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Abstract
We offer a geometric perspective on the problem of integrated periodic timetabling and passenger
routing in public transport. Inside the space of periodic tensions, we single out those regions, where
the same set of paths provides shortest passenger routes. This results in a polyhedral subdivision,
which we combine with the known decomposition by polytropes. On each maximal region of the
common refinement, the integrated problem is solvable in polynomial time. We transform these
insights into a new geometry-driven primal heuristic, integrated tropical neighborhood search (ITNS).
Computationally, we compare implementations of ITNS and the integrated (restricted) modulo
network simplex algorithm on the TimPassLib benchmark set, and contribute better solutions in
terms of total travel time for all but one of the twenty-five instances for which a proven optimal
solution is not yet known.
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1 Introduction

Public transport systems constitute the backbone of urban mobility in many areas, some
of which are used by several million daily passengers. A skillful design of those systems is
not only important for their regular users, but is also key to attract more passengers, which
is a designated goal to improve sustainability, space consumption, and overall efficiency
of mobility. Ideally, individuals will base their mode and route choice on their expected
travel time. One key characteristic of efficient public transport is to bundle passengers on
similar routes, that are operated with discrete frequencies. Therefore, it is unavoidable that
passengers will spend some time waiting, e.g., before being able to board the next vehicle.
For a public transport operator, it is thus necessary to offer a service that balances the needs
of the passengers, so that the journey duration is adequate for most of the users.

For example, when creating a timetable, it is a reasonable goal to minimize the total
travel time for all passengers. Unfortunately, periodic timetable optimization, which is
mathematically often formulated in terms of the Periodic Event Scheduling Problem (PESP)
[9, 21], is a very challenging NP-hard problem [14]. Even worse, the PESP model assumes
that passengers always use the same route, regardless of the timetable. In practice, the
opposite is true: Passengers choose their paths through the public transport network by the
currently operated timetable. Consequently, it is only natural to include the route choice of
passengers into the timetabling problem.
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2:2 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

In this paper, we therefore investigate the problem of Integrated Periodic Timetabling and
Passenger Routing (TimPass) [1, 6, 17, 18, 19, 20, 22]. The problem can be formulated as a
bilinear mixed integer program and is hard to solve to optimality in practice. While a vast
supply of heuristics for periodic timetabling is known [3], this is less true for the integrated
problem, although there is some literature [11, 15, 16, 18]. Of course, a straightforward
technique is to design iterative approaches, that compute a passenger routing, then improve
the timetable for that routing, until at some point the passenger routes are changed again,
and so forth. In real-world instances, not only the timetabling subproblem is difficult, but also
frequent shortest path computations, that are necessary to evaluate the actual quality of a
timetable, turn out to be a huge computational bottleneck. The sweet spot is hence to decide
when to keep the current routing, and when to recompute passenger paths. For example, the
modulo network simplex (MNS) algorithm [13] can be generalized to a family of heuristic
algorithms for TimPass that differ in the frequency of shortest path computations [10].

Our theoretical main contribution is a geometric answer to this question. The space
of solutions to the TimPass problem can be parametrized in terms of periodic tensions,
i.e., the collection of durations of activities such as driving between two stations, dwelling
inside a vehicle, or performing a transfer. This space admits a polyhedral decomposition
by regions, such that for all tensions inside a region, the same set of paths is a shortest
path for all origin-destination pairs [8]. Moreover, the tension space is known to admit a
decomposition into polytropes [5]. The latter insight has led to tropical neighborhood search
(TNS), a geometry-inspired PESP heuristic [4]. Considering the common refinement of the
shortest path subdivision with the polytrope decomposition, we obtain a subdivision of the
periodic tension space such that on each region, the TimPass problem becomes polynomial-
time solvable (Corollary 14). When restricting to a polytrope, the computation of shortest
paths for a single origin-destination pair can already be simplified (Lemma 11, Theorem 12,
Corollary 13).

On the practical side, we introduce integrated tropical neighborhood search (ITNS), in
a coarse and in a fine variant. The geometric idea is to solve TimPass on a region of the
subdivision, and then to scan neighboring regions for improvements. We benchmark ITNS
against integrated MNS techniques on the TimPass benchmark set [17]. As a result, we obtain
better solutions for six of the instances within an hour on a regular desktop workstation,
and can improve on the best known solution for all but three instances by taking advantage
of parallelization on a compute cluster. Note that two of those three instances have already
been solved to optimality previously.

The paper is structured as follows: We review the construction and introduce our notation
of extended event-activity networks in Section 2, which allows us to define the TimPass
problem. In Section 3, we recall the (restricted) integrated modulo network simplex algorithm.
The geometric picture is unfolded in Section 4, leading to the integrated tropical neighborhood
search algorithm presented in Section 5. Our computational results on the TimPassLib
instances are evaluated in Section 6. We conclude the paper in Section 7.

2 Problem Modeling

This paper revolves around the Integrated Periodic Timetabling and Passenger Routing
Problem (TimPass). It is based on a directed graph, which we call the extended event-activity
network. We briefly explain the features of such networks in Section 2.1, before describing
the TimPass optimization problem in Section 2.2.
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2.1 Extended Event-Activity Networks
Originally proposed in [21], an event-activity network is a directed graph G = (V, A) whose
vertices are called events and whose arcs are called activities.

We are particularly concerned with timetabling in public transport. Each line or trip of
a public transport network admits an alternating sequence of departure and arrival events,
connected by an alternating sequence of driving and dwelling activities. Relations between
different trips can be described by further activities, such as transfer activities that model
passenger transfers, or headway activities that ensure a certain time distance between two
events. An example network is depicted in Figure 1. The goal of timetabling is then to
assign times to the events such that the resulting activity duration between adjacent events
is within pre-specified bounds.

arrival event
departure event

driving activity
dwelling activity
transfer activity

Figure 1 Example of an event-activity network: A bifurcation of a red and a blue line with a few
passenger transfers.

A passenger journey in a public transportation network has a natural interpretation as a
path in a classical event-activity network. However, when a timetable and hence activity
lengths (called tensions) have been determined, it is not reasonable to solve a shortest path
problem on G as is: Passengers are typically not required to start and end their journey at
specific departure or arrival events. Instead, they might choose any line serving a close-by
stop within walking distance of their point of origin. Analogously, it makes little sense to
select a specific arrival event of a specific line at a specific stop as the endpoint of a journey.

We therefore extend the event-activity network by source cells and target cells that model
the origins and destinations of passengers, respectively. Source cells have no incoming edges
and can be connected to several departure events by means of access activities. In the same
vein, target cells have no outgoing edges, but can be reached from several arrival events by
other access activities. Those access activities allow, e.g., to model walking times to different
stop locations.

▶ Definition 1 (Extended Event-Activity Network). An extended event-activity network is a
directed graph G = (V, A) such that

V = Vdep
.
∪ Varr

.
∪ Vsource

.
∪ Vtarget,

A = Aaccess
.
∪ Adrive

.
∪ Adwell

.
∪ Atransfer

.
∪ Aother,

Aaccess ⊆ (Vsource × Vdep) ∪ (Varr × Vtarget),
Adrive ⊆ Vdep × Varr,

Adwell ⊆ Varr × Vdep,

Atransfer ⊆ Varr × Vdep.

ATMOS 2025



2:4 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

The same construction appears in, for example, [20, 10, 18, 12]. To illustrate, the event-
activity network of Figure 1 is extended in Figure 2.

arrival event
departure event

source cell
target cell

driving activity
dwelling activity
transfer activity
access activity

Figure 2 Example of an extended event-activity network, extending Figure 1 by source cells,
target cells, and access activities at each station.

We can now interpret passenger routes as special paths in an extended event-activity
network G, which connect source cells in Vsource to target cells in Vtarget such that they
begin and end with a respective access activity and their remaining activities come from
Adrive

.
∪ Adwell

.
∪ Atransfer. Moreover, if we are given an appropriate time duration for each

activity, we can ask for a shortest passenger route from a source cell s to a target cell t,
and answer with a shortest s-t-path in G. How to find these times is the subject of the
subsequent subsection.

2.2 The TimPass Problem
The TimPass problem is an extension of the Periodic Event Scheduling Problem (PESP) for
periodic timetabling to extended event-activity networks incorporating passenger routing.

▶ Definition 2 (TimPass). Consider a tuple (G, T, p, ℓ, u, D), where
G = (V, A) is an extended event-activity network,
T ∈ N is a period time,
ρ ∈ R≥0 is a transfer penalty,
ℓ ∈ RA

≥0 are lower bounds on activity lengths,
u ∈ RA

≥0 with 0 ≤ u − ℓ < T are upper bounds on activity lengths,
D = (dst) ∈ RVsource×Vtarget

≥0 is an origin-destination (OD) matrix.
The Integrated Periodic Timetabling and Passenger Routing Problem (TimPass) is to find a
periodic timetable π ∈ [0, T )Vdep∪Varr and a periodic tension x ∈ RA such that

πj − πi ≡ xa mod T for all a = (i, j) ∈ A \ Aaccess,
ℓa ≤ xa ≤ ua for all a ∈ A \ Aaccess,
the total travel time

∑
(s,t)∈Vsource×Vtarget

dstτst is minimum, where τst is the cost of a
shortest s-t-path in G with respect to activity costs cx given by

cx
a :=


ℓa if a ∈ Aaccess,

xa + ρ if a ∈ Atransfer,

xa otherwise,

for all a ∈ A. (1)
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The periodic timetable π gives the departure and arrival times, which repeat with a period
time of T . The periodic tension x captures the length of each activity a = (i, j) ∈ A \ Aaccess
and is determined up to an integer multiple of T by the event potentials πi and πj such that
ℓ ≤ x ≤ u holds. Since the duration of access activities models walking times, we consider
their tensions fixed to their lower bounds. To route the passengers, we assume that for each
OD pair (s, t) ∈ Vsource × Vtarget, all dst passengers travel along the same shortest path. This
path is determined based on the travel times derived from the periodic tension x and the
lower bounds of the access activities. Additionally, each transfer activity incurs a penalty,
with its actual duration increased by a supplement of ρ.
▶ Remark 3. Since determining the existence of a feasible periodic timetable is already
NP-hard [14], this property naturally extends from PESP to TimPass.
It is straightforward to state a mixed-integer programming formulation for TimPass:

Minimize
∑

a∈A\Aaccess

waxa +
∑

a∈Atransfer

ρwa +
∑

a∈Aaccess

ℓawa (2)

subject to πj − πi + Tza = xa, a = (i, j) ∈ A \ Aaccess, (3)
ℓa ≤ xa ≤ ua, a ∈ A \ Aaccess, (4)
0 ≤ πi ≤ T − 1, i ∈ Vdep ∪ Varr, (5)

za ∈ Z, a ∈ A \ Aaccess (6)

wa =
∑

(s,t)∈D

∑
p∈Pst:a∈p

dstfp, a ∈ A, (7)

∑
p∈Pst

fp = 1, (s, t) ∈ D, (8)

fp ∈ {0, 1}, p ∈ Pst, (s, t) ∈ D (9)

Here, we write D := {(s, t) ∈ Vsource × Vtarget | dst > 0} for the set of OD pairs with positive
demand. The constraints (3)–(6) define PESP, while (8)–(9) describe the selection of exactly
one s-t-path per OD pair (s, t) ∈ D from the set of all such paths Pst. The number of
passengers wa on each activity a ∈ A is then simply the sum over all passengers whose
selected s-t-path contains a, as dictated by constraint (7). The objective (2) is to minimize
the total (perceived, if ρ > 0) travel time of all passengers.
▶ Remark 4. A solution of (2)–(9) can be recovered in polynomial time from a periodic
timetable π: For each a = (i, j) ∈ A, set xa := (πj − πi − ℓa) mod T + ℓa. Alternatively, π

can be reconstructed from x by a graph traversal [9]. The path variables fp can be obtained
by computing shortest s-t-paths for all (s, t) ∈ D.
▶ Remark 5. There are several ways to reformulate the program (2)–(9). For instance, the
Periodic Event Scheduling Problem admits formulations using integral cycle bases, or time
expansion. Likewise, the TimPass model can be adapted. For example, the constraint (9)
may also be replaced by fp ≥ 0, and there is also a time-expanded version.

3 The Restricted Integrated Modulo Network Simplex Algorithm

In this paper, we will not focus on mixed-integer programming techniques to solve TimPass,
but rather on heuristic combinatorial algorithms. In this section, we recall the integrated
modulo network simplex algorithm as introduced in [10].

ATMOS 2025



2:6 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

The modulo network simplex (MNS) method adapts the well-known network simplex for
periodic timetabling [13]. Feasible solutions of PESP (constraints (3)–(6)) can be encoded by
spanning tree structures T = Tℓ

.
∪ Tu, which are spanning trees of the event-activity network

where tree activity tensions are fixed to either their lower or upper bound. We can explore
the solution space from a given initial timetable by iteratively adding a co-tree activity to
the tree and removing one of the activities along the induced fundamental cycle. This yields
a neighborhood relation between spanning tree structures. The method terminates, generally
in a local optimum, if neither any pivot operation nor shifting of event timings along special
cuts yields an improved objective value.

Let G be an extended event-activity network. The association between solutions and
spanning tree structures on G[Vdep ∪ Varr] holds for TimPass [2] as well, we merely have
to decide when the passenger paths are updated throughout the procedure. One approach
is to simply compute the shortest s-t-path for every OD pair (s, t) ∈ D once stuck in a
local optimum, or after every pivot operation. We have found previously however that this
approach does not perform significantly better than solving PESP with fixed passenger paths
and then computing the shortest paths of the final timetable [10].

Instead, when we determine the next improving pivot operation and compare the objective
value of the current tree structure to each of its neighbors, we have to examine the neighbors
under their respective optimal passenger paths. Since the number of co-tree activities whose
tensions are altered by the pivot operation can be arbitrarily large, there is no obvious way
to tell which shortest passenger paths are different in the neighboring solution. Therefore, for
every pivot candidate that results in a feasible timetable, we have to run Dijkstra’s algorithm
for every cell s ∈ Vsource. We call this method the integrated modulo network simplex (IMNS).
It requires O(|T | · |A \ (Aaccess ∪ T )| · |Vsource|) = O(|Vdep ∪ Varr| · |A \ Aaccess| · |Vsource|)
executions of Dijkstra’s algorithm to obtain shortest passenger path trees in each iteration.
Clearly, this is computationally intractable on large instance sizes.

To address this, we have previously devised the restricted integrated modulo network
simplex (RIMNS) [10]. For a given k, we first compute the k shortest paths using at most
two transfers for every OD pair (s, t) ∈ D assuming every activity has its tension at the lower
bound. If every connection between s and t requires at least three transfers, we store only
a single shortest path. When examining the pivot candidates, we simply select whichever
path is shortest under the resulting activity tensions from each OD pair’s current path pool.
After the pivot operation, we compute the actual shortest paths, update the objective if
needed, and add any new s-t-path to the respective pool. Note that it suffices to store access
and transfer activities to fully encode a passenger path due to the structure of extended
event-activity networks. Moreover, we have empirically determined k = 20 to offer the best
trade-off between runtime penalty and solution quality impact [10]. We use this method as a
benchmark in our computational study presented in Section 6.

4 Geometric Interpretation of TimPass

As seen in the last section, the core question in the integrated modulo network simplex
algorithm is when to compute a new routing of the passenger paths. We will now gain insight
on this matter from a geometric point of view, developing a new heuristic for TimPass. To
do so, we begin with a minimalistic example.
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4.1 Introductory Examples
▶ Example 6 (Slow line and express line). We consider a TimPass instance as shown in
Figure 3. We take T = 20 and assume that all but the two transfer activities (dotted arrows)
are fixed, i.e. ℓa = ua, and that there are no transfer penalties. In this network, there are
only two possible passenger paths from s to t: The path pr uses the red slow line, the other
path pb includes the blue express line. Let x1 and x2 denote the periodic tensions of the two
transfer arcs, respectively. We make the following observation: The path pr is a shortest
s-t-path if and only if f x1 + x2 ≥ 15, and pb is a shortest s-t-path if and only if x1 + x2 ≤ 15.

s t
[10, 10] [1, 1] [28, 28] [1, 1] [10, 10]

[15, 15]

[2,
21]

[2, 21]

[2, 2] [2, 2]

Figure 3 Extended event-activity network for Example 6, with labels [ℓa, ua] for each activity a.

For the timetabling part, we note that in this instance, a periodic tension is fully
determined by x1 and x2. However, feasible periodic tensions are only those where both paths
take the same time modulo T due to the cycle periodicity property [9, 14]. When depicting
the possible values of x1 and x2 according to their bounds as the square [2, 21] × [2, 21], we
hence identify the two blue highlighted line segments in Figure 4 as the space of feasible
periodic tensions.

x1

x2

2 15 21

2

15

21

pb

pr

Figure 4 Geometry of Example 6. For clarity, note that the extension of the lower left blue line
segment intersects the axes in (0, 15) and (15, 0), while the extension of the upper right blue line
segment intersects in (0, 35) and (35, 0). This corresponds to setting the tension of either transfer
activity to 0 which violates the bounds [2, 21] and is hence outside the feasible region.

The hyperplane x1 + x2 = 15 divides the square into two polytopes: For (x1, x2) on the
bottom-left side (orange in Figure 4), pb is shorter than pr, and on the top-right side (grey
in Figure 4), pr is shorter than pb.

We conclude from Figure 4 that any (x1, x2) with x1 + x2 = 15 is an optimal solution to
the TimPass instance: In this case, pr and pb provide the same travel time and taking the
blue express line can never be faster anyway, since we need to transfer back to the red slow
line to reach cell t.

ATMOS 2025



2:8 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

In a geometric language, we can make the following observations in Figure 4:
1. The space of feasible periodic tensions is a disjoint union of line segments in the square.
2. The hyperplane x1 + x2 = 15 subdivides the square into two polytopes, where each

polytope corresponds to the region where one of the two paths is a shortest path.
3. A line segment of feasible tensions is never part of the interior of more than one shortest

path region.

▶ Example 7 (Two lines). We now turn to a TimPass instance with an extended event-activity
network as in Figure 5. Again, there is a red line and a blue line, but we can reach t from s

using three paths: pbb (blue-blue), pbr (blue-red), prr (red-red). The only interesting tensions
are xbr for the transfer from blue to red and xrr for the dwelling activity of the red line. The
shortest s-t path is

pbb if xbr ≥ 10 and xrr ≥ 10,
pbr if xbr ≤ 10 and xbr ≤ xrr,
prr if xrr ≤ 10 and xrr ≤ xbr.

(10)

s t

[10, 10] [2, 21] [20, 20]

[10, 10] [10, 10] [20, 20]
[2, 21]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

Figure 5 Extended event-activity network for Example 7, with labels [ℓa, ua] for each activity a.

In Figure 6, we illustrate this situation: By the lower and upper bounds, (xbr, xrr) lives
again in the square [2, 21] × [2, 21]. The square is now divided into three regions according to
(10). In this example, any combination of (xbr, xrr) determines a feasible periodic tension:
The event-activity network without the access activities forms a tree.

xbr

xrr

2 10 21

2

10

21

pbbpbr

prr

Figure 6 Geometry of Example 7.

Revisiting the three geometric observations from Example 6, we note for Example 7:
1. The space of feasible tension is the full square.
2. The three paths give rise to a polyhedral subdivision of the square, each maximal region

corresponding to the unique shortest s-t-path with respect to the periodic tensions of
that region.

3. The shortest path subdivision is also a proper subdivision of the square of periodic
tensions.
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Our interpretations look different at first glance. We offer a unifying perspective in the
next subsection.

4.2 Theoretic Results
We will now generalize the geometric observations made in the previous examples. Let
I = (G, T, ρ, ℓ, u, D) be a TimPass instance.

▶ Definition 8 (Periodic Tension Spaces). The fractional periodic tension polytope of I is

XLP :=
∏

a∈A\Aaccess

[ℓa, ua].

The periodic tension space of I is

X := {x ∈ XLP | ∃ π ∈ [0, T )Vdep∪Varr ∀a = (i, j) ∈ A \ Aaccess : πj − πi ≡ xa mod T}.

The fractional tension polytope is the space of all vectors x ∈ RA\Aaccess that satisfy
the constraints of the linear programming relaxation of (2)–(9). XLP is by definition a
hyperrectangle, such as the squares in Example 6 and Example 7. The periodic tension space
X is the space of vectors x that are feasible for the mixed-integer program (2)–(9), e.g., the
blue line segments in Figure 4 and the full square in Figure 6.

▶ Definition 9 (Polytrope [5]). For each z ∈ ZA, we define the polytrope

R(z) := {x ∈ XLP | ∃ π ∈ RVdep∪Varr ∀a = (i, j) ∈ A \ Aaccess : πj − πi + Tza = xa}.

We refer to [7] for the origin of the name polytrope, and recall a few results from [5]: Let Γ
be the cycle matrix of an integral cycle basis of the induced subgraph G[Vdep ∪ Varr].
1. For z, z′ ∈ ZA we have either R(z) ∩ R(z′) = ∅ or R(z) = R(z′), the latter case occurring

if and only if Γz = Γz′.
2. The periodic tension space is the union of all R(z), taken over all z ∈ ZA.
3. For each z ∈ ZA, solving PESP restricted to x ∈ R(z) is a linear program dual to

minimum cost network flow, and hence solvable in polynomial time.
4. One can define a neighborhood relation such that two non-empty polytropes R(z) and

R(z′) are neighbors if Γz and Γz′ differ by ± a column of Γ.
These insights led to tropical neighborhood search, a powerful heuristic for the Periodic Event
Scheduling Problem [4]. This is a local search that starts with a non-empty polytrope and
scans for improving neighbors. Any polytrope has at most 2|A \ Aaccess| neighbors, and
PESP can be solved on each polytrope in polynomial time.

We will generalize tropical neighborhood search to integrated tropical neighborhood search
(ITNS). To this end, we need to include passenger paths into our considerations.

▶ Definition 10 (Shortest Path Subdivision). Let s ∈ Vsource, t ∈ Vtarget and let p be an
s-t-path in G. We define

Ss,t(p) := {x ∈ XLP | c(x)(p) ≤ c(x)(p′) for all s-t-paths p′},

where cx is the cost function defined in (1). The collection of Ss,t(p) gives rise to the shortest
path subdivision Ss,t of XLP.

ATMOS 2025



2:10 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

Speaking geometrically, finding a passenger routing for a periodic tension x ∈ X then
amounts to determining, for each (s, t) ∈ D, an s-t-path p such that x ∈ Ss,t(p). In Figure 4,
the orange polytope is Ss,t(pb), defined by the inequality x1 + x2 ≤ 15, and the grey polytope
is Ss,t(pr), defined by x1 + x2 ≥ 15. Analogously, we see the subdivision of the square XLP
into Ss,t(pbb), Ss,t(pbr), Ss,t(prr) in Figure 6 according to (10).

The shortest path subdivision Ss,t of XLP naturally induces a subdivision of each polytrope
R(z). Looking at Figure 4, this subdivision is rather trivial, as is confirmed by the following:

▶ Lemma 11. Let u ∈ Vdep, v ∈ Varr, z ∈ ZA. Then p is a shortest u-v-path w.r.t. cx for
some x ∈ R(z) if and only if it is a shortest u-v-path w.r.t. cz, where

cz
a :=

{
za + ρ

T if a ∈ Atransfer,

za otherwise
for all a ∈ A \ Aaccess.

Proof. Let p be a u-v-path. By the construction of extended event-activity networks, p

cannot contain access activities. For x ∈ R(z), we find a periodic timetable π such that
xa = πj − πi + Tza for all a = (i, j) ∈ A \ Aaccess, and therefore

cx(p) =
∑

a∈p∩(A\Aaccess)

xa +
∑

a∈p∩Atransfer

ρ

=
∑

a=(i,j)∈p∩(A\Aaccess)

(πj − πi + Tza) +
∑

a∈p∩Atransfer

ρ

= πv − πu + T
∑

a=(i,j)∈p∩(A\Aaccess)

za +
∑

a∈p∩Atransfer

ρ

= πv − πu + Tcz(p).

Therefore, if p and p′ are u-v-paths, then cx(p) ≤ cx(p′) holds if and only if cz(p) ≤ cz(p′). ◀

The consequences of Lemma 11 are remarkable: For all tensions inside a polytrope R(z),
the same path can be chosen for a shortest path, as the costs depend only on z – as long as the
path starts at a departure event and ends at an arrival event. This result naturally extends
to paths from source to target cells, where each of them is connected to a single event only, as
is the case in Example 6. However, Example 7 demonstrates that this is no longer true when
cell nodes are adjacent to multiple events. For a vertex u ∈ G, we define its out-neighborhood
N+(u) = {v ∈ V | (u, v) ∈ A} and its in-neighborhood N−(u) = {v ∈ V | (v, u) ∈ A}.

▶ Theorem 12. Let s ∈ Vsource and t ∈ Vtarget and z ∈ ZA. Then Ss,t induces a polyhedral
subdivision of R(z). Each maximal region of the subdivision is parametrized by a departure
event u ∈ N+(s), an arrival event v ∈ N−(t), and given by Ss,t(p) ∩ R(z) for a shortest
s-t-path p containing the access activities (s, u) and (v, t).

Proof. Let x ∈ R(z), u ∈ N+(s), v ∈ N−(t), and let p be an s-t-path using (s, u) and (v, t).
Then

cx(p) = ℓsu + ℓvt +
∑

a∈p∩(A\Aaccess)

cx
a. (11)

As in the proof of Lemma 11,

cx(p) = ℓsu + ℓvt + πv − πu + T
∑

a∈p∩(A\Aaccess)

cz
a. (12)
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In particular, the cost cx of a path p depends only on z, its first departure event, and
its last arrival event. If p′ is another s-t-path that contains (s, u) and (v, t) as well, then
cx(p) ≤ cx(p′) if and only if cz(p) ≤ cz(p′). The maximal regions of R(z) induced by the
shortest path subdivision Ss,t are hence described by a pair (u, v) ∈ N+(s) × N−(t) such
that a shortest s-t-path w.r.t. cx contains both (s, u) and (v, t) for all x in that region. Due
to Lemma 11, this shortest path can be chosen to be the same in each such region, say pu,v.
The region Ss,t(pu,v) ∩ R(z) is then described by the inequalities

cx(pu,v) ≤ cx(pu′,v′) for all (u′, v′) ∈ N+(s) × N−(t) \ {(u, v)}. ◀

▶ Corollary 13. For a single OD pair (s, t) ∈ Vsource × Vtarget and an arbitrary z ∈ ZA, a
shortest s-t-path w.r.t. cx among all x ∈ R(z) can be found in polynomial time.

Proof. A tension x ∈ R(z) can be found in polynomial time by the discussion following
Definition 9. By Theorem 12, the shortest path subdivision Ss,t subdivides R(z) into at most
|N+(s)| · |N−(t)| maximal polyhedral regions. Using Lemma 11, for each such region Ru,v

labeled by u and v, we can compute a representing path pu,v such that Ru,v = Ss,t(pu,v)∩R(z)
by computing a shortest path u-v-path w.r.t. cz, and adding the activities (s, u) and (v, t).
We then determine an optimal tension xu,v ∈ Ss,t(pu,v) ∩ R(z) by finding an optimal solution
x to the linear program

Minimize
∑

a∈puv∩(A\Aaccess)

dstxa (13)

subject to πj − πi + Tza = xa, a = (i, j) ∈ A \ Aaccess, (14)
ℓa ≤ xa ≤ ua, a ∈ A \ Aaccess, (15)

πi ∈ R, i ∈ Vdep ∪ Varr. (16)

This linear program is the restriction of (2)–(9) to the fixed periodic offset z and the fixed
path puv, where we dropped the now constant summand∑

a∈pu,v∩Atransfer

dstρ + dstℓsu + dstℓvt

in the objective function, and enlarged the domain of π according to the definition of R(z).
It remains to select the best tension among the xu,v for all (u, v) ∈ N+(s) × N−(t). ◀

The method in the proof of Corollary 13 is based on the polynomial number of maximal
regions of the shortest path subdivision of R(z). For more than one OD pair, this number
however becomes exponential, as the regions of the common refinement of all shortest path
subdivisions Ss,t are

R(z) ∩
⋂

(s,t)∈Vsource×Vtarget

Ss,t(pus,t,vs,t) (17)

for all combinations of (us,t, vs,t) ∈ N+(s) × N−(t) for all (s, t) ∈ Vsource × Vtarget. These
regions single out those periodic tensions, where the same set of passenger routes yields
shortest paths for all OD pairs.

When considering all OD pairs, we can hence not expect a polynomial-time algorithm for
TimPass on R(z). However, on a single region of the common refinement of all shortest path
subdivisions, there is a positive result.

ATMOS 2025
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▶ Corollary 14. Let z ∈ ZA and let R be a maximal region of the common refinement of all
shortest path subdivisions Ss,t for all OD pairs (s, t). Suppose that R is described in terms
of (us,t, vs,t) ∈ N+(s) × N−(t) for all (s, t) ∈ Vsource × Vtarget. Then TimPass can be solved
in polynomial time when x is restricted to R(z) ∩ R.

Proof. We determine pus,t,vs,t for all (s, t) as in the proof of Corollary 13. We then solve the
restriction of (2)–(9) to the fixed z and the chosen paths, which boils down to solving the
linear program (14)–(16) w.r.t. to the objective function∑

a∈A\Aaccess

waxa, where wa :=
∑

(s,t)∈D: a∈pus,t,vs,t

dst. ◀

5 Integrated Tropical Neighborhood Search

We now turn back to the question of when to reroute passengers in an alternating timetabling-
routing procedure such as the integrated modulo network simplex (cf. Section 3). The
geometric answer from Section 4 is the following: The passenger routing can be chosen to
be the same on each of the regions (17). However, this investigation is limited to a single
polytrope R(z). In our upcoming local search algorithm, integrated tropical neighborhood
search (ITNS), we will therefore always re-route the passengers when we leave a polytrope.
Inside a polytrope, we will either find a solution heuristically using Corollary 14, or be
more extensive and scan for local improvements by modifying one OD pair at a time only
(Corollary 13).

We outline the three components of ITNS on a high level.

5.1 The Coarse Polytrope Heuristic
In the coarse polytrope heuristic, for a given initial tension x ∈ R(z), we determine the
region R in the sense of (17) such that x ∈ R ∩ R(z) and solve TimPass optimally by means
of Corollary 14. To this end, we solve the linear program indicated in the proof, and its
optimal objective value will give the minimum total travel time on R ∩ R(z).

▶ Algorithm 15 (Coarse Polytrope Heuristic).
Input: periodic tension x ∈ R(z)
Output: periodic tension x∗ ∈ R(z) and its total travel time τ∗

1. For all (s, t) ∈ D, compute shortest paths ps,t w.r.t. cx, giving (us,t, vs,t) ∈ N+(s)×N−(t).
2. Solve TimPass on (17) via Corollary 14 to obtain a tension x∗ ∈ R(z) and its total travel

time τ∗. Return x∗ and τ∗.

5.2 The Fine Polytrope Heuristic
The fine polytrope heuristic proceeds as the coarse heuristic, but then tries to improve the
solution by re-routing passengers for single OD pairs in the spirit of Corollary 13.

▶ Algorithm 16 (Fine Polytrope Heuristic).
Input: periodic tension x ∈ R(z)
Output: periodic tension x∗ ∈ R(z) and its total travel time τ∗

1. Obtain x∗ ∈ R(z) ∩
⋂

(s,t)∈Vsource×Vtarget
Ss,t(ps,t) from Algorithm 15.

2. For a list of OD pairs (s, t):
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Enumerate the regions Ss,t(pu,v) be computing representing s-t-paths pu,v as in the
proof of Corollary 13.
For each such region, replace ps,t by pu,v and solve TimPass on the new region via
Corollary 14.
If a solution with better travel time has been found, set ps,t := pu,v and update x∗.

3. Return x∗ and its total travel time τ∗.

In view of Theorem 12, Step (2) can be understood as a heuristic exploration of the neighboring
regions of R(z) ∩

⋂
(s,t)∈Vsource×Vtarget

Ss,t(ps,t). The algorithm may be fine-tuned by adapting
the selection and sorting of the OD pairs. Note that for the linear programs in (2), only the
objective function changes, so that warm-starting is possible.

5.3 Integrated Tropical Neighborhood Search
We embed the two polytrope heuristics into tropical neighborhood search for periodic
timetabling [4].

▶ Algorithm 17 (Integrated Tropical Neighborhood Search, ITNS).
Input: feasible TimPass instance
Output: periodic tension x∗ ∈ R(z) and its total travel time τ∗

1. Compute a feasible solution to TimPass, giving x ∈ R(z).
2. Obtain xz ∈ R(z) and τz by Algorithm 15 or Algorithm 16.
3. Use Algorithm 15 to compute τz′ with tension xz′ ∈ R(z′) among all neighbors R(z′) of

R(z).
4. If there is no z′ with τz′

< τz, return xz and τz.
5. Choose a z′ with τz′

< τz, set z := z′ and go to Step (2).

As computing shortest paths for all OD pairs is the major bottleneck, we do not use
the fine polytrope heuristic in Step (3). Depending on the algorithm chosen in Step (2), we
speak of coarse or fine ITNS. The ITNS might be refined in several ways, e.g., by different
pivot or quality-first rules, see [4].

6 Computational Study

We present novel computational results of applying the (restricted) integrated modulo network
simplex and the coarse/fine integrated tropical neighborhood search to the TimPassLib
benchmark library [17].

6.1 Obtaining an Initial Solution
All presented algorithms in this paper are neighborhood searches that require an initial
feasible timetable. We outline a heuristic to obtain those by constructing a spanning tree
structure T = Tℓ

.
∪ Tu. First, note that it is usually assumed that ua = ℓa + T − 1 holds for

transfer activities a ∈ Atransfer. So if Aother = ∅, adding all driving and dwelling activities to
the lower bound tree Tℓ and connecting the resulting line components by transfer activities
always yields a feasible timetable. We can weigh the transfer activities by the number of
passengers on them subject to a lower bound routing, i.e., with respect to shortest paths
when all tensions xa are at their lower bound ℓa. If there are any other activities in Aother,
then special care has to be taken to ensure feasibility:

ATMOS 2025
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Turnaround activities model the required downtime between the end of a line and the
beginning of its reversal direction due to constraints such as driver breaks. Thus, the
driving and dwelling activities of a line, its reversal direction and turnover activities
form a cycle whose tensions have to sum to zero modulo the period time T due to the
cycle periodicity property. We always add this cycle to the tree omitting one of its
activities. Some activities may have to have their tension fixed to the upper bound to
ensure feasibility.
If a line is repeated within the global period of the instance, its events are copied
appropriately often in the event-activity network and connected by synchronization
activities. We construct the connected tree component of a line to always include all of
its repetitions along those timing activities.
Like transfers, headway activities connect line components but may have bounds that
impact feasibility. When we add a line component to the tree under consideration of the
previous two points, we collect all outgoing transfer and headway activities. We then
process them in some order to either connect additional lines to the growing tree or,
if both events incident to the activity are already in the tree, we store them for later.
Once we have connected all lines and the tree is spanning, we check if the tension of
the remaining co-tree activities is feasible. If not, we attempt pivot operations and to
switch up membership in Tℓ and Tu along the fundamental cycle until we have a feasible
timetable, or we have to give up.

Whether this process succeeds in finding a feasible timetable is sensitive to the order in which
we process transfer and other activities. It always succeeds on the TimPassLib instances if
we process activities in Aother in decreasing order of ua − ℓa and then the transfer activities
weighted by the lower bound routing, or, if this fails, in increasing order of ua − ℓa until
ua − ℓa > T/2, then the weighted transfer activities, then the remaining other activities.

6.2 Computational Results

We ran C++ implementations of our proposed methods on an initial solution obtained as
explained in the previous subsection on each TimPassLib instance with a time limit of an hour.
For an overview on the instance sizes we refer to [17] and https://timpasslib.aalto.fi/.
For ITNS, we report the best solutions in terms of total travel time found across three
parameter settings concerning a quality-first rule and numbers of OD pairs considered in
Step (3) of Algorithm 16. We always sort the OD pairs with respect to decreasing weighted
slack along the current path p, i.e., dst

∑
a∈p(xa − ℓa), so that heavy demand relations with

much longer travel times than necessary come first.
All computations have been carried out on an Intel Core i7-9700K CPU with 64 GB

RAM. The results are presented in Table 1 in the appendix.
For six of the instances, we provide better incumbent solutions (Hamburg, grid, long,

metro, Erding20, Erding21). The Stuttgart instance is very large and causes a memory
problem in the ITNS implementation. The RIMNS performs particularly strong. For ITNS,
the coarse version is on level with RIMNS, better on larger instances, but worse on smaller.

The fine ITNS is never better than coarse ITNS. This is also highlighted in Table 2 in the
appendix, where we collect the computation times and the total travel time improvement
in relation to the initial solution. It turns out – see that last column of Table 2 – that the
improvements made in (2) of Algorithm 16 are very minor, while moving to neighboring
polytropes has a larger impact on the total travel time. In particular, it is not advisable to
spend computation time for the fine ITNS.

https://timpasslib.aalto.fi/
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Unfortunately, we could not determine better travel times for the RxLy instances within
one hour, whose current incumbents are based on a heavy machinery of periodic timetable
optimization [3, 17]. However, since our methods performed strongly on the instances where
the time limit was not an issue, we became curious if we would be able to beat the best
known incumbents if we allotted more computation time. Moreover, it is straightforward to
parallelize the exploration of the neighborhood of the current solution for both MNS and
TNS, and the shortest path computations for TNS, yielding massive speed-up by moving to
high-throughput cluster nodes with 96 threads composed of Intel Xeon Gold 6342 CPUs with
512 GB RAM. Within a wall time limit of 24 hours, we provide better incumbent solutions
for all TimPassLib instances except toy, toy2, and Stuttgart, see Table 3 in the appendix.
Note that toy and toy2 have already been solved to proven optimality previously. It becomes
apparent that RIMNS outperforms coarse ITNS in this setting, the latter stopping earlier
with worse local optima. The 24 new incumbents have all been computed by RIMNS, while
coarse ITNS improves the TimPassLib bounds only for 6 instances.

7 Conclusion and Outlook

We have analyzed the geometry of integrated periodic timetabling and passenger routing,
culminating in an extension of tropical neighborhood search to an integrated setting. The
ITNS heuristic is complementary to the IMNS algorithm family, and is of a similar computa-
tional power. Both are promising candidates to get a fast good-quality solution for TimPass
problems, as is demonstrated by our new incumbent solutions for the TimPassLib instances.

What remains open on the theory side is to settle the complexity status of optimizing
TimPass over a single polytrope for all OD pairs simultaneously. Another line of future
work, more on the practical side, would be to integrate the path restriction techniques from
RIMNS into ITNS. In general, we believe that including ITNS into larger frameworks for
solving TimPass instances will prove useful, and that further algorithmic refinements and
implementation improvements are possible.

References
1 Ralf Borndörfer, Heide Hoppmann, and Marika Karbstein. Passenger routing for peri-

odic timetable optimization. Public Transport, 9(1):115–135, 2017. doi:10.1007/
s12469-016-0132-0.

2 Ralf Borndörfer, Heide Hoppmann, Marika Karbstein, and Fabian Löbel. The Modulo
Network Simplex with Integrated Passenger Routing. In Andreas Fink, Armin Fügenschuh,
and Martin Josef Geiger, editors, Operations Research Proceedings 2016, pages 637–644.
Springer International Publishing, 2017. doi:10.1007/978-3-319-55702-1_84.

3 Ralf Borndörfer, Niels Lindner, and Sarah Roth. A concurrent approach to the peri-
odic event scheduling problem. Journal of Rail Transport Planning & Management, 15:100175,
2020. doi:10.1016/j.jrtpm.2019.100175.

4 Enrico Bortoletto, Niels Lindner, and Berenike Masing. Tropical Neighbourhood Search: A
New Heuristic for Periodic Timetabling. In Mattia D’Emidio and Niels Lindner, editors,
22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2022), volume 106 of Open Access Series in Informatics (OASIcs), pages
3:1–3:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN:
2190-6807. doi:10.4230/OASIcs.ATMOS.2022.3.

5 Enrico Bortoletto, Niels Lindner, and Berenike Masing. The Tropical and Zonotopal Geo-
metry of Periodic Timetables. Discrete & Computational Geometry, 2024. doi:10.1007/
s00454-024-00686-2.

ATMOS 2025

https://doi.org/10.1007/s12469-016-0132-0
https://doi.org/10.1007/s12469-016-0132-0
https://doi.org/10.1007/978-3-319-55702-1_84
https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/10.4230/OASIcs.ATMOS.2022.3
https://doi.org/10.1007/s00454-024-00686-2
https://doi.org/10.1007/s00454-024-00686-2


2:16 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

6 Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel. Integrating
Passengers’ Routes in Periodic Timetabling: A SAT approach. In Marc Goerigk and Renato F.
Werneck, editors, 16th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2016), volume 54 of Open Access Series in Informatics
(OASIcs), pages 3:1–3:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/OASIcs.ATMOS.2016.3.

7 Michael Joswig and Katja Kulas. Tropical and ordinary convexity combined. Advances
in Geometry, 10(2):333–352, 2010. Publisher: De Gruyter Section: Advances in Geometry.
doi:10.1515/advgeom.2010.012.

8 Michael Joswig and Benjamin Schröter. Parametric Shortest-Path Algorithms via Tropical
Geometry. Mathematics of Operations Research, 47(3):2065–2081, 2022. Publisher: INFORMS.
doi:10.1287/moor.2021.1199.

9 Christian Liebchen. Periodic timetable optimization in public transport. PhD thesis, Technicsche
Universität Berlin, 2006.

10 Fabian Löbel, Niels Lindner, and Ralf Borndörfer. The Restricted Modulo Network Simplex
Method for Integrated Periodic Timetabling and Passenger Routing. In Janis S. Neufeld, Udo
Buscher, Rainer Lasch, Dominik Möst, and Jörn Schönberger, editors, Operations Research
Proceedings 2019, pages 757–763, Cham, 2020. Springer International Publishing. doi:10.
1007/978-3-030-48439-2_92.

11 Bernardo Martin-Iradi and Stefan Ropke. A column-generation-based matheuristic for periodic
and symmetric train timetabling with integrated passenger routing. European Journal of
Operational Research, 297(2):511–531, 2022. doi:10.1016/j.ejor.2021.04.041.

12 Berenike Masing, Niels Lindner, and Enrico Bortoletto. Computing All Shortest Passenger
Routes with a Tropical Dijkstra Algorithm, 2024. arXiv:2412.14654 [math]. doi:10.48550/
arXiv.2412.14654.

13 Karl Nachtigall and Jens Opitz. Solving Periodic Timetable Optimisation Problems by Modulo
Simplex Calculations. In Matteo Fischetti and Peter Widmayer, editors, 8th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08),
volume 9 of Open Access Series in Informatics (OASIcs), pages 1–15, Dagstuhl, Germany, 2008.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2008.1588.

14 Michiel A. Odijk. Construction of periodic timetables, Part 1: A cutting plane algorithm.
Technical Report 94-61, TU Delft, 1994.

15 Gert-Jaap Polinder, Marie Schmidt, and Dennis Huisman. Timetabling for strategic passenger
railway planning. Transportation Research Part B: Methodological, 146:111–135, 2021. doi:
10.1016/j.trb.2021.02.006.

16 Stephanie Riedmüller. A path-based model for integrated periodic timetabling and passenger
routing. Master’s thesis, Freie Universität Berlin, 2023.

17 Philine Schiewe, Marc Goerigk, and Niels Lindner. Introducing TimPassLib – A Library for
Integrated Periodic Timetabling and Passenger Routing. Operations Research Forum, 4, 2023.
doi:10.1007/s43069-023-00244-1.

18 Philine Schiewe and Anita Schöbel. Periodic Timetabling with Integrated Routing: Toward
Applicable Approaches. Transportation Science, 54(6):1714–1731, 2020. Publisher: INFORMS.
doi:10.1287/trsc.2019.0965.

19 Marie Schmidt. Integrating Routing Decisions in Public Transportation Problems. Springer
Optimization and Its Applications. Springer New York, NY, 2014. doi:10.1007/
978-1-4614-9566-6.

20 Marie Schmidt and Anita Schöbel. Timetabling with passenger routing. OR Spectrum,
37(1):75–97, 2015. doi:10.1007/s00291-014-0360-0.

21 Paolo Serafini and Walter Ukovich. A Mathematical Model for Periodic Scheduling Problems.
SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989. doi:10.1137/0402049.

22 Michael Siebert and Marc Goerigk. An experimental comparison of periodic timetabling models.
Computers & Operations Research, 40(10):2251–2259, 2013. doi:10.1016/j.cor.2013.04.002.

https://doi.org/10.4230/OASIcs.ATMOS.2016.3
https://doi.org/10.1515/advgeom.2010.012
https://doi.org/10.1287/moor.2021.1199
https://doi.org/10.1007/978-3-030-48439-2_92
https://doi.org/10.1007/978-3-030-48439-2_92
https://doi.org/10.1016/j.ejor.2021.04.041
https://doi.org/10.48550/arXiv.2412.14654
https://doi.org/10.48550/arXiv.2412.14654
https://doi.org/10.4230/OASIcs.ATMOS.2008.1588
https://doi.org/10.1016/j.trb.2021.02.006
https://doi.org/10.1016/j.trb.2021.02.006
https://doi.org/10.1007/s43069-023-00244-1
https://doi.org/10.1287/trsc.2019.0965
https://doi.org/10.1007/978-1-4614-9566-6
https://doi.org/10.1007/978-1-4614-9566-6
https://doi.org/10.1007/s00291-014-0360-0
https://doi.org/10.1137/0402049
https://doi.org/10.1016/j.cor.2013.04.002


F. Löbel and N. Lindner 2:17

A Result Tables

Table 1 Total travel times for the TimPassLib instances. Some instance names have been
shortened for readability. We feature the best known lower bound and best known solution as
reported on https://timpasslib.aalto.fi/ as of July 4, 2025. Any solution by the integrated
modulo network simplex, restricted integrated modulo network simplex, coarse or fine integrated
tropical neighborhood search beating the currently best known solution is underlined. The blue
solutions highlight which paradigm – MNS or TNS – is better.

instance best known
bound

best known
solution IMNS RIMNS coarse ITNS fine ITNS

Hamburg 139 892 927 141 629 305 141 610 697 141 610 697 141 842 262 141 842 262
Schweiz 60 084 289 62 622 935 65 322 356 63 899 227 64 910 675 65 014 781

toy 21 466 21 466 21 466 21 466 21 466 21 466
toy2 19 114 19 114 19 123 19 130 19 198 19 198

regional 1 804 642 1 834 884 1 855 092 1 855 092 1 855 092 1 855 092
grid 47 824 49 279 48 894 48 922 49 775 49 787
long 64 906 980 67 480 984 68 300 017 67 468 861 68 296 696 68 296 696

metro 11 978 129 12 019 079 11 997 040 12 029 681 12 029 681 12 029 681
Erding20 12 206 083 12 258 126 12 239 162 12 239 477 12 270 189 12 270 701
Erding21 12 206 083 12 307 765 12 258 531 12 258 986 12 298 178 12 300 257

Stuttgart 45 072
189 100

48 325
440 573

48 724
661 870

48 724
661 870

48 724
661 870

48 724
661 870

R1L1 522 575 407 542 908 145 548 590 857 547 888 106 548 783 948 549 254 243
R1L2 522 212 362 542 381 697 546 637 453 546 637 453 547 430 602 547 793 546
R1L3 522 199 838 543 067 240 547 066 363 547 052 294 547 404 978 548 056 874
R1L4 520 799 059 537 879 494 541 161 369 540 579 945 541 612 283 541 795 513
R2L1 650 575 045 681 061 389 687 561 970 686 752 397 686 026 782 686 571 886
R2L2 650 293 220 676 836 085 687 143 153 687 298 476 685 036 749 686 155 351
R2L3 649 767 761 675 793 893 681 918 089 681 601 445 680 839 415 681 528 634
R2L4 647 184 195 667 537 183 671 675 462 670 364 469 670 698 507 670 824 345
R3L1 665 804 283 694 086 648 704 342 418 702 079 664 702 474 126 703 168 722
R3L2 665 719 574 694 334 373 704 352 020 701 666 941 702 618 923 703 427 280
R3L3 665 595 680 691 688 857 699 347 941 695 870 751 697 620 096 698 196 101
R3L4 662 251 432 681 343 018 683 500 409 683 500 409 682 766 750 682 999 085
R4L1 723 276 168 754 707 390 764 266 997 764 266 997 762 687 598 763 002 450
R4L2 724 254 447 754 453 547 761 855 406 761 855 406 760 035 236 760 596 205
R4L3 722 434 044 751 351 849 755 869 038 755 869 038 754 672 008 754 766 718
R4L4 720 103 154 738 792 466 742 256 165 742 256 165 741 051 497 741 154 025

ATMOS 2025
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Table 2 Running times in seconds, improvement in terms of total travel time in comparison to
the initial solution for the two ITNS algorithms, and improving/total number of OD pairs considered
in Step (2) of Algorithm 16. The Stuttgart and RxLy instances hit the time limit of one hour.

instance coarse ITNS
time [s]

fine ITNS
time [s]

coarse ITNS
improvement

fine ITNS
improvement

fine ITNS
improving/total pairs

Erding20 201.671 599.255 3686 3174 2/80
Erding21 172.526 410.702 22991 20912 1/120
Hamburg 0.955 3.966 201416 201416 0/20
Schweiz 3600 3600 411681 307575 1/96

toy 0.224 1.323 8300 8300 1/80
toy2 0.260 2.798 0 0 0/10

regional 2.743 5.020 0 0 0/10
grid 13.171 13.162 126 114 0/60
long 105.494 183.894 3321 3321 0/30

metro 3.489 11.497 0 0 0/10
Stuttgart — — 0 0 0/0

R1L1 — — 1850443 1380148 3/120
R1L2 — — 1866879 1503935 6/155
R1L3 — — 1448324 796428 4/78
R1L4 — — 1180361 997131 2/84
R2L1 — — 2910082 2364978 3/155
R2L2 — — 3423781 2305179 2/140
R2L3 — — 2587672 1898453 4/102
R2L4 — — 976955 851117 3/50
R3L1 — — 1868292 1173696 4/67
R3L2 — — 1733097 924740 2/62
R3L3 — — 1727845 1151840 5/51
R3L4 — — 733659 501324 2/22
R4L1 — — 1579399 1264547 2/50
R4L2 — — 1820170 1259201 1/50
R4L3 — — 1197030 1102320 2/40
R4L4 — — 1204668 1102140 5/50
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