
Using A* for Optimal Train Routing on Moving
Block Systems
Stefan Engels1 #

Chair for Design Automation, Technical University of Munich, Germany

Robert Wille # Ñ

Chair for Design Automation, Technical University of Munich, Germany

Abstract
Modern control systems based on Moving Block allow for shorter headways and higher capacity on
existing railway infrastructure. At the same time, few algorithms for optimal routing on networks
equipped with such modern control systems exist. Previous methods rely on Mixed Integer Linear
Programming (MILP) and face a trade-off between model size and accuracy, especially considering
comparably complex and nonlinear headway constraints as well as train dynamics. With this work,
we propose a complementary approach based on A*. Under a reasonable and easy assumption on
train driver behavior, we propose a solution encoding and state space that is flexible concerning
the choice of search algorithm and the modeling detail. The applicability is showcased on a small
benchmark set. The implementation is available open-source as part of the Munich Train Control
Toolkit (MTCT) on GitHub at https://github.com/cda-tum/mtct.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases ETCS, Train Routing, Moving Block, A*, Munich Train Control Toolkit

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.14

Supplementary Material Software (Source Code): https://github.com/cda-tum/mtct [4]
archived at swh:1:dir:9eb5851e7f0b80f88dc6f09a8c9c54b58d15ee5b

1 Introduction

Railway traffic plays a vital role in the future of sustainable transportation. Due to long
braking distances, trains cannot operate on sight (if they should travel at a reasonable speed).
Instead, signaling systems are needed for safe separation. In the past, these systems have
been specified on a national level. With increasing international rail traffic, control systems
have been unified across Europe, leading to the European Train Control System (ETCS).
Other common systems are the Chinese Train Control System (CTCT), and Positive Train
Control (PTC) [12] as well as Communication Based Train Control (CBTC) for metro
systems [16].

Today, many railway lines operate at their capacity limit. Building new infrastructure is
costly and time-consuming. Complementary to that, the specifications of control systems
have been improved. Modern versions (e.g., based on Hybrid Train Detection or Moving
Block) allow for shorter headways. However, the capacity can only be used if they are
adequately considered in the infrastructure planning process. To cope with the additional
degree of freedom, new design tasks arise [5].

Secondly, modern headway concepts need to be considered when creating a timetable.
Most research on timetable optimization and train routing focuses on networks equipped
with classical control systems [1]. Only limited research considers modern Moving Block

1 Corresponding author

© Stefan Engels and Robert Wille;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 14; pp. 14:1–14:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.engels@tum.de
https://orcid.org/0000-0002-0844-586X
mailto:robert.wille@tum.de
https://www.cda.cit.tum.de/team/wille/
https://orcid.org/0000-0002-4993-7860
https://github.com/cda-tum/mtct
https://doi.org/10.4230/OASIcs.ATMOS.2025.14
https://github.com/cda-tum/mtct
https://archive.softwareheritage.org/swh:1:dir:9eb5851e7f0b80f88dc6f09a8c9c54b58d15ee5b;origin=https://github.com/cda-tum/mtct;visit=swh:1:snp:427338aeff595fef78df193555413c97e0596701;anchor=swh:1:rev:338f866a4831e8a221e10bba88887a36af9a9df5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

14:2 Using A* for Optimal Train Routing on Moving Block Systems

TTD1 TTD2 TTD3 TTD4

AC AC AC ACtr2
H

tr1
H

(a) Classical Block Signaling.

tr2
Hd

tr1
Hd

(b) Moving Block Signaling.

Figure 1 Schematic drawings of different signaling principles [7].

systems [15, 11, 7]. Engels and Wille [8] show that these solutions can also be used as part
of an optimization pipeline for design tasks [5] within the context of Hybrid Train Detection
systems.

Previous methods are mainly based on Mixed Integer Linear Programming (MILP). There
is always a trade-off between efficiency and accuracy when creating a model. Usually, sensible
headway constraints are the most complex to model. For this, discretization and linearization
techniques are used.

In this work, we propose an alternative, complementary approach to train routing on
Moving Block systems that can operate at an arbitrary level of detail. Any (black-box)
simulator can be used to evaluate train movements. Our proposed approach is based on
A*. It has already been successfully applied to different areas within the design automation
community, e.g., in Nanotechnologies [10]. Even within the rail domain, first solutions based
on A* exist [13]. However, their approach cannot easily be generalized to consider train
movements and headways at sensible levels of detail due to the choice of solution encoding.
With this work, we propose a different approach that incorporates the complex constraints
already in the encoding. Because of this, more complex relations can be incorporated without
further complicating the A* search.

The remainder of this work is structured as follows. Section 2 reviews the relevant concepts
of train control systems and A* search. Under an additional but sensible assumption, a
solution encoding is proposed in Section 3. Sections 4 and 5 showcase how this can be used
to design an optimization algorithm for train routing. Section 6 provides a proof of concept.
Finally, Section 7 concludes this work.

2 Background

This section reviews the relevant concepts of train control systems and informed search
algorithms such as A*.

2.1 Train Control Principles
Classically, railway networks are separated into fixed blocks. To detect the status of a
given block, tracks are equipped with Trackside Train Detection (TTD) hardware, e.g., axle
counters. A train may only proceed into the next section if the entire block is unoccupied.

▶ Example 1 ([7]). Consider two trains following each other on a single track as depicted in
Figure 1a. Train tr2 can only move until the end of TTD2. It cannot enter TTD3 because
it is still occupied and, hence, might have to slow down in order to be able to come to a full
stop before entering the occupied block section.

S. Engels and R. Wille 14:3

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

Figure 2 Example network.

Trains equipped with a Train Integrity Monitoring (TIM) system can safely report their
position. In that case, trains can follow each other at absolute braking distance without the
need for any block sections2. Moving Block control systems make use of this concept and are
already implemented on some metro networks.

▶ Example 2 ([7]). In contrast to Example 1, consider a moving block control implemented
in Figure 1b. Because trains operate at the ideal absolute braking distance, tr2 can move up
to the actual end of tr1 (minus a little buffer). In particular, it can already enter what has
been TTD3 previously. Hence, trains can follow each other more closely.

2.2 Train Routing
This work considers time-optimal train routing on railway networks equipped with a Moving
Block control system. For this, we are given general timetable requests. Routing is the task
of deciding on which specific track to use and when trains are moving; all constraints of the
signaling system need to be fulfilled. In particular, we consider the tasks on a microscopic
level. In theory, many different objectives are possible. We aim to optimize the respective
travel time.

▶ Problem 3 (Optimal Train Routing (on Moving Block Systems)). Given:
A railway network with vertices V and (directed) edges E as described in Section A.
A set of trains, where wi denotes the weight of importance of train tri

Demands for every train tr consisting of:
an entry node u

(tr)
in ∈ V together with a desired entry time interval [t(tr)

in , t
(tr)
in] and

initial velocity v
(tr)
0 ,

an exit node u
(tr)
out ∈ V together with a desired exit time interval [t(tr)

out , t
(tr)
out] and exiting

velocity v
(tr)
out , as well as,

a list of stations S1, . . . , Smi ⊂ E together with stopping requests, i.e., a latest arrival
time α

(tr)
i , an earliest departure time δ

(tr)
i and a minimal stopping time ∆t

(tr)
i .

Task: Find a routing satisfying every train’s demand, obeying the constraints imposed by a
moving block control system, and minimizing the (weighted) exit times.

▶ Example 4. Consider the railway network in Figure 2. It consists of one train station
(with two edges and one platform3), as well as two TTD sections to prevent collisions on
the respective railway switches. Two trains (tr1 and tr2) enter at ul and traverse toward ur,
whereas tr3 travels in opposite direction. Assume that tr1 has to stop at the train station,
i.e., stop on edge e4 or e5. Hence, it will travel on the bottom line. Depending on the timings,

2 At the same time, we allow the existence of some TTD sections. They can be used to, e.g., provide
basic flank protection around switches.

3 Of course, the station could also consist of multiple parallel platforms

ATMOS 2025

14:4 Using A* for Optimal Train Routing on Moving Block Systems

tr2 might follow the same path, allowing tr3 to pass in the opposite direction on the upper
track. If tr3 travels at an earlier or later time, the upper track could also be used for tr2 to
overtake tr1 in an alternative solution.

2.3 A*-Algorithm

A* is an informed search algorithm (classically designed to find shortest paths on directed
graphs). It functions similarly to Dijkstra’s algorithm but expands toward the destination
more quickly by making use of a heuristic approximation of the remaining distance.

Let G = (V, E, c) be a weighted graph, s0 ∈ V an initial vertex (also called state in this
context), as well as a set of terminal states T ⊂ V . The task is finding the shortest path
from s0 to any vertex in T . A* explores the graph starting from s0. For every vertex s ∈ V ,
it keeps track of the shortest path from s0 to s found so far. We denote the length of this
path by g(s). Dijkstra would expand on the vertex with the smallest g(·). However, A* uses
a different evaluation function. For every s ∈ V , we apply an efficiently computable heuristic
function h(s) approximating the shortest (remaining) distance from s to T . A* then explores
the neighbors Γ(s) of the vertex with the smallest combined value f(s) := g(s) + h(s). By
doing this, the exploration is guided toward goal states.

Algorithm 1 A*-Algorithm [9].
C ← ∅; f(s)←∞ for all s ∈ V

add s0 to priority queue (pq); f(s0)← 0
while pq is not empty:

select s ∈ arg minσ∈pq f(σ)
C ← C ∪ \{s\}
if s ∈ T : return s

explore all successors Γ(s)
for s+ ∈ Γ(s)− C:

add or update s+ to pq
f(s+)← min{f(s+), g(s) + c(s, s+) + h(s+)}

return infeasible

In theory, we can use any heuristic function h. However, A* is only guaranteed to return
optimal values if the heuristic meets certain conditions, namely, that h never overestimates
the actual cost. If h satisfies a triangle-like inequality, A* can safely be terminated as soon
as the first terminal vertex is explored (as specified in Algorithm 1).

▶ Definition 5 (Consistent Heuristic [9]). A heuristic h is consistent if h(s) ≤ c(s, s+)+h(s+)
for every (s, s+) ∈ E, and h(t) = 0 for every t ∈ T .

▶ Theorem 6 ([9]). If h is consistent, then Algorithm 1 returns a minimal path.

Hart et al. [9] show Theorem 6 for the case of δ-graphs, i.e., if there exists a δ > 0 such
that c(e) ≥ δ for every e ∈ E. However, this condition is only used to show termination in a
weaker case, when h is just admissible but not consistent. It is easy to verify that Algorithm 1
is optimal even for arbitrary (including negative4) edge weights, see, e.g., [2, Theorem 2.9].

4 Note that G cannot have negative cycles if there exists a consistent heuristic.

S. Engels and R. Wille 14:5

3 Solution Encoding

When solving any problem, one must decide on the underlying modeling and its consequences
on possible algorithms. A classical approach is to model optimization problems as linear or
nonlinear constraints and use general and well-developed solvers for the respective problem
class. Often, it is possible to formulate Mixed Integer Linear Programs (MILP). E.g.,
Problem 3 in the presented or similar forms were considered in [15, 11, 7]. Finding detailed
and efficient models is difficult. With respect to train routing tasks, it is usually most
challenging to model adequate headway times induced by the underlying signaling system.
To linearize these constraints, previous MILP approaches consider a velocity-extended graph
and model simplistic headways only at the vertices of the railway network and do not enforce
headways in between. Hence, one must always trade-off between performance and accuracy
when choosing the discretization levels.

Previously, A* was proposed as a different approach to solve design tasks within the
infrastructure planning process [13]. At the same time, their approach is also closely related
to train routing as described in Problem 3. Peham et al. use a state space discretized by
time, hence encountering similar problems. Train dynamics and headways were not properly
considered. It is unclear how they could be easily incorporated into their approach since
these rather complex constraints would have to be considered while determining possible
successor states.

Hence, we propose a fundamentally different encoding, which flexibly incorporates most
constraints already at this stage. By doing so, it is also more natural to apply Algorithm 1
on the so-defined states. For this, we reconsider what the relevant decisions to be made by
the solution algorithm are. Previous solutions leave much freedom for trains to accelerate
and decelerate anytime and anywhere on the network. To reduce the search space, we make
an assumption on the behavior of trains.

▶ Assumption 7 (Greedy Train Driver Assumption). Trains always move as fast as the control
system allows; they do not slow down unless forced to do so.

Of course, this assumption changes the feasible region of Problem 3, at the same time,
arguably almost only cutting off suboptimal solutions. However, there is no theoretical
guarantee because one could design situations in which it is beneficial (also with respect
to time) to slow down, e.g., in order not to rear-end slow trains before they might exit the
main track. At the same time, under Assumption 7, deciding on the train positions at every
time step is no longer necessary. Instead, the train behavior is uniquely determined by the
following:
1. the edges (track sections) used by each train,
2. the order of trains on each border vertex and TTD section5, and
3. the stop positions of every train within the respective stations.
If this information is decided upon, the train movements can be simulated to determine the
objective (or decide that no valid train movements are possible using the predetermined
information). Any such fully determined state (in which the simulation succeeds) is a feasible
solution to Problem 3, hence, a terminal state (see also Section 2.3).

5 the order on single edges can be induced from that

ATMOS 2025

14:6 Using A* for Optimal Train Routing on Moving Block Systems

▶ Example 8. Again, consider Example 4 and the corresponding network depicted in Figure 2.
We might specify:

tr1 and tr2 use (e1, e2, e3, e4, e5, e6, e7, e8); tr3 uses (e8, e7, e11, e10, e9, e2, e1).
Order on ul and TTD1: (tr1, tr2, tr3); order on ur and TTD2: (tr3, tr1, tr2).
tr1 stops in the station at the end of e5.

Simulating under Assumption 7 might lead to the following movement of trains: tr1 and tr3
enter the network at their respective vertices. tr1 moves all the way to e5 as fast as possible,
stops for the time specified in the timetable request, and continues to its exit vertex ur. tr2
enters the network some time after tr1 and follows tr2 as close as possible at absolute braking
distance. tr3 moves all the way to e10 and stops (even though it does not have a scheduled
stop). Only after tr2 has cleared TTD1 will it continue to its exit vertex ul.

4 Optimization using A*

Having established the relevant decisions in Section 3, we can construct a specific A* approach
for Problem 3 under Assumption 7. For this, we need to establish a state space, i.e., a graph
on which Algorithm 1 is applied to and sensible heuristic estimates h(·).

4.1 State Space
To use search algorithms, it does not suffice to encode only terminal states. Instead, we must
also encode partial solutions that might lead to feasible solutions encoded by terminal states.

▶ Definition 9 (Partial Solution). A partial solution is given by information on every train
tri consisting of

a list of adjacent edges
(

e
(tri)
1 , . . . , e

(tri)
ki

)
, possibly empty6, with u

(tri)
in if ki ≥ 1 and

a list of specific stop positions in stations S1, . . . , Sm̂i
for the first 0 ≤ m̂i ≤ mi stations7.

Moreover, the train orders are specified on every TTD section with more than one train
traveling on, as well as on the entry and exit vertices.

In contrast to terminal states (i.e., fully specified movements), u
(tri)
out ̸∈ e

(tri)
ki

and m̂i ≠ mi

are possible. When simulating, it is assumed that, in such a case, trains stop at the end of
their last specified edge and end their journey on the network. In the objective, the exit time
of tri is replaced by the time it reaches the end of e

(tri)
ki

with velocity 0. The state space,
i.e., the “vertices” of the graph used in Section 2.3, is then given by the set of all (partial)
solutions.

▶ Example 10. Again, consider Example 4 and the corresponding network depicted in
Figure 2. In contrast to Example 8 the train routes are only specified partially, e.g.,:

tr1 uses (e1, e2, e3, e4, e5); tr2 uses no edges; tr3 uses (e8, e7, e11).
Order on vl and TTD1: (tr1); order on vr and TTD2: (tr3).

In this scenario, tr1 enters at vl, moves to the end of e5 as fast as possible, and stops there
permanently; similarly, tr3 moves to e11. tr2 does not enter the network at all.

▶ Assumption 11. We are given a (possibly black-box) simulator that can (under Assump-
tion 7) determine the unique train movements given a partial solution (Definition 9) or
return that no feasible trajectory exists (e.g., due to a deadlock situation).

6 ki = 0 is possible
7 hence, no stops in stations Sm̂i+1, . . . ,Smi are specified in this case

S. Engels and R. Wille 14:7

4.2 Transitions
It remains to define transitions between states, i.e., the “edges” of the graph used in Section 2.3.
Naturally, the initial state is given by the empty state, i.e., no train enters the network, with
objective value 0. The target states T are all fully specified states corresponding to feasible
train movements that respect all timetable requests.

The main idea is to traverse the state space edge by edge. Given any (partial) state s, we
obtain possible successor states s+ ∈ Γ(s) by one of the following:
1. Any single train stops at its current route end (if the respective edge is part of the next

scheduled station).
2. Any single train moves to any succeeding edge on the network.
3. Any single train enters the network from outside.
The respective TTD- and vertex-orders are induced by the order in which these transitions
were chosen to reach s+ from the initial state. If a TTD is entered, the train is appended to
the respective TTD-order; analog for entry and exit vertices.

▶ Example 12. Consider the state depicted on the left of Figure 3a with three trains. tr1
and tr2 have already entered the network, whereas tr3’s route is still empty. There are five
possible successor states:

tr1 (orange) can either use the current route end to stop in the train station or move
onward to the next edge. In this case, tr1 first enters TTD2, hence, the train order on
TTD2 (which was empty before) is now given by (tr1).
tr2 (blue) can move one edge. Due to the switch, it can either stay on the main track or
divert to the left. Since it was already in TTD1, no adjustments to the order are needed,
and the order on TTD1 is still given by (tr1, tr2).
tr3 (purple) can enter the network on the right, hence, the order on ur is now given by
(tr3).

Following this strategy, many intermediate states are created, even if there is only one
plausible decision to continue with. Note that trains cannot overtake or cross on single-track
lines without turnouts. Hence, train movements of more than one edge can be safely assumed
until the next switch is reached. Doing so can reduce the number of states explored by
skipping unnecessary intermediate steps.

▶ Example 13. Consider the state depicted on the left of Figure 3b with a single train that
has already traversed the first edge. If the train continues, it enters TTD1. Since no other
train can enter TTD1 before tr1 has left, we can move it all the way to the end of the TTD
section without skipping any relevant state. The train can either move left or right. Given
that decision, there is no routing choice until the next switch, so we can move the train
all the way to just before TTD2. We cannot safely extend tr1’s route into TTD2 because
another train might still enter TTD2 before without producing a deadlock. Finally, there are
two more possible successors because tr1 might stop at any of the two possible stop positions
of the station.

4.3 Suitable Heuristic
For any state s, we can simulate the movements of each train (Assumption 11). Let t̄i be
the time at which tri either exits the network or reaches the end of its route as specified by
the (partial) state s. We define

g(s) :=
tr∑
i=1

wi · t̄i. (1)

ATMOS 2025

14:8 Using A* for Optimal Train Routing on Moving Block Systems

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

(a) Single-Edge Successor State Exploration.

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

(b) Multi-Edge Successor State Exploration.

Figure 3 Determination of successor states.

S. Engels and R. Wille 14:9

Note that for any terminal state t ∈ T , g(t) coincides with the objective value of the
corresponding feasible (but not necessarily optimal) solution to Problem 3. Furthermore, its
value does not depend on specific state transitions but is the same regardless of which path
was taken to reach a particular state, as all relevant information for simulation is contained
in the state itself. We do not define the transition costs c(s, s+) explicitly, but they are
implicitly given by

c(s, s+) = g
(
s+)− g (s) . (2)

Usually, c(s, s+) > 0 will hold. However, for terminal t ∈ T , c(s, t) ≤ 0 is theoretically
possible because the train is not forced to stop at the exit vertex in contrast to the end of
partial routes in intermediate states. However, this is not a problem because we will handle
this by choosing a sensible heuristic h(s).

To guide the search algorithm, we need suitable edge weights and an optimistic heuristic
estimating the lowest cost g∗(s, T) from any state s to the nearest terminal. For this,
we estimate the remaining time for every individual train tri with hi(s). If a train has
already reached its exit vertex, we have hi(s) = 0. Otherwise, let τ∗

i (p1, p2) be the minimal
running time for tri between any two points8 on the railway network N , ignoring headway
constraints induced by other trains. Let τ̂i(p1, p2) be an optimistic approximation, i.e.,
0 ≤ τ̂i(p1, p2) ≤ τ∗

i (p1, p2), which still fulfills the triangle inequality

τ̂i(p1, p2) ≤ τ̂i(p1, pk) + τ̂i(pk, p2) ∀pk. (3)

For e = (u0, u1) ∈ E a natural and easy to compute choice is

τ̂i(e) = τ̂i(u0, u1) = len(e)
min

{
v

(max)
tri

, v
(max)
e

} , (4)

i.e., assuming a train always moves at the maximum speed, disregarding constraints on
acceleration and deceleration. In general, we can induce any τ̂i(p1, p2) as the quickest path
from p1 to p2 by using the edge timings τ̂i(e) defined in Equation (4).

▶ Example 14. Consider the network with edge length and maximal velocities depicted in
Figure 4a. Assume, we have two trains, tr1 with maximal velocity v

(max)
tr1

= 50 m/s, and tr2

with maximal velocity v
(max)
tr2

= 20 m/s. Using τ̂(·, ·) defined in Equation (4), the quickest
path of tr1 from u0 to u3 is via u1 and

τ̂1 (u0, u3) = 100 m
20 m/s + 500 m

50 m/s = 5 s + 10 s = 15 s, (5)

whereas the quickest path of tr2 is via u1 and u2 with

τ̂2 (u0, u3) = 100 m
20 m/s + 100 m

20 m/s + 100 m
10 m/s = 5 s + 5 s + 10 s = 20 s. (6)

However, we do not use τ̂i directly as a heuristic. Recall that hi(s) should estimate
g⋆(s, T) and be optimistic. However, in state s, tri might be forced to slow down because it
has to stop at the end of its partially defined route. This is not the case in a terminal state
t ∈ T , so the actual travel time difference can be less than τ⋆

i (s, t). However, this can easily

8 not necessarily vertices

ATMOS 2025

14:10 Using A* for Optimal Train Routing on Moving Block Systems

u0 u1 u2 u3

20m/s

100m

20m/s

100m

10m/s

100m

50m/s

500m

(a) Example of τ̂(·, ·) defined in Equation (4).

u1 ... uj uoutp0

v(t)

(b) Definition of hi(s).

Figure 4 Heuristic to use within the A* algorithm.

be incorporated into the heuristic. Consider Figure 4b and assume that at point p0 and time
t0, a train starts to decelerate only because it has to stop at the end of its partial route. While
braking, it traverses vertices u1, u2, . . . , uj and finally stops at uj at time tj . These values
can be easily returned from the (black-box) simulator while determining g(s) (Equation (1)).
In a terminal state, tri might not be forced to slow down at p0, but could potentially follow
the orange speed profile in Figure 4b. Because of this, it would reach uj earlier than tj in
this terminal state, and the final exit time might be less than tj + τ⋆

i

(
uj , u

(tri)
out

)
. We need

to adjust for the time that tri could reach uj earlier than tj in any terminal state reachable
from s. This can be achieved by defining

hi(s) := τ̂i(p0, u1) +
j∑

k=2
τ̂i(uk−1, uk) − (tj − t0)︸ ︷︷ ︸

≤0

+τ̂i

(
uj , u

(tri)
out

)
. (7)

Finally, we combine these individual heuristics into the final h used in Algorithm 1:

h(s) :=
tr∑
i=1

wi · hi(s). (8)

▶ Lemma 15. h defined in Equation (8) is consistent.

Proof. W.l.o.g., assume that we use the simple successor state exploration since the multi-
edge version can be seen as traversing multiple transitions in one iteration. Let s be any state
and s+ ∈ Γ(s) be any successor state. Then s and s+ differ by a single action on a single
train tri. Let t̄

(s)
i and t̄

(s+)
i be the times at which tri either exits the network or reaches the

end of its route in state s and s+, respectively. Then

c
(
s, s+) = g

(
s+)− g (s) = wi ·

(
t̄
(s+)
i − t̄

(s)
i

)
(9)

and

h (s) − h
(
s+) = wi ·

(
hi (s) − hi

(
s+)) . (10)

If the transition s → s+ relates to tri stopping in a station, we have

hi (s) − hi

(
s+) = 0 ≤ ∆t = t̄

(s+)
i − t̄

(s)
i , (11)

where ∆t denotes the stopping time in the respective station.
Otherwise, let (u0, u1, . . . , un) be the path of tri in state s+. Hence, (u0, . . . , un−1) is its

path in state s. Let ps be the braking point in state s and ps+ in state s+ respectively, see
Figure 5. Let uk (0 < k ≤ n − 1) be the first vertex after ps and ul (k ≤ l ≤ n) be the first
vertex after ps+ . Then

S. Engels and R. Wille 14:11

u0 uk ul un−1 un uoutps ps+

τ̂(un−1, uout)

τ̂(un, uout)

Figure 5 Proof that h defined in Equation (8) is consistent.

hi (s) − hi

(
s+) = τ̂i (ps, uk) +

n−1∑
j=k+1

τ̂i (uj−1, uj) −
(

t(s)
un−1

− t(s)
ps

)
+ τ̂i

(
un−1, u

(tri)
out

)
− τ̂i (ps+ , ul) −

n∑
j=l+1

τ̂i (uj−1, uj) +
(

t(s+)
un

− t(s+)
ps+

)
− τ̂i

(
un, u

(tri)
out

)
(12)

By optimality of the quickest path, we obtain

τ̂i

(
un−1, u

(tri)
out

)
− τ̂i

(
un, u

(tri)
out

)
≤ τ̂i (un−1, un) + τ̂i

(
un, u

(tri)
out

)
− τ̂i

(
un, u

(tri)
out

)
︸ ︷︷ ︸

=0

. (13)

Moreover, the adjustments made to hi due to early braking nicely cancel out to

τ̂i (ps, uk) +
n−1∑

j=k+1
τ̂i (uj−1, uj) − τ̂i (ps+ , ul) −

n−1∑
j=l+1

τ̂i (uj−1, vj)

= τ̂i (ps, uk) +
l−1∑

j=k+1
τ̂i (uj−1, uj) + τ̂i (ul−1, ul) − τ̂i (ps+ , ul) (14)

≤ τ̂i (ps, uk) +
l−1∑

j=k+1
τ̂i (uj−1, uj) + τ̂i (ul−1, ps+) + τ̂i (ps+ , ul) − τ̂i (ps+ , ul) (15)

= τ̂i (ps, uk) +
l−1∑

j=k+1
τ̂i (uj−1, uj) + τ̂i (ul−1, ps+) ≤

(
t(s+)
ps+ − t(s+)

ps

)
(16)

assuming l > k (analog if l = k). Hence, we obtain

hi (s) − hi

(
s+) ≤

(
t(s+)
ps+ − t(s+)

ps

)
−
(

t(s)
un−1

− t(s)
ps

)
+
(

t(s+)
un

− t(s+)
ps+

)
+ τ̂i (un−1, un) − τ̂i (un−1, un) (17)

=
(

t(s+)
ps+ − t(s)

ps

)
−
(

t(s)
un−1

− t(s)
ps

)
+
(

t(s+)
un

− t(s+)
ps+

)
(18)

=
(

t(s+)
un

− t(s)
un−1

)
= t̄

(s+)
i − t̄

(s)
i , (19)

where we use that t
(s+)
ps = t

(s)
ps , because the constraint to stop at uj affects tri only after

reaching point ps, hence, the train behavior up to ps are identical in states s and s+. Similarly,
one can easily show that hi (s) − hi (s+) ≤ t̄

(s+)
i − t̄

(s)
i also holds for the edge cases when a

train enters or exits the network. Overall

h (s) − h
(
s+) = wi ·

(
hi (s) − hi

(
s+)) ≤ wi ·

(
t̄
(s+)
i − t̄

(s)
i

)
= c

(
s, s+) (20)

proving that h is consistent. ◀

ATMOS 2025

14:12 Using A* for Optimal Train Routing on Moving Block Systems

▶ Theorem 16. Algorithm 1 together with g defined in Equation (1) and h defined in
Equation (8) outputs an optimal solution to Problem 3 under Assumption 7.

Proof. Follows directly from Lemma 15 and Theorem 6. ◀

4.4 Extending the Heuristic
The heuristic presented in Section 4.3 can be further extended to approximate the remaining
time more accurately by using more information provided by Problem 3. Note that the train
has to visit a specified list of stations before leaving the network, so it might not be possible
for a train to take the quickest route anyway. Assume that in state s, tri has not stopped in
stations Sl, . . . , Smi

yet, i.e., m̂i = l − 1 in Definition 9, then we can update Equation (7) to

hi(s) := τ̂i(p0, u1) +
j∑

k=2
τ̂i(uk−1, uk) − (ti − t0) +

mi∑
k=l

∆ttri

k

+ τ̂i(uj , Sl) +
mi−1∑
k=l

τ̂i(Sk, Sk+1) + τ̂i

(
Smi , u

(tri)
out

)
, (21)

where

τ̂i(A, B) := min
p1∈A,p2∈B

τ̂i(p1, p2) (22)

is the natural extension of τ̂i to distances between sets.
Moreover, Problem 3 provides information on the earliest departure times. Since the train

is not allowed to leave before that time, we can already incorporate this into the heuristic.
For this, set

h
(l)
i (s) := τ̂i(p0, u1) +

j∑
k=2

τ̂i(uk−1, uk) − (ti − t0) + τ̂i(uj , Sl) + ∆ttri

l . (23)

For any future station, we can already incorporate the earliest departure times of the previous
station by

h
(k)
i (s) := max

{
h

(k−1)
i (s), δtri

k−1

}
+ τ̂i(Sk−1, Sk) + ∆ttri

k (24)

and, finally,

hi(s) := max
{

h
(mi)
i (s), δtri

mi

}
+ τ̂i

(
Smi

, u
(tri)
out

)
. (25)

▶ Corollary 17. The heuristics h induced from Equations (21) and (25) are consistent and,
hence, Algorithm 1 outputs an optimal solution to Problem 3 under Assumption 7.

Proof. Analog to the proof of Lemma 15. Equation (11) changes to

hi (s) − hi

(
s+) = ∆t = t̄

(s+)
i − t̄

(s)
i . (26)

The main ideas of the proof carry over. ◀

5 Evaluation of Objective Value using Simulation

For implementation, it remains to have access to a simulator for evaluating g(·) (Assump-
tion 11). To showcase the proposed method, we implement a simulator based on Assumption 7
and simple laws of motion, i.e., every train has a constant maximal acceleration a

(tr)
max > 0

and deceleration d
(tr)
max. In theory, one could use any simulation tool at hand and, e.g., even

incorporate more exact braking curves.

S. Engels and R. Wille 14:13

e

TTD1

xtr xTTD

xstopxe

v
(e)
max

(a) Moving authority.

uout

vt
vout

vt+∆t

(b) Maxmial exit velocity.

Figure 6 Moving authority and maximal exit velocity.

5.1 Principles

For simplicity, we use a time discretization of ∆t := 6 s, which seems to be the standard time
between two consecutive train position reports [3, Section 7.5.1.143]. For every time step
t ∈ {0, 6, . . . }, we keep track of the velocity v

(tr)
t ∈ [0, vtr

max] and position9 x
(tr)
t of each train.

In between, we assume linear movement; hence,

x
(tr)
t+∆t − x

(tr)
t =

v
(tr)
t+∆t + v

(tr)
t

2 · ∆t. (27)

Assume that at time t, the signaling system allows a train to move at most a distance x
(tr)
t

(moving authority). Using basic laws of motion, the braking distance of a train at speed v is
given by v2

2∗d
(tr)
max

, hence,

v
(tr)
t+∆t + v

(tr)
t

2 · ∆t +

(
v

(tr)
t+∆t

)2

2 ∗ d
(tr)
max

≤ x
(tr)
t , (28)

and, thus,

v
(tr)
t+∆t ≤ 1

2 ·

(√
(d · ∆t)2 + 4 ·

(
2 · d · x

(tr)
t − d · ∆t · v

(tr)
t

)
− d · ∆t

)
=: ν

(
v

(tr)
t , x

(tr)
t

)
. (29)

In general, we will set v
(tr)
t+∆t = ν

(
v

(tr)
t , x

(tr)
t

)
by Assumption 7 unless there are further

constraints on the maximal velocity (see Section 5.3).

5.2 Moving Authority

There are four main reasons why the moving authority may be restricted. They are exemplarily
depicted in Figure 6a. A train may only advance to the rear of a preceding train, its next
scheduled stop position, or the beginning of a TTD section, which the preceding train has
not fully cleared yet. In order to enforce speed constraints on future edges (that are not
reachable within one timestep10), we restrict the moving authority by the point at which the
train would stop if it decelerates at full rate just after entering the edge at its speed limit.

9 The position refers to the front of the train. The rear end can be directly induced from its length.
10 refer to Section 5.3 in that case

ATMOS 2025

14:14 Using A* for Optimal Train Routing on Moving Block Systems

5.3 Restrictions on Maximal Velocity
Finally, there are some cases where it is more natural to restrict the speed directly instead
of incorporating it into the moving authority, in which case we might not be able to set
v

(tr)
t+∆t = ν

(
v

(tr)
t , x

(tr)
t

)
. Naturally, the speed is restricted by the speed limit of the current

edge (and any edge that can be reached within one timestep) as well as the train’s maximal
velocity. Moreover, by maximal acceleration, v

(tr)
t+∆t ≤ v

(tr)
t + a · ∆t The most complex

restriction is to ensure that a train can leave the network at its target velocity, but only
at a time ≥ t

(tr)
out . In that case, a train might need to slow down in order not to arrive at

the exit too early but still have enough distance left to accelerate to the target exit velocity
v

(tr)
out before leaving the network. Assume that v

(tr)
t+∆t is fixed, then it is easy to calculate the

maximal possible runtime to the exit node by assuming that the train decelerates until the
point where it has to accelerate again to reach the target velocity at exit. Trying difference
values for v

(tr)
t+∆t, they can either lead to an exit at time ≥ t

(tr)
out (green lines in Figure 6b), at

time < t
(tr)
out (orange lines) or the target velocity cannot be attained at exit (red lines). Using

binary search, we choose the largest value for v
(tr)
t+∆t that still leads to an exit at time ≥ t

(tr)
out .

6 Case Study

To test the proposed method, we implement Algorithm 1 together with the transitions
described in Section 4.2, the heuristics in Section 4.4, and the simulator in Section 5. All
code is available open-source as part of the Munich Train Control Toolkit (MTCT) available
on GitHub at https://github.com/cda-tum/mtct. The user can choose among different
strategies when executing the A* algorithm.

Dijkstra-like: This setting makes use of the single-edge transitions described in Section 4.2
and does not use a heuristic, i.e., h(s) ≈ 0. However, in order to remain consistent,
the heuristic amends for the time “lost” by braking at the end of its partial route, i.e.,
hi(s) := τ̂i(p0, u1) +

∑j
k=2 τ̂i(uk−1, uk) − (ti − t0) ≤ 0.

Single-Edge: This setting combines the single-edge transitions described in Section 4.2
together with the heuristic defined in Equation (21), i.e., future stations are considered in
the approximation, however not the earliest exit times defined in the problem instance.
Single-Edge with Earliest Exit: Same as “Single-Edge”, but using Equation (25) for the
heuristic, instead, i.e., also considering minimal runtimes due to the constraints on earliest
departure in the problem description.
Multi-Edge and Multi-Edge with Earliest Exit: Same as above, but using the multi-edge
transitions described in Section 4.2

We tested these strategies on an Intel(R) Xeon(R) W-1370P system using a 3.60GHz
CPU (8 cores) and 128GB RAM running Ubuntu 20.04. We use the benchmark network
from [6]. Additionally, we use the random timetables generated by [7] on two of the networks,
including Munich’s S-Bahn Stammstrecke. We compare runtimes to the MILP-approach [7].

The results are plotted in Figure 7, and raw data is provided in Section B. On the x-axis,
we denote the runtime in seconds11 The y-axis corresponds to the fraction of instances solved
within that time (or faster). Hence, a line to the left/top is generally better. By design, all

11 Note that the scale is logarithmic.

https://github.com/cda-tum/mtct

S. Engels and R. Wille 14:15

Figure 7 Runtime comparison.

lines are monotonically increasing, and the left ends of each “step” are the runtimes of some
instance. From the horizontal distance between the lines, one can approximately12 read off
the runtime difference on that instance.

We can see a clear trend. Reducing the size of the explored solution space by skipping
states with only one sensible successor significantly reduces the runtime. Additionally, using
as much information as possible already in the heuristic is beneficial, i.e., the one induced
by Equation (25). This trend suggests that there is still significant performance potential
if both transitions and guiding heuristics are improved. Instead of using Equation (4) for
runtime approximation, one could, e.g., use the minimal runtimes in [15], incorporating
simple acceleration and deceleration limitations.

7 Conclusions

In this work, we have proposed an algorithm based on A* (Sections 3–5) that can find optimal
train routings on networks equipped with moving block control systems (Problem 3) under a
reasonable assumption on driver behavior (Assumption 7) and showed its applicability to
benchmark instances (Section 6). It is designed in such a way that any arbitrary black-box
function can be used to evaluate the arising states. Because of this, our algorithm can, e.g.,
be used with any arbitrary detailed simulation tool that might consider more detailed braking
curves or headways than reasonable to model within a MILP framework.

It is not unexpected that the increased accuracy (while still guaranteed to be optimal)
comes with a downside in runtime. At the same time, Section 6 shows the general applicability
of our approach and how the choice of the guiding heuristic and transition strategy affects
the overall runtime and number of solvable instances. By simple extensions to these, we
were able to improve the efficiency notably, even if the runtime of previous MILP approaches
could not be reached yet on larger instances.

At the same time, our approach is model-agnostic and flexible. It is not limited to
being used within an (exact) A* method. Instead, any search algorithm can be applied.
In particular, approximative approaches might have the potential for further significant

12 assuming that the order of instances solved is identical for every algorithm, which is, of course, not
guaranteed

ATMOS 2025

14:16 Using A* for Optimal Train Routing on Moving Block Systems

performance gains. The simplest choice might be a weighted version of A* that guides the
search quicker towards terminal states [14]. However, we are not limited to variants of A*,
but one could, e.g., also consider genetic algorithms, local search, reinforcement learning,
and more.

Overall, this work provides a valuable basis for applying general and well-established
search algorithms to routing tasks on railway networks. The modeling can be arbitrarily
exact by using any (possibly black-box) evaluation methods, such as simulation. Research
on improved guiding of the search algorithms and exploring the potential of approximative
search algorithms on the presented encoding is left to future work.

References
1 Ralf Borndörfer, Torsten Klug, Leonardo Lamorgese, Carlo Mannino, Markus Reuther, and

Thomas Schlechte, editors. Handbook of Optimization in the Railway Industry. Springer
International Publishing, 2018. doi:10.1007/978-3-319-72153-8.

2 Stefan Edelkamp. Heuristic search. Morgan Kaufmann, Waltham, MA, 2012. doi:10.1016/
C2009-0-16511-X.

3 EEIG ERTMS USERS GROUP. ERTMS/ETCS System Requirements Specification, SUBSET-
026. European Union Agency for Railways, 2023.

4 Stefan Engels. Munich Train Control Toolkit (MTCT). Software, swhId:
swh:1:dir:9eb5851e7f0b80f88dc6f09a8c9c54b58d15ee5b (visited on 2025-08-27). URL:
https://github.com/cda-tum/mtct, doi:10.4230/artifacts.24436.

5 Stefan Engels, Tom Peham, Judith Przigoda, Nils Przigoda, and Robert Wille. Design tasks and
their complexity for the European Train Control System with hybrid train detection. EURO
Journal on Transportation and Logistics, 14:100161, 2025. doi:10.1016/j.ejtl.2025.100161.

6 Stefan Engels, Tom Peham, and Robert Wille. A symbolic design method for ETCS Hybrid
Level 3 at different degrees of accuracy. In Daniele Frigioni and Philine Schiewe, editors,
23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS), volume 115 of OASIcs, pages 6:1–6:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/OASIcs.ATMOS.2023.6.

7 Stefan Engels and Robert Wille. Comparing lazy constraint selection strategies in train
routing with moving block control. In Marek Bolanowski, Maria Ganzha, Leszek A. Maciaszek,
Marcin Paprzycki, and Dominik Slezak, editors, Proceedings of the 19th Conference on
Computer Science and Intelligence Systems (FedCSIS), volume 39 of Annals of Computer
Science and Information Systems, pages 585–590. Polish Information Processing Society, 2024.
doi:10.15439/2024F3041.

8 Stefan Engels and Robert Wille. Towards an optimization pipeline for the design of train
control systems with hybrid train detection (short paper). In Paul C. Bouman and Spyros C.
Kontogiannis, editors, 24th Symposium on Algorithmic Approaches for Transportation Mod-
elling, Optimization, and Systems (ATMOS), volume 123 of OASIcs, pages 12:1–12:6. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/OASIcs.ATMOS.2024.12.

9 Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Systems Science and Cybernetics, 4(2):100–
107, 1968. doi:10.1109/TSSC.1968.300136.

10 Simon Hofmann, Marcel Walter, and Robert Wille. A* is born: Efficient and scalable physical
design for field-coupled nanocomputing. In 2024 IEEE 24th International Conference on
Nanotechnology (NANO), pages 80–85. IEEE, 2024. doi:10.1109/nano61778.2024.10628808.

11 Torsten Klug, Markus Reuther, and Thomas Schlechte. Does laziness pay off? - A lazy-
constraint approach to timetabling. In Mattia D’Emidio and Niels Lindner, editors, 22nd
Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS), volume 106 of OASIcs, pages 11:1–11:8. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/OASIcs.ATMOS.2022.11.

https://doi.org/10.1007/978-3-319-72153-8
https://doi.org/10.1016/C2009-0-16511-X
https://doi.org/10.1016/C2009-0-16511-X
https://archive.softwareheritage.org/swh:1:dir:9eb5851e7f0b80f88dc6f09a8c9c54b58d15ee5b;origin=https://github.com/cda-tum/mtct;visit=swh:1:snp:427338aeff595fef78df193555413c97e0596701;anchor=swh:1:rev:338f866a4831e8a221e10bba88887a36af9a9df5
https://github.com/cda-tum/mtct
https://doi.org/10.4230/artifacts.24436
https://doi.org/10.1016/j.ejtl.2025.100161
https://doi.org/10.4230/OASIcs.ATMOS.2023.6
https://doi.org/10.15439/2024F3041
https://doi.org/10.4230/OASIcs.ATMOS.2024.12
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/nano61778.2024.10628808
https://doi.org/10.4230/OASIcs.ATMOS.2022.11

S. Engels and R. Wille 14:17

12 Jörn Pachl. Railway Signalling Principles: Edition 2.0. Universitätsbibliothek Braunschweig,
2021. doi:10.24355/dbbs.084-202110181429-0.

13 Tom Peham, Judith Przigoda, Nils Przigoda, and Robert Wille. Optimal railway routing using
virtual subsections. In Simon Collart Dutilleul, Anne E. Haxthausen, and Thierry Lecomte,
editors, Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification,
and Certification (RSSRail), volume 13294 of Lecture Notes in Computer Science, pages 63–79.
Springer International Publishing, 2022. doi:10.1007/978-3-031-05814-1_5.

14 Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial Intelligence, 1(3):193–204,
1970. doi:10.1016/0004-3702(70)90007-X.

15 Thomas Schlechte, Ralf Borndörfer, Jonas Denißen, Simon Heller, Torsten Klug, Michael
Küpper, Niels Lindner, Markus Reuther, Andreas Söhlke, and William Steadman. Timetable
optimization for a moving block system. Journal of Rail Transport Planning & Management,
22:100315, 2022. doi:10.1016/j.jrtpm.2022.100315.

16 Lars Schnieder. Communications-Based Train Control (CBTC). Springer Berlin Heidelberg,
2021. doi:10.1007/978-3-662-62876-8.

A Railway Network

In this paper, we use the formal model of a railway network introduced in [5]. In general,
a railway network is given as a directed graph, i.e., there might be restrictions on travel
direction. If (u, v) ∈ E and (v, u) ∈ E, we sometimes use undirected edges for illustration
purposes. Every edge e ∈ E has a specified length len(e) ∈ R>0 as well as a maximal speed
v

(max)
e ∈ R>0. Because turnouts (i.e., vertices v ∈ V with deg(v) ≥ 3) do not allow arbitrary

transitions in general, we are given a successor function sv : δin(v) → P (δout(v)) for every
vertex. If e+ ∈ sv(e), the railway network allows a train to move from edge e to e+ via v.
Moreover, a set of border vertices B ⊆ V is specified at which trains can enter and leave the
railway network with predefined headway times. Finally, even though we consider moving
block control systems, some TTD sections with classical train separation are given to model
basic flank protection around turnouts.

▶ Definition 18 (Railway Network). A railway network N =
(
G, len, {sv}v∈V

)
is defined by

a directed graph G = (V, E) with vertices V being the set of points of interest and edges
E being the railway tracks between the aforementioned points of interest,
a mapping len : E → R>0 denoting the length of each edge such that len(e) = len(e◦) for
every pair of edges e, e◦ ∈ E13,
maximal velocities v

(max)
e ∈ R>0 for every e ∈ E,

a family of mappings {sv}v∈V , where sv : δin(v) → P (δout(v)) represents the valid move-
ments over v, and
border vertices B ⊆ V together with headway times h : B → R≥0.

We refer to [5] for more details and examples.

13 For e = (u, v) ∈ E, e◦ := (v, u).

ATMOS 2025

https://doi.org/10.24355/dbbs.084-202110181429-0
https://doi.org/10.1007/978-3-031-05814-1_5
https://doi.org/10.1016/0004-3702(70)90007-X
https://doi.org/10.1016/j.jrtpm.2022.100315
https://doi.org/10.1007/978-3-662-62876-8

14:18 Using A* for Optimal Train Routing on Moving Block Systems

B Raw Data

M
IL

P
D

ijk
st

ra
-li

ke
S1

ng
le

-E
dg

e
SE

w
ith

E
ar

lie
st

E
xi

t
M

ul
ti-

E
dg

e
M

E
w

ith
E

ar
lie

st
E

xi
t

In
st

an
ce

t[s
]

t[s
]

#
it

t[s
]

#
it

t[s
]

#
it

t[s
]

#
t[s

]
#

it

H
ig

h
Sp

ee
d

Tr
ac

k
(0

2
Tr

ai
ns

)
0.

03
0.

00
4

0.
00

4
0.

00
4

0.
00

4
0.

00
4

H
ig

h
Sp

ee
d

Tr
ac

k
(0

5
Tr

ai
ns

)
0.

02
0.

07
17

7
0.

01
32

0.
01

26
0.

01
32

0.
01

26
O

ve
rt

ak
e

tim
eo

ut
4.

43
36

14
1

1.
02

82
67

0.
54

47
00

0.
19

10
91

0.
10

59
7

Si
m

pl
e

2-
Tr

ac
k

St
at

io
n

0.
40

0.
39

45
86

0.
15

18
72

0.
11

13
64

0.
06

44
9

0.
04

31
9

Si
m

pl
e

N
et

w
or

k
1.

56
17

8.
30

35
70

54
18

.7
0

37
81

0
10

.9
9

25
89

0
2.

61
47

96
1.

46
29

71
Si

m
pl

e
N

et
w

or
k

(0
3

R
an

do
m

Tr
ai

ns
)

1.
20

5.
85

24
06

5
0.

83
37

06
0.

83
37

06
0.

17
62

5
0.

17
62

5
Si

m
pl

e
N

et
w

or
k

(0
6

R
an

do
m

Tr
ai

ns
)

9.
21

tim
eo

ut
16

22
72

5
tim

eo
ut

13
33

01
3

40
2.

94
37

67
82

19
2.

57
15

30
66

53
.3

4
45

16
0

Si
m

pl
e

N
et

w
or

k
(0

9
R

an
do

m
Tr

ai
ns

)
9.

18
tim

eo
ut

14
20

51
7

tim
eo

ut
13

18
51

6
tim

eo
ut

12
16

81
9

tim
eo

ut
85

33
80

tim
eo

ut
79

19
87

Si
m

pl
e

N
et

w
or

k
(1

2
R

an
do

m
Tr

ai
ns

)
17

.8
2

tim
eo

ut
80

26
35

tim
eo

ut
87

49
64

tim
eo

ut
81

48
70

tim
eo

ut
49

83
27

tim
eo

ut
49

59
54

Si
m

pl
e

N
et

w
or

k
(1

5
R

an
do

m
Tr

ai
ns

)
99

.4
3

tim
eo

ut
60

66
14

tim
eo

ut
53

69
84

tim
eo

ut
57

35
02

tim
eo

ut
39

66
91

tim
eo

ut
38

69
92

Si
m

pl
e

N
et

w
or

k
(1

8
R

an
do

m
Tr

ai
ns

)
47

.1
5

tim
eo

ut
43

31
82

tim
eo

ut
36

20
13

tim
eo

ut
35

68
77

tim
eo

ut
26

26
70

tim
eo

ut
26

44
95

Si
m

pl
e

N
et

w
or

k
(2

1
R

an
do

m
Tr

ai
ns

)
tim

eo
ut

tim
eo

ut
30

23
00

tim
eo

ut
24

13
50

tim
eo

ut
29

01
07

tim
eo

ut
18

58
69

tim
eo

ut
18

22
79

Si
m

pl
e

N
et

w
or

k
(2

4
R

an
do

m
Tr

ai
ns

)
tim

eo
ut

tim
eo

ut
20

98
72

tim
eo

ut
17

62
01

tim
eo

ut
17

97
20

tim
eo

ut
11

46
16

tim
eo

ut
10

04
10

Si
m

pl
e

N
et

w
or

k
(2

7
R

an
do

m
Tr

ai
ns

)
22

2.
51

tim
eo

ut
17

73
86

tim
eo

ut
15

03
95

tim
eo

ut
14

54
67

tim
eo

ut
10

57
65

tim
eo

ut
98

35
6

Si
m

pl
e

N
et

w
or

k
(3

0
R

an
do

m
Tr

ai
ns

)
43

2.
38

tim
eo

ut
12

63
64

tim
eo

ut
99

87
8

tim
eo

ut
10

92
18

tim
eo

ut
72

24
3

tim
eo

ut
72

95
0

Si
ng

le
Tr

ac
k

W
ith

St
at

io
n

0.
04

0.
01

11
4

0.
00

44
0.

00
39

0.
00

32
0.

00
28

Si
ng

le
Tr

ac
k

W
ith

ou
t

St
at

io
n

0.
05

0.
00

4
0.

00
4

0.
00

4
0.

00
4

0.
00

4
St

am
m

st
re

ck
e

(0
1

R
an

do
m

Tr
ai

ns
)

0.
35

0.
00

57
0.

00
23

0.
00

23
0.

00
9

0.
00

9
St

am
m

st
re

ck
e

(0
2

R
an

do
m

Tr
ai

ns
)

1.
03

3.
08

30
57

6
0.

18
12

21
0.

18
12

21
0.

07
28

9
0.

07
28

9
St

am
m

st
re

ck
e

(0
3

R
an

do
m

Tr
ai

ns
)

1.
04

51
3.

15
26

95
38

9
4.

80
19

27
8

4.
67

19
27

8
0.

97
23

92
0.

94
23

92
St

am
m

st
re

ck
e

(0
4

R
an

do
m

Tr
ai

ns
)

tim
eo

ut
tim

eo
ut

77
48

17
8

85
.9

5
24

53
84

84
.1

4
24

53
84

5.
37

10
64

2
5.

31
10

64
2

St
am

m
st

re
ck

e
(0

4
Tr

ai
ns

)
0.

89
tim

eo
ut

81
10

53
9

25
1.

52
50

14
66

24
2.

45
50

14
66

24
.6

6
31

87
2

24
.1

6
31

87
2

St
am

m
st

re
ck

e
(0

5
R

an
do

m
Tr

ai
ns

)
7.

11
tim

eo
ut

51
86

92
8

38
3.

87
81

75
60

37
4.

54
81

75
60

22
.9

4
35

64
8

22
.5

7
35

64
8

St
am

m
st

re
ck

e
(0

8
Tr

ai
ns

)
1.

94
tim

eo
ut

37
58

14
4

tim
eo

ut
25

28
21

5
tim

eo
ut

95
84

00
tim

eo
ut

12
77

84
7

tim
eo

ut
57

20
97

St
am

m
st

re
ck

e
(1

6
Tr

ai
ns

)
6.

91
tim

eo
ut

15
21

60
4

tim
eo

ut
74

89
51

tim
eo

ut
23

03
70

tim
eo

ut
59

79
78

tim
eo

ut
14

25
32

	1 Introduction
	2 Background
	2.1 Train Control Principles
	2.2 Train Routing
	2.3 A*-Algorithm

	3 Solution Encoding
	4 Optimization using A*
	4.1 State Space
	4.2 Transitions
	4.3 Suitable Heuristic
	4.4 Extending the Heuristic

	5 Evaluation of Objective Value using Simulation
	5.1 Principles
	5.2 Moving Authority
	5.3 Restrictions on Maximal Velocity

	6 Case Study
	7 Conclusions
	A Railway Network
	B Raw Data

