
The Line-Based Dial-a-Ride Problem with Transfers
Jonas Barth #

Department of Computer Science, University of Würzburg, Germany

Kendra Reiter1 #

Department of Computer Science, University of Würzburg, Germany

Marie Schmidt #

Department of Computer Science, University of Würzburg, Germany

Abstract
We introduce the line-based dial-a-ride problem with transfers (liDARPT), a variation of the well-
studied dial-a-ride problem (DARP), where vehicles transport requests on-demand but are constrained
to operate along a set of lines, and passengers are allowed to transfer between lines on their journey.
We develop an event-based solution approach for the liDARPT that relies on the construction of
an event-based graph and uses a MILP to find optimal circulations in the event-based graph. To
make this solution approach effective, we devise a pre-processing routine to limit the size of the
event-based graph. We extensively test our approach on novel benchmark instances, inspired by
real-life long-distance bus networks. In our experiments, problem instances with up to 80 requests
can be solved to optimality within 15 minutes, and an average of 99.69% of requests are accepted in
all instances solved to optimality.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases dial-a-ride, line-based, transfers, on-demand, ridepooling

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.17

Supplementary Material Software (Source Code): https://github.com/barjon0/liDARPT [3]
archived at swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a83841a

1 Introduction

In many rural areas, public transport is unattractive for potential users for two reasons: due
to low demand, scheduled bus services only depart a few times a day, and rural bus lines
often visit a large number of stations which leads to a high detour compared to a direct
connection between a passenger’s origin and destination.

An alternative to organize transport in low-demand areas is to operate transport services
fully on-demand, i.e., to plan and schedule routes for each time span, based on the set of
individual travel requests known at that time. The corresponding optimization problem
is known as the dial-a-ride problem (DARP). In the static case, i.e., when the full set of
requests is known in advance, the additional flexibility leads to solutions that are much better
with respect to the chosen metric. However, the assumption that regular public transport
passengers would be willing to decide on, commit to, and send out travel requests (several
hours) in advance is questionable.

In this paper, we study a transport system that can be seen an an intermediate option
between fully-scheduled and completely on-demand services: in the line-based dial-a-ride
problem with transfers (liDARPT), the studied transport system is line-based in the sense
that there is a set of lines that defines admissible vehicle routes (each vehicle is assigned to a
line, it may take shortcuts or wait at stations while serving the line, but may only turn when

1 corresponding author

© Jonas Barth, Kendra Reiter, and Marie Schmidt;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 17; pp. 17:1–17:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jonas.barth@stud-mail.uni-wuerzburg.de
https://orcid.org/0009-0004-5776-0489
mailto:kendra.reiter@uni-wuerzburg.de
https://orcid.org/0009-0004-7281-6516
mailto:marie.schmidt@uni-wuerzburg.de
https://orcid.org/0000-0001-9563-9955
https://doi.org/10.4230/OASIcs.ATMOS.2025.17
https://github.com/barjon0/liDARPT
https://archive.softwareheritage.org/swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a83841a;origin=https://github.com/barjon0/liDARPT;visit=swh:1:snp:9e991754ac51080c4671363ee2e149da96bd534e;anchor=swh:1:rev:eae0411fec481c24c2f82a32bf3319292f47c08a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

17:2 The Line-Based Dial-a-Ride Problem with Transfers

empty), but uses passenger request data to plan and schedule the specific routes that are
realized. Providing this structure is expected to prove more favorable in a dynamic setting,
where requests are submitted at or a few minutes before the desired departure time.

As a first step towards exploring the liDARPT as an alternative to existing operational
models for public transport, we propose a solution approach for the static variant, laying the
foundation for future investigations. Being able to solve such a model efficiently allows us to
obtain a reference point against which we can compare approaches for the dynamic case.

To solve the liDARPT, we follow an event-based approach as first proposed in [12] for the
DARP. In a first step, this approach represents the “structural part” of a DARP variant as
a so-called event-based graph, where each node encodes a distinct event, i.e., the boarding
or alighting action of a passenger and the set of passengers on board of the vehicle during
this action. Arcs are added between compatible events, such that feasible vehicle routes
constitute circulations. In a second step, a MILP based on the event-based graph is used to
find a set of circulations that is temporally feasible and optimizes the objective function. In
[26], it was shown that this approach outperforms other MILP-based solution approaches for
solving the line-based dial-a-ride problem (liDARP), a special case of the liDARPT where
there is just one line. However, the tractability of the MILP based on the event-based graph
depends crucially on clever pre-processing of the event-based graph, removing events and
actions that are infeasible due to spatial or temporal incompatibilities of requests. While
effective pre-processing rules for DARP and liDARP have been proposed in [12, 13, 26], there
are two factors that complicate building and pre-processing an event-based graph for the
liDARPT: a) a passenger may transfer, and thus in consequence may board several vehicles
sequentially, and b) the sequence of lines taken by a specific passenger request is not fixed a
priori.

The contribution of this paper is fourfold:
We introduce the line-based dial-a-ride problem with transfers (liDARPT) that models
the on-demand transportation of passengers in line-based transport systems, explicitly
routing passengers through the network and allowing the transfers of passengers between
lines.
We extend the concept of an event-based graph to this setting and develop effective
non-trivial pre-processing rules to reduce the size of the graph.
Based on the event-based graph, we state a MILP formulation for the liDARPT that
takes into account the routing and transfers.
We demonstrate the applicability of the developed approach on a set of instances with
up to 100 requests, varying the number of lines, number of requests, and the (temporal)
request density.

1.1 Related Work
The dial-a-ride problem and variants thereof have been studied extensively in the literature,
see the surveys by [9] (up until 2007) and [16] (until 2018) for an overview, as well as
the typography provided by [21]. Solution methods for the static setting include exact,
MILP-based methods such as branch-and-cut [7, 27, 28] or branch-cut-and-price [15], as well
as (meta-)heuristic-based methods, including tabu search [8], simulated annealing [5, 25],
and adaptive large neighborhood search [22, 23, 24, 29], to give an overview. Further works
study dynamic variants of the DARP, see, e.g., [1, 2, 6, 12, 17].

Recently, a number of DARP variants that allow transfers, named DARPT, have been
proposed, see, e.g., [10, 14, 20, 25, 30], whose solution approaches all use (meta-)heuristics.
Solely [14], who consider a single transfer station, additionally evaluate a branch-and-cut
approach for instances with up to 10 requests.

J. Barth, K. Reiter, and M. Schmidt 17:3

The line-based dial-a-ride problem (on a single line) was first introduced by [26], wherein
different MILP formulations were proposed and compared. Lauerbach et al. [18] study the
complexity of the liDARP (and the related MinTurn problem).

In this paper, we develop an event-based approach for the liDARPT, which first constructs
an event-based graph encoding structural instance information, and then finds feasible
circulations on this graph using a MILP. Such an approach was proposed first for the DARP
in [12, 13]. In an event-based graph, nodes represent so-called events, consisting of a boarding
or alighting action and information on which passengers are already on board of the vehicle,
and arcs represent feasible transitions between the events. In [13], it was already observed
that the number of events is exponential in the vehicle capacity for DARP event-based
graphs. Event-based MILPs introduce a binary variable for each arc in the event-based
graph. To obtain a tractable event-based MILP, it is crucial to delete (nodes and) arcs
corresponding to infeasible (events and) transitions. Pre-processing rules for the DARP
have been proposed in [11, 13]. In [26], these have been extended for the liDARP, where
the additional restrictions on vehicle operations lead to a significant decrease in event-based
graph size and computation times for the event-based MILP.

In [11], the authors improve the event-based MILP formulation from [13] to the location-
augmented event-based (LAEB) formulation by incorporating the time consistency of the
location-based (two-index) formulation by Ropke et al. [28], effectively halving the com-
putation times compared to state-of-the-art event-based approaches on tested benchmark
instances.

2 Problem Formulation and Model

We summarize all notation in Table 2 in the Appendix.

2.1 Problem Description
In the liDARPT, we are given a set of stations S and a set of lines I, where each line i ∈ I
is an ordered sequence of stations λi and each station lies on at least one line. The lines may
intersect at transfer stations s ∈ ST . For each line i ∈ I, the distance between two stations
s1, s2 ∈ λi is given by t(s1, s2) > 0 and respects the triangle inequality. The value t(s1, s2)
equivalently corresponds to the length of the segment between s1, s2 on line i. Both distance
and length are measured in time.

Each line is assigned at least one vehicle k ∈ K which travels according to the driving
restrictions introduced by [26] for the liDARP: a vehicle may travel along the line in both
directions, may take shortcuts or wait at stations, but may only turn when empty. Vehicles
may only serve stations on their respective lines and every vehicle starts and ends its tour at a
line-specific depot sdepot ∈ S. The vehicles assigned to the same line i ∈ I are homogeneous
in the sense that they have the same capacity ci ∈ N.

Furthermore, we are given a set of requests R. Each request r ∈ R consists of a number
of passengers qr ∈ N, a pick-up station r+ ∈ S, a drop-off station r− ∈ S, a time window for
the pick-up and one for the drop-off of the request, denoted as [e(r+), l(r+)], [e(r−), l(r−)],
respectively, and a maximum travel time Lr ≥ 0 between their initial pick-up (at their origin)
and last drop-off (at their destination). We assume each request is willing to wait a fixed
amount of time for their pick-up/drop-off, defining the time window length. Each request
can either be accepted, i.e., it is transported from its origin to destination, or rejected. We
define a route option of a request as an alternating sequence of lines and transfer stations,
starting at the origin and ending at the destination, that describes a set of possible options

ATMOS 2025

17:4 The Line-Based Dial-a-Ride Problem with Transfers

for transporting this request. Then, a request’s route consists of a route option together with
the vehicle used on each line and the associated pick-up and drop-off times at the transfer
points.

At each station, we assume that it takes a fixed total service time b ≥ 0 to service all
requests, i.e., for all requests to leave and enter the vehicle. Requests may transfer from
one line to another at a transfer station, but we do not consider transfers between vehicles
belonging to the same line.

A solution to the liDARPT then consists of a plan for each of the vehicles, and, for each
request, a route - or the decision to reject the request. A vehicle’s plan specifies the sequence
of stations where the vehicle stops, starting and ending with the depot associated to the
vehicle’s line, as well as the arrival and departure time at each station. A route specifies
when and where a passenger boards and alights vehicles.

We have two objectives that we consider in lexicographic order: our primary goal is to
maximize the number of accepted requests, and the second objective is to minimize the total
traveled distance by the vehicles, which may reflect both cost and environmental concerns.

2.2 Modeling Route Options of Requests
Each line i ∈ I consists of an ordered sequence of stations λi := (s1, . . . , s|λi|) with
{s1, . . . , s|λi|} =: Si ⊆ S and defines a complete graph on Si. Then, we denote by net-
work the union2 of all these graphs, which share vertices at exactly the transfer stations
ST . We require that the network is connected (else we consider each connected component
separately). Note that this definition gives a direction to each line, according to the sequence’s
order. Each line may be served both in ascending and in descending order, i.e., requests’
route options and vehicles’ plans both constitute directed paths in the underlying undirected
network.

Since a network of multiple lines may allow for multiple paths between the same stations,
a single request may have different route options: (unique) paths through the network along
one or more lines, from the requests’ pick-up to its drop-off location. These route options
may differ in length, number of transfers, and number of lines that are used.

Following [20], to represent a route option through the network, we introduce actions
as follows: for a request r ∈ R which transfers between vehicles from/to a line i ∈ I at a
transfer vertex s ∈ ST , we call ρi,−

s,r the inbound action and ρi,+
s,r the outbound action of r at

s on i. That is, the inbound action represents the drop-off (from i) and the outbound action
represents the pick-up (to i) of r at s.

Then, a possible route option ϕr for a request r ∈ R can be formalized as a sequence of
(an even number of) actions (ρi,+

r+,r, ρ
i,−
s,r , ρ

i′,+
s,r , . . . , ρ

i′′,−
s′,r , ρ

i′′′,+
s′,r , ρi′′′,−

r−,r), for s, s′ ∈ ST , s ̸= s′,
i, i′, i′′, i′′′ ∈ I, where

the first action is outbound, corresponding to a pick-up at the station r+,
all intermediate actions (second to penultimate action) are pairs of inbound and outbound
actions at the same transfer station s ∈ ST , ensuring transfers,
the last action is inbound, corresponding to a drop-off at the station r−, and
all actions (first to last) are pairs of outbound and inbound actions on the same line
i ∈ I, ensuring consecutiveness in each line.

Note that each station s can only be visited once per route option, forbidding cycles in
each requests’ travel path.

2 a union of two graphs G1 = (V1, A1), G2 = (V2, A2) is the graph G := (V1 ∪ V2, A1 ∪A2).

J. Barth, K. Reiter, and M. Schmidt 17:5

We divide this sequence of actions into tuples by pairing each outbound with the following
inbound action, i.e., for some s, s′ ∈ ST , s ≠ s′, ϕr :=

(
(ρi,+

r+,r, ρ
i,−
s,r), . . . , (ρi′,+

s′,r , ρ
i′,−
r−,r)

)
,

where we call each tuple (ρi,+
s,r , ρ

i,−
s′,r) a split ψi

s,s′,r of r between stations s, s′ ∈ S, s ≠ s′, on
line i ∈ I. We construct a sequence of subroutes which are separated exactly by a transfer
between two lines at a transfer station. A split may be part of multiple route options.

The length of a route option is defined as the sum of lengths of its splits, where the length
of a split ψi

s,s′,r is exactly the length t(s, s′) on i ∈ I.
For a request r ∈ R, we use Φ(r) to denote the set of all route options and Ψ(r) the set

of all splits of r. Further, P(r) denotes the set of all actions of r and P denotes the set of all
possible actions for all requests.

s1

r+

r−

s2

Figure 1 Example of a network with cycles and a single request r with two route options.

An example for a request on a circular network of three lines is pictured in Figure 1.
There are two possible route options for request r to travel to their destination: the first
route option transfers at station s1 (along the green, then the blue line), the second route
option transfers at s2 (along the green, then the red line).

We assume that each transfer disrupts the travel experience, as it adds uncertainty to
a request’s trip and could reduce customer satisfaction. Hence, we impose the following
restriction: for each request r ∈ R, we identify the shortest (wrt. time length) route option
from r+ to r− and count the amount of transfers. Then, to limit the passenger disutiliy, we
only allow route options in Φ(r) with at most one extra transfer, as transfers are generally
perceived as an inconvenience.

The directionality property introduced by [26] enforces that a vehicle traveling along a line
may only change direction when it is empty. We adopt the same property and introduce a
travel direction: for each line i ∈ I with λi = (s1, s2, . . . , s|λi|), we define the travel direction
from a station sm to sn, denoted by dir(i, sm, sn), to be ascending if m < n, else descending.
Then, requests traveling on a part of this line, from a transfer station s ∈ ST to s′ ∈ ST

with s, s′ ∈ λi, inherit the traveling direction dir(i, s, s′) for this split in their route option.
Until here, we have defined route options for requests based only on lines, locations, and

actions, without considering when the actions will take place. We now add a timestamp
to every action, corresponding to the end of the pick-up/drop-off of this action, and call a
timestamped route option a route of a request r. Every route needs to be feasible, i.e., it
needs to respect the initial pick-up and drop-off time windows of its request, else we can
disregard the route and the underlying route option.

ATMOS 2025

17:6 The Line-Based Dial-a-Ride Problem with Transfers

Recall that every request r ∈ R has a (tight) time window for its pick-up and drop-off,
respectively. Using these time windows, along with the service time b and the length of a
split, we derive a time window

[
e(ρi,±

s,r), l(ρi,±
s,r)

]
for each action ρi,±

s,r associated with r.
In case an action appears in multiple route options, its time window is defined as the

union of the individual time window intervals: that is, e(ρi,±
s,r) is the earliest departure time

and l(ρi,±
s,r) is the latest arrival time among all relevant options.

Similarly, we can then derive time windows of each split from its actions: for a split
ψi

s,s′,r, we have e(ψi
s,s′,r) := e(ρi,+

s,r) and l(ψi
s,s′,r) := l(ρi,−

s′,r).

2.3 The Event-Based Graph for the liDARPT
In the first step of our event-based approach, we construct an event-based graph G = (V,A),
a concept that was proposed first in [13] and adapted for the liDARP in [26]. Here, we
discuss how to create an event-based graph for the liDARPT.

An event v ∈ V is defined as a tuple v = (ρi,±
s,r1

, ψi
s′,s′′,r2

, . . .) consisting of an action ρi,±
s,r1

and a set of at most ci −1 splits of requests that may be on board of a vehicle with capacity ci

traveling on the line i ∈ I when the action takes place. Each event thus represents a feasible
combination of splits which may share part of their journey, in contrast to the events in [13],
which consist of combinations of requests. Our representation allows us to incorporate tighter
time windows at each transfer station on a requests’ route option, and explicitly models the
subroutes of each requests’ path. Note that each event is associated with a station and a
line, namely the station s ∈ S and the line i ∈ I where the action ρi,±

s,r1
takes places.

For the tuple representation of v, we sort the splits in v in ascending order of their
request’s index. We use 0i to denote the empty state at the start and end of each vehicle’s
plan at the depot of its line i ∈ I. The events constitute the nodes V of the event-based
graph.

For example, the event (ρi,+
s2,3, ψ

i
s1,s3,1, ψ

i
s1,s4,2) represents that a vehicle of line i is currently

at transfer station s2 where request 3 boards while requests 1 (who is traveling from station
s1 to s3) and 2 (traveling from station s1 to s4) are already in the vehicle.

The arcs of the event-based graph represent feasible sequences of events. For example,
(ρi,+

s2,3, ψ
i
s1,s3,1, ψ

i
s1,s4,2) may be connected by an arc to the event (ρi,−

s3,1, ψ
i
s1,s4,2, ψ

i
s2,s4,3),

where request 1 is dropped-off at transfer station s3 and requests 2 and 3 are still on board.
The event-based graph G consists of |I| connected components Gi, one for each line i ∈ I,

where the number of (potential) nodes (and arcs) of each component Gi grows exponentially
in the vehicle capacity ci.

For this reason, we now describe a number of pre-processing steps to identify infeasible
combinations of splits, and thus limit the amount of nodes we create. Specifically, our goal
is to identify, for every action ρi,±

s,r ∈ P(r) of every request r ∈ R, the set of compatible
splits ψi

g,g′,r′ ∈
⋃

r′∈R\{r} Ψ(r′) , i.e., splits belonging to requests r′ that may be on board of
the same vehicle at the time when the action ρi,±

s,r is occurring. Note that we only need to
consider splits traveling on the same line i ∈ I.

Let r ∈ R and ψi
s,s′,r = (ρi,+

s,r , ρ
i,−
s′,r) with s, s′ ∈ S, s ̸= s′, be a split of r traveling on a

line i ∈ I. We check three conditions to determine if another split ψi
g,g′,r′ , with g, g′ ∈ S,

g ̸= g′, r′ ∈ R \ {r}, is compatible to an action in ψi
s,s′,r:

First, the directionality property: we check if the two splits travel in the same direction,
i.e., if dir(i, g, g′) = dir(i, s, s′), as there can never be two splits traveling in opposite directions
in the same vehicle at the same time.

We proceed by checking the remaining two conditions for either action in the split
(ρi,+

s,r , ρ
i,−
s′,r) individually and here describe the process for ρi,+

s,r (ρi,−
s′,r follows analogously):

J. Barth, K. Reiter, and M. Schmidt 17:7

Second, the spatial overlap: we check if the action’s location s lies on the subsequence of
stations (g, . . . , g′) ⊆ λi.

Third, the temporal overlap: recall that each action is assigned a time window during
which it has to occur. Then, we check if

[e(ρi,+
s,r), l(ρi,+

s,r)]
⋂

[e(ρi,+
g,r′), l(ρi,−

g′,r′)] ̸= ∅,

i.e., if r and r′ may overlap in their time windows.
We call a split satisfying these three conditions compatible with the action ρi,+

s,r (analogously
ρi,−

s′,r) and repeat these checks for every request r ∈ R.
As an example, consider the line i depicted in Figure 2 with a split ψi

s3,s5,r = (ρi,+
s3,r, ρ

i,−
s5,r)

of request r and four other splits for requests r1, r2, r3, and r4. Suppose the action ρi,+
s3,r has

a time window of [0, 15], while the split ψi
s2,s4,r3

has a time window of [80, 120] and ψi
s3,s7,s4

has a time window of [5, 60].

s1 s5 s6

ρi,+s3,r ρi,−s5,r

s2 s3 s4 s7
i

ψi
s6,s1,r1

ψi
s6,s7,r2

ψi
s2,s4,r3

ψi
s3,s7,r4

Figure 2 Example of a line i with multiple splits of different requests.

Consider the outbound action ρi,+
s3,r and check the compatibility of each split in Figure 2:

split ψi
s6,s1,r1

does not fulfill the directionality property, as it travels in the opposite
direction to ψi

s3,s5,r, hence it is disregarded.
split ψi

s6,s7,r2
does not satisfy the spatial overlap since s3 /∈ (s6, s7), as its pick-up station

s6 lies beyond the station s3 in the travel direction, hence it is disregarded.
split ψi

s2,s4,r3
does not satisfy the temporal overlap since [0, 15] ∩ [80, 120] = ∅, as the

earliest start time of its outbound action is later than the time window of ρi,+
s3,r, hence is

is disregarded.
split ψi

s3,s7,r4
fulfills both the directionality property and the spatial overlap as s3 ∈

(s3, . . . , s7). Additionally, the temporal overlap is satisfied as [0, 15] ∩ [5, 60] = [5, 15] ̸= ∅.

Hence, only the split ψi
s3,s7,r4

of request r4 is compatible to ρi,+
s3,r in this example.

Once we have identified all compatible splits for each action on a line i ∈ I, we increment-
ally build combinations of splits of size at most ci. In each step, we check if the combination
is feasible wrt. the time windows of the contained splits and only explore supersets further if
this is guaranteed. See [7] for details on the feasibility checks based on time windows and [4]
for further details on the implementation of our method.

We add two further conventions at a transfer station to limit the number of events: if
multiple compatible actions take place at the same station s ∈ ST , then the inbound actions
are handled first. This corresponds to the widely-accepted convention of letting people leave
the vehicle first before boarding. Second, if multiple outbound (resp. inbound) actions are
compatible and located at the same station s ∈ ST , then we only consider the sequence
of events in which they board in descending order of their time window end l(ρi,+

s,r) (resp.
l(ρi,−

s,r)).

ATMOS 2025

17:8 The Line-Based Dial-a-Ride Problem with Transfers

The vertex set V of our event-based graph G then consists, for every line i ∈ I, exactly
of the feasible combinations v = (v1, . . . , vm) where the first entry v1 is an action and the
remaining entries v2, . . . , vm are splits, with m ≤ ci. Each entry corresponds to a different
request.

Every event v = (v1, . . . , vm) ∈ V is assigned a time window during which it can occur,
which is not only dependent on the time window of the action v1 but also considers the travel
time from every predecessor event (for the earliest start time) and the successor events (for
the latest end time), similar to the check for temporal overlap.

Lastly, we define the arc set A of the event-based graph G. We add an arc (v, v′) for
v = (ρi,±

s,r , v2, . . . , vm), v′ = (ρi′,±
s′,r′ , v′

2, . . . , v
′
n) ∈ V of lines i, i′ ∈ I if the following conditions

are met:
the set of requests in the vehicle after completing the action ρi,±

s,r of v is the same as the
set of requests in the vehicle before completing the action ρi′,±

s′,r′ of v′, and
the events are compatible wrt. their time windows and travel times, i.e.,

l(v′) ≥

{
e(v) + t(s, s′) + b if s ̸= s′,

e(v) else.

The travel time of the arc a = (v, v′) ∈ A is given by t(a) := t(v, v′) := t(s, s′).
Now, each plan for a vehicle of line i ∈ I corresponds to a circulation on Gi which starts

and ends at the vehicle’s depot. However, not every circulation is a feasible plan: it has
to respect the time windows and maximum travel time of every request. Additionally, the
set of plans, jointly, has to ensure that, if a request r is accepted, then all splits of exactly
one route option of r are part of the solution. That is, while the described pre-processing
in the event-based graph allows to sort out many infeasible combinations of requests, and
can handle the logic of vehicle routing well, there are a number of constraints that it cannot
represent. This motivates the use of MILP model that we present in Section 2.4.

2.4 Mixed-Integer Linear Programming Model

In this section, we present a MILP model for the liDARPT. It is based on the location-
augmented event-based formulation introduced by [11] for the DARP and uses the event-based
graph G = (V,A) we have defined in Section 2.3.

The binary variables xa, defined for every a ∈ A, encode which arcs of the event-based
are chosen and thus encode the plan for each vehicle, as well as the selected route options for
each request. For every request r ∈ R, the variable pr indicates if r is accepted.

For the liDARPT, we introduce variables yr
j for every route option ϕr

j ∈ Φ(r) to denote if
this route option is chosen in our solution. This information spans over multiple lines across
our underlying network and thus across multiple components of the event-based graph. If a
route option is chosen, then all corresponding splits must be part of our solution. At most
one route option may be chosen per request, ensuring it is accepted at most once.

To represent the temporal information in our solution, we add a continuous variable Bρi,±
s,r

for every action ρi,±
s,r ∈ P to denote the end of this action. As in the LAEB formulation, a

single Bρi,±
s,r

variable is associated with all v ∈ V with v1 = ρi,±
s,r .

For an event v ∈ V , we denote its incoming arcs by δin(v) and its outgoing arcs by δout(v).
The set P(r)+ (resp. P(r)−) contains all outbound (resp. inbound) actions of r, and the set
P(r)+

j contains all outbound actions belonging to the route option ϕr
j of r.

J. Barth, K. Reiter, and M. Schmidt 17:9

We denote by σ(k) the assigned line of a vehicle k ∈ K and by σ−1(i) the set of vehicles
assigned to line i ∈ I. The earliest departure time (resp. latest arrival time) of a vehicle
from the depot of its line σ(k) = i is denoted by e(sdepot

i) = e(0i) (resp. l(sdepot
i) = l(0i)).

min
∑
a∈A

t(a) · xa +W ·
∑
r∈R

(1 − pr) (1a)

s.t.∑
a∈δin(v)

xa −
∑

a∈δout(v)

xa = 0, ∀v ∈ V (1b)

∑
a∈δin(v):
v1∈P(r)+

j

xa ≥ yr
j , ∀r ∈ R, ϕr

j ∈ Φ(r) (1c)

∑
a∈δout(0i)

xa ≤ |σ−1(i)|, ∀i ∈ I (1d)

B
ρ

i′,±
s′,r′

≥ B
ρ

i,±
s,r

+ b+ t(s, s′) ∀ρi,±
s,r , ρ

i′,±
s′,r′ ∈ P : s ̸= s′,

−M1

(
1 −

∑
(u,v)∈A:

u1=ρ
i,±
s,r ∧v1=ρ

i′,±
s′,r′

x(u,v)

)
,

(
(ρi,±

s,r , . . .), (ρi′,±
s′,r′ , . . .)

)
∈ A (1e)

B
ρ

i′,±
s,r′

≥ B
ρ

i,±
s,r

∀ρi,±
s,r , ρ

i′,±
s,r′ ∈P :

−M1

(
1 −

∑
(u,v)∈A:

u1=ρ
i,±
s,r ∧v1=ρ

i′,±
s,r′

x(u,v)

)
,
(

(ρi,±
s,r , . . .), (ρi′,±

s,r′ , . . .)
)

∈A (1f)

B
ρ

i,+
r+,r

≥ e (0i) + b+ t
(
0i, r

+) ∑
v∈V:

v1=ρ
i,+
r+,r

x(0i,v), ∀r ∈ R, i ∈ I :ρi,+
r+,r

∈ P(r)+ (1g)

B
ρ

i,−
r−,r

≤ l (0i) − t
(
r−,0i

) ∑
v∈V:

v1=ρ
i,−
r−,r

x(v,0i), ∀r ∈ R, i ∈ I :ρi,−
r−,r

∈ P(r)− (1h)

e
(
ρi,±

s,r

)
≤ B

ρ
i,±
s,r

≤ l
(
ρi,±

s,r

)
, ∀ρi,±

s,r ∈ P (1i)

B
ρ

i′,−
r−,r

−B
ρ

i,+
r+,r

− b ≤ Lr, ∀r ∈ R,ϕr ∈ Φ(r) :ρi′,−
r−,r

, ρi,+
r+,r

∈ ϕr (1j)

B
ρ

i′,+
s,r

≥ B
ρ

i,−
s,r

−M2(1 − yr
j), ∀r ∈ R, s ∈ S, ϕr

j ∈ Φ(r) :ρi,−
s,r , ρ

i′,+
s,r ∈ ϕr

j (1k)∑
ϕr

j
∈Φ(r)

yr
j = pr, ∀r ∈ R (1l)

xa ∈ {0, 1}, ∀a ∈ A (1m)
pr ∈ {0, 1}, ∀r ∈ R (1n)
yr

j ∈ {0, 1}, ∀r ∈ R, ϕr
j ∈ Φ(r) (1o)

The objective function (1a) maximizes the number of accepted requests, adding a large
penalty W in case request r is not accepted. As a a secondary goal, the total distance driven
by the vehicles (referred to as traveled distance) is minimized. Constraints (1b) are the
typical flow constraints. Next, constraints (1c) guarantee that, for an accepted request r
and selected route option ϕr

j , all of the corresponding splits of ϕr
j are part of the solution.

There may be at most one plan per vehicle for every line i, enforced by constraints (1d).

ATMOS 2025

17:10 The Line-Based Dial-a-Ride Problem with Transfers

Constraints (1e) to (1k) handle time constraints. For subsequent events, constraints (1e)
and constraints (1f) ensure the end time of the respective actions is consecutive, where
constraints (1e) ensure the necessary travel and service time are respected if the events do
not occur at the same station. We choose the parameter M1 large enough to ensure these
constraints are only active if the corresponding succession of actions is part of the solution.
Then, constraints (1g) guarantee the correctness of the departure times for the very first
action on the paths and similarly, constraints (1h) guarantee the correctness of the arrival
times for the last action on the paths. Together, constraints (1g) and constraints (1h) ensure
each vehicle travels within a pre-specified travel time span. The time windows of each action
are ensured by constraints (1i). Furthermore, we make sure the the maximum travel time is
upheld with constraints (1j), by checking the difference of the last split’s drop-off time and
the pick-up time of the first split for a request. For the timing of all subsequent splits of the
same request, constraints (1k) enforce that no user is picked up before they even arrive at a
station s. Again, we choose M2 large enough to ensure this constraint is only active if the
corresponding route option is chosen. Finally, in constraints (1l), we ensure that exactly one
route option is selected if and only if the request is transported.

Note that a split may be part of multiple route options and that it is not forbidden by
our MILP that a split may be part of a vehicle’s plan, even though none of the corresponding
route options are chosen. Hence, after every model solve, we run a clean-up routine, removing
unnecessary events from the solution. These events have no effect on the solution: they may
not add to the traveled distance nor may they occupy a seat which could otherwise have
been assigned to a rejected request, as both would increase our objective function.

We now prove a bound on the objective function penalty W to enforce our lexicographic
objective function (1a).

▶ Lemma 1. Let N be sum of lengths of all lines. Setting W = 2N |R| + 1, the optimal
solution OPT of (1) accepts the maximum number of requests.

Proof. Let W = 2N |R| + 1 and assume there exists a different solution ALT with more
accepted requests than OPT . We know that the difference in penalty is at least 2N |R| + 1.
However, we also know that OPT ≤ ALT . This means that the difference in traveled distance
has to be at least 2N |R| + 1:

Note that for a given set of accepted requests |R′|, even if all requests need to use all
lines from beginning to end and no requests can be transported together due to incompatible
time windows, and all requests are accepted, the distance driven to serve them is at most∑

a∈A t(a)xa = 2N |R′| < 2N |R| + 1 = W .
Thus, the improvement in traveled distance cannot compensate for the loss in number of

transported passengers. ◀

3 Computational Experiments

In this section, we present numerical experiments for the liDARPT on new, synthetic
benchmark instances that are based on real-world bus networks. The code and all instances
are available on GitHub3.

For all presented experiments, every line is assigned two buses of capacity six. The
service time b is set to two minutes and we set the maximum waiting time of each request
to 15 minutes. The maximum travel time Lr of a request r is given by t∗r + 1.2 · log1.2(t∗r),
where t∗r is the shortest direct travel time of r along the network. We set the penalty weight
W = 3N |R|, where N is the sum of lengths of all lines.

3 https://github.com/barjon0/liDARPT

https://github.com/barjon0/liDARPT

J. Barth, K. Reiter, and M. Schmidt 17:11

All experiments were conducted on a 24 core Intel i9-13900F machine with 32GB RAM
and operating system nixOS 24.11. The model was implemented in Python 3.10 and solved
using CPLEX 22.1.1. All runs were limited to 15 minutes of computational time and the
results are averaged over three runs. A summary is provided in Table 3 in the Appendix.

3.1 Benchmark Instances

We create a new set of benchmark instances modeled after the long-distance bus network in
the region of Unterfranken, Germany. Table 1 provides an overview of the seven networks,
where the total transfer degree denotes the sum of degrees of all transfer stations as a
further measure of complexity. A visualization of the networks is provided in Figure 12
in the Appendix. Networks with the same base name build upon each other; for example,
sw-schlee_3 consists of the sw-schlee_2 network with an additional line.

Table 1 Overview of benchmark networks.

Network #Lines #Stops #Transfer Stops Total Transfer Deg. Length [km]

markt-karl 3 15 3 8 109.3
markt-karl-lohr 5 26 5 14 165.6
sw-geo_2 2 21 2 5 76.5
sw-geo_full 4 32 4 13 120.1
sw-schlee_2 2 14 2 6 58.6
sw-schlee_3 3 21 3 11 92.8
sw-schlee_full 5 28 5 17 129.9

For each network, we create multiple instances with 10 to 100 requests distributed over a
time span of three, six, or nine hours, where each request r is assigned a pick-up and drop-off
station under a uniform random distribution across S. We split the time span into 5-minute
intervals and, for each r, draw an earliest pick-up time e(r+) uniformly at random from the
resulting set of intervals. The remaining time bounds, i.e., l(r+), e(r−), and l(r−), are then
computed from the maximum wait time of 15 minutes, and the shortest direct and maximum
travel times of r. Finally, the number of passengers in a request is chosen by assigning a 90%
probability for picking a single passenger, 9% for two, and 1% for three passengers.

3.2 Computational Performance

20 40 60 80 100
Number of Requests

0

200

400

600

800

Co
m

pu
ta

tio
n

Ti
m

e
in

 se
co

nd
s

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

20 40 60 80 100
Number of Requests

0

200

400

600

800

Co
m

pu
ta

tio
n

Ti
m

e
in

 se
co

nd
s

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0

200

400

600

800

Co
m

pu
ta

tio
n

Ti
m

e
in

 se
co

nd
s

(c) Nine hour time span.

Figure 3 Average computation time per instance. The dashed line marks the solver timeout.

ATMOS 2025

17:12 The Line-Based Dial-a-Ride Problem with Transfers

Figure 3 visualizes the computation times per instance. As expected, this increases with
the number of requests, with timeout first being reached at 40, 50, and 70 requests for
time spans of three, six, nine hours, respectively. The computation time seems to correlate
stronger with the number of requests than the number of lines of the network. Further, the
temporal density, defined as the number of requests per hour, has a significant impact: the
computation time reaches timeout for a temporal density greater than 13 (for three hours)
and 7.77 (for six and nine hours). This may also be explained by the size of the underlying
event-based graph, where a higher temporal density correlates to a larger graph, see Figure 5.

Here, the markt-karl-lohr instance with 30 requests in six hours reached a MIP gap
of 0.05% within 16 seconds, indicating a near-optimal solution was found early in the
optimization process.

Next, Figure 4 shows the relative MIP gap4, for all instances. The MIP gap tends to rise
with the number of requests for a given time span, and is lower for larger time spans overall.
Interestingly, the MIP gap of instances on the supposedly harder networks with more lines,
sw-schlee_full and sw-geo_full, is often smaller than on the other networks, rising only for
instances with large numbers of requests, e.g., sw-schlee_full at 100 request in six hours.

20 40 60 80 100
Number of Requests

0

20

40

60

80

100

Re
la

tiv
e

M
IP

 G
ap

 in
 %

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

20 40 60 80 100
Number of Requests

0

20

40

60

80

100

Re
la

tiv
e

M
IP

 G
ap

 in
 %

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0

20

40

60

80

100

Re
la

tiv
e

M
IP

 G
ap

 in
 %

(c) Nine hour time span.

Figure 4 Average relative MIP gap in percentage per instance.

We postulate that this correlates to the number of available vehicles per line: since each
line is assigned two vehicles, networks with less lines have a lower seat-to-request ratio, which
increases the complexity when aiming to transport all passengers.

0 5 10 15 20 25 30
Temporal Density

100

101

102

103

104

105

106

Nu
m

be
r o

f E
ve

nt
s

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Number of nodes.

0 5 10 15 20 25 30
Temporal Density

100

101

102

103

104

105

106

Nu
m

be
r o

f E
dg

es

(b) Number of edges.

Figure 5 Number of nodes and edges in the underlying event-based graph by temporal density.

4 the relative gap between the current objective value and the best known bound, in percent.

J. Barth, K. Reiter, and M. Schmidt 17:13

Figure 5 examines the size of the event-based graph versus the temporal density. For
instances of the same temporal density, networks with less lines, such as the sw-geo_2 and
sw-schlee_2, produce smaller graphs (with both less nodes and less arcs) than networks
with more lines. Interestingly, one of the largest networks, sw-schlee_full is surpassed by
sw-schlee_3 (a subgraph with two less lines) multiple times. This suggests that the length of
the lines, as well as the number and location of transfer stations, may have an additional
impact on the size of the event-based graph.

Finally, Figure 7 shows the number of variables and constraints in the MILP. Both rise
with the temporal density and the number of lines in the network: the smallest networks,
sw-geo_2 and sw-schlee_2, require both the smallest number of variables and constraints.
Larger networks enable more transfers, which in turn also allows for more route options per
request, requiring more variables and constraints in our MILP.

102 103 104 105

Number of Nodes

100

101

102

103

104

105

106

Nu
m

be
r o

f E
dg

es

0

200

400

600

800

se
co

nd
s

Figure 6 Size of event-based graph in relation to computation time in seconds.

Both the absolute number of requests and the number of requests per hour have an impact
on the number of admissible events in the event-based graph. Indeed, Figure 6 demonstrates
that the computation time for the MILP increases with the size of the underlying event-based
graph. This underlines the value of effective pre-processing approaches. Furthermore, we
observe that, in our experiments, the ratio of number of arcs to number of nodes is quasi
constant across instances and networks, suggesting that our pre-processing effectively prunes
a large fraction of infeasible events and arcs.

3.3 Service Quality Metrics
As a large MIP gap indicates a far-from-optimal solution, we restrict our analysis to instances
with ≤ 60 requests in three hours and ≤ 90 requests in six hours for this section.

Figure 8 shows that all instances accepted over 78% of requests, with those spanning
nine hours accepting over 88%. Note that it may not be feasible to accept all requests in our
instances with the given number of vehicles (e.g., the optimal solution on sw-schlee_2 with
30 requests in three hours denies a single request). Instances which were solved to optimality
accepted the maximum amount of passengers due to our choice of penalty W (see Lemma 1)
and instances with the lowest acceptance rates correspond to those with the highest MIP
gaps, compare Figure 4. Among all instances solved to optimality, 99.69% of requests were
accepted on average.

As a measure of routing quality, [19] propose the metric system efficiency, computed as
the fraction of total booked kilometers (as a straight-line path between origin and destination)
to total driven distance by all vehicles. A value greater than 1 corresponds to our system
saving distance compared to each passenger traveling in their own vehicle.

ATMOS 2025

17:14 The Line-Based Dial-a-Ride Problem with Transfers

0 5 10 15 20 25 30
Temporal Density

100

101

102

103

104

105

106

Nu
m

be
r o

f C
on

st
ra

in
ts

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Number of constraints.

0 5 10 15 20 25 30
Temporal Density

100

101

102

103

104

105

106

Nu
m

be
r o

f V
ar

ia
bl

es

(b) Number of variables.

Figure 7 Number of constraints and variables in the MILP by temporal density.

10 20 30 40 50 60
Number of Requests

80

85

90

95

100

Ac
ce

pt
ed

 R
eq

ue
st

s i
n

%

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

10 20 30 40 50 60 70 80 90
Number of Requests

80

85

90

95

100

Ac
ce

pt
ed

 R
eq

ue
st

s i
n

%

(b) Six hour time span.

20 40 60 80 100
Number of Requests

80

85

90

95

100

Ac
ce

pt
ed

 R
eq

ue
st

s i
n

%

(c) Nine hour time span.

Figure 8 Average percentage of accepted requests per instance.

As can be seen in Figure 9, the system efficiency increases with the number of requests of
the instances and temporal density, with more dense instances achieving a higher system
efficiency, but only one instances surpasses a value of 1. The differences across networks,
where networks with more routing freedom (e.g., the sw-geo_full) achieve higher efficiencies,
suggests that the liDARPT can better utilize the network here.

10 20 30 40 50 60
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sy
st

em
 E

ffi
cie

nc
y

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

10 20 30 40 50 60 70 80 90
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sy
st

em
 E

ffi
cie

nc
y

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sy
st

em
 E

ffi
cie

nc
y

(c) Nine hour time span.

Figure 9 Average system efficiency per instance.

The system efficiency metric may be overly harsh in evaluating liDARPT outcomes, as
road network distances would, in most cases, significantly exceed the straight line distances
used here for comparison. For this reason, we complement the system efficiency metric with
the network system efficiency, which is defined as the ratio of

∑
r∈R tr∗ , the sum of the

shortest network travel time of all requests, to the total distance traveled of all vehicles.

J. Barth, K. Reiter, and M. Schmidt 17:15

Figure 10 shows that the network system efficiency surpasses the threshold of 1 multiple
times, with the lowest efficiency slightly below 0.4 and overall densely clustered results. The
results show a clear trend of increasing network system efficiency with larger temporal density,
where notably several instances surpass the threshold of 1, indicating that the solver is able
to identify more efficient paths than those in a fixed bus network.

10 20 30 40 50 60
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ne
tw

or
k

Sy
st

em
 E

ffi
cie

nc
y

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

10 20 30 40 50 60 70 80 90
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ne
tw

or
k

Sy
st

em
 E

ffi
cie

nc
y

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ne
tw

or
k

Sy
st

em
 E

ffi
cie

nc
y

(c) Nine hour time span.

Figure 10 Average network system efficiency per instance.

Lastly, Figure 11 considers the vehicle utilization5, which increases with the number of
requests, surpassing the threshold of 1 in all three time spans for higher request numbers,
and reaches values up to 1.32 for larger instances. This suggests that the liDARPT is able to
effectively pool passengers for medium and high densities.

10 20 30 40 50 60
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ve
hi

cle
 U

til
iza

tio
n

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

10 20 30 40 50 60 70 80 90
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ve
hi

cle
 U

til
iza

tio
n

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ve
hi

cle
 U

til
iza

tio
n

(c) Nine hour time span.

Figure 11 Average vehicle utilization per instance. The dashed line indicates a utilization of one.

In general, smaller instances achieve a lower utilization due to limited flexibility, resulting
in longer trips to reposition the vehicles between requests. Differences in network structures
may additionally play a role: the sw-schlee_3 network contains two relatively long lines
without a transfer point at their end, resulting in many empty driven kilometers, e.g., after
a request has been transported to the end of a line and the vehicle needs to return empty,
and thus an overall lower utilization when compared to similarly sized networks. However,
we cannot observe a general trend related to the networks: the vehicle utilization seems to
correlate strongly with the number of requests but not with the number of lines or transfer
points in the network.

5 ratio of total passenger kilometers to the total vehicle distance traveled.

ATMOS 2025

17:16 The Line-Based Dial-a-Ride Problem with Transfers

4 Conclusion

Inspired by the combination of scheduled bus services and dial-a-ride systems, we present
the novel line-based dial-a-ride problem with transfers (liDARPT), wherein vehicles operate
on-demand on a multi-line network, allowing passengers to transfer during their journey.

Our computational experiments with benchmark instances based on long-distance bus
networks demonstrate the viability of our solution approach for the liDARPT under varying
conditions, examining effects of increasing number of passengers, total time span, and number
of lines in the network. As a feasibility study, our results show that the liDARPT can accept
a large amount of passengers, and additionally pool these passengers in the available vehicles,
achieving environmental savings by reducing the traveled distance. Hence, the model is a
viable alternative to public transport, enabling a more flexible usage of existing infrastructure,
especially in regions with low demand.

In the static variant studied here, our approach was able to solve instances with up to
80 requests in the given time limit of 15 minutes. Across all instances solved to optimality,
99.69% of requests were accepted, and, for increasing instance size, both the network system
efficiency and the vehicle utilization surpass their threshold of 1.

To better address passenger satisfaction, future work could incorporate the generalized
travel time, i.e., the sum of travel, waiting, and transfer times, in the objective function
as a measure of service quality. Beyond this, further research should concentrate on the
development and evaluation of solution approaches for the dynamic liDARPT, and the
comparison to public transport systems operated fully on demand, on the one hand, and
scheduled public transport, on the other hand. Furthermore, future work on the liDARPT
may explore an extension where vehicles may be dynamically reassigned between lines,
allowing a responsive (or preemptive) approach to variable demand and a varying amount of
vehicles per line. As a first step, the current MILP formulation may be extended to determine
the optimum number of vehicles per line for the given instance, subject to a global fleet
size constraint. Building on this, a second step could incorporate vehicle transfers between
lines at the transfer stations, which would require significant modifications to the current
underlying event-based graph structure.

References
1 Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus.

On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114(3):462–467, 2017. doi:10.1073/pnas.1611675114.

2 Andrea Attanasio, Jean-François Cordeau, Gianpaolo Ghiani, and Gilbert Laporte. Parallel
Tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing,
30(3):377–387, March 2004. doi:10.1016/j.parco.2003.12.001.

3 Jonas Barth. liDARPT. Software, swhId: swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a
83841a (visited on 2025-08-27). URL: https://github.com/barjon0/liDARPT, doi:10.4230/
artifacts.24588.

4 Jonas Barth. The line-based dial-a-ride problem with transfers. Master’s thesis, Julius-
Maximilians-Universität Würzburg, Germany, 2025.

5 John W. Baugh, Gopala Krishna Reddy Kakivaza, and John R. Stone. Intractability of the
Dial-a-Ride Problem and a Multiobjective Solution Using Simulated Annealing. Engineering
Optimization, 30(2):91–123, February 1998. doi:10.1080/03052159808941240.

6 Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. A Hybrid Tabu Search and
Constraint Programming Algorithm for the Dynamic Dial-a-Ride Problem. INFORMS Journal
on Computing, 24(3):343–355, 2012. doi:10.1287/IJOC.1110.0454.

7 Jean-François Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Operations
research, 54(3):573–586, 2006. doi:10.1287/OPRE.1060.0283.

https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1016/j.parco.2003.12.001
https://archive.softwareheritage.org/swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a83841a;origin=https://github.com/barjon0/liDARPT;visit=swh:1:snp:9e991754ac51080c4671363ee2e149da96bd534e;anchor=swh:1:rev:eae0411fec481c24c2f82a32bf3319292f47c08a
https://archive.softwareheritage.org/swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a83841a;origin=https://github.com/barjon0/liDARPT;visit=swh:1:snp:9e991754ac51080c4671363ee2e149da96bd534e;anchor=swh:1:rev:eae0411fec481c24c2f82a32bf3319292f47c08a
https://github.com/barjon0/liDARPT
https://doi.org/10.4230/artifacts.24588
https://doi.org/10.4230/artifacts.24588
https://doi.org/10.1080/03052159808941240
https://doi.org/10.1287/IJOC.1110.0454
https://doi.org/10.1287/OPRE.1060.0283

J. Barth, K. Reiter, and M. Schmidt 17:17

8 Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological, 37(6):579–594, 2003.
doi:10.1016/S0191-2615(02)00045-0.

9 Jean-François Cordeau and Gilbert Laporte. The Dial-a-Ride Problem (DARP): Variants,
modeling issues and algorithms. Quarterly Journal of the Belgian, French and Italian Operations
Research Societies, 1(2):89–101, June 2003. doi:10.1007/s10288-002-0009-8.

10 Samuel Deleplanque and Alain Quilliot. Dial-a-ride problem with time windows, trans-
shipments, and dynamic transfer points. IFAC Proceedings Volumes, 46(9):1256–1261,
2013. 7th IFAC Conference on Manufacturing Modelling, Management, and Control.
doi:10.3182/20130619-3-RU-3018.00435.

11 Daniela Gaul, Kathrin Klamroth, Christian Pfeiffer, Michael Stiglmayr, and Arne Schulz.
A tight formulation for the dial-a-ride problem. European Journal of Operational Research,
321(2):363–382, 2024. doi:10.1016/j.ejor.2024.09.028.

12 Daniela Gaul, Kathrin Klamroth, and Michael Stiglmayr. Solving the Dynamic
Dial-a-Ride Problem Using a Rolling-Horizon Event-Based Graph. In DROPS-
IDN/v2/document/10.4230/OASIcs.ATMOS.2021.8. Schloss-Dagstuhl - Leibniz Zentrum für
Informatik, 2021. doi:10.4230/OASIcs.ATMOS.2021.8.

13 Daniela Gaul, Kathrin Klamroth, and Michael Stiglmayr. Event-based MILP models for ride-
pooling applications. European Journal of Operational Research, 301(3):1048–1063, September
2022. doi:10.1016/j.ejor.2021.11.053.

14 Konstantinos Gkiotsalitis and A Nikolopoulou. The multi-vehicle dial-a-ride problem with
interchange and perceived passenger travel times. Transportation research part C: emerging
technologies, 156:104353, 2023. doi:10.1016/j.trc.2023.104353.

15 Timo Gschwind and Stefan Irnich. Effective handling of dynamic time windows and its
application to solving the dial-a-ride problem. Transportation Science, 49(2):335–354, 2015.
doi:10.1287/trsc.2014.0531.

16 Sin C. Ho, W.Y. Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering, and
Terence W.H. Tou. A survey of dial-a-ride problems: Literature review and recent de-
velopments. Transportation Research Part B: Methodological, 111:395–421, 2018. doi:
10.1016/j.trb.2018.02.001.

17 Ailing Huang, Ziqi Dou, Liuzi Qi, and Lewen Wang. Flexible Route Optimization for Demand-
Responsive Public Transit Service. Journal of Transportation Engineering Part A Systems,
146, September 2020. doi:10.1061/JTEPBS.0000448.

18 Antonio Lauerbach, Kendra Reiter, and Marie Schmidt. The complexity of counting turns
in the line-based dial-a-ride problem. In International Conference on Current Trends in
Theory and Practice of Computer Science, pages 85–98. Springer, 2025. doi:10.1007/
978-3-031-82697-9_7.

19 Christian Liebchen, Martin Lehnert, Christian Mehlert, and Martin Schiefelbusch. Betriebliche
Effizienzgrößen für Ridepooling-Systeme, pages 135–150. Springer Fachmedien Wiesbaden,
Wiesbaden, 2021. doi:10.1007/978-3-658-32266-3_7.

20 Renaud Masson, Fabien Lehuédé, and Olivier Péton. The dial-a-ride problem with transfers.
Computers & Operations Research, 41:12–23, 2014. doi:10.1016/j.cor.2013.07.020.

21 Yves Molenbruch, Kris Braekers, and An Caris. Typology and literature review for dial-
a-ride problems. Annals of Operations Research, 259(1):295–325, December 2017. doi:
10.1007/s10479-017-2525-0.

22 Sophie N. Parragh, Jean-François Cordeau, Karl F. Doerner, and Richard F. Hartl. Models
and algorithms for the heterogeneous dial-a-ride problem with driver-related constraints. OR
Spectrum, 34(3):593–633, 2012. doi:10.1007/s00291-010-0229-9.

23 Sophie N. Parragh and Verena Schmid. Hybrid column generation and large neighborhood
search for the dial-a-ride problem. Computers & Operations Research, 40(1):490–497, 2013.
doi:10.1016/j.cor.2012.08.004.

ATMOS 2025

https://doi.org/10.1016/S0191-2615(02)00045-0
https://doi.org/10.1007/s10288-002-0009-8
https://doi.org/10.3182/20130619-3-RU-3018.00435
https://doi.org/10.1016/j.ejor.2024.09.028
https://doi.org/10.4230/OASIcs.ATMOS.2021.8
https://doi.org/10.1016/j.ejor.2021.11.053
https://doi.org/10.1016/j.trc.2023.104353
https://doi.org/10.1287/trsc.2014.0531
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1061/JTEPBS.0000448
https://doi.org/10.1007/978-3-031-82697-9_7
https://doi.org/10.1007/978-3-031-82697-9_7
https://doi.org/10.1007/978-3-658-32266-3_7
https://doi.org/10.1016/j.cor.2013.07.020
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s00291-010-0229-9
https://doi.org/10.1016/j.cor.2012.08.004

17:18 The Line-Based Dial-a-Ride Problem with Transfers

24 Christian Pfeiffer and Arne Schulz. An ALNS algorithm for the static dial-a-ride problem
with ride and waiting time minimization. OR Spectrum, 44(1):87–119, 2022. doi:10.1007/
s00291-021-00656-7.

25 Line Blander Reinhardt, Tommy Clausen, and David Pisinger. Synchronized dial-a-ride
transportation of disabled passengers at airports. European Journal of Operational Research,
225(1):106–117, February 2013. doi:10.1016/j.ejor.2012.09.008.

26 Kendra Reiter, Marie Schmidt, and Michael Stiglmayr. The line-based dial-a-ride problem. In
24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems, 2024. doi:10.4230/OASIcs.ATMOS.2024.14.

27 Yannik Rist and Michael A. Forbes. A new formulation for the dial-a-ride problem. Trans-
portation Science, 55(5):1113–1135, 2021. doi:10.1287/trsc.2021.1044.

28 Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. Models and branch-and-cut
algorithms for pickup and delivery problems with time windows. Networks, 49(4):258–272,
2007. doi:10.1002/net.20177.

29 Stefan Ropke and David Pisinger. An Adaptive Large Neighborhood Search Heuristic for the
Pickup and Delivery Problem with Time Windows. Transportation Science, 40(4):455–472,
2006. doi:10.1287/trsc.1050.0135.

30 Jörn Schönberger. Scheduling constraints in dial-a-ride problems with transfers: a metaheuristic
approach incorporating a cross-route scheduling procedure with postponement opportunities.
Public Transport, 9:243–272, 2017. doi:10.1007/s12469-016-0139-6.

A Benchmark Networks

Marktheidenfeld

Karlstadt

(a) markt-karl.

Marktheidenfeld

Karlstadt

Lohr

(b) markt-karl-lohr.
Schweinfurt

Gerolzhofen

(c) sw-geo_2.

Volkach

Schweinfurt

Gerolzhofen

(d) sw-geo_full.
Schweinfurt

Werneck

(e) sw-schlee_2.

Schweinfurt

Werneck

(f) sw-schlee_3.

Schweinfurt

Hammelburg

Werneck

(g) sw-schlee_full.

Figure 12 Visualization of the underlying networks of our benchmark instances. The black square
markers signify the transfer stations.

https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1016/j.ejor.2012.09.008
https://doi.org/10.4230/OASIcs.ATMOS.2024.14
https://doi.org/10.1287/trsc.2021.1044
https://doi.org/10.1002/net.20177
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1007/s12469-016-0139-6

J. Barth, K. Reiter, and M. Schmidt 17:19

B Variable Overview

Table 2 Summary of notation.

Identifier Definition

Parameters

S set of stations
ST set of transfer stations
I set of lines
K set of vehicles
R set of requests
λi sequence of stations of a line i
σ(k) line of bus k
σ−1(i) set of vehicles assigned to line i
ci capacity of vehicles on line i
sdepot

i start and end depot of a line i
t(s, s′) (time) distance between stations s, s′

qr number of passengers in request r
r+, r− pick-up, drop-off station for request r
[e(r+), l(r+)] pick-up time window for request r
[e(r−), l(r−)] drop-off time window for request r
Lr maximum travel time of request r
b service time

P set of actions
P(r) set of actions of request r
P(r)+,P(r)− set of outbound and inbound actions of request r
P(r)+

j set of outbound actions in route option ϕr
j of request r

Φ(r) set of route options of request r
Ψ(r) set of splits of a request r
ρi,+

s,r , ρ
i,−
s,r outbound and inbound action of request r at station s on line i

ϕr
j = (ρi,+

r+,r
, . . . , ρi′,−

r−,r
) route option of request r

ψi
s,s′,r = (ρi,+

s,r , ρ
i,−
s′,r

) split of a request r on line i from s to s′

dir(i, s, s′) travel direction of a split ψi
s,s′,r on line i

G = (V,A) event-based graph
(v1, v2, . . .) event node in V
0i empty event at depot of line i
δin(v), δout(v) incoming and outgoing edges of node v

Model Variables

pr binary variable, is 1 if request r is accepted
xa binary variable, is 1 if arc a is selected
yr

j binary variable, is 1 if route option ϕr
j is selected

B
ρ

i,±
s,r

continuous variable, end time of the action ρi,±
s,r

ATMOS 2025

17:20 The Line-Based Dial-a-Ride Problem with Transfers

C Summary of Results

The following tables provide a summary of results, averaged over all networks, per time span.
MaxOcc denotes the maximum occupancy in all vehicles.

Table 3 Averaged results over all networks.

(a) Three hour time span.

#Req MIPGap AccReq SysEff NetEff VehUtil MaxOcc Avg#Transfers

10 0.00 100.00 0.37 0.55 0.57 1.71 0.74
20 0.00 100.00 0.46 0.67 0.75 3.14 0.68
30 0.00 99.05 0.60 0.77 0.85 3.14 0.61
40 1.57 97.02 0.66 0.91 1.02 4.14 0.70
50 5.57 94.38 0.74 1.02 1.14 4.05 0.68
60 18.52 84.29 0.78 1.06 1.17 4.43 0.71
70 27.90 78.23 0.81 1.09 1.22 5.05 0.65
80 40.43 71.37 0.82 1.07 1.18 4.48 0.59
90 48.95 67.41 0.81 1.08 1.19 4.48 0.58
100 73.05 58.05 0.80 1.02 1.11 4.05 0.51

(b) Six hour time span.

#Req MIPGap AccReq SysEff NetEff VehUtil MaxOcc Avg#Transfers

10 0.00 100.00 0.41 0.53 0.56 1.86 0.60
20 0.00 100.00 0.51 0.67 0.75 2.43 0.69
30 0.00 100.00 0.53 0.76 0.85 2.86 0.81
40 0.00 99.64 0.56 0.80 0.90 3.29 0.79
50 0.38 99.14 0.64 0.89 1.01 3.86 0.77
60 1.29 97.86 0.67 0.94 1.05 4.14 0.74
70 1.95 97.01 0.70 0.93 1.04 4.48 0.72
80 4.76 94.46 0.72 0.98 1.10 4.67 0.74
90 13.43 88.41 0.73 1.02 1.14 4.67 0.70
100 21.19 82.57 0.75 1.00 1.12 4.24 0.64

(c) Nine hour time span.

#Req MIPGap AccReq SysEff NetEff VehUtil MaxOcc Avg#Transfers

10 0.00 100.00 0.38 0.50 0.55 1.86 0.64
20 0.00 100.00 0.48 0.68 0.74 2.43 0.82
30 0.00 100.00 0.53 0.70 0.75 2.71 0.66
40 0.00 100.00 0.54 0.76 0.83 2.71 0.77
50 0.00 99.71 0.62 0.84 0.92 3.52 0.71
60 0.00 100.0 0.60 0.85 0.93 3.43 0.72
70 0.00 99.18 0.65 0.90 1.00 3.57 0.69
80 0.81 98.69 0.69 0.93 1.03 4.14 0.75
90 2.33 97.46 0.70 0.95 1.05 4.67 0.75
100 4.48 95.57 0.69 0.96 1.07 4.14 0.75

	1 Introduction
	1.1 Related Work

	2 Problem Formulation and Model
	2.1 Problem Description
	2.2 Modeling Route Options of Requests
	2.3 The Event-Based Graph for the liDARPT
	2.4 Mixed-Integer Linear Programming Model

	3 Computational Experiments
	3.1 Benchmark Instances
	3.2 Computational Performance
	3.3 Service Quality Metrics

	4 Conclusion
	A Benchmark Networks
	B Variable Overview
	C Summary of Results

