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Abstract
Multi-criteria route planning arises naturally in real-world navigation scenarios where users care
about more than just one objective – such as minimizing travel time while also avoiding steep inclines
or unpaved surfaces or toll routes. To capture the possible trade-offs between competing criteria,
many algorithms compute the set of Pareto-optimal paths, which are paths that are not dominated
by others with respect to the considered cost vectors. However, the number of Pareto-optimal paths
can grow exponentially with the size of the input graph. This leads to significant computational
overhead and results in large output sets that overwhelm users with too many alternatives. In this
work, we present a technique based on the notion of regret minimization that efficiently filters the
Pareto set during or after the search to a subset of specified size. Regret minimizing algorithms
identify such a representative solution subset by considering how any possible user values any
subset with respect to the objectives. We prove that regret-based filtering provides us with quality
guarantees for the two main query types that are considered in the context of multi-criteria route
planning, namely constrained shortest path queries and personalized path queries. Furthermore,
we design a novel regret minimization algorithm that works for any number of criteria, is easy to
implement and produces solutions with much smaller regret value than the most commonly used
baseline algorithm. We carefully describe how to incorporate our regret minimization algorithm into
existing route planning techniques to drastically reduce their running times and space consumption,
while still returning paths that are close-to-optimal.
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1 Introduction

In many real-world navigation tasks, the optimal route is not sufficiently defined by a single
criterion. For example, cyclists might want to follow the shortest path in terms of distance
but only if it does not include too many steep climbs. For electric vehicles, travel time might
be a primary objective but limited energy consumption should also be taken into account.
Furthermore, users might want to also consider criteria as road surface quality, curviness, or
tolls among others. Multi-criteria route planning addresses these scenarios. Here, given a
graph G(V, E), the edge costs are d-dimensional vectors c : E → Rd

≥0, where, for example,
c1 encodes travel time, c2 distance, c3 gas or energy consumption, and so on. As for the
one-dimensional case, the cost of a path π in the graph is the summed cost of its traversed
edges c(π) :=

∑
e∈π c(e). A path π dominates another path π′, if ci(π) ≤ ci(π′) holds for

all cost dimensions i = 1, . . . , d and ∃i : ci(π) < ci(π′). There are three main types of route
planning queries that are of interest for a given input source-target-node pair s, t ∈ V :

Full Pareto Set (FPS). Compute the set of Pareto-optimal paths from s to t.
© Carina Truschel and Sabine Storandt;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 13; pp. 13:1–13:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carina.truschel@uni-konstanz.de
https://orcid.org/0009-0009-7582-7209
mailto:sabine.storandt@uni-konstanz.de
https://orcid.org/0000-0001-5411-3834
https://doi.org/10.4230/OASIcs.ATMOS.2025.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de


13:2 Multi-Criteria Route Planning with Little Regret

Constrained Shortest Path (CSP). Given budgets B2, . . . , Bd, compute the s-t-path π

with minimum cost c1(π) under the constraint that for i = 2, . . . , d we have ci(π) ≤ Bi.
Personalized Shortest Path (PSP). For a given input weight vector α ∈ Rd

≥0, compute
the s-t-path π that minimizes the personalized path cost αT c(π).

It is well known, that CSP and PSP solutions are always Pareto-optimal. Thus, given the
FPS, the last two types of queries can easily be answered. However, the goal for CSP and PSP
is usually to compute the respective path without having to explore all Pareto-optimal paths.
While the CSP problem is known to be NP-hard, PSP can indeed be solved in polynomial
time using Dijkstra’s algorithm on the personalized edge costs αT c. In [11] computing FPS
for multi-criteria shortest paths in time-dependent train networks is tackled. As an example
for CSP, finding constrained shortest paths for electric vehicles considers the travel time
while not exceeding a maximum number of recharging stops [22] or the energy consumption
does not exceed the capacity of the battery [4]. However, preprocessing based techniques
to accelerate PSP queries also store sets of Pareto-optimal paths between selected node
pairs [14].

The main issue is that the number of Pareto-optimal solutions can become huge (even
in the bi-criteria case) and thus oftentimes further filtering needs to be applied to make
route planning algorithms efficient and to present a sensible selection of alternatives to the
user. Different ideas were proposed in the literature to filter a given set of Pareto-optimal
elements. The goal is to efficiently maintain a core of solutions that are still representative
of the full set. One such method is to define a relaxation of the dominance criterion. In [17]
a tailored relaxation was implemented to reduce the number of Pareto-optimal journeys
in public transport planning. For bi-objective shortest path problems, [15] describe an
interesting approach to approximate the Pareto frontier using pairs of paths and guarantees
per objective. Filtering the Pareto set in multi-criteria public transit routing in [8] uses
fuzzy logic to identify significant journeys. In [7] restricted Pareto sets are used to provide a
subset of the full Pareto set which excludes outliers having undesirable trade-offs between the
criteria. A general and quite powerful approach for dominance relaxation in two-dimensional
sets was described in [21]. Here the idea is to enlarge the dominance area, which for strict
dominance is simply the lower left quadrant of the point. The problem with existing methods
is that most of them are tailored to the bi-criteria case. Furthermore, one has little control
over the number of Pareto-optimal elements that survive the filtering process. It could still
be too large or it might happen that almost all solutions are filtered out.

In this paper, we use the notion of regret as introduced in [18] to identify representative
subsets of size k, where k can be chosen as desired. Given a set of d-dimensional elements S

and a subset S′, a user’s regret measures their disappointment when they have to choose
the best option according to their preferences from S′ instead of S. More formally, a
user u has a preference or utility function fu : S → R≥0 and the regret of the user with
respect to S′ is defined as ru(S, S′) = 1 − maxs∈S′ fu(s)/ maxs∈S fu(s). By definition, we
have ru(S, S′) ∈ [0, 1].1 The regret of S′ is defined by the most regretful user, that is
r(S, S′) := maxu∈U r(u). Typically, the set of users U is the set of all functions in a given
class, most commonly the class of all non-negative linear combinations, that is fu(s) = αT

u s,
where the weight vector αu ∈ Rd

≥0 describes the importance of each dimension for the user.
Figure 1 illustrates these concepts.

Given k ∈ N, the optimization goal of regret minimization algorithms is to find the subset
S′ of size at most k with smallest regret. Obviously, S′ can be restricted to only contain
Pareto-optimal points from S, as a dominated point can never have a higher utility than

1 In case maxs∈S fu(S) = 0, we simply set ru = 0.



C. Truschel and S. Storandt 13:3

(2,11)

(6,10)

(7,6)

(11,5)

(1,0)

(0.25,0.75)
8.75

9.00

6.25

6.50

2.00

6.00

7.00

11.00

Figure 1 Two-dimensional point set S containing four Pareto-optimal elements (blue labels).
Two example users (orange and green) assign each point a different utility based on their personal
preferences. The respective values are provided for the Pareto-optimal elements. Among all points,
the orange user assigns the highest value to point (6, 10), namely 0.25 · 6 + 0.75 · 10 = 9, while
the green user prefers (11, 5). For S′ = {(2, 11), (6, 10)}, the orange user has a regret of 0, as their
preferred choice from S is contained in S′. For the green user the regret is 1 − 6

11 = 0.45.

the dominating point. Still, computing an optimal S′ poses an NP-hard problem [5]. We
present a novel heuristic that computes subsets with small regret very quickly. This allows to
integrate regret minimization in many applications where finding a representative subset of
solutions is a frequent task, including multi-criteria route planning in road networks. Indeed,
we show that leveraging regret filtering allows to compute constrained or personalized paths
significantly faster, while ensuring that the resulting path (set) comes with small regret.

1.1 Further Related Work

A multitude of algorithms and heuristics has been proposed for all three main query types
for multi-criteria route planning mentioned above. A* variants tailored to bi-objective search
(BOA*) or multi-objective search (MOA*) have been demonstrated to greatly reduce the
search space compared to Pareto-Dijkstra for FPS and CSP queries [24, 2, 20]. Methods to
approximate the Pareto frontier were described in [15, 30]. In [29], an anytime approach
was introduced that discovers a subset of Pareto-optimal paths quickly and then adds new
solutions over time. A recent overview of the development of multi-objective route planning
is provided in [27].

Even more pronounced speed-ups can be achieved if preprocessing is applied to the input
graph. In [28], query answering for bi-criteria FPS using a contraction hierarchy (CH) data
structure was reported to be two orders of magnitude faster than with BOA*. CH was also
successfully applied to accelerate CSP [23, 13] as well PSP queries [12]. In [16], it was shown
that filtering dominated points can be the bottleneck in bi-criteria CH construction as well as
query answering. There, faster methods were proposed to compute Pareto-optimal path sets.
But if the final set size remains large, the approach might still be too slow in practice. In all
of these preprocessing-based techniques, sets of Pareto-optimal paths are precomputed and
stored between selected pairs of nodes. While [12] allows to obtain approximate query results
faster by only considering a subset of stored solutions on query time, non of the techniques
apply filtering during the preprocessing, which results in data structures of substantial size.

ATMOS 2025
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1.2 Contribution
We show how multi-criteria route planning can be integrated with regret minimization.
Compared to existing filtering methods, regret-based filtering has the advantage that it works
for an arbitrary number of objectives and provides the user with the power to decide how
many Pareto-optimal solutions shall be maintained to not exceed memory or running time
resources. We first prove new theoretical properties of regret minimizing sets that are crucial
for their application to route planning. As one main result, we show that the regret value
does not deteriorate if we concatenate paths and combine their (filtered) solutions. This
is important for many preprocessing-based techniques, in which this operation frequently
occurs, for example, in multi-criteria contraction hierarchies (CH).

We describe how to construct the CH data structure with regret-based filtering as part
of the preprocessing step (and thus significantly reduced space consumption), such that
CSP and PSP queries can be answered much faster but with almost no loss in solution
quality. As computing the solution subset with smallest regret poses an NP-hard problem,
we also propose a novel and very efficient divide & conquer heuristic to compute high-quality
subsets. In our experimental evaluation, we demonstrate that our new heuristic significantly
outperforms the prevailing algorithm in solution quality, with only a small increase in running
time. Furthermore, we show that using this heuristic as a subroutine for multi-criteria route
planning results in well-performing preprocessing and query algorithms, even for a large
number of cost dimensions.

2 Regret-Based Route Planning

The main idea is to use regret minimizing subsets to combat the combinatorial explosion
of Pareto-optimal paths that is often observed in multi-criteria route planning algorithms.
Regret is normally defined with respect to users that want to maximize their utility functions
fu. But in the context of route planning, users want to minimize their (perceived) path costs.
Thus, we now redefine regret as follows ru(S, S′) = 1 − mins∈S fu(s)/ mins∈S′ fu(s) ∈ [0, 1],
where now fu expresses a penalty function. We remark that all regret minimizing algorithms
can easily be adapted to also work with this definition.

2.1 Theoretical Bounds
Next, we prove a crucial property of the regret measure, namely that it does not stack
when we combine partial solutions. This allows us to guarantee a good output quality when
integrating regret-based pruning into various route planning algorithms, even if they need
to combine partial solutions frequently. To concisely phrase our result, we introduce the
following notations: With Pab we refer to the set of cost vectors of Pareto-optimal paths from
a to b, and with P ′

ab to a subset with regret rab. For two sets of cost vectors P, Q, we use
P ⊕ Q := {p + q|p ∈ P, q ∈ Q} to denote the set of elements derived from pairwise addition.

▶ Theorem 1. Let P ′
sv and P ′

vt be path sets with regret rsv and rvt with respect to Psv and
Pvt, then the regret of the combined path set is upper bounded by r(Psv ⊕ Pvt, P ′

sv ⊕ P ′
vt) ≤

max{rsv, rvt}.

Proof. We use P := Psv ⊕ Pvt and P ′ = P ′
sv ⊕ P ′

vt to abbreviate the notation. Let
u ∈ U be any user and fu(p) = αT c(p) their penalty function for paths p with cost
c(p). Let π := arg minp∈P fu(p) denote the preferred path of u in the full path set, and
π′ := arg minp∈P ′ fu(p) the best one in the subset. Further, we use πsv ∈ Psv and πvt ∈ Pvt
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to denote the two subpaths of π with c(πsv) + c(πvt) = c(π). We have fu(π) = αT c(π) =
αT c(πsv) + αT c(πvt). With rsv = 1 − qsv and rvt = 1 − qvt, we know that there exist paths
π′

sv ∈ P ′
sv and π′

vt ∈ P ′
vt with c(πsv)/c(π′

sv) ≥ qsv and c(πvt)/c(π′
vt) ≥ qvt, respectively. Thus,

it follows that:

fu(π′) ≤ αT c(π′
sv) + αT c(π′

vt) ≤ αT c(πsv)
qsv

+ αT c(πvt)
qvt

≤ αT c(π)
min{qsv, qvt}

= fu(π)
min{qsv, qvt}

Accordingly, fu(π)/fu(π′) ≥ min{qsv, qvt} and therefore ru(P, P ′) ≤ 1 − min{qsv, qvt} =
max{1 − qsv, 1 − qvt} = max{rsv, rvt}. As this inequality holds for all users u ∈ U , the
theorem follows. ◀

Of course, if we apply further filtering to a set that already was the result of prior filtering,
the regret value might increase.

▶ Lemma 2. Let P, P ′, P ′′ be path sets with P ′ ⊂ P, P ′′ ⊂ P ′ and regrets r(P, P ′) =
1 − q1, r(P ′, P ′′) = 1 − q2, then r(P, P ′′) ≤ 1 − q1q2.

Proof. For a user u ∈ U , let the preferred paths from P, P ′, P ′′ be π, π′, π′′, respectively. It
follows that fu(π) ≥ q1fu(π′) and fu(π′) ≥ q2fu(π′′). Combining the two inequalities yields
fu(π) ≥ q1q2fu(π′′). Thus, fu(π)/fu(π′′) ≥ q1q2 and ru(P, P ′′) ≤ 1 − q1q2. As this upper
bound applies for all users, the lemma follows. ◀

Below, we will present route planning algorithms that aim to produce concise path sets P ′
st

for a given s-t-query that induce little regret with respect to the FPS Pst. The impact on
PSP and CSP queries is expressed in the following lemmas.

▶ Lemma 3. For a PSP query from s to t with weight vector α, returning minπ′∈P ′
st

αT c(π′)
yields a 1

q -approximation with q := 1 − r(Pst, P ′
st).

Proof. Let π ∈ Pst be the path with smallest personalized cost for the weight vector α. As the
regret for a subset is defined by the most regretful user, we know that r(Pst, P ′

st) ≥ 1− αT c(π)
αT c(π′)

and thus αT c(π)
αT c(π′) ≥ q. Rearranging this formula, we get αT c(π′) ≤ 1

q αT c(π). ◀

Accordingly, ensuring small regret automatically provides us with an approximation guarantee
for PSP queries. The same is not possible for CSP queries, as here the user specifies hard
constraints on the accumulated path costs in all but the first dimension. Thus, if we prune
any solution from Pst, the CSP query might become infeasible. However, we can determine
an upper bound on the accumulated constraint violation which is sufficient to guarantee a
feasible solution.

▶ Lemma 4. For a CSP query from s to t with bounds B2, . . . , Bd for which Pst contains
a feasible path π, the set P ′

st contains a path π′ that obeys
∑d

i=2 ci(π′) ≤ 1
q

∑d
i=2 Bi with

q := 1 − r(Pst, P ′
st).

Proof. The universe U of users u that define the regret value contains all linear combinations
of the cost dimensions. We now focus on αu = (0, 1, . . . , 1) ∈ Rd

≥0. Using this weight vector,

we have fu(p) =
∑d

i=2 ci(p) for any path p. Accordingly, ru(Pst, P ′
st) ≥ 1 −

∑d

i=2
ci(π)∑d

i=2
ci(π′)

where∑d
i=2 ci(π) ≤

∑d
i=2 Bi holds by the feasibility of π. The statement follows from applying

the same rearrangement to the formula as in the proof of Lemma 3. ◀

ATMOS 2025
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Figure 2 Example road network (gray edges) with bi-criteria edge costs. The blue and green edges
indicate shortcut edges. Left: Each shortcut has a set of cost vectors that encodes the aggregated
costs of all Pareto-optimal paths between its endpoints. Right: Applying regret-based pruning to
the cost vector sets S(e) per shortcut edge with k = 3 results in labels of fixed size.

We remark that for the bi-criteria case, feasible CSP queries can easily be guaranteed by
always maintaining the solution with smallest cost in the second dimension in P ′

st.

2.2 Regret Minimizing Contraction Hierarchies
Contraction hierarchies (CH) were shown to be a very powerful technique for accelerating bi-
and multi-objective route planning queries [9, 13, 12, 28, 16, 6, 3].

In the CH preprocessing phase, nodes are ordered by a ranking function r : V → [n].
Then, so called shortcut edges are inserted between nodes v, w if r(v) < r(w) and there exists
at least one Pareto-optimal path from v to w that does not contain a node of rank higher
than r(w). The shortcut edge e = {v, w} represents all such Pareto-optimal paths from v to
w and thus gets assigned the respective set of cost vectors S(e). To obtain this shortcut set
E+ efficiently, a bottom-up approach is used. For original edges e, the set S(e) initially only
contains the cost vector associated with that edge. Then the nodes are considered in the order
implied by the ranking and are contracted one-by-one. In the contraction step for node v, it
is checked for all pairs of neighbors u, w of v whether S(uv) ⊕ S(vw) encodes Pareto-optimal
paths from u to w. If this is the case, a shortcut from u to w is added (if it not already
exists) and S(uw) is augmented with the relevant cost vectors from S(uv) ⊕ S(vw). Then, v

and its incident edges are temporarily deleted from the graph. Note that by construction it
holds that after each contraction the Pareto-optimal path costs between the remaining nodes
in the graph are the same as in the original graph. After all nodes have been contracted, all
temporarily deleted nodes and edges are inserted back into the graph.

In the resulting CH-graph, queries are answered with a bi-directional run of the Pareto-
Dijkstra algorithm (or a MOA* variant). Here, forward and backward search only relax
edges (v, w) incident to a node v if r(w) > r(v). This significantly reduces the search space
but can be proven to nevertheless ensure correct query answering. To not only obtain the
cost vectors of Pareto-optimal paths but also the paths themselves, a cost vector c ∈ S(uw)
stores references to c1 ∈ S(uv) and c2 ∈ S(vw) with c1 + c2 = c. This allows to recursively
unpack a path that contains shortcut edges to a path that consists solely of original edges.

The memory consumption of the CH graph and the query performance crucially depend
on the number of shortcut edges and especially the sizes of the cost vector sets S(e) associated
with them. A simple approach to reduce the set sizes is to apply regret-based filtering to all
S(e) independently with some fixed size upper bound k. By virtue of Theorem 1, the regret
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for the result of any FPS query is upper bounded by the maximum regret obtained for any
shortcut. But if one is interested not only in the path costs but also the paths themselves, the
approach is insufficient. This is because we can no longer guarantee that the path unpacking
procedure is successful, as for c ∈ S(uw) with c1 + c2 = c and c1 ∈ S(uv), c2 ∈ S(vw) either
c1 or c2 (or both) could have been pruned from their respective sets. Therefore, we use the
following bottom-up approach instead: We process the edges/shortcuts e = {u, w} ordered by
min{r(u), r(w)}. For a shortcut e = {u, w} we consider all pairs of edges {u, v}, {v, w} with
r(v) < r(u) and construct S(e) as the union of S(uv) ⊕ S(vw). Then, we apply regret-based
pruning to S(e). In this way, we guarantee that each cost vector that remains in S′(e) is
represented by two cost vectors in S′(uv) and S′(vw), respectively. Figure 2 demonstrates
the difference of maintaining the Pareto-optimal cost vector sets versus applying regret-based
pruning on the set of cost vectors with a fixed size k = 3.

2.3 Route Planning Queries with Little Regret
For PSP queries there is no need to apply label pruning on query time, as the personalized
weight vector reduces the edge costs to scalar values of which only the minimum needs to
be maintained. But for FPS and CSP queries, label sizes tend to become huge during the
search. A simple way to integrate regret pruning into answering FPS queries is to apply it
whenever forward and backward search meet in bi-directional search. For query answering
with CH, bi-directional search is the standard and it is also used as a standalone to reduce
query time and space consumption [2]. For a node v with a forward label Pst and a backward
label Pvt, computing Psv ⊕ Pvt can be very time consuming if both sets are large. First
applying regret-based pruning to both sets to reduce them to a size of k, respectively, allows
to restrict the number of relevant elements to inspect to k2. According to Theorem 1, the
resulting regret is upper bounded by the maximum of the individual regrets.

However, we can also use regret pruning within the forward or backward (or in unidirec-
tional) search as follows. Whenever a node label size |Psv| exceeds a threshold t, e.g. t = 2k,
we apply pruning to reduce the size back to k and then only proceed with the reduced label.
Here, the regret might increase as shown in Lemma 2. However, this approach allows us to
limit the space consumption of a query to O(tn) and the cost of an edge relaxation to O(t).

3 Regret Minimization Algorithms

The regret minimizing set problem (RMS) was introduced by [18], inspired by the application
of multi-criteria decision making. Presenting a huge set of possibilities to an agent is often
infeasible. Therefore, the goal is to select a (small) subset of possible decisions that are
representative for the whole set and only communicate those to the agent. The approach is
also used for database compression. A recent survey by [25] provides an extensive overview
of several aspects of the regret minimization problem.

In [5, 1], RMS was proven to be NP-hard for dimensions d ≥ 3. Several heuristic and
approximation algorithms were designed for RMS that work for arbitrary d. The algorithm
by [18] greedily adds points to the solution subset until reaching the specified output size.
The point selection leverages linear programming. The GeoGreedy algorithm by [19] greedily
derives a solution subset based on geometric computations. The Sphere algorithm by [26]
relies on sampling utility functions in order to find points with high scores. Similarly,
the HittingSet approach introduced by [1] samples utility functions and reduces the RMS
problem to a hitting set problem based thereupon. [18] also introduce the Cube algorithm.
It partitions the multi-dimensional space into hypercubes by constructing ⌊(k − d + 1)d−1⌋

ATMOS 2025
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Figure 3 Overview of the HRMS algorithm for obtaining representative subsets with little regret.

equally-sized intervals in the first d − 1 dimensions. From each hypercube the point having
the highest value in the last dimension is added to the solution subset. Thus, the Cube
algorithm returns a subset of size at most k and a regret ratio of at most d−1

t+d−1 . The running
time of the Cube algorithm is in O(knd) with the space consumption being in O(kd + n). As
this algorithm is easy to implement, scales very well in d, and comes with quality guarantees,
it is applicable in practice.

3.1 Hierarchical Regret Minimization
We propose a novel hierarchical regret minimizing algorithm HRMS that produces represent-
ative subsets of size k for arbitrary dimension d. The divide and conquer approach partitions
the input set into smaller subsets and applies any pre-existing regret minimizing algorithm
on each of the subsets to obtain intermediate regret minimizing sets. These sets are then
merged in a hierarchical manner until only the final regret minimizing set remains. The
hierarchical regret minimizing algorithm allows for user-defined adjustments to its hierarchy
in order to obtain desired trade-offs between running time and solution quality. Figure 3
illustrates the basic algorithmic concept. Algorithm 1 shows the respective pseudo-code.

Here, RMS(P, k′) is supposed to return a subset of P of size k′ with (hopefully) small
regret. In our implementation, we use the Cube algorithm [18] for this purpose, due to its
simplicity and efficiency even for high dimensions. However, one could plug in any other
RMS algorithm as well. Partition(S, p) is supposed to partition S into p subsets, and
Merge(S′

A, S′
B , k′) to merge two point sets into one and to reduce the resulting set to the

desired size. We next discuss sensible implementations of these two important routines.

3.2 Partitioning and Merging
The goal of the Partition method is to break the input set S down into sufficiently small
subsets of roughly similar size for efficient processing. A very simple partitioning method, is to
randomly assign n

p points to each of the p subsets. However, it is advantageous to partition the
input set in such way that the smaller subsets cover continuous parts of the multi-dimensional
space. A good partition with regards to the HRMS algorithm yields subsets containing points
from the Pareto front i.e. non-dominated points together with dominated points. During the
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Algorithm 1 HRMS.

Input: S, k

Output: S′ ⊂ S with |S′| ≤ k

1 P(S) = Partition(S, p)
2 k′ = kd

3 for each subset P ∈ P(S) do
4 S′ = RMS(P, k′)
5 Add S′ to the list of intermediate sets
6 while ∃ pair of intermediate sets S′

A and S′
B do

7 S′
M = Merge(S′

A, S′
B , k′)

8 Add S′
M to the list of intermediate sets

9 Define S′
L as the last intermediate set

10 S′ = RMS(S′
L, k)

11 return S′

conquer phase of the algorithm we handle each subset separately and reduce the number of
overall points during the merging phase. In the worst case, all Pareto-optimal points are in
one subset. Then, during the conquer phase we would exclude many such points in favor of
dominated points from other subsets. Thus, it is ideal to have Pareto-optimal points in each
of the p subsets to ensure that the RMS algorithm is able to retrieve all of them. Our idea
to achieve this is to divide the input space into p equally-sized wedges between the x- and y-
axes and to assign points to the wedges they are contained in. This likely ensures that each
of the wedges covers a wide range of point values and also includes some Pareto-optimal
points. Figure 4 depicts an exemplarily partitioning of the input space in d = 2 and d = 3
dimensions.

The goal of the MERGE operation is to combine two point sets S′
A and S′

B but only
keep the best k points among them. A naive approach would again be to just randomly
sample k points from the union S′

A ∪ S′
B . However, this method is unlikely to produce good

results. Since we already use an RMS algorithm to obtain the intermediate sets S′
A and S′

B , a
natural way to merge would be to rerun said RMS algorithm on their union. In practice, this
merging technique significantly increases the running time of the HRMS algorithm, though.
A third method is to greedily remove points from the union until the desired output size is
reached. Ideally, we would like to always select the point whose removal increases the regret
the least. But computing the regret ratio requires to solve a linear program [18] and is thus
also time intensive. As a compromise, we propose a sorted merge algorithm. It initially sorts
S′

A and S′
B decreasingly in each of the d dimensions. Then, the first ⌊ k

2d ⌋ points from the
sets S′

A and S′
B corresponding to the decreasing order in the first dimension are retrieved.

This procedure is repeated for each dimension to obtain the output set of given size. In this
way, we select the promising points in each dimension.

3.3 Running Time Analysis
Considering the running time of the HRMS algorithm, we define tPart as the running time
required by the partitioning method, tRMS as the maximum running time of the chosen RMS
algorithm executed on a subset S′, and tMerge be the running time of the chosen merging
technique. With the partition method producing p subsets, the total running time is in
O(tPart + p · (tRMS + tMerge)). Wedge-based partitioning takes O(nd). The Cube algorithm
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Figure 4 Exemplary partitioning of uniformly distributed input sets in d = 2 and d = 3 dimensions.
The wedges divide the input space into k = 5 subsets based on the angle of the points to the x-axis.

executed on a point subset P with a desired output size of k′ = kd takes O(k′|P |d). Thus,
the total time for processing all p subsets P ∈ P(S) is in O(knd2). The merging calls
take O(dn log n) to go from p subsets to p/2 subsets. Thus, the total merging time is in
O(dn log n log p). As we have p ≤ n, we get an overall running time in O(nd(dk + log2 n))
which is close to the theoretical running time of the Cube algorithm. We will see that the
two algorithms indeed also have similar practical running times, while HRMS produces sets
with significantly smaller regret than Cube.

4 Experimental Evaluation

For regret minimizing set computation, we implemented the Cube and the HRMS algorithm
in C++. Furthermore, we implemented the multi-objective CH approach with and without
regret pruning, as well as the described query answering variants. Experiments were conducted
on a single core of a 4.5 GHz AMD Ryzen 9 7950X 16-Core Processor with 188 GB of RAM.

4.1 Regret Minimization Results
First, we investigate the performance of our proposed HRMS algorithm and compare it to
the Cube baseline. We chose the Cube algorithm since it scales well in arbitrary dimension
and allows for a straightforward implementation. For our experiments, we use input sets S

consisting of n points in d dimensions and obtain subsets S′ ⊂ S of size of k = 2d. Generating
the input sets is done by randomly sampling d values from the uniform distribution in the
range [0, nd) for each point. Running times and regret ratios are always averaged over 100
generated instances per tested value of n.

In order to evaluate the solution quality of the HRMS algorithm, we need to obtain the
regret r(S, S′) of the solution subset S′ which is defined by the most regretful user. To this
end, we uniformly sample 1, 000 users represented by their weight vectors αu ∈ [0, 1]d. We
approximate the regret of the solution subset S′ by computing the regret ru(S, S′) for each
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Figure 5 Approximating the maximum regret ratio for a given subset S′ ⊆ S is done by randomly
sampling 102, . . . , 106 user weight vectors αu ∈ [0, 1]d and obtaining the maximum value among the
regret ratios of all users in the sample.

sampled user u and extract the maximum among them. A similar approach is done in [1] by
randomly sampling 20, 000 user weight vectors. We experimentally explore the effect of the
sample size of users in the set U on the resulting solution quality in Figure 5. Comparing
sample sizes ranging from |U | = 102, . . . , 106 we conclude that the obtained regret ratios for
the solution subsets S′ are sufficiently similar among the sample sizes when ensuring that
the extreme values 0.0 and 1.0 are represented at least once per dimension. Since computing
the regret ratio for a given user weight vector αu involves traversing the entire input set S,
we use a sample size of 1, 000 to efficiently approximate the regret ratio for our experiments.

Prior to the experiments, we want to evaluate the geometric partitioning with respect
to the resulting subset sizes and asses how close this angle-based partitioning comes to an
ideal partitioning of the input space. The partitioning divides the input set into p subsets
based on the position of points in the d-dimensional space. For the statistical assessment in
Figure 6 input sizes of n = 102, . . . , 106 in d = 2 dimensions and the output size k = 4 and
intermediate output size k′ = 8 are used to obtain p subsets. The value of p is determined
such that n

p > k′d = 16. Per tested value of n, the partitioning described in Section 3.2 is
executed on 100 instances. Figure 6 reports on the average distribution of resulting subset
sizes with the minimum, maximum and median size of subsets P ∈ P(S) in the partition of
the input set. Additionally, the number of subsets p is also provided for each input size. An
ideal partitioning yields equally-sized subsets each containing exactly n

p points. This value
depending on n and p is denoted as ideal (red markers).

The difference between the minimum and maximum subset sizes is fairly small considering
input sets of up to 1 million points being divided into p = 215 subsets. The smallest subsets
contain 2 points and the largest 72 points. However, most observations in the distribution
are much closer to the ideal subset size. The interquartile range for all input sizes always
encloses the ideal subset size and the 25th percentile is 12 points below the ideal value and
the 75th percentile is 20 points above the ideal value. Moreover, the median of actual subset
sizes from the partitioning is within 3 points of the ideal value. For n ≥ 1000 the variation
reduces to one point or less. The median is closer to the lower quartile value thus more
subsets are slightly smaller than the median subset size.

Overall, the distribution of subset sizes is consistent throughout all input sizes. As the
value of p is equal for some input sizes e.g. n = 6 · 105, . . . , 106, the ideal subset size varies,
consequently shifting the box plots to a slightly higher subset size.
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Figure 6 Statistical evaluation of the subset sizes resulting from the geometric partitioning
of the input set into p subsets using the angle of points to the x-axis. Depicted are input sizes
n = 102, . . . , 106 in d = 2 dimensions using an output size of k = 4 and intermediate k′ = 8. The
number of subsets p is determined to ensure n

p
> k′d = 16. The ideal value of n

p
points encapsulates

the goal of equally-sized subsets (red markers).

In conclusion, the geometric partitioning based on angles to the x-axis produces subsets
which are fairly equally-sized and close to the ideal subset size for a given value of p. Further,
the advantages of dividing the input space geometrically in contrast to a random partitioning
prevail as the former ensures an even coverage of the Pareto-optimal points among the
subsets.

Figure 7 compares the regret ratios of the HRMS algorithm using the geometric parti-
tioning and the random partitioning. The former divides the input space into equally-sized
wedges between the x- and y-axes whereas the latter divides the input set into p subsets
using the indices of points within the set. The solution quality resulting from the geometric
partitioning is clearly preferable compared to the random partitioning. In d = 2 dimensions,
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Figure 7 Comparison of the average regret ratios produced by the HRMS algorithm using the
geometric partitioning based on wedges between the x- and y-axes and the random partitioning into
p subsets. The input sets in d = 2, 5, 10 dimensions consist of n = 102, . . . , 106 points.
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Figure 8 Average running times for the HRMS algorithm compared to the Cube algorithm on
generated input sets of sizes n = 102, . . . , 106 in d = 2, 5, 10, 50 dimensions.

the improvement in regret ratio is up to a factor of 227 on average to the random partitioning.
The beneficial behavior of the geometric approach was observed consistently up to d = 10
dimensions. Only for higher dimensions both versions of HRMS provide similar regret ratios.
Thus, we conclude that the geometric partitioning is indeed preferred over the random
partitioning in practice matching the previous theoretical considerations.

Considering the dimensional scalability of the HRMS algorithm, we use input sets of up to
n = 106 points in d = 2, . . . , 50 dimensions with the selection of d = 2, 5, 10, 50 being depicted
in Figure 8 (running time) and Figure 9 (solution quality). For all tested dimensions, we
observe the HRMS algorithm requiring slightly more time than the Cube algorithm executed
directly on the input set which is in compliance with our theoretical analysis. However, as
the number of dimensions increases, the practical running time of HRMS algorithm gets
closer towards the running times of the Cube algorithm. In terms of the solution quality, the
HRMS algorithm consistently outperforms the Cube algorithm by providing significantly
lower regret ratios among all tested dimensions. The most significant improvement by the
HRMS algorithm of up to a factor of 174 on average is obtained in d = 2 dimensions compared
to Cube. In d = 5, d = 10 and d = 50 dimensions, the average improvement of HRMS
compared to Cube is by factors of 1.49, 1.40 and 1.48, respectively. However, the HRMS
algorithm optimizes for 50 objectives simultaneously and provides small representing subsets
that still ensure that the most regretful user is about 79% happy with the provided solution
instead of the full 106 alternatives in the input set. Hence, we conclude that the geometric
partitioning together with the hierarchical merging of the HRMS algorithm is consistently
advantageous in terms of the solution quality as opposed to the state-of-the-art algorithm
Cube.

Further, we evaluate the ratio of Pareto-optimal points in the solution subsets of the
HRMS algorithm compared to the Cube algorithm in Figure 10 for d = 2 and d = 3
dimensions and up to n = 106 input points. In both dimensions, the HRMS algorithm
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Figure 9 Average regret ratios for the HRMS algorithm compared to the Cube algorithm on
generated input sets of sizes n = 102, . . . , 106 in d = 2, 5, 10, 50 dimensions.

retrieves more Pareto-optimal points in its output set than the Cube algorithm. More
precisely, for two dimensions the HRMS provides a Pareto ratio of 87% while the Cube only
achieves 70%. In three dimensions, the Pareto ratios are 91% for the HRMS and 77% for
the Cube algorithm. Hence, the improvement in solution quality provided by the HRMS
algorithm is due to retrieving more Pareto-optimal points from the input set S than the
Cube algorithm. During the partitioning phase we emphasize on dividing the input space in
such way that each subset ideally contains a small fraction of the Pareto frontier. Further,
the sorted merge during the hierarchical merging ensures to select points having high values
in each of the dimensions which corresponds to the concept of Pareto-optimality.
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Figure 10 Comparison of the ratio of Pareto-optimal points in the solution subsets of the
HRMS algorithm and the Cube algorithm in d = 2 and d = 3 dimensions, using input sizes of
n = 102, . . . , 106.
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Figure 11 Gaussian input: Comparison of the regret ratios obtained by the HRMS algorithm and
the Cube algorithm on input sets of size n = 102, . . . , 106 in d = 2, 5, 50 dimensions using Gaussian
distributed inputs.

We now want to evaluate the HRMS algorithm on input sets following different distribu-
tions which are closer to realistic input scenarios. To this end, we execute the algorithms
on Gaussian distributed input sets. For the Gaussian generator, we sample d values from
the normal distribution with mean µ = nd

2 and standard deviation σ = µ
4 ensuring that all

values are positive integers. The corresponding regret ratios for the HRMS algorithm are
displayed in Figure 11. Again, the HRMS algorithm consistently produces lower regret ratios
than the Cube algorithm on all tested dimensions up to 50. On average among the input
sizes, we gain a maximal improvement factor of 2.6 in d = 2 dimensions compared to the
Cube algorithm. Over all dimensions and input sizes, the average improvement of the HRMS
algorithm is by a factor of 1.24.

4.2 Multi-Objective Route Planning Results
For studying the impact of regret-based filtering in multi-objective route planning, we used an
established benchmark, namely the German road network with d = 10 real cost dimensions2

such as the distance, travel time, positive height difference and energy consumption for
electric vehicles [12]. Each cost dimension was normalized to the interval [0, 1]. To study the
scalability of the different methods, we selected cutouts with the number of nodes ranging
from 10000 to 3 million.

4.2.1 Preprocessing
To allow for a fair comparison between classical multi-objective CH and our proposed variant
with regret-based filtering, we first constructed a metric-independent CH-graph, also called
Customizable Contraction Hierarchy (CCH) [10]. Here, shortcuts are assigned between all
pairs of neighbors when a node is contracted. Afterwards, we use the described bottom-up
procedure to equip the edges and shortcuts with sets of cost vectors that encode Pareto-
optimal paths between their endpoints. We either use the mode full where we only filter
dominated points, or the mode regret where we additionally use HRMS to reduce the cost
vector size to at most k. If not stated otherwise, we use k = 5.

In Table 1, the statistics of our benchmark instances are provided together with the
experimental results for the first preprocessing step, namely the CCH construction. Note that
we actually stop after contracting 99.7% of the nodes. Leaving this “core” of uncontracted
nodes is a common method for multi-objective CH construction (see e.g. [12]), as the

2 https://www.dropbox.com/s/tclrjdkfhabu27h/ger10.zip?dl=0
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Table 1 Road network instances with number of nodes n and number of edges m. The right
columns indicate the time for the CCH construction as well as the number |E+| of inserted shortcuts.

properties CCH
n m time |E+|

RN1 10000 21498 17ms 19958
RN2 100000 214362 0.3s 207900
RN3 1000000 2125904 3.8s 2070908
RN4 3064263 6468394 20.2s 6347312

Table 2 Results for the vector assignment step when maintaining all Pareto-optimal cost vectors
(CH full) or with pruning to k = 5 vectors (CH regret). The columns avg and max show the average
and maximum number of cost vectors per shortcut in the final graph.

CH full CH regret
time avg max time avg max

RN1 0.1s 1.78 606 30ms 1.19 5
RN2 1.5m 5.80 30709 0.4s 1.23 5
RN3 2.7h 7.45 161260 4.2s 1.22 5
RN4 - - - 19.9s 1.21 5

shortcuts introduced late in the process usually span large portions of the graph and thus
usually also encode a huge number of Pareto-optimal paths. Preventing their insertion by
stopping early helps to reduce the query time, although the query algorithm has to consider
all nodes in the core. We observe that this preprocessing step is very fast and the number of
shortcuts that are inserted is less than the number of original edges.

In the second preprocessing step, the edge cost vectors are assigned. We set a timeout of
5 hours for this step. In Table 2, we see that for the full setting in which all Pareto-optimal
solutions are maintained, we could only stay within that time limit for the graphs with up to
1 million nodes. While the average number of vectors per edge is not huge even for RN3,
the maximum number grows quite severely. This not only consumes a lot of space but also
increases the preprocessing time. Applying regret pruning, however, allows to perform this
step very quickly on all networks as the number of vectors to process per shortcut is limited.

4.2.2 Personalized Shortest Path (PSP) queries
Having fewer cost vectors per shortcut also positively affects the query time, as fewer vectors
need to be considered when relaxing an edge. We first evaluate PSP queries, where the
user inputs source and target as well as a preference vector α. We select 100 random
source-target-pairs in each graph and choose d + 2 different preference vectors for each pair:
One random weight vector, one vector with all entries set to 1/d (that means, all dimensions
are equally important) and the d unit vectors. Therefore, in total we have 1200 test queries
per graph in our setup with d = 10. As shown in Table 3, the running time of the Dijkstra
baseline is in the order of seconds on the larger graphs. Using the full CH approach, query
times are significantly reduced as only a small percentage of nodes and edges are considered
on query time. But the acceleration also decreases steeply with increasing graph size, from
around 940 for RN1 to around 45 for RN3. The main reason is that the average number of
vectors that have to be relaxed per edge is quite large for RN3, which increases the query
time. Using CH with regret filtering for every shortcut, that ratio is always upper bounded
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Table 3 PSP query times. The ratio denotes the number of cost vectors considered in the query
divided by the number of edges that were relaxed in the query. For the Dijkstra baseline, this value
is always 1.

Dijkstra CH full CH regret
time time ratio time ratio

RN1 47ms 0.05ms 25.7 0.02ms 3.6
RN2 0.5s 9.17ms 196.1 0.20ms 4.2
RN3 5.3s 0.12s 257.3 8.14ms 4.4
RN4 17.6s - - 28.59ms 4.4

Table 4 Observed maximum regret values for varying values of d and k on the RN3 instance
using 1200 queries each.

d k = 3 k = 5 k = 10
5 0.0409 0.0544 0.0204

10 0.0625 0.0572 0.0419
50 0.0638 0.0519 0.0481

100 0.0749 0.0495 0.0474

by k. Note that the ratio of vectors per edge in a query comes indeed close to k and is thus
much larger than the average cost vector number per edge which is provided in Table 2. This
is due to the fact that shortcuts between nodes with higher contraction rank are more likely
to be considered on query time, but these are also the ones which tend to have the most cost
vectors. Nevertheless, the cost vector size is drastically reduced compared to CH full and
therefore the query answering stays fast even in the larger graphs, with a speed-up of over
600 for RN3 and RN4.

But of course the question is how the result quality is compromised by the regret-based
filtering of the solutions. Over all instances, the observed maximum regret was at most
0.0613 and the average an order of magnitude smaller, namely around 0.0029. Thus, the
obtained approximation factor (see Lemma 3) for PSP queries is upper bounded by 1.065
in our experiments, and on average solutions were within 2-3% of the optimal cost. This
demonstrates that regret pruning allows to get close-to-optimal query results for PSP while
significantly reducing the preprocessing and query time, as well as the space consumption.

To further shed light on the interplay of the dimension d and the maximum number of
cost vectors k per shortcut, Table 4 shows regret values on the RN3 instance where cost
vectors were created with entries u.a.r. in [0, 1]. We observe that the maximum regret stays
small even if we only preserve k = 3 vectors per shortcut. The average regret was again at
least one order of magnitude smaller in all scenarios.

4.2.3 Constrained Shortest Path (CSP) queries
Finally, we investigate whether regret pruning is also useful in the context of CSP queries,
where the user specifies upper bounds on all but the first cost dimension and aims at retrieving
the path which obeys these bounds and has minimum cost in the first dimension. To construct
sensible queries, we proceed as follows: We first select d′ out of the d available cost dimensions
randomly. Then, for a source-target-pair, we compute the shortest path cost ci for all but
the first cost dimension individually and set the bound Bi = ci · (1 + ε), i = 2, . . . , d′ for
some ε > 0. If not stated otherwise, we use ε = 0.05. We consider the following query
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Table 5 CSP query results for different query algorithms and dimensions on the two smallest
instances.

RN1 RN2
d′ = 2 d′ = 3 d′ = 5 d′ = 2 d′ = 3

PD 25.0ms 100.2ms 2.7s 2.1s 22.0s
PDr 22.1ms 59.5ms 0.5s 0.8s 2.7s
PCHD 1.2ms 13.0ms 0.3s 16.2ms 57.3ms
PCHDr 0.2ms 0.4ms 1.4ms 1.3ms 2.5ms

algorithms: Pareto-Dijkstra (PD), Pareto-Dijkstra with regret pruning (PDr), Pareto-CH-
Dijkstra (PCHD) and Pareto-CH-Dijkstra with regret pruning (PCHDr). For the variants
with regret pruning, we applied HRMS whenever the number of labels assigned to a node is
equal to or exceeds 2k to bring it back down to k. We use k = 10 · d in our experiments.
Setting k too low can actually be detrimental to faster query answering, as pruning too
many labels might lead to additional operations if labels that dominate many others are
removed. Thus, it is sensible to choose k proportional to the dimension. Labels are pruned
in all algorithms if a cost entry in any dimension exceeds the respective bound. Table 5
summarizes our findings on the RN1 and RN2 instances. In the 100 queries per experiment,
we never observed that PD found a feasible solution but the regret-based variants did not.
However, the costs in the first dimension were on average 2-5% larger than for the baseline.
But this is a small increase compared to the large performance gain. For RN2 with larger d′

and RN3 and RN4 the PD(r) baselines were too slow to conduct sufficiently many queries
(single queries took hours). But PCHD(r) are applicable. For example, for RN4 and d′ = 2,
query times for PCHD were in the order of several minutes, while PCHDr took at most 5
seconds.

5 Conclusions and Future Work

We demonstrated in this paper, that the regret-based pruning of multi-dimensional solution
sets can be a very beneficial ingredient in multi-objective route planning, as it helps to
significantly reduce query times and space consumption without having a severe impact on
the solution quality. The efficiency of our new hierarchical algorithm for computing regret
minimizing subsets, which produces solutions of high quality, is crucial in achieving these
outcomes.

The proposed methods should be easy to integrate with existing heuristics for multi-
objective search as MOA*. Nevertheless, it would be interesting to explore their interplay
further and to apply methods as dimensionality reduction, used for faster dominance checks
in MOA*, also for regret pruning.
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