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Abstract
Setting the ticket prices is a crucial decision in public transport. Its basis, relevant for all related
questions, such as dynamic prices or prices for different passenger groups, is the underlying fare
strategy. Popular fare strategies are based on zones or on distances. Transitions from one fare strategy
to another occur frequently, e.g., if public transport operators are joined to a larger association, or if
structural decisions in a region have taken place.

In this paper we report practically relevant issues when a fare structure should be changed
to a distance tariff, a problem frequently arising when a ticket system based on mobile devices is
introduced. We present mixed-integer linear programs for finding the parameters of a distance tariff,
analyze rounding properties, and reflect how the change in revenue for the operator and the number
of highly affected passengers can be controlled. Additionally, we evaluate the developed models
experimentally.
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1 Introduction

The choice of ticket prices for public transport usage is a crucial decision. Ticket prices are
important for covering the costs of the public transport operator. Through price elasticities
(see, e.g., [9, 2, 5]), they affect the number of people traveling by public transport. They
also contribute to the passenger satisfaction, and they even may affect the routes passengers
choose [3, 12]. A variety of fare strategies is implemented worldwide, each with a different
focus and purpose. In the following we sketch three basic types which come with many
variations in practice.

Flat tariffs. In a flat tariff, every ticket has the same price. This has the advantage that
it is very easy to understand, but on the other hand it is often perceived as unfair because
passengers with a short journey pay the same price as passengers with a long journey.

Zone tariffs. Zone tariffs are more granular. They group stations to zones and set fares
based on the traversed zones. Within each fare zone a flat tariff is applied, but traversing
different zones yields different prices. It is common that the price for a journey in a zone
tariff depends on the number of traversed zones, usually with a few exceptions. Such a zone
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11:2 Design of Distance Tariffs in Public Transport

tariff is also called counting zone tariff. In the past years, zone tariffs have been very popular
and are implemented in many cities in Europe (e.g., Berlin, London, Paris, Copenhagen)
as well as worldwide (e.g., Vancouver, Melbourne, Johannesburg). The design of and the
transition to zone tariffs with practical applications has been broadly investigated in the
literature, e.g., [8, 4, 13, 27].

Distance tariffs. Distance tariffs are the most differentiated fare strategy. They determine
the price of a ticket based on the length of the corresponding journey. This can for example be
the actual distance traveled in the network (network distance tariff ) or the beeline (Euclidean)
distance between the start and the end station of the journey (beeline distance tariff, also
called airline distance tariff). In this paper, we consider affine distance tariffs, which are
composed of a price per kilometer and an additional base amount. Distance tariffs are the
standard system in most long-distance (railway) transportation systems and get nowadays
more popular also in regional bus transportation. There are several reasons for this: First of
all, charging a price which is proportional to the beeline distance seems to be fair in an area
where rivers and mountains do not impose barriers for traveling. Furthermore, the rising
popularity of mobile tickets and smart cards has led to an increased interest in distance
tariffs because check-in/check-out systems can rather easily be used to determine the length
of a journey. A particular promising setting is that passengers use mobile devices that track
the coordinates and compute the distance traveled when the destination is reached. This
is easy to handle for people that use public transport only occasionally and therefore in
Germany an alternative to the so-called Deutschlandticket that offers unlimited access to all
urban and regional public transport systems for frequent users.

The transition to a distance tariff has been regarded mainly with respect to demand
change. [12] simulates route choice effects when changing from a zone tariff to a distance
tariff and evaluates travel times as well as amount of fares paid. In [28], a bilevel approach
maximizing the demand under the consideration of route choice based on cost and time
components is discussed. A different kind of distance tariff that takes the number of stations
into account instead of a kilometer distance is considered in [14, 15, 10].

In this paper, we consider a different topic than previous papers. We develop mathematical
models for the design of a distance tariff focusing on practice-oriented questions arising. The
models are based on standard data available for ticket sales, and the formulations presented
can be implemented directly. Therefore, this paper provides the means to generate relevant
tariff setting and make informed decisions.

The design of an affine distance tariff seems to be an easy exercise: one only has to
determine the price per kilometer and a fixed base amount. Nevertheless, when we discussed
the introduction of a distance tariff with partners from public transport operators, we learned
of several issues to be considered. In this paper we share our findings that occurred during
such projects by presenting how such practical requirements can be modeled.

The remainder of the paper is structured as follows. We present the general model for the
transition to a distance tariff in Section 2. We then discuss the modeling issues that stem
from our partners within a (confidential) real-world case study: Distance tariffs should be
integral (Section 3). In most real cases there exists an upper limit as a cap on the ticket price.
This upper limit is a third variable in the model as shown in Section 4. Public transport
operators wish to control the deviation in revenues (Section 5.1) and are also interested in
the passengers’ perspective, which means that there should be a bound on the number of
highly affected passengers as introduced in Section 5.2. An experimental evaluation of the
developed models is presented in Section 6. We conclude in Section 7.
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2 A model for the transition to a distance tariff

Informally speaking, a fare structure assigns a ticket price to every passengers’ journey.
Hence, in order to define formally what a fare structure and a distance tariff are, we first
need the network in which the passengers travel.

Let us define the public transport network PTN as a graph PTN = (V, E) with V being
the stations and E being the links between stations on which a regular service exists. A
passengers’ journey is a path in the PTN. In order to reflect all possible passengers journeys
through the network, we define J as the set of all paths in the PTN.

A fare structure assigns a ticket price to every path in the PTN, realizing a fare strategy,
which may be a distance tariff, a zone tariff or a flat tariff. This paper deals with models to
determine distance tariffs.

Given an org-dest-path J in the PTN, we consider two common options to assign a
distance (or length) l(J) to path J :

Network distance: In this case, l(J) is the length of path J in the PTN.
Beeline distance: In this case, l(J) is the beeline distance between the origin and the

destination of path J . The path J itself is not needed.

We assume that that all paths have positive lengths and that all distances are rounded
up to full kilometers. The latter means that a distance tariff as described in the following
requires passengers to pay the price per kilometer for every kilometer started on their journey.
In small regions of operation a smaller unit might be used to round to. Note that, while
network and beeline distance are the most common options, any other way to determine
the length of a path l(J) ∈ N can be employed as well, where N = {1, 2, 3, . . .} is the set of
natural numbers starting from 1.

▶ Notation 1. Let J be the set of all paths in the PTN. A fare structure π : J → R is a
distance tariff if the price for every path J ∈ J is defined as

π(J) := p · l(J) + f,

where the two parameters p and f describe the price per kilometer and the base amount of
the distance tariff, and l(J) is the length of path J .

We denote a distance tariff π with price per kilometer p and base amount f by (p, f).
The corresponding price list of π is given as (πkm

i )i∈N with πkm
i := p · i + f for all i ∈ N.

The goal of this paper is to develop models for the transition from an existing tariff to
a distance tariff as defined in Notation 1. Since neither the operator would like to have
a (big) loss in its income nor the passengers would like to have a (large) increase in their
ticket prices, the idea is to design the distance tariff such that the new prices are as close as
possible to the current prices. This leads to the concept of reference prices, which may be
the current ticket prices or other preferable prices that should be realized. The goal then is
to minimize the deviation to the reference prices. This objective has been introduced in [7],
and is followed in many other publications such as [1, 8, 14, 15, 4].

In order to model the deviations, let a set of passenger groups D be given. For each group
d ∈ D let wd ∈ N be the number of passengers of group d, Jd the path the passengers of
group d wish to travel, ld ∈ N its length, and rd ∈ R≥0 the reference price.

The set D of passenger groups can for example be a set of origin-destination (OD) pairs
D ⊆ V × V, which means to consider at most one passenger group (and hence one path)
between each pair of an origin station and a destination station. We also can allow
different passenger groups within the same OD pair, representing different paths between
the same origin and destination.

ATMOS 2025



11:4 Design of Distance Tariffs in Public Transport

The distance ld can be derived as network or beeline distance of path Jd of passenger
group d, i.e., ld = l(Jd) > 0. Note that all paths with the same pair of origin and
destination station are assigned the same distance ld if the beeline distance is applied,
whereas the network distance may lead to passenger groups with the same pair of origin
and destination station but with different distances because their paths differ.
As the reference price rd, we apply the current price to be paid by passenger group d ∈ D
for traveling along path Jd.
Note that two passenger groups d1, d2 with ld1 = ld2 , rd1 = rd2 can be joined to a new
passenger group d with ld = ld1 = ld2 , rd = rd1 = rd2 and wd = wd1 + wd2 . We hence may
assume that passenger groups are pairwise disjoint regarding distance or reference price.

Finally, the new price of the passenger group d is denoted by πd. If it is determined by a
distance tariff (p, f), we have πd = p · ld + f . The vector (πd)d∈D contains all the new prices.

The basic distance tariff design model for a transition to a distance tariff can now be
stated. It looks for a distance tariff π with price per kilometer p and base amount f , requiring
p, f ≥ 0, and minimizing the sum of absolute deviations between the new prices (πd)d∈D and
the reference prices (rd)d∈D:

min
p, f, πd

∑
d∈D

wd|rd − πd|

s.t. πd = p · ld + f for all d ∈ D
p, f ≥ 0.

(1)

The variables πd with d ∈ D can be replaced such that the program consists of only two
variables, p and f , and the absolute value can be replaced by a bottleneck variable zd for
each d ∈ D such that we equivalently obtain its linear version:

min
p, f, zd

∑
d∈D

wdzd

s.t. rd − p · ld − f ≤ zd for all d ∈ D
p · ld + f − rd ≤ zd for all d ∈ D

p, f ≥ 0.

(2)

▶ Example 2. To illustrate the different tariff types considered in this paper, we consider
an example derived from the sioux_falls data set, see Figure 4, of the software library
LinTim [18, 19]. To generate passenger groups, we compute the network distance of each
origin destination pair and a reference price based on the zone tariff depicted in Figure 4a.
As noted above, we combine passenger groups which share the same distance and reference
price. Note that this example is part of the experimental evaluation in Section 6 (where it is
denoted as data set A with ratio_zone = 1).

In the graphical representations, e.g. in Figure 1a, each passenger group is marked as
a point (ld, rd) showing its distance (rounded to full kilometers) and reference price. The
size of the marker depends on the number of passengers wd of the group. The fare structure
π is plotted as a function of the distance l, e.g., in Figure 1a, the orange line l 7→ p · l + f

represents the distance tariff. The price list πkm
i := p · i + f can be read off as the function

values at i ∈ N.

We illustrate an optimized distance tariff for Example 2 in Figure 1a.
Recall that ld > 0 for all d ∈ D. We can add additional bounds to model (1):
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(b) Integer distance tariffs and rounded solutions.

Figure 1 Example data from Example 2 with optimal solutions. Each passenger group is marked
as a point (ld, rd) showing its distance (rounded to full kilometers) and reference price. The size of
the marker depends on the number of passengers wd of the group. The optimized fare structures are
plotted as functions of the distance.

▶ Lemma 3. Let rmax := max
d∈D

rd. Every optimal solution (p, f) to model (1) satisfies
p ≤ max

d∈D
rd

ld
and f ≤ rmax. In particular, these are valid inequalities for model (1).

Proof. Let (p, f) be an optimal distance tariff. First assume that f > rmax. This means
that πd = p · ld + f > p · ld + rmax ≥ p · ld + rd ≥ rd for all d ∈ D. Decreasing f to rmax hence
decreases the objective function value, which is a contradiction to (p, f) being an optimal
distance tariff.

Second assume that p > maxd∈D
rd

ld
. This yields

πd = p · ld + f > max
d′∈D

rd′

ld′
· ld + f ≥ rd

ld
· ld + f = rd + f ≥ rd

for all d ∈ D. Decreasing p to maxd∈D
rd

ld
hence decreases the objective function value, again

a contradiction to (p, f) being an optimal distance tariff. ◀

Note that instead of the sum of absolute deviations
∑

d∈D wd|rd − πd| as in (1) also the
maximum absolute deviation maxd∈D |rd−πd| or the sum of squared deviations

∑
d∈D wd(rd−

πd)2 may be considered as objective functions [21, 8, 1, 14, 15, 4]. Minimizing the maximum
absolute deviation is strongly dependent on outliers, and hence does not lead to good results
in practice. Also, while minimizing the sum of squared deviations is easy to solve by a simple
regression analysis, it is not what practitioners want; it is still more dependent on outliers
than minimizing the sum of absolute deviations. Another reason that makes minimizing the
sum of absolute deviations attractive for practical settings is that optimization problem (1)
satisfies the following two properties (which are not satisfied if the sum of absolute deviations
is replaced by the maximum absolute deviation or by the the sum of squared deviations):

(P1) There is always an optimal solution with a passenger group d ∈ D for which the
reference price rd and the new price πd coincide, i.e., rd = πd. If p ̸= 0 and f ≠ 0, then
there are even two passenger groups with this property [26]. This means that there always
exist two passenger groups d ∈ D whose ticket prices stay the same when the old fare
structure is transformed to a distance tariff.

ATMOS 2025



11:6 Design of Distance Tariffs in Public Transport

(P2) As we show in Lemma 4, with a few exceptions, the new ticket price is larger than
the reference price for at most half of the passengers and it is smaller for at most half of
the passengers, i.e., it may be considered as balanced. Consequently, at most half of the
passengers experience increasing ticket prices when the fare structure is transformed to a
distance tariff.

Moreover, some detailed analysis [26] shows that the optimization problem (1) can be solved
in linear time in the number of passenger groups.

▶ Lemma 4 (Halving property). Let (p, f) be an optimal distance tariff, i.e., an optimal
solution to model (1). Then one of the following is true:

1.
∑

d∈D: rd<p·ld+f

wd ≤
∑

d∈D
wd

2 and
∑

d∈D: rd>p·ld+f

wd ≤
∑

d∈D
wd

2 .

2. f = 0 and
∑

d∈D: rd<p·ld+f

wd >

∑
d∈D

wd

2 .

Proof. We apply the argument from [22, 23]. Assume
∑

d∈D: rd>p·ld+f

wd >

∑
d∈D

wd

2 . Then

we can increase the base amount f by some h ∈ R>0 so that

{d ∈ D : rd > p · ld + f} = {d ∈ D : rd > p · ld + (f + h)}.

This however improves the objective function value because∑
d∈D

wd|rd − (p · ld + f + h)|

=
∑

d∈D: rd>p·ld+f

wd(rd − p · ld − f − h) +
∑

d∈D: rd<p·ld+f

wd(p · ld + f + h − rd)

=
∑
d∈D

wd|rd − (p · ld + f)| + h︸︷︷︸
>0

·

−
∑

d∈D: rd>p·ld+f

wd +
∑

d∈D: rd≤p·ld+f

wd


︸ ︷︷ ︸

<0

<
∑
d∈D

wd|rd − (p · ld + f)|.

Hence, (p, f + h) is a better solution, which is a contradiction to (p, f) being optimal.

The same argument works for the case that
∑

d∈D: rd<p·ld+f

wd >

∑
d∈D

wd

2 with h ∈ R

and −f ≤ h < 0 as long as f > 0. However, if f = 0, it is not allowed to reduce the base
amount f . This is the only situation in which it can be optimal that more than half of the
passengers have a higher new ticket price than their (old) reference price. ◀

3 Integrality constraints

A common practical requirement is to have integer values for the resulting ticket prices. Note
that by scaling the reference prices, we can ensure integer multiples of 10ct, 50ct, etc. Here,
we not only want to ensure this for the ticket prices πd of the actual set of passenger groups
d ∈ D, but also for all potential journeys, i.e., for all paths J ∈ J in the PTN. This can be
guaranteed by requiring the integrality condition for the whole price list, i.e.,

πkm
i ∈ N0 for each positive kilometer distance i ∈ N.
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These conditions may be added to the basis formulation (1):

min
p, f, πd

∑
d∈D

wd|rd − πd|

s.t. πd = p · ld + f for all d ∈ D
yi = p · i + f for all i ∈ N

p, f ≥ 0 for all d ∈ D
yi ∈ Z for all i ∈ N.

(3)

We may replace i ∈ N by i = {1, 2, . . . , imax} for some sufficiently large imax, but it is
computationally not advantageous to have so many integer variables. This number can be
reduced since it is in fact equivalent to require integrality only for p and f as the next lemma
shows.

▶ Lemma 5. p, f ∈ Z if and only if πkm
i ∈ Z for all i ∈ N.

Proof. If p and f are integer, then clearly πkm
i = p·i+f is integer for all natural numbers i ∈ N.

Vice versa, let p · i + f be integer for all i ∈ N. For i = 1 and i = 2 we receive that z1 := p + f

and z2 := 2p + f are both integer. Hence also z2 − z1 = p is integer, and from this we get
that z1 − p = f is also integer. ◀

The consequence is that (3) is equivalent to

min
p, f, πd

∑
d∈D

wd|rd − πd|

s.t. πd = p · ld + f for all d ∈ D
p, f ≥ 0
p, f ∈ Z,

(4)

in which we only have two integer variables f and p instead of the imax many variables
y1, . . . , yimax . Clearly, the program can again be linearized as already seen for (2).

▶ Corollary 6. The formulations (3) and (4) are equivalent.

Two heuristic solutions that we have tested are the following:
f, p rounded As a heuristic we can also solve the program (1) without integrality constraints

and round the optimal variables f∗ and p∗ to their closest integers. However, this is
only a heuristic, although the rounding property of [11] is often satisfied for location or
regression-like problems (see [24]), which have a similar structure as (1).

π rounded Another option is to round the prices π∗
d to the closest integer. Note however,

that this does not result in a distance tariff since the resulting values round(π∗
d) will not

satisfy round(π∗
d) = p · ld + f any more.

Both optimal integer solutions and the two heuristics are illustrated in Figure 1b.

4 Setting an upper price cap on the ticket prices

Implementing a distance tariff as in Notation 1, the ticket price increases unlimitedly with
the distance. In practice, public transport tariffs often have a cap on the maximum ticket
price per journey. Consider a path J ∈ J . As long as the length of J is small, the price

ATMOS 2025



11:8 Design of Distance Tariffs in Public Transport

function is an affine linear distance tariff (p, f) that becomes constant if the length of the
path exceeds a threshold distance Lmax. Formally, let the price cap be pmax. Then the price
π(l) for a path with length l is defined as a continuous piecewise linear function in l:

π(l) = min{p · l + f, pmax}

which results in a threshold distance Lmax for which p · Lmax + f = pmax, i.e., the price
stays at pmax for all passengers traveling further than Lmax. In the following we investigate
distance tariffs with such a cap on the ticket prices.

▶ Notation 7. Let J be the set of all paths in the PTN. A fare structure π : J → R is a
capped distance tariff if the price for every path J ∈ J is defined as

π(J) := min{p · l(J) + f, pmax},

where the parameters p and f describe the price per kilometer and the base amount of the
distance tariff, and pmax is the cap on the ticket price. As before, l(J) is the length of path J ,
measured by beeline or network distance. We denote a capped distance tariff π with price per
kilometer p, base amount f and upper price limit pmax by (p, f, pmax). If p ̸= 0, its threshold
distance Lmax is given as Lmax = pmax−f

p .
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(a) Capped distance tariff.
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(b) Integer capped distance tariff.

Figure 2 Example data from Example 2 with optimal solutions. Each passenger group is marked
as a point (ld, rd) showing its distance (rounded to full kilometers) and reference price. The size of
the marker depends on the number of passengers wd of the group. The optimized fare structures are
plotted as functions of the distance.

Figure 2 shows an example of input data with an optimized capped distance tariff
analogously to Figure 1. The horizontal part is the result of the upper price limit pmax.
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We can compute p, f and pmax with the following model:

min
p, f, pmax, xmax

d , πd

∑
d∈D

wd|rd − πd|

s.t. πd ≤ p · ld + f for all d ∈ D
πd ≤ pmax for all d ∈ D
πd ≥ p · ld + f − M · xmax

d for all d ∈ D
πd ≥ pmax − M · (1 − xmax

d ) for all d ∈ D
pmax ≥ p · ld + f − M · xmax

d for all d ∈ D
pmax ≤ p · ld + f + M · (1 − xmax

d ) for all d ∈ D
p, f, pmax ≥ 0

xmax
d ∈ {0, 1} for all d ∈ D.

(5)

The additional variable pmax denotes the maximum price of the capped distance tariff,
and the binary variables xmax

d indicate whether a passenger group d ∈ D has to pay the
maximum price, or not. The first two constraints ensure that πd is always smaller than the
minimum of the affine distance tariff and the upper price limit. The next two constraints
ensure that πd is not smaller, but equal to p · ld + f if xmax

d = 0 and equal to pmax if xmax
d = 1.

Finally, the last two constraints ensure the relation between pmax and p · ld + f : If xmax
d = 0,

the constant part pmax must be larger than the affine part p · ld +f , and vice versa if xmax
d = 1.

In the following we first bound the optimal value for pmax. This then enables us to
determine a reasonable constant for the big M parameter in model (5). Recall that rmax =
maxd∈D rd.

▶ Lemma 8. There is always an optimal solution (p, f, pmax) to model (5) with p ≤ max
d∈D

rd

ld

and f ≤ pmax ≤ rmax.

Proof. Let (p, f, pmax) denote an optimal capped distance tariff.
First, assume that f > pmax. We then have pmax < p · ld + f for all d ∈ D. Therefore, we

can replace (p, f, pmax) by (0, pmax, pmax), which yields the same optimal objective function
value and is hence also an optimal solution. For the following let f ≤ pmax.

Second, assume that pmax > rmax. We replace (p, f, pmax) by (p, min{f, rmax}, rmax). For
all passenger groups d ∈ D with p · ld + f ≤ rmax (which only can occur if f ≤ rmax), the
contribution to the objective function value does not change. For the remaining passenger
groups, we have that min{p · ld + f, pmax} > rmax ≥ rd and hence obtain a reduction in the
objective function value, which is a contradiction to (p, f, pmax) being optimal. This yields
that there is an optimal solution with pmax ≤ rmax and hence also with f ≤ rmax.

Third, assume that p > max
d∈D

rd

ld
. We consider replacing (p, f, pmax) by

(
max
d∈D

rd

ld
, f, pmax

)
.

For all passenger groups d ∈ D with pmax ≤ max
d′∈D

rd′
ld′

· ld + f < p · ld + f the contribution to
the objective function value does not change because the price is determined by pmax. For
the remaining passenger groups, we have that pmax > max

d′∈D
rd′
ld′

· ld + f . Therefore,

min{p · ld + f, pmax} > max
d′∈D

rd′

ld′
· ld + f

(
= min

{
max
d′∈D

rd′

ld′
· ld + f, pmax

})
≥ rd

ld
· ld + f = rd + f ≥ rd.

Thus, in this case the objective function value of
(
max
d∈D

rd

ld
, f, pmax

)
is smaller than of

(p, f, pmax), which is a contradiction to (p, f, pmax) being an optimal solution. This yields
that there is an optimal solution with p ≤ max

d∈D
rd

ld
. ◀

ATMOS 2025



11:10 Design of Distance Tariffs in Public Transport

▶ Lemma 9. We consider model (5) with the additional constraints stated in Lemma 8.
Then the parameter M can be chosen as M := max

d∈D
rd

ld
· max

d∈D
ld + rmax.

Proof. Let M := rmax+maxd∈D
rd

ld
·max

d∈D
ld. Because of the additional constraints of Lemma 8,

we have p ≤ maxd∈D
rd

ld
and f ≤ pmax ≤ rmax in any feasible solution (p, f, pmax). This

yields p · ld + f − M ≤ 0, pmax − M ≤ 0 and p · ld + f + M ≥ rmax. The big-M constraints
in (5) are therefore redundant in case the big-M is active. ◀

The halving property as shown for model (1) in Lemma 4 does analogously hold for
capped distance tariffs:

▶ Lemma 10 (Halving property). Let (p, f, pmax) be an optimal capped distance tariff, i.e.,
an optimal solution to model (5). Then one of the following is true:

1.
∑

d∈D:
rd<min{p·ld+f,pmax}

wd ≤
∑

d∈D
wd

2 and
∑

d∈D:
rd>min{p·ld+f,pmax}

wd ≤
∑

d∈D
wd

2 .

2. f = 0 and
∑

d∈D:
rd<min{p·ld+f,pmax}

wd >

∑
d∈D

wd

2 .

Proof. The result can be shown analogously to Lemma 4. Instead of shifting the line
l 7→ p · l + f , we shift the complete graph of l 7→ min{p · l + f, pmax}. ◀

5 Controlling the revenue and number of highly affected passengers

The objective function minimizing the sum of absolute deviations between reference prices
and new prices implicitly controls the deviation of revenue and ticket price increases. However,
in practice it may be required explicitly that the revenue is changed by a certain amount or
that only a certain amount of passengers is affected by a high increase in the ticket price.
These additional requirements are taken into consideration in Sections 5.1 and 5.2.

5.1 Controlling the changes in revenue
Under the assumption that all passengers pay the reference prices for their tickets, the
revenue is given by

∑
d∈D wdrd. When designing a new fare structure, there might be the

requirement to obtain a certain revenue R ∈ R. In practice the value R may be given in
relation to the revenue gained by the reference prices as R =

∑
d∈D wdrd − α1 with α1 ∈ R or

as R = α2 ·
∑

d∈D wdrd with α2 ∈ R≥0. This bound can be acknowledged in the optimization
process by adding the following linear constraint to the previous models (1)–(5) independent
of the integrality and upper price limit specifications:∑

d∈D

wdπd ≥ R. (6)

Note that this additional constraint does in general not preserve previously shown
properties of the solutions like the halving property.

Starting with model (1) or (5) without a constraint on the revenue and noticing that
the revenue is lower than desired, one may be inclined to equally increase all ticket prices
until the desired revenue is realized. Formally, this means that if

∑
d∈D wdπd < R, we set

∆ := R −
∑

d∈D wdπd and increase the base amount f to f̃ := f + ∆∑
d∈D

wd
. This however

does in general not lead to an optimal solution with respect to the objective of minimizing
the sum of absolute deviations from reference prices as illustrated in Figure 3a. Thus, it is
only a heuristic.
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(a) Optimal solution and heuristic for controlling
for revenue with R = 1.1 ·

∑
d∈D wdrd.
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(b) Optimal distance and capped distance tariff
for controlling for highly affected passengers with
r̄d = 1.1rd, W = 0.1 ·

∑
d∈D wd.

Figure 3 Example data from Example 2 with optimal solutions. Each passenger group is marked
as a point (ld, rd) showing its distance (rounded to full kilometers) and reference price. The size of
the marker depends on the number of passengers wd of the group. The optimized fare structures are
plotted as functions of the distance.

5.2 Controlling the number of highly affected passengers
While a high deviation between a reference price and a new ticket price is recognized and
punished by the objective function, it is still possible that the price for a passenger group
increases significantly. To prevent this, we can add a set of constraints to the previous models:
For each passenger group d ∈ D let r̄d be a threshold for the ticket price. Let W ∈ R≥0 be a
limit on the number of passengers for which the new ticket price exceeds the threshold. In
practice the threshold r̄d may be chosen as r̄d = rd + β1 with β1 ∈ R or as r̄d = β2 · rd with
β2 ∈ R≥0. The limit W may be given as W = γ ·

∑
d∈D wd with γ ∈ [0, 1]. An example is

illustrated in Figure 3b.
This restriction can be realized by incorporating the following set of constraints into the

previous models (1)–(5) independent of the integrality and upper price limit specifications::

πd ≤ r̄d + M · xd for all d ∈ D, (7)∑
d∈D

wdxd ≤ W, (8)

xd ∈ {0, 1} for all d ∈ D, (9)

where we choose M as in Lemma 9. If πd > r̄d, then the binary variable xd is set to 1 and
indicates that the new price exceeds the threshold. The total number of all passengers for
which the threshold is exceeded is computed and limited by W . Note that this additional
constraint does in general not preserve previously shown properties of the solutions like the
halving property.

6 Experimental evaluation

In order to discuss the differences of the models, we conduct an experimental evaluation. For
the input data we consider the data set sioux_falls provided in the open source software
library LinTim [18, 19], see Figure 4. We generate two sets of passenger groups D1, D2
where for D1 the reference prices rd are computed according to a zone tariff depicted in

ATMOS 2025



11:12 Design of Distance Tariffs in Public Transport

Figure 4a and for D2 the reference prices rd are computed based on a network distance
tariff. Small perturbations are introduced by rounding the distances ld of the passenger
groups. For ratio_zone ∈ {0, 0.25, 0.5, 0.75, 1}, we create a set of passenger groups D =
{(ld, rd, ratio_zone · wd) : d ∈ D1)} ∪ {(ld, rd, (1 − ratio_zone) · wd) : d ∈ D2}. Thus,
the reference prices for ratio_zone = 0 represent a perturbed distance tariff and for
ratio_zone = 1 a perturbed zone tariff. By using two distance functions to determine ld,
d ∈ D, in data set A and data set B, we get a total of 10 instances, detailed in Table 1. The
models are implemented on a machine with Intel(R) Core(TM) i5-1335U CPU and 32GB
RAM using Gurobi 12 [6].

1 2

3 4 5 6

9 8 7

10 16 18

17

12 11

14 15 19

23 22

13 24 21 20

(a) Public transport network where
stations of the same color form a zone.

(b) Demand used to generate passenger groups D1, D2.
Darker colors represent higher demand.

Figure 4 Public transport network and demand data for sioux_falls.

Table 1 Input data for data set A and data set B, detailing the distance function used to compute
ld, the maximum distance over all passenger groups as well as the number of passenger groups
depending on ratio_zone. Note that the distances ld are rounded up to the nearest integer.

|D| for ratio_zone

Data set distance function maxd∈D ld 0 0.25 0.5 0.75 1

data set A rounded network 15 92 129 129 129 40
data set B rounded beeline 153 128 183 183 183 59

We implement and test 12 models discussed in this paper, see Table 2. In particular, we
consider the basic distance tariff design models (dist), models with integer prices (integer)
as well as controlling the revenue (revenue) and the number of highly affected passengers
(passengers). For each of these models, a version with capped prices (cap) is implemented,
as well as alternative models and heuristic approaches marked by ∗.

For controlling the revenue, we set R = 1 ·
∑

d∈D wdrd, i.e., the revenue of the new
solution has to be at least as high as the revenue generated by the reference prices. For
controlling the number of highly affected passengers, we choose r̄d = 1.1rd, i.e., all passengers
that have to pay more than 110% of the reference price are highly affected. Additionally,
we restrict the number of highly affected passengers to W = 0.1

∑
d∈D wd, i.e., at most 10%

of the passengers may be highly affected. When integer prices are considered, we consider
integer multiples of 10ct, both for the prices π and the parameters f, p.
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Table 2 Abbreviation and parameters of implemented models. Alternative formulations and
heuristics are marked by ∗ and are evaluated in Section 6.3.

Abbreviation Model Added parameters

dist LP (2) –
dist (cap) MIP (5)

π integer MIP (3) (linearized)

multiples of 10ct
π integer (cap) MIP (5) with πd ∈ Z
π rounded∗ LP (2), π rounded a posteriori
f, p integer∗ MIP (4) (linearized)
f, p rounded∗ LP (2), f, p rounded a posteriori

revenue LP (2) with (6)
R = 1 ·

∑
d∈D wdrdrevenue (cap) MIP (5) with (6)

revenue heuristic∗ LP (2), f̃ := f + ∆∑
d∈D

wd

a posteriori

passengers MIP (2) with (7)-(9) r̄d = 1.1rd,
W = 0.1

∑
d∈D wdpassengers (cap) MIP (5) with (7)-(9)

6.1 Solver time
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(a) Solver time, data set A.
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(b) Solver time, data set B.
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π integer (cap)

revenue

revenue (cap)

passengers

passenger (cap)

Figure 5 Solver time of the different models, grouped by ratio_zone.

As shown in Figure 5, the solver time of all models is low, with a maximal solver time
of under 50 seconds. However, there is a clear difference between non-capped models and
capped models. All non-capped models have solver times of under 2 seconds. For the capped
models, however, the solver time increases to almost 50 seconds.

Additionally, the influence of the input structure and the corresponding number of
passenger groups |D|, see Table 1, on the solver time is evident. While a pure zone tariff
as input (ratio_zone = 1) is the easiest to solve with solver times under 2 seconds also for
models with an upper bound, the instances where both zone tariffs and distance tariffs are
used to generate the input, i.e., 0 < ratio_zone < 1, are hardest to solve. Furthermore,
since data set A is a smaller data set, it has lower solver times than data set B.
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(a) Solver time, data set A.
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(b) Solver time, data set B.
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π rounded

f, p integer

f, p rounded
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revenue heuristic

Figure 6 Solver time of the different alternative formulations and heuristics, grouped by
ratio_zone.

Figure 6 details the solver time of the alternative formulations and heuristics. Note that
for integer distances ld, d ∈ D, the models (3) and (4) are equivalent. However, modeling
only f, p as integer variables clearly outperforms modeling all prices πd, d ∈ D, as integer
variables. Note that the solver times of the revenue model and the heuristic revenue model
are almost identical.

6.2 Evaluating different models
Solutions for the models described in Table 2 for ratio_zone = 0.25 are depicted Figure 7.
Note that for other values of ratio_zone the solutions are structured similarly.
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(a) Input data and solutions for data set A.
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(b) Input data and solutions for data set B.
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Figure 7 Input data and solutions for ratio_zone= 0.25. Every passenger group is marked as
a point (ld, rd) showing its distance and reference price. The size of the marker depends on the
number of passengers wd of the group.
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We observe that for data set A, for all models except π integer, the non-capped model
and the capped model share the same base amount and price per kilometer f, p. Further
evaluation shows that here the added flexibility of capped distance tariffs can hardly result
in better solutions, see Figure 8. For data set B, however, introducing an upper limit results
in new base amount and price per kilometer f, p for all models. Thus, the capped distance
tariffs can better represent the reference prices of the passengers. For both data sets, the
solutions for models with continuous prices are similar to each other. However, enforcing
integer prices leads to considerably different solutions. For data set B, with a maximum
distance of 153, enforcing integer prices results in a flat tariff, or a capped distance tariff
that closely resembles a flat tariff. If integer prices are required here, it might be better to
aggregate distances, e.g to multiples of 5.

Evaluating the total deviation between prices and reference prices. Figure 8 details
the objective value, i.e., the weighted absolute deviation from the reference prices for all
considered models. In addition to the absolute objective value, a normalized version is
depicted, where the objective value is represented in comparison to the objective value of the
basic distance tariff (dist), i.e.,

normalized objective(model) = objective(model) − objective(dist)
objective(dist) . (10)

Figure 8 shows that reference prices derived from a distance tariff (ratio_zone=0) can be
approximated best but due to structure of the input data the reference prices cannot be met
exactly. Furthermore, the absolute value of the total deviation increases with ratio_zone.
Only for a zone-tariff-based input, i.e., ratio_zone = 1, the absolute objective values fall a
little. This might be due to having fewer passenger groups D.

By introducing an upper limit on the prices, the weighted absolute deviation can be
reduced compared to the model without upper bound. In particular, multiple models
outperform the basic distance tariff (dist). As observed in Figure 7, this effect is more
pronounced for data set B than for data set A.

Note that for data set B, enforcing integer prices has a considerable effect on the solution
quality, increasing the weighted absolute deviation to up to 180% of the corresponding
deviation for the basic distance tariff. This is due to the high number of integer distance
values paired with low prices, which often leads to flat tariffs that cannot approximate the
input data well.

For all other models, the solution quality does not deviate by more than 25% compared
to the deviation for the basic distance and the deviation is often considerably lower. Note
that for data set B, enforcing the revenue to be at least as high as the revenue according to
the reference prices can be done without noticeable losses in the objective value. This shows
that imposing additional constraints still allows for tariffs that represent the reference prices
well.
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(a) Objective value, data set A.
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(b) Objective value, data set B.
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(c) Normalized objective value (10), data set A.
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(d) Normalized objective value (10), data set B.
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Figure 8 Evaluating the objective value (weighted absolute deviation from the reference prices)
of the optimal solutions grouped by ratio_zone.

Evaluating the revenue. In addition to the objective value, we evaluate the revenue of the
solutions in Figure 9. Note that the revenue is normalized by the revenue of the reference
prices, i.e.,

normalized revenue(model) =
revenue(model) −

∑
d∈D wdrd∑

d∈D wdrd
. (11)

Compared to the revenue generated by the reference prices, the revenue according to
the new tariffs reduces by at most 7% and even increases slightly for some models. Note
that when controlling for the revenue, the revenue does not decrease. Thus, simplifying the
tariff to a distance based tariff with relevant practical constraints is possible without a high
impact on the operator’s revenue.
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(a) Normalized revenue (11), data set A.
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(b) Normalized revenue (11), data set B.
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Figure 9 Evaluating the revenue value of the optimal solutions, normalized by reference revenue,
grouped by ratio_zone.

6.3 Evaluating alternative models and heuristics
The alternative models and heuristics solution methods marked by ∗ in Table 2 are evaluated
in comparison to the original models.
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(a) Normalized objective value (10), data set A.
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(b) Normalized objective value (10), data set B.
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Figure 10 Evaluating the objective value (weighted absolute deviation from the reference prices)
of the optimal solutions for alternative formulations and heuristics, grouped by ratio_zone.

Evaluating the total deviation between prices and reference prices. When considering
integer prices, Figure 10 shows that the equivalent models (3) (π integer) and (4) (f, p integer)
do indeed find equally good solutions. However, rounding the prices π or the base amount
and price per kilometer f, p a posteriori results in very different solutions. While rounding π

ATMOS 2025



11:18 Design of Distance Tariffs in Public Transport

does not lead to a distance tariff, the total deviation from the reference prices is always as
good as the distance tariff (dist) and sometimes even results in slightly lower deviations. In
contrast, rounding the base amount and price per kilometer f, p results in solutions with up
to 5 times higher deviations form the reference prices compared to the basic distance tariff.
This effect is even more pronounced for data set B, where there are more integer values
for the considered distances. Note that the heuristic for revenue controlled tariffs performs
almost as well as the exact solution method. However, a closer examination of the solutions
shows that the resulting tariffs differ even though the objective values are almost identical.

Evaluating the revenue. When considering the revenue depicted in Figure 11, we observe
again that rounding the base amount and price per kilometer f, p is an outlier compared to
other models and can lead to significantly reduced revenues. The exact and heuristic models
for revenue control are both able to avoid revenue losses. Note that while the heuristic model
is designed to meet the reference price revenue exactly, the exact method can lead to slightly
higher revenues with the same deviation from the reference prices.
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(a) Normalized revenue (11), data set A.
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(b) Normalized revenue (11), data set B.
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Figure 11 Evaluating the revenue value of the optimal solutions for alternative formulations and
heuristics, grouped by ratio_zone.

7 Conclusion and further research

This paper provides models with several practically relevant specifications for changing a fare
strategy to a distance tariff. In addition to a basic distance tariff composed of a price per
kilometer and a base amount, also integrality requirements are discussed. A capped distance
tariff additionally implements an upper price bound on the ticket prices. Furthermore, two
constraints that can be added to the models and control the change in the revenue or the
number of highly affected passengers, respectively, are suggested. The reported optimization
models allow to explore and evaluate different options for distance tariffs with the possibility
to add special requirements in the constraints. The experimental evaluation shows that
practical constraints can be added when designing distance tariffs without sacrificing too
much solution quality or revenue. In a confidential case study our partners found the results
useful for their decisions on a distance tariff.
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We anticipate further research in two different directions: First, the results are related to
locating lines and other structures in computational geometry. In particular, for the capped
distance tariff, we locate an “angled line” whose theoretical properties could be discussed
along the lines of [25], not only for the median but also for the respective center problem.

Second, further research in tariff planning in public transport is interesting. We aim to
strengthen the MIP formulations to solve large, realistic data sets by leveraging the structure
of the reference prices. This is especially promising when the reference prices are derived from
a zone tariff with few zones. Additionally, a bicriteria version as in [20] in which the revenue
and the number of passengers using public transport are considered as two (conflicting)
objective functions is a useful extension. Furthermore, passengers’ routes are influenced not
only by their travel times but also by the tariff system. Since the routes of the passengers are
crucial for planning lines and timetables, there is a need of integrating also tariff planning
with these stages, and to discuss the differences between the sequential and the integrated
approach [16, 17] also in this setting.
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