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Abstract
We introduce a first-of-its-kind efficient, exact algorithm for the dynamic taxi-sharing problem with
single-transfer journeys, i.e., a dispatcher that assigns traveler requests to a fleet of shared taxi-like
vehicles allowing transfers between vehicles. We extend an existing no-transfer solution by collecting
all viable pickup and dropoff vehicles for a request and computing the optimal transfer point for
every pair of vehicles. We analyze underlying shortest-path problems and employ state-of-the-art
routing algorithms to compute distances on-the-fly, which serves as the basis of dispatching requests
with exact and up-to-date travel time information. We utilize constraints on existing routes, pruning
techniques for transfer points, and both instruction- and thread-level parallelism to speed up the
computation of the best assignment for every traveler. In addition to the exact variant, we propose
a tunable heuristic approach that sacrifices solution quality in favor of improved running time.

We evaluate our algorithm on a large road network with realistic input sets (up to 150000
requests). We demonstrate the effectiveness of our speedup techniques and the heuristic. We show
first results on the benefits of transfers for taxi sharing on dense request sets, proving that our
algorithm is well suited for the analysis of taxi sharing with transfers on large input instances.
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1 Introduction

The current landscape of transportation systems is usually designed around two extremes:
Individual transport focuses on private cars that use a lot of space and resources while polluting
the environment. On the other end, public transit is mostly slow and inconvenient, especially
in border regions and the periphery of larger cities. This leaves a gap for transportation
methods that are convenient and fast like cars but also reduce resource usage by grouping
passengers with similar destinations like public transit. Recent developments in autonomous
vehicles increase the attractiveness of taxi sharing systems in which a fleet of taxi-like vehicles
is intelligently controlled to transport travelers without fixed stops or schedules. These
systems attempt to bundle riders and maximize the usage of each vehicle’s capacity for more
resource efficient journeys compared to private cars or traditional taxis. The advantages of
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15:2 Exact and Heuristic Dynamic Taxi Sharing with Transfers

such systems have been extensively studied in numerous simulation studies [4, 29, 1, 16, 44, 49]
and real-world field tests [20, 28, 46, 43, 25, 41, 18, 47]. The advent of autonomous vehicles
and a focus on more sustainable transportation are predicted to expedite the adoption of
taxi sharing [16, 17, 35, 15, 3, 40, 46].

Taxi sharing could further be improved upon by allowing riders to transfer between
vehicles during their journey. This additional option may allow the vehicle dispatcher to
reduce vehicle operation times and increase the occupancy rates of vehicles without negatively
affecting rider trip times. Thus, transfers may provide both economical and ecological benefits
to taxi sharing systems. However, current studies into taxi sharing largely lack the option of
transfers due to large computation times. Taxi sharing is already a difficult problem without
transfers [33, 38] but transfers lead to an even more complex problem as the number of
possible assignments of a rider to one or more vehicles increases combinatorially.

Based on recent advances in efficient dynamic taxi sharing without transfers [7, 31], we
propose the first exact dispatching algorithm for dynamic taxi sharing with transfers that is
able to scale to realistic city-scale input instances. For this purpose, we extend the model for
traditional taxi sharing to allow journeys with at most one transfer. We find that a main
issue of dynamic taxi sharing with transfers is the exploding number of shortest-path (SP)
distances in the road network that need to be known to choose the best assignment for a rider.
We focus on computing these distances on-the-fly when a rider request comes in, as this serves
as the basis of a dynamic dispatcher that uses exact and up-to-date travel time information.
We analyze the SP problems at hand and employ state-of-the-art speedup techniques for SPs
in road networks to efficiently solve them. Also, we propose techniques to prune the number
of assignments that need to be considered and explore both instruction-level and thread-level
parallelization. In addition to an exact algorithm, we describe a heuristic approach that
sacrifices some solution quality for improved running times.

In an experimental evaluation, we show that the proposed measures lead to viable
dispatching times for realistic request sets on the road network of Berlin, Germany. We give
first indications that transfers improve vehicle operation times and occupancy rates at the
cost of slightly increased rider trip times. Our approach lays the groundwork for more precise
studies of taxi sharing with transfers on large urban road networks with realistic request sets.
This analysis is left to future work in cooperation with application experts.

1.1 Related Work
Taxi sharing and closely related problems like ride matching have seen considerable attention
in the last decade. We provide a short overview with a focus on transfers. A more detailed
summary of work on dynamic taxi sharing in general can be found in [31].

Taxi Sharing. Taxi sharing describes the problem of dispatching a fleet of taxi-like vehicles to
transport travelers that request to travel from an origin to a destination location. Unrelated
riders with similar destinations may be assigned to the same vehicle to reduce vehicle
operation costs. The dispatcher has to choose assignments that optimize rider trip times and
the usage of vehicle resources. Additional time constraints ensure user-friendly journeys.

Taxi sharing is closely related to the well-studied Dial-a-Ride problem [10, 21]. As the
static variant of the DARP is known to be NP-complete (e.g. [39]), only small instances
can be solved optimally [21, 9, 2]. Many heuristics have been developed to provide solutions
in acceptable runtime on realistic instances, while giving up optimality [37, 26, 32]. While
most research is conducted on the static variant, where all riders and requests are known in
advance, we consider the dynamic taxi-sharing problem, where requests are served as soon
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as they are issued, without knowledge of future requests. Due to the online nature of the
problem, we implement a simple so-called insertion heuristic [24, 21] which greedily chooses
a vehicle for a rider immediately upon receiving the request based on the current route state.
Insertion heuristics are efficient and have been shown to perform reasonably well for the
dynamic problem [36]. However, we are not aware of any in-depth experimental studies that
compare online solutions to offline solutions of the same set of requests.

Most existing approaches assume that shortest paths in the road network (which are
needed to assess vehicle detours) are already known. However, travel times in road networks
change frequently, e.g. due to congestion. Thus, it is unreasonable to precompute all shortest
paths in a road network as this information quickly becomes outdated. The existing state-
of-the-art dispatchers for the dynamic taxi-sharing problem, LOUD [7] and its extension
KaRRi [31], solve the problem by computing shortest paths on-the-fly, i.e., when a request is
issued. The dispatchers combine state-of-the-art routing algorithms with pruning techniques
based on constraints of existing vehicle routes to speed up distance computation. By using
so-called customizable variants of these routing algorithms, updated information on travel
times in the road network can be introduced periodically.

Taxi Sharing with Transfers. There has not been much work on dynamic taxi sharing
with transfers. Most approaches consider a fixed set of transfer points that is known in
advance (e.g. charging stations for electric vehicles) and find solutions using mixed-integer
programming [23, 42, 8]. Again, shortest distances between vertices are assumed to be known.

The approach that is most closely related to our work is an extension of the LOUD
dispatcher that locates feasible transfer points based on three different heuristics [45]. Their
results show a reduction in total operation cost due to transfers. Note, though, that the
cost model differs from the one we use since vehicle wait times are not considered part of a
vehicle’s detour and rider trip times are only taken into account as constraints.

To the best of our knowledge, there are no existing approaches for dynamic taxi sharing
with optimal transfers that are able to scale to realistic instances of large urban areas.

2 Problem Statement

This section describes the formal foundations for the dynamic taxi sharing problem without
transfers and provides an extension of the model that allows the incorporation of transfers.

Road Network. We consider a road network to be a directed graph G = (V, E). Road
segments are represented as edges and intersections are represented as vertices. For every
edge e = (v, w) ∈ E we define an edge weight ℓ(e) = ℓ(v, w) which is the travel time of the
road segment. We denote the shortest-path distance between vertices v, w ∈ V as δ(v, w).

Vehicles and Stops. Our algorithm manages the schedules for a fleet F of vehicles. Each
vehicle has a seating capacity cap(ν) and a service time interval [tmin

serv, tmax
serv] in which it

operates. The current route R(ν) = ⟨s0(ν), . . . , sk(ν)(ν)⟩ of a vehicle ν is a sequence of stops.
Each stop si is mapped to a location loc(si) ∈ V in the network1. After arriving at a stop,

1 Our implementation actually maps each stop to an edge e = (u, v) ∈ E in the road network.We make
sure that the vehicle travels the length of e from u to v to allow a pickup or dropoff anywhere along the
edge. However, we set the time of arrival to the time when v is reached, i.e., we do not actually route
with intra-edge precision. To streamline the notation, we simplify locations to vertices in the paper.
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(a) No-transfer insertion (r, ν1, i, j).
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(b) Transfer insertion (r, x, ν2, ν3, ip, jp, id, jd).

Figure 1 Illustration of routes of three vehicles ν1, ν2, and ν3 and a request r = (o, d, treq).
Full arrows show current routes while dashed arrows denote detours made for a possible insertion.
Figure 1a depicts an insertion without transfer using ν1. Figure 1b illustrates a single-transfer
insertion using pickup vehicle ν2 and dropoff vehicle ν3 with a transfer at x.

or when a new stop is scheduled, the route is updated, s.t. the vehicle’s location is always
between its previous (or current) stop s0(ν) and the next stop s1(ν). The number of stops
yet to reach is k(ν) = |R(ν)| − 1. We denote the currently scheduled arrival time of vehicle ν

at stop si as tmin
arr (si(ν)) and the departure time of vehicle ν at stop si as tmin

dep (ν). If sufficient
context is provided, we may write si instead of si(ν) and si instead of loc(si).

Request, (No-Transfer) Insertion. In the dynamic taxi-sharing problem, a ride request is
immediately assigned to a vehicle. A ride request r = (orig, dest, treq) has an origin location
orig ∈ V , a destination dest ∈ V and a request time treq at which the request is issued. We
do not allow pre-booking, so the earliest possible time of departure is the request time.

For every request r, the dispatcher assigns r to a vehicle ν by constructing a (no-transfer)
insertion ι = (r, ν, i, j) with 0 ≤ i, j ≤ k(ν). For an insertion ι = (r, ν, i, j), the vehicle ν

performs the pickup immediately after stop si and the dropoff immediately after stop sj .
For this, the vehicle leaves its scheduled route after stop si and sj to pick up and drop off
the rider at orig and dest, respectively, before returning to the next scheduled stop si+1 and
sj+1 (if i < k(ν) and j < k(ν), respectively). Figure 1a illustrates a no-transfer insertion.

Cost Function and Constraints. To evaluate the quality of insertions, we define the cost
c(ι) of an insertion ι = (r, ν, i, j) as a linear combination

c(ι) = tdetour(ι) + τ · (ttrip(ι) + t+
trip(ι)) + cvio

wait(ι) + cvio
trip(ι).

To define the components of the cost function, first assume that the request r =
(orig, dest, treq) has already been inserted according to ι. Let sp be the stop introduced to
pick up the rider at orig, and let sd be the stop introduced to drop the rider off at dest. Then,
the route of ν after the insertion is R′(ν) = ⟨s0, . . . , si, sp, si+1, . . . , sj , sd, sj+1, . . . , sk(ν)⟩.
Let tmin ′

arr (si) and tmin ′
dep (si) describe the scheduled arrival and departure times in R′(ν).

The vehicle detour tdetour(ι) denotes the total additional operation time for ν caused by
ι, i.e., tdetour(ι) = tmin ′

dep (sk(ν)) − tmin
dep (sk(ν)). This is equivalent to the sum of detours made,

i.e., δ(si, orig) + δ(orig, si+1) − δ(si, si+1) + δ(sj , dest) + δ(dest, sj+1) − δ(sj , sj+1).
The trip time ttrip(ι) is the total travel time for the new rider from issuing the request

to their arrival at the destination, i.e., ttrip(ι) = tmin ′
arr (sd) − treq. The trip times of existing

riders may also increase due to detours. The added trip time t+
trip(ι) is the sum of all such

changes for riders of ν. Model parameter τ determines the importance of trip times.
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We aim to limit riders’ maximum wait and trip times using constraints. A rider’s trip
should not take longer than their maximum trip time tmax

trip (r) = α · δ(orig, dest) + β. A rider
should not wait to be picked up longer than tmax

wait ∈ R≥0. The values α, β, tmax
wait are model

parameters. For existing riders, these constraints are hard, i.e., if an insertion violates them,
its cost is ∞. For the new rider, the constraints are soft and only incur penalties cvio

wait(ι)
and cvio

trip(ι) to the insertion cost. This allows the system to serve every request.
Note that to compute the updated route R′(ν) with tmin ′

arr and tmin ′
dep , as well as the cost of

the insertion, we generally need to know the distance δ(si, orig) from si to orig, the distance
δ(orig, si+1) from orig to the following stop (if i < k(ν)), as well as the distance δ(sj , dest)
from sj to dest and the distance δ(dest, sj+1) from dest to the following stop (if j < k(ν)). If
i = j, we additionally need to know δ(orig, dest). It is one of the main challenges of dynamic
taxi sharing to solve the according shortest-path problems.

Single-Transfer Insertions. In this work, we focus on efficiently finding optimal single-
transfer journeys, where a rider changes vehicles at most once. This extension induces
a significant combinatorial increase in the number of possible insertions compared to the
traditional case without transfers, which poses the main challenge of our work. The taxi-
sharing model described above can be easily modified for single-transfer journeys.

Single-transfer insertions take the form ιtransfer = (r, x, νp, νd, ip, jp, id, jd). The pickup
vehicle νp picks up the new rider at orig immediately after stop sip

(νp) and drops them off
at the transfer location x immediately after stop sjp

(νp). The dropoff vehicle νd picks the
rider up at x for the second leg of the trip immediately after stop sid

(νd) and drops them off
at dest immediately after stop sjd

(νd). A single-transfer insertion is illustrated in Figure 1b.

2.1 Cost Computation of Single-Transfer Insertions
The structure of the cost function remains the same for transfer insertions, and transfer
insertions are subject to the same constraints as before. Computing the cost of a transfer
insertion requires us to know the distances between existing stops and the transfer point in
addition to the distances for orig and dest. Compared to no-transfer insertions, this increases
the amount of work that needs to be spent solving shortest-path problems. In the following,
we describe some additional intricacies that come with transfers.

Riders Waiting at the Transfer Location. The definition of the trip time ttrip(ιtransfer) of
the new rider as well as the trip time violation cvio

trip(ιtransfer) remain unchanged. However,
the wait time of the new rider now also incorporates the time that the rider spends waiting
at the transfer location for the dropoff vehicle, which potentially has an impact on the wait
time soft constraint cvio

wait(ιtransfer).

Vehicles Waiting at the Transfer Location. After processing a transfer insertion where the
dropoff vehicle arrives at the transfer location x sooner than the pickup vehicle, the dropoff
vehicle has to wait at x for the arrival of the transferring rider. Thus, vehicles may now
have wait times at stops along their routes, which impact the way detours affect a vehicle’s
total operation time. Assume vehicle ν has a wait time at stop sw. Then, making a detour
before sw delays the arrival of ν at sw as much as before, but since the vehicle would have
waited some time at sw, the delay in the departure time may be smaller. Effectively, to
compute the change in operation time, we can subtract the wait times at stops from the
actual detours made since the time that would have been spent waiting is spent driving
instead. The increase in operation time for any affected vehicle can still be characterized

ATMOS 2025
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as tmin ′
dep (sk(ν)) − tmin

dep (sk(ν)) but the computation of tmin ′
dep (sk(ν)) becomes more complex.

Vehicle wait times similarly affect the added trip time of existing riders as the updated arrival
times tmin ′

arr (s) now have to take vehicle wait times into account. The authors of KaRRi have
previously encountered the issue of vehicle wait times in the context of meeting points. The
full paper on KaRRi [30] gives a detailed explanation on how vehicle wait times affect the
computation of updated schedules and the resulting cost terms.

Dependencies between Vehicle Schedules. Transfers introduce dependencies between
vehicles’ schedules. As described in the previous paragraph, a dropoff vehicle can only leave a
transfer point once the transferring rider arrives in the pickup vehicle. Thus, any delay to the
arrival of the pickup vehicle at the transfer stop may also delay the departure of the dropoff
vehicle. In effect, vehicles other than the pickup or dropoff vehicle can also be affected by an
insertion due to previously introduced transfers. To account for this, we explicitly memorize
the dependency between pickup and dropoff vehicle whenever a transfer insertion is performed.
Then, when computing the cost for a new insertion ιtransfer = (r, x, νp, νd, ip, jp, id, jd), we
find any vehicles that depend on νp or νd, and potentially propagate the detours caused by
ιtransfer to their routes. For any such dependent vehicle, we obtain an added operation time
and added trip time for existing riders, which we consider in the total cost of ιtransfer.

3 Preliminaries

In this section, we explain the shortest-path algorithms used in this work, as well as the
existing algorithms for taxi sharing without transfers that we base our work on.

3.1 Shortest-Path Algorithms
Here, we summarize the shortest-path techniques most relevant to this paper.

Dijkstra’s Algorithm. Dijkstra’s algorithm [14] serves as the basis of many shortest-path
algorithms. Given a directed graph G = (V, E), a weight function ℓ : E → R≥0, and a source
vertex s ∈ V , the algorithm computes the shortest path w.r.t. ℓ from s to every v ∈ V . The
algorithm maintains a distance label d[v] for v ∈ V as well as a priority queue Q of vertices.
The key of a vertex v in Q is d[v]. Initially, d[s] := 0, d[v] := ∞ for v ̸= s, and Q := {s}.
The algorithm proceeds by removing the vertex v with the smallest d[v] from Q and settling
it. To settle v, all edges (v, w) ∈ E are relaxed. To relax an edge e = (v, w), the algorithm
checks whether d[v] + ℓ(e) < d[w]. If so, the path to w via v is now the best known path to
w and d[w] is updated to d[v] + ℓ(e). Then, w is inserted into Q or its key is updated. When
a vertex v is settled, its tentative distance d[v] is equal to the shortest-path distance δ(s, v).

Contraction Hierarchies. Contraction Hierarchies (CH) [19] are a speedup technique for
the computation of shortest paths in road networks that leverage the inherent hierarchy of
road networks. Every shortest-path algorithm employed in this work is ultimately based on
CHs. The CH algorithm works in two phases, a pre-processing phase and a query phase.

In the preprocessing phase, each vertex v ∈ V of a road network G = (V, E) is heuristically
assigned a unique rank representing the vertex’s importance. Higher ranks are assigned
to more important vertices. Vertices are then contracted in order of increasing rank. To
contract a vertex v, it is removed from the graph. To preserve shortest paths, a shortcut
edge (u, w) with ℓ(u, w) = ℓ(u, v) + ℓ(v, w) is created if (u, v, w) is the shortest path from u



J. Breitling and M. Laupichler 15:7

to w. After contracting all vertices, the original graph is restored and augmented with all
shortcut edges created in the contraction process. Let E+ be the set containing all original
edges E and all shortcut edges. The graph G+ = (V, E+) constitutes the CH. For the
query phase, we partition E+ into up-edges E↑ = {(u, v) ∈ E+ | rank(u) < rank(v)} and
down-edges E↓ = {(u, v) ∈ E+ | rank(u) > rank(v)}. We define an upward search graph
G↑ = (V, E↑) and a downward search graph G↓ = (V, E↓). Let δ↑(u, v) and δ↓(u, v) denote
the shortest-path distance from u to v in G↑ and G↓, respectively.

In a point-to-point CH query, a shortest path from s ∈ V to t ∈ V is found, using the
fact that for any u, v ∈ V there is a shortest path from u to v that consists of only up-edges
followed by only down-edges [19]. Running a forward Dijkstra search in G↑ from s and a
reverse Dijkstra search in G↓ rooted at t suffices to find the shortest up-down path.

PHAST. PHAST [11] is a CH-based speedup technique for the one-to-all shortest-path
problem in road networks. PHAST uses a CH as well as a specific memory layout to linearize
the process of settling vertices and relaxing edges in memory. It proceeds in two phases.

First, given a source vertex s ∈ V , PHAST runs a forward search in G↑ rooted at s,
exploring the entire search space and initializing a distance d[v] := δ↑(s, v) at every settled
vertex v. Every vertex not settled gets d[v] := ∞. Second, PHAST settles every v ∈ V in
decreasing order of CH rank, propagating the distances from the forward search through
G↓ by relaxing incoming edges in E↓. This finds shortest up-down paths to every v ∈ V .
Scanning vertices in top-down order ensures that d[u] is finished before d[v] for (u, v) ∈ E↓.

PHAST reorders the vertices in G↓ according to the order in which vertices are scanned
in the top-down sweep. Thus, the write operations to d[v] during the sweep are in sequential
order and reads of d[u] for relaxed edges (u, v) ∈ E↓ are likely to hit the cache.

PHAST leverages both instruction parallelism and multi-threading for additional speedups.
Instruction parallelism is applicable if there are k > 1 sources. Then, d[v] is a distance
vector of width k where the i-th entry refers to the distance from the i-th source to v. Edge
relaxations can use vector instructions to update the distance for all k sources simultaneously.
To utilize multi-threading, PHAST groups vertices into CH levels such that vertices within
the same level can be settled in parallel (for details, see [11]).

CH-based One-to-Many Queries. There are two main ways to use CHs for one-to-many
queries from a source s ∈ V to each t ∈ T for a set of targets T ⊆ V . Both approaches
use a target selection phase followed by a query phase. Bucket Contraction Hierarchies
(BCH) [19, 27] run reverse Dijkstra searches in G↓ from every t ∈ T that memorize every
δ↓(v, t) in a bucket at vertex v (selection). Then, a forward query in G↑ rooted at s can use
these buckets to find shortest paths in the CH (query). RPHAST [12] computes a subgraph
H↓ of G↓ that contains all vertices from which any t ∈ T can be reached using only edges in
E↓ (selection). Then, the top-down sweep of a PHAST query rooted at s can be restricted
to H↓ and still find the shortest path to each t ∈ T (query).

3.2 The LOUD and KaRRi Taxi-Sharing Dispatchers
KaRRi [31] is an algorithm for the dynamic taxi-sharing problem without transfers that acts
as the basis of our solution to the problem with transfers. Here, we describe how KaRRi and
its predecessor LOUD [7] use engineered routing techniques to dispatch requests efficiently.

Elliptic Pruning. LOUD [7] uses constraints on vehicle routes for faster shortest-path
queries between vehicle stops and a rider’s origin and destination. As described in Section 2,
every rider induces hard constraints for maximum wait time and trip time on a vehicle.

ATMOS 2025
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These constraints define a latest permissible arrival time tmax
arr (s) for the stops s of the

respective vehicle. Let tmin
dep (si) be the scheduled departure time at stop si. Then, a

vehicle ν may take a time of at most λ(si, si+1) = tmax
arr (si+1) − tmin

dep (si) to travel from si

to si+1 without breaking any rider’s constraint. We call the value λ(si, si+1) the leeway
between si and si+1. An origin location orig can only be inserted between stops si and
si+1 if δ(si, orig) + δ(orig, si+1) ≤ λ(si, si+1) (analogous for destination locations). The set
E(si) = {u ∈ V | δ(si, u) + δ(u, si+1) ≤ λ(si, si+1)} is called the detour ellipse of si.

LOUD uses BCH searches to compute the distances from every vehicle stop to the
origin/destination of a request and vice versa. The authors of LOUD find that bucket entries
for a stop si only need to be generated at certain vertices within E(si) to find all relevant
distances. This approach reduces the number of bucket entries that need to be scanned and
restricts the set of pickup or dropoff vehicles to those seen during the queries.

Last-Stop Queries. It is necessary for taxi sharing to also allow insertions that append new
stops at the end of a vehicle’s route instead of only inserting new stops in between existing
stops. We can utilize BCH searches to compute the required distances between the last stops
of every vehicle route and the origin and destination location of a new rider. However, since
a vehicle’s last stop has no following stop, there is no leeway and no detour ellipse to employ
elliptic pruning. Instead, KaRRi [31] uses sorted BCH buckets and lower bounds on the cost
of insertions to speed up this one-to-many shortest-path computation.

4 Algorithm Overview

We describe the use of detour ellipses for transfer insertions and identify two distinct types
of transfer insertions. Based on this, we give an overview of the structure of our algorithm.

4.1 Detour Ellipses for Transfers

The central challenge of computing single-transfer insertions is the fact that the pickup
vehicle νp and the dropoff vehicle νd can move freely in the road network, which makes every
location in the road network a potential transfer point. Without further limitations, the
number of transfer insertions that need to be checked would be at least linear in the size of
the road network. However, we can reduce the number of viable transfer locations for each
request by taking into account the constraints on vehicle detours imposed by existing riders.

As mentioned in Section 3.2, the constraints on vehicle routes induce a detour leeway
λ(si, si+1) between any two consecutive stops si and si+1. This leeway defines the ellipse
E(si) ⊆ V containing all locations to which a detour between si and si+1 can be made without
breaking any constraints. Thus, for any feasible transfer insertion (r, x, νp, νd, ip, jp, id, jd),
the transfer point x must lie in E(sjp

(νp)) if jp < k(νp) and in E(sid
(νd)) if id < k(νd). If we

know the detour ellipses of stop pairs along the routes of relevant vehicles, we can deduce a
limited set of viable transfer locations for which transfer insertions need to be constructed.

In the following, we describe how detour ellipses can be used to enumerate transfer
insertions of different types. For now, we assume that all necessary detour ellipses are known.
We explain how to compute a detour ellipse on-the-fly in Section 5.1. We describe how to
compute the necessary shortest-path distances in Sections 5.2 and 5.3.
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o d

x2

x1

sip sip+1

sjp

sjp+1
sid

sid+1

sjd sjd+1

si′d

si′d+1

sj′d sj′d+1

si′p = sj′p = sk(ν3)

ν1

ν2

ν3

ν4

Figure 2 Illustration of routes of four vehicles ν1, ν2, ν3, and ν4, and a request r = (o, d, treq).
Depicts an ordinary transfer insertion (r, x1, ν1, ν2, ip, jp, id, jd) and an after-last-stop transfer inser-
tion (r, x2, ν3, ν4, k(ν3), k(ν3), i′

d, j′
d). Shaded areas indicate detour ellipses.

4.2 Types of Transfers
We distinguish between two types of transfer insertions that differ in how detour ellipses
constrain the set of potential transfer points.

Ordinary Transfers. An ordinary transfer insertion is any insertion (r, x, νp, νd, ip, jp, id, jd)
where both jp < k(νp) and id < k(νd), i.e., for which the transfer point x is inserted
before the last stop in the routes of both the pickup vehicle and the dropoff vehicle. Let
Fp(r) = {(ν, i) ∈ F × N | i ∈ {0, . . . , k(ν)} and orig ∈ E(si(ν))} denote the set of vehicles
and associated stops in the vehicle route such that ν can perform a pickup of r at orig
immediately after stop si without breaking any of the vehicle’s constraints. Analogously,
let Fd(r) = {(ν, j) ∈ F × N | j ∈ {0, . . . , k(ν)} and dest ∈ E(sj(ν))} be the set of candidate
dropoff vehicles and associated stops.

In ordinary transfer insertions, the transfer point needs to be contained in the intersection
of two ellipses E(sjp

(νp)) ∩ E(sid
(νd)). Thus, for any (νp, ip) ∈ Fp(r) and any (νd, jd) ∈ Fd(r),

every insertion (r, x, νp, νd, ip, jp, id, jd) for every jp = ip, . . . , k(νp) − 1, every id = 0, . . . , jd,
and every x ∈ E(sjp

(νp))∩E(sid
(νd)) is feasible. Figure 2 shows an ordinary transfer insertion

using vehicle ν1 and ν2 and a transfer after stops sjp and sid
. Any point in the overlap of

the orange and purple ellipses is a viable transfer location for these vehicles and stops.

After-Last-Stop (ALS) Transfers. Any transfer insertion which is not ordinary has either
jp = k(νp) or id = k(νd). This means, either the pickup vehicle brings the new rider to the
transfer location after its current last stop sk(νp) or the dropoff vehicle picks up the new rider
at the transfer location after its current last stop sk(νd). Therefore, we call these insertions
after-last-stop (ALS) transfer insertions. Note that transfer insertions with both jp = k(νp)
and id = k(νd) will always have a higher cost than the non-transfer insertion (r, νp, ip, k(ν))
in our model, so we do not have to consider this case.

Focus on the case jp = k(νp) and id < k(νd). In this case, the pickup vehicle is not bound
by any detour ellipse since it will have already dropped off all other passengers when it reaches
sjp

. Thus, there are no rider constraints at this point. However, the viable transfer points
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Algorithm 1 Algorithm Outline. Comments indicate description of implementation.

1: Input: r = (orig, dest, treq) Output: best insertion
2: ιnone := KaRRi(r) ▷ no-transfer solution [31]
3: Fp(r), Fd(r) := findPickupAndDropoffVehicles(r) ▷ Section 5.2
4: E := computeDetourEllipses(Fp(r), Fd(r)) ▷ Section 5.1
5: ιord := findBestOrdinaryTransferInsertion(r, Fp(r), Fd(r),E) ▷ Section 5.2
6: ιalsp := findBestALSTransferInsertionPVeh(r, Fp(r), Fd(r),E) ▷ Section 5.3
7: ιalsd := findBestALSTransferInsertionDVeh(r, Fp(r), Fd(r),E) ▷ Section 5.3
8: return argminι∈{ιnone,ιord,ιalsp,ιalsd}c(ι)

are still limited to the detour ellipse E(sid
(νd)). Therefore, for any vehicle that can perform

a pickup at any index ip along its route and any (νd, jd) ∈ Fd(r), the set of feasible insertions
contains (r, x, νp, νd, ip, k(νp), id, jd) for every id = 0, . . . , jd, and every x ∈ E(sid

(νd)). Note
that this may include the case of ip = k(νp), i.e., a paired ALS insertion.

Analogously, for any dropoff vehicle νd that can perform a dropoff after its last stop
sk(νd) and any (νp, ip) ∈ Fp, the insertion (r, x, νp, νd, ip, jp, k(νd), k(νd)) is feasible for every
jp = ip, . . . , k(νp) − 1, and every x ∈ E(sjp

(νp)).
In Figure 2, a paired ALS transfer insertion is depicted where vehicle ν3 extends its route

after its last stop to pick up the rider at o and bring them to a transfer location x2 within
the ellipse E(si′

d
(ν4)). Any location within this ellipse would be a feasible choice for x.

4.3 Structure of Algorithm
Whenever a new request r = (orig, dest, treq) is issued, the dispatching algorithm is started
with the current route state. The best insertion returned by the algorithm is used to update
the route state before the next request is processed.

Our dispatching algorithm is outlined in Algorithm 1. We always allow a rider to use no-
transfer or transfer insertions. Thus, to start with, we use the base KaRRi algorithm to find
the best no-transfer insertion. Then, we compute the sets Fp(r) and Fd(r) of potential pickup
and dropoff vehicles. We compute the detour ellipse for every stop along the routes of these
vehicles where a transfer may be made as described in the previous section. Subsequently,
we enumerate all ordinary transfer insertions, all ALS transfer insertions for pickup vehicles,
and all ALS transfer insertions for dropoff vehicles.

5 Exact Transfer Points

In this section, we describe how we can efficiently implement each step of the algorithm
mentioned in Section 4.3 to find a locally exact solution to dynamic taxi sharing with transfers.
More precisely, for each request r = (orig, dest, treq), we aim to find the single-transfer insertion
(r, x, νp, νd, ip, jp, id, jd) with the smallest total cost (at the time of dispatching r).

5.1 Computing Detour Ellipses On-the-Fly
Finding exact transfer insertions requires us to compute the detour ellipses E(si) of many
stop pairs (si, si+1). To find out whether a vertex v ∈ V lies within E(si) we need to know
the distances δ(si, v) and δ(v, si+1) in order to check if δ(si, v) + δ(v, si+1) ≤ λ(si, si+1). In
effect, we need to compute the distances δ(si, v) and δ(v, si+1) for every v ∈ V .
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These two one-to-all shortest path problems can simply be solved by running a forward
Dijkstra search rooted at si and a reverse Dijkstra search rooted at si+1. The Dijkstra
searches can be stopped once a vertex v ∈ V with d[v] > λ(si, si+1) is settled. During the
searches, we memorize which vertices have been settled. For every vertex settled by both
searches, we check whether δ(si, v) + δ(v, si+1) ≤ λ(si, si+1) to determine if v ∈ E(si).

As an alternative, we can use the one-to-all speedup technique PHAST (see Section 3.1).
We run a forward PHAST search rooted at si as well as a reverse PHAST search rooted at
si+1. Then, we check whether v ∈ E(si) for every v ∈ V using the computed distances. Note
that PHAST queries cannot be pruned using λ(si, si+1) like the Dijkstra searches.

As proposed by the authors of PHAST, the queries can be accelerated using both
instruction- and thread-level parallelism (cf. Section 3.1). In contrast to PHAST, it is notori-
ously difficult to apply multi-threading to speed up Dijkstra queries with good scalability [34].
Similarly, bundling Dijkstra queries for vectorized edge relaxations only works well if the
sources are close to each other in the graph and thus have overlapping shortest-path trees.
Unfortunately, this is not the case for arbitrary stops.

Note that both approaches provide the shortest-path distances between vehicle stops and
transfer points that are later required to compute the cost of an insertion.

5.2 Optimal Ordinary Transfers
To find all ordinary transfers, we need to compute the intersection of the detour ellipses of
stops of pickup vehicles in Fp(r) and dropoff vehicles in Fd(r), as described in Section 4.2.

The LOUD no-transfer dispatcher provides a way to compute the sets Fp(r) and Fd(r)
of potential pickup and dropoff vehicles. For both orig and dest, we run a forward and
reverse BCH search that identifies the vehicles and stops at which a detour can be made to
perform the pickup or dropoff. Elliptic pruning speeds up these queries and limits the size of
Fp(r) and Fd(r) (cf. Section 3.2). These BCH searches also provide the distances needed to
compute the detour made for the pickup and the dropoff.

To facilitate intersecting ellipses, we sort every ellipse by vertex ID. Then, any intersection
E(sjp(νp)) ∩ E(sid

(νd)) can be constructed with a linear sweep over E(sjp(νp)) and E(sid
(νd)).

If ip ̸= jp and id ≠ jd, the distances between stops and transfer points computed during
the ellipse reconstruction suffice to calculate the cost of the insertion. In the case of a paired
insertion, i.e., ip = jp or id = jd, we need to additionally know the distances from orig to
the transfer point x or the distance from x to dest, respectively. For paired insertions, we
first assume δ(orig, x) = 0 or δ(x, dest) = 0 and compute a lower bound for the cost of the
insertion. If this lower bound is worse than the best known cost, we can safely discard it.
Otherwise, we compute the distance δ(orig, x) or δ(x, dest) using a point-to-point CH query.

5.3 Optimal After-Last-Stop Transfers
As described in Section 4.2, in an ALS insertion, a transfer point may be any location within
the detour ellipse of the non-ALS vehicle. Here, we focus on the case that the pickup vehicle
νp is the ALS vehicle and brings the rider to a transfer point in an ellipse of a dropoff vehicle
νd. Then, we need to know the distances from the last stop sk(νp) to every location in this
ellipse. Extending this to all possible pickup vehicles in Fp(r) and dropoff vehicles in Fd(r),
we get a many-to-many shortest path problem where the set of sources L contains all last
stops of pickup vehicles, while the set of targets T is the union of all eligible ellipses, i.e.,

L = {sk(νp) | (νp, _) ∈ Fp(r)}, and T =
⋃

(νd,jd)∈Fd(r)

⋃
id∈{0,...,jd}

E(sid
(νd)).
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We utilize RPHAST for this problem. We run the selection phase once for T and then
run a query from every l ∈ L. We can bundle and vectorize these queries (cf. Section 3.1).

A pickup vehicle may also perform both the pickup and the trip to the transfer after
its current last stop in a paired ALS insertion (r, x, νp, νd, k(νp), k(νp), id, jd). In this case,
we need to know the distance from orig to every transfer point x. Thus, we run a single
RPHAST query from orig to T . Additionally, we need to identify vehicles νp that need to
be considered for a pickup after their last stop as Fp(r) is not guaranteed to contain all of
them. For this purpose, we utilize BCH searches as proposed by KaRRi (cf. Section 3.2).
We construct bucket entries for every last stop. Then, a single reverse BCH query rooted at
orig computes the distances from all last stops to orig. We prune the set of viable vehicles
by comparing cost lower bounds based on these distances to the best known cost.

Now consider the case that the dropoff vehicle goes to the transfer after its last stop
while the pickup vehicle incorporates the transfer somewhere along its existing route. Then,
the ALS insertion will always be paired since the dropoff must necessarily be performed after
the transfer. Thus, we can use the same techniques outlined for paired ALS insertions above.

5.4 Speeding up Enumeration of Insertions
Computing the cost for a transfer insertion takes much longer than for a no-transfer insertion.
Thus, we describe three ways to speed up the computation of insertions and their cost. We
focus on ordinary insertions but all techniques are applicable to ALS insertions, too.

Cost Bounds. For each request r, our algorithm first finds the best no-transfer insertion.
The cost of this no-transfer insertion serves as an upper bound for the best cost for r.

Consider a set of possible transfer insertions (r, x, νp, νd, ip, jp, id, jd) for fixed νp, νd, ip,
jp, id, and jd, and x ∈ E(sjp

(νp)) ∩ E(sid
(νd)). We can obtain a lower bound on the cost of

any insertion in this set by applying the cost function with lower bounds on the distances
from and to any transfer point x. If this lower bound cost is already worse than the best
no-transfer cost, we do not have to consider any of the individual insertions in the set. To get
lower bounds on the distances from and to any feasible transfer point, we simply memorize
the smallest such distances seen while intersecting the ellipses.

Pareto-Dominance between Transfer Points. We find that many transfer points can never
lead to a best insertion as there are other transfer points which are guaranteed to lead to
better insertions. We devise a measure of pareto-dominance between transfer points within
the same intersection that allows to exclude these dominated transfer points.

▶ Definition 1. Let x1, x2 ∈ E(sjp
(νp)) ∩ E(sid

(νd)). Then, x1 dominates x2 if

δ(sjp
, x1) + δ(x1, sjp+1) < δ(sjp

, x2) + δ(x2, sjp+1), (1)
δ(sid

, x1) + δ(x1, sid+1) < δ(sid
, x2) + δ(x2, sid+1), and (2)

δ(sjp , x1) + δ(x1, sid+1) < δ(sjp , x2) + δ(x2, sid+1). (3)

▷ Claim 2. If x1 dominates x2, then

c(ι1 = (r, x1, νp, νd, ip, jp, id, jd)) < c(ι2 = (r, x2, νp, νd, ip, jp, id, jd)).

Proof. See Section A. ◁
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In road networks with heterogeneous travel speeds, there can easily be locations that
are not well accessible to both the pickup and the dropoff vehicle (e.g., side roads within a
neighborhood), which leads to them being dominated by locations on more easily accessible
roads in the vicinity. Note that a test for domination between two transfer points can be
computed quickly. Thus, it is worth filtering transfer points based on domination before
performing the much more expensive calculation of insertion costs.

Parallelization. Computing the cost of all feasible insertions can be trivially parallelized.
We iterate over pairs of pickup and dropoff vehicles in Fp(r) × Fd(r) in parallel with the
same thread computing the cost for all insertions of one vehicle pair. Each thread keeps
a thread-local best insertion seen. When all threads are done, the best of the thread-local
insertions is chosen. Pareto-dominance and cost bounds can still be applied by each thread.

6 Heuristic Transfer Points

In this section, we describe a way to reduce running times by heuristically choosing a subset
of transfer points based on CHs. CHs aim to order vertices by their importance for shortest
paths in the road network during construction. Therefore, we can assume that vertices of
high CH rank can be reached easily and may be good candidates for transfer points.

In our heuristic, we only consider the k percent of vertices in the network with the highest
ranks as transfer points. Let Vsorted = ⟨v1, . . . , vn | vj ∈ V, rank(vj) ≥ rank(vj+1)⟩. Let Vk%
denote the subset of the first nk/100 vertices. When computing the potential transfer points
for a request, for every ellipse E(si), candidate vertices are now limited to E(si) ∩ Vk%.

This restriction provides two advantages with regard to computation time. Firstly, the
one-to-all PHAST queries used to reconstruct detour ellipses (see Section 5.1) can now stop
after scanning only the top k% of vertices. Secondly, the average size of each restricted
detour ellipse will be much smaller which reduces the number of transfer insertions that
need to be tried. As a trade-off, the heuristic may negatively affect the solution quality since
potentially good transfer locations that are not in the top k% of vertices may be missed. The
parameter k allows an interpolation between the reduced running time and loss in quality.

7 Experimental Evaluation

We experimentally evaluate our approach on realistic input instances for dynamic taxi sharing.
In this section, we refer to our approach as KaRRiT (KaRRi with Transfers).

7.1 Experimental Setup and Benchmark Instances
Our source code2 is written in C++20 and compiled with GCC 11.5 using -O3. We use two
machines for separate experiments, both running Rocky Linux 9.5. Machine A has 64 GiB of
memory and a single 16-core AMD Ryzen 9 3950X processor at 3.5GHz. Machine B has 512
GiB of memory and a single 32-core Intel Xeon Gold 6314U processor at 2.3 GHz. We use
32-bit distance labels and the AVX2 SIMD instruction set with 256-bit registers to compute
up to 8 operations in one vector instruction.

We evaluate KaRRiT on the Berlin-1pct (B-1%), and Berlin-10pct (B-10%) request
sets [7] that, respectively, represent taxi-sharing demand for 1% and 10% of the population
of the Berlin metropolitan area on a weekday. The request sets for Berlin were artificially

2 Available at https://github.com/JohannesBreitling/karri-with-transfers.
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Figure 3 Average running times per request of main components of KaRRiT in incrementally
more efficient configurations. The configuration “base” uses PHAST and RPHAST wherever possible
but none of the other optimizations described in Section 5. The other configurations add the specified
optimization to the configuration to their left. (The configurations “T=n” each add multi-threading
with n threads to the “+ SIMD” configuration.)

generated using the Open Berlin Scenario [48] for the MATSim transport simulation [22]3.
Both sets cover a time window of 30 hours and follow a realistic distribution of demand on
a weekday regarding both time and space. The Berlin-1pct and Berlin-10pct request
sets contain 16569 and 149185 requests, respectively. Images on the temporal and spatial
distribution can be found in Figure 4 in Section B. We use 1000 vehicles for Berlin-1pct
and 10000 vehicles for Berlin-10pct. Each vehicle has a capacity of four and a service time
interval covering the entire 30 hours. The initial locations of all vehicles are drawn uniformly
at random. The underlying road network of Berlin and the surrounding area is obtained
from publicly available OpenStreetMap data4. It contains 94422 vertices and 193212 edges.
We use the known speed limit of each road to determine the travel time of the according
edge in the vehicle network. We compute a contraction hierarchy of the road network using
the open-source library RoutingKit5. This takes less than a minute for Berlin.

For our cost function (see Section 2), we adopt a basic “time is money” approach. We
use τ = 1 to weight the time of a driver and a rider equally. In accordance with the MATSim
transport simulation, we choose α = 1.7 and β = 2min. For the remaining parameters, we
choose tmax

wait = 600s, γwait = 1, and γtrip = 10.

7.2 Analysis of Optimizations for the Exact Algorithm
We analyze the impact of individual features of our algorithm on the running time. For this,
we run experiments on machine A. We use the Berlin-1pct instance as running times for a
non-optimized implementation are infeasible on Berlin-10pct. We consider the four main
components of our algorithm (lines 4-7 in Algorithm 1) separately.

3 MATSim generates realistic demand data but considering more than 10% of the population would take
processing times in the order of multiple months. For details, see [7].

4 https://download.geofabrik.de/.
5 https://github.com/RoutingKit.

https://download.geofabrik.de/
https://github.com/RoutingKit
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Table 1 Comparison of running times and key performance metrics for main components of exact
(E) and heuristic (H) variants of KaRRiT on the Berlin-1pct and Berlin-10pct instances. Shows
average running time per request for each step as well as average total running time per request in
milliseconds. Additionally, shows number of insertions tried (ins) for ordinary and ALS, as well as
number of potential transfer points (|T |) for ALS (both in thousands).

Ell. Ord. ALS P.-Veh. ALS D.-Veh. Total

inst. alg. time
[ms]

ins
[·103]

time
[ms]

|T |
[·103]

ins
[·103]

time
[ms]

|T |
[·103]

ins
[·103]

time
[ms]

time
[ms]

B-1%
E 10.4 3.6 8.6 60.6 2.1 7.8 31.3 14.0 6.9 34.0
H 2.7 0.3 1.0 1.2 0.3 0.9 0.8 1.6 0.8 5.7

B-10%
E 58.2 42.8 85.6 148.6 80.5 37.0 93.9 189.5 73.4 255.2
H 16.0 5.1 9.3 2.8 9.9 2.8 1.5 26.3 3.7 32.4

To start with, utilizing PHAST speeds up the computation of detour ellipses by a factor
of about 2.5 compared to the Dijkstra-based implementation (cf. Section 5.1). Thus, we start
from this baseline of using PHAST and RPHAST, and illustrate the speedups achieved with
our additional measures in Figure 3.

Applying cost bounds (see Section 5.4) has the greatest effect on ALS insertions for the
dropoff vehicle with a speedup of about 7.74. The enumeration of ALS insertions for the
pickup vehicle and ordinary insertions become 1.89 and 1.56 times faster, respectively.

Additionally checking transfer points for pareto-dominance speeds up the enumeration of
ordinary transfer insertions, ALS transfer insertions for the pickup vehicle, and ALS transfer
insertions for the dropoff vehicle by factors of 2.96, 2.15, and 1.19, respectively. This shows
that transfer point dominance and cost bounds work well in combination. In fact, the two
methods seem to synergize as the speedups for transfer point domination are highest for the
components where cost bounds provide the least benefit.

Bundling PHAST queries and employing SIMD vector instructions to run up to eight
searches simultaneously speeds up ellipse reconstruction by a factor of 2.72. However, it has
almost no effect on the ALS steps because their runtime is dominated by work not affected
by SIMD speedups like enumerating insertions or the RPHAST selection phase.

Using four threads for parallel PHAST queries and enumeration of insertions leads to
mediocre speedups, ranging from 1.62 for ALS transfer insertions for the pickup vehicle,
to 2.56 for the dropoff vehicle. For the PHAST queries used during ellipse reconstruction,
this can be attributed to the fact that PHAST can only settle vertices in parallel within
individual CH levels. Since our road network is comparatively small, the sizes of CH levels
are limited and synchronization overhead may be large. For the enumeration of transfers,
speedups are again held back by work that we did not parallelize, e.g., the RPHAST selection
phase. These effects contribute to the lack of scalability to larger numbers of threads. With
16 threads we hardly see any speedups compared to 4 threads. The only component that
benefits from more threads is the enumeration of ALS transfer insertions for the dropoff
vehicle, which spends a lot of time on trivially parallelizable cost computation.

7.3 Effect of Heuristic on Running Time
We compare the running time of the heuristic variant (H) of KaRRiT (see Section 6) with the
exact variant (E). The experiments were run on machine B with 32 threads, all optimizations,
and k = 10% for H. Running times per request for different steps are shown in Table 1.

ATMOS 2025
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Table 2 Comparison of dispatch quality on Berlin-1pct and Berlin-10pct between the baseline
without transfers KaRRi (K) and KaRRiT in the exact (E) and heuristic (H) variants. Shows
average rider wait time and trip time in minutes and seconds, average trip time relative to shortest
orig-dest path, average vehicle operation time in hours and minutes, and vehicle occupancy rate
averaged over time. Last column gives average total running time of the dispatcher per request.

inst. alg. wait
[mm:ss]

trip
[mm:ss]

trip
(rel.)

drive
[hh:mm]

occ total
[ms]

B-1%
K 03:30 16:30 1.46 04:00 0.886 0.2
H 03:29 16:32 1.47 03:59 0.894 5.7
E 03:30 16:35 1.47 03:58 0.898 34.0

B-10%
K 02:43 15:33 1.72 02:55 1.061 0.4
H 02:45 15:52 1.75 02:49 1.109 32.4
E 02:48 16:02 1.78 02:47 1.127 255.2

Restricting transfer points to vertices of high CH rank using H reduces the running time
of the ellipse reconstruction by a factor of about four compared to the exact solution. As
discussed in Section 6, this is caused by the PHAST queries having to perform only one
tenth of the work, settling the top k = 10% of vertices in the CH. Since the upper CH levels
are small and only vertices within the same CH level can be settled in parallel, the ellipse
reconstruction in H does not benefit from multi-threading. This limits the speedup over E
to four instead of being closer to ten. Due to reduced ellipse sizes, H computes the cost of
about eight times fewer insertions than E. In the ordinary transfer step, the smaller ellipse
sizes also reduce the time needed for intersecting ellipses. Additionally, the set of targets T
for RPHAST in the ALS transfer components is around two orders of magnitude smaller for
H than for E, which speeds up the selection and query phases of RPHAST.

For E, the set of transfer points T includes almost all locations in the road network6.
Thus, a PHAST query without an expensive RPHAST selection phase may perform better.
For H, the number of transfer points is small enough to warrant using RPHAST.

Note that the number of insertions tried can exceed the number of transfer points because
every pickup or dropoff vehicle may be matched with any transfer point. In turn, the
transfer point pruning strategies outlined in Section 5.4 reduce the number of insertions tried.
Interestingly, these pruning strategies appear to be more successful for E than for H as the
ratio between the number of insertions tried and the number of potential transfer points is
much larger for H than for E. This may be explained by the fact that H already heuristically
selects good transfer points based on CH rank such that they may be harder to prune using
cost bounds or especially transfer point domination.

7.4 Impact of Transfers on Solution Quality
We evaluate the impact of allowing transfers on the solution quality of dynamic taxi sharing
by experimentally comparing KaRRiT in the exact (E) and heuristic (H) variants to the
no-transfer baseline KaRRi. Results for experiments run on machine B are shown in Table 2.
Note that we give only preliminary results on dispatch quality, since the focus of this work is
on the algorithmic aspects. In the future, we plan to use our new fast algorithm to consider
the effect of transfers in more detail with a larger variety of input instances.

6 It is possible that |T | > |V | since our implementation of KaRRiT uses edges, not vertices, as transfer
locations. We still always have |T | ≤ |E|.
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Considering the running time of the algorithms, KaRRi is up to two orders of magnitude
faster than the heuristic variant, and three orders faster than the exact variant. The running
time of H can still be considered practical while E seems infeasibly slow.

On Berlin-1pct, transfers appear to have almost no effect on the solution quality. This
can be attributed to the fact that the density of requests is small with about one request
per minute. Thus, it is unlikely that two riders share a vehicle (as evidenced by the low
vehicle occupancies). Moreover, a vehicle may always be available to take a passenger to
their destination directly, which often outperforms any transfer insertions. In additional
experiments with artificially increased request densities, we were able to confirm that request
density is in fact a deciding factor for the viability of transfers.

As Berlin-10pct also provides a much denser request set, we focus on this instance here.
When comparing the exact solution E to KaRRi, we see decent improvements in occupancy
rates and slight improvements in vehicle operation times. Average occupancy rates increase
by 5.9%, and vehicle operation times decrease by 4.6%. This is a significant benefit with
respect to the use of space on the roads and the operating costs of the taxi-sharing provider.
As a drawback, rider trip times increase by 3.1% compared to KaRRi. This matches the
expectation that transfers may be good for efficiency at a cost of rider satisfaction.

While these gains may not justify the large running time of E, the heuristic H retains
most of the benefits. The improvement for vehicles are about one third smaller than for E,
but rider trip times are also less severely affected. Since H is an order of magnitude faster
than E, it may therefore be a more viable candidate for a production system.

8 Conclusions

KaRRiT provides an efficient algorithmic approach to find optimal single-transfer journeys
for the dynamic taxi-sharing problem with on-the-fly distance computation. We explore
the usage of state-of-the-art shortest-path speedup techniques and propose new pruning
techniques for the large solution space. While we only show first results on the benefits of
transfers on dense request sets, we find that our approach is suited to conduct experiments
on city-scale real-world instances. We aim to use this new opportunity to design more precise
studies on the service quality and resource usage of taxi sharing with transfers in cooperation
with application experts. This analysis should include considerations on the viability of
transfer locations with regard to aspects like safety, accessibility, and efficiency of transfers.

In the future, we would like to improve the efficiency of our exact algorithm, in particular
by introducing multi-threading to non-parallelized regions of the algorithm or by introducing
a prunable version of the PHAST algorithm to speed up the ellipse reconstruction process.
Further, various extensions of the problem could be explored: Although our algorithm
currently assumes fixed travel times, there are so-called customizable variants of shortest-path
algorithms [5, 13], which allow efficient updates of travel times in the road network, for
example, to incorporate information on traffic congestion. In the future, we would like to
consider how these updates can also be applied efficiently to the current vehicle schedules
in a taxi-sharing system to employ fully up-to-date information when answering requests.
Allowing multi-transfer journeys in dynamic taxi sharing, especially three-leg journeys with
high-capacity trunk vehicles and smaller feeder vehicles, may improve dispatch quality.
Similarly, KaRRiT may be integrated into a multi-modal transportation system and used
alongside public transit. This would offer good flexibility while utilizing the economics of
scale of public transit. Allowing pre-booking or the batching of requests in a rolling horizon
approach would open up the possibility for local optimizations and could improve dispatch
quality by reducing the impact of the online characteristics of the problem.
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A Omitted Proof for Pareto-Dominance between Transfer Points

▶ Definition 1. Let x1, x2 ∈ E(sjp
(νp)) ∩ E(sid

(νd)). Then, x1 dominates x2 if

δ(sjp
, x1) + δ(x1, sjp+1) < δ(sjp

, x2) + δ(x2, sjp+1), (1)
δ(sid

, x1) + δ(x1, sid+1) < δ(sid
, x2) + δ(x2, sid+1), and (2)

δ(sjp
, x1) + δ(x1, sid+1) < δ(sjp

, x2) + δ(x2, sid+1). (3)

▷ Claim 2. If x1 dominates x2, then

c(ι1 = (r, x1, νp, νd, ip, jp, id, jd)) < c(ι2 = (r, x2, νp, νd, ip, jp, id, jd)).

Proof. The insertions ι1 and ι2 differ only in the transfer point. Thus, if the vehicle detour
as well as the rider trip time incurred for x1 is smaller than for x2, the cost of ι1 will be
smaller than that of ι2.

Conditions (1) and (2) ensure that the vehicle detour is smaller for x1 than for x2. This
also guarantees that the added trip times for existing passengers of νp and νd will not be
larger for x1 than for x2.

For the rider trip time, it suffices to make sure that the arrival time at sid+1 is smaller for
x1 than for x2. This is more complex than the issue of detours, though, since the departure
time at the transfer point is determined by whether the pickup vehicle or the dropoff vehicle
arrives sooner. Assume that the pickup vehicle departs at sjp at time tdep(sjp) after making
the detour for the pickup. Similarly, let tdep(sid

) describe the time at which the dropoff
vehicle leaves sid

. Then, the arrival time of the pickup and dropoff vehicles at transfer point
x can be characterized as tp

arr(x) := tdep(sjp
) + δ(sjp

, x) and td
arr(x) := tdep(sid

) + δ(sid
, x),

respectively. The trip time until sid+1 is ttrip(x) := max
{

tp
arr(x), td

arr(x)
}

+δ(x, sid+1). Thus,
we need to show that ttrip(x1) < ttrip(x2) if x1 dominates x2. We consider two cases:

Case 1 : Assume tp
arr(x1) ≤ td

arr(x1). Then,

ttrip(x1) = td
arr(x1) + δ(x1, sid+1)

= tdep(sid
) + δ(sid

, x1) + δ(x1, sid+1)
(2)
< tdep(sid

) + δ(sid
, x2) + δ(x2, sid+1)

= td
arr(x2) + δ(x2, sid+1) ≤ ttrip(x2).

Case 2 : Assume tp
arr(x1) > td

arr(x1). Then,

ttrip(x1) = tp
arr(x1) + δ(x1, sid+1)

= tdep(sjp) + δ(sjp , x1) + δ(x1, sid+1)
(3)
< tdep(sjp

) + δ(sjp
, x2) + δ(x2, sid+1)

= tp
arr(x2) + δ(x2, sid+1) ≤ ttrip(x2). ◀
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B Additional Information on Benchmark Instances
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(a) Berlin-1pct.
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(b) Berlin-10pct.

(c) Origins in Berlin-1pct. (d) Destinations in Berlin-1pct.

(e) Origins in Berlin-10pct. (f) Destinations in Berlin-10pct.

Figure 4 Additional information on Berlin-1pct and Berlin-10pct input instances. Histograms
of distribution of requests over time (Figures 4a–4b, bin width of 15 minutes). Spatial distribution
of requests (Figures 4c–4f).
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