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Abstract
While a shift from individual transport to public transport reduces greenhouse gas emissions, public
transport itself also consumes a non-negligible amount of energy. Acceleration processes have a high
part in that, especially in urban transportation networks where stops are not far from each other.
Express lines which skip stops hence use less energy than a vehicle on a normal line on the same
route. Additionally, they increase the attractiveness of public transport by reducing travel times. In
this paper, we introduce the express line planning problem ELP which extends the well-known line
planning problem by the additional planning of express lines and which stops they skip. The problem
is stated in a bicriteria setting minimizing the passengers travel time and the energy consumption of
the public transport system. We investigate the problem’s complexity and develop two different
MIP formulations and show their equivalence. The models are tested numerically on medium sized
instances.
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1 Motivation

While an expansion of public transport facilitates the shift from individual transport to
public transport and hence reduces greenhouse gas emissions, also public transport itself
consumes a non-negligible amount of energy. Both aspects improving the attractiveness of
public transport, and avoiding emissions can be improved by introducing express lines that
skip some of the stops: This enables people to travel faster between their origins and their
destinations making the usage of public transport more attractive. Further, each skipped
stop means that the vehicle avoids an acceleration process, and, hence, consumes less energy
than a vehicle on a normal line on the same route. This is underlined by the fact that the
acceleration process is the most energy consuming part of driving in an urban transportation
network where stops are not that far from each other.

However, there are also some downsides in the implementation of express lines as skipping
a stop might lead to higher travel times for the passengers who want to board/alight at that
stop. In addition, the introduction of new lines might increase the energy consumption of the
transport system if it results in a higher number of vehicles. Therefore, the decisions where
express lines are implemented and which stops are skipped are essential to its practical effect.

The goal of this paper is to design a line concept consisting of both express lines that skip
some stops and normal lines that stop at every stop. Therefore, we integrate the decision
which stops to skip in an express line into the line planning process. Our contribution is the
following.
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18:2 Energy-Efficient Line Planning by Implementing Express Lines

1. We state the express line planning problem ELP in a bicriteria setting, minimizing the
passengers’ travel time as well as the energy consumption of the transport system.

2. We discuss the complexity of ELP and develop two distinct MIP formulations.
3. We compare the two MIP formulations in terms of size and prove their equivalence.
4. We also provide an experimental comparison of the two MIP formulations in terms of

their run times and analyze the usage of express lines as well as the trade off between a
reduction of travel time and a decrease in energy consumption.

The remainder of the paper is structured as follows: In Section 2 we give an overview of
relevant literature. The basis of the new express line planning problem is the known line
planning problem with minimal transfers and frequencies (described in Section 3.1). For its
modeling we provide two different ways of representing an express line in Section 3.2. The
express line planning problem ELP is then stated in Section 4.1. Here also its complexity is
discussed. Now, the two MIP models which are based on the representation of express lines
by stops (see Section 4.2) and by edges (see Section 4.3) are formulated. They are compared
in Section 5. In Section 6, results from numerical experiments are presented. We conclude in
Section 7.

2 Literature

2.1 Express Lines reducing Energy Consumption
In recent years, there were many papers published studying the possibility to reduce the
energy consumption of a public transport system by installing an express mode (e.g. [3, 6, 5,
15, 13, 14]). Here, the implementation of express lines is often investigated in the context of
timetabling (see e.g. [3, 14, 5]) and often solved by genetic algorithms ([6, 15, 13, 14]). The
combination with timetabling is due to the fact that, in the context of railways, the necessity
of an express line’s train to overtake a normal line’s train might cause serious problems due
to a limited number of tracks. This problem is often studied on a small instance of one single
line (see [3, 6, 5, 13, 14]) while [15] plan a cross-line express into an existing metro system.
While the decrease of the total travel time is an objective in all these papers, [3] and [14]
also aimed at minimizing the energy consumption. This paper also aims at investigating the
implementation of express lines under both objectives, the minimization of the passengers’
travel time and the minimization of the transport systems’ energy consumption. However,
we want to do the planning of express lines on the whole public transport network instead of
just a single line, which enables us to consider passenger route changes. Further, we want to
plan express lines already in the line planning step deciding where an express line should be
implemented.

2.2 Line Planning with Passenger Routing and Express Lines
Line planning is a well-researched field in public transport optimization. There have been
numerous papers published in this area. Recent overviews include [1, 10]. Different objective
functions have been researched in Line Planning [11]. While there are many papers that
minimize the total cost of a line plan we are interested in those that minimize the total
travel time of the passengers. Here, the integration of passenger routing is of particular
interest as it allows flexibility in the passengers route choice depending on the design of
the public transport system (see [8]). The model developed in this paper will be based on
the line planning model with minimal transfers and frequencies (LPMTF) presented in [12].
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That paper, however, like most research in line planning, only considers lines that stop at all
stops on their path. Only a few papers have been published on line planning with different
stopping patterns, see Section 16.4.1. in [10] for a recent overview. Often, a system split
is assumed (cf. [7]), i.e. we know in advance whether the passengers will travel on express
or on normal lines. This might be reasonable in the context of long distance trains, but
in the context of a public transport system, we would like to have more flexibility in the
choice of passenger routes. We hence develop a model in which passengers can freely choose
their mode of transport. Another point that distinguishes our model from the ones in the
literature is the objective of minimizing the system’s energy consumption. The models on
express lines or on skip stop planning usually have the objective of minimizing operating
costs.

Another interesting stream of literature is the design of a BRT line, see [4] and references
therein.

3 Modeling Express Lines

3.1 The Underlying Line Planning Model

Line planning problems aim at covering the links of a public transport network with lines
such that passengers can travel on these lines from their origins to their destinations. A
public transport network PTN = (V, E) is a graph whose vertices V are stops and whose
edge set E consists of the direct links between pairs of stops. A line is now defined as follows:

▶ Definition 1. A line ℓ is a (simple) path in the PTN. The set of vertices of line ℓ is
denoted by Vℓ and the set of edges of line ℓ is denoted by Eℓ. Let φℓ : Vℓ → {1, . . . , nℓ} give
us the position of a vertex in the path of line ℓ with nℓ = |Vℓ| denoting the number of stops
of line ℓ. Given a fixed planning period, say one hour, the frequency of a line fℓ says how
often the line is operated during this planning period.

Given a line pool L which contains candidate lines, the goal of line planning is to determine
the set of lines L∗ ⊆ L which should be operated and determine a frequency fℓ for each of
them. The set of selected lines L∗ is called a line plan, and the pair (L∗, fℓ for all ℓ ∈ L∗) is
called a line concept.

The express line planning problem to be developed in this paper is an extension of the
line planning problem with minimal transfers and frequencies (LPMTF) from [12]. It aims at
finding a subset of lines from a given line pool as well as passenger paths through the network
such that the line-and-frequency-dependent operating costs are within a given budget and
the total travel time of the passengers is minimized. The passengers’ travel time consists
of the driving times along every edge in the PTN together with a penalty added for every
transfer from one line to another. Therefore, as underlying graph structure, the so-called
change&go network CGN = (V ′, E′) is used. The CGN is an extended PTN based on a
given line pool L. We use a slightly modified version 1 of the original definition from [12].
Transferring as well leaving the origin and entering the destination are performed by the
passengers via a station node v ∈ V ′

ST . The change&go network is built as follows:

1 We thank Sven Jäger for the efficient modification of the CGN.
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(a) PTN with three lines. (b) Change&go network.

Figure 1 Networks for Line Planning.

V ′ := V ′
CG ∪ V ′

ST

V ′
CG := {(s, ℓ) ∈ V × L : s ∈ Vℓ}

V ′
ST := {(s, 0) : s ∈ V }

E′ := E′
change ∪ E′

go

E′
go := {((s, ℓ), (s′, ℓ)) ∈ V ′

CG × V ′
CG : (s, s′) ∈ Eℓ, ℓ ∈ L}

E′
change := {((s, 0), (s, ℓ)) ∈ V ′

ST × V ′
CG and ((s, ℓ), (s, 0)) ∈ V ′

CG × V ′
ST : s ∈ Vℓ, ℓ ∈ L}

Figure 1b shows the change&go network derived from the PTN and the three lines
depicted in Figure 1a.

Let us briefly state the MIP formulation for (LPMTF). We are given a PTN = (V, E)
with passenger demand Cuv for each u, v ∈ V denoting the number of passengers intending
to travel from u to v. For each edge e ∈ E, we know the time needed for its traversal w′

e. In
addition, we are given a change penalty α. Further, we are given a line pool L and costs cℓ

for each line ℓ ∈ L as well as a budget B on the total cost of the line concept. Each vehicle
serving a line has capacity for A passengers. Θ denotes the node-arc-incidence matrix of the
corresponding CGN = (V ′, E′). The travel time function w : E′ → R+

0 on the edges of the
CGN is defined by we := wij for e = ((i, ℓ), (j, ℓ)) ∈ Ego and by we := 0.5α for e ∈ Echange.
Now, let us define the node potential for the uv flow of passengers:

buv
s =


Cuv if s = (v, 0)
−Cuv if s = (u, 0)
0 else

for each s ∈ V ′ and u, v ∈ V .
The decision variables are the frequency fℓ assigned to each line and the passenger flow,

i.e., the number of passengers puv
e with origin u and destination v traveling on edge e.

(LPMTF) min
∑
e∈E′

∑
u,v∈V : Cuv>0

wepuv
e (1)

s.t. Θpuv = buv ∀u, v ∈ V : Cuv > 0 (2)∑
u,v∈V

puv
e ≤ Afℓ ∀ℓ ∈ L, e ∈ E′

ℓ (3)
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∑
ℓ∈L

cℓfℓ ≤ B (4)

puv
e ∈ N ∀u, v ∈ V ∀e ∈ E′ (5)

fℓ ∈ N ∀ℓ ∈ L (6)

The objective (1) minimizes the total travel time of the passengers. Constraints (2) are
passenger flow constraints. These determine paths from the origins to the destinations for
all passengers. Constraints (3) ensure that sufficient capacity is offered on each edge to
transport all passengers along the paths determined in (2), and constraint (4) ensures that
the given budget on the total cost is respected.

3.2 Two Ways of Modeling Express Lines
In the express line planning problem we do not only want to select lines from a given line
pool, but we also want to be able to install an express line for each selected line. In the
following, the notion of an express line is formally defined. An illustration can be found in
Figure 2.

Figure 2 An express line (light blue) based on a normal line (blue).

▶ Definition 2. Let ℓ with Vℓ = {v1, . . . , vn} be a line. An express line ℓexp based on line ℓ

is given by Vℓexp = {v1} ∪ S ∪ {vn} with S ⊊ {v2, . . . , vn−1}.

▶ Remark 3. For a line with n stops there are 2n−2 − 1 possible express lines.
It is possible to just add the express lines to the line pool and use the normal line planning
models with passenger routing from the literature. However, adding all possible express lines
to the pool would mean adding an exponential number of lines. This is computationally
not possible. Hence, we now define two different ways of describing an express line. An
express line can be given by its nodes (stop-based representation) or its edges (edge-based
representation). In Figure 3, the two ways of modeling an express line ℓexp based on a normal
line ℓ are depicted.

1 2 3 4 5

(a) Stop-based Representation:
red stops are served.

1 2 3 4 5

(b) Edge-based Representation:
red edges are part of the express line.

Figure 3 Two Representations of the same Express Line.

We, now, first define the notion of a stopping pattern for the stop-based representation.

▶ Definition 4. Let ℓexp be an express line based on a line ℓ with n stops, Vℓ = {v1, . . . , vn}.

The vector σℓexp ∈ {0, 1}n with σℓexp(i) :=
{

1 if vi ∈ Vℓexp

0 else
is called the stopping pattern

of ℓexp.

ATMOS 2025



18:6 Energy-Efficient Line Planning by Implementing Express Lines

Note that an express line is, by definition, required to skip at least one stop and to stop
at the first and the last stop of the normal line it is based on. Hence, we can define the
notion of a valid stopping pattern.

▶ Definition 5. A stopping pattern σℓexp based on a line ℓ with Vℓ = {v1, . . . , vn} is called
valid if σℓexp(v1) = σℓexp(vn) = 1 and

∑n
i=1 σℓexp(vi) ≤ n − 1.

A valid stopping pattern defines an express line ℓexp based on line ℓ.

Second, we define the notion of an edge choice for the edge-based representation. Therefore,
we define the set of the

(
n
2
)

potential edges of an express line based on a line with n vertices
by:

Epot
ℓexp := {vivj |i < j and i, j ∈ [n]}.

From these edges, we want to choose which ones belong to the express line.

▶ Definition 6. Let ℓexp be an express line based on a line ℓ with n stops. The indicator

vector γℓexp ∈ {0, 1}(n
2) with γℓexp(e) =

{
1 if e ∈ Eℓexp

0 else
is called the edge choice of ℓexp.

However, not every subset of these edges corresponds to a feasible express line. For
example, the edge set {(1, 4), (3, 4), (2, 5)} from Figure 3b does not correspond to a reasonable
express line. Hence, we introduce the notion of a valid choice of edges.

▶ Definition 7. An edge choice γℓexp ∈ {0, 1}(n
2) is called valid, if it corresponds to a

directed path from 1 to vertex n = |Vℓ| on the directed graph F = (Vℓ, Aℓexp) with Aℓexp :=
{ij |γ(ij) = 1 and i < j} and if

∑
e∈Epot

ℓexp
γℓexp(e) ≤ n − 2.

An express line given by a choice of edges γ stops at the nodes incident to the chosen
edges. By the definition of it being valid, it is ensured that the stops of the express line
do not change their order. They can only be skipped. Further, the first and the last stop
must be visited and at least one stop is skipped. Now, let us show that these two ways of
representing an express line are equivalent and that the notions of validity of the edge choice
and the stopping pattern coincide.

▶ Lemma 8. Let ℓ with Vℓ = {1, . . . , n} be a line and ℓexp be an express line based on ℓ .
Each valid stopping pattern σℓexp corresponds to a valid edge choice γℓexp , and vice versa.

The proof of this lemma can be found in Section A.1. In the following, we will exploit this
knowledge to develop two equivalent MIP formulations of the express line planning problem.

4 The Express Line Planning Problem and two MIP Formulations

4.1 The Express Line Planning Problem (ELP)
Let us now state the express line planning problem ELP. As input we have a PTN = (V, E)
together with a line pool L. Additionally, some lines Lexp ⊆ L of the pool can be implemented
as express lines. This means that for each line in Lexp ∩ L we have four choices: It can be
implemented as a regular and as an express line, only as an express line, only as a regular
line or it is not chosen at all. We treat the sets L and Lexp as disjoint sets but for ease of
notation we do not introduce an additional index for the express lines. We are interested in
minimizing energy and travel times.
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For the energy, let the energy consumption ce for traversing the edge be given for each
edge e ∈ E in the PTN. For a line ℓ in L we hence have a total consumption of energy
cℓ =

∑
e∈Eℓ

ce. For an express line based on ℓ ∈ Lexp its energy consumption depends on its
stopping pattern. We assume that by skipping a stop we can save csaved of energy, i.e., the
energy consumption of an express line ℓexp based on line ℓ is cℓexp = cℓ − m · csaved where m

is the number of skipped stops in ℓ.
For the travel time we assume the travel times we for the passengers along edge e to

be given for all e ∈ E. Further, we are given a change penalty α and we assume that by
skipping a stop we can save a travel time of wsaved. Finally, there is OD data provided that
gives us the number of passengers Cuv who want to travel from one stop u ∈ V to another
stop v ∈ V . The travel time of a passenger along a path is computed as in LPMTF.

The problem is then to find a feasible set of lines for each line pool L ⊂ L and L′ ⊂ Lexp

together with frequencies and a stopping pattern for each ℓ ∈ L′ as well as passenger paths
P , such that all passengers can travel between their origins and destinations. We aim to
minimize both the total sum of all travel times over the passengers and the total energy
consumption of all lines in the line concept.

▶ Theorem 9. The express line planning problem ELP is NP-complete.

Proof. In the decision version of the (bicriteria) express line planning problem, we want to
decide whether there exist feasible line selections L ⊂ L and L′ ⊂ Lexp with frequencies, a
stopping pattern for each ℓ ∈ L′ and a path for every OD-pair such that the total travel time
is below a certain value M and the total energy consumption is below a certain value N . For
a given set of lines, stopping patterns and passenger paths it can be verified in polynomial
time whether the solution is feasible to this problem. Therefore, it lies in NP .

In order to see that ELP is NP-complete we use that the line planning problem (LPMTF)
is NP-complete ([12]) and show that its decision version is a special case of the decision
version of ELP: This can be seen by setting Lexp := ∅, i.e., the special case in which there
are no express lines to plan. For LPMTF the NP-hardness is shown for equal costs cℓ = 1
for every line ℓ ∈ L. It can be easily modified to the costs cℓ =

∑
e∈Eℓ

ce which we use in
ELP (by adding additional edges to the lines). ◀

In the following we present two different ways of modeling the express line planning
problem as a MIP. The models differ mainly in the expression of the choice of the stopping
pattern of an express line.

4.2 The Stop-Based Model
First, we model the express line planning problem with express line being defined by their stop-
ping patterns. As input we have an instance I = (PTN, OD, L, Lexp, c, w, csaved, wsaved, α, A)
of the ELP. In addition, for this model, we assume an upper bound Mf on the frequency
f . Such an upper bound is e.g. given by sum of all passengers divided by the capacity
A of a vehicle. Further, we set an upper bound on the number of passengers traveling on
an arc to Mp := A · Mf . The network for the stop-based model is the change&go network
CGN = (V , E) based on the PTN and the union of the line pools L ∪· Lexp (a line that
might be chosen as a normal line and a line that might serve as basis for an express line
are considered as two different lines). Figure 4 depicts the change&go network as described
before for the lines in Figure 1a that simultaneously serve as basis for express lines.

We introduce the following notation for the edge set belonging to a specific line ℓ ∈ L∪· Lexp:

Eℓ := {((s, ℓ), (s′, ℓ)) ∈ Ego : (s, s′) ∈ Eℓ}.

ATMOS 2025
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Figure 4 Change&Go Network CGN = (V , E) for Stop-based Express Line Planning.

Further, we need to define a travel time function for the arcs in the CGN. These are
based on the given travel times in the PTN. We define

w : E → R+
0 with w(((i, ℓ), (j, ℓ′))) :=

{
wij for ((i, ℓ), (j, ℓ′)) ∈ Ego

1
2 α for ((i, ℓ), (j, ℓ′)) ∈ Echange

The decision variables puv
e yield the number of passengers of OD-pair uv on edge e, fℓ decides

on the frequency of line ℓ for all lines ℓ ∈ L ∪· Lexp, and the binary variable yℓs decides on
the stopping pattern of an express line by

yℓs =
{

1 if ℓ skips stop s

0 else
.

So, y is complementary to the stopping pattern (Definition 5). The MIP formulation reads:

min
∑
ℓ∈L

cℓ · fℓ +
∑

ℓ∈Lexp

(cℓ − csaved ·
∑
s∈Vℓ

yℓs) · fℓ (7)

min
∑
e∈E

∑
u,v∈V :Cuv>0

w(e)puv
e − wsaved ·

∑
ℓ∈Lexp

∑
s∈Vℓ

yℓs ·
∑

u,v∈V :Cuv>0

∑
e∈δ+((s,ℓ))

puv
e

(8)

s.t. Θpuv = buv ∀u, v ∈ V : Cuv > 0 (9)∑
u,v∈V

puv
e ≤ Afℓ ∀ℓ ∈ L ∪· Lexp, e ∈ Eℓ (10)

∑
u,v∈V

puv
((s,0),(s,ℓ)) ≤ (1 − yℓs) · Mp ∀s ∈ Vℓ ∀ℓ ∈ Lexp (11)

∑
u,v∈V

puv
((s,ℓ),(s,0)) ≤ (1 − yℓs) · Mp ∀s ∈ Vℓ ∀ℓ ∈ Lexp (12)

fℓ ≤ Mf ·
∑
s∈Vℓ

yℓs ∀ℓ ∈ Lexp (13)

∑
s∈Vℓ

yℓs ≤ |Vℓ| · fℓ ∀ℓ ∈ Lexp (14)

∑
l∈L

∑
s∈Vℓ:φ(s)∈{1,nℓ}

yℓs ≤ 0 (15)

puv
e , fℓ ∈ N ∀u, v ∈ V, ℓ ∈ L ∪· Lexp, e ∈ E (16)

yℓs ∈ {0, 1} ∀ℓ ∈ Lexp, s ∈ Vℓ (17)
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The first objective Equation (7) minimizes the total energy consumption of the line
concept. The second objective Equation (8) minimizes the total travel time of the passengers.
Constraints Equation (9) and Equation (10) are already known from (LPMTF) and yield a
passenger flow as well as the capacity constraints. If a stop is skipped, passengers cannot
board (Equation (11)) or alight (Equation (12)) at this stop. By choosing Mp large enough,
this does not impose any constraints on the passenger flow if the stop is served. Constraints
Equation (13) ensure that an express line is only implemented, if a stop is skipped. As Mf

is chosen large enough, this does not impose any constraint on the frequency in the case that
the stop is served. Constraints Equation (14) ensure that no stops are counted as skipped if
the corresponding express line is not chosen to be in the line concept (fℓ = 0). Equation (15)
ensures that line ℓ stops at the first and the last stop of the underlying normal line.

▶ Lemma 10. Any feasible assignment of the decision variables yℓ yields a valid stopping
pattern σℓ and each valid stopping pattern σℓ can be represented as a feasible assignment of
the variables yℓ.

Proof. The stopping pattern obtained by σℓ(s) := 1 − yℓs for all s ∈ Vℓ is valid due to
constraints 13 and 15 being respected by the feasible assignment yℓs. On the other hand,
every valid stopping pattern yields a feasible assignment of the y variables by yℓs := 1 − σℓ(s).
Due to validity of σ the constraints 13 and 15 are respected. ◀

The two objectives of the MIP above are not linear. We provide a linearization of this
model in the appendix (Section A.2).

4.3 The Edge-Based Model
The second model is based on the depiction of express lines as a choice of edges. Hence, we
need a new network including all the potential edges for each express line.

4.3.1 The Edge-Based Express Change and Go Network
For an express line based on a line with nℓ nodes, we further introduce two artificial nodes
vsrc and vsink for initializing a flow that determines the choice of edges of that line. We set
φ(vsrc) := 0 and φ(vsink) := nℓ + 1.

For an express line ℓx the set of potential vertices coincides with the vertex set of the
line ℓ which it is based on (Vℓexp = Vℓ = {v1, . . . , vn}). Further, we denote by V →

ℓexp :=
{vsrc, v1, . . . , vn, vsink} the vertices of express line ℓexp including the source and the sink
node for the flow. Let us further define the vertex set V → := V ∪

⋃
ℓ∈Lexp{vsrc

ℓ , vsink
ℓ }.

The vertex set of the express change&go network is now defined as follows:

Ṽ := ṼOD ∪ ṼCG ∪ ṼEX

ṼOD := {(s, 0) : s ∈ V } ṼCG := {(s, ℓ) ∈ V × (L ∪· Lexp) : s ∈ Vℓ}

ṼEX := {(s, ℓ) ∈ V → × Lexp : ℓ ∈ V →
ℓ }

Now, we also distinguish between the following two edge sets of express line ℓ. While

Ẽℓ := {((s, ℓ), (s′, ℓ)) ∈ ṼEX × ṼEX : s, s′ ∈ Vℓ}

denotes the set of all possible edges (arcs into both directions) of express line ℓ, there is also
another arc set associated with express line ℓ:

ATMOS 2025
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(a) The flow arc set E→
ℓexp . (b) E-CGN.

Figure 5 Modeling Express Lines in a Network.

Ẽ→
ℓ :={((vsrc, ℓ), (s, ℓ)) ∈ ṼEX × ṼEX : φ(vsrc) = 0, φ(s) = 1, s ∈ Vℓ}

∪ {((s, ℓ), (vsink, ℓ)) ∈ ṼEX × ṼEX : φ(s) = nℓ, s ∈ Vℓ}

∪ {((vsrc, ℓ), (vsink, ℓ)) ∈ ṼEX × ṼEX}

∪ {((s, ℓ), (s′, ℓ)) ∈ Ẽℓ|φ(s) < φ(s′)}

This set includes all forward arcs from the set of possible edges and links them with the
source and the sink node. Also the source and the sink are linked by an arc. This set of arcs is
depicted in Figure 5a. Now, we can define the edge set of the express change and go network.

Ẽ := Ẽchange ∪ Ẽgo ∪ Ẽexgo

Ẽgo := {((s, ℓ), (s′, ℓ)) ∈ VCG × VCG : (s, s′) ∈ Eℓ, ℓ ∈ L}

Ẽexgo := {e ∈ Ẽ→
ℓ ∪ Ẽℓ|ℓ ∈ Lexp}

Ẽchange := {((s, 0), (s, ℓ)) ∈ VOD × VCG and ((s, ℓ), (s, 0)) ∈ VCG × VOD : s ∈ Vℓ, ℓ ∈ L ∪· Lexp}

An example for an express change and go network based on the PTN with three lines
(see Figure 1a) can be found in Figure 5b. Here, the three lines also serve as set for the
potential express lines (L = Lexp).

The passengers can use all edges for traveling except those connecting an artificial source
or sink node to an express line. Hence, we allow passenger flow on the following edge set:

ẼP := Ẽchange ∪ Ẽgo ∪
⋃

ℓ∈Lexp

Ẽℓ.

4.3.2 The Edge-Based Express Line Planning MIP Formulation
The second MIP formulation that we develop is based on the choice of edges of an express
line. As input we have an instance I = (PTN, OD, L, Lexp, c, w, csaved, wsaved, α, A) of the
ELP. In addition, we assume, as before, an upper bound on the frequency Mf . The network
for the edge-based model is the previously defined edge-based express-change&go network
E − CGN = (Ṽ , Ẽ) based on the PTN and the two line pools L and Lexp. Again, we need
to define two functions that, based on the input, assign travel times and, respectively, energy
costs to the edges of the CGN:

c̃ :
⋃

ℓ∈Lexp

Ẽℓ → R+
0 and w̃ : ẼP → R+

0 .
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As these costs should, for edges of an express line, depend on the number of stops skipped
by this edge, we first introduce the following notation for an edge’s number of skipped stops
mij

ℓ as well as the set of corresponding edges in the PTN:

mij
ℓ := |{s ∈ Vl|φ(i) < φ(s) < φ(j) or φ(j) < φ(s) < φ(i)}|

to be the number of stops skipped by edge e ∈ Ẽℓ and

Ebetw
ℓ (ij) := {uv ∈ Eℓ|φ(i) ≤ φ(u) < φ(v) ≤ φ(j) or φ(j) ≤ φ(u) < φ(v) ≤ φ(i)}.

Now, we define the travel time on each arc of the CGN as

w̃(((i, ℓ), (j, ℓ′))) :=


∑

e∈Ebetw
ℓ

(ij) we − mij
ℓ · wsaved for ((i, ℓ), (j, ℓ′)) ∈ Eexgo (ℓ = ℓ′)

wij for ((i, ℓ), (j, ℓ′)) ∈ Ego (ℓ = ℓ′)
1
2 α for ((i, ℓ), (j, ℓ′)) ∈ Echange (ℓ = 0 ∨ ℓ′ = 0)

.

For the energy consumption of line ℓ ∈ Lexp on edge ((i, ℓ), (j, ℓ)) ∈ Ẽℓ we define

c̃((i,ℓ),(j,ℓ)) :=
∑

e∈Ebetw
ℓ

(ij)

ce − mij
ℓ · csaved

The decision variables puv
e yield the number of passengers of OD-pair uv on edge e ∈ Ẽ,

fl decides on the frequency of line ℓ for all lines ℓ ∈ L ∪ Lexp, and the binary variable xl
e

decides on the express line’s choice of edges.
Further, for each express line ℓ, let ∆ℓ be the incidence matrix of the graph F ℓ = (V →

ℓ , Ẽ→
ℓ )

which is a subgraph of E − CGN. Let us define hℓ
s =


1 if s = vsrc

−1 if s = vsink

0 else
for each s ∈ V →

ℓ .

The MIP model now reads:

min
∑
ℓ∈L

cℓ · fℓ +
∑

ℓ∈Lx

fℓ ·
∑

e∈Ẽℓ∩Ẽ→
ℓ

c̃(e) · xℓ
e (18)

min
∑

u,v∈V :Cuv>0

∑
e∈ẼP

w̃epuv
e (19)

s.t. Θpuv = buv ∀u, v ∈ V : Cuv > 0 (20)∑
u,v∈V

puv
e ≤ Afℓ ∀e ∈ Ẽgo, ℓ ∈ L, (21)

∑
u,v∈V

puv
e ≤ Af ℓ · xℓ

e ∀e ∈ Ẽℓ, ℓ ∈ Lexp (22)

∆ℓxℓ = hℓ ∀ℓ ∈ Lexp (23)∑
e∈Ẽℓ∩Ẽ→

ℓ

xℓ
e ≤ nℓ − 2 ∀ℓ ∈ Lexp (24)

xℓ
ij = xℓ

ji ∀ij ∈ Ẽℓ, ℓ ∈ Lexp (25)

puv
e ∈ N ∀e ∈ ẼP , u, v ∈ V (26)
fℓ ∈ N ∀ℓ ∈ L ∪· Lexp (27)

xℓ
e ∈ {0, 1} ∀e ∈ Ẽ→

ℓ ∪ Ẽℓ, ℓ ∈ Lexp (28)
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The two objectives minimize the total travel time of all passengers (19) as well as the
total energy consumption (18). Constraints (20) to (22) are the passenger flow and capacity
constraints on the express change&go network. In particular, constraints (22) make sure,
that passengers cannot travel on all potential edges of an express line but only on the chosen
ones. Constraints (23) ensure the line flow for each express line and Constraints (24) ensure
that at least one stop must be skipped. Due to Constraints (25) an express line is always
implemented into both directions.

▶ Lemma 11. Each valid edge choice γℓ corresponds to a feasible assignment of the variables
xℓ and for each feasible solution (x, p, f) there is a valid edge choice derived from the x

variables.

Proof. Given a feasible assignment of the x, we set γℓ(ij) := xℓ
ij = xℓ

ji for all ij ∈ Ẽℓ ∩ Ẽ→
ℓ .

Due to constraints (23) and (24) γℓ is a valid edge choice. On the other hand, every valid
choice of edges γℓ yields a feasible assignment of the xℓ variables by xℓ

s := γℓ(s). Due to the
validity of γ the constraints (23) and (24) are respected. ◀

The first Objective (18) and the Constraints (22) of the MIP above are not linear. We
provide a linearization of this model in the appendix (Section A.3).

5 Comparison of the Models

In this chapter, we want to compare the two MIP formulations of the Express Line Planning
Problem (ELP) developed in the previous section. As a brief reminder, Table 1 provides an
overview of all three models described in this paper.

Table 1 Comparison of the three models in this paper.

Model LPMTF Stop-based ELP Edge-based ELP
Problem Line Planning Express Line Planning Express Line Planning
Line Pool L L ∪· Lexp L ∪· Lexp

Network change&go network
CGN = (V ′, E′)

change&go network
CGN = (V , E)

express change&go network
E − CGN = (Ṽ , Ẽ)

Network
Figure

Figure 1b Figure 4 Figure 5b

Decision
Variables

f - frequency
p - passenger flow

f - frequency
p - passenger flow
y - stopping pattern

f - frequency
p - passenger flow
x - edge choice

We now want to compare the two new MIP formulations of the ELP. In order to show
their equivalence, let us first prove the equivalence of the express lines of the two models.

▶ Lemma 12. Each feasible express line in the stop-based model corresponds to an express
line in the edge-based model, and vice versa, and they yield the same objective function values
concerning both the passengers’ travel time and the energy consumption.

Proof. By Lemma 10 we know that the assignment of yℓ in the stop-based MIP corresponds
to a valid stopping pattern which by Lemma 8 corresponds 1:1 to a valid choice of edges for
ℓ that can be translated to an assignment to the variables xℓ in the edge-based MIP which is
feasible by Lemma 11. As all these transformations are equivalent, this reasoning also works
into the other direction. Let cstop, cedge denote the energy cost functions and wstop, wedge
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the travel time functions of the stop- and the edge-based MIP formulation, respectively. Let
us now show that for any two subsequent non-skipped stops i, j ∈ Vℓ, i.e. xij = 1 the travel
times on line ℓ of the two models are equal, i.e.

wedge(ij) =
∑

e∈Ebetw
ℓ

(ij)

we −wsaved ·mij
ℓ =

∑
e∈Ebetw

ℓ
(ij)

wstop(e)−wsaved
∑

s∈Vℓ:φ(i)<φ(s)<φ(j)

ys

Now, let us compare the energy costs of the two lines obtained in the two models.

cstop
ℓ =

∑
e∈Eℓ

ce −
∑

s∈Vℓ:φ(i)<φ(s)<φ(j)

csaved · ys

=
∑

e∈Eℓ:xℓ
e=1

∑
e∈Ebetw

ℓ
(ij)

ce − mij
ℓ · csaved

=
∑

e∈Eℓ:xℓ
e=1

cedge
e = cedge

ℓ ◀

Now, we can state the following theorem.

▶ Theorem 13. Let I be an instance of the express line planning problem. The two models
are equivalent, i.e. for each feasible solution SN (I) of the node-based model there is a solution
SE(I) of the edge-based model yielding the same set of lines, frequencies and passenger paths
as well as the same objective function value, and vice versa.

The proof of Theorem 13 is based on Lemma 12 and can be found in Section A.4.
Although they yield equivalent solutions, the stop-based model and the edge-based model

differ in the sizes of the networks that they are based on. Both the change&go network used
for the stop-based model and the express change&go network used for the edge-based model
are based on the PTN = (V, E) as well as the line pools L and Lexp. By the definition of
the CGN = (V , E) for the edge-based model and the E − CGN = (Ṽ , Ẽ) for the edge-based
model, we obtain V ⊊ Ṽ and E ⊊ Ẽ.

In order to estimate the actual sizes depending on the input PTN and the line pools,
we define nmax

ℓ := max{nℓ|ℓ ∈ L ∪· Lexp} to be the maximal line length in the line pool. In
Table 2 the numbers of nodes as well as the numbers of edges are compared. The terms in
which they differ are marked in red. The express change&go network for the edge-based
model has only a few more nodes than the change&go network, however, in one summand
the number of edges is quadratic in the length of the longest line in the line pool while the
corresponding summand for the number of edges in the change&go network of the stop-based
model is linear in that length.

Table 2 Comparison of the underlying Networks.

Stop-based Model Edge-based Model

Network CGN = (V , E) E − CGN = (Ṽ , Ẽ)

# Nodes |V | ≤ |V | + nmax · |L ∪· Lexp| |Ṽ | ≤ |V | + nmax · |L ∪· Lexp| + 2 · |Lexp|

# Edges |E| ≤ (2nmax − 1) · |L| |Ẽ| ≤ (2nmax − 1) · |L ∪· Lexp|
+nmax

· |Lexp| +nmax · |Lexp|
+(nmax − 1) · |Lexp| +(

(
nmax

2
)

+ 3) · |Lexp|
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Similarly, we oppose the sizes of the two MIP formulations in Table 3. Again, the terms
in which the numbers of variables and constraints differ are marked in red. For each of them,
it is the case that the term in the edge-based model is quadratic in the length of the longest
line in the line pool while the corresponding one for the number of edges in the change&go
network of the stop-based model is linear in that length. Hence, the edge-based model has
more variables and more constraints and is based on a bigger network. This also holds for
the linearized version of the models. In Table 3 there is one row each, where the number of
variables/constraints added for the linearization of the models is depicted.

Table 3 Comparison of the Model Sizes.

Stop-based Model Edge-based Model

# Variables (nmax + 1) · |Lexp| (2
(

nmax

2
)

+ 4) · |Lexp|
+|L| + |V |2 · |E| +|L| + |V |2 · |Ẽ|

added for lineraization +2nmax · |Lexp| +2
(

nmax

2
)

· |Lexp|

# Constraints |V |3 + nmax · |L| + 1 |V |3 + nmax · |L|
(3nmax) · |Lexp| +(3

(
nmax

2
)

+ nmax + 1) · |Lexp|

added for linearization +4nmax · |Lexp| +4
(

nmax

2
)

· |Lexp|

6 Numerical Experiments

In this section, we compare the run times of the stop-based and the edge-based MIP
formulation for ELP with each other and with LPMTF for the line planning problem without
express lines. The two models for ELP have been implemented in python in the software
toolbox LinTim ([9]) in their linearized versions. For the LPMTF, we use the implementation
provided by LinTim. We tested the models on different instances using Gurobi on a 13th
Gen Intel(R) Core(TM) i5-1335U with 1.30 GHz memory.

6.1 Instance Parameters / Setting of the Experiments

The instances under consideration are the two networks “Mandl” and “Sioux-Falls” from
LinTim depicted in Figure 6. The instance data from LinTim, besides the PTN , also
comprises OD-data and distances de as well as travel times we for all edges e ∈ E. For the
time saved by skipping one stop we assume wsaved = 2 time units. The change penalty is
set to α = 4 time units. The energy consumed for one edge ce is calculated based on the
formulas for the energy consumption during the acceleration process, the cruising phase as
well as the amount of regenerated energy in the braking phase of an electric bus given in [2].
As a target speed for the bus we assume 30 km/h and we use the distance de as input for
these formulas. For the other parameters, we refer to the appendix. These formulas are also
used for the calculation of the energy saved by skipping one stop csaved. For each instance,
we assume that the express lines can be based on all normal lines in the pool, i.e. L = Lexp.
For this pool, we provide two options: a small line pool and a larger line pool which are both
computed with the LinTim-method k_shortest_paths for k = 3. Their sizes are depicted
in Figure 6c.
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(a) PTN of Mandl. (b) PTN of Sioux-Falls.

Mandl Sioux-Falls
|N | 15 24
|E| 21 38

|Lsmall| 10 20
|Llarge| 23 54

(c) Instance Sizes.

Figure 6 Networks of the Instances considered.

6.2 Runtime Analysis

In this subsection, we want to compare the run times of the node-based MIP formulation and
the edge-based MIP formulation of the ELP. We solve the models in a one-criteria setting
minimizing the travel time and bounding the total energy consumption from above. Like
this we can also compare their solution times to the one of the line planning model LPMTF
denoted by LP in Table 4. For each instance, we calculate the solutions for five different
values of this energy bound. The run time experiments were stopped after a time of one
hour. Table 4 shows the run times or, respectively, the optimality gap in percent concerning
the travel time objective with a bounded amount of energy consumption for the different
models and instances. We observe that, although the edge-based model has a bigger number
of variables and constraints than the node-based model, it yields faster computation times
and smaller optimality gaps on all instances. This holds, in particular, for the bigger network
(Sioux Falls). A possible explanation might be that the edge-based model relies on flow
constraints that are relatively easily solvable. Further, the stop-based model requires two
different big M (Mf - an upper bound on the frequencies - and Mp - an upper bound on
the number of passengers on an arc) as input, while the edge-based model requires only Mf .
In addition, Mp := A · Mf is much larger than Mf . This might also be a reason for the
stop-based model being solved more slowly than the edge-based model. Further, we observe
the strong tendency that the lower the bound on the energy consumption is chosen the more
time is needed to solve the model. This holds for both the node-based and the edge-based
MIP formulation. The ELP that also aims at finding a stopping pattern for the express lines
has significantly higher computation times than the problem LPMTF on the same instance.
This holds for all instances.

6.3 Pareto Fronts: The Usage of Express Lines

In this section, the objective values of the computed solutions are analyzed. Therefore, we
calculate Pareto fronts that show the pairs of solution values for which it is not possible to
obtain a better value for one objective without worsening the other. For the computation we
used the edge-based model but as we are just looking at the solution values and not at the
run times, we could as well have used the equivalent stop-based model. The Pareto fronts
were generated using an ϵ-constraint method minimizing the total travel time and varying
the bound on the energy consumption. In Figure 7, three different Pareto fronts for the
two different networks are plotted. The blue graph corresponds to the solutions obtained by
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Table 4 Run Times.

Energy Run Time (s)/ Gap (%) after 1h
Bound small pool size large pool size

Node-based Edge-based LP Node-based Edge-based LP

85 000 3.94 (%) 1070.18 0.25 11.44 (%) 1.18 (%) 1.08
80 000 5.99 (%) 2080.46 0.48 11.66 (%) 2.63(%) 0.86

Mandl 75 000 5.42 (%) 0.35 (%) 0.41 10.09 (%) 2.75 (%) 1.47
70 000 6.87 (%) 0.96 (%) 0.59 12.13 (%) 3.68 (%) 1.87
65 000 6.69 (%) 3.60 (%) – 11.35 (%) 3.42 (%) –

170 000 2.27 (%) 107.26 0.26 9.47(%) 0.85 (%) 0.26
155 000 2.64 (%) 93.62 0.23 10.5 (%) 1.08 (%) 0.23

Sioux 140 000 2.93 (%) 1218.49 0.65 11.37 (%) 2.52 (%) 19.76
Falls 125 000 2.86 (%) 0.07 (%) 6.13 12.92 (%) 3.35 (%) 6.13

110 000 3.79 (%) 0.64 (%) 5.13 19.27 (%) 4.55 (%) 5.13
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(a) Pareto Fronts – Mandl.
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(b) Pareto Fronts – Sioux Falls.

Figure 7 Pareto Fronts.

the model for Line Planning without express lines (LPMTF). The green and the red graph
depict the solution values of the express line planning problem on a small line pool (green)
and a larger line pool (red). We can observe that the introduction of express lines improves
the solution quality in both objectives. A larger line pool enables even better solutions.
Nevertheless, we can see that there is a trade-off between the amount of energy consumption
and the total travel time of the passengers.

7 Conclusion and Outlook

In this paper, we introduced the express line planning problem ELP and showed that it is
NP-complete. Further, we developed the stop-based and the edge-based MIP, we proved the
equivalence of the two MIP models. Numerical experiments solving a linearized version of
the MIPs with Gurobi have shown that the edge-based MIP formulation, though of larger
size, yields faster to results or, respectively, obtain solutions with a smaller optimality gap
than the stop-based model. In addition, we observe that the introduction of express lines
decreases both the total energy consumption of the public transport system as well as the
total travel time of the passengers. Further research might be conducted on investigations of
the structure of optimal line plans depending on the demand. The development of efficient
solution methods for solving real-world instances is also an interesting research area.
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A Appendix

A.1 Proof of Lemma 8
Proof. Let ℓexp be an express line based on a line ℓ with Vℓ = {1, . . . , n}.

▷ Claim 14. Let σℓexp be a valid stopping pattern of ℓexp. Then γℓ′ with

γℓ′
(ij) :=

{
1 if

∑j
k=i σℓexp(k) = 2 and

∑j−1
k=i+1 σℓexp(k) = 0

0 else

is a valid choice of edges and ℓ′ = ℓexp.

Proof. A valid choice of edges must allow a flow from 1 to n in the graph F = (Vℓ, Aℓ′).
There is a flow from 1 to n on the graph F = (Vℓ, Al′exp) if the flow constraints hold:∑

ij∈δ+(1)

γℓ′
(ij) = 1 (29)

∑
ij∈δ−(n)

γℓ′
(ij) = 1 (30)

∑
ij∈δ+(i)

γℓ′
(ij) −

∑
ki∈δ−(i)

γℓ′
(ki) = 0 ∀i ∈ Vℓ (31)

First let us show that for each v ∈ Vℓ there is at most one outgoing arc vj ∈ Aℓ′ with
γℓ′(vj) = 1.

Assume there were two nodes i and j with v < i < j ≤ n such that γℓ′(vi) = 1
and γℓ′(vj) = 1 but then

∑j−1
k=v−1 σℓexp(k) = 0 is a contradiction to

∑i
k=v σℓexp(k) = 1.

Analogously, we can argue that there is at most one incoming arc iv ∈ Aℓ′ for each v ∈ Vℓ.
As σℓexp is a valid stopping pattern, it holds σℓexp(1) = σℓexp(n) = 1. This yields the

existence of the following minima: For v ∈ Vℓ, let j′ := min{j ∈ {v + 1, . . . , n}|σℓexp(j) = 1}
and i′ := min{i ∈ {1, . . . , v−1}|σℓexp(i) = 1}. Now, if σℓexp(v) = 1 it follows that γℓ′(vj′) = 1
for all v ∈ Vℓ \ {n} and γℓ′(i′v) = 1 for all v ∈ Vℓ \ {1}. Consequently, the flow constraints
Equation (29) - Equation (31) hold.

Hence, we obtain the inequality

∑
e∈Epot

ℓexp

γℓ′
(e) =

n∑
i=1

σℓexp
(vi) − 1 ≤ n − 2.

As from γℓ′(ij) = 1 it follows that σℓexp(i) = σℓexp(j) = 1, we know that ℓ′ stops at
exactly the same vertices as ℓexp. ◁

▷ Claim 15. Let γℓexp be a valid choice of edges for ℓexp. Then σℓ′ with

σℓ′
(i) :=

{
1 if

∑i
k=1 γℓexp(ki) = 1 or i = 1

0 else

is a valid stopping pattern and ℓ′ = ℓexp.

Proof. As γℓexp is a valid choice of edges, there is a flow from 1 to n on the arcs corresponding
to the chosen edges. In particular, this means that there is exactly one incoming edge e

for node n with γℓexp(e) = 1, hence by definition we get σℓ′(n) = 1. Further exploiting the
definition of σℓ′ we get also obtain that σℓ′(1) = 1.
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Further, as γℓexp is a valid choice of edges, we get that
∑

e∈Epot
ℓexp

γℓexp(e) ≤ n − 2. Due to
the fact that γℓexp defines a flow on F (containing no backwards arcs), there is at most one
incoming edge for each vertex, and, therefore, we get

∑n
i=1 σℓ′(vi) ≤ n − 1. Hence, σℓ′ yields

a valid stopping pattern. By definition of σℓ′ we know that ℓ′ stops exactly at those vertices
that are adjacent to the edges of ℓexp. ◁

◀

A.2 Linearized Stop-Based MIP
In order to linearize the stop-based MIP formulation, we introduce the following variables
for each express line ℓ ∈ Lexp and each stop s ∈ Vℓ on that line. They are set to 0 if the
stop is served and, otherwise, take the value of the frequency or, respectively, the number of
passengers traveling there:

zf
ℓs =

{
fℓ if stop s of line ℓ is skipped
0 else

zp
ℓs =

{
# pass. at s on ℓ if s is skipped
0 else

With the help of these variables, we can reformulate the two objectives so that we obtain
the corresponding linear objectives Equation (32) and Equation (33). Hence, we obtain the
MIP formulation below. Constraints (34) to (37) ensure the desired behavior of the newly
introduced decision variables.

min
∑
ℓ∈L

cℓ · fℓ −
∑

ℓ∈Lexp

csaved ·
∑
s∈Vℓ

zf
ℓs (32)

min
∑
e∈E

∑
u,v∈V :Cuv>0

wepuv
e − wsaved ·

∑
ℓ∈L

∑
s∈Vℓ

zp
ℓs (33)

s.t. (9) − (14)

zf
ℓs ≤ fℓ ∀s ∈ Vℓ ∀ℓ ∈ Lexp (34)

zf
ℓs ≤ yℓs · Mf ∀s ∈ Vℓ ∀ℓ ∈ Lexp (35)

zp
ℓs ≤

∑
u,v∈V :Cuv>0

∑
e∈δ+((s,ℓ))

puv
e ∀s ∈ Vℓ ∀ℓ ∈ Lexp (36)

zp
ℓs ≤ yℓs · Mp ∀s ∈ Vℓ ∀ℓ ∈ Lexp (37)

zf
ℓs ∈ R ∀s ∈ Vℓ, ∀ℓ ∈ Lexp (38)

zp
ℓs ∈ R ∀s ∈ Vℓ, ∀ℓ ∈ Lexp (39)

(16), (17) (40)

A.3 Linearization of the Edge-based Model
In order to linearize the edge-based MIP formulation, we introduce the following variables
for each express line ℓ ∈ Lexp and each stop e ∈ Ẽℓ on that line. They are set to the line’s
frequency if the edge is chosen for the express line and 0 otherwise:
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f ℓ
e =

{
fℓ if stop s of line ℓ is skipped
0 else

The objective (18) and the Constraints (22) of the edge-based MIP are not linear.
With the help of these variables, we can reformulate the objective (18) and the Constraints

(22) so that we obtain the corresponding linear objectives Equation (41) and Equation (44).
Hence, we obtain the MIP formulation below. Constraints (45) to (47) ensure the desired
behavior of the newly introduced decision variables.

min
∑
ℓ∈L

cℓ · fℓ +
∑

ℓ∈Lexp

∑
e∈Ẽℓ

ce · f ℓ
e (41)

min
∑

u,v∈V :Cuv>0

∑
e∈ẼP

wepuv
e (42)

s.t. (20), (21), (23) − (25) (43)∑
u,v∈V

puv
e ≤ Af ℓ

e ∀e ∈ Ẽℓ, ℓ ∈ Lexp (44)

fe ≤ fℓ ∀e ∈ Ẽℓ, ℓ ∈ Lexp (45)

fℓ − (1 − xe) · Mf ≤ fe ∀e ∈ Ẽℓ, ℓ ∈ Lexp (46)

fe ≤ xe · Mf ∀e ∈ Ẽℓ, ℓ ∈ Lexp (47)

f ℓ
e ∈ N ∀e ∈ Ẽℓ, ℓ ∈ Lexp (48)

(26) − (28) (49)

A.4 Proof of Theorem 13 - Equivalence of the Models
Proof.

▷ Claim 16. Any feasible solution of the stop-based model can be transformed to a feasible
solution of the edge-based model with the same objective function values.

Proof. Let puv
e , f ℓ and yℓs be the solution values of the stop-based models for the cor-

responding variables. Now we set the values of the frequencies of the edge-based model
to:

f ℓ := f ℓ ∀ℓ ∈ L ∪ Lexp

For all ℓ ∈ Lexp and s ∈ Vℓ we set:

xℓ
ij :=


1 if

∑
s∈Vℓ:φ(i)≤φ(s)≤φ(j)(1 − yℓs) = 2 and∑
s∈Vℓ:φ(i)+1≤φ(s)≤φ(j)−1(1 − yℓs) = 0

0 else
∀ℓ ∈ Lexp, ij ∈ Vℓ

For all ℓ ∈ Lexp and e ∈ Ẽ→
ℓ \ Ẽℓ we set:

If e = ((vsrc, ℓ), (vsink, ℓ)) we set xℓ
e :=

{
1 if f ℓ = 0
0 else

and else,
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we set xℓ
e :=

{
0 if f ℓ = 0
1 else

Finally, we determine the values for the passenger flow for all u, v ∈ V . Let us assume
wlog that φ(i) < φ(j). Let us choose s ∈ Vℓ such that φ(i) + 1 = φ(s). Then we set

puv
e :=

{
puv

e if e ∈ Ẽgo ∪ Ẽchange

puv
e if e ∈ Ẽexgo ∩ ẼP (else)

This assignment yields a feasible solution to the edge-based model. Due to Lemma 8 (and
its proof) the valid stopping pattern obtained by the feasible solution y′

ℓs corresponds to a
valid choice of edges given by the values of xℓ

e, hence by Lemma 11 the constraints (23), (24)
and (25) are respected. As the stopping patterns of express line ℓ coincide in both models
(Lemma 8), also the passenger flow (20) is feasible and the frequencies respect the capacities
(21), (22).

The values of the objective functions of the edge-based model coincide with the values of
the stop-based model by Lemma 12. ◁

▷ Claim 17. Any feasible solution of the edge-based model can be transformed to a feasible
solution of the node-based model with the same objective function values.

Proof. Let p̃uv
e , f̃ℓ and x̃ℓ

e be the solution values of the edge-based model for the corresponding
variables. Now we set the values of the frequencies:

f ℓ := f̃ℓ ∀ℓ ∈ L ∪ Lexp

yℓs :=

1 if
∑

e∈δ−(s)∩Ẽ→
ℓ

x̃ℓ
e = 1

0 else

Finally, we determine the values for the passenger flow for all u, v ∈ V . Let us assume
wlog that φ(i) < φ(j). Now we set:

puv
ij :=

p̃uv
ij if e ∈ E

L
go ∪ Echange∑

is∈δ−(s)∩Ẽℓ:φ(i)<φ(s) p̃uv
is if e ∈ E

Lexp

go (else)
.

This assignment yields a feasible solution to the stop-based model. Due to Lemma 8 (and
its proof) the valid choice of edges obtained by the feasible solution x̃ℓ

e corresponds to a valid
stopping pattern given by the values of yℓs, hence by Lemma 11 the constraints (13), (14)
and (15) are respected. As the stopping patterns of express line ℓ coincide in both models (
Lemma 8), also the passenger flow (9) is feasible and the frequencies respect the capacities
(10). Obviously, no passenger in a feasible flow of the edge-based model could enter/board
at a skipped node as the express line was not incident to it, therefore, constraints (11) and
(12) are valid. The values of the objective functions of the stop-based model coincide with
the values of the edge-based model by Lemma 12. ◁

◀
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