
Directed Temporal Tree Realization for Periodic
Public Transport: Easy and Hard Cases
Julia Meusel #

Martin Luther University Halle-Wittenberg, Germany

Matthias Müller-Hannemann #

Martin Luther University Halle-Wittenberg, Germany

Klaus Reinhardt #

Martin Luther University Halle-Wittenberg, Germany

Abstract
We study the complexity of the directed periodic temporal graph realization problem. This work is
motivated by the design of periodic schedules in public transport with constraints on the quality
of service. Namely, we require that the fastest path between (important) pairs of vertices is upper
bounded by a specified maximum duration, encoded in an upper distance matrix D. While previous
work has considered the undirected version of the problem, the application in public transport
schedule design requires the flexibility to assign different departure times to the two directions of
an edge. A problem instance can only be feasible if all values of the distance matrix are at least
shortest path distances. However, the task of realizing exact fastest path distances in a periodic
temporal graph is often too restrictive. Therefore, we introduce a minimum slack parameter k that
describes a lower bound on the maximum allowed waiting time on each path. We concentrate on
tree topologies and provide a full characterization of the complexity landscape with respect to the
period ∆ and the minimum slack parameter k, showing a sharp threshold between NP-complete
cases and cases which are always realizable. We also provide hardness results for the special case of
period ∆ = 2 for general directed and undirected graphs.
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1 Introduction

Designing periodic schedules for public transport is notoriously difficult. Periodic schedules
are desirable for several practical and operational reasons. They are easier to memorize,
and travelers can better plan their journeys if services run at regular intervals. Periodicity
also enables coordinated connections between different lines at central hubs and simplifies
crew and vehicle scheduling. In this paper, we consider the quality of service provided by
a periodic schedule from a passenger’s perspective. Specifically, we address the question
of whether it is possible to design a periodic schedule for a given network that guarantees
travel time bounds between important pairs of stops. We model this as a graph realization
problem.

Graph realization problems are a central area of research that has been studied extensively
since the 1960s for undirected [6, 9, 10] and directed graphs [1, 4, 8]. Given a set of constraints,
the objective is to find a graph that satisfies them, or to decide that no such graph exists.
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3:2 Directed Temporal Tree Realization for Periodic Public Transport

Restrictions on degrees [2, 6, 10], distances between vertices [3, 9, 22], eccentricities [14], and
connectivity [5, 11] have been studied in detail. Recently, the study of realization problems
on temporal graphs was started by Klobas et al. [12, 13]. Temporal graphs are graphs that
have a fixed set of vertices and a set of edges that changes over time. Each edge of a static
graph is assigned a set of timestamps at which it is active. In a periodic temporal graph,
the set of timestamps is repeated periodically for all edges. Informally, a temporal path is a
sequence of consecutive edges in the underlying static graph and corresponding increasing
timestamps at which they are active. Klobas et al. and Mertzios et al. examined restrictions
on the travel time between pairs of vertices in periodic temporal graphs: upper bounds as
well as exact values [12, 13, 16].

This leads to several variants of the Temporal Graph Realization problem (TGR)
that have been studied: In the periodic TGR, all timestamps are repeated periodically. The
simple periodic TGR allows only one timestamp per period, unlike the multi-label periodic
TGR. The constraints on fastest travel times can be either exact values or upper bounds. If
the given underlying graph is a tree, we call the problem Temporal Tree Realization
(TTR). In addition to communication networks such as social networks or satellite links,
Klobas et al. mention transportation networks as examples of potential applications for the
TTR [12, 13]. However, unlike the flow of information in satellite links, transportation
networks typically do not carry passengers on an edge in both directions at the same time.
Therefore, we examine the directed case as a natural generalization. Since most public
transportation lines run in both directions, we will mostly consider bidirected graphs. In tree
structures this is necessary to ensure that every vertex is reachable from every other vertex.

With an application in public transport in mind, the input graph models the infrastructure
network where vertices correspond to locations of stops (or stations) and edges connect
neighboring stops served by a bus, tram, train or the like. In public transport, typical values
for the period ∆ are 5, 10, 15 or 20 minutes in urban transport, and 30, 60 or 120 minutes
in long-distance train networks. The timestamp of an edge (u, v) can be interpreted as the
departure time of some vehicle at u. In a practical setting, traveling along an edge e requires
ℓe ∈ N time. An edge of length ℓ can be equivalently replaced by a simple path of ℓ edges of
unit length as shown in Figure 1. While such a transformation blows up the graph size, it
does not change the complexity of the problem (since hardness results are established even
for unit length graphs). For simplicity, we will therefore consider only unit-length graphs.

Informally, given a directed, strongly connected graph as the underlying static graph as
well as a period ∆ and upper bounds on the travel time between each pair of vertices, the
objective is to compute a (single) periodic timestamp for each directed edge such that a
fastest temporal path between any two vertices does not exceed the given upper bound. The
upper bounds between pairs of vertices can be interpreted as a guaranteed quality of service
that must be met. The bounds are specified by a matrix D of integers or ∞. The latter
means that we do not impose any restriction on the fastest path between the corresponding
vertices. Motivated by transportation networks with fixed traffic lines, we consider only
one global period instead of allowing different periods for all edges. Since waiting times
are unavoidable and natural, for example, due to transfer times at transit hubs, we assume
that there is a small amount of waiting time allowed on all shortest paths and introduce a
minimum slack parameter k that specifies how much waiting time is at least acceptable on all
shortest routes. This parameter gives us some leeway to work with, as waiting is necessary
even on very small instances, such as the one shown in Figure 1.

Travelers on a public transport network typically have to change trains along the way.
In practice, a minimum transfer time must be planned for each change. For simplicity, we
consider only the case where all transfer times are 0. However, one could easily extend the
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(b) A graph in which phantom stops have been inserted so that all edges have
unit length. Here, the labels define a schedule where each value denotes a
departure time with respect to a global period of ∆ = 5. The resulting graph
with its labeling forms a periodic temporal graph.

Figure 1 Example: The infrastructure network G = (V, E) with edge lengths (left) can be
modelled with unit length edges by inserting phantom stops between already existing stops (right).
No upper bounds are set for travel times from and to these phantom stops. Suppose we have a period
of ∆ = 5 and the following upper bounds: Da,e = 17, Da,b = 9, and Df,b = 13. Assuming, without
loss of generality, that the label of the edge connecting a to the first phantom stop is assigned the
timestamp 0, the given upper bounds on the travel times enforce the black edge labels. A temporal
graph with edge labels as specified respects these upper bounds. The timestamps of a fastest
temporal path from f to e may be, for example, 1, 2, 3, 6, 7, 8, 9, 10, 11, giving it a duration of 11,
whereas the static distance of f and e is only 9. On this fastest path, one would wait at vertex d for
two timesteps before traversing the next edge with label 1 = 6 mod 5 at time 6. Therefore, adding
an upper bound Df,e = 9 would make the instance infeasible.

model by imposing non-trivial minimum transfer times at each stop. More precisely, one
could add constraints specifying that the difference between the arrival time at a stop and
the departure time on a leaving edge must be at least a given stop-specific constant (the
minimum transfer time at this stop).

Related work. Klobas et al. show that the Simple Periodic TGR with exact given fastest
travel times is NP-hard even for a small constant period ∆ ≥ 3 [12, 13, Theorem 3]. However,
if the underlying static graph is a tree, the problem is solvable in polynomial time [12, 13,
Theorem 27]. It is fixed-parameter tractable (FPT) with respect to the feedback edge number
of the underlying graph but W[1]-hard when parameterized by the feedback vertex number
of the underlying graph [12, 13, Theorem 29 and Theorem 4].

While the Simple Periodic Temporal Graph Realization problem with exact given
fastest travel times is solvable in polynomial time on trees, Mertzios et al. showed that the
problem given upper bounds on the fastest travel times is NP-hard even if the underlying
static graph is a tree or even a star [16, Theorem 5]. This still holds for a constant period of
∆ = 2 and when the input tree G has a constant diameter or a constant maximum degree [16,
Theorem 5]. However, it is FPT with respect to the number of leaves in the input tree G [16,
Theorem 19].

While Klobas et al. and Mertzios et al. only allow one timestamp per edge, Erlebach
et al. consider several timestamps per edge [7]. They examine both the periodic and the
non-periodic variant with exact given fastest travel times. Among other results, they show
that the Multi-Label Periodic Temporal Graph Realization problem is NP-hard,
even if the underlying static graph is a star for any number ℓ ≥ 5 of labels per edge. All
these models have in common that labels (periodic timestamps) are assigned to edges.

Important related problem versions assign periodic labels to vertices. The Periodic
Event Scheduling Problem (PESP), introduced by Serafini and Ukovich in 1989 [21], is
widely used to schedule reoccurring events in public transport. Here the input is a so-called
event-activity network N = (V, A), a period ∆, and time windows [ℓa, ua] for each activity
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3:4 Directed Temporal Tree Realization for Periodic Public Transport
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Figure 2 Complexity of the Directed Upper-Bounded Periodic Temporal Tree Realiza-
tion Problem for different values of the minimum slack parameter k and period ∆ (∆-k-DiTTR).
The labeling of the boxes indicates which proof was employed to achieve the respective result, where
Theorem 20 is used for all NP-complete cases: (a) Theorem 6, (b) Corollary 8, (c) Theorem 7,
(d) Lemma 14, (e) Lemma 15, (f) Lemma 16, (g) Lemma 17, and (h) Lemma 18. Cases in which the
undirected problem version is NP-complete but all instances of the directed version are realizable
are outlined in red (see Theorem 20).

a ∈ A. The set V models events (think of an arrival or departure of a vehicle at a stop)
and the set A ⊂ V × V so-called activities. Activities model driving between neighboring
stops, dwelling at a stop, transfers between different vehicles or safety constraints (minimal
headways). In PESP, one seeks a periodic timestamp πv ∈ {0, 1, . . . , ∆ − 1} for each event
v ∈ V such that (πw − πv) mod ∆ ∈ [ℓ(v,w), u(v,w)] for all (v, w) ∈ A. The time window
[ℓa, ua] of an activity models lower and upper bounds on the difference of the timestamps
between the corresponding events. In other words, the difference ua − ℓa bounds the slack
(waiting time) which can be introduced on activity a. In stark contrast to our model, these
restrictions are local constraints between adjacent events, not global constraints between
arbitrary events as considered in this paper. The PESP is known to be NP-complete for
fixed ∆ ≥ 3 [21, 17], but efficiently solvable for ∆ = 2 [19, page 87]. Deciding the feasibility
of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the
carvingwidth is 3 [15].

Our contribution. In this paper, we investigate the complexity of the Directed Upper-
Bounded Periodic Temporal Graph Realization Problem (DiTGR) and the Di-
rected Upper-Bounded Periodic Temporal Tree Realization Problem (DiTTR).
Our main results are as follows:

We provide an efficiently checkable necessary and sufficient condition for feasibility in
DiTTR when all pairs of vertices must be realized on shortest paths without waiting
time. The basic insight is that the solvability for such instances depends on the distance
between branching vertices of the given graph topology.
We then introduce the parameter k, which specifies the minimum waiting time to be
allowed on each shortest path (the slack), i.e., for all pairs of vertices u and v we require
that the duration bound Du,v is at least the distance of u and v in the underlying static
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graph plus the constant k. We fully characterize the complexity of the problem for
bidirected tree topologies in terms of period ∆ and slack parameter k. For each possible
combination of parameters ∆ and k, we either prove that the problem is easily solvable
or hard, see Figure 2.
We also investigate in more detail the special case of a given period ∆ = 2. This turns
out to be NP-complete in general (for both directed and undirected graphs), but can be
solved efficiently on directed bipartite graphs and graphs in which all shortest paths are
unique.

Organization of the paper. In Section 2, we start with a formal problem definition. Then,
in Section 3 we will first characterize feasible instances by providing a necessary and sufficient
condition and then present all cases where instances with a bidirected tree topology can be
easily solved. We will also discuss in more detail the special case of a given period ∆ = 2. In
Section 4, we give our hardness results for the remaining instances with a directed bidirected
tree topology. Finally, we conclude in Section 5 with a summary and suggestions for future
work.

2 Formal Problem Definition

As we mainly consider the problem for directed graphs, all following definitions deal with
directed temporal graphs. Both undirected edges and directed arcs are referred to as edges.
The definitions for undirected temporal graphs are analogous. For temporal graphs and
periodic temporal graphs, we follow the notation of Klobas et al. [12, 13]:

▶ Definition 1. A temporal graph is a pair (G, Λ), where G = (V, E) is the underlying
(static) graph and Λ : E → 2N0 is a function, that assigns a set of discrete timestamps to
each edge.

▶ Definition 2. A ∆-periodic temporal graph is a triple (G = (V, E), λ : E → {0, 1, . . . , ∆ −
1}, ∆) which denotes the temporal graph (G, Λ) where ∀e ∈ E : Λ(e) = {λ(e) + i · ∆ | i ∈ N0}.

Informally, a temporal path is a sequence that denotes consecutive edges on a path in the
underlying static graph and the times at which they are traversed. No vertex can be visited
more than once. Recent literature distinguishes between the strict and non-strict version.
Throughout the paper we only consider strict paths: The timestamps have to be strictly
increasing. Formally, we can define a temporal path as follows:

▶ Definition 3. A temporal s-z-path of length ℓ in a directed temporal graph (G, Λ) is a
sequence P = (vi−1, vi, ti)ℓ

i=1 for which the following holds:
v0 = s ∧ vℓ = z

∀i, j ∈ {0, . . . , ℓ}, i ̸= j : vi ̸= vj

∀i ∈ {1, . . . , ℓ} : (vi−1, vi) ∈ E

∀i ∈ {1, . . . , ℓ} : ti ∈ Λ((vi−1, vi))
∀i ∈ {2, . . . , ℓ} : ti−1 < ti

The traversal of an edge requires one time unit. The temporal s-z-path starts or begins
at vertex s at time t1, it reaches or arrives at vertex z at time tℓ + 1.

▶ Definition 4. The duration d(P ) of a temporal path P = (vi−1, vi, ti)ℓ
i=1 is defined as

d(P ) = tℓ + 1 − t1.

Let d̂(u, v) be the static distance of u and v in the underlying static graph. The undirected
and directed problem versions can now be stated as follows.

ATMOS 2025



3:6 Directed Temporal Tree Realization for Periodic Public Transport

Periodic Upper-Bounded Temporal Graph Realization (TGR)
Input: An undirected, connected graph G = (V, E) with V = {v1, v2, . . . , vn}, an n × n

matrix D of positive integers where ∀u, v ∈ V : Du,v ≥ d̂(u, v), and a positive
integer ∆.

Question: Does there exist a ∆-periodic labeling λ : E → {0, 1, . . . , ∆ − 1} such that, for
every i, j, the duration of a fastest temporal path from vi to vj in the ∆-periodic
temporal graph (G, λ, ∆) is at most Di,j?

The restriction of TGR where the given graph is a tree is called TTR. To generalize
the undirected problem version to the directed one, we restrict the considered graphs to the
simplest case: we only consider directed graphs obtained by replacing each undirected edge
with two antiparallel directed edges. We call graphs that are created this way bidirected.

Periodic Upper-Bounded Temporal Directed Graph Realization (DiTGR)
Input: A directed, strongly connected graph G = (V, E) with V = {v1, v2, . . . , vn}, an

n×n matrix D of positive integers where ∀u, v ∈ V : Du,v ≥ d̂(u, v), and a positive
integer ∆.

Question: Does there exist a ∆-periodic labeling λ : E → {0, 1, . . . , ∆ − 1} such that, for
every i, j, the duration of a fastest temporal path from vi to vj in the ∆-periodic
temporal graph (G, λ, ∆) is at most Di,j?

The restriction of DiTGR to inputs of such graphs derived from trees by adding two
directed edges (u, v) and (v, u) for every undirected edge {u, v} is called DiTTR. This means
that for any pair of vertices (u, v) there is exactly one path from u to v in the underlying
static graph. Furthermore, we only consider instances where ∀u, v ∈ V : Du,v ≥ d̂(u, v),
because all other instances cannot be realized anyway. The duration of a fastest temporal
path from u to v depending on λ is denoted by dλ(u, v). We simply write d(u, v) whenever
λ is clear from the context. For brevity, we write λ(u, v) instead of λ((u, v)). The waiting
time at vertex vi on a path P = (vi−1, vi, ti)ℓ

i=1 is ti+1 − ti − 1 for 1 ≤ i < ℓ. The waiting
time on a path P is the sum of the waiting time at all its vertices. In a bidirected tree it is
equal to the difference d(v0, vℓ) − d̂(v0, vℓ) on a fastest path. In Figure 1b, the static distance
d̂(f, e) between the vertices f and e is 9, whereas the duration of the fastest temporal path
between them is d(f, e) = 11, with a waiting time of 2 = 6 − 3 − 1 only at vertex d. For
a vertex v, we denote by δ+(v) its static outdegree, by δ−(v) its static indegree, and by
δ(v) = δ+(v) + δ−(v) its (total) static degree; N(v) refers to the set of its neighbors.

For any pair of vertices (v, w) the duration of a fastest temporal path P = (vi−1, vi, ti)ℓ
i=1

can be at most d(P ) ≤ (d̂(v, w) − 1) · ∆ + 1. This bound is achieved if λ(vi−1, vi) is equal for
all i ∈ {1, . . . , ℓ}. Therefore, any value of Dv,w with Dv,w ≥ (d̂(v, w) − 1) · ∆ + 1 is no real
restriction. We write any such value simply as Dv,w = ∞ or omit it entirely.

The slack parameter k is an implicit parameter of D: D is restricted by ∀v, w ∈ V :
Dv,w ≥ d̂(v, w) + k. For trees, this means that k is the minimum permitted waiting time
on any path, since paths are unique. We call the versions of TTR and DiTTR where the
parameters ∆ and k are fixed ∆-k-TTR respectively ∆-k-DiTTR.

3 Characterization of Feasible Instances

3.1 A Necessary and Sufficient Condition for Feasibility in DiTTR
Before we look at the hardness results for the DiTTR problem, let us consider a special
case: There is no waiting time allowed on any shortest path. As the underlying static graph
is a tree, all paths are shortest paths and no waiting is allowed on any path. Therefore,
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the given travel times are not just upper bounds but exact values. Since there is only one
path between every pair of vertices, this means ∀u, v ∈ V : Du,v = d̂(u, v). For undirected
graphs, this special case is also covered by the result of Klobas et al. for the exact TTR: it
is decidable in polynomial time whether the instance is realizable [12, 13, Theorem 27]. We
provide a simple characterization of the realizability of an instance of DiTTR. To do this,
we introduce so-called branching vertices. We will call a vertex with a degree of at least 6
branching vertex.

▶ Observation 5. An instance of DiTTR with ∀u, v ∈ V : Du,v = d̂(u, v) is realizable exactly
when the distance of any pair of branching vertices is a multiple of ∆/2.

Proof. First we observe that a vertex with a static degree of at least 6 corresponds to a
vertex with a static degree of at least 3 in the underlying undirected tree. As can easily be
seen from the following argument, all branching vertices have fixed arrival and departure
times, i.e. all incoming edges of a branching vertex have the same label, as well as all outgoing
edges. Let v be a branching vertex and let for some neighbor w of v w.l.o.g. λ(w, v) = ∆ − 1.
For all outgoing edges (v, x) of v excluding (v, w) this means λ(v, x) = 0 as no waiting is
allowed. This in turn requires λ(x, v) = ∆ − 1 for the remaining incoming edges (x, v).
The latter implies λ(v, w) = 0. Let y and z be two branching vertices with distance d̂(y, z)
and let t(y), t(z) be the timestamps of their incoming edges. Then the timestamps of
their outgoing edges have to be (t(y) + 1) mod ∆ and (t(z) + 1) mod ∆, respectively. Let
P = (y = v0, v1, t1) . . . (vℓ−1, z = vℓ, tℓ) be a fastest temporal y-z-path and its length ℓ.
By Definition 4, the duration of P is d(P ) = tℓ − t1 + 1. We note that for any feasible
solution d(P ) = d(y, z) = d̂(y, z). To not exceed Dy,z = d̂(y, z) the following must hold:
∃i ∈ N0 : i · ∆ + t(z) = tℓ = d(P ) + t1 − 1 = d̂(y, z) + (t(y) + 1) − 1. By definition and due
to symmetry, this means: t(z) ≡ d̂(y, z) + t(y) (mod ∆) and t(y) ≡ d̂(y, z) + t(z) (mod ∆).
Therefore, the following must also apply: 0 ≡ 2 · d̂(y, z) (mod ∆).

If the distance of any pair of branching vertices is a multiple of ∆/2, we can start at an
arbitrary branching vertex r and set its arrival time to ∆−1. Without waiting, the departure
time of this vertex is 0. Then we can assign labels iteratively as enforced by already labeled
adjacent edges as specified in Algorithm 1. (However, we emphasize that we have to choose
the root as a branching vertex here.) As all branching vertices have a distance of a multiple
of ∆/2, this procedure assigns them fixed arrival and departure times with no waiting. Hence,
with such a labeling there is a temporal path between every pair of vertices without waiting.
If there are no branching vertices at all, we can assign increasing labels independently for
both directions of the path. ◀

This necessary and sufficient condition implies immediately a linear time algorithm
for these instances. This does not contradict our observation that the problem becomes
NP-complete if waiting times are allowed, i.e., Du,v ≥ d̂(u, v). This is even true for the slack
parameter k = 0, since k is a only lower bound for the allowed waiting time.

3.2 Efficiently Solvable Cases
In this section we demonstrate how to realize all instances with ∆ ≤ k + 1 for odd ∆ and
with ∆ ≤ k + 2 for even ∆. Just for completeness, we start with the trivial case ∆ = 1.

▶ Theorem 6. For ∆ = 1 all instances of TGR and DiTGR are feasible.

Proof. Obviously, all labels are forced to have the same value λ = 0. Since the period ∆ is 1,
there is no waiting time at all at any vertex. So every shortest path in the underlying static
graph can be realized as a fastest temporal path with duration equal to its length, which
means that all instances are realizable. ◀

ATMOS 2025



3:8 Directed Temporal Tree Realization for Periodic Public Transport

Algorithm 1 Realizing instances that can always be realized
Choose an arbitrary vertex r as root.
For each edge e = (a, b), do:

if e points away from the root ,
set λ(a, b) = d̂(r, a) mod ∆

if e points to the root ,
set λ(a, b) = (∆ − d̂(r, a)) mod ∆

(a) Realization for k + 1 ≥ ∆ = 3. (b) Realization for k + 2 ≥ ∆ = 4.

Figure 3 Example: Two realizations with waiting times at most ∆ − 1 respectively ∆ − 2 as
constructed by Algorithm 1.

▶ Theorem 7. All instances of DiTTR with ∆ ≤ k + 1 for odd ∆ and with ∆ ≤ k + 2 for
even ∆ are feasible.

Proof. All instances with ∆ ≤ k + 1 for odd ∆ and with ∆ ≤ k + 2 for even ∆ can be
realized by a simple algorithm detailed in Algorithm 1. First, choose an arbitrary vertex r as
the root. Then, traverse the tree and, depending on its distance from the root and whether
it points to or away from the root, assign a label to each edge as specified in Algorithm 1.
Two realizations computed by this algorithm can be seen in Figure 3. There are three cases
for the direction of a path between two vertices:
1. The path runs entirely towards the root.
2. The path leads strictly away from the root.
3. The path first heads towards the root and then changes direction away from it.
In the first two cases there is no delay at all. For the last case, it is easy to see that waiting
time can only occur when changing direction and therefore only once per path. Thus, the
maximum waiting time is at most ∆ − 1 on any path. If ∆ is even, the waiting time is
at most ∆ − 2, because by construction incoming and outgoing edges of every vertex are
assigned values of different parity. Hence, there cannot be two identical labels in a row on a
path. ◀

▶ Corollary 8. All instances of DiTTR with ∆ = 2 are feasible.

This follows from Theorem 7 with ∆ = 2 and k = 0 and can easily be generalized to
directed bipartite graphs.

▶ Corollary 9. All instances of DiTGR where the input is restricted to a directed bipartite
graph G = (U, V, E) with E ⊆ (U × V ) ∪ (V × U) and period ∆ = 2 are feasible.

Proof. Given any directed, bipartite graph G = (U, V, E) with E ⊆ (U × V ) ∪ (V × U) and
∆ = 2, set λ(e0) = 0 for all e0 ∈ E ∩ (U × V ) and λ(e1) = 1 for all e1 ∈ E ∩ (V × U).
Since every path in G alternates between vertices in U and vertices in V , there is no waiting
time. ◀
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(a) A graph G with a feasible labeling for
the case D′

0,10 = 3.
(b) The bicolored graph G′

corresponding to the label-
ing of G in Figure 4a with
D′

0,10 = 3.

(c) The graph G′′ with
D′′

1,10 = 4 is not bipartite.
The dotted lines indicate an
cycle of odd length.

Figure 4 Example: A graph G = (V, E) containing one bidirected cycle of odd length and two
attached trees. The auxiliary graphs G′ = (E, E′) and G′′ = (E, E′′) for two different matrices D′ and
D′′ with D′

3,0 = D′′
3,0 = 2, D′

6,0 = D′′
6,0 = 4, D′

7,9 = D′′
7,9 = 6, D′

9,1 = D′′
9,1 = 4, D′

10,3 = D′′
10,3 = 3

and D′
0,10 = 3, D′′

1,10 = 4. Black and dotted edges are derived by the specific D′ or D′′, whereas
gray edges correspond to potential additional constraints for general D. The graph G′

1 in Figure 4b
is bicolored. The colors of the vertices correspond to the feasible labeling shown in Figure 4a. The
graph G′′ is not bipartite, the instance with D′′ is therefore infeasible.

A graph where all shortest paths are unique is called geodetic [18, p. 105] or min-
unique [20].

▶ Theorem 10. Instances of DiTGR with period ∆ = 2 which are restricted to a directed
geodetic graph G = (V, E) with Du,v ∈ {d̂(u, v), ∞} for all u, v ∈ V can be decided in
polynomial time.

Proof. We show this by giving a reduction to 2–Vertex-Coloring as shown in Figure 4.
Note that as the graph is geodetic there is by definition a unique shortest path in the underlying
static graph for every pair of vertices (v, w) [18, p. 105]. Given an instance (G = (V, E), D, ∆),
let P ⊆ 2E be the set of all edge sets of paths in G and let Pe ⊆ P \ {∅} be the set of edge
sets of all shortest paths where no waiting time is allowed. We construct an undirected
auxiliary graph G′ = (E, E′) with E′ = {{(x, y), (y, z)} | ∃P ∈ Pe : (x, y), (y, z) ∈ P}. This
means that the labeling has to be chosen such that λ(x, y) = (1 − λ(y, z)) mod ∆ for any
{(x, y), (y, z)} ∈ E′ since waiting at y on the way from x to z is not allowed. As ∆ = 2,
this is true if and only if λ(x, y) ̸= λ(y, z) for all {(x, y), (y, z)} ∈ E′. Thus, given a feasible
coloring C : E → {0, 1} for G′, we can set λ(x, y) = C((x, y)) for all (x, y) ∈ E. Therefore,
the instance is feasible if and only if G′ is bipartite which can be decided in polynomial
time. ◀

In sharp contrast, we will show in the following section, that DiTGR is NP-complete for
general graphs even for the special case that ∆ = 2.

4 Hardness Results

In this section, we present several hardness results. First, we extend the previously known
hard cases by showing that TGR and DiTGR are hard for ∆ = 2. Second, we present
hardness results for all remaining cases of values for k and ∆ for DiTTR.

4.1 NP-completeness of DiTGR and TGR for ∆ = 2
▶ Theorem 11. DiTGR is NP-complete even for the special case where period ∆ = 2, the
edges E are bidirected, the constraints D are symmetric and the only odd cycle in G is a
triangle.

ATMOS 2025
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Figure 5 Construction with gadgets for the variables x, y, z and for the clause C1 = (x ∨ y ∨ z).
The dashed edges indicate the basic structure. The edges for the variable gadgets are solid, and
those for the clauses are dotted.

Proof. We reduce 3-SAT to DiTGR as follows: Given a 3-CNF formula Φ = {C1, . . . , Cm}
with a set of variables X, construct a graph G = (V, E) with

V = {T, F, 0, 1, 2, 3} ∪ {x, x, x′|x ∈ X} ∪ Φ
E = {(2, 1), (1, 2), (3, T ), (T, 3), (1, T ), (T, 1), (1, 0), (0, 1), (T, 0), (0, T ), (F, 0), (0, F )}

∪ {(0, x), (x, 0), (0, x), (x, 0)|x ∈ X}
∪ {(x, x′), (x′, x), (x, x′), (x′, x)|x ∈ X}
∪ {(l, C), (C, l)|l ∈ {x, x|x ∈ X} ∧ C ∈ Φ ∧ l ∈ C}

as shown in Figure 5 and set the upper bounds D as follows:

D2,F = DF,2 = D3,2 = D2,3 = D3,F = DF,3 = 3
DT,x′ = Dx′,T = DF,x′ = Dx′,F = 3 for all x ∈ X

Dx,x = Dx,x = 2 for all x ∈ X

DT,C = DC,T = 3 for all C ∈ Φ

All other values of D are set to ∞. For each pair of vertices with a finite distance bound,
this enforces that we have to realize a labeling without waiting on some shortest path. Let
without loss of generality λ(T, 1) = 0. Then the upper bounds D between the vertices 2,
3 and F enforce that λ(T, 1) = λ(1, T ) = λ(T, 0) = λ(0, T ) = λ(1, 0) = λ(0, 1) = 0 and
λ(3, T ) = λ(T, 3) = λ(2, 1) = λ(1, 2) = λ(F, 0) = λ(0, F ) = 1.

For each variable x ∈ X, there exist two possible shortest paths from 0 and therefore
from T respectively F to x′: one over x and one over x. Since the paths from T and the
paths from F start with different labels (0 respectively 1), they also have to continue with
different labels to avoid waiting. This means λ(0, x) = 1 − λ(0, x) = 1 − λ(x, x′) = λ(x, x′).
The same holds for the opposite direction: λ(x, 0) = 1 − λ(x, 0) = 1 − λ(x′, x) = λ(x′, x).
Then Dx,x = Dx,x = 2 enforces that the labels in both directions have to be the same, i.e.
λ(0, x) = λ(x, 0): Going without waiting from x to x over 0 requires λ(x, 0) = 1 − λ(0, x) =
λ(0, x). Going over x′ requires λ(x, x′) = 1 − λ(x′, x) = λ(x′, x) which results in the same
labeling.

For every clause C = {l1, l2, l3} there are three shortest paths from T to C: each one
leads over one of the literals l1, l2 and l3 in C. A fastest path can only have a duration of 3
as enforced by the upper bounds, if the edge (0, l) to the literal l has the label 1. Therefore
at least one of the edges (0, l1), (0, l2), (0, l3) has to have the label 1.

An assignment a : X 7→ {0, 1} corresponds to the labeling of the edges from 0 to the
variables, i.e. λ(0, x) = λ(x, 0) = a(x) for all x ∈ X. If Φ ∈ 3-SAT and a is a satisfying
assignment, then we extend λ to λ(l, C) = λ(C, l) = 1 − λ(0, l) for every clause C ∈ Φ which
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is satified by the literal l, which leads to no waiting on the path between T and C and
thus (G, D, 2) ∈ DiTGR. If (G, D, 2) ∈ DiTGR with the labeling λ, then the corresponding
assignment a must satisfy Φ ∈ 3-SAT. ◀

From the proof, we can therefore conclude:

▶ Corollary 12. TGR is NP-complete even for the special case that ∆ = 2.

4.2 NP-complete Cases with Linear Size Gadgets
In this and the following subsection we present hardness results for all other cases, i.e. for
all pairs of values (k, ∆) as shown in Figure 2. In all cases, the basic idea is to construct
gadgets to enforce that for some specific edge (v1, v2) the timestamps for both directions
have the same value, i.e. λ(v1, v2) = λ(v2, v1). However, every value of λ is possible, it is not
restricted by the gadget. In fact, every solution implies ∆ − 1 further symmetrical solutions
in which all values are shifted by some value x < ∆. By enforcing this for every single edge
of an instance I, we can reduce the undirected TTR to DiTTR. All gadgets considered in
this paper have a size polynomial in ∆ and k. We distinguish between cases where we found
linear-size gadgets and cases where we found quadratic-size gadgets.

▶ Lemma 13. If there is a polynomial size gadget which is a realizable instance of ∆-k-
DiTTR and which enforces λ(v1, v2) = λ(v2, v1) for some specific pair of vertices (v1, v2),
we can reduce ∆-k-TTR to ∆-k-DiTTR.

Proof. Let I = (G = (V, E), D, ∆) be an instance of TTR and (Ĝ, D̂, ∆) be a gadget
enforcing λ(a, b) = λ(b, a). First we create a directed graph G′ by replacing every undirected
edge of G by two antiparallel directed edges. Then we enforce λ(v, w) = λ(w, v) for every
edge e = {u, v} ∈ E by inserting a copy of the gadget into G′, identifying (u, v) with (a, b)
and (v, u) with (b, a), and setting D′ consistently with D and D̂. Since the resulting graph is
a tree (G and the gadget G′ are trees that are connected by one common edge) and any two
copies of the gadget share at most one common vertex the construction does not produce
any shortcuts.

Thus, every valid solution λ′ for DiTTR with respect to G′ and D′ immediately implies
a valid solution λ for TTR if we set λ({u, v}) = λ′((u, v)) = λ′((v, u)). Conversely, we can
construct a valid solution for DiTTR from a valid solution for TTR by setting λ′((u, v)) =
λ′((v, u)) = λ({u, v}). Since the gadget is feasible, there exists a solution where the timestamp
of the edges (a, b) and (b, a) is 0. We can then set the labels in the copy of the gadget for
each edge {u, v} to a solution that is shifted modulo ∆ by λ({u, v}). Since ∆ and k are
fixed, this construction is possible in polynomial time if the time to compute the gadget is a
function of only ∆ and k. ◀

▶ Lemma 14. We can construct a gadget G∆,0 that enforces λ(v1, v2) = λ(v2, v1) for some
pair of vertices (v1, v2) for odd period ∆ and minimum slack k = 0.

Proof. We construct this gadget as follows:

V = {1, . . . , 4 + ⌊∆
2 ⌋}

E = {(1, 3), (3, 1), (2, 3), (3, 2)}

∪ {(i, i + 1)|i ∈ {3, . . . , 3 + ⌊∆
2 ⌋}} ∪ {(i + 1, i)|i ∈ {3, . . . , 3 + ⌊∆

2 ⌋}}

D1,2 = D2,1 = 2

D1,4+⌊ ∆
2 ⌋ = D4+⌊ ∆

2 ⌋,1 = D2,4+⌊ ∆
2 ⌋ = D4+⌊ ∆

2 ⌋,2 = 2 + ⌊∆
2 ⌋
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Figure 6 Gadget for ∆ =
3 and k = 0 that enforces
λ(4, 5) = λ(5, 4). The dotted
lines indicate Dv,w < ∞.

Figure 7 Gadget for ∆ =
5 and k = 1 that enforces
λ(3, 4) = λ(4, 3). The dotted
lines indicate Dv,w < ∞.

Figure 8 Gadget for ∆ =
4 and k = 0 that enforces
λ(4, 5) = λ(5, 4). The dotted
lines indicate Dv,w < ∞.

All other values of D are set to ∞. As no waiting time is allowed, vertex 3 has a fixed
arrival/departure time (see proof for Observation 5). Let t(3) be the timestamps of its
incoming edges. For the sake of convenience, let us assume that t(3) = ∆ − 1 and that
the departure time is 0. This implies λ(3, 4) = 0 and therefore λ(3 + ⌊ ∆

2 ⌋, 4 + ⌊ ∆
2 ⌋) = ⌊ ∆

2 ⌋.
Symmetrically, the following is also true: λ(4, 3) = ∆−1 and λ(4+⌊ ∆

2 ⌋, 3+⌊ ∆
2 ⌋) = ∆−1−⌊ ∆

2 ⌋.
As ∆ is odd this means λ(4 + ⌊ ∆

2 ⌋, 3 + ⌊ ∆
2 ⌋) = λ(3 + ⌊ ∆

2 ⌋, 4 + ⌊ ∆
2 ⌋) = ⌊ ∆

2 ⌋. Therefore we
can enforce λ(v1, v2) = λ(v2, v1) for the vertices v1 = 3 + ⌊ ∆

2 ⌋ and v2 = 4 + ⌊ ∆
2 ⌋. ◀

For ∆ = 3 the gadget is shown in Figure 6. In this gadget, λ(5, 4) = λ(4 + ⌊ ∆
2 ⌋, 3 + ⌊ ∆

2 ⌋) =
λ(3 + ⌊ ∆

2 ⌋, 4 + ⌊ ∆
2 ⌋) = λ(4, 5) is enforced. This gadget has a size linear in ∆ and only six

values in D that are not infinity. Furthermore, D is symmetric.

▶ Lemma 15. There is a gadget G∆,k that even with the limitation Du,v ≥ d̂(u, v) + k

enforces λ(v1, v2) = λ(v2, v1) for some pair of vertices (v1, v2) as long as ∆ ≥ 4 · k + 1 ∧ k ≥ 1
and minimum slack k is odd. For any even values of k with ∆ ≥ 4 · k + 5 we can simply use
the gadget for k + 1.

Proof. The following gadget enforces λ(3 + ⌊ k
2 ⌋, 3 + ⌈ k

2 ⌉) = λ(3 + ⌈ k
2 ⌉, 3 + ⌊ k

2 ⌋):

V = {1, . . . , k + 5}
E = {(k + 3, k + 4), (k + 4, k + 3), (k + 3, k + 5), (k + 5, k + 3)}

∪ {(1, 3), (3, 1), (2, 3), (3, 2)}
∪ {(i, i + 1)|i ∈ {3, . . . , k + 2}}
∪ {(i + 1, i)|i ∈ {3, . . . , k + 2}}

D2,1 = Dk+4,k+5 = k + 2
D2,k+5 = Dk+4,1 = 2 · k + 2

All other values of D are set to ∞. Let w.l.o.g. λ(k + 4, k + 3) = 0. We show that there is
only one solution by looking at possible values of λ for the edges from and to leaves. We
observe d̂(k + 4, 1) = d̂(2, k + 5) = k + 2. As there is no waiting required but at most a
waiting time of k allowed on the path from vertex k + 4 to vertex 1, the following must hold:
λ(3, 1) ∈ {k + 1, . . . , 2 · k + 1} (recall ∆ ≥ 4 · k + 1). That means in turn that λ(2, 3) is in
the range {0, 1, . . . , 2 · k}. The corner case λ(2, 3) = 0 occurs when λ(3, 1) = k + 1 and with
maximum waiting time. Conversely, with λ(3, 1) = 2 · k + 1 and with no waiting time, λ(2, 3)
is at most 2 · k.
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In the same way we can conclude that λ(k + 3, k + 5) ∈ {k + 1, . . . , 4 · k, (4 · k + 1) mod ∆}.
Because ∆ ≥ 4 ·k +1 only the last item may be affected by the modulo operator and would be
assigned the value 0 in that case. Suppose now that λ(k + 3, k + 5) ∈ {k + 2, . . . , 4 · k, (4 · k +
1) mod ∆}, i.e. any other possible value than k+1. Then d(k+4, k+5) ≥ k+2−0+1 = k+3 >

Dk+4,k+5 = k + 2 and thus, the solution cannot be valid for these values of λ(k + 3, k + 5).
Therefore λ(k + 3, k + 5) = k + 1 which means that there is no waiting time at all on the
paths from k + 4 to 1 and from 2 to k + 5 but a waiting time of k on the paths from 2 to 1
and from k + 4 to k + 5. Thus, λ(3 + ⌊ k

2 ⌋, 3 + ⌈ k
2 ⌉) = ⌈ k

2 ⌉ = λ(3 + ⌈ k
2 ⌉, 3 + ⌊ k

2 ⌋). Therefore
we can enforce λ(v1, v2) = λ(v2, v1) for the vertices v1 = 3 + ⌈ k

2 ⌉ and v2 = 3 + ⌊ k
2 ⌋. ◀

Figure 7 shows the gadget for ∆ = 5 and k = 1. This gadget also has a size linear in k

and therefore also in ∆ and a constant amount of values in D that are not infinity. The
constraints D are not symmetric; however, setting them as such doesn’t affect the proof: For
all feasible solutions λ(3 + ⌊ k

2 ⌋, 3 + ⌈ k
2 ⌉) = λ(3 + ⌈ k

2 ⌉, 3 + ⌊ k
2 ⌋) holds and there is still at least

one feasible solution.

▶ Lemma 16. There is a gadget for ∆ = 4 and k = 0 that enforces λ(v1, v2) = λ(v2, v1) for
some pair of vertices (v1, v2).

The rough idea is that we need a break in symmetry. So we start with two copies of a known
gadget (see Lemma 14) that we merge at the edges for which we can enforce equality of
the labels. The resulting gadget would be infeasible, so we relax the constraints D slightly,
making them asymmetric, and thereby obtain a feasible gadget of constant size with the
claimed property.

Proof. The following gadget enforces λ(4, 5) = λ(5, 4). It is shown in Figure 8. On the path
from vertex 8 to vertex 1, waiting time is allowed, but only at vertex 4. Symmetrically, there
can be no waiting time on the path from 2 to 6 except at vertex 5.

V = {1, . . . , 7}
E = {(1, 3), (3, 1), (2, 3), (3, 2)} ∪ {(6, 7), (7, 6), (6, 8), (8, 6)}

∪ {(i, i + 1)|i ∈ {3, . . . , 5}} ∪ {(i + 1, i)|i ∈ {3, . . . , 5}}
D1,2 = D2,1 = D7,8 = D8,7 = 2
D5,7 = D4,1 = 2
D8,4 = D2,5 = 3
D8,1 = D2,7 = 6

All other values of D are set to ∞. Let w.l.o.g. λ(8, 6) = 1. As no waiting is allowed at
vertex 6, it has a fixed arrival/departure time of 2. This leads to λ(5, 6) = λ(7, 6) = 1,
λ(6, 5) = λ(6, 7) = λ(6, 8) = 2 and combined with D8,4 = 3 to λ(5, 4) = 3. On the path
from vertex 2 to vertex 7, waiting time is only allowed at vertex 5 and must not exceed
one time step. Thus, λ(4, 5) ∈ {3, 0} and λ(3, 4) ∈ {2, 3}. Furthermore the following
holds: λ(4, 3) ∈ {0, 1}. Because there can be no waiting time at vertex 3, it has a fixed
arrival/departure time and λ(3, 4) − λ(4, 3) ≡ 1 (mod ∆). Therefore only λ(4, 3) = 1 and
λ(3, 4) = 2 is feasible. Hence, λ(4, 5) = 3 = λ(5, 4). ◀

4.3 NP-Complete Cases with Quadratic Size Gadgets
For the remaining cases with odd period ∆, we have found a gadget of quadratic size
2 · (1 + ∆ · (k + 1)), the shape of which is reminiscent of a comb.
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Figure 9 The gadget for ∆ = 3, k = 1 which enforces λ(0, 0) = λ(0, 0), λ(3, 3) = λ(3, 3) and
λ(6, 6) = λ(6, 6).

▶ Lemma 17. There is a gadget Gi that even with the limitation Du,v ≥ d̂(u, v) + k enforces
λ(v1, v2) = λ(v2, v1) for some pair of vertices (v1, v2) as long as ∆ ≥ k + 2 ∧ k ≥ 1 and
period ∆ is odd.

The gadget for ∆ = 3, k = 1 is shown in Figure 9.

Proof. We show the result for k = ∆ − 2. This inherits to all smaller k since the limitation
for those is weaker and thus complements to Theorem 7 for odd ∆.

The following gadget enforces λ(0, 0) = λ(0, 0) as shown in Figure 10:

V = {0, . . . , (k + 1)∆, 0, . . . , (k + 1)∆}
E = {(i − 1, i), (i, i − 1) | 1 ≤ i ≤ (k + 1)∆}

∪ {(i, i), (i, i) | 0 ≤ i ≤ (k + 1)∆}

Di,j = d̂(i, j) + k for all 0 ≤ i, j ≤ (k + 1)∆

All other values of D are set to ∞. In the following, we will call the part that consists of
the vertices {0, . . . , (k + 1)∆} the main path. We call the direction from 0 to (k + 1)∆ the
forward direction. The reverse direction is called the backward direction.

We investigate the increase of the maximum waiting time in forward direction to (respec-
tively in backward direction from) i defined by

w+
λ (i) := max

j<i
{d(j, i) − d̂(j, i)} and analogously

w−
λ (i) := max

j<i
{d(i, j) − d̂(i, j)}.

We show that both w+
λ and w−

λ have to increase after every ∆ edges on the main path. This
means there is waiting time in one direction on the main path at all vertices i · ∆.

We have w+
λ (0) = w−

λ (0) = −∞ since there is no j < i. We can easily choose λ such that
w+

λ (1) = w−
λ (1) = 0. An equivalent inductive definition is

w+
λ (i + 1) = max{w+

λ (i) + (λ(i, i + 1) − λ(i − 1, i) − 1) mod ∆,

(λ(i, i + 1) − λ(i, i) − 1) mod ∆} and analogously
w−

λ (i + 1) = max{w−
λ (i) + (λ(i, i − 1) − λ(i + 1, i) − 1) mod ∆,

(λ(i, i) − λ(i + 1, i) − 1) mod ∆}.

Figure 10 The gadget (G = (V, E), D, ∆) with a feasible labeling for any odd value of ∆.
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Figure 11 Let w.l.o.g. λ(i, i − 1) = 0. For
the case xi > w+

λ (i) we get w−
λ (i+1) = w−

λ (i).
Figure 12 Let w.l.o.g. λ(i, i − 1) = 0.

For the case xi ≤ w+
λ (i) we get w−

λ (i + 1) =
max{w−

λ (i), xi + 1}.

For the case that there is no waiting at i on the main path in either direction, this is simplified
to

w+
λ (i + 1) = max{w+

λ (i), (λ(i, i + 1) − λ(i, i) − 1) mod ∆} and analogously
w−

λ (i + 1) = max{w−
λ (i), (λ(i, i) − λ(i + 1, i) − 1) mod ∆}.

We want to have each increase of the maximum waiting time on the main path as late
as possible in forward direction. We first derive conditions under which w−

λ (i) respectively
w+

λ (i) must increase. We then show that there is a solution in which we have the increase as
late as possible and in which the waiting time just does not exceed k. At every increase, we
have to wait in one direction on the main path. As the gadget is symmetrical, an earlier
increase is also not possible, as that would mean waiting on the main path at a later point
viewed from the other side. No increase, that means w−

λ (i + 1) = w−
λ (i), requires that there

is no waiting at vertex i on the main path, i.e. λ(i, i − 1) ≡ λ(i + 1, i) + 1 (mod ∆) (see
Figure 11 and Figure 12). However, there can be waiting at vertex i on the path from i + 1
to i as long as it does not exceed the previous maximum waiting time. Note that we can wait
at i on the way from i − 1 to i at most k − w+

λ (i) times, otherwise we would wait on the way
from some j to i more than k times. This means λ(i, i) − (λ(i − 1, i) + 1) ≤ k − w+

λ (i). Let
xi = (λ(i − 1, i) − λ(i, i − 1)) mod ∆. We will discuss two cases: xi > w+

λ (i) and xi ≤ w+
λ (i).

The first case allows us to set λ(i, i) = (λ(i + 1, i) + 1) mod ∆ = λ(i, i − 1) as in Figure 11
since (λ(i, i − 1) − (λ(i − 1, i) + 1)) mod ∆ = (−xi − 1) mod ∆ ≤ ∆ − 2 − w+

λ (i) = k − w+
λ (i).

This means there is no waiting at vertex i on the path from i+1 to i. We could also wastefully
set λ(i, i) to any value that agrees with both constraints (waiting from i − 1 and waiting
from i + 1). In any case, there is no increase of the maximum waiting time in backwards
direction, i.e. w−

λ (i + 1) = w−
λ (i).

In the other case, the smallest timestamp we can assign to (i, i) is (λ(i − 1, i) + 1) mod ∆
(see Figure 12) which leads to the smallest possible waiting time to i. This enforces
w−

λ (i + 1) > w−
λ (i) only if the waiting time exceeds the previous maximum waiting time, i.e.

(λ(i, i) − (λ(i + 1, i) + 1)) mod ∆ = (λ(i − 1, i) − λ(i + 1, i)) mod ∆ = xi + 1 mod ∆ > w−
λ (i).

Therefore, there is an increase with xi ≥ w−
λ (i).

This means that with λ(i, i − 1) ≡ λ(i + 1, i) + 1 (mod ∆) an increase of the waiting
time w−

λ (i + 1) > w−
λ (i) is enforced if and only if w+

λ (i) ≥ xi ≥ w−
λ (i) and analogously

w+
λ (i + 1) > w+

λ (i) is enforced if and only if w−
λ (i) ≥ xi ≥ w+

λ (i).
Starting as in Figure 10 with λ(0, 0) = λ(0, 0) and no waiting at vertex 0, we get

w−
λ (i) = w+

λ (i) = 0 for 1 ≤ i ≤ ∆ (since xi = 2i (mod ∆) assumes all values < ∆ once),
and only at vertex ∆, we get λ(∆ − 1, ∆) = λ(∆, ∆ − 1) which means x∆ = 0 enforcing an
increase of the waiting time to w−

λ (∆ + 1) = w+
λ (∆ + 1) = 1. If we would instead start with

λ(0, 0) ̸= λ(0, 0) then we would get xi = 0 already for an i < ∆ leading to an earlier increase.
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Figure 13 Let w.l.o.g. λ(i, i − 1) = 0. For the case xi = w−
λ (i) = w+

λ (i) we choose λ(i + 1, i) such
that w−

λ (i + 1) = w+
λ (i + 1) = w−

λ (i) + 1 and in this way the value of xi+1 is increased by 3 instead
of 2 relative to xi. This means that for the following ∆ − 1 vertices, the value xj will run through
all other values modulo ∆, before it becomes w−

λ (j) again.

Figure 14 If we do not wait at vertex ∆ in one direction on the main path, we get w+
λ (∆+h+1) =

w+
λ (∆ + h + 1) = 1 for h := ∆−1

2 leading to an increase w+
λ (∆ + h + 2) = w+

λ (∆ + h + 2) = 2 at
vertex ∆ + h + 1 already.

In fact, we can set λ(∆, ∆ + 1) = (λ(∆ − 1, ∆) + 1) mod ∆ and λ(∆ + 1, ∆) = (λ(∆, ∆ −
1) − 2) mod ∆ as in Figure 13. We then set λ(∆, ∆) = λ(∆, ∆) = (λ(∆, ∆ − 1) − 1) mod ∆
and in this way get w−

λ (i) = w+
λ (i) = 1 for ∆ < i ≤ 2∆ and only at vertex 2∆, we get

λ(2∆ − 1, 2∆) ≡ λ(2∆, 2∆ − 1) + 1 (mod ∆) enforcing an increase of the waiting time to
w+

λ (2∆ + 1) = w+
λ (2∆ + 1) = 2.

By induction on j, we can then set λ(j∆, j∆ + 1) = (λ(j∆ − 1, j∆) + 1) mod ∆ and
λ(j∆+1, j∆) = (λ(j∆, j∆−1)−2) mod ∆ as well as λ(j∆, j∆) = λ(j∆, j∆) = (λ(j∆, j∆−
1) − j) mod ∆. This way we get w−

λ (i) = w+
λ (i) = j for j∆ < i ≤ (j + 1)∆ and only at vertex

(j + 1)∆, we get x(j+1)∆ = j enforcing an increase of the waiting time to w−
λ (j∆ + 1) =

w+
λ (j∆ + 1) = j. The increase just reaches vertex (k + 1)∆ at the end of the gadget with the

allowed waiting time of k, where there is no further increase as it is the last vertex. This is
accomplished by waiting in one of the two directions on the main path at vertices i · ∆ for
1 ≤ i ≤ k.

However, if we do not wait in one of the two directions on the main path in one of these k

cases as in Figure 13 but instead continue as in Figure 12, the increase of w+
λ and w−

λ would
already be enforced the next time on a position ∆+1

2 later, as shown in Figure 14. In the
figure, this position would be ∆ + ∆+1

2 = ∆ + h + 1. Nevertheless, the increase would be
enforced after every ∆ steps from this point on, which would lead to a waiting time of k + 1
before the end of the gadget.

Figure 15 Waiting already at ∆ − 1 leads to w+
λ (∆) = 0 and w−

λ (∆) = 1 = x∆ for h := ∆−1
2

immediately leading to w−
λ (∆ + 1) = 1 and even w+

λ (∆ + 1) = 2.
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Figure 16 The gadget consists of ∆ subgadgets, where the second is upside down and overlaps
wit the first and the third at one edge and the others are connected by a path of length ∆ − 2. The
waiting time between two vertices within a subgadget is limited to k.

Conversely, if we wait earlier than necessary in either direction on the main path, this
would mean an increase later than possible in the symmetric case. Another way to see this is
shown in Figure 15. Waiting early forces an increase at the next multiple of ∆ anyway. This
means that λ(0, 0) = λ(0, 0) and symmetrically λ((k+1)∆, (k + 1)∆) = λ((k + 1)∆, (k+1)∆)
is enforced in the gadget. ◀

(a) Realization for the gadget from Lemma 17 for even ∆ starting with λ(0, 0) = λ(0, 0) + 1.

(b) Realization for the gadget from Lemma 17 for even ∆ starting with λ(0, 0) = λ(0, 0).

Figure 17 Two realizations for the gadget from Lemma 17 for even ∆. It turns out that starting
the labeling with λ(0, 0) = λ(0, 0) + 1 requires waiting one time at some vertex (here h) in both
directions (see Figure 17a) but that starting the labeling with λ(0, 0) = λ(0, 0) requires waiting even
two times at some vertex (here h) in both directions (see Figure 17b). Therefore we cannot use this
gadget to enforce λ(0, 0) = λ(0, 0) for even ∆.

Finally, we have constructed a similar gadget for the remaining cases with even ∆.

▶ Lemma 18. There is a gadget Gi that even with the limitation Du,v ≥ d̂(u, v) + k enforces
λ(e1, e2) = λ(e2, e1) for some pair of vertices (e1, e2) as long as ∆ ≥ k + 3 ∧ k ≥ 1 and
period ∆ is even.

The gadget is shown in Figure 16. We show that there cannot be any waiting time in the
first subgadget, since the remaining subgadgets and paths already enforce a total waiting
time of k by investigating again the increase in maximum waiting time on the main path to
and from some vertex i.

Proof. For even ∆ the same gadget as in Lemma 17 does not enforce λ(0, 0) = λ(0, 0). In
fact, starting with λ(0, 0) = λ(0, 0) requires more waiting than starting with λ(0, 0) ̸= λ(0, 0)
as can be seen in Figure 17. The comparison of both solutions favors a labeling that does
not meet our requirements. For this reason the following construction uses a more complex
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gadget as sketched in Figure 16. We show the result for k = ∆ − 3. This inherits to all
smaller k since the limitation for those is weaker and thus complements to Theorem 7 for
even ∆.

Let h := ∆/2 and ℓ = 3∆ − 3 + (2∆ − 3)(∆ − 3). The following gadget of length
d̂(0, ℓ) = ℓ + 2(∆ − 1) as depicted in Figure 16 enforces λ(0, 0) = λ(0, 0):

V = {0, . . . , ℓ, 0, . . . , ℓ}
E = {(i − 1, i), (i, i − 1) | 1 ≤ i ≤ ∆ − 1}

∪ {(i, i), (i, i) | 0 ≤ i ≤ ∆ − 1}
∪ {(i − 1, i), (i, i − 1) | ∆ ≤ i ≤ 2∆ − 2}
∪ {(i, i), (i, i) | ∆ − 1 ≤ i ≤ 2∆ − 2}
∪ {(i − 1, i), (i, i − 1) | 2∆ − 1 + j(2∆ − 3) ≤ i ≤ 3∆ − 3 + j(2∆ − 3),

0 ≤ j ≤ ∆ − 3}
∪ {(i, i), (i, i) | 2∆ − 2 + j(2∆ − 3) ≤ i ≤ 3∆ − 3 + j(2∆ − 3),

0 ≤ j ≤ ∆ − 3
∪ {(i − 1, i), (i, i − 1) | 3∆ − 2 + j(2∆ − 3) ≤ i ≤ 4∆ − 5 + j(2∆ − 3),

0 ≤ j < ∆ − 4}

Di,j = d̂(i, j) + k for all 0 ≤ i, j ≤ ∆ − 1

Di,j = d̂(i, j) + k for all ∆ − 1 ≤ i, j ≤ 2∆ − 2

Di,j = d̂(i, j) + k for all 2∆ − 2 + j(2∆ − 3) ≤ i, j ≤ 3∆ − 3 + p(2∆ − 3),

0 ≤ p < ∆ − 3

D0,ℓ = d̂(0, ℓ) + k

All other values of D are set to ∞. For simplicity we give the vertex set as
{0, . . . , ℓ, 0, . . . , ℓ} instead of explicitly removing the isolated vertices. We show that there is
a labeling for the gadget in which the waiting on the main path takes place exclusively in
both directions of the k connecting paths instead of on the subgadgets corresponding to the
canonical gadget in Lemma 17. Furthermore any λ has to wait at least two times in any
direction in the context (the path or the neighboring subgadgets) of each connecting path.
This leaves no waiting time for the first subgadget, which enforces λ(0, 0) = λ(0, 0).

First we examine the waiting times for each subgadget individually before we investigate
them in the context of the whole gadget. In the solution without waiting on the main paths
of the subgadgets the labeling is the same for each subgadget.

▷ Claim 19. Each subgadget consisting of a comb of 2∆ vertices enforces either λ(0, 0) =
λ(0, 0) = λ(∆ − 1, ∆ − 1) = λ(∆ − 1, ∆ − 1) or requires waiting on the main path at least
two times in the total of both directions.

Proof. We define the waiting time w+
λ and w−

λ as before in Lemma 17 and make similar
conclusions which differ in the following statements because ∆ − k is now 3 instead of 2: We
still have λ(i, i) − (λ(i − 1, i) + 1) ≤ k − w+

λ and now discuss the two cases xi > w+
λ (i) + 1

and xi ≤ w+
λ (i) + 1. Again, the first case allows us to set λ(i, i) = (λ(i + 1, i) + 1) mod ∆ =

λ(i, i − 1) (see Figure 11) since (λ(i, i − 1) − λ(i − 1, i) − 1) mod ∆ = (−xi − 1) mod ∆ ≤
∆ − 3 − w+

λ (i) = k − w+
λ (i) with no increase of the waiting time in backwards direction, i.e.

w−
λ (i + 1) = w−

λ (i). In the other case, the smallest timestamp time we can assign (i, i) is
again (λ(i − 1, i) + 1) mod ∆. This enforces w−

λ (i + 1) > w−
λ (i) only if the waiting time
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Figure 18 A subgadget with a feasible labeling without waiting on the main path. Observe that
λ is symmetric on the subgadget.

Figure 19 A labeling for the subgadget starting with x0 odd that would lead to w+
λ (∆−1) = k+1.

exceeds the previous maximum waiting time, which means (λ(i, i)−(λ(i+1, i)+1)) mod ∆ =
(λ(i − 1, i) − λ(i + 1, i)) mod ∆ = (xi + 1) mod ∆ > w−

λ (i) (see Figure 12). Therefore there
is an increase with xi ≥ w−

λ (i).
That means with λ(i, i − 1) ≡ λ(i + 1, i) + 1 (mod ∆) an increase of the waiting time

w−
λ (i + 1) > w−

λ (i) is enforced if and only if w+
λ (i) + 1 ≥ xi ≥ w−

λ (i) and analogously
w+

λ (i + 1) > w+
λ (i) is enforced if and only if w−

λ (i) + 1 ≥ xi ≥ w+
λ (i).

Starting with the equal labeling λ(0, 0) = λ(0, 0) and no waiting at vertex 0, we get
w−

λ (i) = w+
λ (i) = 0 for 1 ≤ i ≤ h := ∆/2 and only here, we get λ(h − 1, h) = λ(h, h − 1) = h

enforcing an increase of the waiting time to w−
λ (h + 1) = w+

λ (h + 1) = 1. But here again
we have xh+1 = λ(h, h + 1) − λ(h + 1, h) = w+

λ (h + 1) enforcing an increase of the waiting
time to w−

λ (h + 2) = w+
λ (h + 2) = 2 + 1 = 3. By induction on j, we have xh+j = w+

λ (h + j)
enforcing an increase of the waiting time to w+

λ (h + j + 1) = w+
λ (h + j + 1) = 2j + 1.

This just reaches ∆ − 1 at the end of the subgadget as shown in Figure 18 with the
allowed waiting time of k = 2h − 3. However, waiting on the main path in one of the two
directions as in Figure 13 would not help since xh+j = w+

λ (h + j) + 1 still enforces an increase
of the waiting time.

The same holds if we start differently as can be seen in the following consideration: If
we start with values where λ(0, 0) − λ(0, 0) is even then we would get the latest increase
with λ(0, 0) = λ(0, 0), since xi = 2i (mod ∆) assumes all even values < ∆ once. Values
λ(0, 0) ̸= λ(0, 0) would mean a larger difference x0 and would lead to xi = 0 already for an
i < h leading to an earlier increase. Like before, waiting on the main path in one direction
does not change this.

In case λ(0, 0) − λ(0, 0) is odd we get the latest increase with x0 = 1, since xi = 2i + 1
(mod ∆) assumes all odd values < ∆ once. A larger difference x0 would cause the increase to
happen at latest at vertex h, which requires an additional increase at vertex h + 1 and this in
turn an increase at vertex h+2 and so on. This is shown in Figure 19. The increase progresses
like this until we reach vertex ∆ − 2 with x∆−2 = k and w−

λ (∆ − 2) = w+
λ (∆ − 2) = k − 1,

which also enforces an increase. We get a maximum waiting time of k + 1 at vertex ∆ − 1,
therefore not producing a feasible labeling. Waiting once in one of the two directions in this
case would mean that λ(∆ − 1, ∆ − 1) − λ(∆ − 1, ∆ − 1) is even. Therefore, we can apply
symmetry to show that waiting once still does not help. ◁
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We can construct a solution by choosing λ such that there is no waiting time in any of the
subgadgets and for all subgadgets the following holds: λ(0, 0) = λ(0, 0) = λ(∆ − 1, ∆ − 1) =
λ(∆ − 1, ∆ − 1). As the paths consist of ∆ − 1 vertices and consequently ∆ − 2 edges we
have to wait one time in each direction on the path for this to be possible. As the gadget
contains k paths this does not exceed the at most allowed waiting time.

If we do not wait two times on any path we prevent one of the neighboring subgadgets
from starting with equal values in both directions on the first or last edge. Because of
Claim 19 we would have to wait at least two times in the respective subgadget. Therefore,
waiting at least two times is required in the context of each of the k paths and thus, no waiting
is possible in the first subgadget. Hence, for the first subgadget, which is not contained in
the context of any path, λ(0, 0) = λ(0, 0) holds. ◀

▶ Theorem 20. For every ∆ and k with ∆ > k + 2 or ∆ = k + 2 with ∆ odd, ∆-k-DiTTR
is NP-complete. Therefore the problem DiTTR is NP-complete.

Proof. The construction in Proposition 6 of [16] to show that TTR is NP-complete holds
for any ∆ ≥ 3 and all values of k with k + 2 ≤ ∆, because Du,v ∈ {d̂(u, v) + ∆ − 2, ∞}. Note
that the reduction from vertex coloring implies strong NP-completeness. This covers all cases
as claimed in Figure 2. We can combine Lemma 13 and the lemmas referenced in Figure 2
to show that for every ∆ and k with ∆ > k + 2 or ∆ = k + 2 with ∆ odd, ∆-k-DiTTR is
NP-complete. That also means DiTTR is NP-complete since already the special versions
∆-k-DiTTR, where k, which is an implicit parameter of D in the input, and ∆ are two
constants in one of the cases (d)-(h) in Figure 2, are NP-complete. This also holds if ∆ is
part of the input, as TTR is strongly NP-complete. ◀

Remark: The proof of Theorem 20 also implies that for even ∆ > 2 and ∆ = k + 2
the undirected problem version is NP-complete, while every instance of the corresponding
directed problem version is realizable, as indicated in Figure 2.

5 Conclusion and Further Research

In this paper, we have initiated the study of the directed version of the graph realization
problem for periodic temporal graphs subject to pairwise upper bounds on the fastest paths.
We obtained hardness results for several special cases and identified some easily solvable ones.
For trees, we provided a full characterization for all periods ∆ and all values of the minimum
slack parameter k, giving a lower bound on the maximum allowed waiting time on each path.

For future work, many problem variants are worth further consideration. An interesting
extension would be to also consider upper bounds on the slack. Instead of uniform bounds
on the slack, one could also consider multiplicative bounds to reflect that more waiting is
acceptable on longer paths. Or one could turn the problem into an optimization problem
where one wants to minimize some measure of the deviation from the fastest paths or the
desired quality of service. In some practical applications, it is useful to further restrict the
labeling with additional constraints. For example, when planning train or tram timetables
for single-track lines, it is necessary to ensure that a corresponding track section is only
served in one direction at a time. Thus, an interesting type of constraint could be to require
a solution with λ(a, b) ̸= λ(b, a) for all (or only certain specified) pairs of vertices a, b ∈ V .
According to the proof of Theorem 11, this is NP-complete for ∆ = 2 for general graphs,
which motivates the problem for trees but the constructions in this paper using Theorem 20
do not work with this property.



J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:21

Further theoretical investigations may consider more general graph classes than just trees.
Finally, it would be interesting to investigate the practical solvability of instances derived
from real network topologies.
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