
Separator-Based Alternative Paths in Customizable
Contraction Hierarchies
Scott Bacherle
Karlsruhe Institute of Technology, Germany

Thomas Bläsius
Karlsruhe Institute of Technology, Germany

Michael Zündorf
Karlsruhe Institute of Technology, Germany

Abstract
We propose an algorithm for computing alternatives to the shortest path in a road network, based on
the speed-up technique CCH (customizable contraction hierarchy). Computing alternative paths is a
well-studied problem, motivated by the fact that route-planning applications benefit from presenting
different high-quality options the user can choose from. Another crucial feature of modern routing
applications is the inclusion of live traffic, which requires speed-up techniques that allow efficient
metric updates. Besides CCH, the other speed-up technique supporting metric updates is CRP
(customizable route planning). Of the two, CCH is the more modern solution with the advantages
of providing faster queries and being substantially simpler to implement efficiently. However, so far,
CCH has been lacking a way of computing alternative paths. While for CRP, the commonly used
plateau method for computing alternatives can be applied, this is not so straightforward for CCH.

With this paper, we make CCH a viable option for alternative paths, by proposing a new
separator-based approach to computing alternative paths that works hand-in-hand with the CCH
data structure. With our experiments, we demonstrate that CCH can indeed be used to compute
alternative paths efficiently. With this, we provide an alternative to CRP that is simpler and has
lower query times.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases Alternative routes, realistic road networks, customizable contraction hier-
archies, route planning, shortest paths

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.12

Supplementary Material Software (Source Code): https://github.com/mzuenni/Separator-Based
-Alternative-Paths-in-CCHs

Funding This work was supported by funding from the pilot program Core-Informatics of the
Helmholtz Association (HGF).

1 Introduction

Computing shortest paths in a graph is a fundamental problem in computer science, with
practical relevance in a wide range of applications. One of the most prominent examples
is interactive navigation systems. For this application, the default solution for efficiently
computing shortest paths – Dijkstra’s algorithm [10] – is impractical due to the sheer size of
real-world road networks. One can, however, make use of the fact that road networks do
not change too frequently, which enables speed-up techniques that accelerate shortest-path
queries via precomputation [3]. Beyond requiring fast shortest-path computations, modern
navigation systems pose additional challenges. This includes real-time traffic updates and
suggestions for alternative paths the user can choose from.

© Scott Bacherle, Thomas Bläsius, and Michael Zündorf;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 12; pp. 12:1–12:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2450-744X
https://orcid.org/0009-0004-3289-6670
https://doi.org/10.4230/OASIcs.ATMOS.2025.12
https://github.com/mzuenni/Separator-Based-Alternative-Paths-in-CCHs
https://github.com/mzuenni/Separator-Based-Alternative-Paths-in-CCHs
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

12:2 Separator-Based Alternative Paths in CCHs

To formalize the concept of good alternatives to a shortest path Abraham, Delling,
Goldberg, and Werneck [1] proposed a definition based on three properties.
1. The set of alternatives should be diverse, i.e., each proposed alternative should be

sufficiently unique compared to the shortest path and other alternatives in the set.
2. The alternatives should have bounded stretch, i.e., they should never make big detours.
3. The alternatives should not contain obvious detours, i.e., any subpath that is sufficiently

short should be a shortest path.
Abraham et al. [1] also proposed the concept of via paths as a technique to compute alternative
paths. The idea here is to obtain a candidate path from the start s to the destination t

by concatenating shortest paths from s to a via vertex v and from v to t. For each such
candidate alternative, one then has to check whether it actually satisfies the conditions for
being a good alternative.

A common method to produce promising candidates for via vertices uses the concept
of plateaus, which are subpaths shared by the shortest path trees of a forward search from
the start and a backward search from the destination. The resulting via vertex candidates
are promising in the sense that a large plateau guarantees that an alternative via the
plateau has no obvious detour (Property 3). While there are other approaches to alternative
paths like the penalty method [7] and compact representations of a large set of multiple
alternatives [2, 14,17], most previous approaches are based on plateaus [1, 2, 8, 15,16].

In its most basic form, the plateau approach works as follows [1]. Run Dijkstra’s algorithm
bidirectionally, i.e., forward from the start and backward from the destination. To just
compute the shortest path, one could stop the searches once the shortest path has been
found. To compute alternatives, let instead both searches run a bit longer, building larger
and overlapping search trees, from which the plateaus can be extracted. With this, one
obtains at least one admissible alternative for 95 % of shortest path queries [1]. As mentioned
above, Dijkstra’s algorithm is prohibitively slow on large road networks, and running it longer
than necessary does certainly not improve this. It is thus not surprising that most work on
alternative paths is concerned with using speed-up techniques to improve efficiency. Note
that this leads to diametrically opposite objectives: On the one hand, speed-up techniques
aim to prune as much of the search space as possible, ideally exploring only the vertices on
the shortest path during a query. On the other hand, to get candidates for via vertices, we
explicitly want to find vertices that are not on the shortest path.

Nonetheless, various speed-up techniques have been successfully used for computing
alternative paths. Abraham et al. [1] demonstrate how to compute high-quality alternatives
based on Reach [12] and Contraction Hierarchies [11]. Luxen and Schieferdecker [16] further
improved the query times reported by Abraham et al. at the cost of excessive precomputation
and a significantly reduced number of found alternatives. Bader, Dees, Geisberger, and
Sanders [2] introduced the concept of an alternative graph to efficiently encode the union
of many alternatives. Paraskevopoulos and Zaroliagis further engineered this approach to
achieve faster runtime [17] and Kobitzsch used the alternative graph to efficiently extract
new alternatives [14].

In their paper introducing the speed-up technique CRP, Delling, Goldberg, Pajor, and
Werneck [8] also evaluate how well their algorithm is suited to compute alternatives. Similar
to the basic bidirectional approach mentioned above, they observe that relaxing the stopping-
criterion of the search leads to the discovery of plateaus, which result in at least one admissible
alternative for 91 % of the queries. This comes at the cost of a slow-down of only slightly
above 3 compared to a normal CRP query. We note that the result by Delling et al. [8]
stands out in the sense that CRP (which is the abbreviation for customizable route planning)
is the only approach that allows for efficient metric updates, which is essential as it enables
features like real-time traffic updates.

S. Bacherle, T. Bläsius, and M. Zündorf 12:3

While the technique customizable contraction hierarchy (CCH), introduced by Dibbelt,
Strasser, and Wagner [9], is an alternative to CRP that also allows metric updates, CCHs
have not yet been studied in terms of alternative paths. This is unfortunate, as except for the
lacking feature of alternative paths, CCH is generally preferable compared to CRP. It is easier
to implement, achieves an order of magnitude faster queries with the same preprocessing
time [9], and has a stronger theoretical foundation [4, 9, 19]. With this paper, we study how
CCHs also can be used to compute alternative paths.

Challenges, Contribution, and Outline. As outlined above, a common approach to compute
alternative paths is to run the normal shortest-path query longer than necessary to obtain
plateaus. Our first observation is that this approach is not compatible with CCH: The
CCH-query (at least in its basic form) runs upwards in a hierarchy defined by a so-called
elimination tree until it reaches the root, without any preemptive stopping criterion; we
refer the reader to Section 2.3 for a brief introduction to CCH. It follows that the strategy
“run the query longer” is not well-defined for CCH, as there is nothing left to explore after
reaching the root. Thus, instead of using plateaus, we propose a different approach to obtain
good candidates for via vertices that is more aligned with the inner workings of CCH.

Our approach to find candidates for via vertices is based on separators. Assume that
we are interested in alternative s-t-paths and that S is a separator that separates the start
s from the destination t, i.e., removing the vertices in S from the graph places s and t in
different connected components. Then any s-t-path must use one of the vertices from S,
making S a set of promising candidates for via vertices. Interestingly, the above mentioned
elimination tree of the CCH defines a hierarchy of separators. Moreover, the CCH query visits
all vertices in the top-level separator that separates s from t. Thus, without any overhead
compared to the normal CCH query, this provides us with a set of candidate via vertices.
Additionally, the query already provides us with distances from and to the separator vertices,
which already provides an upper bound to the stretch (Property 2). With little additional
overhead (factor 2), we can check all three properties properly.

Interestingly, the previously mentioned opposition – alternative paths requiring via
vertices that are not on the shortest path vs. speed-up technique trying to reduce the search
space – becomes apparent for CCHs. We observe that only considering the top-level separator
for potential via vertices yields an admissible alternative in only 65 % of the queries. To
improve upon this, we propose an algorithm that not only considers the top-level separator
but also separators on lower levels. Going down just one level already yields an admissible
alternative in 84 % and we achieve 90 % by going even deeper, which is competitive to the
state-of-the-art. Compared to a normal CCH query, this comes at the cost of a running time
increase by factors of 4.5 and 9.4, respectively. This outperforms CRP, the only previous
speed-up technique supporting alternative paths and efficient metric updates. Moreover,
for finding two and three alternatives, we get success rates of 69 % and 45 %, which is a
moderate improvement compared to CRP. Beyond the comparison to the state-of-the-art,
we additionally provide experiments that foster the understanding of our algorithm, e.g., in
terms of the trade-offs between running time and success rate.

After the preliminaries in Section 2, we introduce our separator-based approach for
computing alternative paths with CCH in Section 3. Our experimental evaluation can be
found in Section 4. We conclude with a discussion and some final remarks in Section 5.

ATMOS 2025

12:4 Separator-Based Alternative Paths in CCHs

2 Preliminaries

Let G = (V, E) be a directed graph with vertices V and edges E ⊆ V × V . Moreover, let G be
weighted, i.e., we have a cost function c : E → R≥0.1 For a directed edge e = (u, v) ∈ E we
refer to u and v as the tail and head, respectively. A sequence P = ⟨e0, . . . , ek⟩ of edges ei ∈ E

is a path if the head of ei−1 equals the tail of ei for i ∈ [k]. Let s be the tail of e0 and t be
the head of ek. Then we call P an s-t-path. Slightly abusing notation, we also use P to refer
to the set of edges in P . For P ′ ⊆ P , we call P ′ a subpath of P if P ′ appears consecutively
in P . Moreover, if P ′ is an a-b-path for a, b ∈ V , then P is called a-b-subpath of P .

We extend the cost function c from individual edges to sets of edges (and in particular
to paths), i.e., for E′ ⊆ E we define c(E′) =

∑
e∈E′ c(e). For a path P , c(P) is called the

length of P . The distance between s and t in G is the minimum length of an s-t-path and is
denoted by d(s, t). In the remainder of this paper, we make the common assumption that
there is only one s-t-path of length d(s, t) and therefore call this path the shortest s-t-path
and denote it with Ps,t.

2.1 Alternative Path Problem
Let Ps,t be the shortest s-t-path for s, t ∈ V . Following the definition by Abraham et al. [1],
we say that an s-t-path P is an admissible alternative if it has limited sharing, bounded
stretch, and local optimality, which are defined as follows, depending on parameters γ, ε,
and α, respectively.
1. P has limited sharing if c(P ∩ Ps,t) ≤ γ · d(s, t).
2. P has bounded stretch if for every a-b-subpath P ′ ⊆ P it holds that c(P ′) ≤ (1+ε) ·d(a, b).
3. P is locally optimal if for every a-b-subpath P ′ ⊆ P with c(P ′) ≤ α · d(s, t), it holds that

P ′ is the shortest a-b-path, i.e., c(P ′) = d(a, b).
In case we do not want just one but multiple alternatives, we require limited sharing
(Property 1) to not only hold for the shortest path Ps,t but for the union of Ps,t and all
other alternatives. Thus, we call a set P of alternative s-t-paths admissible if each P ∈ P
has bounded stretch (Property 2), is locally optimal (Property 3), and

c
(

P ∩
(⋃

P ′∈P
P ′ ̸=P

P ′ ∪ Ps,t

))
≤ γ · d(s, t).

We use the parameter values γ = 0.8, ε = 0.25, and α = 0.25 typically used in the literature.

2.2 Checking Admissibility
As already noted in the literature [1], it is unknown how to check bounded stretch (Property 2)
and local optimality (Property 3) without requiring quadratic time in the length of the
path. It is thus common to not check the properties exactly but instead use the approaches
described in the following.

For bounded stretch (Property 2), instead of checking every subpath P ′ ⊆ P , we only
check the parts that deviate from the shortest path Ps,t. More precisely, we check the
a-b-subpath P ′ if P ′ is maximal (with respect to inclusion) among the subpaths of P that
are edge-disjoint with the shortest path Ps,t. For paths based on one via vertex v, i.e., if P

1 For the purpose of the routing application, think of c as the cost to traverse an edge. Most commonly c
is the travel time.

S. Bacherle, T. Bläsius, and M. Zündorf 12:5

s ta
b

v

a′
b′

α · d(a, b)

Ps,t

Ps,v,t

Pa′,b′
?

Figure 1 Visualization of via alternative Ps,v,t and the vertices along it that are used for
admissibility checks. The vertices a and b are the vertices where the shortest path Ps,t diverges and
meets the alternative. The vertices a′ and b′ are those vertices along the alternative that are used
for the T-test. The dotted line between a′ and b′ symbolizes the possible existence of a shorter path
between a′ and b′ not via v which in turn would imply that the T-test is not passed.

is the concatenation of the shortest paths Ps,v and Pv,t, one can see that there is just one
such a-b-subpath; see Figure 1. More generally, for multiple via-vertices there is at most one
such subpath for each via vertex.

For the local optimality (Property 3), we use the so-called T-test, which guarantees
local optimality with respect to α but sometimes falsely rejects alternatives if they are not
locally optimal with respect to 2α [1]. For this, consider a via vertex v and let Ps,v,t be the
concatenation of the shortest paths Ps,v and Pv,t. Moreover, let a′ and b′ be the vertices on
Ps,v,t at distance α · d(a, b) from v; see Figure 1. The alternative Ps,v,t passes the T-test if
Pa′,v,b′ is the shortest a′-b′-path.

2.3 Customizable Contraction Hierarchies
Here we introduce the concepts of CCH necessary to understand our alternative path
algorithm. For a more general introduction and in-depth discussion, see the recent survey [5].
In general, CCH follows a three-phase approach: The first phase is a metric-independent
preprocessing, i.e., a preprocessing of the graph G, ignoring the cost function c. This is the
most costly phase, taking in the order of a few minutes for a continentally sized network,
which is acceptable as the topology of G rarely changes. The second step is the customization
phase, where the cost function c is preprocessed. Taking just a few seconds, this allows for
frequent traffic updates. Finally, the third phase are the actual queries, which usually take
less than a millisecond, exploiting the additionally information computed in the first two
phases.

Given the graph G, the CCH preprocessing computes the following two additional
structures. First, it computes a hierarchy of small balanced separators that splits the graph
recursively into pieces; see Figure 2 (left) for an illustration. This hierarchy is represented
by a rooted tree T called elimination tree; see Figure 2 (right). Let S ⊆ V be one of the
separators. Then S forms a path in T and only the bottom-most vertex of S has multiple
children. The different subtrees below these children contain the vertices from the different
connected components that were separated by S. From this, one can already make the
following crucial observation: For two vertices s and t, let A ⊆ V be the set of common
ancestors of s and t in T . Then, A separates s from t (or contains one of the two) and thus
any s-t-path goes through a vertex of A. Hence, to compute the distance d(s, t), it suffices
to compute the distances d(s, v) and d(v, t) for all v ∈ A and then choose the vertex v that
minimizes d(s, v) + d(v, t).

To achieve this, we need the second additional structure computed in the precomputation;
the augmented graph G+. The augmented graph is obtained from G by inserting additional
edges, which are called shortcuts and represent paths. Explaining why this works is beyond

ATMOS 2025

12:6 Separator-Based Alternative Paths in CCHs

s

t

t

s

Figure 2 Sketch of separators inside a CCH (left) and the corresponding search spaces (right).
Even though the union of the blue and lilac separators already separates s from t we still consider
the red separator because it is also in the common search space of s and t.

the scope of this paper (see e.g., [5]), but adding shortcuts in a clever way yields the following
crucial property. Let s ∈ V be any vertex and let ⟨v1, . . . , vk⟩ be the path in the elimination
tree T from s = v1 to the root vk. Now run Dijkstra’s algorithm, but instead of using a
priority queue to decide which vertices to relax, only relax the vertices v1, . . . , vk in that
order. Then this computes the correct distances d(s, vi) for all i ∈ [k], i.e., for all ancestors
of s in the elimination tree T . Running this type of search from s and (backwards) from
t thus yields the distances d(s, v) and d(v, t) for every common ancestor of s and t, which
yields the distance d(s, t) as noted above.

3 Separator Based Alternatives with CCH

Let G = (V, E) be the graph for which we have built the CCH and let T be the corresponding
elimination tree. Moreover, let the start s ∈ V and the destination t ∈ V be given, and let A

be the set of common ancestors of s and t in T . As outlined in Section 2.3, A separates s

from t. The idea of our basic approach is to use A as the set of potential via vertices.
We believe that this is a rather natural set of candidates for via vertices: As A separates s

from t, every s-t-path, and thus every alternative, has to go through a vertex in A. Moreover,
the separator hierarchy used for the CCH attempts to use small and balanced separators.
Small separators mean that we do not have too many candidates to check, making the
runtime acceptable. Balanced separation means that the separators lie somewhat in the
middle between many s-t-pairs, which intuitively makes for good via vertex candidates; see
Figure 3 for examples. With the set of candidate via vertices A, it remains to check for
admissibility. More precisely, we need to select a subset of A such that the corresponding
alternatives form an admissible set of alternatives.

3.1 Selection of Via Vertices

To maximize the number of found alternatives, we would ideally check for each separator
vertex v ∈ S whether the via vertex v yields an admissible alternative. From the resulting
set of individually admissible alternatives, one would then have to extract a maximum set of
alternatives that are also admissible together (recall that the limited sharing property for sets
of alternatives also depends on the other selected alternatives). As this is computationally
too expensive, we instead use the following greedy strategy, which is also commonly used in
the literature regarding alternative paths.

S. Bacherle, T. Bläsius, and M. Zündorf 12:7

Figure 3 Alternative paths computed by the basic approach. Left: Alternative paths between
Berlin and Paris. All paths have to cross the Rhine with some bridges. These bridges also form a
small balanced separator between Berlin and Paris. Right: Alternative paths between two blocks in
the german city of Mannheim. The corresponding separator vertices are highlighted.

We iteratively process the alternatives defined by vertices in A. When processing v ∈ S,
we check whether the via path Ps,v,t is admissible with respect to the already selected
alternatives. If yes, we add it to the selection and discard it otherwise. We prioritize shorter
alternatives, i.e., we process the candidates in the order of increasing length. We note that
the CCH approach is very well suited for this. Recall that the CCH query computes d(s, v)
and d(v, t) for every v ∈ S. Thus we already know the length of every via path Ps,v,t without
any overhead compared to the normal query.

It remains to check whether the next candidate path Ps,v,t is admissible with respect to
the already selected alternatives. To do this efficiently, we use four different checks that we
apply in order of increasing computational cost. The reason for this is that, if an early cheap
check already rules out a path, then we can save the later more expensive checks. The steps
and how to implement them efficiently in the CCH approach are described in detail in the
following. The first two steps check the bounded stretch requirement. The third step ensures
limited sharing and the fourth and final step is the T-test checking for local optimality.

Total Stretch Pruning. If an alternative is already longer than (1 + ε) · d(s, t) it will clearly
violate the bounded stretch (Property 2). Since we process alternatives by increasing length
this implies that all following alternatives will be too long as well, which allows us to return
early. This property can also be used to speed up the standard CCH in the same fashion as
proposed by Buchhold et al. [6]. They proposed that any vertex whose distance to either
s or t already exceeds the length of the shortest path found so far can be skipped. In our
setting, we can do the same pruning by additionally including the factor 1 + ε.

Bounded Stretch. For the bounded stretch, we need to find the a-b-subpath deviating
from the shortest path as shown in Figure 1. In the following, we describe how to find a;
determining b works analogously.

Let A be the common ancestors of s and t in the elimination tree and let v ∈ A be the via
vertex we are currently interested in. From the CCH query, we already obtain the shortest
paths P +

s,u in the augmented graph G+. Note that this path might still contain shortcut
edges. The naive approach would be to unpack it and then check where the resulting path
deviates from the shortest path. We can improve this by only unpacking the first edge on
P +

s,v that deviates from the shortest path. We note that unpacking this edge once might
again yield shortcut edges, which have to be unpacked recursively. However, in each step, we
only have to unpack one edge. Once this deviating edge is an edge of G, i.e., not a shortcut,
we have found the vertex a which is the tail of the edge. Moreover, during this unpacking,

ATMOS 2025

12:8 Separator-Based Alternative Paths in CCHs

Figure 4 Alternatives between London and Paris. Left: the shortest path, which is also the only
alternative that can be found by the basic approach because of the trivial separator. Right: the
alternatives found by the two step approach. In this case all alternatives use the same path after
using the Eurotunnel.

we can maintain the distance to v. Thus, we not only find a but also know d(s, a) and
d(a, v). With this checking the bounded stretch (Property 2) boils down to checking whether
d(a, v) + d(v, b) ≤ (1 + ε) · (d(s, t) − d(s, a) − d(b, t)).

Limited Sharing. To check limited sharing for the shortest path Ps,t, observe that from the
previous checks, we already know

c(Ps,v,t ∩ Ps,t) = c(Ps,v,t) − c(Pa,v,b) .

Thus, Property 1 can be checked with almost no overhead.
If we have already selected other alternatives, we also have to check the sharing with

them. For this, we actually compute Ps,v,t in G by fully unpacking the path found by the
CCH, i.e., we transform a path in the augmented graph G+ to a path in G by replacing
shortcuts with paths. To efficiently check sharing, we maintain the invariant that all edges
along the shortest path and along all previous selected alternatives are marked. Computing
the sharing is then done by summing over all marked edges along the unpacked path Ps,v,t .
Note that we can slightly improve the efficiency here by only summing over the detour and
adding the distance d(s, a) and d(b, t) directly.

Local Optimality. Performing the T-test is conceptually easy even though it is computa-
tionally expensive. We first determine the vertices a′ and b′ along Ps,v,t closest to v with
distance at least α · d(a, b). Then we perform a separate CCH query to compute d(a′, b′) and
check if it is equal to c(Pa′,b′). Note that determining a′, b′ and c(Pa′,b′) is trivial because
we already unpacked the path in the previous step.

After all tests are passed we add the alternative to our selection and mark all edges to
maintain the invariant required by the limited sharing check.

3.2 Two-Step Approach
The biggest advantage of road networks for efficiently computing shortest paths – its small
natural separators – can become a problem for our basic algorithm described above if the
separators are too small. Figure 4 shows the example of London and Paris, which are
separated by only a few vertices. The shortest path uses the Eurotunnel and the only possible
way to avoid this is by using ferries which take too long to provide admissible alternatives.
A similar issue can arise if the separator is too close to either s or t. In such a case most
separator vertices already violate the global stretch and get pruned.

S. Bacherle, T. Bläsius, and M. Zündorf 12:9

The goal in the following is to extend our approach to also provide admissible alternatives
in these situations. For this, we use the following intuitive observation. The above scenario
happens if the separator vertex v used by the shortest path is too important to be avoided.
Thus, we decide to keep v and instead look for alternatives in the subpaths from s to v and
from v to t. The basic idea is to consider these two sides of the separator v as independent
subproblems of the alternative path problem.

To make this more precise, let v be the vertex on the shortest path Ps,t that is closest
to the root in the elimination tree T . Moreover, let vs and vt be the two neighbors of v in
Ps,t. Then we recursively call the basic algorithm to compute alternatives for s to vs and
vt to t; see Figure 5. It remains to fill out the following details. First, we have to describe
how to combine the subpaths that are returned by the recursive calls. Secondly, we want the
resulting alternatives to be admissible for the original query of s and t. While admissibility
of the resulting paths can be checked when combining subpaths, we also have to adjust the
requirements for admissibility in the recursive calls to not falsely prune promising subpaths
or return subpaths that can never be completed to admissible alternatives.

Path Combination. Assume we have recursively computed alternative paths from s to
vs and from vt to t. As this typically does not yield too many paths, we consider every
possible combination of these paths to obtain alternative s-t-paths. As in the basic approach,
the order in which we consider these paths might have an impact on the resulting set of
alternatives. As before, we greedily add alternatives ordered by their length. We note that
we can save some time here by sorting the paths by their length before unpacking them and
stopping as soon as the constructed paths become larger than (1 + ε) · d(s, t).

For each combination we consider, we have to check, whether it is admissible. For the
bounded stretch, running the recursive call with the same ε already provides the check as
described in Section 2.2, so there is nothing to do there.Checking the sharing is straight
forward, by unpacking the path. Finally, for the local optimality, adjusting the α-value
appropriately in the recursive call (see one of the following paragraphs) makes sure that
there are no local detours within the subpaths.Here we additionally run the T-test at the
vertex v to also ensure overall local optimality.

Limited Sharing in the Recursive Call. Although limited sharing is ultimately tested when
we combine the subpaths of the recursive calls, we can still exclude some alternative subpaths
based on their sharing with the shortest path. For this, we only consider sharing with the
shortest path (and not with other alternatives) in the recursive calls. Here we describe how
we adjust γ in the recursive calls.

Let s and vs be the start and destination of the recursive call. Our goal is to choose a γ′

such that the following property holds. If an alternative s-vs-path P shares at least γ′ ·d(s, vs)
with the shortest path Ps,vs , then it should be safe to exclude P as every combination using
P would have too much sharing with Ps,t. We claim that this is achieved by setting

γ′ = γ · d(s, t) − d(vs, vt)
d(s, vs) .

To see this, assume that the path P is excluded due to the fact that c(P ∩Ps,vs
) ≥ γ′ ·d(s, vs).

Plugging in the above definition for γ′ and slightly rearranging yields c(P ∩Ps,vs
)+d(vs, vt) ≥

γ · d(s, t). Note that any combination involving P clearly shares c(P ∩ Ps,vs
). Moreover,

the subpath from vs to vt (consisting of just two edges) is also shared in every combination.
Thus, it is fair to exclude P as any combination with P will fail the bounded shared check
anyways.

ATMOS 2025

12:10 Separator-Based Alternative Paths in CCHs

s vs

v

vt t

v′ v′′

Ps,t

Pvt,v′′,t

Ps,v′,vs

Figure 5 Visualization of the two-step approach. We consider v as a separator and therefore solve
the alternative route problem from s to v and from v to t separately. More precisely, we consider
the neighbors of v for this to be able to use the basic algorithm again. In the end, the alternatives
of the subproblems can be used to create an alternative from s to t.

Local Optimality in the Recursive Call. Recall that the requirement for local optimality is
relative to the distance d(s, t), i.e., optimality is required for all subpaths between vertices at
distance α · d(s, t). To maintain the same guarantee in the recursive call, we run it with

α′ = α
d(s, t)
d(s, vs) .

Note that being locally optimal for α′ relative to d(s, vs) in the recursive call is equivalent to
being locally optimal for α relative to d(s, vs). We note that α′ can become larger than 1.
In this case we can stop the recursive call and just report the shortest path.

3.3 Recursive Approach
A natural extension to the two step approach is to not compute the paths from v to vs and
vt to t with the basic approach but with the two step approach itself. More precisely, we
first use the base algorithm, if that does not yield sufficiently many alternatives we go one
recursion step deeper and afterwards combine the paths in the same way as in Section 3.2
This approach ensures that even multiple small separators between s and t can be handled
while only doing more work if necessary. As a stopping condition for the recursive descend,
we propose to stop as soon as the distance between the current start s′ and destination t′

becomes too small. More precisely we introduce the new parameter µ. The recursive call
returns just the shortest path if d(s′, t′) is less than µ · d(s, t).

4 Experimental Evaluation

The main objective of this section is to evaluate the performance of our algorithmic approaches
in regards to quality – measured by the number of found alternatives – and runtime. For
this, we start with an algorithm comparison in Section 4.2. We focus on the comparison with
CRP, which is the main competitor due to the fact that no other speed-up technique also
supports efficient metric updates. Additionally, we will also see that our different variants
provide a trade-off between success rate and runtime.

Afterwards we provide a more detailed look into the inner workings of our algorithm. In
Section 4.3, we provide statistics on how many candidates for alternative paths are considered
and due to which checks they are filtered out. There we will also see that almost no
candidates are rejected due to too much sharing with previously selected paths, which serves
as a justification to greedily select alternatives. In Section 4.4, we consider the impact of the
separator hierarchy used in the CCH on the success rate. Finally, in Section 4.5, we study
the trade-off between success rate and runtime the parameter µ in our recursive approach
provides. Before we start with the actual evaluation, we briefly specify our experiment setup.

S. Bacherle, T. Bläsius, and M. Zündorf 12:11

Table 1 Comparison of various alternative route techniques. We report the success rate and the
run time for all approaches for the first up to k = 3 alternatives. The runtime is the accumulated
time needed to find the first k alternatives. Note that the reported times have to be taken with a
grain of salt since the tests were executed on different machines. X-BDV, X-REV and X-CHV are
due to Abraham et al. [1]. X-CHASEV and its variants are due to Luxen et al. [16]. HiDAR is due
to Kobitzsch [14]. CRP is due to Delling et al. [8]. The bottom three rows represent the different
variants of our algorithm (the recursive variant uses µ = 0.3). Only the algorithms in the second
part (CRP and our algorithms) allow efficient metric updates.

first second third

success [%] time [ms] success [%] time [ms] success [%] time [ms]

X-BDV 94.5 26 352.0 81.1 29 795.0 61.6 33 443.0
X-REV-1 91.3 20.4 70.3 33.6 43.0 42.6
X-REV-2 94.2 24.3 79.0 50.3 56.9 64.9
X-CHV-3 90.7 16.9 70.1 20.3 42.3 22.1
X-CHV-5 92.9 55.2 77.0 65.0 53.3 73.2

X-CHASEV 75.5 0.5 40.2 0.7 14.2 1.0
two-level 80.5 0.1 50.8 0.3 24.8 0.4

multi-level 81.2 0.1 51.2 0.3 25.0 0.4

HiDAR 91.5 18.2 75.5 18.2 55.9 18.2

CRP 90.9 5.8 65.4 3.3 39.2 3.4

SeArCCH 65.3 0.5 37.3 0.7 17.2 1.0
two-step 84.1 1.1 62.9 1.6 38.7 2.3
recursive 90.0 2.3 68.6 4.2 44.7 6.0

4.1 Experimental Setup

The input instance for all our experiments is the DIMACS Europe graph with travel-time as
edge weights. The resulting graph has 18 million vertices, 42 million edges and represents the
complete road network of west Europe around the year 2000. We chose to use this graph even
though larger networks are available since it is the main benchmark for various other route
planning techniques and has also been used to evaluate all other alternative path techniques.

To make the comparison with the related work easier we copy the methodology introduced
by Abraham et al. [1]. That is, we test our algorithm with the same parameters. More
precisely, we require alternatives to be locally optimal for α = 25 %, have at most γ = 80 %
sharing, and bounded stretch of 1 + ε = 125 %. Note that these are hard constraints and any
alternative satisfying them is considered good. Thus, the quality of the algorithm can be
measured by the success rate of finding alternatives. Additionally, we will consider the time
required to find those alternatives. If not stated otherwise all numbers are averaged over 105

random queries.

Our algorithms are implemented in C++17 and compiled with the GNU compiler 13.3.1
using optimization level 3. Our test machine runs Fedora 39 (kernel 6.8.11), and has 32 GiB
of DDR4-4266 RAM and a AMD Ryzen 7 PRO 5850U CPU with 16 cores clocked at 4.40 Ghz
and 8 × 64 KiB of L1, 8 × 4 MiB of L2, and 16 MiB of L3 cache.

ATMOS 2025

12:12 Separator-Based Alternative Paths in CCHs

4.2 Algorithm Comparison

Unfortunately, no implementations of the competitor algorithms are freely available and the
queries used during their respective evaluations were not published. To nonetheless make a
comparison possible, we report the success rates and computation times from the related
work in Table 1. The success rate for k ∈ {1, 2, 3} represents the fraction of queries, for
which an admissible set of alternatives of size at least k was found. Even though the numbers
are based on different sets of sampled queries, the success rates should be comparable since
they are averaged over at least 104 queries. The timings on the other hand should not be
compared directly; see the more detailed discussion of the running time below.

We want to note that CRP and our approach are arguably the most practically relevant
approaches due to their support for efficient metric updates. We thus focus our discussion on
the comparison to CRP. The other approaches listed in Table 1 are included for completeness.

Success Rates. The algorithm X-BDV can be considered as the baseline in terms of success
rate, since it checks all admissible alternatives that use a single via vertex. Even though this
approach is infeasible for real applications it shows what success rates are achievable. Based
on the related work we consider as success rate of 90 % as desirable for the first alternative.
As we can see in Table 1 this is achieved by our recursive approach (with µ = 0.3). Moreover,
the two-step approach is with 84.1 % already close to this goal while being significantly faster.
For the second and the third alternative, our approaches performs slightly worse than the
baseline. However, compared to CRP, we obtain slightly higher success rates: We get an
improvement from 65.4 % to 68.6 % and from 39.2 % to 44.7 % for the second and third
alternative, respectively.

Runtime. For the runtime comparison with CRP, our recursive variant is the most relevant,
as it achieves comparable success rates. Additionally, it is also interesting to compare the
runtime with our two-step approach, which has only slightly worse success rates. We want
to note that, ideally, we could run comparison experiments for CRP on the same machine.
Unfortunately, the implementation is not publicly available and building a competitive CRP
implementation is highly non-trivial. Nonetheless, we believe that we can draw the conclusion
that our algorithm outperforms CRP.

To make the comparison, we start with the base algorithms CCH and CRP and consider
the slowdown encountered by additionally computing alternative paths. For the base
algorithms, it is already well established that the query of CCH is a magnitude faster than
CRP’s query [9]. Moreover, for CRP, Delling et al. [8] report a slowdown of at least 3
for computing alternatives. Thus, even with a slowdown of 30, we would still obtain a
competitive performance. We can report a runtime of 0.245 ms for the basic CCH query.
Compared to this, our recursive algorithm computing alternatives leads to slowdowns of 9.4
for the first, 17.1 for the second, and 24.5 for the third alternative. With these numbers, we
can safely conclude that our approach is at least on par with CRP and faster most of the
time. We also note that our two-step approach with a success rate of 84.1 % for the first
alternative has only a slowdown of 4.5. With the above estimation, we expect this to be at
least 6 times faster than CRP. We note that the two-step variant forms the initial part of
recursive. Thus, in the 84.1 % of the queries where two-step finds an alternative, recursive
also finds the first alternative in the same time.

S. Bacherle, T. Bläsius, and M. Zündorf 12:13

1 2 3
0
2
4
6
8

10

10
.7

6

10
.0

8

8.
59

2.
67 3.

75

3.
511.

57

3.
48

3.
421.

57

3.
45 3.
4

0.
65

0.
37

0.
17

alternative

av
er

ag
e

nu
m

be
r

of
al

te
rn

at
iv

es
within range
satisfy bounded stretch
satisfy sharing with Ps,t

satisfy sharing with all
satisfy T-test

Figure 6 This plot visualizes the average number of alternatives remaining after each of the
successive checks. We can observe that most alternatives are rejected due to bounded stretch or
sharing with the shortest path. Almost none of the alternatives are rejected due to the sharing with
previously selected alternatives.

4.3 Checking Admissibility of Candidates

Recall that our algorithm starts with a set of candidates for alternative paths, which are then
filtered by different checks ensuring the resulting set of alternatives is admissible. Figure 6
shows for our basic (non-recursive) approach, how many candidates pass which check before
we find the first, second, or third alternative (after finding the previous alternative). The
first bar indicates the number of considered candidate paths that have overall length at most
(1 + ε) · d(s, t). The second bar shows how many of those have bounded stretch (property 2).
The third bar shows the number of checked candidates additionally having limited sharing
with the shortest path Ps,t and the fourth bar is obtained by additionally requiring limited
sharing with all previously selected alternatives (property 1). Finally, the fifth bar indicates
the average number of paths also passing the T-test (property 3), which coincides with the
fraction of queries finding at least one, two, or three alternatives.

One can clearly see that most considered candidates are rejected due to the stretch. For
the second and third alternative, the T-test additionally rules out a big fraction of candidates.
Note that only very few checked candidates are rejected due to too much sharing with
previously selected alternatives.

We believe that the last observation is particularly interesting for the following reason.
While the alternative path problem ensures high-quality alternatives by requiring admissibility
(hard constraints), the optimization goal is to maximize the number of found alternatives.
However, our approach follows the literature by greedily adding alternative paths to the set
of alternatives, prioritizing shorter paths. A better approach to maximize the number of
alternatives might be to somehow select the alternatives based on how much they share with
candidates that are considered later. However, the fact that there is almost no difference
between the third and fourth bars in Figure 6 shows that earlier selected alternatives very
rarely make later candidates non-admissible due to a large overlap. This justifies the decision
to select alternatives greedily by length instead of trying to explicitly maximize their number.

ATMOS 2025

12:14 Separator-Based Alternative Paths in CCHs

1 2 3 4 5 6 7
0

25

50

75

66
.6

6

44
.0

3

25
.2

5

10
.4

6

3.
87

1.
33

0.
32

65
.3

5

37
.2

5

17
.2

4

7.
13

2.
78

1.
01

0.
34

alternative

av
g.

su
cc

es
s

ra
te

[%
]

InertialFlow
InertialFlowCutter

Figure 7 Impact of the contraction order on the success rate of finding k alternatives with the
basic algorithm. We compare two contraction orders, one derived from InertialFlow, and the other
from InertialFlowCutter. We can see that the order has negligible impact on the success rate for the
first alternative but a slight impact on the subsequent alternatives.

4.4 Impact of the Separator Hierarchy
An important degree of freedom in CCH is the used separator hierarchy. Except when expli-
citly stated otherwise, we use the state-of-the-art algorithm InertialFlowCutter2 engineered
by Gottesbüren, Hamann, Uhl and Wagner in the default configuration [13]. This can be
seen as the the default choice for high-performance CCHs. However, as already mentioned
in Section 1, larger separators (which are worse for performance) provide more candidates
for via vertices. For comparison, we thus additionally ran our alternative path algorithm
using separators provided by the simpler InertialFlow algorithm proposed by Schild and
Sommer [18], using the implementation in RoutingKIT3 in the default configuration.

Figure 7 shows the number of alternatives found by the basic (non-recursive) variant of
our algorithm for the different separator hierarchies. We can see that, indeed, the number of
found alternatives slightly increases with the larger separators. Thus, in principle, choosing
different separators provides a trade-off between quality and runtime. However, since the
effect is quite small, we suggest using the InertialFlowCutter separators together with our
recursive algorithm, which also provides a trade-off between quality and runtime, as discussed
in the next section.

4.5 Impact of the Recursion Parameter µ

Figure 8 shows the trade-off between success rate and runtime of our recursive algorithm
depending on the parameter µ. In the right plot, we can clearly see that less recursive
calls (i.e., larger µ) yields lower runtimes. The plot on the left shows that the success rate
already starts on a high level for large µ, which agrees with our previous observation that the
two-step variant4 already yields good results. From this high level, the success rate further
increases for smaller µ. A success rate of at least 90% for the first alternative is obtained for
µ ≥ 0.3 and with µ = 0.3, we obtain a runtime of just below 6 ms. As 90% is comparable
with the state-of-the-art, we suggest and use µ = 0.3 as the default value.

2 https://github.com/kit-algo/InertialFlowCutter
3 https://github.com/RoutingKit/RoutingKit
4 We note that the two-step variant is incomparable with the recursive variant. The two-step variant

always makes two recursive calls, one for each subpath on the top level. The recursive variant might,
e.g., make multiple nested recursive calls but always only for one of the two subpaths.

https://github.com/kit-algo/InertialFlowCutter
https://github.com/RoutingKit/RoutingKit

S. Bacherle, T. Bläsius, and M. Zündorf 12:15

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

µ

av
g.

su
cc

es
s

ra
te

[%
]

first alternative second alternative third alternative

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

µ

av
er

ag
e

ru
nt

im
e

[m
s]

Figure 8 Impact on the stop parameter µ for the recursive algorithm on the success rate (left)
and runtime (right).

5 Conclusion and Future Work

We have demonstrated that the speed-up technique CCH is well suited to compute alternative
paths, resulting in an algorithm that is competitive with the state-of-the-art in performance
and quality. With our implementation, we provide the first publicly available data structure
that combines highly efficient queries for shortest paths and alternative paths with fast
metric updates, which hopefully enables future research on the topic. As future directions,
we believe it would be interesting to further explore how multiple via vertices can lead to
more alternatives, in particular in cases where currently no single-via alternative is available.
It would also be interesting to see if this can be used to beat the commonly used baseline
algorithm, which is restricted to single-via alternatives. Concerning the baseline, we believe
that it would also be interesting to develop exact algorithms for testing whether there exists
an admissible alternative, even if this would prove computationally too expensive for actual
applications.

References

1 Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Alternative
routes in road networks. Journal of Experimental Algorithmics (JEA), 2013. doi:10.1145/
2444016.2444019.

2 Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. Alternative route
graphs in road networks. In International Conference on Theory and Practice of Algorithms
in (Computer) Systems, 2011. doi:10.1007/978-3-642-19754-3_5.

3 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in trans-
portation networks. In Algorithm Engineering: Selected Results and Surveys, Lecture Notes in
Computer Science. Springer, 2016. doi:10.1007/978-3-319-49487-6_2.

4 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space size in
contraction hierarchies. Theoretical Computer Science, 2016. doi:10.1016/j.tcs.2016.07.
003.

5 Thomas Bläsius, Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf.
Customizable contraction hierarchies – a survey, 2025. doi:10.48550/arXiv.2502.10519.

ATMOS 2025

https://doi.org/10.1145/2444016.2444019
https://doi.org/10.1145/2444016.2444019
https://doi.org/10.1007/978-3-642-19754-3_5
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.48550/arXiv.2502.10519

12:16 Separator-Based Alternative Paths in CCHs

6 Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Real-time traffic assignment using
engineered customizable contraction hierarchies. ACM Journal of Experimental Algorithmics,
2019. doi:10.1145/3362693.

7 Yanyan Chen, Michael GH Bell, and Klaus Bogenberger. Reliable pretrip multipath planning
and dynamic adaptation for a centralized road navigation system. IEEE Transactions on
Intelligent Transportation Systems, 2007.

8 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning in road networks. Transportation Science, 2017. doi:10.1287/trsc.2014.0579.

9 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
ACM Journal of Experimental Algorithmics, 2016. doi:10.1145/2886843.

10 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1959. doi:10.1145/3544585.3544600.

11 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 2012. doi:
10.1287/trsc.1110.0401.

12 Andrew V Goldberg, Haim Kaplan, and Renato F Werneck. Reach for A*: Shortest path
algorithms with preprocessing. In The shortest path problem, 2006.

13 Lars Gottesbüren, Michael Hamann, Tim Niklas Uhl, and Dorothea Wagner. Faster and
better nested dissection orders for customizable contraction hierarchies. Algorithms, 2019.
doi:10.3390/a12090196.

14 Moritz Kobitzsch. An alternative approach to alternative routes: Hidar. In European
Symposium on Algorithms, 2013. doi:10.1007/978-3-642-40450-4_52.

15 Cambridge Vehicle Information Technology Ltd. Choice routing, 2009. URL: http://www.
camvit.com.

16 Dennis Luxen and Dennis Schieferdecker. Candidate sets for alternative routes in road networks.
In International Symposium on Experimental Algorithms, Lecture Notes in Computer Science,
2012. doi:10.1007/978-3-642-30850-5_23.

17 Andreas Paraskevopoulos and Christos Zaroliagis. Improved alternative route planning. In
ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems-2013, 2013. doi:10.4230/OASIcs.ATMOS.2013.108.

18 Aaron Schild and Christian Sommer. On balanced separators in road networks. In Proceedings
of the 14th International Symposium on Experimental Algorithms (SEA’15), 2015. doi:
10.1007/978-3-319-20086-6_22.

19 Ben Strasser and Dorothea Wagner. Graph fill-in, elimination ordering, nested dissection
and contraction hierarchies. In Gems of Combinatorial Optimization and Graph Algorithms.
Springer, 2015. doi:10.1007/978-3-319-24971-1_7.

https://doi.org/10.1145/3362693
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1145/2886843
https://doi.org/10.1145/3544585.3544600
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.3390/a12090196
https://doi.org/10.1007/978-3-642-40450-4_52
http://www.camvit.com
http://www.camvit.com
https://doi.org/10.1007/978-3-642-30850-5_23
https://doi.org/10.4230/OASIcs.ATMOS.2013.108
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1007/978-3-319-24971-1_7

	1 Introduction
	2 Preliminaries
	2.1 Alternative Path Problem
	2.2 Checking Admissibility
	2.3 Customizable Contraction Hierarchies

	3 Separator Based Alternatives with CCH
	3.1 Selection of Via Vertices
	3.2 Two-Step Approach
	3.3 Recursive Approach

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Algorithm Comparison
	4.3 Checking Admissibility of Candidates
	4.4 Impact of the Separator Hierarchy
	4.5 Impact of the Recursion Parameter mu

	5 Conclusion and Future Work

