num. Heads Num. Layers Sequence Len. -

0.003 8 2 3 5

instead of recurrence. Self-attention allows each data point in the sequence to update its
representation using every other point in the sequence in parallel. Using this mechanism
Transformers have been shown to outperform Recurrent neural network-based approaches in
time series domains like speech [15]. By using a powerful sequential model like a Transformer
as the encoder and decoder of the autoencoder, we can learn potential temporal relationships
in the data and leverage them for fault detection. The architecture of this model, taking a
window of inputs and reconstructing the current input, is shown at the top of Figure 3.

As the Transformer Autoencoder model is the first step in our fault detection and isolation
pipeline, it is important that it is properly calibrated. To do so, we started by tuning the
hyperparameters. We tuned the hyperparameters using the Tree-Structured Parzen Estimator
algorithm [3] included in Optuna [2], allowing for an intelligent optimization of both discrete
and continuous hyperparameters. We optimized the hyperparameters that maximized the
detection score, a modification of the competition score from Section 2 and quantified as
follows

Detection Score = %TDR + %(1 — FAR), (3)
where TDR is the true detection rate and FAR is the false alarm rate. This score measures
the balance of true fault detections and false alarms. During hyperparameter optimization,
the Transformer Autoencoder was trained on the two full nominal trajectories. Data was
normalized between 0 and 1 using the minimums and maximums of the training data. An
initial threshold vector was chosen as the maximum reconstruction error for each feature
across the training sets after convergence. We evaluated the detection score on the 16
validation trajectories, described in Section 2. The optimal hyperparameters after 100 trials
are shown in Table 1.

From Table 1, we can see that the A threshold, a modification of the reconstruction error
threshold chosen as the maximum nominal reconstruction error for each feature, was chosen
to be —0.02. To maximize the Detection Score, the hyperparameter optimization decreased
the threshold, allowing some false positives. Since this hyperparameter controls the tradeoff
between true positive and false positive rate, we performed an additional hyperparameter
search over the threshold for each feature independently. This led to the following A
thresholds. Intercooler pressure = —0.061, intercooler temperature = 0.091, intake manifold
pressure = 0.086, air mass flow = —0.023, engine speed = —0.091, throttle position = —0.018,
and injected fuel mass = —0.017. With different thresholds and A thresholds for each, the
detection does not have to be sensitive to any one reconstructed feature.

3.1.2 Fault Persistence Filter

While the Transformer Autoencoder trained with optimized hyperparameters detects faults
reasonably well (Detection Score= 0.7 on validation data), it is sensitive to noise in the data,
causing false positives. Additionally, it may miss some detections after the fault occurs. To

A. Coursey, A. Diaz-Gonzalez, M. Quinones-Grueiro, and G. Biswas

address this issue, we develop a rule-based fault filtering approach. This approach assumes
that once a fault is introduced, it will persist until the end of the trajectory. In other words,
there are no intermittent faults.

The rule-based fault persistence filtering, shown in the bottom block of Figure 3, keeps
track of the fault detection predictions by the Transformer Autoencoder. If n% of the last r
predictions are a 1 (there is a fault), then the filter deems the system faulty and outputs 1
for the remainder of the trajectory. Otherwise, the system is not considered faulty, so the
filter outputs 0. More formally, assume the detections are being tracked in a boolean queue
detects € {0,1}", filled with Os at the start of each trajectory, and detects® is the state of
the queue at time ¢. Then, the filtering logic is as follows
if (12037 detectst) > n or Persist(detects'™!) =1

T

1
Persist(detects') = { ’ (4)

0, else.

We tuned the parameters n and r manually on the validation set using the Transformer
Autoencoder model trained with optimized hyperparameters. We found that n = 80% and
r = 140 (7 seconds) worked best.

3.2 Fault Isolation

Once a fault is persistently detected, we isolate the fault. Our fault isolation architecture,
shown in Figure 4, consists of two phases. First, we train neural networks that perform a
semi-supervised feature estimation based on relationships determined from structural analysis
of the provided partial model. Then, we classify the fault probabilities using a supervised
fault classification neural network that takes the feature estimation model errors as input to
use the system structure information for fault isolation.

3.2.1 Data-Driven Residual Generation Through Structural Analysis

To isolate faults, we first determine relationships between features by performing a structural
analysis of the partial system model provided in the competition.

Structural analysis defines a set of methods that allow to characterize the analytical
redundancy in a system that can be exploited for fault detection and diagnosis. Obtaining
data-driven residuals through structural analysis begins with defining the analytical model of
the dynamic system that describes the underlying physics that drive the system’s behavior,
typically through differential algebraic equations. A structural model is represented as a
bipartite graph or a logical/incidence matrix that describes the qualitative relationship
between model equations and variables [13]. The Dulmage-Mendelsohn decomposition is
applied to the structural model to partition it into under-determined, exactly determined,
and over-determined parts. The over-determined part contains analytical redundancy —
meaning there are more equations than unknown variables.

Within the over-determined part of the model, structural analysis methods identify redun-
dant equation sets. Of particular interest are the Minimally Structurally Over-determined
(MSO) sets. MSO sets represent the minimal redundant equation sets that can be used for
residual generation, corresponding to the smallest parts of the system that can be monitored
separately [17, 18]. From these MSO sets, computational graphs are derived by designat-
ing one equation as the residual and establishing a causal computation sequence for other
variables from known signals. In Figure 4, the green boxes in the MSO matrix indicate
the variable that can be represented using the other (blue) known signals. This derived
structure is used to design a data-driven model, where non-linear functions and dynamic

15:7

DX 2025

Fault Detection and Isolation with System Structural Relationships

MLP Feature Estimators

/ MSO Matrix e 2-Layer MLP \\

X1 | xa| o | xp || — AS
X1 Xz | . | X .
1)=2 m| Train a feature Xz >
estimator for - |

each row Xn |+
X1 | X2 8 Xn |nput n

kxXn ueatures att

Output

feature at y/

-

Fault Classifier

/ Feature |- 2 _1& \

£ e = % — x1|—
| Estimator 1 - ! ! !
Feature | . X Fault Softmax
x Tz e; = |R; — x| —
| Estimator 2 Z 2 272171) Glassifier | Probabilities
MLP of each fault
I ' al ‘ — type
y
Feature || .
L—

. - X ek = J?k — xk E—
k Estimator k Train with true fault labels /

Figure 4 Fault isolation architecture. The snowflake indicates the model weights are frozen.

states from the computational graph are mapped to components like Multi-layer Perceptrons
(MLPs) within the network [13, 17, 18]. These models are intentionally designed to resemble
the physical system’s structure, embedding physical insights into the data-driven approach.
These models are then trained exclusively on nominal (fault-free) data to accurately learn
the system’s expected behavior under normal conditions. Training aims to minimize the
model’s prediction error for a target signal.

Finally, the data-driven residual is generated by calculating the difference between the
actual measured value of the target signal and the output predicted by the trained data-driven
model. This process results in residuals that act as anomaly detectors, highlighting deviations
from expected nominal behavior, which is particularly useful when data from faulty scenarios
is limited.

3.2.2 MLP Feature Estimators

Based on the MSO matrix, we use a simple test selection strategy that finds sets of tests
that, ideally, fulfills specified isolability performance specifications [16]. For each MSO in the
set M SOq : 383, MSO5 : 385, M SO3 : 512, M SO, : 519, we can use the system relationships
to generate feature estimator models. According to the structural analysis, these four can be
used to isolate any of the known faults, in theory (see Figure 5 for the isolability matrix and
fault signature matrix). As shown at the top of Figure 4, we train one multi-layer perceptron
neural network model for each row in the MSO matrix. These estimate the target feature
using the predictor features and are small, 2-layer 64-neuron networks. The hyperparameters
of these networks were empirically determined and kept fixed. They are trained using the

A. Coursey, A. Diaz-Gonzalez, M. Quinones-Grueiro, and G. Biswas

Isolability matrix Fault Signature Matrix (MSO sets)
fim-{ @ MSO 1 A @ @
fyw_af - @ MSO 2 @ @
fyp_im 1 @ Ms034 @ @
fyp_ic 4 & MSO441 @ &
fiml fywaf fypim fyp ic fiml fyw af fypim fyp_ic
Fault

Figure 5 Result of the structural analysis.

mean-squared error. These models can be used to isolate a fault by checking whether their
estimation error is above a threshold. When this happens, we say a model “triggers”. This
can be expressed for a model f; as follows,

Triggered = |f(z1,...n) — x| > T, (5)

where 21, ., are the predictive features, z;, is the target feature, and 7" is some threshold.

By comparing to the threshold, we can quantify the model’s absolute estimation error. In
the future, we will explore more advanced architectures like grey-box Recurrent Neural
Networks [13] or Neural Ordinary Differential Equations [18].

3.2.3 Fault Classification

With the trained feature estimators for each MSO set, we can theoretically isolate faults. See
Figure 5; all faults are isolable. To isolate the IML fault (column 1 of the rightmost plot),
for example, we can check whether the feature estimators for MSO 3 and 4 trigger while the
other two do not. The other faults could be isolated following the same pattern.

We could isolate faults with moderate success following this method. However, the reality
of the noisy, limited data made consistently isolating all faults impossible, even with added
rule-based filtering and threshold tuning. To address this issue, we leveraged the labeled
faulty data to train a supervised fault classifier.

The fault classifier, as shown at the bottom of Figure 4, replaces the error thresholding
and fault signature matrix lookup with a neural network. This allows us to represent complex
relationships between the feature estimation errors while maintaining the structure of the
MSO set models. The classifier takes the feature estimation error as input and outputs the
softmax probabilities of each of the four fault types. We trained this model on all available
anomalous data to ensure it was accurate on all fault magnitudes. During training, the
weights of the feature estimators are frozen. We found that training this fault classifier allows
to better characterize the feature residual space than thresholding techniques or statistical
tests like CUSUM.

In evaluation mode, we process the softmax probabilities of the classifier to fit the
competition format. First, we check whether the fault is unknown. If none of the four fault
types has a softmax probability above 0.35, determined by analyzing the average probabilities
across the anomalous data, we classify the fault as unknown. Otherwise, we classify the fault
as the fault with maximum probability. We isolate these faults with 100% confidence for the
competition, as the scoring encourages confident results.

15:9

DX 2025

15:10

Fault Detection and Isolation with System Structural Relationships

Table 2 Fault detection performance broken down by fault type and magnitude.

Type Magnitude TDR FAR Detection Score

IML 4mm 0.14 0.00 0.57
IML 6mm 0.95 0.00 0.98
PIC 080 0.96 0.00 0.98
PIC 085 1.00 0.00 1.00
PIC 090 1.00 0.00 1.00
PIC 095 1.00 0.00 1.00
PIC 105 1.00 0.00 1.00
PIC 110 0.99 0.00 1.00
PIC 115 1.00 0.00 1.00
PIM 080 0.97 0.00 0.99
PIM 085 0.97 0.00 0.99
PIM 090 0.95 0.00 0.97
PIM 095 0.94 0.00 0.97
PIM 105 0.61 0.00 0.81
PIM 110 0.62 0.00 0.81
PIM 115 0.92 0.00 0.96
WAF 080 0.98 0.00 0.99
WAF 085 0.85 0.00 0.93
WAF 090 0.46 0.00 0.73
WAF 095 0.91 0.00 0.96
WAF 105 0.85 0.00 0.93
WAF 110 0.94 0.00 0.97
WAF 115 0.98 0.00 0.99
Average: 0.87 0.00 0.93

4 Results

To asses our approach, we evaluated the fault detection and fault isolation components on
two sets of data. The first was the data given for the competition. The second was an unseen
dataset used to evaluate competition submissions.

4.1 Results on Competition Data

Using the labeled faulty and nominal data from the competition, we evaluated both the fault
detection and isolation performance of our model using the competition’s evaluation metrics
defined in Section 2.

4.1.1 Fault Detection

The results for the fault detection performance on all faulty data are shown in Table 2. This
table shows the True Detection Rate (TDR), False Alarm Rate (FAR), and Detection Score
(from Equation (3)) broken down by fault type and magnitude. From this, we can see that
the proposed fault detection architecture detected 87% of faults with a 0% False Alarm Rate.
This led to a Detection Score of 0.93. While some number of false positives may have led to
a higher Detection Score, minimizing false positives is necessary for real applications.

A. Coursey, A. Diaz-Gonzalez, M. Quinones-Grueiro, and G. Biswas

The low FAR can be attributed to the fault persistence filter (see the bottom of Figure 3).

This filter divides the current trajectory into nominal and faulty states. When 80% of the
last 7 seconds have been flagged as anomalous by the Transformer Autoencoder, it considers
the trajectory to be faulty. Otherwise, any detections by the autoencoder are attributed to
noise or smaller anomalies and are suppressed.

While the fault persistence filter reduced the FAR, it also caused some faults to be
detected late. For example, consider the 4mm IML fault, shown in Table 2. This fault was
only detected during the last 14% of the faulty trajectory. Without the persistence filter,
fault detections may have appeared earlier, at the cost of additional false alarms. With a
more sensitive persistence filter, e.g., 50% of the last 3 seconds, this fault may have been
consistently detected earlier. However, the chosen filter parameters maximized the overall
Detection Score.

Next, we can analyze which fault types and magnitudes were more difficult to detect.

From Table 2, we can see that the PIC faults were nearly always perfectly detected. All PIM
faults where the sensor reading was reduced (magnitude < 095) were detected with more
than 90% accuracy. When the sensor reading was increased by 5 and 10% (magnitudes 105
and 110), the detection rate dropped to around 60%. The only WAF fault detected with a
rate less than 85% was when the sensor reading decreased by 10%. In this case, the fault
was not detected consistently enough when it was introduced around 120 seconds into the
trajectory to satisfy the persistence filter. A consistent anomalous behavior, according to
the Transformer Autoencoder reconstructions, did not appear until around 54% into the
trajectory. Since WAF faults of lower magnitude were consistently detected, this can likely
be attributed to the driving behavior of this specific trajectory. For example, the impact of a
WAF fault may not be clear during long periods of consistent driving speeds. Finally, the
4mm IML fault was detected much later than the 6mm IML fault. The smaller leak had a
much more subtle impact on the system, causing it to be harder to detect and isolate.

4.1.2 Fault Isolation

Next, we evaluated our fault isolation architecture on the faulty datasets. The average
probabilities assigned to each fault type on each dataset are shown in Table 3. The overall
Fault Isolation Accuracy (FIA), as defined by the competition description in Section 2, was
0.738. This means the true fault was assigned a 73.8% probability on average across the
fault types and magnitudes.

For the sensor faults, this was higher. For example, the PIC fault, which was the most
consistently detected, had an average FIA of 82.8%. On the other hand, the IML fault was
not isolated with high probability. For the 4mm magnitude IML fault, the model assigned
nearly equal average probabilities to the WAF and IML faults. At 6mm magnitude, the IML
fault was assigned the highest probability, but still below 35% on average. This highlights the
difficulty of detecting and isolating the leakage faults over the sensor faults in this system.

From Table 3, we can see that the average probability of an unknown fault was always
low, below 5%. Since all this data was used for training the final fault classifier and none
of the faults are unknown to the model, this is an expected and positive result. Future
work should evaluate the model on new fault types to determine the effectiveness of the
architecture in identifying unknown faults.

Next, we can analyze the impact of sensor fault magnitude on the isolation performance.
From Table 3, we can see that the WAF fault was isolated consistently for all magnitudes.

However, the PIC and PIM faults were correctly isolated with a higher average probability
as the fault magnitude increased. Figure 6 shows the average probabilities assigned to these

15:11

DX 2025

15:12

Fault Detection and Isolation with System Structural Relationships

Table 3 Average fault isolation probabilities broken down by fault type and magnitude. Overall
performance is measured through the Fault Isolation Accuracy, shown in the bottom row.

Type Magnitude P(PIC) P(PIM) P(WAF) P(IML) P(Unknown)

IML 4mm 0.086 0.193 0.337 0.336 0.048
IML 6mm 0.059 0.245 0.310 0.347 0.039
PIC 080 0.887 0.026 0.085 0.001 0.001
PIC 085 0.887 0.036 0.075 0.001 0.001
PIC 090 0.853 0.029 0.111 0.002 0.004
PIC 095 0.641 0.093 0.214 0.019 0.034
PIC 105 0.703 0.071 0.170 0.026 0.030
PIC 110 0.892 0.033 0.055 0.008 0.012
PIC 115 0.930 0.021 0.047 0.001 0.001
PIM 080 0.003 0.927 0.057 0.011 0.002
PIM 085 0.005 0.853 0.124 0.014 0.003
PIM 090 0.010 0.821 0.141 0.022 0.005
PIM 095 0.044 0.573 0.303 0.044 0.035
PIM 105 0.028 0.396 0.556 0.011 0.010
PIM 110 0.030 0.740 0.196 0.022 0.013
PIM 115 0.014 0.813 0.137 0.029 0.007
WAF 080 0.027 0.213 0.752 0.005 0.003
WAF 085 0.016 0.119 0.821 0.025 0.019
WAF 090 0.033 0.154 0.789 0.011 0.013
WAF 095 0.042 0.213 0.708 0.020 0.017
WAF 105 0.038 0.181 0.759 0.011 0.011
WAF 110 0.018 0.213 0.755 0.005 0.008
WAF 115 0.032 0.142 0.788 0.023 0.015
Fault Isolation Accuracy: 0.738

fault types as the fault magnitude increased (the sensor reading was increased or decreased
by 5, 10, 15, then 20%). As the magnitudes got further away from their nominal value, which
would be represented by 100, the fault was better isolated. This result is consistent with
intuition, as more extreme faults should have a more dramatic impact on the system and
should therefore be easier to isolate.

Since the competition metrics included in Table 3 aggregate the isolation probabilities
across the driving trajectories, we cannot analyze the behavior of the fault isolation across
time. To better understand this, we plotted the isolation probabilities over time for the 4mm
IML fault, 10% lower magnitude WAF fault, and 15% higher magnitude PIC fault in Figure 7.
Since the fault isolation architecture assigns 100% confidence in a fault when its softmax
probability is above 0.35, Figure 7 shows a running average of 20 of these probabilities to
show the average probability trend.

First, we can consider the most difficult fault to detect and isolate, the 4mm IML fault
shown in Figure 7a. Throughout the trajectory, this fault was consistently misidentified as
the WAF and PIM faults. However, there are long periods where the IML fault is properly
isolated, such as around 450s and 1000s. Even though the IML fault was not assigned the
highest average probability, this consistency may lead us to classify the fault type of the
trajectory as an IML fault, pointing maintainers to the intake manifold valve first.

A. Coursey, A. Diaz-Gonzalez, M. Quinones-Grueiro, and G. Biswas

PIC Fault Prob. for Increasing Magnitudes PIM Fault Prob. for Increasing Magnitudes

10 T 10 T

=== Neminal === Nominal

0.9 4 0.9 4

0.8

0.7 1

Average P(PIC)
Average P(PIM)

0.6

I
|
I
|
I
I
I
I
I
I
|
I
|
I
|
1
I
1
I
1
1
|
|
|
:
0.5 H
I
I
I
I
I
|

0.4 4

80 85 90 95 105 110 115 80 85 90 95 105 110 115
Magnitude Magnitude

(a) PIC Fault. (b) PIM Fault.

Figure 6 Isolation probabilities for increasing magnitudes of PIM and PIC faults. The red dotted
line is the nominal magnitude. As the fault magnitudes increase, getting further from the red line,
the average probabilities assigned by the isolation algorithm increase.

Table 4 Performance on competition evaluation data. This data was unseen during the model
development phase and used for final competition scoring. The framework was evaluated on data
from the same fault magnitudes but generated with a different driving cycle, city driving.

Fault Type TDR FAR FIA Time (ms)

Nominal - 0913 - 2.1
PIC 1.0 0.393 0.894 4.0
PIM 1.0 0.388 0.495 3.5
WAF 1.0 0.731 0.607 5.0

Average: 1.0 0.526 0.662 3.65

Score: 71.2

Next, we can consider a sensor fault that was isolated well but detected poorly, the 10%
lower magnitude WAF fault shown in Figure 7b. Even though this fault was detected late,
over halfway through the trajectory, the isolation algorithm consistently isolated the WAF
fault with high probability before it was detected. This indicates that the impact of the fault
was present in the data and that the late detection was likely due to the detection not being
consistent enough early to pass the persistence filter. Additionally, when the WAF fault was
not correctly isolated, it was largely classified as a PIM fault.

Finally, we can analyze the probabilities for the fault that was isolated best, the 15%
higher PIC fault shown in Figure 7c. This fault was nearly perfectly isolated and was given
100% probability for most of the trajectory.

15:13

DX 2025

15:14 Fault Detection and Isolation with System Structural Relationships

Fault Probabilities for IML 4mm

3 W W Jl H il “ ‘ HH"" le "l’] 1l \H’

Fault Probabilities for WAF 090

0.5

Probability

0.0
200 400 600 800 1000

Time (s)

1200 1400 1600 1800

(b) 10% Lower WAF Fault (090).

Fault Probabilities for PIC 115

1.0
=
205
8
&

0.0

200 400 600 800 1000 1200 1400 1600 1800
Time (s)
EEE PIC . P . WAF . ML Unknown

(c) 15% Higher PIC Fault (115).

Figure 7 Stacked isolation probabilities over time for 4mm IML fault (a), 10% lower WAF fault
(b), and 15% higher PIC fault (c). The fault probabilities are averaged over the last 20 predictions,
starting after the fault occurs. The stacked bars have a fixed order, so the probability is denoted by
the size of the bar at each time, not its proximity to the top of the y-axis.

4.2 Results on Unseen Data (Competition Results)

After the evaluation on the given competition data, the full fault detection and isolation
architecture was combined and submitted. In the combined architecture, the fault isolation
was only used when a fault was detected after the persistence filter. For the final competition
scoring, the architecture was evaluated on data from the same fault types and magnitudes,
without IML faults, generated using a different driving cycle representing city driving.

The results on this unseen data are shown in Table 4. The FAR was much higher, at
91.3% on nominal data and 73.1% on data from WAF faults. On PIC and PIM faults, the
FAR was around 39%. In real applications, this many false alarms may be unacceptable.
The Transformer Autoencoder needs to be recalibrated to the new distribution of nominal
driving data. An in-depth discussion into why unsupervised autoencoders are so sensitive in
situations like this and how to address this problem is provided in Section 5.

In terms of the other metrics, the architecture’s performance was much closer to the
performance on the provided competition data. It achieved a perfect detection rate (at
the expense of false alarms). It also made its predictions in less than 5 milliseconds on
average, well within the data rate of 50 milliseconds. Therefore, the predictions could be

A. Coursey, A. Diaz-Gonzalez, M. Quinones-Grueiro, and G. Biswas

used for real-time decisions. Finally, the FIA was 66.2% on average, close to the 77.6%
average isolation probability for the same fault types on the training data. Overall, the final
competition score was 71.2% achieving first place, with second place scoring 60.5%.

5 Discussion on Reducing Autoencoder False Alarms

While autoencoders can be very powerful for unsupervised anomaly detection, they are
limited in their generalization to unseen data distributions. In a way, this is by design. Recall
from Section 3 that the Transformer Autoencoder was trained to reconstruct nominal data.
Then, its failure to reconstruct data from unseen distributions (anomalous data) can be used
for fault detection. However, when nominal data is also out of distribution, the autoencoder
may fail to reconstruct it well and classify it as faulty. This is why there was a high False
Alarm Rate on the competition data generated using a different driving cycle (Section 4.2).

A simple way to reduce false alarms would be to fine-tune the autoencoder on data from
the new driving cycle, ensuring it learns a more complete representation of the system’s
nominal behavior, like in [11]. However, this would not permanently solve the problem, as
any new out-of-distribution nominal data, such as from new driving cycles or environmental
factors, might be considered anomalous. In some cases, it may be reasonable to assume the
system will not encounter new nominal conditions, such as in controlled environments and
testbeds. However, in many real-world applications, the environment and system usage may
be nonstationary [7]. Therefore, the autoencoder must constantly adapt to new conditions.

A promising potential solution to reducing the false alarms introduced in this architecture
by the Transformer Autoencoder lies in continual learning [23]. In continual learning, a
model is continually adapted throughout the lifetime of its deployment. In other words, it
never stops learning. This could be used to adapt the Transformer Autoencoder model to
all experienced nominal conditions, reducing false alarms. This adaptation could be done
online by identifying data that is assumed to be nominal or immediately after a trajectory
by identifying nominal periods of data.

Aside from improving the performance of the autoencoder for fault detection on new data
distributions, it could be replaced with different fault detection approaches. Many anomaly
and fault detection approaches may work well and should be considered in future studies.
For example, contrastive learning [12], density estimation [19], and clustering [27] have all
been used for unsupervised anomaly or fault detection. However, it may not be reasonable
to expect any purely data-driven approach to transfer to new data distributions without
adaptation. Instead, leveraging physical information, such as by using structural analysis in
our isolation model or with other hybrid approaches like [8], may be required.

6 Conclusion

In this paper, we introduced and evaluated a data-driven fault detection and isolation architec-
ture for the 2025 DX LiU-ICE competition that leveraged system structural information. Our
detection model started with a Transformer Autoencoder that used time series information
to reconstruct nominal data. To reduce false alarms caused by noise, we added a rule-based
filtering to only consider a trajectory to be in a faulty state when a large percentage of the
last seconds was predicted to be faulty. Once the filter detected a fault, the fault was isolated.
The isolation model used four Multi-layer Perceptron (MLP) neural network models that
estimated features according to rows of an MSO matrix determined from structural analysis.
The errors of these feature estimation models were used as an enhanced feature space by an
MLP supervised fault classifier that predicted the probabilities of each fault.

15:15

DX 2025

15:16

Fault Detection and Isolation with System Structural Relationships

Using our architecture, we achieved an 87% fault detection rate with a 0% false alarm
rate on the provided competition data. The sensor faults were confidently and consistently
isolated, leading to an average of 73.8% confidence applied to the correct fault across the
provided dataset. Intake manifold leakage faults were harder to detect and isolate, especially
at the smaller magnitude of 4mm with it being detected in the last 14% of the trajectory
and only being given 33.6% probability during isolation. We found that as the PIM and
PIC sensor fault magnitudes increased, so did the confidence in their isolation. Finally, we
visualized the isolation probabilities throughout some trajectories to concretely show how
the isolation architecture performed.

On data from a new distribution from a different driving cycle used for the final competition
scoring, our architecture had an average false alarm rate of 52.6%, much higher than on
the provided data. We hypothesize that this was due to the dependence of the Transformer
Autoencoder on a complete representation of nominal data and explained ways to improve
this in future work. Despite the higher false alarm rate, our model achieved a 100% detection
rate and an average of 66.2% confidence in the correct fault type within 3.65ms on the unseen
competition data. This led to a score of 71.2%, achieving first place. Future work should
focus on ways to reduce the false alarm rate on the unseen competition data, such as by
fine-tuning or incorporating continual learning into the detection autoencoder. Future work
should also explore the application of this architecture to systems with different complexities
and data characteristics and perform further ablation studies to understand what components
of the proposed approach contributed toward its success.

—— References

1 Anam Abid, Muhammad Tahir Khan, and Javaid Igbal. A review on fault detection and
diagnosis techniques: basics and beyond. Artificial Intelligence Review, 54(5):3639-3664, 2021.
doi:10.1007/S10462-020-09934-2.

2 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pages 26232631,
2019. doi:10.1145/3292500.3330701.

3 James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. Advances in neural information processing systems, 24, 2011.

4 Lucas C Brito, Gian Antonio Susto, Jorge N Brito, and Marcus AV Duarte. An explainable
artificial intelligence approach for unsupervised fault detection and diagnosis in rotating
machinery. Mechanical Systems and Signal Processing, 163:108105, 2022.

5 Zhelun Chen, Zheng O’Neill, Jin Wen, Ojas Pradhan, Tao Yang, Xing Lu, Guanjing Lin,
Shohei Miyata, Seungjae Lee, Chou Shen, et al. A review of data-driven fault detection and
diagnostics for building hvac systems. Applied Energy, 339:121030, 2023.

6 Seongpil Cho, Zhen Gao, and Torgeir Moan. Model-based fault detection, fault isolation and
fault-tolerant control of a blade pitch system in floating wind turbines. Renewable energy,
120:306-321, 2018.

7 Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10(4):12-25, 2015.
doi:10.1109/MCI.2015.2471196.

8 Stephen Frank, Michael Heaney, Xin Jin, Joseph Robertson, Howard Cheung, Ryan Elmore,
and Gregor Henze. Hybrid model-based and data-driven fault detection and diagnostics for
commercial buildings. Technical report, National Renewable Energy Lab.(NREL), Golden,
CO (United States), 2016.

https://doi.org/10.1007/S10462-020-09934-2
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1109/MCI.2015.2471196

A. Coursey, A. Diaz-Gonzalez, M. Quinones-Grueiro, and G. Biswas

10

11

12

13

14

15

16
17
18

19

20

21

22

23

24

25

26

27

Zhiwei Gao, Carlo Cecati, and Steven X Ding. A survey of fault diagnosis and fault-tolerant
techniques—part i: Fault diagnosis with model-based and signal-based approaches. IEEFE
transactions on industrial electronics, 62(6):3757-3767, 2015. doi:10.1109/TIE.2015.2417501.
Janos J Gertler. Survey of model-based failure detection and isolation in complex plants.
IEEE Control systems magazine, 8(6):3-11, 1988.

Yuxin Huang, Austin Coursey, Marcos Quinones-Grueiro, and Gautam Biswas. Time-series
few shot anomaly detection for hvac systems. IFAC-PapersOnLine, 58(4):426-431, 2024.
Yang Jiao, Kai Yang, Dongjing Song, and Dacheng Tao. Timeautoad: Autonomous anomaly
detection with self-supervised contrastive loss for multivariate time series. IEEFE Transactions
on Network Science and Engineering, 9(3):1604-1619, 2022. doi:10.1109/TNSE.2022.3148276.
Daniel Jung. Residual generation using physically-based grey-box recurrent neural networks
for engine fault diagnosis, 2020. arXiv:2008.04644.

Daniel Jung, Erik Frisk, and Mattias Krysander. LiU-ICE Industrial Fault Diagno-
sis Benchmark - DeluXe 2025. https://vehsys.gitlab-pages.liu.se/dx25benchmarks/
liuice/liuice_index, 2025. Accessed: 2025-06-03.

Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma, Ziyan Jiang,
Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto, Xiaofei Wang, et al. A
comparative study on transformer vs rnn in speech applications. In 2019 IEEE automatic
speech recognition and understanding workshop (ASRU), pages 449-456. IEEE, 2019.

Johan De Kleer. Hitting set algorithms for model-based diagnosis, 2011.

Andreas Lundgren and Daniel Jung. Data-driven fault diagnosis analysis and open-set
classification of time-series data. Control Engineering Practice, 121:105006, 2022.

Arman Mohammadi, Mattias Krysander, and Daniel Jung. Consistency-based diagnosis using
data-driven residuals and limited training data. Control Engineering Practice, 159:106283,
2025. doi:10.1016/j.conengprac.2025.106283.

Benjamin Nachman and David Shih. Anomaly detection with density estimation. Physical
Review D, 101(7):075042, 2020.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning
for anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1-38, 2021. doi:
10.1145/3439950.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Jinxin Wang, Xiuquan Sun, Chi Zhang, and Xiuzhen Ma. An integrated methodology for
system-level early fault detection and isolation. Ezpert Systems with Applications, 201:117080,
2022. doi:10.1016/J.ESWA.2022.117080.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Haiyue Wu, Matthew J Triebe, and John W Sutherland. A transformer-based approach for
novel fault detection and fault classification/diagnosis in manufacturing: A rotary system
application. Journal of Manufacturing Systems, 67:439-452, 2023.

Qiao-Ning Xu, Kok-Meng Lee, Hua Zhou, and Hua-Yong Yang. Model-based fault detection
and isolation scheme for a rudder servo system. IEEE Transactions on industrial electronics,
62(4):2384-2396, 2014. doi:10.1109/TIE.2014.2361795.

Xuyang Yan, Mrinmoy Sarkar, Benjamin Lartey, Biniam Gebru, Abdollah Homaifar, Ali
Karimoddini, and Edward Tunstel. An online learning framework for sensor fault diagnosis
analysis in autonomous cars. IEEFE Transactions on Intelligent Transportation Systems,
24(12):14467-14479, 2023. doi:10.1109/TITS.2023.3305620.

Christos T Yiakopoulos, Konstantinos C Gryllias, and Ioannis A Antoniadis. Rolling element
bearing fault detection in industrial environments based on a k-means clustering approach.
Ezpert Systems with Applications, 38(3):2888-2911, 2011. doi:10.1016/J.ESWA.2010.08.083.

15:17

DX 2025

https://doi.org/10.1109/TIE.2015.2417501
https://doi.org/10.1109/TNSE.2022.3148276
https://arxiv.org/abs/2008.04644
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/liuice/liuice_index
https://vehsys.gitlab-pages.liu.se/dx25benchmarks/liuice/liuice_index
https://doi.org/10.1016/j.conengprac.2025.106283
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://doi.org/10.1016/J.ESWA.2022.117080
https://doi.org/10.1109/TIE.2014.2361795
https://doi.org/10.1109/TITS.2023.3305620
https://doi.org/10.1016/J.ESWA.2010.08.083

Unsupervised Multimodal Learning for Fault
Diagnosis and Prognosis — Application to
Radiotherapy Systems

Kélian Poujade' =

Université de Toulouse, Oncopole Claudius Regaud, Institut Universitaire du Cancer de Toulouse
(IUCT), France

Université de Toulouse, CNRS, INSERM, Centre de Recherches en Cancérologie de Toulouse
(CRCT), France

Louise Travé-Massuyes &
Laboratoire d’Analyse et d’Architecture des Systémes (LAAS-CNRS), Université de Toulouse,
CNRS, France

Jérémy Pirard =
Airbus, Toulouse, France

Laure Vieillevigne &

Université de Toulouse, Oncopole Claudius Regaud, Institut Universitaire du Cancer de Toulouse
(IUCT), France

Université de Toulouse, CNRS, INSERM, Centre de Recherches en Cancérologie de Toulouse
(CRCT), France

—— Abstract

Modern complex systems, such as radiotherapy machines, require robust strategies for fault detection,
diagnosis, and prognosis to ensure operational continuity and patient safety. While data-driven
methods have gained traction, few studies address diagnostic and prognostic tasks using multimodal
operational data under unsupervised or semi-supervised learning settings. This gap is particularly
critical given the scarcity of labeled failure data in real-world environments. This work aims to
design a unified approach for fault detection, diagnosis, and prognosis using multimodal data in
the absence of complete labeling. To this end, autoencoders (AEs) are employed due to their
suitability for unsupervised and self-supervised learning, flexibility in handling heterogeneous data,
and ability to construct latent representations optimized for various downstream tasks. A specific
implementation based on a Long Short-Term Memory S-Variational Autoencoder (LSTM-3-VAE)
was developed to detect anomalies in machine logs. This framework is applied to TomoTherapy®
systems — a highly complex and under-explored use case within the radiotherapy domain. Initial
results demonstrate strong anomaly detection performance on both a public benchmark dataset
(HDFS) and a proprietary dataset derived from real-world TomoTherapy® machine faults. Beyond
methodology, the paper includes a concise literature review of multimodal learning and data-driven
diagnosis and prognosis with a focus on AEs. Based on this review, key research directions are
identified for the continuation of the thesis, especially the integration of explainable Al as a means
to enhance diagnosis capabilities in the absence of labeled faults.

2012 ACM Subject Classification Computing methodologies — Unsupervised learning
Keywords and phrases Artificial Intelligence, Diagnosis, Prognosis, Radiotherapy machines
Digital Object Identifier 10.4230/0ASIcs.DX.2025.16

Category PhD Panel

1 Corresponding author

© Kélian Poujade, Louise Travé-Massuyes, Jérémy Pirard, and Laure Vieillevigne;
oY licensed under Creative Commons License CC-BY 4.0

36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025).

Editors: Marcos Quinones-Grueiro, Gautam Biswas, and Ingo Pill; Article No. 16; pp. 16:1-16:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:poujade.kelian@iuct-oncopole.fr
https://orcid.org/0009-0000-6196-5111
mailto:louise@laas.fr
https://orcid.org/0000-0002-5322-8418
mailto:jeremy.pirard@airbus.com
https://orcid.org/0009-0007-2762-4357
mailto:vieillevigne.laure@iuct-oncopole.fr
https://orcid.org/0000-0003-0680-7430
https://doi.org/10.4230/OASIcs.DX.2025.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

16:2

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

Funding This research was supported by Accuray Inc as part of the doctoral funding. It has also
benefited from the AI Interdisciplinary Institute ANITI funded by the France 2030 program under
the Grant agreement n°ANR-23-TACL-0002.

Acknowledgements This work is the result of a collaborative tripartite agreement involving IUCT-

Oncopole, Airbus, and Accuray Inc.

1 Introduction

In complex modern systems, fault detection, diagnosis, and prognosis are critical components
for maintaining system integrity and performance. As these systems grow in complexity,
traditional rule-based maintenance approaches are increasingly being supplemented — or
even replaced — by data-driven methods. These techniques hold promise not only for timely
fault detection, but also for enabling robust diagnostic and prognostic capabilities. Despite
significant advances, few studies have investigated comprehensive data-driven diagnosis and
prognosis frameworks that leverage unlabeled multimodal operational data such as machine
logs and time-series sensor measurements. Addressing this limitation is essential, especially
in real-world settings, where labeled failure data is scarce and system behavior is often
stochastic.

A first step in this direction is fault detection through anomaly detection. We have
already explored the use of machine logs for this purpose. As presented in Section 2, a deep
learning approach based on S8-Variational Autoencoders (8-VAE) was developed to identify
abnormal sequences in machine-generated log data. This method demonstrated the feasibility
of using logs as a data source to detect anomalies in the absence of explicit fault labels.

Building upon this foundation, the next phases involve exploring data-driven diagnosis
and prognosis methodologies, particularly under semi-supervised or unsupervised learning
paradigms. Such approaches are more appropriate for the nature of real-world data, where
anomalies may be poorly labeled or entirely unlabeled. This progression is illustrated through
an original case study focusing on TomoTherapy® systems used in cancer radiotherapy.

In radiotherapy, equipment reliability is critical to ensuring effective and uninterrupted
patient treatment. Unplanned faults in radiotherapy systems can lead to treatment delays,
rescheduling, and workflow disruptions, all of which can compromise treatment efficacy and
negatively affect patient outcomes. The continuity of treatment has a well-documented
impact on clinical results, with studies such as [18] demonstrating that extended overall
treatment times can negatively impact local tumor control and influence survival rates.
Among the various technologies employed in radiotherapy, TomoTherapy® machines (Accuray,
Madison, WI) (Figure 1a) stand out for their high complexity and versatility. These systems
integrate advanced image-guided radiotherapy (IGRT) with intensity-modulated radiation
therapy (IMRT) in a helical delivery mode [35]. Treatment delivery involves a continuously
rotating gantry and a synchronized, translating treatment couch, paired with a binary
multi-leaf collimator (MLC) consisting of 64 pneumatically actuated leaves (Figure 1b). This
configuration enables fine-tuned modulation, making the system particularly suitable for
anatomically extensive or complex treatments such as total body irradiation, craniospinal
irradiation, and re-irradiation [54]. Within this system, the MLC is a key subsystem due to
its direct role in beam shaping and dose modulation. However, its mechanical and electronic
complexity, relying on high-frequency actuation, makes it susceptible to faults. A particularly
vulnerable component is the bumper pack — a mechanical absorber designed to cushion the
rapid opening and closing movements of the leaves. Faults in the bumper pack can arise

K. Poujade, L. Travé-Massuyes, J. Pirard, and L. Vieillevigne

from progressive wear or sudden rupture and may compromise both system performance and
treatment accuracy. This work focuses on the MLC subsystem, with the aim of developing
an approach that can be readily generalized to other subsystems.

Although preventive maintenance is standard practice in radiotherapy, including for MLC
components [2], there is growing interest in transitioning toward predictive maintenance
paradigms. Predictive maintenance aims to anticipate equipment failures using real-time or
near-real-time operational data, enabling interventions before breakdowns occur. Such an
approach can minimize unplanned interruptions, optimize spare parts logistics, and most
importantly, safeguard the continuity of care for patients.

To date, research in radiotherapy has focused primarily on performance monitoring
techniques. Studies have analyzed trajectory log files from systems such as standard photon
linacs (TrueBeam® Varian Medical Systems, Palo Alto, CA) and proton therapy machines,
employing methods like threshold-based monitoring [56] and Statistical Process Control
(SPC) [1] . Some studies have investigated predictive methods for system fault anticipation,

typically relying on data from routine quality control (QC) or assurance (QA) tests [34, 16].

This approach limits real-time detection of incipient faults and restricts the resolution of
predictive models. To our knowledge, no studies have explored predictive strategies for
monitoring radiotherapy systems using continuously generated operational data.

This study aims to address this gap by developing a predictive framework tailored to
TomoTherapy® machines. It proposes to go beyond fault detection by leveraging operational
logs and sensor data for fault diagnosis and prognosis in a data-driven manner. Ultimately,
this approach aims to improve equipment reliability and support more consistent and effective
radiotherapy delivery, thereby enhancing the quality of patient care.

(a) (b)

Figure 1 (a) Schema of TomoTherapy® system (model TomoHD™). (b) Schema of main
subsystems composing the TomoTherapy® machines.

2 Conducted research

We first explored anomaly detection on machine log data. These logs, which chronicle the
states, events, and procedures of the system, represent a valuable but underutilized resource
for modeling system behavior and identifying early signs of malfunction. To address the
challenges posed by limited labeled data, the approach relies on Autoencoders (AEs) and
semi-supervised learning strategy, enabling the model to learn normal patterns without
requiring exhaustive labels. A key objective is to construct a latent space that not only

16:3

DX 2025

16:4

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

10:3 Served block blk_-7725 t0 /10.2
Embedding

BLOCK* ask 10:2 to delete blk_-7725 dimension v

LOF
—| Word2Vec | s
(cBOW)

Sequence length

Deleting block blk_-8898 file /dat/blk_-8898 [e1]
Verification succeeded for blk_-8898 Padding
Sequence length

Verification succeeded for blk_-7725

BLOCK* ask 10.2 to delete blk_-7725

2
EventlDs Event Templates iy Grouping T::g:‘f w @ dimension 5
E1 | <*>:<*> Served block blk_<*> to /<*> La;:ﬂ"g /‘ L 3 %@
2 | BLOCK* ask <*>:<*> to delete blk_<*> % :
E3 | Verification succeeded for blk_<*> 1 Padding length
E4 | Deleting block blk_<*> file /<*>/blk_<*> m

Zpi =i+ Qg
£~N(0,1)

Feature Extraction

Figure 2 Overview of the proposed pipeline. The first stage includes DRAIN parsing, grouping,
labeling and Word2Vec to extract features from log files. Obtained embedded sequences are padded
to obtain the input & € V that feed an LSTM-3-VAE. While reconstructing the input at its output
I3, this later learns compressed latent representations z; € Z; useful for anomaly detection. Different
algorithms are then applied on the learned latent space Zy = {zs}.

captures the essential structure of normal operations, but also improves interpretability and
facilitates the distinction between normal and anomalous behaviors. This framework aims
to support more transparent and generalizable anomaly detection in complex systems. A
preprint version of this work has been deposited on HAL [42] and the associated code is
available online 2.

2.1 Proposed pipeline

We developed a semi-supervised pipeline for anomaly detection in log sequences. It assumes
the availability of a subset of logs representing normal system behavior, which is used
to train representation learning models. The pipeline consists of three main stages: log
preprocessing and feature extraction, latent space learning via a Long Short-Term Memory-
based f-Variational Autoencoder (LSTM-3-VAE), and anomaly detection on learned latent
space using traditional machine learning algorithms enhanced with conformal prediction.
The proposed pipeline is illustrated in Fig. 2. The full pipeline is designed to generalize well
across different datasets, relying on minimal tuning and emphasizing the interpretability and
robustness of the learned representations.

2.1.1 Log Preprocessing and Feature Extraction

Raw log files are first parsed using the DRAIN algorithm [22], which groups similar log lines
into structured templates, allowing them to be represented as sequences of discrete event
identifiers. These log lines are then grouped into sequences — either based on procedure
windows or sliding time windows — and each sequence is labeled as either normal or faulty. The
event identifiers from DRAIN parsing are then embedded into dense vector representations
using the Word2Vec model (CBOW variant) [37]. Each log sequence is thus transformed into
a sequence of embedding vectors v € V| which are then padded or truncated to a fixed length
to obtain @ € V. This process ensures compatibility with the subsequent neural architecture.

2 https://gitlab.laas.fr/addram/anomaly-detection-in-log-data.git

https://gitlab.laas.fr/addram/anomaly-detection-in-log-data.git

K. Poujade, L. Travé-Massuyes, J. Pirard, and L. Vieillevigne

2.1.2 Learning Latent Representations

To capture both semantic and sequential characteristics of log sequences, a latent space
is learned using a LSTM-3-VAE trained using normal labeled data. This model encodes
each embedded sequence ¥ € V into a low-dimensional latent vector z; € Z; that captures
the key patterns and structure of normal behavior, while reconstructing the input sequence
from this compressed representation. The g term in the objective function controls the
balance between reconstruction accuracy and latent space regularization [23], allowing better
separation of anomalies from normal samples.

2.1.3 Anomaly Detection in the Latent Space

Then, traditional anomaly detection algorithms A such as One-Class SVM (OCSVM)[48],
Isolation Forest (IF)[27], and Local Outlier Factor (LOF)[8] are applied on the learned latent
representations zz € Z. These algorithms are learned in a semi-supervised manner using
the latent representations of the normal labeled data used for the LSTM-3-VAE training. To
provide statistical guarantees on model predictions, Conformal Anomaly Detection (CAD) —
a technique derived from the Conformal Prediction framework [5] — is used. This method
allows to define a threshold on anomaly scores returned by the algorithms A to correct the
predictions and guarantee a statistical confidence in the results. Each confidence level is
associated to a threshold value.

2.2 Evaluation

The evaluation of the proposed pipeline was conducted using two datasets: a publicly available
benchmark (HDFS) [66] and a proprietary dataset derived from the logs of TomoTherapy®
machines (TOMO). The TOMO dataset focuses on MLC faults linked to the bumper pack,
gathering data from 20 fault cases across 15 different machines. Each fault case is referenced
as FC(MM/DD/YYYY), identified by the date of the bumper pack repair.

One of the objectives of this study was to investigate the use of Mass-Volume (MV) and
Excess-Mass (EM) scores [12, 20] — metrics specifically designed for unlabeled datasets — as
a means to optimize the model’s parameters and evaluate its performance in the absence of
ground truth labels. These metrics evaluate the distance between the level sets of an anomaly
scoring function and those of the underlying data distribution. They offer a principled way
to assess a model’s ability to capture the structure of the data and produce a meaningful
anomaly score with statistical rigor.

For the HDFS dataset, both EM and MV scores were computed and compared with con-
ventional classification metrics, including the area under the receiver operating characteristic
curve (ROC), the area under the precision-recall curve (PR), and the F1 score. We first
demonstrated that using the EM and MV scores to optimize the model and evaluate anomaly
detection algorithms in the learned latent space yielded results comparable to those obtained
with conventional metrics such as ROC and PR.

Then, for the TOMO dataset — where only a limited number of log sequences were labeled
as normal (specifically, those recorded after system repairs) — only the EM and MV scores
were employed. These metrics were used to assess the model’s performance on a subset of
normal labeled sequences unseen during model training.

16:5

DX 2025

16:6

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

- . FAP
| AN WLl
of ."‘:\ ~ #‘fhd
-20 . * M.'.“ wags, L3
R s

ol %

£ ":f. b

Dimensio

a0 20 [20 a0

(a) (b)

Figure 3 T-SNE visualization of log sequences from FC(06/15/2023) using their learned LSTM-j-
VAE latent representations. (a) Colored by normal label (blue) and unlabeled (orange). (b) Colored
by conformal predictions with different confidence levels based on learned OCSVM scoring function.

2.3 Results

Building on these findings, the EM and MV scores were then used to guide model optimization
on the TOMO dataset and to assess the performance of various machine learning algorithms
applied in the latent space. To complement this quantitative evaluation, several visualizations
of the test data latent representations related to the fault case FC(06,/15/2023) were produced
using t-distributed stochastic neighbor embedding (t-SNE) algorithm [53], which projects
high-dimensional representations into a two-dimensional space for interpretability.

Fig. 3a shows the latent space learned by the LSTM-5-VAE, where a clear separation
appears between labeled normal sequences (blue) and a central group of unlabeled sequences
(orange), indicating behaviors differing from the normal patterns used during training.

Fig. 3b presents the conformal prediction results of OCSVM, the best-performing algorithm
based on EM and MV metrics. The color-coded conformal predictions can be seen as level
sets of the OCSVM’s scoring function. This figure highlights sequences in the center — isolated
from normal ones 3a — as anomalies, mainly with 80% statistical confidence. Additional
isolated groups are flagged as abnormal with 90-95% confidence, despite containing sequences
labeled as normal.

To contextualize these detections, Fig. 4a maps the detected anomalies to their temporal
position relative to subsystem maintenance. Central sequences flagged as abnormal predom-
inantly occurred in the month before the identified fault, with none appearing post-repair,
confirming the relevance of the detections.

Finally, Fig. 4b links the detected anomalous groups to specific log message content.
Messages related to MLC issues (e.g., overtravel, position, bounce) (orange in Fig. 4b),
known indicators of faults, are found in the central anomaly cluster. Another high-confidence
anomaly group, detected in black in Fig. 3b and overlapping normal data in Fig. 3a,
corresponds to machine shutdowns (green in Fig. 4b), reinforcing the consistency of the
detection results with expert knowledge.

3 Thesis roadmap

So far, an approach has been developed to detect anomalous log sequences from the perspective
of the system under study. This method leverages AEs to learn, in a semi-supervised manner,
a latent space optimized for anomaly detection while preserving interpretability. The next
phase of the project aims to enrich this framework by integrating additional data sources,

K. Poujade, L. Travé-Massuyes, J. Pirard, and L. Vieillevigne

20230615

2023-06-02 ~
)

“te

20230500

0300275

20230415 &

2023:0226 §
2023-01-21 -20

.m
%
L4 “
o
: 1
oey
" P
. O.‘
.

(a) (b)

Figure 4 T-SNE visualization of log sequences from FC(06/15/2023) using their learned LSTM-
B-VAE latent representations. (a) Colored by temporality. (b) Colored by the number of known
MLC-problem related messages.

such as time-series sensor measurements, to move toward fault diagnosis and prognosis
using multimodal data and Al models. In this context, AEs remain central due to their
key advantages: they naturally support multimodal learning, enable unsupervised or semi-
supervised training, and allow for the construction of meaningful latent representations
tailored to the different mentioned tasks.

3.1 Exploration
3.1.1 Multimodal learning

Multimodal learning refers to the development of AI models capable of processing and
integrating heterogeneous data sources — such as images, time series, text, or tabular data —
within a unified framework. This paradigm is particularly relevant in radiotherapy systems
monitoring, where combining event logs, sensor streams, and contextual metadata yields
richer representations of machine behavior. The goal is to extract complementary information
from each modality to improve tasks such as anomaly detection, diagnosis, and prognosis.
A key challenge lies in aligning and fusing modalities with differing structures, semantics,
and temporal characteristics. Central to this is representation learning, which encodes raw
multimodal inputs into robust, task-relevant vector representations.

Early approaches, like Multimodal Deep Boltzmann Machines [50], illustrated the potential
of probabilistic graphical models to jointly model diverse modalities via a shared latent
layer. However, these models are computationally intensive and require complex variational
inference [50]. More scalable alternatives have emerged with AEs, now central to unsupervised
and self-supervised multimodal learning. In this setting, AEs use modality-specific encoders
(e.g., CNNs, RNNs or transformers) fused into a shared latent space.

AEs are well-suited for self-supervised learning, where reconstruction or auxiliary tasks
drive representation learning without labels. Robinet et al. (2024) [46] introduced DRIM,
which uses dual encoders per modality. The DRIM-U variant minimizes reconstruction of
modality-unique components, using a tailored loss inspired by supervised contrastive learning
and an adversarial objective. Contrastive learning has emerged as a powerful unsupervised
approach, with methods like contrastive predictive coding [39], which use InfoNCE loss to
bring similar representations closer and push others apart. Geng et al. (2022) [19] proposed
Multimodal Masked AEs (M3AE), which learn joint vision-language representations via
masked token prediction, avoiding modality-specific encoders and contrastive learning. Feng
et al. (2024) [17] added a modality-consistency detection task, where the network learns to
identify tampered modalities, enhancing cross-modal coherence.

16:7

DX 2025

16:8

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

AEs also optimize latent spaces for downstream goals. DRIM separates shared repres-
entations — rich in patient-specific information — from unique ones by minimizing mutual
information, improving interpretability and predictive utility [46]. Correlational Neural
Networks (CorrNet) [10] maximize cross-modal correlation in the latent space. Yang et al.
extended this idea to temporal data with CorrRNN [61].

Fusion strategies in AE-based architectures vary. As surveyed by Zhao et al. (2024) [64],
fusion can occur at the raw-data, feature, or decision levels. DRIM combines shared
and unique representations through attention-based fusion, handling missing modalities
effectively [46]. Other techniques like Tensor Fusion Networks model high-order modality
interactions, though with higher computational cost [63].

Overall, AE-based multimodal learning offers a flexible framework for heterogeneous data,
especially when labels are limited. Key directions include incorporating temporal dynamics,
improving robustness to missing modalities, and optimizing latent spaces for real-world tasks
such as anomaly detection, diagnosis, and prognosis.

3.1.2 Diagnosis

Fault diagnosis is a core task in system monitoring and maintenance, ensuring safety, reliability,
and efficiency. It refers to the reasoning process used to identify the nature and root cause of
a failure based on observed symptoms from measurements, checks, or tests. Formally, it can
be seen as an inference problem: determining a system’s internal (possibly faulty) state from
its external outputs. Diagnosis typically involves three stages: fault detection (whether a
fault occurred), fault isolation (identifying the faulty component), and fault identification
(characterizing the fault’s type and severity). Methods vary by system complexity and data
availability, and can be categorized into model-based, data-driven, or hybrid approaches
combining physical knowledge with statistical or machine learning techniques.

3.1.2.1 Model-based diagnosis

Model-based approaches have long been the dominant paradigm in fault diagnosis [7, 40].
These approaches rely on constructing analytical or physical models that describe the
system’s behavior under nominal and faulty conditions. Such models are usually derived
from first-principles knowledge, including conservation laws, differential equations, discrete
event models, or logical constraints, and are validated through expert analysis and simulation.
Model-based methods provide high interpretability, allow detection of specific fault patterns
with precision, and generally perform well in systems where accurate models are available.

However, their effectiveness is often limited by the complexity of real-world systems.
Modeling nonlinear dynamics, stochastic disturbances, time-varying behaviors, and inter-
actions between subsystems remains a challenging task. See [41] for challenges referring to
the DX approaches. Furthermore, developing and validating such models requires significant
domain expertise and resources, which can be prohibitive in systems that evolve rapidly or
lack comprehensive documentation.

3.1.2.2 Data-driven diagnosis

Data-driven fault diagnosis has gained momentum over the last decade due to increasing
sensor data availability, advances in machine learning, and enhanced computational power.
Unlike model-based methods, these approaches infer patterns or fault signatures directly from
historical or real-time data. This enables fault detection in complex or poorly understood

K. Poujade, L. Travé-Massuyes, J. Pirard, and L. Vieillevigne

systems and improves scalability. Reviews such as [11, 47] highlight the maturity and
applicability of these methods across domains like HVAC systems and general industrial
equipment, underlining their potential to automate diagnostics and reduce expert reliance.

Among these techniques, AEs are widely used for their ability to learn compact, informat-
ive representations from high-dimensional data. Often, they serve as feature extractors, with
supervised classifiers trained on the latent space. For instance, Han Liu et al. (2018) [28]
proposed a recurrent AE-based method using gated recurrent units (GRU-NP-DAEs), where
each AE is trained on a specific fault class and the classification is determined by identifying
the AE that minimizes the reconstruction error. Similarly, Lang Liu et al. (2024) [29]
introduced a variable-wise stacked temporal AE (VW-STAE), in which a variable sensitivity
analysis guides the classification, again relying on supervised training per fault type.

Other works improved AE architectures for better feature extraction. Shao et al. (2021) [49]
used adaptive Morlet wavelets to capture nonlinearities. Yang et al. (2020) [60] combined
sparse and denoising AEs with ensemble learning. Qiu et al. (2025) [43] proposed a mul-
timodal fusion scheme using multiscale stacked denoising AEs for noise robustness. Zhao
et al. (2024) [65] presented a semi-supervised Gaussian mixture VAE for few-shot learning,
adapting to new fault classes via episodic training and a dynamic multimodal prior.

However, these methods often assume the availability of labeled data for all fault types —
an unrealistic assumption in practice. Real-world systems frequently encounter rare or
unknown faults, and collecting exhaustive labeled datasets is infeasible. Fully supervised
AE-based methods may thus struggle to generalize.

To address this, semi- and unsupervised AE-based methods have emerged. These models
learn representations of normal data patterns without relying on fault labels. For example,
Amini and Zhu (2022) [4] introduced a source-aware AE that can operate with or without
labels. Cacciarelli and Kulahci (2022) [9] proposed an orthogonal AE to decorrelate latent
features, improving fault detection and interpretability. Ma et al. (2018) [33] developed a
deep coupling AE for multimodal sensory data, learning a shared representation and applying
late fusion for diagnosis.

These studies reflect growing interest in unsupervised learning frameworks for early fault
detection in safety-critical systems. While supervised AEs remain popular, semi-supervised or
unsupervised models better match real-world constraints, offering scalable, realistic solutions
for modern diagnostic challenges.

3.1.2.3 Fault diagnosis and Al explainability

Another promising avenue for fault diagnosis using data-driven and unsupervised learning
methods is to investigate the role of explainability in Al models. Explainability refers to the
extent to which a model’s internal mechanisms, decisions, and outputs can be interpreted
and understood by humans. In fact, the explainability of the models can be viewed as a form
of diagnosis. While fault detection methods typically indicate the presence of an abnormal
state, explainability goes further by identifying the elements or patterns that contributed to
this state — essentially answering why the system deviated from normal behavior. In this
sense, providing an explanation can lead to diagnosing the cause of the fault. Therefore,
designing an explainable fault detection model is inherently aligned with building a diagnosis
system. Despite its importance, this connection has received limited attention in data-driven
research. In such unsupervised contexts, explainability plays a crucial role, as it enables the
interpretation — and thus the diagnosis — of detected anomalies in the absence of explicit
ground truth. Exploring explainability as a diagnostic tool is therefore not only a promising
direction, but also a necessary one to improve the understanding, trustworthiness, and
practical applicability of data-driven fault detection systems under realistic constraints.

16:9

DX 2025

16:10

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

Explainability methods are typically categorized into two families: post-hoc methods,
which seek to interpret already trained models, and intrinsic methods, which embed in-
terpretability directly into the model architecture or training process. This distinction is
particularly relevant for AEs, which are widely used in unsupervised tasks such as anomaly
detection but often operate as black boxes.

Post-hoc explainability techniques are applied after the model is trained, often without
modifying the model’s structure. Among the most widely used post-hoc tools are Shapley
Additive Explanations (SHAP)[32], which attribute contributions of input features to a
model’s predictions. SHAP has been extensively employed in the context of AEs to understand
anomalies and latent representations. For instance, Antwarg et al. (2021) [6] applied Kernel
SHAP to explain reconstruction-based anomalies by linking reconstruction errors to influential
input features. Similarly, Xu et al. (2021) [59] used SHAP in a dynamic multimodal VAE
(DMVAE) to provide both local and global feature attribution in a clinical prediction task.
In genomics, Li et al. (2023) [26] introduced XA4C, an AE-based pipeline where SHAP
values derived from XGBoost identify critical genes contributing to latent representations,
supporting downstream biological interpretation.

Another line of work focuses on counterfactual explanations, which generate hypothetical
examples to highlight what changes would be required to alter a model’s output, which shares
high similarity with the concept of conflict known in the logical diagnosis theory [44, 13].
Using contrastive supervision, Todo et al. (2023) [52] trained a VAE to disentangle class-
relevant and class-irrelevant components in multivariate time series, enabling the generation of
plausible counterfactuals by manipulating only the class-relevant latent subspace. Extending
this concept, Haselhoff et al. (2024) [21] proposed the Gaussian discriminant VAE (GAVAE),
a self-explainable generative model that integrates a class-conditional latent space with
closed-form counterfactual generation, balancing interpretability and quality of explanations
in vision tasks.

Gradient-based attention mechanisms have also been applied to AEs to enhance inter-
pretability. Liu et al. (2020) [30] derived visual attention maps from VAE latent variables to
localize anomalies in images, while Nguyen et al. (2019) [38] used gradient-based fingerprinting
in an unsupervised VAE for network anomaly detection.

Another line of work involves surrogate models like LIME [45], which approximate AE
behavior locally using interpretable models (e.g., decision trees). Wu and Wang (2021) [57]
proposed a LIME-based framework with explainers for reconstruction, classification, and
global behavior in fraud detection.

In contrast to post-hoc approaches, intrinsic explainability is built into the model archi-
tecture or training objective. One strategy is to enforce interpretable representations through
structured constraints. For example, Di Clemente et al. (2025) [15] developed a physics-
informed AE where latent codes directly correspond to astrophysical quantities such as mass
and radius of neutron stars. By embedding domain knowledge and explicit constraints in the
loss function, the model achieves physical interpretability of latent variables. Other studies
integrate interpretability by combining AEs with inherently transparent models. Aguilar et
al. (2022) [3] proposed a decision tree-based AE capable of handling categorical data without
encoding, offering interpretable internal representations through the branching structure of
the tree itself. In probabilistic frameworks, Bayesian autoencoders (BAEs) can enhance inter-
pretability via uncertainty estimation. Yong and Brintrup (2022) [62] introduced coalitional
Bayesian AEs, where explanations are derived from the mean and epistemic uncertainty of
log-likelihood estimates, providing insight into model behavior under covariate shift without
relying on additional explainer models. Other works focused on providing explanations based
on reconstruction errors from AEs. Kieu et al. (2022) [24] used Robust Principal Component

K. Poujade, L. Travé-Massuyes, J. Pirard, and L. Vieillevigne

Analysis (RPCA) combined with AEs to improve the explainability of outlier detection in
time series, separating outliers from clean data. Martinez-Garcia et al. (2019) [36] proposed
the entropy of the AE’s reconstructed outputs as a form of explanation.

3.1.3 Prognosis

In prognosis, as in diagnosis, methodologies can broadly be divided into model-based and
data-driven approaches, each offering distinct strategies for predicting the Remaining Useful
Life (RUL) and anticipating system failures.

Model-based methods rely on physical laws and tools like Physics of Failure (PoF),
Kalman filters, and finite element analysis to estimate RUL without historical data.

Data-driven methods leverage sensor data and failure history to predict degradation. They
include stochastic models (e.g., Weibull distribution, Bayesian networks, Hidden Markov
Models), statistical techniques (e.g., ARMA, ARIMA), and Al-based approaches.

Among Al-based methods, similarity-based learning has gained prominence. Widodo et
al. (2025) [55] demonstrated an approach for boiler prognosis using Support Vector Machines
(SVMs), Random Forest Algorithms (RFAs), and Dynamic Time Warping (DTW) for RUL
estimation, showing potential for real-world deployment in power plants.

Deep learning models, particularly LSTM networks, have been widely used to model
temporal dependencies in degradation data. Liu et al. (2021) [31] introduced an elastic-net-
regularized LSTM (E-LSTM) to mitigate overfitting and improve RUL prediction stability
for rolling bearings. Wu et al. (2018) [58] utilized vanilla LSTM networks and dynamic
differential technology to enhance RUL prediction under varying operational conditions and
noise levels.

AE-based architectures have also been explored for prognostic tasks. Robinet et al. (2024)
[46] proposed a method for survival prediction using disentangled representations from
incomplete multimodal healthcare data, applying a discretized time model supervised by
a specialized loss function for censored survival data as described by Kvamme and Bor-
gan (2021) [25]. This approach models hazard probabilities over time intervals and learns
individualized survival curves from multimodal inputs. De Pater and Mitici (2023) [14]
designed an LSTM-AE with attention to develop health indicators for aircraft system in an
unsupervised manner. These health indicators are further used to predict the RUL of the
aircraft system using a similarity-based matching approach. In a more recent contribution,
Tefera et al. (2025) [51] introduced a constraint-guided deep learning framework to generate
physically consistent health indicators from bearing sensor data. The proposed AE model
integrates domain constraints — monotonicity, bounded output, and energy-consistency —
into the training process via a custom optimization scheme. Compared to baseline models,
this approach enhances trendability, robustness, and consistency, yielding interpretable
degradation profiles aligned with physical expectations.

Overall, the landscape of prognosis methodologies continues to evolve, with hybrid
approaches combining physics-based insight and data-driven learning offering powerful
solutions for anticipating failures and optimizing maintenance in complex systems.

4 Schedule

The proposed research roadmap is structured into three interconnected phases. Each phase
explores a fundamental capability — fault detection, diagnosis, and prognosis — through the
lens of multimodal and unsupervised (or semi-supervised) learning. A central prerequisite
for each stage is the curation of a clean and well-structured dataset focused on the MLC
subsystem, enabling a controlled yet realistic environment for experimentation.

16:11

DX 2025

16:12

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

4.1 Phase 1 — Multimodal Representation Learning for Anomaly
Detection

Phase 1 aims to construct joint representations of operational logs and time-series sensor
data through unsupervised deep learning. Inspired by recent advances such as DRIM [46]
and Correlational Neural Networks [10], this step will evaluate various fusion strategies
— including dual encoder architectures, disentangled shared/unique representations, and
correlation-maximizing latent spaces.

The goal is to design an embedding space where normal and abnormal behaviors can be
effectively separated, even in the absence of fault labels. Special attention will be given to
robustness in the presence of missing modalities and asynchronous data.

Milestones:
Construction of a labeled and time-aligned multimodal dataset focused on MLC.
Leveraging and extending existing multimodal AE approaches (e.g., DRIM, CorrNet) to
construct a latent space that better suit the characteristics of radiotherapy system data.
Testing different self-supervised learning strategies: reconstruction [46], masked token
prediction [19] and modality-consistency detection task [17].

4.2 Phase 2 — Explainable Fault Diagnosis via Latent Representations

Phase 2 focuses on leveraging the learned multimodal latent space to perform fault diagnosis
in an unsupervised or weakly supervised setting. A key hypothesis is that explainability
can serve as a proxy for diagnosis, especially when ground truth labels are scarce. Building
on the work of Todo et al. [52] and the logical theory of conflict-based diagnosis [44, 13],
counterfactual explanation techniques will be explored as a means of identifying latent
dimensions or input factors contributing to anomalies.

In parallel, post-hoc tools such as SHAP will be employed to generate interpretable
attributions on both the model outputs and the latent encoding. The interplay between
these explanations and traditional diagnostic tasks (fault isolation, severity ranking) will be
investigated.

Milestones:
Adaptation of counterfactual explanations to the latent space of multimodal AEs.
SHAP-based analysis of log and sensor contributions to fault signatures.

Evaluation of the diagnostic capability of selected explainable methods.

4.3 Phase 3 — Prognosis and Remaining Useful Life Estimation

Phase 3, and the final stage, addresses long-term prediction of subsystem degradation. Two
complementary directions will be explored: (1) survival analysis with multimodal latent
embeddings, following Robinet et al. [46]; (2) unsupervised health indicator construction
with physical constraints, following Tefera et al. [51].

In the first direction, discrete-time hazard models will be used to estimate individualized
survival curves from latent variables, integrating sensor and log-derived features. In the
second, attention will be paid to embedding physical priors (e.g., monotonicity, boundedness)
directly into AE training, to produce interpretable and consistent degradation profiles.

K. Poujade, L. Travé-Massuyes, J. Pirard, and L. Vieillevigne

Milestones:
Derivation of latent health indicators from log and sensor embeddings.
Modeling of hazard probabilities from multimodal data (DRIM-like survival modeling).
Training of constraint-aware AEs to enforce physically consistent degradation behavior.

Comparison across Phases: Throughout all phases, systematic comparisons will be
conducted between semi-supervised learning (enabled by partially labeled TOMO data) and
fully unsupervised alternatives, to assess scalability and realism in operational settings.

5 Conclusion

This work presents a semi-supervised learning framework for fault detection in complex
systems using log data. The method, based on a LSTM-3-VAE, demonstrated effective
anomaly detection on both benchmark and real-world datasets, leveraging an optimized latent
space combined with conformal prediction. The case study on TomoTherapy® machines
highlights the practical relevance of this approach in a safety-critical healthcare setting.

Looking forward, the research will expand to incorporate time-series sensor data alongside
log sequences, moving toward a multimodal diagnostic and prognostic framework. Upcoming
phases will explore multimodal fusion strategies, counterfactual and SHAP-based explain-
ability techniques for unsupervised diagnosis, and survival modeling for prognosis. These
directions aim to produce interpretable, generalizable models that support fault isolation
and remaining useful life estimation under realistic operational constraints.

—— References

1 Charles M Able, Alan H Baydush, Callistus Nguyen, Jacob Gersh, Alois Ndlovu, Igor Rebo,
Jeremy Booth, Mario Perez, Benjamin Sintay, and Michael T Munley. A model for preemptive

maintenance of medical linear accelerators—predictive maintenance. Radiation Oncology,
11:1-9, 2016.

2 Christina Elizabeth Agnew, Sergio Esteve, Glenn Whitten, and William Little. Reducing
treatment machine downtime with a preventative mlc maintenance procedure. Physica Medica,
85:1-7, 2021.

3 Diana Laura Aguilar, Miguel Angel Medina-Pérez, Octavio Loyola-Gonzalez, Kim-Kwang Ray-
mond Choo, and Edoardo Bucheli-Susarrey. Towards an interpretable autoencoder: A decision-
tree-based autoencoder and its application in anomaly detection. IFEE transactions on
dependable and secure computing, 20(2):1048-1059, 2022. doi:10.1109/TDSC.2022.3148331.

4 Nima Amini and Qingin Zhu. Fault detection and diagnosis with a novel source-aware
autoencoder and deep residual neural network. Neurocomputing, 488:618-633, 2022. doi:
10.1016/J.NEUCOM.2021.11.067.

5 Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction
and distribution-free uncertainty quantification. arXiv preprint arXiw:2107.07511, 2021.
arXiv:2107.07511.

6 Liat Antwarg, Ronnie Mindlin Miller, Bracha Shapira, and Lior Rokach. Explaining anomalies
detected by autoencoders using shapley additive explanations. Fxpert systems with applications,
186:115736, 2021. doi:10.1016/J.ESWA.2021.115736.

7 Pietro Baroni, Gianfranco Lamperti, Paolo Pogliano, and Marina Zanella. Diagnosis of large
active systems. Artificial Intelligence, 110(1):135-183, 1999. doi:10.1016/S0004-3702(99)
00019-3.

8 Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jérg Sander. Lof: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, pages 93-104, 2000. doi:10.1145/342009.335388.

16:13

DX 2025

https://doi.org/10.1109/TDSC.2022.3148331
https://doi.org/10.1016/J.NEUCOM.2021.11.067
https://doi.org/10.1016/J.NEUCOM.2021.11.067
https://arxiv.org/abs/2107.07511
https://doi.org/10.1016/J.ESWA.2021.115736
https://doi.org/10.1016/S0004-3702(99)00019-3
https://doi.org/10.1016/S0004-3702(99)00019-3
https://doi.org/10.1145/342009.335388

16:14

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Davide Cacciarelli and Murat Kulahci. A novel fault detection and diagnosis approach
based on orthogonal autoencoders. Computers €& Chemical Engineering, 163:107853, 2022.
doi:10.1016/J.COMPCHEMENG.2022.107853.

Sarath Chandar, Mitesh M Khapra, Hugo Larochelle, and Balaraman Ravindran. Correlational
neural networks. Neural computation, 28(2):257-285, 2016. doi:10.1162/NECO_A_00801.
Zhelun Chen, Zheng O’Neill, Jin Wen, Ojas Pradhan, Tao Yang, Xing Lu, Guanjing Lin,
Shohei Miyata, Seungjae Lee, Chou Shen, et al. A review of data-driven fault detection and
diagnostics for building hvac systems. Applied Energy, 339:121030, 2023.

Stéphan Clémencon and Jérémie Jakubowicz. Scoring anomalies: a m-estimation for-
mulation. In Artificial Intelligence and Statistics, pages 659-667. PMLR, 2013. URL:
http://proceedings.mlr.press/v31/clemenconl3a.html.

Johan De Kleer and Brian C Williams. Diagnosing multiple faults. Artificial intelligence,
32(1):97-130, 1987. doi:10.1016/0004-3702(87)90063-4.

Ingeborg de Pater and Mihaela Mitici. Developing health indicators and rul prognostics for
systems with few failure instances and varying operating conditions using a Istm autoencoder.
Engineering Applications of Artificial Intelligence, 117:105582, 2023. doi:10.1016/J.ENGAPPAT.
2022.105582.

Francesco Di Clemente, Matteo Scialpi, and Michal Bejger. Explainable autoencoder for
neutron star dense matter parameter estimation. Machine Learning: Science and Technology,
2025.

Tai Dou, Benjamin Clasie, Nicolas Depauw, Tim Shen, Robert Brett, Hsiao-Ming Lu, Jacob B
Flanz, and Kyung-Wook Jee. A deep Istm autoencoder-based framework for predictive
maintenance of a proton radiotherapy delivery system. Artificial Intelligence in Medicine,
132:102387, 2022. doi:10.1016/J.ARTMED.2022.102387.

Wenjun Feng, Xin Wang, Donglin Cao, and Dazhen Lin. An autoencoder-based self-supervised
learning for multimodal sentiment analysis. Information Sciences, 675:120682, 2024. doi:
10.1016/J.INS.2024.120682.

José A Gonzélez Ferreira, Javier Jaén Olasolo, Ignacio Azinovic, and Branislav Jeremic. Effect
of radiotherapy delay in overall treatment time on local control and survival in head and neck
cancer: review of the literature. Reports of Practical Oncology and Radiotherapy, 20(5):328-339,
2015.

Xinyang Geng, Hao Liu, Lisa Lee, Dale Schuurmans, Sergey Levine, and Pieter Ab-
beel. Multimodal masked autoencoders learn transferable representations. arXiv preprint
arXiw:2205.14204, 2022. doi:10.48550/arXiv.2205.14204.

Nicolas Goix. How to evaluate the quality of unsupervised anomaly detection algorithms?
arXiv preprint arXiw:1607.01152, 2016. arXiv:1607.01152.

Anselm Haselhoff, Kevin Trelenberg, Fabian Kiippers, and Jonas Schneider. The gaussian
discriminant variational autoencoder (gdvae): A self-explainable model with counterfactual
explanations. In European Conference on Computer Vision, pages 305—322. Springer, 2024.
doi:10.1007/978-3-031-73668-1_18.

Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain: An online log parsing
approach with fixed depth tree. In 2017 IEEE international conference on web services (ICWS),
pages 33—40. IEEE, 2017. doi:10.1109/ICWS.2017.13.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations,
2017.

Tung Kieu, Bin Yang, Chenjuan Guo, Christian S Jensen, Yan Zhao, Feiteng Huang, and Kai
Zheng. Robust and explainable autoencoders for unsupervised time series outlier detection.
In 2022 IEEE 38th International conference on data engineering (ICDE), pages 3038-3050.
IEEE, 2022. doi:10.1109/ICDE53745.2022.00273.

https://doi.org/10.1016/J.COMPCHEMENG.2022.107853
https://doi.org/10.1162/NECO_A_00801
http://proceedings.mlr.press/v31/clemencon13a.html
https://doi.org/10.1016/0004-3702(87)90063-4
https://doi.org/10.1016/J.ENGAPPAI.2022.105582
https://doi.org/10.1016/J.ENGAPPAI.2022.105582
https://doi.org/10.1016/J.ARTMED.2022.102387
https://doi.org/10.1016/J.INS.2024.120682
https://doi.org/10.1016/J.INS.2024.120682
https://doi.org/10.48550/arXiv.2205.14204
https://arxiv.org/abs/1607.01152
https://doi.org/10.1007/978-3-031-73668-1_18
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ICDE53745.2022.00273

K. Poujade, L. Travé-Massuyes, J. Pirard, and L. Vieillevigne

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Havard Kvamme and @rnulf Borgan. Continuous and discrete-time survival prediction with
neural networks. Lifetime data analysis, 27(4):710-736, 2021.

Qing Li, Yang Yu, Pathum Kossinna, Theodore Lun, Wenyuan Liao, and Qingrun Zhang.
Xadc: explainable representation learning via autoencoders revealing critical genes. PLOS
Computational Biology, 19(10):e1011476, 2023. doi:10.1371/JOURNAL.PCBI.1011476.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth iece
international conference on data mining, pages 413-422. IEEE, 2008. doi:10.1109/ICDM.
2008.17.

Han Liu, Jianzhong Zhou, Yang Zheng, Wei Jiang, and Yuncheng Zhang. Fault diagnosis
of rolling bearings with recurrent neural network-based autoencoders. ISA transactions,
77:167-178, 2018.

Lang Liu, Ying Zheng, and Shaojun Liang. Variable-wise stacked temporal autoencoder for
intelligent fault diagnosis of industrial systems. IEEE Transactions on Industrial Informatics,
2024.

Wengian Liu, Runze Li, Meng Zheng, Srikrishna Karanam, Ziyan Wu, Bir Bhanu, Richard J
Radke, and Octavia Camps. Towards visually explaining variational autoencoders. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pages 8642-8651,
2020.

Zhao-Hua Liu, Xu-Dong Meng, Hua-Liang Wei, Liang Chen, Bi-Liang Lu, Zhen-Heng Wang,
and Lei Chen. A regularized Istm method for predicting remaining useful life of rolling
bearings. International Journal of Automation and Computing, 18:581-593, 2021. doi:
10.1007/S11633-020-1276-6.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

Meng Ma, Chuang Sun, and Xuefeng Chen. Deep coupling autoencoder for fault diagnosis
with multimodal sensory data. IEEE Transactions on Industrial Informatics, 14(3):1137-1145,
2018. doi:10.1109/TII.2018.2793246.

Min Ma, Chenbin Liu, Ran Wei, Bin Liang, and Jianrong Dai. Predicting machine’s perform-
ance record using the stacked long short-term memory (Istm) neural networks. Journal of
Applied Clinical Medical Physics, 23(3):e13558, 2022.

T Rockwell Mackie, John Balog, Ken Ruchala, Dave Shepard, Stacy Aldridge, Ed Fitchard,
Paul Reckwerdt, Gustavo Olivera, Todd McNutt, and Minesh Mehta. Tomotherapy. In
Seminars in Radiation Oncology, volume 9, pages 108-117. Elsevier, 1999.

Miguel Martinez-Garcia, Yu Zhang, Jiafu Wan, and Jason Mcginty. Visually interpretable
profile extraction with an autoencoder for health monitoring of industrial systems. In 2019
IEEFE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), pages
649-654. IEEE, 2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Quoc Phong Nguyen, Kar Wai Lim, Dinil Mon Divakaran, Kian Hsiang Low, and Mun Choon
Chan. Gee: A gradient-based explainable variational autoencoder for network anomaly
detection. In 2019 IEEE Conference on Communications and Network Security (CNS), pages
91-99. IEEE, 2019. doi:10.1109/CNS.2019.8802833.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiw:1807.03748, 2018.

Bernhard Peischl and Franz Wotawa. Model-based diagnosis or reasoning from first principles.
IEEE intelligent systems, 18(3):32-37, 2005.

Ingo Pill and Johan De Kleer. Challenges for model-based diagnosis. In 35th International
Conference on Principles of Diagnosis and Resilient Systems (DX 2024), pages 6-1. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/0ASIcs.DX.2024.6.

16:15

DX 2025

https://doi.org/10.1371/JOURNAL.PCBI.1011476
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1007/S11633-020-1276-6
https://doi.org/10.1007/S11633-020-1276-6
https://doi.org/10.1109/TII.2018.2793246
https://doi.org/10.1109/CNS.2019.8802833
https://doi.org/10.4230/OASIcs.DX.2024.6

16:16

Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Kélian Poujade, Louise Travé-Massuyes, Jérémy Pirard, and Laure Vieillevigne. B-variational
autoencoder based anomaly detection in log data — application to radiotherapy systems.
Preprint, HAL archive, 2025. URL: https://hal.science/hal-05209127.

Zhi Qiu, Shanfei Fan, Haibo Liang, and Jincai Liu. Multimodal fusion fault diagnosis method
under noise interference. Applied Acoustics, 228:110301, 2025.

Raymond Reiter. A theory of diagnosis from first principles. Artificial intelligence, 32(1):57-95,
1987. doi:10.1016/0004-3702(87)90062-2.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135—-1144, 2016.

Lucas Robinet, Ahmad Berjaoui, Ziad Kheil, and Elizabeth Cohen-Jonathan Moyal. Drim:
Learning disentangled representations from incomplete multimodal healthcare data. In Inter-
national Conference on Medical Image Computing and Computer-Assisted Intervention, pages
163-173. Springer, 2024. doi:10.1007/978-3-031-72384-1_16.

Atma Ram Sahu, Sanjay Kumar Palei, and Aishwarya Mishra. Data-driven fault diagnosis
approaches for industrial equipment: A review. Expert Systems, 41(2):e13360, 2024. doi:
10.1111/EXSY. 13360.

Bernhard Schélkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt.
Support vector method for novelty detection. Advances in neural information processing
systems, 12, 1999.

Haidong Shao, Min Xia, Jiafu Wan, and Clarence W de Silva. Modified stacked autoencoder
using adaptive morlet wavelet for intelligent fault diagnosis of rotating machinery. IEEE/ASME
Transactions on Mechatronics, 27(1):24-33, 2021.

Nitish Srivastava and Russ R Salakhutdinov. Multimodal learning with deep boltzmann
machines. Advances in neural information processing systems, 25, 2012.

Yonas Tefera, Quinten Van Baelen, Maarten Meire, Stijn Luca, and Peter Karsmakers.
Constraint-guided learning of data-driven health indicator models: An application on the
pronostia bearing dataset. arXiv preprint arXiv:2503.09113, 2025. doi:10.48550/arXiv.2503.
09113.

William Todo, Merwann Selmani, Béatrice Laurent, and Jean-Michel Loubes. Counterfactual
explanation for multivariate times series using a contrastive variational autoencoder. In
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1-5. IEEE, 2023. doi:10.1109/ICASSP49357.2023.10095789.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

David C Westerly, Emilie Soisson, Quan Chen, Katherine Woch, Leah Schubert, Gustavo
Olivera, and Thomas R Mackie. Treatment planning to improve delivery accuracy and patient
throughput in helical tomotherapy. International Journal of Radiation Oncology* Biology*
Physics, 74(4):1290-1297, 2009.

Achmad Widodo, Toni Prahasto, Mochamad Soleh, and Herry Nugraha. Diagnostics and
prognostics of boilers in power plant based on data-driven and machine learning. International
Journal of Prognostics and Health Management, 16(1), 2025.

Binbin Wu, Pengpeng Zhang, Bill Tsirakis, David Kanchaveli, and Thomas LoSasso. Utilizing
historical mlc performance data from trajectory logs and service reports to establish a proactive
maintenance model for minimizing treatment disruptions. Medical physics, 46(2):475-483,
2019.

Tung-Yu Wu and You-Ting Wang. Locally interpretable one-class anomaly detection for credit
card fraud detection. In 2021 International Conference on Technologies and Applications of
Artificial Intelligence (TAAI), pages 25-30. IEEE, 2021.

Yuting Wu, Mei Yuan, Shaopeng Dong, Li Lin, and Yingqi Liu. Remaining useful life estimation
of engineered systems using vanilla lstm neural networks. Neurocomputing, 275:167-179, 2018.
doi:10.1016/J.NEUCOM.2017.05.063.

https://hal.science/hal-05209127
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-031-72384-1_16
https://doi.org/10.1111/EXSY.13360
https://doi.org/10.1111/EXSY.13360
https://doi.org/10.48550/arXiv.2503.09113
https://doi.org/10.48550/arXiv.2503.09113
https://doi.org/10.1109/ICASSP49357.2023.10095789
https://doi.org/10.1016/J.NEUCOM.2017.05.063

K. Poujade, L. Travé-Massuyes, J. Pirard, and L. Vieillevigne

59

60

61

62

63

64

65

66

Yiming Xu, Xiaohong Liu, Liyan Pan, Xiaojian Mao, Huiying Liang, Guangyu Wang, and
Ting Chen. Explainable dynamic multimodal variational autoencoder for the prediction of
patients with suspected central precocious puberty. IEEE Journal of Biomedical and Health
Informatics, 26(3):1362—1373, 2021. doi:10.1109/JBHI.2021.3103271.

Jing Yang, Guo Xie, and Yanxi Yang. An improved ensemble fusion autoencoder model for
fault diagnosis from imbalanced and incomplete data. Control Engineering Practice, 98:104358,
2020.

Xitong Yang, Palghat Ramesh, Radha Chitta, Sriganesh Madhvanath, Edgar A Bernal, and
Jiebo Luo. Deep multimodal representation learning from temporal data. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 5447-5455, 2017.
Bang Xiang Yong and Alexandra Brintrup. Coalitional bayesian autoencoders: Towards
explainable unsupervised deep learning with applications to condition monitoring under

covariate shift. Applied Soft Computing, 123:108912, 2022. doi:10.1016/J.AS0C.2022.108912.
Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.

Tensor fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250,
2017. arXiv:1707.07250.

Fei Zhao, Chengcui Zhang, and Baocheng Geng. Deep multimodal data fusion. ACM computing
surveys, 56(9):1-36, 2024. doi:10.1145/3649447.

Zhigian Zhao, Yeyin Xu, Jiabin Zhang, Runchao Zhao, Zhaobo Chen, and Yinghou Jiao. A
semi-supervised gaussian mixture variational autoencoder method for few-shot fine-grained
fault diagnosis. Neural Networks, 178:106482, 2024. doi:10.1016/J.NEUNET.2024.106482.
Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu. Loghub: A large
collection of system log datasets for ai-driven log analytics. In 2023 IEEE 34th International
Symposium on Software Reliability Engineering (ISSRE), pages 355-366. IEEE, 2023. doi:
10.1109/ISSRE59848.2023.00071.

16:17

DX 2025

https://doi.org/10.1109/JBHI.2021.3103271
https://doi.org/10.1016/J.ASOC.2022.108912
https://arxiv.org/abs/1707.07250
https://doi.org/10.1145/3649447
https://doi.org/10.1016/J.NEUNET.2024.106482
https://doi.org/10.1109/ISSRE59848.2023.00071
https://doi.org/10.1109/ISSRE59848.2023.00071

	p000-Frontmatter
	Preface

	p001-Koitz-Hristov
	1 Introduction
	2 Related work
	2.1 ASP-based diagnosis
	2.2 Temporal diagnosis

	3 Background
	3.1 Model-based diagnosis
	3.2 Answer set programming
	3.3 Functional event calculus

	4 ASP diagnosis with functional event calculus
	4.1 Fluent health states
	4.2 Modeling component behavior
	4.3 Split seconds and immediate changes

	5 A case study: Heat distribution line
	5.1 System description
	5.2 Heat distribution line model
	5.3 Results

	6 Conclusion and Future Work

	p002-Sztyber-Betley
	1 Introduction
	2 Problem Formulation
	3 Background
	4 Model generation
	5 Generating MSO Sets, Conflicts, and Diagnoses
	5.1 Dedicated approach to arithmetic and logic circuits
	5.2 Broad approach

	6 Test and Validation
	7 Discussion
	8 Conclusion

	p003-Schleich
	1 Introduction
	2 Foundations
	2.1 Spectrum-Based Fault Localization
	2.2 Dynamic Slicing
	2.3 Dynamic slicing enhanced spectrum-based fault localization
	2.3.1 Implementation

	3 Experimental evaluation
	3.1 Initial experiments
	3.2 Second experiments
	3.3 Third experiments
	3.4 Discussion

	4 Conclusions

	p004-Das
	1 Introduction
	2 Related work
	3 Illustrative example
	4 Qualitative Simulation (QSIM)
	4.1 Qualitative dynamics
	4.2 Conformance
	4.3 Fault detection

	5 Conclusions

	p005-Pill
	1 Introduction
	2 Why is the representative evaluation/comparison of a diagnosis algorithm not as straightforward as it seems?
	2.1 Metrics based on sampling and the notion of ambiguity groups
	2.2 Metrics estimating repair costs
	2.3 Metrics tailoring to specific evaluation requirements
	2.4 Defining the baseline: On the ideal results of a diagnosis algorithm

	3 A more formal take on the problem at hand
	3.1 Some definitions
	3.2 The challenge: of oracles and metrics

	4 The Economic Metric
	5 Conclusions

	p006-Cubero
	1 Introduction
	2 Case study: the aluminum die-casting process in an automotive factory in Valladolid, Spain
	2.1 The injection process
	2.2 The dataset

	3 Background: unsupervised machine and deep learning methods
	3.1 Autoencoder
	3.2 Dimensionality reduction
	3.3 Clustering method
	3.4 LOWESS

	4 Estimating the wear condition of the piston head with a Fuzzy Progression Index and results on the case study
	4.1 Experimental setup
	4.2 Results for the FPI computation and cluster assignment on the case study

	5 A proposal for RUL estimation of the piston head
	5.1 A data-based model to predict the RUL from the Fuzzy Progression Index
	5.2 Experimental results in the case study

	6 Discussion and Conclusions

	p007-Plambeck
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Hybrid Systems
	3.2 System & Observations

	4 A New Paradigm for Hybrid System Identification
	4.1 Problem Definition and Objectives for Hybrid System Identification
	4.2 Traditional Identification of Hybrid Systems
	4.3 Proposed Identification Process for Hybrid Systems
	4.4 An Algorithmic Approach to the Proposed Method

	5 Empirical Analysis
	5.1 Learning Methods
	5.2 Examples
	5.3 Identification with Linear Regression
	5.4 Identification with Symbolic Regression
	5.5 Identification of Linear Matrix Differential Equations
	5.6 Comparison to Traditional Learning of Hybrid Automata

	6 Discussion & Conclusion

	p008-Taye
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.2.1 Battery State Prediction
	1.2.2 Battery Feasibility Based Flight Planning

	2 Problem Formulation
	2.1 Aircraft Model
	2.2 Battery Model
	2.3 Problem Description

	3 Method
	3.1 Power Profile Prediction
	3.1.1 Aircraft Power Consumption Model
	3.1.2 Flight Duration Estimation

	3.2 Power to Current Conversion
	3.3 Feasibility Assessment and Decision Making

	4 Battery Modeling
	4.1 Dataset Generation
	4.1.1 Flight Mission Current Profile Generation
	4.1.2 Battery Voltage Simulation

	4.2 Neural ODE Training
	4.2.1 Data Preprocessing
	4.2.2 Neural ODE Model Architecture

	5 Results and Discussion
	5.1 Scenario Description
	5.2 Results
	5.2.1 Power Consumption Prediction Results
	5.2.2 Voltage Prediction Results

	5.3 Discussion and Lessons Learned

	6 Conclusion

	p009-MunozGutierrez
	1 Introduction
	2 Related Work
	3 Problem Domain and Dataset
	3.1 XJTU-SY Bearing dataset
	3.2 Vibration Signatures of Bearings

	4 Spectral Fault Receptive Fields
	4.1 Frequency Masks
	4.2 SFRFs Computation

	5 Experimental Evaluation
	5.1 Empirical Selection of Parameters
	5.2 Evaluation of SFRF with Empirical Parameters
	5.3 Optimizing for Condition Monitoring and Prognosis

	6 Discussion
	7 Conclusions

	p010-Ares-Milian
	1 Introduction
	2 Related Work
	2.1 Automated Controller Design
	2.2 LLMs in System Design
	2.3 Systems Modeling using Component-Based Languages

	3 Preliminaries
	3.1 Decentralized parametric control
	3.2 Directed graphs
	3.3 Large Language Models
	3.4 Bayesian optimization

	4 Methodology
	4.1 Controller tuning framework
	4.2 Graph Language For System Representation
	4.3 Input Output Pairing and Stage Definition
	4.3.1 Input-Output Pairing
	4.3.2 Stage Definition

	4.4 LLM prompt design
	4.4.1 Input prompt design
	4.4.2 System Prompt Design

	5 Experimental Design
	5.1 Performance Metrics
	5.1.1 Performance Metrics for LLM output
	5.1.2 Performance of tuned controllers

	5.2 Multi-tank benchmarks

	6 Results and Discussion
	6.1 Input-Output Pairing
	6.2 Stage Definition
	6.2.1 Comparing performance of tuned controllers for different stage definitions

	6.3 Discussion, Limitations, and Future Works

	7 Conclusions

	p011-Diaz-Gonzalez
	1 Introduction
	2 EOL Particle Filter
	2.1 Particle Filters
	2.2 Predictive distribution
	2.3 EOL prediction

	3 Performance Model
	3.1 Dataset

	4 Results
	4.1 Training
	4.2 Evaluation
	4.3 RUL Prediction

	5 Conclusions

	p012-Muehlburger
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dataset and Pipeline Overview
	3.2 Prompt Generation
	3.3 Model Configuration
	3.4 Zero-Shot Fault Detection with GEMMA-3
	3.5 Supervised Baseline: XGBoost
	3.6 Evaluation Metrics and Protocol

	4 Results
	4.1 Overall Performance
	4.2 Class-Wise Performance Trends
	4.3 Error Patterns and Limitations
	4.4 Performance Comparison
	4.4.1 Zero-Shot Inference with Windowing
	4.4.2 Row-Wise Zero-Shot Inference (No Windowing)
	4.4.3 Supervised XGBoost Baseline

	4.5 Error Analysis
	4.6 Comparison and Insights
	4.7 Future Directions

	5 Discussion and Limitations
	6 Conclusion and Outlook

	p013-Kulkarni
	1 Introduction
	2 Background
	2.1 Diagnostic Bayesian Networks
	2.2 The R2U2 Monitoring Engine
	2.2.1 Temporal Logic Observers

	3 Temporal Bayesian Diagnosis with Temporal Logic Monitors
	3.1 Tool Architecture and Modeling Process
	3.2 BN Construction from Failure Mode and Effects Analysis (FMEA)
	3.3 Detailed Modeling Approach and Issues
	3.4 Efficient Evaluation of BN
	3.5 Defining Temporal Monitors
	3.5.1 Synchronous Observers

	3.6 Practical Example

	4 Related Work
	5 Conclusions

	p014-Pill
	1 Introduction
	2 Related research
	3 SLIDe
	3.1 Process faults
	3.2 Cyber-attacks
	3.3 Additional resources

	4 LUMEN
	4.1 System description
	4.2 Challenges
	4.3 Provided resources
	4.4 Fault scenarios

	5 LiU-ICE
	5.1 System description
	5.2 Fault scenarios
	5.3 Provided resources
	5.3.1 Training data

	6 Benchmark implementation environment
	7 Evaluation metrics
	7.1 Diagnosis of faults
	7.2 Diagnosis of cyberattacks

	8 Summary

	p015-Coursey
	1 Introduction
	2 Competition and Dataset Preliminaries
	3 Method
	3.1 Fault Detection
	3.1.1 Transformer Autoencoder
	3.1.2 Fault Persistence Filter

	3.2 Fault Isolation
	3.2.1 Data-Driven Residual Generation Through Structural Analysis
	3.2.2 MLP Feature Estimators
	3.2.3 Fault Classification

	4 Results
	4.1 Results on Competition Data
	4.1.1 Fault Detection
	4.1.2 Fault Isolation

	4.2 Results on Unseen Data (Competition Results)

	5 Discussion on Reducing Autoencoder False Alarms
	6 Conclusion

	p016-Poujade
	1 Introduction
	2 Conducted research
	2.1 Proposed pipeline
	2.1.1 Log Preprocessing and Feature Extraction
	2.1.2 Learning Latent Representations
	2.1.3 Anomaly Detection in the Latent Space

	2.2 Evaluation
	2.3 Results

	3 Thesis roadmap
	3.1 Exploration
	3.1.1 Multimodal learning
	3.1.2 Diagnosis
	3.1.3 Prognosis

	4 Schedule
	4.1 Phase 1 – Multimodal Representation Learning for Anomaly Detection
	4.2 Phase 2 – Explainable Fault Diagnosis via Latent Representations
	4.3 Phase 3 – Prognosis and Remaining Useful Life Estimation

	5 Conclusion

