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Abstract
Ridepooling becomes more and more popular and providing comfortable and easy-to-use trans-
portation (nearly as taxi rides) is known to motivate passengers to use public transport. In this
paper we develop a model for strategic planning of ridepooling. Here we decide in which regions
ridepooling should be offered and what capacities are needed, neglecting the operational details of
dial-a-ride planning. We use this model for integrating ridepooling and line planning, and analyze
the integrated model theoretically and numerically. Our experiments show the potential of the
approach.
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1 Motivation

Line planning is an important step in public transport optimization and numerous papers on
the topic exist in the literature, ranging from the now 100 years old paper of [15] to very
recent surveys [21, 22] summarizing the various models that have been developed for line
generation, line selection, frequency setting, their integration, the different underlying routing
models and robustness issues. Typically, in line planning, the task is to choose a set of lines
and assign frequencies to the lines. Determining a timetable which is then implemented in
practice is usually a separate problem.

In regional areas or outside the main traffic hours, schedule-based transportation with
large buses is often replaced by smaller vehicles operating on a demand-based and more
flexible basis. Such systems are often called ridepooling. Passengers can request a ridepooling
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16:2 A Model for Strategic Ridepooling and Its Integration with Line Planning

vehicle for a trip from one location to another at a specific time. An operator decides about
the routes of the ridepooling vehicles and schedules the specific requests of the passengers.
There is a growing offer of ridepooling services across Europe. In Italy, for example, there
are about ten bigger projects of on-demand services in the area between Milan and Florence.
In Germany, the operator MOIA services cities like Hamburg and Hannover (c.f. [14]). In
the UK, there are, e.g., the West Midlands Bus on Demand service [28] and the On-Demand
Rideshare in Birmingham [1].

The operational details of scheduling the requests in ridepooling have been researched
extensively. The underlying model is called the (online) dial-a-ride problem, which has
already become popular in the 80s of the previous century often with an application to
scheduling trips of elderly persons (e.g. [3], [12], see [25] for a survey), but is nowadays
researched again (see e.g. [9], [11], and [29] for a survey), also with the perspective of future
self-driving cars in mind. However, the strategic aspects of ridepooling, i.e., to identify where
in the network ridepooling areas are needed and with how many vehicles they should be
operated have to the best of our knowledge not been modeled and treated algorithmically so
far. This is in particular important when designing a multi-modal transport system in which
both, lines and ridepooling vehicles, operate. Then it is important to understand whether
the two modes (regular bus lines and ridepooling) compete or complement each other.

The goal of this paper is to design a public transport system which consists of regularly
operated bus lines as well as ridepooling services. This means we want to treat line planning
and ridepooling simultaneously. As a first step towards this goal, we need a model for
strategic ridepooling in which we disregard operational details, similarly to how line planning
is a preparatory step to determining a timetable to implement. Our contribution is hence
the following.
1. We develop a model for strategic ridepooling: Given some demand, which ridepooling

areas are needed and with how many vehicles should they be operated?
2. We integrate line planning and strategic ridepooling to plan lines and ridepooling areas

simultaneously.
3. We analyze the resulting model, its complexity status and give bounds on its objective

function value.
4. Our experiments are promising: Problems can be solved for small and medium instances

and show reasonable results. We discuss how optimal solutions and the runtime of the
model vary depending on the input parameters.

The remainder of this paper is structured as follows: Based on the known cost model
of line planning (described in Section 2.1) we develop a model for strategic ridepooling in
Section 2.2. The ridepooling model requires a set of potential ridepooling areas with given
vehicle frequencies. In Section 2.3 the construction of this input data is discussed.

The integrated ridepooling and line planning model is stated and analyzed in Section 3.
In Section 4, results from numerical experiments are presented. We conclude in Section 5.

2 Strategic Planning of Ridepooling Areas

2.1 Line Planning
Line planning is well known in the literature, see [6] for a survey. Nevertheless, there are
two reasons why we briefly introduce line planning here. First, the model we propose for
strategic ridepooling is analogous to the basic line planning model. Second, in Section 3 we
integrate the two tasks: planning lines and planning ridepooling services.
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Let PTN = (V, E) be a public transport network where V is a set of stops and the set
of edges E consists of the direct links between pairs of stops. A line is a path in the PTN.
Usually, it is assumed that a set of potential lines, the so-called line pool LPool is given. The
goal is to choose a set L of lines from the line pool (line selection) and to assign frequencies
to them such that every edge in the PTN on which passengers wish to travel is covered by a
line. The frequency fl is defined as the number of runs of line l ∈ L within a given planning
interval T . The chosen lines L are called a line plan. The lines l ∈ L together with their
frequencies fl are called a line concept.

The line planning problem may involve many different constraints, and many different
approximations of a reasonable objective function exist. For our investigations we use the
basic version of the cost model of [5], see also [23]: Let LPool be a given set of potential lines.
We assume that for every line l ∈ LPool the costs l-costl for operating it once from its first
to its last station are known. These costs depend on the length of the line and on the time
needed to drive from its first to its last station. As decision variables we use the frequencies
fl for all l ∈ LPool. We require them to be non-negative and integral. A frequency of fl = 0
means that line l is not selected in the line plan. The cost model of line planning reads as

min
∑

l∈LPool

l-costl · fl

s.t. Le ≤
∑

l∈LPool:e∈l

fl ≤ Ue ∀e ∈ E (1)

fl ∈ IN0 ∀l ∈ LPool.

It minimizes the sum of costs for operating the selected lines. The constraints ensure
that there is the right amount of “frequency” along every edge. The lower bounds Le usually
stem from a passenger-oriented consideration: In a first step, passengers are routed along
shortest paths in the PTN. This gives an amount of wmin

e passengers wishing to travel along
edge e. Assuming that all vehicles have the same capacity l-cap the values Le are chosen as
Le :=

⌈
wmin

e

l-cap

⌉
, where wmin

e is the number of passengers who wish to travel along this edge.
The upper bounds Ue can represent capacity constraints to restrict the number of vehicles
that pass along an edge in the planning period. The cost model as stated above has been
used, e.g., in [27, 7, 17, 18].

For the usage in the current paper, we transform constraint (1) that currently bounds
the frequency directly to instead bound the total capacity for transporting passengers on
each edge. I.e., we use the passenger data wmin

e as lower bound instead of a lower bound on
the frequencies. Instead of rounding the number of vehicles needed on every edge, we now
require directly that all passengers are transported, i.e.,∑

l∈LPool:e∈l

l-cap · fl ≥ wmin
e

for every edge e ∈ E. Defining wmax
e := Ue · l-cap hence results in the (equivalent) line

planning model used in this paper:
Given a PTN with lower and upper bounds wmin

e , wmax
e for every edge e ∈ E, a line pool

LPool with costs l-costl for every line l ∈ LPool, and a capacity l-cap for a vehicle operating
on the lines, the line planning model is the following.

ATMOS 2025



16:4 A Model for Strategic Ridepooling and Its Integration with Line Planning

Line Planning (LC) (Finding a line concept)

min
∑

l∈LPool

l-costl · fl (LC)

s.t. wmin
e ≤

∑
l∈LPool:e∈l

l-cap · fl ≤ wmax
e ∀e ∈ E

fl ∈ IN0 ∀l ∈ LPool.

2.2 A new Model for Planning Ridepooling Areas
In order to combine line planning and ridepooling decisions on a strategic level, we need a
model for ridepooling that leaves out the operational details such as which exact route which
ridepooling vehicle travels at which time to cover which request. While these operational
details are changing scenario-dependently from hour to hour and from day to day, we are
interested in average passenger numbers as they are also used for line planning. In this
section we develop a ridepooling model analogous to the cost model (LC) of line planning
described in the previous section.

Let us again assume that a PTN=(V, E) is given and that we want to cover all the
demand. However, here we want to cover the demand by ridepooling and not by bus lines.
The main idea is to introduce ridepooling areas in which the same ridepooling provider offers
a transportation service. This is in many regions common practice: only if the origin and
the destination of a trip belong to a pre-specified area, a passenger is allowed to request a
ridepooling vehicle for this trip. Such ridepooling areas may have different sizes and shapes.
In a first step, we construct a pool RPool of such ridepooling areas. This is analogous to the
idea of using a line pool LPool in the line planning problem. In line planning, the frequency
fl of a selected line l must be chosen so that there is enough capacity on every edge to
transport all passengers. For ridepooling we proceed analogously and allow to adapt the
supply to the demand. More precisely, for each ridepooling area in the pool we choose the
number of ridepooling vehicles vr that serve this area such that the demand along every edge
is covered.

More formally, we define a ridepooling area r as a set of edges r ⊆ E. A ridepooling
area r is called connected, if its induced graph Gr := (V (r), r) is a connected graph where
V (r) := {v ∈ V : v is incident with an edge e ∈ r} contains the endpoints of the edges in r.
While connectedness is usually required in practice, it is technically not needed for our model.
For each ridepooling area we determine the number of vehicles for this ridepooling area.

Note that a line (i.e. a path in the PTN) can be interpreted as a special case of a
ridepooling area in which the vehicles move along pre-determined trips instead of moving
around freely within their assigned area. However, there is a difference: If a line l runs with
a specific frequency, say, fl = 3, all edges e ∈ l are visited three times per planning period.
A ridepooling vehicle, on the other hand, does not need to visit all edges with the same
frequency, but could visit a specific edge more often than others. Hence, a ridepooling area
has a higher flexibility than a line. We take this into account by introducing a new parameter

αr,e as the vehicle frequency of edge e ∈ E

for ridepooling area r ∈ RPool. The vehicle frequency αr,e says how often a single vehicle
from ridepooling area r ∈ RPool visits edge e ∈ E on average within the planning interval T .
Since the demand changes from day to day, αr,e can only be an approximation. The product
αr,e · vr gives us the number of times edge e is served within the planning period T . This is
hence analogous to the frequency for the edges of a line.
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Table 1 Comparison of models for line planning and strategic ridepooling.

Line planning Ridepooling

Pool Pool of lines LPool Pool of ridepooling areas RPool

Supply Frequencies of lines fl Number of vehicles in ridepooling
areas vr

Distribution on edges Frequency fl is the same for all
edges e ∈ l

Vehicle frequencies αr,e allow edge-
dependent frequencies for edges
e ∈ r

Cost Depends linearly on the frequency
of a line

Depends linearly on the number of
vehicles

Given a PTN with lower and upper bounds wmin
e , wmax

e for every edge e ∈ E, a pool of
ridepooling areas RPool with costs r-costr for every ridepooling area r ∈ RPool, values αr,e

for every r ∈ RPool, e ∈ E and a capacity r-cap for the ridepooling vehicles, the resulting
strategic ridepooling model (RP) is the following.

Strategic Ridepooling (RP)

min
∑

r∈RPool

r-costr · vr (RP)

s.t. wmin
e ≤

∑
r∈RPool:e∈r

αr,e · r-cap · vr ≤ wmax
e ∀e ∈ E

vr ∈ IN0 ∀r ∈ RPool.

Since lines can be seen as special ridepooling areas, (LC) is a special case of (RP):

▶ Lemma 1. Model (LC) for line planning is a special case of the model for strategic
ridepooling (RP).

This directly clarifies the complexity status of (RP) (see Appendix C.1 for a formal
proof).

▶ Corollary 2. (RP) is NP-hard, even if we require that all ridepooling areas are simple
paths.

Table 1 compares the setting for line planning and strategic ridepooling.

2.3 Vehicle Frequencies
(RP) needs not only ridepooling areas as input but also vehicle frequencies αr,e. We now
discuss how reasonable values for αr,e can be found. Recall that for each ridepooling vehicle
assigned to the ridepooling area r ∈ RPool, αr,e says how many times, on average, it traverses
the edge e ∈ r within the planning period T . Let r be a ridepooling area. We want to find
values αr,e such that:

The values reflect the demand, i.e., edges with high demand should be visited more often
(on average) than edges with low demand. The goal is to be as proportional to the traffic
loads as possible.
The values should also be realizable by the ridepooling vehicles in the following sense:
There exists a set of tours, one for each vehicle, such that the number of visits of a vehicle
at an edge is proportional to αr,e.

ATMOS 2025



16:6 A Model for Strategic Ridepooling and Its Integration with Line Planning

In this section we show how values αr,e which are realizable and rather proportional to
the demand can be found. Since we do not know a priori how many vehicles will be assigned
to ridepooling area r, the idea is to construct one feasible tour for the (average) vehicle
which visits every edge approximately proportional to its traffic load.

Let de be the time needed to drive along the edge e ∈ E. Due to the definition of αr,e,
namely the average number of visits of edge e in one period T , we receive∑

e∈r

αr,e · de ≤ T for every ridepooling area r ∈ RPool.

An “optimal” set of values for αr,e would be proportional to the number Le of visits
needed to transport all passengers, i.e., to

Le :=
⌈

wmin
e

r-cap

⌉
.

Let us assume that a tour C that visits each edge e exactly Le times exists. Then C has a
duration DL

r of

DL
r =

∑
e∈r

Le · de.

A single vehicle can drive tour C at most T
DL

r
times within the planning period T . We hence

have that every edge is traversed α∗
r,e := Le · T

DL
r

times within period T , i.e., the values α∗
r,e

are proportional to Le and are realizable if all vehicles of the ridepooling area always drive
along the tour C. This is hence the best possible case.

Let us first answer the question when such a tour that visits each edge exactly Le times
exists. To this end we look for a Euler cycle. We do not use the graph Gr of the ridepooling
area r, but we build a multigraph G′

r which reflects the given demand structure. G′
r has

the same node set as Gr, but the number of edges between two nodes corresponds to the
minimum number of times a vehicle needs to drive between them to cover the passenger
demand. Formally, let Gr = (V (r), r) be given. Then we construct G′

r = (V (r), E(r))
with the same set of nodes as Gr and for every edge e = (u, v) ∈ r of Gr we introduce
Le :=

⌈
wmin

e

r-cap

⌉
edges between u and v in G′

r. Note that the values Le are often assumed to
be given right from the start in line planning. We receive the edge set

E(r) :=
⋃

e=(u,v)∈r

{(u, v)1, . . . , (u, v)Le
}.

▶ Lemma 3. Let r ∈ RPool. Then there exists a tour which visits every edge e ∈ r exactly
α∗

r,e times if and only if every node in G′
r has even node degree.

Proof. This is due to the well-known fact that an Euler tour in a graph exists if and only if
all node degrees are even. ◀

Even node degrees need not always be the case in G′
r. We hence add further edges to

the multigraph so that every node in the graph has an even node degree. This results in Ne

edges per original edge e ∈ r. One (heuristic) way to determine Ne is to replace every edge
e ∈ r not by Le but Ne edges, where

Ne :=
{

Le if Le is even,
Le + 1 if Le is odd.

We call the resulting multigraph with even node degrees G′′
r .
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The multiplicities of the edges can then be transformed to the vehicle frequencies of
ridepooling area r: The graph G′′

r hence contains an Euler cycle whose duration is

DN
r =

∑
e∈r

Ne · de.

Within the planning period T a vehicle can make this trip T
DN

r
times. This means that every

edge e ∈ r is traversed Ne · T
DN

r
times. Hence, for all e ∈ r define αr,e := Ne · T

DN
r

.
We summarize what we have obtained, for the proof see Appendix C.2.

▶ Lemma 4. The values αr,e := Ne · T
DN

r
for all r ∈ RPool, e ∈ r

can be computed in polynomial time,
can be realized, i.e., there exists a set of tours for the vehicles such that the values αr,e

equal the number of average visits of a vehicle on the edge e in ridepooling area r within
period T ,
and for all e ∈ r they satisfy that

αr,e − α∗
r,e ≤ T · Le ·

∑
e∈r:Le odd

de

(DL
r )2+DL

r ·
∑

e∈r:Le odd
de

≤ α∗
r,e

αr,e − α∗
r,e ≥

{
− T

DL
r

if Le is odd,
0 if Le is even.

Part 3 of Lemma 4 shows that the gap between αr,e and α∗
r,e is bounded. The lower and

upper bounds on the gap have an intuitive interpretation: The smallest possible gap for an
edge e depends on whether or not the constructed multigraph G′′

r has “too many”, i.e., more
than Le edges corresponding to e. The upper bound on the gap depends on how many edges,
overall throughout the whole ridepooling area r have too many corresponding edges in the
multigraph. From the upper bound we additionally get that αr,e ≤ 2α∗

r,e.

The resulting values αr,e have been evaluated and tested compared to solutions for the
classic dial-a-ride problem showing very promising results: A simple insertion heuristic for
the classic dial-a-ride problem has been implemented in LinTim ([20]). A more detailed
description of the heuristic can be found in Appendix B.

The heuristic and the vehicle frequencies were tested on a five by five grid network for
randomly generated demand and a maximum detour factor of 2, i.e., passengers might have
to make detours, but these are restricted by the (travel) length of a shortest path, meaning
the length of their trip is bounded by twice the length of a shortest path. The number of
vehicles resulting from the vehicle frequencies αr,e is only slightly lower as the number of
vehicles required by the insertion heuristic. Assuming that the heuristic solutions are not
always optimal, i.e., it is probably possible to serve the passengers with slightly fewer vehicles,
the number of vehicles from the optimal solution of (RP) appears to be a good estimation.

This procedure for defining the vehicle frequencies αr,e can be further generalized by,
instead of replacing each edge e ∈ r of a ridepooling area r ∈ RPool by Ne edges, replacing
it by Me ∈ IN edges such that the resulting multigraph G′

r is connected and every node
has even degree. Then, the resulting vehicle frequencies for all e ∈ r are αr,e = Me · T

DM
r

where DM
r =

∑
e∈r Me · de. Also completely other methods to obtain values for the vehicle

frequencies are possible, e.g., simulations.

Note that the direction of the passenger demand has been disregarded in the construction
of the vehicle frequencies αr,e. However, passengers tend to have a preferred direction for
their journey. The strategic ridepooling model (RP) can also be considered with a directed
graph as the underlying network. The construction of the vehicle frequencies αr,e works

ATMOS 2025



16:8 A Model for Strategic Ridepooling and Its Integration with Line Planning

analogously to the undirected case described above, using the well-known fact that a directed
graph has a Euler cycle if and only if it is strongly connected and for each vertex the in-degree
equals the out-degree.

We remark that it is allowed to include the same ridepooling area multiple times with
different vehicle frequencies in the ridepooling pool RPool. This offers more flexibility for the
model and potentially improves the resulting solutions. However, it also increases the size of
the problem, making it more difficult to solve.

3 Integrating Line planning and Strategic Planning of Ridepooling
Areas

In Section 2, key differences between line-based and demand responsive public transport
have been discussed. Ideally, when designing a public transport system, both modes are
established in a way that utilizes their strengths and advantages such that they complement
each other. We now propose a model for the integrated planning of a line network and
ridepooling areas by combining (LC) with the strategic ridepooling model (RP).

In this combination we are again not interested in the specific routes the ridepooling
vehicles should drive for a specific scenario, but we have the strategic aspects in mind. Let
us mention that there exist a few papers integrating line planning with ridepooling in the
operational planning in the following sense: Passengers’ requests can be covered not only by
ridepooling vehicles but passengers can also be routed with legs using the existing (and fixed)
public transport system. This problem is called Integrated Dial-A-Ride Problem (IDARP),
see [16].

In contrast to (IDARP) we do not assume the public transport system as fixed, but we
aim at planning the lines and their frequencies simultaneously with setting up the ridepooling
system. As already said we are furthermore not interested in the operational details, but
plan strategically.

In our integrated model we minimize the overall costs, which are the sum of costs of
the line network and the ridepooling vehicles. The demand may be covered by lines and
by ridepooling areas. The combined problem (LC+RP) hence aims at determining the
frequencies fl and the number of vehicles vr for all l ∈ LPool and all r ∈ RPool.

min
∑

l∈LPool

l-costl · fl +
∑

r∈RPool

r-costr · vr (LC+RP)

s.t. wmin
e ≤

∑
l∈LPool:

e∈l

l-cap · fl +
∑

r∈RPool:
e∈r

r-cap · αr,e · vr ≤ wmax
e ∀e ∈ E

fl, vr ∈ IN0 ∀l ∈ LPool, r ∈ RPool.

Both separate problems (LC) and (RP) are NP-complete, which shows the complexity of
the integrated model (LC+RP).

▶ Corollary 5. (LC+RP) is NP-complete.

In the following we present an analysis of (LC+RP) including bounds and valid inequalities.
We also state that by variable fixing we receive (LC) and (RP) again. These results lay the
basis for future research on algorithms for solving (LC+RP). The proofs of the following
results can all be found in Appendix C.3.
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Since (LC+RP) is a combination of (LC) and (RP), feasible solutions for the separate
problems immediately yield feasible solutions for the integrated problems, which, in turn,
yield upper bounds for the optimal objective function value of (LC+RP).

▶ Theorem 6. The optimal objective function values z(LC) and z(RP ) of (LC) and (RP)
yield upper bounds for the optimal objective function value z(LC+RP ) of LC+RP:

z(LC+RP ) ≤ min{z(LC), z(RP )}

The demand on all edges needs to be covered sufficiently by lines or ridepooling areas. In
some cases and for some edges, this yields a valid inequality.

▶ Theorem 7. Let e ∈ E.
If there exists a ridepooling area r ∈ RPool such that e ∈ r and for all r′ ∈ RPool\{r} we
have e /∈ r′ and for all l ∈ LPool we have e /∈ l, then in any feasible solution for (LC+RP)
it holds that vr ≥

⌈
wmin

e

r-cap·αr,e

⌉
.

If there exists a line l ∈ LPool such that e ∈ l and for all l′ ∈ LPool\{l} we have e /∈ l′

and for all r ∈ RPool we have e /∈ r, then in any feasible solution for (LC+RP) it holds
that fl ≥

⌈
wmin

e

l-cap

⌉
.

Finally, fixing part of a solution for (LC+RP) leads, again, to an instance of (LC+RP).

▶ Theorem 8. Let LPool
fixed ⊆ LPool and fl ∈ IN for all l ∈ LPool

fixed, RPool
fixed ⊆ RPool and vr ∈ IN

for all r ∈ RPool
fixed, such that for all e ∈ E it holds that∑

l∈LPool
fixed :e∈l

l-cap · fl +
∑

r∈RPool
fixed :e∈r

r-cap · αr,e · vr ≤ wmax
e .

Then, the remaining problem of optimizing fl and vr for l ∈ LPool\LPool
fixed and r ∈ RPool\RPool

fixed
is an instance of (LC+RP).

This result yields that fixing fl leads to a problem of type (RP) and fixing vr leads to a
problem of type (LC). This means, iterative solution approaches are possible.

▶ Corollary 9. The following holds in the same setting as Theorem 8:
Fixing the ridepooling variables vr for all r ∈ RPool such that

∑
r∈RPool:e∈r r-cap·αr,e ·vr ≤

wmax
e leads to an instance of (LC).

Fixing the line frequency variables fl for all l ∈ LPool such that
∑

l∈LPool:e∈l l-cap · fl ≤
wmax

e leads to an instance of (RP).

4 Numerical Experiments

The model (LC+RP) has been implemented in the software toolbox LinTim ([20]) and tested
on different instances and for different input parameters. The MIP formulations were solved
using Gurobi 11.0.1 [10]. In this section, first an example is introduced and its solution is
described in Section 4.1. Then interpretations and observations about properties of solutions
are discussed in Section 4.2. Different experiments and results regarding the runtime of the
model are presented in Section 4.3.

We test our model on three different instances of varying size. All three networks are still
smaller than real-life instances, and further tests on larger networks are conceivable.

ATMOS 2025



16:10 A Model for Strategic Ridepooling and Its Integration with Line Planning

Table 2 Input parameters for the example in Section 4.1.

l-costfixed l-costdist r-cost l-cap r-cap
8 4 60 42 6

For our experiments, we need a method for line pool generation. Line Pool generation
is its own area of research (see [8] and references therein) and the underlying line pool can
have a big impact on the quality of the resulting solution. For our experiments we want a
line pool that is large enough to offer sufficient flexibility for the model but also not so large
as to render the model too complex to solve. In all experiments we used the same method
for line pool generation which we describe next: First, a basic line pool is computed with
the LinTim-method k_shortest_paths [20, p.33]: For each OD-pair we compute k shortest
paths with k = 3. Afterwards only those paths are added to the line pool, that are not
already contained in other paths. When planning a line service and a ridepooling service
simultaneously it can be beneficial to also have shorter versions of the lines in the line pool,
to allow peripheral areas to be covered more by ridepooling areas. Therefore, in Sections 4.1
and 4.2 in which we provide an example solution and an analysis of properties of solutions,
we added for each line also the copies of the line to the line pool, where the first and the last
edge are trimmed on each of the two ends separately and also on both ends. In Section 4.3,
where we give an analysis of the runtime of (LC+RP), copies of lines where not just one but
up to two edges have been trimmed on one or both ends of the lines have been added to the
line pool of k_shortest_paths, resulting in an even larger line pool. The cost of each line
is computed by an affine-linear function:

l-costl = l-costfixed +
∑
e∈l

l-costdist · de.

4.1 Example
For this example we use the LinTim-dataset Mandl, based on [13], which is depicted in
Figure 1a.

The ridepooling pool RPool for this example contains all connected subgraphs with at
most five edges. The ridepooling vehicle costs are the same for each ridepooling area, i.e.,
r-costr = r-cost for all r ∈ RPool.

Realistic input parameters, especially for the costs, can be difficult to estimate, since they
can vary greatly based on assumptions about the vehicles utilized in practice: electric vehicles
have lower operating costs than those with a combustion engine but are, currently, more
expensive. In the future, it is likely that public transport vehicles will drive autonomously,
rendering the driver and hence also their salary unnecessary. The input parameters used for
the example in this section can be seen in Table 2.

The passenger demand is represented by edge loads depicted in Figure 1b. There are 10
passengers who wish to travel on the edges 1 through 5 and 50 passengers for the edges 17,
18, 20 and 21. The remaining edges have a much higher passenger demand of 1000 passengers
per edge. Such a structure of passenger demand, while artificially created and rather simple,
is not very far from many realistic scenarios: Large cities often have a high passenger volume
while neighboring suburban areas typically have lower passenger demand.

The resulting optimal solution is shown in Figure 2. The area of the network with very
high demand is covered exclusively by lines, while the two smaller areas with lower demand
are supplied by ridepooling services. One of the areas is covered only by a ridepooling area,
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(a) The PTN. (b) Passenger demand.

Figure 1 The network Mandl for the example in Section 4.1.

(a) Line Concept. (b) Ridepooling areas.

Figure 2 Optimal solution of (LC+RP) on the Mandl dataset.

while the other also has some line service. It shows that, while line-based public transport is
very useful for areas with high passenger demand, the smaller, cheaper and more flexible
ridepooling vehicles are a useful alternative wherever there are not enough passengers to fill
a whole line vehicle.

4.2 Ridepooling Percentage
We want to evaluate solutions of (LC+RP), in particular we are interested to visualize in
which parts of the network ridepooling is offered instead of classic lines. To this end, we need
a measure for the amount of capacity offered by ridepooling. We introduce the ridepooling
percentage for a solution (fl, vr) of (LC+RP).

First, for each edge e ∈ E there is a certain amount of capacity in the chosen lines and
ridepooling areas that contain the edge:

Line-Cape :=
∑

l:e∈l fl · l-cap
RP-Cape :=

∑
r:e∈r αre · vr · r-cap

Then the ridepooling percentage on the edge is defined as follows:

RP-percentagee := RP-Cape

Line-Cape + RP-Cape

ATMOS 2025



16:12 A Model for Strategic Ridepooling and Its Integration with Line Planning

Figure 3 Edge Loads.

For the whole network, the ridepooling percentage is defined analogously:

RP-percentage =
∑

e∈E RP-Cape∑
e∈E Line-Cape + RP-Cape

The ridepooling percentage can be used to visualize (optimal) solutions computed for
different input parameters. We observe that the ridepooling percentage and hence the shape
of the optimal solution strongly depends on the ratio of the costs of the ridepooling vehicles
and the lines.

Figure 4 shows the ridepooling percentage on each edge of the network. The cost of the
ridepooling vehicles varies, while all other input parameters stay the same. The ridepooling
pool contains all connected subgraphs of the network with at most five edges, the line pool,
as in Section 4.1, was computed using the k_shortest_paths method and then adapted by
adding subpaths of already existing lines. The passenger demand is given by edge loads, which
are shown in Figure 3. The line costs are computed using l-costfixed = 10 and l-costdist = 5.
The line vehicle capacity is l-cap = 60 and the ridepooling vehicle capacity is r-cap = 5. We
vary the costs for the ridepooling vehicle using 10,20,30, and 40 as input parameters.

All solutions depicted in Figure 4 are either optimal or have an optimality gap of less
than 3%.

For increasing the cost of the ridepooling vehicles, we observe that the ridepooling
percentage overall decreases and fewer edges are covered by ridepooling. Typically, ridepooling
vehicles are smaller than line vehicles such as buses. As the cost of the ridepooling vehicles
increases, only areas of the network with low demand are covered by ridepooling areas:
wherever there is not enough passenger demand to justify introducing a large and expensive
line vehicle, on-demand transport with its smaller and cheaper vehicles is a good alternative.

Ridepooling can also be useful as an addition in areas with high passenger demand.
For instance, if there already is a line network but in some areas the passenger demand is
exceptionally high, then ridepooling can be introduced to supplement the line based public
transport system. This effect can be observed in the solution with r-cost = 20 in Figure 4.

Generally, the more passengers there are the more useful large line vehicles become, since
the cost per passenger is small if the demand is high enough. Figure 5 investigates what
happens when we increase the demand. It shows the ridepooling percentage when increasing
the edge loads, where we assume the same amount of passenger demand on each edge of
the Mandl network (see Figure 7b), and the same input parameters as for the solutions in
Figure 4. Not all depicted solutions are optimal, but all have an optimality gap below 5%.

Basically, we observe that a higher amount of passenger demand leads to a lower the
overall ridepooling percentage. However, this is not a strict rule. The capacity of the line
vehicles is l-cap = 60, which could explain some of the non-monotonicity of the graphs in
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(a) r-costr = 10. (b) r-costr = 20.

(c) r-costr = 30. (d) r-costr = 40.

Figure 4 The effect of the cost of ridepooling vehicles on the ridepooling percentage of each edge.

(a) Ridepooling percentage with respect to edge
loads of 10, 20, . . . , 100.

(b) Ridepooling percentage with respect to edge
loads of 100, 200, . . . , 1000.

Figure 5 RP-percentage for constant edge loads.
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Figure 5: whenever dividing the edge loads by the line vehicle capacity l-cap leaves a large
remainder, the ridepooling percentage is smaller. When the remainder is small, then instead
of using line vehicles with empty seats, the passengers can be transported using smaller
ridepooling vehicles instead and the ridepooling percentage becomes larger. This effect is
known as step-fixed costs.

4.3 Runtime
To analyze the impact of ridepooling (RP) to the integrated line planning and ridepooling
problem (LC+RP) we use three instances varying in size and three different sized ridepooling
pools. The dataset Toy is a small artificial instance consisting of 8 stops, while the larger
datasets Mandl [13] and Sioux-Falls [26] are based on real-world data with 15 stops and 24
stops, respectively. The PTNs of the three instances are shown in Figure 7 in Appendix A.

With each dataset we performed four computations: As a benchmark, we solve the line
planning problem (LC). The integrated line planning and ridepooling problem (LC+RP) is
solved with a small, a medium-sized and a large pool of ridepooling areas RPool. We use the
same line pool LPool throughout the four runs.

The ridepooling pool includes connected subgraphs of the PTN induced by at least lN
and at most uN nodes. Table 3 shows the values of lN and uN for the three considered PTNs.
For each node v of the PTN one induced connected subgraph containing v with exactly i

nodes for lN ≤ i ≤ uN is chosen randomly. The ridepooling pools for a fixed dataset are
constructed such that smaller ridepooling pools are subsets of the larger pools. For a more
detailed description of the algorithms for the generation of potential lines and potential
ridepooling areas in these experiments, see our Software Library LinTim [20].

Table 3 Number of nodes of the induced subgraphs used as areas in the different sized ridepooling
pools.

small medium large
lN uN lN uN lN uN

Toy 3 3 3 4 2 4
Mandl 3 5 3 7 3 10
Sioux-Falls 3 8 3 10 2 12

The runtime experiments were performed on an Intel(R) Xeon(R) Gold 6240R CPU @
2.40GHz with 380GB memory. Table 4 summarizes the runtime results together with the
sizes of the used line pool and ridepooling pool.

Table 4 Runtime results in seconds for different sized datasets and ridepooling pools. The largest
instance was not solved to optimality within the time limit of 8 hours. The table shows the remaining
optimality gap.

Toy Mandl Sioux-Falls
|LPool| |RPool| time |LPool| |RPool| time |LPool| |RPool| time

(LC)

43

– 0.17

625

– 0.41

1955

– 6.51
(LC+RP) small 6 0.19 41 52.43 135 2699.0
(LC+RP) med 12 1.41 67 75.97 183 9226.25
(LC+RP) large 19 1.42 107 912.14 249 0.297%
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(a) Boxplot of the line costs in
the line pool.

(b) Runtimes and ridepooling percentages for varying costs of a
ridepooling vehicle.

Figure 6 The runtime of (LC+RP) depends on the ratio of line and ridepooling costs.

We observe that runtime increases significantly when integrating ridepooling to the line
planning problem. Considering larger ridepooling pools leads to longer runtimes. The
integrated problem with the large ridepooling pool on the Sioux-Falls datasets was not solved
to optimality within the time limit of 8 hours. Table 4 shows the remaining optimality
gap. Note that the cardinalities of the ridepooling pools and the line pools created by the
methods described above do not scale with the same rate, i.e. the ratio of |RPool| and |LPool|
decreases for larger datasets. However, considering larger ridepooling pools would lead to
even longer runtimes.

We also found that the runtime of the integrated line planning and ridepooling problem
highly depends on the relation of the costs of lines determined by l-costfixed and l-costdist to
the costs of a ridepooling vehicle r-cost. To demonstrate the impact, we did multiple runs
on the dataset Mandl with the medium-sized pool and varying costs of ridepooling vehicles.
The line pool and the costs of the lines were the same throughout all runs. Figure 6 shows
on the left a boxplot of the line costs in the line pool and on the right a plot of the runtime
and the ridepooling percentage. Note that the runtime is depicted on a logarithmic scaled
axis. The run for r-cost = 3.25 could not be solved within the time limit of 8 hours. The
remaining gap was 0.0267%.

For low values of r-cost the model was solved very fast and all demand was covered by
ridepooling. High values of r-cost also lead to fast runtimes and solutions with a ridepooling
percentage of nearly 0. In both cases, the demand is covered (almost) only with one of the
two service types. Those types of solutions seem to be found very fast by the model. If the
ratio of the ridepooling and line costs is balanced, there are a lot more possible combinations
of the services to discover and thus the solution process of (LC+RP) is very time consuming.
This seems to be the reason for the curve starting with a small runtime, increasing up
to a maximum and then decreasing again. The overall curve is not concave due to local
disturbances which most likely stem from the effect of step-fixed costs already described at
the end of Section 4.2.

5 Conclusion and further research

In this paper we developed a model for strategic ridepooling which then could be combined
with line planning. We analyze the integrated model theoretically and experimentally. The
results are promising. As future research we mention the following topics:
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First, there is plenty of literature to generate line pools, e.g., [8]. For (RP) and for
(LC+RP) we need a pool of ridepooling areas. A first step of future research is to develop
criteria for good ridepooling areas and use them to design algorithms that construct such a
pool which is reasonable in its size but contains promising areas.

Second, the model (LC+RP) relies on the cost model of line planning. In this model
origin-destination (OD)-pairs are not used, but only their resulting traffic loads wmin

e . This
comes with drawbacks: First, transfers cannot be counted, and second, passengers’ paths
are considered as fixed although they depend on the lines and the ridepooling areas. There
exist extensions to more realistic line planning models in which transfers are accounted for
(e.g., the direct travelers approach [4]) and in which routing of passengers is integrated (see
[2, 24, 19]). In future research we plan to use also such models for integrating line planning
and ridepooling.

More experiments on larger and even real-life instances are a topic of ongoing research.
We are also currently developing a column generation approach for LC+RP to generate
both lines and ridepooling areas within the solution process. Other heuristic approaches for
larger instances could be developed. Furthermore, similarly to how a line concept is used to
determine a timetable in a following step, the operational aspects of a ridepooling service
as planned by LC+RP could be evaluated by applying algorithms for the classic dial-a-ride
problem.

Finally, a further aspect of future research is to consider not only the two modes bus
transportation and ridepooling but also other modes such as metro transportation, car
transportation or even bikes, see [30] for some first ideas on this.
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A Graphics

(a) Toy [20]. (b) Mandl [13]. (c) Sioux-Falls [26].

Figure 7 PTNs of the LinTim instances Toy, Mandl, and Sioux-Falls.

B Dial-a-ride Heuristic

In a network, passenger requests are given by their origin, destination and desired departure
time. The algorithm then goes through the passenger requests one by one and checks for
every already operating vehicle if the request can be inserted into its tour to serve the
corresponding passengers. A new request can be inserted into the trip of a vehicle if this
insertion does not violate any given constraints, such as the maximum detour factor or
waiting time for the passengers or the capacity of the vehicle. If a vehicle is found where
the new request can be inserted, then this is done. Otherwise, a new vehicle is added. This
insertion heuristic must not lead to optimal solutions, but provides an estimate for the
number of vehicles necessary to serve a given amount of passenger demand.

The constants αr,e, determined by the procedure described in Section 2.3, have been
tested in comparison to this insertion heuristic as follows: The passenger requests have been
transformed into so-called OD-data, disregarding the desired departure times and simply
computing for each pair of nodes u, v ∈ V the number of passengers who wish to travel from
u to v. Traffic loads wmin

e for the edges e ∈ E are then generated by routing all passengers
along shortest paths in the underlying network. Then, having computed αr,e as described
before with a single ridepooling area r = E, the optimal solution for (RP) is the following:

vr = max
e∈E

⌈
wmin

e

αr,e · r-cap

⌉
.

The resulting number of vehicles can be compared to the number of vehicles required in the
solution from the insertion-heuristic.
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C Proofs

C.1 From Section 2.2
Proof of Lemma 1. Given an instance of the line planning problem, we set

RPool := LPool since every line l ∈ LPool can be interpreted as a (connected) ridepooling
area,
r-costr := l-costr for all r ∈ RPool,
r-cap := l-cap, and
αe,r := 1 for all e ∈ E, r ∈ RPool.

We receive an instance of the ridepooling problem (RP) in which the variables vr correspond
to the frequencies fr. I.e., the resulting program of type (RP) is exactly the line planning
problem (LC). ◀

C.2 From Section 2.3
Proof of Lemma 4.
1. The values αr,e can be immediately computed using the procedure described in Section

2.3. The number of constants that need to be computed is
∑

r∈RPool |r| which has the
following polynomial upper bound:∑

r∈RPool

|r| ≤
∑

r∈RPool

|E| = |RPool||E|.

2. For every vehicle of ridepooling area r ∈ RPool we know that an Euler tour in G′′
r exists

which realizes exactly the values αr,e. If all vehicles drive this tour, the result follows.
3. Clearly, 0 ≤ Ne − Le ≤ 1, i.e., DN

r ≥ DL
r . Note that:

DL
r · DN

r = DL
r ·

(
DL

r +
∑

e∈r:Le odd
de

)
= (DL

r )2 + DL
r ·

∑
e∈r:Le odd

de

Now, consider the gap between αr,e and α∗
r,e:

αr,e − α∗
r,e = Le · T

DL
r

− Ne · T

DN
r

= T · Le · DN
r − Ne · DL

r

DN
r · DL

r

On the one hand that gives

αr,e − α∗
r,e ≤ T · Le · DN

r − Le · DL
r

DN
r · DL

r

= T · Le · DN
r − DL

r

DN
r · DL

r

= T · Le ·
∑

e∈r Ne · de − Le · de

DL
r · DL

r

= T · Le ·
∑

e∈r:Le odd de

(DL
r )2 + DL

r ·
∑

e∈r:Le odd de
≤ T

DL
r

Le = α∗
r,e

and on the other hand we get

αr,e − α∗
r,e ≥ T · Le · DN

r − Ne · DN
r

DN
r · DL

r

= T · Le − Ne

DL
r

=
{

− T
DL

r
ifLe is odd,

0 ifLe is even.
◀
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C.3 From Section 3
Proof of Theorem 6. Feasible solutions for LC and (RP) can be transformed into feasible
solutions for (LC+RP):

Let (fl)l∈LPool be a feasible solution for (LC), then ((fl)l∈LPool , (0)r∈RPool) is feasible for
(LC+RP) with the same objective function value.
Let (vr)r∈RPool be a feasible solution for (RP), then ((0)l∈LPool , (vr)r∈RPool) is also feasible
for (LC+RP) with the same objective function value. ◀

Proof of Theorem 7. We only show the first case, the proof of the second case is analogous.
As r is the only ridepooling area or line that contains e, it is required that r-cap · αr,evr ≥

wmin
e satisfies the constraint for the edge e.

⇒ vr ≥ wmin
e

r-cap·αr,e

⇒ Since vr needs to be integer, we can conclude that vr ≥
⌈

wmin
e

r-cap·αr,e

⌉
. ◀

Proof of Theorem 8. Obtain a new instance of (LC+RP) by defining new lower and upper
bounds ˆwmin

e and ˆwmax
e :

ˆwmin
e := wmin

e −

 ∑
l∈LPool

fixed:e∈l

l-cap · fl +
∑

r∈RPool
fixed:e∈r

r-cap · αr,e · vr


ˆwmax
e := wmax

e −

 ∑
l∈LPool

fixed:e∈l

l-cap · fl +
∑

r∈RPool
fixed:e∈r

r-cap · αr,e · vr

 ◀
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