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Abstract
Train timetables can be represented as event graphs, where events correspond to a train passing
through a location at a certain point in time. A visual representation of an event graph is important
for many applications such as dispatching and (the development of) dispatching software. A common
way to represent event graphs are time-space diagrams. In such a diagram, key locations are visualized
on the y-axis and time on the x-axis of a coordinate system. A train’s movement is then represented
as a connected sequence of line segments in this coordinate system. This visualization allows for
an easy detection of infrastructure conflicts and safety distance violations. However, time-space
diagrams are usually used only to depict event graphs that are restricted to corridors, where an
obvious ordering of the locations exists.

In this paper, we consider the visualization of general event graphs in time-space diagrams, where
the challenge is to find an ordering of the locations that produces readable drawings. We argue that
this means to minimize the number of turns, i.e., the total number of changes in y-direction. To this
end, we establish a connection between this problem and Maximum Betweenness. Then we develop
a preprocessing strategy to reduce the instance size. We also propose a parameterized algorithm and
integer linear programming formulations. We experimentally evaluate the preprocessing strategy
and the integer programming formulations on a real-world dataset. Our best algorithm solves every
instance in the dataset in less than a second. This suggests that turn-optimal time-space diagrams
can be computed in real time.
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1 Introduction

Train schedules are subject to constant changes due to interferences such as temporary
infrastructure malfunctions or congestion resulting from high traffic volume. As a consequence,
train schedules must be adjusted in real-time to remedy the disturbances via rerouting and
other means. In recent years, the computer-assisted execution of this process has gained track.
DB InfraGO AG, a subsidiary of Deutsche Bahn AG, is developing approaches based on
so-called event graphs [8] as an underlying structure that encodes the necessary information
to (re-)compute a train schedule. An event graph models trains running on specific routes
on an infrastructure via events.

▶ Definition 1 (Event Graph). An event graph E is a directed graph. Let V (E) denote the
vertex set of E. Each vertex v of E, called event, is associated with a location ℓ(v), a positive
integer train(v), and a point of time t(v) when the event is scheduled. For two different
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4:2 Visualization of Event Graphs for Train Schedules
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Figure 1 (a) Two different time-space diagrams of the same event graph E with locations {1, . . . , 6}.
(b) The location graph of E ; the colored paths are the train lines, the gray numbers are the weights.

events u and w, if t(u) = t(w), then train(u) ̸= train(w) and ℓ(u) ̸= ℓ(w). There is an arc
(u, w) in E if (i) train(u) = train(w), (ii) t(u) < t(w), and (iii) there is no event v with
train(v) = train(u) and t(u) < t(v) < t(w).

For a train z, we call the sequence v1, . . . , vj of all events with train(v1) = · · · = train(vj) = z

ordered by t(·) the train line of train z.
For the further automation and for real-time human intervention with timetables, it is

important that large event graphs can be easily understood by humans.
If the event graph corresponds to trains running on a corridor, i.e., trains running from

point a to point b in a linear piece of infrastructure, time-space diagrams are a common
way to represent the event graph. A time-space diagram can be described as a straight-line
drawing of the event graph with the additional constraint that all vertices that belong to
the same location lie on the same horizontal line and that the x-coordinate of each vertex is
given by its point in time.

In this paper, we investigate the possibility to use time-space diagrams for visualizations
for general event graphs, i.e., event graphs that are generally not based on a linear piece of
infrastructure. We are not aware of any previous work on the visualization of general event
graphs. Formally, a time-space diagram can be defined as follows.

▶ Definition 2 (Time-Space Diagram). Let E be an event graph, let Y = |ℓ(V (E))|, and
let y : ℓ(V (E)) → {1, 2, . . . , Y } be a bijection. The time-space diagram induced by y is the
straight-line drawing of E in the plane where event v is mapped to the point (t(v), y(ℓ(v))).

In a time-space diagram (see Figure 1a for two examples), we call y(p) the level of
location p. We also refer to a time-space diagram of an event graph as a drawing of the event
graph. If an event graph is based on a corridor, the corridor induces a natural order of the
locations: consecutive locations are assigned consecutive levels. In this way, train lines in
the time-space diagram correspond to polylines that go only up- or downwards. However,
on general event graphs where the trains do not run on a linear piece of infrastructure, this
intuitive assignment is far from trivial, and it is not immediately clear which criteria yield a
comprehensible drawing. Figure 2 shows two possible time-space diagrams for the same event
graph, one that minimizes the number of crossings of line segments (a classical objective in
graph drawing) and one that minimizes the number of turns which we define as follows.
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Figure 2 Two time-space diagrams of the same event graph. Left: A crossing-minimal drawing
with zero crossings (and 71 turns). Right: A turn-minimal drawing with one turn (and five crossings).

Given a drawing Γ of an event graph E and three consecutive events of a train line in E
with pairwise distinct locations p, q, r, we say that there is a turn in Γ if the level of q is
smaller/larger than the levels of p and r.1

Figure 2 and further experiments suggest that minimizing the number of turns leads to
time-space diagrams that are significantly better to interpret than drawings that minimize
the number of crossings. Therefore, we consider the following problem in this paper.

▶ Problem 3 (Turn Minimization). Given an event graph E, find a time-space diagram
of E that minimizes the total number of turns along the train lines defined by E.

A connection to Maximum Betweenness. Note that the number of turns in a time-space
diagram is determined solely by the function y which represents an ordering of the locations.
Therefore, Turn Minimization is closely related to the following problem.

▶ Problem 4 (Maximum Betweenness [16]). Let S be a finite set, and let R ⊆ S × S × S

be a finite set of ordered triplets called restrictions. A total order ≺ satisfies a restriction
(a, b, c) ∈ R if either a ≺ b ≺ c or c ≺ b ≺ a holds. Find a total order that maximizes the
number of satisfied restrictions.

In fact, there is a straightforward translation that transforms optimal solutions of Turn
Minimization to optimal solutions of Maximum Betweenness and vice versa. However,
note that the objective functions of these problems differ. In Turn Minimization we
minimize the number of turns, which corresponds to minimizing the number of unsatisfied
restrictions in Maximum Betweenness.

Maximum Betweenness and other slightly modified variants have been studied ex-
tensively [5–7,17–19] mainly motivated by applications in biology. In particular, Opatrny
showed that Maximum Betweenness is NP-hard [16]. Further, the problem admits
1/2-approximation algorithms [4,13], but for any ε > 0 it is NP-hard to compute a (1/2 + ε)-
approximation [1].

Several exact algorithms have been proposed. There is an intuitive integer linear program
formulation that uses linear orderings. This formulation has been used in various variants
and algorithms as a baseline before [5, 6]. We state this formulation in Section 5 since we
also use this formulation as a starting point. Note that this formulation requires O(|S|3)

1 Note that this definition does not consider the case where consecutive events have the same location. It
is easy to see, however, that we can normalize any event graph such that consecutive events always
have different locations without changing the number of turns in an optimal solution.
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4:4 Visualization of Event Graphs for Train Schedules

many constraints due the transitivity constraints for the linear ordering and the fact that
there can be O(|S|3) many restrictions. This may result in long computation times. Since
applications in biology often deal with a large number of restrictions, improvements of
this formulation have been made via cutting-plane approaches that target the transitivity
and the restriction constraints using the trivial lifting technique2 [5, 6]. To overcome the
issue of a cubic number of transitivity constraints, a mixed-integer linear program has been
proposed [19] that circumvents the large number of constraints entirely by modelling a linear
ordering with continuous variables that are required to be distinct. As a consequence, this
formulation runs faster than the intuitive formulation. However, this program requires a
user-specified parameter that influences the runtime significantly and is not obvious to choose.

Note that due to the relationship between Turn Minimization and Maximum Between-
ness, exact algorithmic approaches for one of the problems can be directly transferred to the
other, while approximation guarantees cannot. However, most of the algorithmic approaches
for Maximum Betweenness are optimized for instances where the ratio between |R| and |S|
is large, while this ratio is only moderate in our setting. As a result, in our setting, the
transitivity constraints become the bottleneck as opposed to the constraints that model the
restrictions in R. Another notable difference is that in Turn Minimization we have access
to additional information on the relations between restrictions (the train lines). We strive
to leverage these differences to develop new approaches. In particular, we consider the case
that instances admit drawings with a small number of turns (as otherwise a drawing would
not be comprehensible). Further, we consider the case that the underlying infrastructure of
the event graph is sparse (as this is common in train infrastructure).

Contribution. First, we consider Turn Minimization from a (parameterized) complexity
theoretic perspective; see Section 3. In particular, we show that it is NP-hard to compute
an α-approximation for any constant α ≥ 1 and that the problem is para-NP-hard when
parameterized by the number of turns. The problem is also para-NP-hard when parameterized
by the vertex cover number of the location graph, a graph that represents the infrastructure.
Second, we propose a preprocessing strategy that reduces a given event graph E into a smaller
event graph E ′ that admits drawings with the same number of turns; see Section 4. Third,
we refine the intuitive integer linear program in two different ways; see Section 5. The first
refinement is a simple cutting-plane approach that iteratively adds transitivity constraints
until a valid (optimal) solution is found. The second refinement uses a tree decomposition to
find a light-weight formulation of the problem. We conclude with an experimental analysis
and future work in Sections 6 and 7. While the preprocessing strategy cannot be easily
translated to the Maximum Betweenness problem, our remaining results carry over.

2 Preliminaries

Let S be a finite set, and k be a positive integer. Let [S]k denote the set {X : X ⊆ S, |X| = k}
of k-element subsets of S. We call (A, B) with A ∪ B = V (G) a separation of a graph G

if, on every a–b path with a ∈ A and b ∈ B, there is at least one vertex in A ∩ B. We call
A ∩ B a separator. If a separator is a single vertex, we call this vertex a cut vertex. If a
separator consists of two vertices, then we call the two vertices a separating pair. We say
that a connected graph is biconnected if it does not contain a cut vertex. Similarly, we say

2 Here: complete linear descriptions of smaller instances (S, R) are used to generate valid inequalities for
larger instances (S′, R′) where S ⊆ S′, R ⊆ R′.
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that a biconnected graph is triconnected if it does not contain a separating pair. A partition
of (A, B) of the vertex set of a graph is a cut. The cut set of (A, B) is the set of edges with
one vertex in A and one vertex in B. The size of a cut is the size of the cut set.

Problems that can be solved in time f(k) · nc, where f is a computable function, c > 0 is
a constant, n the input size, and k is a parameter, are known as fixed-parameter tractable
(parameterized by the parameter k). The complexity class FPT contains precisely all such
fixed parameter tractable problems with the respective parameter k. If a problem remains
NP-hard even on instances, where the parameter k is bounded, we say that the problem
is para-NP-hard when parameterized by k. The study of FPT algorithms is particularly
motivated by scenarios where certain instances have properties, described by the parameter,
that are small or constant, making FPT algorithms efficient for these instances.

We define two auxiliary graphs that capture the connections between locations in E ,
which we use in our algorithms.

▶ Definition 5 (Location Graph). Let E be an event graph. The location graph L of E is an
undirected weighted graph whose vertices are the locations of E. For two locations p ̸= q, the
weight w({p, q}) of the edge {p, q} in L corresponds to the number of arcs (u, v) or (v, u) in
the event graph E such that ℓ(u) = p and ℓ(v) = q and train(u) = train(v). If w({p, q}) = 0,
then p and q are not adjacent in L.

See Figure 1b for an example of a location graph. Note that the train line of a train z in
the event graph corresponds to a walk (a not necessarily simple path) in the location graph.
Slightly abusing notation, we also call this walk in the location graph a train line of z.

▶ Definition 6 (Augmented Location Graph). Let E be an event graph. The augmented
location graph L′ of E is the supergraph of the location graph L of E that additionally
contains, for each triplet (v, v′, v′′) of locations that are consecutive along a train line in E,
the edge {ℓ(v), ℓ(v′′)}.

The augmented graph L′ has the crucial property that every three such consecutive events,
whose locations can potentially cause a turn, induce a triangle in L′.

Tree decompositions. Intuitively, a tree decomposition is a decomposition of a graph G

into a tree T which gives structural information about the separability of G. The treewidth
of a graph G is a measure that captures how similar a graph G is to a tree. For instance,
every tree has treewidth 1, the graph of a (k × k)-grid has treewidth k, and the treewidth of
the complete graph Kn is n − 1. More formally, a tree decomposition T = (T, {Xt}t∈V (T ))
of G consists of a tree T and, for each node t of T , of a subset Xt of V (G) called bag such
that (see Figure 3 for an example):
(T1) the union of all bags is V (G),
(T2) for every edge {u, v} of G, the tree T contains a node t such that {u, v} ⊆ Xt, and
(T3) for every vertex v of G, the nodes whose bags contain v induce a connected subgraph

of T .
The width of a tree decomposition is defined as max{|Xt| : t ∈ V (T )} − 1; for example, the
tree decomposition in Figure 3 has width 2. The treewidth of a graph G, tw(G), is the
smallest value such that G admits a tree decomposition of this width. Any tree decomposition
(T, {Xt}t∈V (T )) has the following properties.
(P1) For every edge {a, b} of T , the graph T − {a, b} has two connected components Ta

and Tb, where Ta contains a and Tb contains b. They induce a separation (A, B) =
(
⋃

t∈V (Ta) Xt,
⋃

t∈V (Tb) Xt) of G with separator Xa ∩Xb. In particular, A∩B = Xa ∩Xb,
and G does not contain any edge between a vertex in A \ Xa and a vertex in B \ Xb.

(P2) For every clique K of G, the tree T contains a node t such that V (K) ⊆ Xt.

ATMOS 2025
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Figure 3 Example of a tree decomposition (right) of the graph on the left. Each bag of the tree
decomposition is depicted as the graph it induces.

3 Problem Complexity

We study the approximability of Turn Minimization and consider the tractability of Turn
Minimization with respect to parameters that we expect to be small in our instances. We
obtain negative results for the approximability and for most of the considered parameters,
but we propose an FPT algorithm parameterized by the treewidth of the augmented location
graph.

While NP-hardness of Turn Minimization is easy to see due to the one-to-one cor-
respondence (of problem instances and optimal solutions) to Maximum Betweenness,
approximability results for Maximum Betweenness do not carry over because of the differ-
ent objectives. In fact, by close inspection of the natural transformation between instances
of the two problems (that we give in the proof of Theorem 7), we are able to deduce that
there is neither a multiplicative nor an additive constant factor approximation algorithm
for Turn Minimization, unless P = NP. Furthermore, we can derive from the reduction
that, unless P = NP, there is no efficient algorithm even for instances where the number of
turns is bounded. By a reduction from the decision version of MaxCut, we can also show
that the problem is NP-hard when parametrized by the vertex cover number. MaxCut asks
whether there is a cut of size at least k in a given graph.

▶ Theorem 7 (⋆). Turn Minimization
(i) is para-NP-hard with respect to the natural parameter, the number of turns,
(ii) is para-NP-hard with respect to the vertex cover number of the location graph,
(iii) does not admit polynomial-time multiplicative or additive approximation algorithms

unless P = NP.

Note that (ii) also implies that Turn Minimization is para-NP-hard if parameterized
by the treewidth of the location graph L since the treewidth of a graph is bounded by the
vertex cover number of the graph. Therefore, there is no fixed-parameter tractable algorithm
with respect to the treewidth of L, unless P = NP. However, we obtain the following result.

▶ Theorem 8 (⋆). Let E be an event graph, and let L′ be its augmented location graph.
Computing a turn-optimal time-space diagram of E is fixed-parameter tractable with respect
to the treewidth of L′.

Proof sketch. For every triplet of consecutive events, the corresponding locations form a
triangle in L′. Hence, due to Property (P2), in any tree decomposition of L′, there is a bag
that contains the three locations. Thus, every potential turn occurs in at least one bag, and
it suffices to run a standard dynamic program over a (nice) tree decomposition of L′. ◀

Note that this result might not be practical since the treewidth of the augmented location
graph might be considerably larger than the treewidth of the location graph.
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4 An Exact Reduction Rule

In this section we describe how to reduce the event graph based on the identification and
contraction of simple substructures in the location graph. Consider the location graph L
of an event graph E . We call a vertex p of L a terminal if a train starts or ends at p. We
say that a path in L is a chain if each of its vertices has degree exactly 2 in L and the path
cannot be extended without violating this property. If a chain contains no terminals, and
no train line restricted to this chain induces a cycle, then there is always a turn-minimal
drawing of E that contains no turn along the chain. This is due to the fact that any turn on
the chain can be moved to a non-chain vertex adjacent to one of the chain endpoints. We
now generalize this intuition, assuming that L is not triconnected.

Let {s, t} be a separating pair of L, let C be a connected component of L \ {s, t}, and let
C ′ = L[V (C) ∪ {s, t}]. We call C a transit component if (i) C does not contain any terminal,
and (ii) the trains passing through C ′ via s also pass through t (before possibly passing
through s again). A transit component C is contractible if, for each path associated to a
train line in C, we can assign a direction such that the resulting directed graph is acyclic.

▶ Reduction Rule 1 (Transit Component Contraction). Let E be an event graph, and let L
be the location graph of E . If L is not triconnected, then let {s, t} be a separating pair of L
and let C be a contractible transit component of L \ {s, t}. For each train z that traverses C,
replace in E the part of the train line of z between the events that correspond to s and t by
the arc (directed according to time) that connects the two events.

▶ Theorem 9. Let E be an event graph. If E ′ is an event graph that results from applying
Reduction Rule 1 to E, then a turn-optimal drawing of E and a turn-optimal drawing of E ′

have the same number of turns.

Proof. Let k be the number of turns in a turn-optimal drawing Γ of an event graph E
and let k′ be the number of turns in a turn-optimal drawing Γ′ of an event graph E after
Reduction Rule 1 was applied on the contractible transit component C. Further, for the
sake of simplicity, assume that any train traversing C traverses C only once. If a train z

traverses C multiple times, the same arguments apply for each connected component of
the train line of z going through C. Note that this can indeed happen (if the event graph
represents a schedule that contains a train that moves through C periodically).

Without increasing the number of turns, we now transform Γ′ into a drawing of E that
contains C, as follows. Let {s, t} be the pair that separates C from L \ C. Let y′(s) and
y′(t) be the levels of s and t in Γ′, respectively. Without loss of generality, assume that
y′(s) < y′(t). Since C is contractible, C admits an acyclic (topological) ordering of the
locations in C such that the train line of every train traversing C is directed from s to t.
Let ≺C be such an ordering and let z be a train traversing C, where z′ = ⟨v1, . . . , vj⟩ is the
component of the train line of z that traverses C such that ℓ(v1) = s and ℓ(vj) = t. Since
≺C is a valid acyclic topological ordering, it holds that ℓ(vi) ≺C ℓ(vi+1) for each 1 ≤ i < j.
Thus, by extending y′ so that each vertex p in C is assigned a level y′(p) ∈]y′(s), y′(t)[, with
p, q ∈ V (C) and y′(p) < y′(q) if and only if p ≺C q, no additional turns are introduced in
the transformed drawing. As a result, we obtain a drawing of E that contains C and has the
same number of turns as Γ′. Hence k ≤ k′.

Conversely, we transform Γ into a drawing with at most k turns where the component C is
contracted. Let {s, t} be the pair that separates C from L\C. Let y(s) and y(t) be the levels
of s and t in Γ. Without loss of generality, y(s) < y(t). First, assume that for each p ∈ V (C)
it holds that y(s) < y(p) < y(t). Then, contracting C into a single edge transforms Γ into

ATMOS 2025
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Figure 4 The block-cut tree (right) of the graph (left). The cut vertices are colored and are
represented as circles in the block-cut tree. The maximal biconnected components are represented
as rectangles.

a drawing of the reduced instance with at most k turns. Now, let L ⊆ V (C) be the set of
vertices below s, and let U ⊆ V (C) be the set of vertices above t. We describe only how to
handle U since L can be handled analogously. Let ∆ be the number of train lines with at
least one vertex in U . We reorder the levels of the vertices in U according to a topological
ordering of C restricted to U and move all vertices in U such that their levels are between
y(t) and Y = max{y(p′) : y(p′) < y(t), p′ ∈ V (C)}. Each train line with at least one vertex
in U corresponds to at least one turn in U , namely a turn at the vertex of a train line with
the largest level. Therefore, moving and reordering U removes at least ∆ turns. Also, the
movement and reordering of U results in at most ∆ turns more at t since the only vertices
that were moved are vertices in U . After moving and reordering U and L, we are in the first
case and can hence contract C. Summing up, we can transform a turn-optimal drawing Γ
of an event graph E into a drawing with a contracted component C without changing the
number of turns, implying that k′ ≤ k.

We conclude that Reduction Rule 1 is sound. ◀

Note that we can apply Reduction Rule 1 exhaustively in cubic time (in the number of
vertices and edges of L and E): we iterate over all (up to O(|V (L)|2) many) separating pairs
and contract each connected component with respect to the current pair, if possible. Below
we show that, using two data structures, we can speed up the application of Reduction Rule 1
considerably.

Block-cut trees. A block-cut tree represents a decomposition of a graph into maximal
biconnected components (called blocks) and cut vertices. Given a graph G, let C be the set
of cut vertices of G, and let B be the set of blocks of G. Note that two blocks share at most
one vertex with each other, namely a cut vertex. The block-cut tree Tbc of G (see Figure 4
for an example) has a node for each element of B ∪ C and an edge between b ∈ B and c ∈ C
if and only if c is contained in the component represented by b. Note that the leaves of a
block-cut tree are B-nodes. For example, the block-cut tree of a biconnected graph is a single
node. The block-cut tree of an n-vertex path is itself a path, with 2n − 3 nodes.

SPQR-trees. If a graph G is biconnected, an SPQR-tree represents the decomposition of
G into its triconnected components via separating pairs, where S (series), P (parallel), Q
(a single edge), and R (remaining or rigid) stand for the different node types of the tree
that represent how the triconnected components compose G. An SPQR-tree represents all
planar embeddings of a graph. Therefore, SPQR-trees are widely used in graph drawing
and beyond [15]. SPQR-trees are defined in several ways in the literature. Here, we recall
the definition of Gutwenger and Mutzel [10], which is based on an earlier definition of Di
Battista and Tamassia [2].
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Figure 5 The SPQR-tree (right) of the graph on the left, with respect to the edge e. The nodes
of the tree are the rectangles. Each rectangle contains the skeleton of the corresponding node. The
dashed edge in the representation of a node µ is the virtual edge of the parent of µ. The thick purple
edges in the skeletons represent child components. The solid black edges are the real edges of the
graph. Q-nodes are omitted for simplicity. In each rectangle, the two green vertices are the poles
of the corresponding skeleton. The grey P-node is the unique child of the root (a Q-node) which
represents the reference edge e.

Let G be a multi-graph. A split pair is either a separating pair or a pair of adjacent
vertices. A split component of a split pair {u, v} is either an edge {u, v} or a maximal
subgraph C (containing {u, v}) of G such that {u, v} is not a split pair of C. Let {s, t} be a
split pair of G. A maximal split pair {u, v} of G with respect to {s, t} is a pair such that,
for any other split pair {u′, v′}, the vertices u, v, s, and t are in the same split component.
Let e = {s, t} be an edge of G called reference edge. The SPQR-tree Tspqr of G with respect
to e is a rooted tree whose nodes are of four types: S, P, Q, and R. Each node µ of Tspqr has
an associated biconnected multi-graph called the skeleton of µ. Every vertex in a skeleton
corresponds to a vertex in G and every edge {u, v} in a skeleton corresponds to a child
of µ that represents a split component of G that is separated by {u, v}. The tree Tspqr is
recursively defined as follows (see Figure 5 for an example):
Trivial Case: If G consists of exactly two parallel edges between s and t, then Tspqr consists

of a single Q-node whose skeleton is G itself.
Parallel Case: If the split pair {s, t} has at least three split components G1, . . . , Gk, the root

of Tspqr is a P-node µ whose skeleton consists of k parallel edges e1, . . . , ek between s

and t.
Series Case: If the split pair {s, t} has exactly two split components, one of them is e, and

the other is denoted with G′. If G′ has cut vertices c1, . . . , ck−1 (k ≥ 2) that partition
G into its blocks G1, . . . , Gk, in this order from s to t, the root of Tspqr is an S-node µ

whose skeleton is the cycle e0, e1, . . . , ek, where e0 = e, c0 = s, ck = t, and ei = (ci−1, ci)
for i = 1, . . . , k.

Rigid Case: If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the maximal split
pairs of G with respect to {s, t} and let Gi (i = 1, . . . , k) be the union of all the split
components of {si, ti} but the one containing e. The root of Tspqr is an R-node whose
skeleton is obtained from G by replacing each subgraph Gi with the edge ei = {si, ti}.

Except for the trivial case, every node µ of Tspqr has children µ1, . . . , µk such that µi is
the root of the SPQR-tree of Gi ∪ei with respect to ei. The reference edge e is represented by
a Q-node which is the root of Tspqr. Each edge ei in the skeleton of µ is associated with the
child µi of µ. This edge is also present in µi and is called virtual edge in µi. The endpoints
of edge ei are called poles of the node µi. The pertinent graph Gµ of µ is the subgraph of G

that corresponds to the real edges (Q-nodes) in the subtree rooted at µ.
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▶ Theorem 10. If L is the location graph of an event graph E, then Reduction Rule 1 can be
applied exhaustively in time linear in the number of vertices and edges of L and E.

Proof. Let L be the connected location graph of an event graph E . If the location graph is
not connected we can apply the algorithm on every connected component of L. We consider
the case where L is not biconnected as this case also handles the biconnected subgraphs
of L and can therefore easily be adapted for the case where L is biconnected. We start by
decomposing L into a block-cut tree Tbc with vertex set B ∪ C. For every block b in B we do
the following. We construct an SPQR-tree T b

spqr of the biconnected component corresponding
to the block b and temporarily mark all cut vertices of C contained in b as terminal in b so
that no cut vertex can be contracted while we process T b

spqr. Let µr be the root of T b
spqr and

let Eµ be the event graph that corresponds to the pertinent graph Lµ for a node µ in T b
spqr.

We say a train loops at vertex s for some split pair {s, t}, if there is a train whose train line
contains the subsequence ⟨t, s, t⟩. Intuitively, we traverse T b

spqr bottom-up, and mark nodes
in T b

spqr (and the corresponding edge in their parent) as contractible or non-contractible and
modify Eµ using Reduction Rule 1. Due to the correspondence between vertices in a skeleton
and vertices in L we use “vertex in a skeleton” and “vertex in L” interchangeably. We do
the following depending on the type of µ ̸= µr.
Q-node: We mark the edge corresponding to µ in the skeleton of the parent of µ as contractible

(a contraction of the real edge corresponding to µ does not result in a different graph). If
there is a train that loops at one of the poles of µ, we mark this pole as terminal.

S-node: Let ⟨c1, . . . , ck−1⟩ be the path that corresponds to the skeleton of µ without the
virtual edge of its parent. Every maximal subpath of contractible edges that does not
contain any terminal ci is therefore a contractible transit component. Thus, we can
apply Reduction Rule 1 on the graph that is induced by this subpath. If the entire path
⟨c1, . . . , ck−1⟩ is contractible, then we mark the edge corresponding to µ in the skeleton of
µ’s parent as contractible, otherwise we mark it as non-contractible. In the contractible
case, we check if there is a train that loops at the poles of µ. If this is the case, we mark
the corresponding pole(s) as terminal.

P-node: Let e1, . . . , ek be the edges between the poles of µ without the virtual edge corres-
ponding to the parent of µ. We consider every contractible edge among e1, . . . , ek as a
single transit component C and apply Reduction Rule 1. Note that C is a contractible
transit component since the union of parallel contractible transit components is again
a contractible transit component. If every edge e1, . . . , ek is contractible, we mark the
edge corresponding to µ in the skeleton of µ’s parent as contractible. Further, we check if
there is a train that loops at the poles of µ. If this is the case, we mark the corresponding
pole(s) as terminal.

R-node: Let C be the skeleton of µ without the virtual edge of its parent. If every edge
in C is contractible, then we test if C is a contractible transit component with respect to
the poles of µ. If this is the case, we apply Reduction Rule 1 on C and mark the edge
corresponding to µ in the skeleton of µ’s parent as contractible. Again, if there is a train
that loops at one of the poles of µ, we mark the corresponding pole(s) as terminal.

To process the root µr of T b
spqr, we do the following depending on the type of the single

child µc of µr. If µc is an S-node, we check if the edge corresponding to µc is marked as
contractible. If this is the case, we mark b as contractible. Otherwise, we consider the
maximal subpath of the skeleton of µc that now contains the edge corresponding to µr and
apply Reduction Rule 1, if possible. If µc is a P- or R-node, we mark b as contractible if
µc is also contractible. To complete the processing of b, we finally check whether there is a
train that loops at one of the poles of µr, if this is the case we mark b as non-contractible.
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Additionally, if this pole is also a cut vertex, we mark it as terminal. It remains to test for
one special case. If for every skeleton in T b

spqr every edge is marked as contractible, except
for a single edge e′ in an R-node, test if L \ Ce′ is a contractible transit component where
Ce′ is the split component of e′. If this is the case apply Reduction Rule 1.

After we have completed every block b in B, we mark every node c in C as contractible if
c is not a terminal. Finally, we proceed similarly to the S-node previously. For every chain
in Tbc that contains only contractible vertices, we apply Reduction Rule 1.

A block-cut tree and an SPQR-tree can be computed in linear time each [10,12]. It is
easy to see that the total size of all skeletons is linear in the size of the location graph. Since
each node is processed in time linear in the size of its skeleton and of the corresponding event
graph, the entire algorithm takes time linear in the sizes of L and E . ◀

5 Exact Integer Linear Programming Approaches

To state an ILP for Turn Minimization, we transform a given event graph E and its location
graph L into an equivalent Maximum Betweenness instance (S, R), where S = V (L) and R

contains all triplets of locations of consecutive events in all train lines of E . However, we
state the ILP in the context of Turn Minimization and minimize the number of violated
constraints. We start with the intuitive integer linear program.

We assume that the set of restrictions R is ordered arbitrarily, and we denote the i-th
element in R by (p, q, r)i. Further, let U = {(p, q, r) : {p, r} ∈ [S]2, q ∈ S, q ̸= p, q ̸= r}. For
each pair of elements p, q ∈ S with p ̸= q, let xpq ∈ {0, 1} be a binary decision variable,
where xpq = 1 means that p ≺ q. We require xpq = 1 − xqp to ensure asymmetry. Further,
we model the transitivity constraints of an ordering for (p, q, r) ∈ U using the constraint

xpr ≥ xpq + xqr − 1,

i.e., the constraint ensures that if p ≺ q and q ≺ r, then p ≺ r must hold as well.
It remains to count the number of restrictions (p, q, r)i ∈ R that are violated. For this

purpose, we introduce a binary variable bi for each restriction (p, q, r)i ∈ R. The intended
meaning of bi = 1 is that restriction i is violated. Note that a restriction (p, q, r)i is similar to
a transitivity constraint. If q ≺ p and q ≺ r, or p ≺ q and r ≺ q, then bi = 1. Thus, for each
restriction (p, q, r)i the following two constraints force bi = 1 if the restriction is violated.

bi ≥ xqp + xqr − 1
bi ≥ xpq + xrq − 1.

Thus, we obtain the following formulation (ILP1):

minimize
∑

(p,q,r)i∈R

bi (1a)

subject to xpq = 1 − xqp ∀ {p, q} ∈ [S]2, (1b)
xpr ≥ xpq + xqr − 1 ∀ (p, q, r) ∈ U, (1c)

bi ≥ xqp + xqr − 1 ∀ (p, q, r)i ∈ R, (1d)
bi ≥ xpq + xrq − 1 ∀ (p, q, r)i ∈ R, (1e)

xpq ∈ {0, 1} ∀ (p, q) ∈ S2, p ̸= q, (1f)
bi ∈ {0, 1} ∀ (p, q, r)i ∈ R (1g)
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Cutting plane approach. As a first improvement over ILP1, we test a cutting plane approach.
We start by solving a relaxation of ILP1 that omits only the transitivity constraints (1c). To
solve the separation problem, i.e., to find violated constraints (1c), we search for up to k

cycles in the auxiliary graph G′ that contains a vertex for each location and has a directed
edge (p, q) if and only if xpq = 1. A cycle in G′ then corresponds to a violated transitivity
constraint. Note that for each pair of vertices p ̸= q in G′, there is either an edge (p, q)
or an edge (q, p), due to constraints (1b). Therefore, G′ is a tournament graph. It is well
known [14] that if there is a cycle in a tournament graph G′, then there is also a cycle of
length 3 in G′. Thus, it suffices to search for cycles of length 3.

An integer linear program via tree decompositions. We now propose a formulation that
reduces the number of transitivity constraints by exploiting the structure of the location
graph. In particular, given a tree decomposition T = (T, {Xt}t∈V (T )) of L, we modify ILP1
by using Ut = {(p, q, r) : {p, r} ∈ [Xt]2, q ∈ Xt, q ̸= p, q ̸= r} instead of U . Thus, we obtain
the following formulation (ILP2):

minimize
∑

(p,q,r)i∈R

bi (2a)

subject to xpq = 1 − xqp ∀ (p, q) ∈
⋃

t∈V (T )

[Xt]2, (2b)

xpr ≥ xpq + xqr − 1 ∀ (p, q, r) ∈
⋃

t∈V (T )

Ut, (2c)

bi ≥ xqp + xqr − 1 ∀ (p, q, r)i ∈ R, (2d)
bi ≥ xpq + xrq − 1 ∀ (p, q, r)i ∈ R, (2e)

xpq ∈ {0, 1} ∀ t ∈ V (T ) ∀(p, q) ∈ X2
t , p ̸= q, (2f)

bi ∈ {0, 1} ∀ (p, q, r)i ∈ R (2g)

In other words, instead of introducing transitivity constraints for every triplet of locations
in U , we restrict the transitivity constraints to triplets of locations that appear together in at
least one bag. The intuition behind this formulation is the following. Consider a separation
(A, B) in L with a separator A ∩ B. It is possible to find a turn-optimal ordering of L
by separately finding turn-optimal orderings of L[A] and L[B] with the property that the
ordering of A ∩ B is consistent in both orderings. In particular, programs for L[A] and L[B]
need to share only constraints for vertices in A ∩ B. Note that this intuition works only if
we apply one separator to the location graph. For example, if we want to solve L[A] and
L[B] recursively, we need to separate L throughout the recursion, as vertices can be part of
multiple separators across different recursion steps. In this case, orderings of separators that
are consistent for specific separations might be in conflict with each other. We show that a
conflict between multiple separations cannot happen if we use a tree decomposition for the
separation of L.

▶ Theorem 11. Let E be an event graph. If x is an optimal solution to ILP2, then x implies
a turn-minimal ordering of the locations in E.

Proof. First, observe that if the variables of type xpq indeed form a valid total ordering,
then every possible turn is counted correctly by the variables bi. Specifically, for every triplet
(p, q, r) ∈ R, the variables xpq (xqp) and xqr (xrq) exist since every triplet in R forms a path
of length 2 in L, and every edge in L is contained in at least one bag due to (T2). Thus, it
remains to show that the variables of type xpq model a valid total ordering.
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Consider the directed graph G′ whose vertices correspond to the vertices in L and that
has a directed edge (p, q) if and only if xpq = 1. The underlying undirected graph of G′ is a
supergraph of L, and the tree decomposition T of L is also a valid tree decomposition of G′.
Note that if G′ is acyclic, then the variables of type xpq model a valid ordering. Towards a
proof by contradiction, suppose that this is not the case and that G′ does contain a cycle.
Let C be a shortest cycle in G′. If C has length 3, then C is a clique and due to (P2), the
tree T has a node t such that C ⊆ Xt. Due to constraints (1c), however, for every bag Xi

of T , the graph G′[Xi] is acyclic. Hence, C is a cycle of length at least 4.
We claim that every bag of T contains at most two vertices of C. Otherwise, there would

be two vertices u and w of C that are not consecutive along C but, due to constraints (2f),
the graph G′ would contain the edge (u, w) or the edge (w, u). In the first case, the path
from w to u along C plus the edge (u, w) would yield a directed cycle. In the second case,
the path from u to w along C plus the edge (w, u) would also yield a directed cycle. In
both cases, the resulting cycle would be shorter than C (since u and w are not consecutive
along C). This yields the desired contradiction and shows our claim.

Note that T restricted to C is also a tree decomposition. However, since every bag
contains at most two vertices of C, the restricted tree decomposition would have width 1,
which is a contradiction since every tree decomposition of a cycle has width at least 2. Thus,
the directed cycle C does not exist, and G′ is acyclic. ◀

Note that this formulation requires only O(tw(L)2 · |V (L)|) variables and O(tw(L)3 · |V (L)|)
many constraints. This is a significant improvement over ILP1 if tw(L) is small, which can
be expected since train infrastructure is usually sparse and “tree-like”.

6 Experimental Analysis

We tested the effectiveness of the reduction rule and the runtime of our formulations on
an anonymized and perturbed dataset with 19 instances provided by DB InfraGO AG; see
Figure 6 for an overview of the dataset. Our computations show that the minimum number
of turns is between 0 and 5 in the provided dataset. We implemented our algorithms in the
programming language Python. We used Networkx [11] to handle most of the graph operations
and Gurobi (version 12.0.1) [9] to solve the integer linear programs. All experiments were
conducted on a laptop running Fedora 40 with Kernel 6.10.6 using an Intel-7-8850U CPU
with four physical cores and 16 GB RAM.
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Figure 6 Left: Instances with respect to the number of events and the number of locations. Right:
The histogram depicts the frequency of instances (y-axis) with a given number of trains (x-axis) in
the dataset; e.g., there are five instances with five trains.
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Figure 7 Results of the effectiveness of applying contractions, restricted to contracting chains.

The bar diagram shows the number of locations in each instance before and after contraction.

Effectiveness of the reduction rule. Our implementation of Reduction Rule 1 is restricted
to exhaustively contract chains. But even with this restriction, the reduction rule proves to
be effective on the provided dataset. On average, the number of locations was reduced by
75%, where the best result was a reduction by 89% (instance 50-4) and the worst result was
a reduction by 55% (instance 20-3). A full evaluation is shown in Figure 7.

Runtime of the ILPs. Each formulation was implemented with only one variable for each
unordered pair of locations and without constraints (1b). Instead, if we created variable xpq

for the unordered pair {p, q} and xqp was needed in the formulation, we substituted 1 − xpq

for xqp. Since the computation of an optimal tree decomposition is NP-hard, we used the
Min-Degree Heuristic implemented in Networkx to compute a tree decomposition for ILP2.
The additional time needed for computing this tree decomposition was counted towards the
runtime of ILP2. We tested the cutting plane method and ILP2 on the original instances
which we call initial instances and the instances that were reduced by our implementation
of Reduction Rule 1 which we call reduced instances. We imposed a time limit of one hour
on every experiment. The result of each experiment is the average value over 5 repetitions
of the experiment. The cutting plane approach on the initial instances was able to solve 11
out of 19 instances. An instance was either always solved to optimality or never solved to
optimality across all repetitions of the experiment. The largest instance that was solved to
optimality contained 465 locations (and 19 trains) and was solved in 3509 s. The smallest
instance that was not solved within the time limit contained 277 locations (and 8 trains). In
contrast, the cutting plane approach was able to solve every reduced instance within 70 s.
Applied to the reduced instances, the cutting plane approach was 625 times faster than when
applied to the initial instances (averaged over those that were solved within the time limit).
See Figure 8 for more details on the performance of the cutting plane approach. ILP2 solved
every instance (initial or reduced) in less than a second (see Figure 8 for details). Still, the
reduction helped, making ILP2 on average 3.98 times faster than on the initial instances. On
the reduced instances, ILP2 was on average 103 times faster than the cutting plane approach
on the reduced instances (and 22,845 times faster than the cutting plane approach on the
initial instances).

7 Conclusion and Future Work

In this paper we have considered the problem of visualizing general event graphs as time-space
diagrams. We established a connection between minimizing the number of turns in a time-
space diagram and Maximum Betweenness, we proposed a preprocessing method to reduce
the size of event graphs, and proposed two different integer linear program formulations.
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Figure 8 Runtimes of the cutting plane approach (left) and of ILP2 (right), on the initial and the
reduced instances.

We evaluated the performance of our algorithms on a real-world data set and observed
that our best algorithms were able to solve every instance within one second. This suggests
that turn-optimal time-space diagrams can be used in a real-time environment in practice.
This can facilitate dispatching and the development of dispatching software.

Future work includes evaluating the usefulness and comprehensibility of the generated
drawings in a real-life scenario, as well as exploring alternative optimization criteria that
may yield improved visualizations. Secondary optimization steps that are applied as a
post-processing to a turn-optimal drawing such as minimizing the number of crossings while
keeping the ordering of locations might produce even better drawings. Since event graph
visualizations represent time schedules, changes in the underlying schedule can lead to
significant shifts in layout. An important direction for future work is developing techniques
to preserve the user’s mental map during such updates.
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For each triplet (ai, bi, ci) ∈ R, we construct a path Ξi in E which is composed of three events
Ξi = ⟨v1

i , v2
i , v3

i ⟩ such that ℓ(v1
i ) = ai, ℓ(v2

i ) = bi, ℓ(v3
i ) = ci and t(v1

i ) < t(v2
i ) < t(v3

i ). This
path Ξi can be considered as a train moving from location ai to ci over bi.

▷ Claim 12. Using this transformation, (S, R) has a valid ordering ≺, satisfying all restrictions
in R if and only if the transformed instance E can be drawn as a time-space diagram Γ
without any turns.

Proof. Let (S, R) be a Betweenness instance with a valid ordering ≺. If arranging the
locations of E on levels from top to bottom according to ≺, for each triplet (ai, bi, ci) ∈ R it
holds that either ai ≺ bi ≺ ci or ci ≺ bi ≺ ai. By construction each Ξi corresponding to a
constraint (ai, bi, ci) ∈ R is a path of events with three consecutive locations ai, bi, ci, thus
Ξi is either monotonically increasing or decreasing in Γ. Therefore, no turn occurs.

Conversely, assume there is a turn-free drawing Γ of the transformed instance (E , Y ).
Let ≺ be the ordering of S implied by the mapping y of Γ.

Now, assume that ≺ is violates a constraint in (ai, bi, ci) ∈ R. Thus, bi is not between ai

and ci in ≺. Then, in the corresponding path Ξi the location bi is also not between ai and
ci in the mapping y. Therefore, y(bi) is the smallest/largest level of the three levels y(ai),
y(bi), y(ci), implying a turn in Γ; a contradiction. ◁

In the reduction, we have shown that we can decide Betweenness by testing whether
there are no turns in the instance for Turn Minimization obtained in the transformation.
This immediately eliminates the possibility of a parameterized algorithm (unless P = NP)
whose only parameter is the number of turns as we would then be able to decide Betweenness
in polynomial time. Thus, we have shown (i).

Approximation algorithms with a multiplicative or constant additive factor are also
impossible (unless P = NP) for similar reasons. A multiplicative α-approximation algorithm
is ruled out by the fact that such an approximation algorithm would have to solve the cases
with 0 = 0 · α turns optimally.

If there was an additive β-approximation algorithm for a β ∈ poly(|V (E)|), we could copy
each gadget β + 1 times. By duplicating the gadgets β + 1 times, a turn in one gadget causes
all other copies of the gadget to have a turn as well. Thus, the number of turns is divisible by
β + 1. If there was an optimal mapping from locations to levels without turns, the additive
algorithm would also have to return the optimal value, since the only number in the range
{0, β} that is divisible by β + 1 is 0, implying that we could again use this algorithm to
decide Betweenness. Thus, we have shown (iii).

In order to show (ii), we carry out a simple reduction from MaxCut. Let (G, k) be an
instance to MaxCut. To transform (G, k) into an instance of Turn Minimization we
construct the following event graph E . Let z be an auxiliary vertex and let V (G) ∪ {z} be
the locations in E . For each {u, v} ∈ E(G), we add a train line corresponding to locations
(u, z, v) into E .

▷ Claim 13. Using the transformation as described above, (G, k) has a cut of size k if and
only if the transformed instance E can be drawn as a time-space diagram with n − k turns.

Proof. Let (G, k) be a MaxCut instance and let (S, T ) be a cut of size k in G with
C = {{s, t} : s ∈ S, t ∈ T}. We construct an ordering of the locations of E in the following
way. Every vertex in S is placed below z and every vertex in T is placed above z in an
arbitrary order. Since E contains only train lines of the form (u, z, v), for each {u, v} ∈ E(G),
this corresponds to a drawing of E , where every train line corresponding to an edge in C is
drawn without a turn, and every train line whose edge is either contained in S or in T is
drawn with a turn. Since (S, T ) is a cut of size k, this drawing has n − k turns.

ATMOS 2025



4:18 Visualization of Event Graphs for Train Schedules

Conversely, let E be the transformed instance, let Γ be a drawing of E with n − k turns
and let ≺ be the ordering of locations of E implied by Γ. We set S = {s ∈ V (L(E)) : s ≺ z}
and T = {t ∈ V (L(E)) : z ≺ t}. The size of the resulting cut (S, T ) is k, which can be shown
analogously to the previous argument. ◁

Note that this transformation results in a location graph of E that is a star graph with z

in the center. Since a star graph has a vertex cover number of 1, there is no algorithm
parameterized by the vertex cover number, unless P = NP. ◀

In order to show Theorem 8, we use a specific type of tree decomposition. We call a tree
decomposition T = (T, {Xt}t∈V (T )) nice, if T is rooted at a leaf node r, the leaf nodes in T

have empty bags, and all other nodes are one of the three following different types. A node t

is of type introduce if t has exactly one child c, and Xt = Xc ∪{v} for some v /∈ Xc. Similarly,
a node t is of type forget, if t has exactly one child c, and Xc = Xt ∪ {v} for some v /∈ Xt.
The third type is a join node, which is a node t with two children i, j ∈ V (T ) whose bags
contain the same vertices of V , i.e., Xt = Xi = Xj . Further, we require that the root node r

is of type forget and that every leaf node in T is associated with an empty bag. Given an
arbitrary tree decomposition, a nice tree decomposition of the same graph can be computed
in polynomial time preserving the width of the given decomposition such that this nice tree
decomposition contains O(tw(G) · n) many nodes [3].

▶ Theorem 8 (⋆). Let E be an event graph, and let L′ be its augmented location graph.
Computing a turn-optimal time-space diagram of E is fixed-parameter tractable with respect
to the treewidth of L′.

Proof. We begin with introducing notation. In the following we refer to the time-space
diagram simply as “drawing” and for the sake of brevity we say “a drawing of location
graph L” where we mean the drawing of E restricted to the locations contained in L. Given
a strict total order ≺ on a finite set S, the rank(b) of an element b ∈ S is the position in
the unique enumeration of S such that for each pair a ≺ b, a is enumerated before b. Thus,
rank(b) = |{a ∈ S | a ≺ b}| + 1.

Let T = (T, {Xt}t∈V (T )) be a nice tree decomposition of L′ rooted at some r ∈ V (T ).
For some t ∈ V (T ), we define the subgraph L′

t of L′ to be the graph induced by the union
of bags contained in the subtree of T rooted at t. For instance, the induced graph L′

r with
respect to the subtree rooted at the root node r is precisely L′.

Further, let πt be an order of the vertices in the bag Xt. We say that a drawing respects πt

if the vertices in Xt are drawn such that for all p, q ∈ Xt with p ≺πt
q vertex p is drawn

above vertex q (i.e., is assigned a higher level). With πt
p→i we denote the order πt which

is extended by a vertex p such that p has rank(p) = i within the extended order πt
p→i and

all other vertices in the order that previously had a rank of at least i now have their rank
increased by 1. Additionally, let πt be an order of the vertices in the bag Xt and let c be a
child of t with I = Xt ∩ Xc. We write πt|c for the order πt restricted to the vertices in I.
Lastly, we define b(p, πt) to be the number of turns for which p is one of the three locations
(pi−1, pi, pi+1) of a turn in a drawing of L′[Xt] respecting πt. Similarly, we write b(Xt, πt)
for the total number of turns occurring in a drawing of L′[Xt] respecting the order πt, where
all three locations (pi−1, pi, pi+1) of a turn are contained in Xt. Note that each drawing of
L′[Xt] respecting πt has the same number of turns since πt dictates an ordering on every
vertex in Xt.
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Now, let L′ be a given augmented location graph and let T = (T, {Xt}t∈V (T )) be a nice
tree decomposition of L′ rooted at a leaf r ∈ V (T ). We define D[t, πt] to be the number of
turns in a turn-optimal drawing of L′

t respecting the order πt. Therefore, D[r, πr] corresponds
to the number of turns of a turn-optimal drawing of E , since r is the root of T and r is
associated with a leaf bag Xr = ∅.

We show how D[t, πt] can be calculated by the following recursive formulas depending on
the node type of t. Based on this recursive formulation, the actual optimal ordering of the
locations in E can be extracted via a straightforward backtracking algorithm.

Leaf node (except root): Since the associated bag Xt of a leaf node t is empty, L′
t is an

empty graph and therefore the minimum number of turns of a turn-optimal drawing of L′
t

is D[t, πt] = 0.
Introduce node: Let p be the vertex that has been introduced in node t, and let c be the

only child of t, then

D[t, πt] = D[c, πt|c] + b(p, πt).

Inductively, D[c, πt|c] corresponds to the number of turns of a turn-optimal drawing of L′
c

respecting the order πt restricted to vertices in Xc. The node t extends the graph L′
c by

the vertex p, introducing edges between p and vertices N(p) ∩ Xt that can cause turns
including p. These turns are counted by b(p, πt). Since πt dictates the relative position
of every vertex in N [p], a turn-optimal drawing of L′

t respecting πt must contain every
newly introduced turn.
Note that we count a turn at most once in this setting: First, the vertex p is introduced
exactly once in L′

t by the definition of a nice tree decomposition. Further, by the
definition of b, we count a turn only if one location of its consecutive events vi−1, vi, vi+1
is p. Therefore, during the computation of D[c, πt], the turns involving p have not been
counted previously.

Forget node: Let Xt = Xc \{p} be the bag of t, where p is the vertex that has been forgotten
in node t and where c is the only child of t, then

D[t, πt] = min{D[c, πt
p→i] : i = 1, . . . , |Xc|}.

At node t, we remove vertex p from the bag Xc, therefore L′
t = L′

c. The ordering πt

dictates the drawing for L′[Xc] in a turn-optimal drawing in L′
t except for p. Thus, the

number of turns of a turn-optimal drawing of L′
t respecting πt must be a turn-optimal

drawing in L′
c respecting the order πt, where p is inserted into the order πt for some

rank(p) = i.
Note that every turn involved in a turn-optimal drawing respecting πt

p→i for an optimal i is
accounted for precisely once since p be can forgotten only once. Since p was forgotten, Xt

is a separating set that separates p from every other vertex in L′ \ L′
t, implying that the

neighbourhood of p was already processed in L′
c. Further, since the locations of every

possible turn are a triangle in L′, we know that there is an already processed bag that
contains all three locations of consecutive events vi−1, vi, vi−1 that can cause a turn.

Join node: Let i and j be the two children of node t, then we can calculate the number of
turns in a drawing of Gt respecting πt by

D[t, πt] = D[i, πt] + D[j, πt] − b(Xt, πt).

At a join node, two independent connected components of T are joined, where L′
i and

L′
j have only vertices in Xt in common. By induction, D[i, πt] and D[j, πt] contain the

number of turns in a turn-optimal drawing in L′
i and a turn-optimal drawing in L′

j ,
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where both drawings respect πt. Consequently, by summing the number of turns in both
drawings L′

i and L′
j , we count turns occurring in Xt twice. Therefore, we need to subtract

turns whose three corresponding vertices are contained in Xt. Further, note that no new
vertex is introduced in a join node, thus no new turn can occur.

With the description of the recursive formulation of D[t, πt], we have shown that a turn
(pi−1, pi, pi+1) in a turn-optimal drawing is counted at least once in an introduce node of
the last introduced vertex p of (pi−1, pi, pi+1). We have also argued in the description of the
forget node that a turn at p is counted at most once. Therefore, we count every turn exactly
once in a drawing calculated by D[r,∅], concluding the correctness of the algorithm.

As for the runtime, note that b(p, πt) can be computed in O(|Xt|2) time by annotating
every clique {p, q, r} in L′ corresponding to a potential turn by the number of distinct
consecutive event triplets mapping to locations p, q, and r. Since p is involved in each clique,
we can enumerate every clique {p, q, r} in O(|Xt|2) time and due to the annotation, a clique
can be processed in constant time. In order to count the total number of turns b(Xt, πt)
in a bag Xt, we need O(|Xt|3) time. Assuming the algorithm operates on a nice tree
decomposition T of width tw(L′), there are O(tw(L′) ·n) many bags in T . For a node t in the
tree decomposition, we have to guess O((tw(L′) + 1)!) many orders. If t is a leaf node, it can
be processed in constant time. Given an order πt, we can compute any introduce, forget, or
join node in O(tw(L′)3) time, yielding an overall runtime of O((tw(L′) + 1)! · tw(L′)4 · n). ◀
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