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—— Abstract

The Multi-Capacity Fixed-Charge Network Flow (MC-FCNF) problem, a generalization of the
Fixed-Charge Network Flow problem, aims to assign capacities to edges in a flow network such

that a target amount of flow can be hosted at minimum cost. The cost model for both problems
dictates that the fixed cost of an edge is incurred for any non-zero amount of flow hosted by that
edge. This problem naturally arises in many areas including infrastructure design, transportation,
telecommunications, and supply chain management. The MC-FCNF problem is NP-Hard, so solving
large instances using exact techniques is impractical. This paper presents a genetic algorithm
designed to quickly find high-quality flow solutions to the MC-FCNF problem. The genetic algorithm
uses a novel solution representation scheme that eliminates the need to repair invalid flow solutions,
which is an issue common to many other genetic algorithms for the MC-FCNF problem. The genetic
algorithm’s utility is demonstrated with an evaluation using real-world CO, capture, transportation,
and storage infrastructure design data. The evaluation results highlight the genetic algorithm’s
potential for solving large-scale network design problems.
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1 Introduction

The Multi-Capacity Fixed-Charge Network Flow (MC-FCNF) problem is a well-studied
optimization problem encountered in many domains including infrastructure design, trans-
portation, telecommunications, and supply chain management [16, 26, 27]. In the MC-FCNF
problem, each edge in the network has multiple capacities available to it, with each capa-
city having its own fixed construction and variable utilization costs. The objective of the
MC-FCNF problem is to assign capacities to edges in the network such that a target flow
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amount can be hosted at minimal cost. The MC-FCNF problem is a generalization of the
Fixed-Charge Network Flow (FCNF) problem, which has a single capacity (and fixed and
variable costs) available per edge. The MC-FCNF problem is NP-Hard to approximate within
the natural logarithm of the number of vertices in the graph [27]. As such, finding optimal
solutions to large instances is often computationally infeasible.

Significant work has already been done on solving the MC-FCNF and FCNF problems
using many techniques including mathematical programming, branch and bound, and exact
optimization approaches [14, 15, 21, 10, 8]. Multi-capacity edge networks are often referred
to as buy-at-bulk network design problems, and are often framed as facility location problems,
which is similar to the MC-FCNF problem but with added demand constraints on sinks [13,
4, 1]. Genetic algorithms have also been introduced for variants of the MCNF problem [9, 2,
28, 25, 12, 30, 29, 19].

In this paper, we introduce a novel genetic algorithm to solve the MC-FCNF problem.
The novel contribution of our genetic algorithm is the representation of a flow solution
by an array of parameters that scale the fixed-costs for each edge in the network. This
representation ensures that each array corresponds to a valid flow, thereby eliminating
the need for computationally expensive repair functions that are required by other genetic
algorithms for the MC-FCNF problem [9, 2, 25, 17, 30, 29, 19]. By avoiding costly repair
functions, the proposed algorithm is able to efficiently find high-quality solutions to very
large MC-FCNF problem instances. The proposed genetic algorithm is inspired by slope
scaling techniques previously employed for the FCNF problem [14, 7]. It is a matheuristic,
as it employs mathematical programming to calculate a flow solution from a linear program
parameterized with the fixed-cost scaling arrays [11]. Our genetic algorithm is similar to
an algorithm proposed by [6], though ours takes a different two-stage approach to handle
multi-capacity edges. Additionally, we provide more insight into the existence of the optimal
solution in the search space.

An evaluation is presented that designs CO, capture and storage (CCS) infrastructure
deployments using real-world data composed of thousands of vertices and tens of thousands
of edges. In the evaluation, the genetic algorithm is compared to the solution of an optimal
integer linear program formulation of the MC-FCNF problem. Results from the evaluation
demonstrate the utility of the genetic algorithm for very large networks, even if the solution
is very small compared to the full network.

The rest of this paper is organized as follows: Section 2 formally introduces the MC-
FCNF program and formulates it as an integer linear program. Section 3 presents a linear
programming modification to the integer linear program that serves as the core to the genetic
algorithm. Sections 4 and 5 introduce the genetic algorithm and discuss the existence of
the optimal solution in the search space. Section 6 presents an evaluation of the genetic
algorithm on real-world CCS data and the paper is concluded in Section 7.

2 Problem Formulation

MC-FCNF is formulated as follows: Given a directed graph with vertices V', edges F, a
source s € V with no incoming edges, and a sink ¢ € V' with no outgoing edges, flow must be
assigned to the edges such that the target amount of flow T is sent from the source vertex
to the sink vertex. There is a set K of the possible capacities for each edge. Each capacity
option k € K for an edge e € E has a fixed cost a., and a variable cost b.,. Assignment
of flow to an edge incurs the total fixed cost, as well as the variable cost per unit of flow.
The assigned flow must preserve the conservation of flow, meet the target flow amount, and
minimize the overall cost.
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This problem can also be formulated as an integer linear program (ILP), as shown below:

Instance Input Parameters:

%4 Vertex set
E Directed edge set
K Set of possible capacities for each edge

s € V. Source vertex with no incoming edges
t €V  Sink vertex with no outgoing edges

Ck Capacity of k

ek Fixed construction cost of edge e with capacity k
bek Variable utilization cost of edge e with capacity k
T Target flow amount

Decision Variables:
yek € {0,1}  Use indicator for edge e with capacity k

fer € RZO Amount of flow on edge e with capacity k
Objective Function:

min Z Z (aekyek + bekfek) (1)

ecE keK

Subject to the following constraints:

fek SCkyek,VGGE,kGK (2)
D Yk <LVecE (3)
keK
S = D> D forWweV\{st} (4)
ecE: keKkK e'cE: keK
sre(e)=v dest(e’)=v
> D Ju=T (5)
ecE: keK
src(e)=s

Where constraint (2) enforces the capacity of each edge and forces y.r to be set to one if

fer is non-zero. Constraint (3) allows at most one capacity to be deployed on each edge.

Constraint (4) enforces conservation of flow at each internal vertex. Constraint (5) ensures
that the total flow amount meets the target.

Since the MC-FCNF problem is NP-Hard, solving this ILP is intractable for large
instances [27]. The objective of this paper is to introduce a novel algorithm that efficiently
finds high-quality solutions to this ILP without directly solving it.

3 Non-Integer Linear Program

In this section, we introduce a linear program (LP) that is a modification of the ILP presented
in Section 2. Since it is an LP, this new formulation can be solved optimally in polynomial
time. This LP forms the foundation of the genetic algorithm discussed in Section 4. Two
components of the ILP change to turn it into an appropriate LP:

1. The binary decision variables y.x are removed, thereby turning the model into an LP.

Since the yi variables are removed, the fixed costs are then scaled and combined with
the variable costs.

2. A new scaling parameter, dcg, is introduced for each capacity on each edge that will scale
the fixed cost of the edge. These parameters form the representation of a flow solution in
the genetic algorithm.
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Let g.r be the decision variable representing the amount of flow on edge e with capacity
k in the LP, analogous to the f.; decision variable in the ILP. Then, the objective function
of the LP is:

minz Z

ecE keK

(Z:: + bek) Gek (6)

The constraints in the LP mirror the constraints in the ILP:

Jek < cp,Vee Bk e K (7)
2 D= D D genweV\{st (®)
ecE: EkEK e'cE: keK

src(e)=v dest(e')=v
> D g=T (9)
ecE: keK

src(e)=s

Where constraint (7) enforces the capacity of each edge. Constraint (8) enforces conservation
of flow at each internal vertex. Constraint (9) ensures that the total flow amount meets the
target.

The output of this LP is a flow value for each g.x. Of course, the optimal flow found
by the LP is likely not an optimal solution for the ILP. The true cost of the LP’s solution
can be determined by calculating its value when input into the ILP’s objective function in
Equation (1). This is first done by defining an edge-use indicator function z.; and assigning
it values as follows:

1, if 0
Yok = y I Gep > (10)
0, if ger =0

This makes the true cost of the LP’s solution equal to:

Z Z (aekzek + bekgek) (]-]-)

ecE keK

The genetic algorithm in Section 4 works by varying the d.; scaling parameters and
scoring the resulting optimal g.; values found by the LP using Equation (11).

4  Genetic Algorithm

Genetic algorithms are a common evolutionary heuristic method used for searching and
optimization. Genetic algorithms manage a population of organisms that each correspond
to a solution to the problem. The population evolves over iterations of the algorithm
using evolutionary processes observed in nature including selection, crossover, and mutation
operations. Selection is the process of deciding which organisms of the population continue
into the next iteration (i.e., next generation). This is the mechanism that allows the algorithm
to prioritize organisms that correspond to better solutions to the problem and control the size
of the population. Crossover is the generation of a new organism from two existing organisms,
analogous to biological reproduction. Similarly, mutation is the slight modification of an
organism into a new one corresponding to a different solution. Crossover and mutation
operations are the mechanisms that allow the algorithm to search for new, and possibly
better, solutions.



C. Eardley, D. Gomez, R. Dupuis, M. Papadopoulos, and S. Yaw

A number of genetic algorithms have been developed to solve various versions of the
FCNF problem. In these algorithms, organisms are broadly represented as either individual
edges, or predefined routes through the network. Representing organisms as individual edges

typically involves a binary variable for each edge indicating its availability for use [9, 29].

Alternatively, representing organisms as predefined routes involves a binary variable for
each route in a set of predefined routes through the network [2, 25, 19]. In the case of
the individual edge representation, generating the initial population, crossover operations,
and mutation operations often requires repairing the organism, as random sets of edges are
unlikely to result in valid flows. Using predefined routes simplifies repairing operations, but
may still require repair in the event of capacity constraint violations, and is likely to result
in sub-optimal solutions due to the limited set of routing options. The genetic algorithms
that use these representations address the issue by employing computationally expensive
repair functions to make organisms correspond to valid flows. Instead of representing an
organism in this fashion, we represent it as an array of the fixed-cost scaling parameters dgy
introduced in Section 3. Then, the solution corresponding to this organism is the set of flow
values g found by the LP from Section 3. The result of this representation is that we can
guarantee the solution corresponding to any organism is a valid flow, since the LP enforces
that. This avoids costly repair functions and is the key to the efficiency of our approach.
The motivation for using the fixed-cost scaling parameters as the organism representation
is that it allows control over the amount of fixed-costs incurred, while also removing the
integer variables from the optimal ILP. As the scaling parameter decreases to zero, the

scaled fixed-cost increases to infinity, thereby dissuading selection of that edge by the LP.

Conversely, as the scaling parameter increases to infinity, the scaled fixed-cost approaches
zero, thereby encouraging selection of that edge by the LP. The genetic algorithm is tasked
with searching for an organism of scaling parameters whose corresponding flow solution is
as close to optimal for the ILP as possible. Given that the genetic algorithm is using the
fixed-cost scaling parameters as a proxy for a solution instead of using a solution directly, an
important question is whether or not there exists a set of scaling parameters that yields an
optimal flow solution. A proof that such a set of scaling parameters is guaranteed to exist
is presented in Section 5. The key components and workflow of the genetic algorithm are
described below:

Fitness Function

Genetic algorithms use fitness functions to rank and compare the population of organisms to
aid the selection process. Our fitness function first determines the flow solution for a given
organism by solving the LP in Section 3 to get the g, flow values. After the g.r values
are determined, the solution’s true cost in the context of the optimal ILP is calculated by
Equation (11). The output of Equation (11) is used as the fitness of the organism, where
lower values correspond to higher fitness.

Selection Function

To keep the size of the population computationally manageable, a selection function is
employed to prune the population at each iteration. A selection function is also used to
identify the organisms for crossover operations. Our genetic algorithm implements a binary
tournament selection function in an effort to prioritize high fitness organisms, while not
ignoring all low fitness organisms. In binary tournament selection, two random organisms
are selected, and the one with the higher fitness is kept, while the other is discarded. This
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ensures that high-fitness organisms are likely to remain in the population while maintaining
the possibility for low-fitness ones to survive as well. Binary tournament selection is repeated
until the number of organisms in the population is at the desired size.

Crossover Function

A crossover function is used to generate a new child organism from two parent organisms
already in the population. Our crossover function first randomly selects two parent organisms
from the existing population. A child organism is constructed by taking a random interval
of the d.i array from the first parent, combined with the remaining values from the second
parent.

Mutation Function

In order to mimic evolution and introduce another element of randomness into the search, a
mutation function is used to further alter child organisms. After a child organism is generated
with the crossover function, it may be randomly selected for mutation. During a mutation
operation, a number of d.; values in the organism are selected and, with equal probability,
either incremented up or down a random amount between zero and one. Mutated d.; values
are not allowed to go below a lower bound to avoid negative values and divide by zero issues.

Genetic Algorithm

Using the functions described above, our algorithm operates as follows: First, an initial
population of organisms is randomly generated. Each organism in the initial population is
initialized as a d¢j array filled with a random value between € > 0 and the average value of
the fixed-costs in the input instance. After the initial population of organisms are created,
the algorithm proceeds in an iterative fashion: At each iteration, the fitness of each organism
is first calculated as described above. While the population size is less than some threshold,
the crossover function is executed to generate child organisms. The child organisms are
also subject to randomized mutations from the mutation function. Once the population has
increased in size to the designated threshold, the selection function is run to reduce its size
while statistically discarding the lower fitness organisms. The algorithm keeps executing
iterations until the running time reaches a designated time limit.

CPLEX Polishing

Once the time limit has been reached, the most fit organism’s g.; flow values are used as a
warm start for IBM’s CPLEX optimization software. CPLEX polishing is run for one fifth of
the total time limit resulting in the final flow values returned by the algorithm.

5 Optimal Search Viability

The purpose of this section is to show that the genetic algorithm is capable of finding the
optimal solution of the ILP. This claim is not trivial, as the search space of the genetic
algorithm is the set of possible d i arrays, which are merely a proxy for flow values, the
property we are actually optimizing for.

The original motivation for formulating the LP in Section 3 and representing the organisms
in the genetic algorithm as d.j arrays follows from the following false claim:
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> Claim 1. If each dgx equals the optimal ILP flow value for edge e with capacity k, then
the optimal flow found by the resulting LP is also an optimal flow for the ILP.

The rationale for this claim is that if each d; and g.; both equal the optimal ILP flow
values, then the cost of the LP’s objective function from Equation (6) will equal the optimal
cost of the ILP’s objective function from Equation (1). Claim 1 is also the stated motivation
behind other similar genetic algorithms for the FCNF problem [6]. This claim is shown to be
false in Figure 1 with the displayed fixed costs (ae), variable costs (be), capacities (ce), and
a capture target of three. In this instance, the optimal ILP solution is to set the amount
of flow on e and e3 to two and the amount of flow on ey and e4 to one for a total cost of
20. Setting de, and d., to two and d., and d., to one yields the LP objective of minimizing
79e, +6gc,. The optimal solution to this is to set the amount of flow on e; and es to one and
the amount of flow on ey and e4 to two for a total cost of 21, thereby contradicting Claim 1.

ae be ce

€1 €3 e |10] 2 | 2
e; | 3 13| 2

e, ey es 0|2
es| 002

Figure 1 Counterexample to Claim 1 with the displayed fixed costs (a.), variable costs (b.),
capacities (ce), and a capture target of three. In this instance, the optimal ILP solution is 20 with a
flow of two units on e; and es and one unit on ez and e4. The corresponding optimal LP solution is
21 with a flow of one unit on e; and e3 and two units on e and e4.

Since Claim 1 is false, along with the fact that the d.; arrays are only proxies for the
flow value solutions we seek, it remains to be shown that there actually exists a set of dgy
values that will result in the genetic algorithm finding optimal flow values for the ILP.

» Theorem 1. For every problem instance, there exists a set of dex values such that the
optimal flow found by the resulting LP is also an optimal flow for the ILP.

Proof. Let f%' be the optimal flow values found by the ILP and define the set of dj, values

as follows:

e>0, if fP"=0
der, = . f(z]:;t (12)
0, it f,° >0

When d. is set to an e-value near zero, the scaled fixed cost 36: makes those edges
prohibitively expensive to include in LP solutions, so long as valid solutions exist that do
not use those edges (such as the valid solution f:} t). Likewise, if dx is set to a very large
value, the scaled fixed cost is near zero. These d. values effectively restrict the LP to only
. ol . opt
selecting the edges and capacities with non-zero f_,~ values.
Suppose that H C E x K is the set of edge-capacity pairs where y’/' equals one. Then,

given the dej values resulting from Equation (12), the objective for the LP becomes:

Z Z (Zez + bek) Gek = Z bek:gek:

ecE ke K ekeH
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Let ¢°7" be optimal ﬂow values to the LP. We aim to show that g°** is also an optimal
flow for the ILP. First, gck is a valid solution to the ILP since g‘gz is a valid flow of the ILP’s
target value on an identical graph with the same capacities. Showing that g7y P g optimal for
the ILP can be accomplished by using geﬁ to feed the definitions for z.; in Equation (10)
and showing that:

DD (ackzZ +bergl) =D > (ackyeh' + berfE")

ecE keK ecE ke K

22" must equal one for all edges in H. If 2% equals zero for some edge in H, then the
fixed costs incurred by g°?* are lower than the fixed costs incurred by f*. Also, since g°"
is optimal for the LP,

Z bekgzgt < Z bek opt

ekeH eke H

Thus, if 227" equals zero for some edge in H, g% is a lower cost flow for the ILP than the

optimal £, opt

costs and 27" must equal one for all edges in H.
Suppose that,

Z bekgopt < Z bek opt

ekeH ekeH

which is a contradiction. Therefore, f.;" and ggﬁt must incur identical fixed

This implies that,

Z Qek + Z bekgopt < Z Qek + Z bek opt

eke H ekeH ekeH ekeH
opt opt
- E (aek + bekgek ) < E (aek + bek )
ekeH ekeH
opt o t opt
= Z Z (ackz2t" + bergor) Z Z kYo’ + ber fF)
ecE keK ecE keK

which is a contradiction, since foy " is an optimal flow value for the ILP, and thus cannot be
more expensive than the valid flow g*. Thus,

Z bekgszk)t Z bek opt

ekeH ekeH

which implies that,

D> (aerzlf +bexglf) = D0 3 (aekylt! + ben L)
ecE keK ecE keK

Therefore, defining the d.x values as in Equation (12) yields an LP whose optimal flow values
correspond to optimal flow values of the ILP. <

6 Evaluation

To demonstrate the efficiency and effectiveness of the genetic algorithm presented in Section 4,
an evaluation was conducted using CO4 capture and storage (CCS) infrastructure design data.
CCS is a climate change mitigation strategy that involves capturing CO4 from industrial
sources, notably power generation, transporting the CO, in a pipeline network, and injecting
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it into geological reservoirs for long-term sequestration. Large-scale CCS adoption will
require the optimization of infrastructure for hundreds of sources and sinks and thousands of
kilometers of pipelines. The CCS infrastructure design problem aims to answer the question:
What sources and sinks should be opened, and where should pipelines be deployed (and at
what capacity) to process a defined amount of CO, at minimum cost. CCS sources and sinks
both have fixed construction (or retrofit) costs, variable utilization costs, and capacities (or
emission limits). Pipelines have multiple capacities available, depending on the diameter of
the pipeline installed. Pipelines also have fixed construction costs and variable transportation
costs that are dependent on the capacity selected. Unlike the MC-FCNF problem, the CCS
infrastructure design problem has multiple sources and sinks, as well as node-specific costs
and capacities. However, CCS infrastructure design instances can be reduced into MC-FCNF
instances by introducing a super source and super sink, and by translating node costs and
capacities onto edges [24, 27].

The genetic algorithm was implemented and integrated into SimCC\S, the Java-based
CCS infrastructure optimization software, which uses CPLEX as its optimization model
solver [20]. Inmitial performance simulations guided the parameterization of the genetic
algorithm to have a population size of 10, and mutation and crossover probability of both
50%. A mutation probability of 50% means that each organism has a 50% chance of mutation,
and a crossover probability of 50% means that 50% of the population (without organism
repetition) is crossed over with a random other organism in each iteration of the genetic
algorithm. All reported genetic algorithm values are the average of three runs. The optimal
ILP from Section 2 was implemented in SimCC'S using CPLEX as well. SimCC'S was used

as a standardized way to represent CCS data and for problem and solution visualization.

Timing was coded directly into SimCC'S to ensure only the algorithm of interest was being
timed during simulation. Simulations were run on a machine with Ubuntu 20.04.5, an Intel
Xeon W-2255 processor running at 3.7 GHz, and 64 GB of RAM. SimCC'S on this machine
used IBM’s CPLEX optimization tool, version 22.1.1.0.

The genetic algorithm was tested on two CCS infrastructure design datasets. The first
dataset covers the United State’s state of California and consists of 190 sources with a total
annual emission rate of 88.39 MtCO,/yr, 102 sinks with a total lifetime storage capacity of
37.18 GtCO,, and 1188 possible pipeline components (i.e., edges in the graph) with a total
length of 17940.88 km and 11 possible capacities on each edge. This data was collected as
part of the US Department of Energy’s (DOE) Carbon Utilization and Storage Partnership
project, one of the DOE’s Regional Initiatives to Accelerate CCS Deployment. A map of
this dataset is presented in Figure 2.

The second dataset covers the contiguous United States and consists of 2746 sources with
a total annual emission rate of 532.61 MtCO,/yr, 1202 sinks with a total lifetime storage
capacity of 2691.86 GtCO,, and 22597 possible pipeline components with a total length of
424674.41 km and 11 possible capacities on each edge. This data was collected by Carbon
Solutions, LLC as part of a study conducted by the Clean Air Task Force [3, 5]. Storage
data was generated using the SCO,T geologic sequestration tool [23]. A map of this dataset
is presented in Figure 3.

Candidate pipeline routes were generated in SimCCS using its candidate network
generation algorithms [31]. The National Energy Technology Laboratory’s CO, Transport
Cost Model was used by SimCC'S to determine fixed construction and variable utilization
costs for the 11 discrete pipeline capacity options [22].

To assess the efficiency of the genetic algorithm, its solution cost was compared to the
solution cost found by CPLEX solving the optimal ILP, with both methods being allowed
to run for set running time periods. For the California dataset, those running time periods
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Figure 2 CCS dataset for the state of California consisting of sources (red), sinks (blue), and
possible pipeline routes.

were 0.5, 1, 2, 4, and 8 hours. The target flow amount (7') was set to 80 MtCO,/yr for
all of the California scenarios. For the contiguous United States dataset, the running time
periods were 0.5, 1, 2, 4, 8 and 16 hours. The target flow amount was set to 500 MtCOy/yr
for the contiguous United States scenarios. Figure 4 presents each algorithm’s solution cost
over the running time periods for the California dataset, and Figure 5 presents the same
results for the contiguous United States dataset. The cost of the best solution found by the
genetic algorithm in the California dataset was within 0.5% of the ILP’s solution across all
running times. Conversely, the cost of the best solution found by the genetic algorithm in the
contiguous United States dataset was 17% lower than the ILP’s solution after one hour, 7%
lower after four hours, and 2% lower after 16 hours. This suggests that the genetic algorithm
may have utility for very large problem instances. The utility for small instances is likely
limited, due to the speed of CPLEX. Further, in applications that require rapid computation
of MC-FCNF solutions, the genetic algorithm may exhibit beneficial performance for even
smaller instances.

Problem solvability is not only related to instance size, but also the amount of target
flow being found. To identify the impact that target flow amount has on solution quality,
scenarios were run on the contiguous United States dataset where the target flow amount
was varied from 1 MtCO,/yr to 532 MtCO,/yr. The maximum annual capturable amount
of CO, for this dataset is 532.61 MtCO,/yr. Each algorithm was given two hours to solve
each scenario. Figure 6 presents each algorithm’s solution cost for the various target flow
amounts. Table 1 presents the specific solution cost values and the percent improvement of
the genetic algorithm’s solution over the ILP’s solution. Other than in very low and high
target flow amount scenarios, the genetic algorithm was fairly consistent in its improvement
over the ILP. Interestingly, in the low target flow amount scenario, the genetic algorithm
performed the best relative to the ILP. This suggests that the genetic algorithm could have
utility in a very large problem instance, even if the target flow amount is quite small. This is
likely a very realistic scenario, where a relatively small target is sought amongst a very large
space of options, and provides a compelling argument for the utility of the genetic algorithm.
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Figure 3 CCS dataset for the contiguous United States consisting of sources (red), sinks (blue),
and possible pipeline routes.
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Figure 4 Solution cost versus running time Figure 5 Solution cost versus running time
for the genetic algorithm and optimal ILP on for the genetic algorithm and optimal ILP on
the California dataset. the contiguous United States dataset.

7 Conclusion

In this paper, we addressed the MC-FCNF problem by formulating it as an ILP and proposing
a novel genetic algorithm to find high-quality solutions efficiently, using a relaxation of the
ILP to an LP to ensure the solutions of the GA are valid solutions and do not need repairing.
The key novel component of our approach is the use of fixed-cost scaling parameters as
a proxy for direct flow values, allowing the genetic algorithm to search the solution space
effectively without the need for computationally expensive repair functions.

Our genetic algorithm demonstrated significant efficiency and effectiveness in solving
the MC-FCNF problem. By integrating the algorithm into the SimCCS infrastructure
optimization software, we were able to evaluate its performance on real-world CCS infrastruc-
ture design data. The results showed that the genetic algorithm consistently outperformed
CPLEX solving an ILP on very large problem instances, and matched CPLEX’s performance
on moderately sized problem instances. The evaluation demonstrated the potential of the
genetic algorithm in handling large and complex networks with varied target flow objectives,
across a wide range of running time requirements.
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Table 1 Solution Values With Varying Flow

N
o

% 35 Targets
L3230 )
8 25 Target Flow ILP Genetic %
520 Amount Algorithm  Improvement
% 15 1.00 0.04 0.03 25.00
3 -e-ILP
10 o Genetic Algorith 66.50 3.35 3.22 3.88
5 133.00 7.84 7.41 5.48
0 199.50 13.00 12.25 5.77
0 100 200 300 400 500
Target Flow Amount (MtCO,/yr) 266.00 18.78 17.94 4.47
332.50 24.84 23.77 4.31
Figure 6 Solution cost versus target flow 399.00 31.06 29.86 3.86
. . . 465.50 38.05 35.98 5.44
amount for the genetic algorithm and optimal
532.00 49.44 43.58 11.65

ILP. Specific solution cost values are presented
in Table 1.

The genetic algorithm presented in this paper offers a robust and scalable solution to the
MC-FCNF problem, providing an efficient alternative to traditional ILP solvers in realistic
scenarios. Future work could involve tailoring the genetic algorithm to more specialized
versions of the FCNF problem, including phased network deployments [18]. The genetic
algorithm could also be generalized to multi-commodity fixed-charge network design problems.
The fixed-cost scaling parameter technique may also prove useful in building evolutionary
algorithms for other problems that can be modeled as network flow problems (e.g., facility
location problems). Future work could include implementing this genetic algorithm approach
for use in facility location applications and testing it against benchmark datasets. Future
work could also include pursuing real-time applications where low computational running
time is more critical than infrastructure design problems. Finally, further exploring the
performance of the genetic algorithm on very large instances with small target flows could
reveal useful applications of the genetic algorithm to real-world problems.
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