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Abstract
We consider a scheduling environment in which jobs are associated with machine-dependent due-dates.
This natural setting arises in systems where clients’ tolerance depends on the service provider.

The objective is to maximize throughput, defined as the number of non-tardy jobs. The
problem exhibits significant differences from previously studied scheduling models. We analyze its
computational complexity both in general and for the special case of unit-length jobs.

In the unit-length setting, we provide an optimal algorithm that also extends to cases with
machine-dependent release times and machine-dependent weights (i.e., rewards depending on the
machine that completes the job).

For jobs with different lengths, we show that even the unweighted problem without release times,
with only two different lengths, specifically, for all j, pj ∈ {1, 2}, is APX-hard. To isolate the role of
machine-dependent due-dates in this hardness result, we present an optimal algorithm for the case
where all pj ∈ 1, 2 and due-dates are not machine-dependent. This algorithm further extends to
instances with a constant number of integer processing times.
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1 Introduction

In many scheduling environments, jobs are associated with due-dates, and each job is expected
to be completed before its due-date. This classical setting has been extensively studied
since the 1950s [18], and the landscape is well understood for various objectives, such as
minimizing the number of tardy jobs, maximum tardiness, or total tardiness. In this paper,
we consider a more general setting in which due-dates are machine-dependent – that is, the
allowed completion time for a job may vary depending on the machine to which it is assigned.

In our model, for every job j and machine i, we are given the tolerance of job j if processed
on machine i, interpreted as its due-date on that machine. Such a setting arises in a range
of real-world systems. For example, consider an online retailer during a busy season. The
company operates multiple fulfillment centers, each with distinct capacities, locations, and
shipping capabilities. While customer satisfaction is generally influenced by delivery speed,
other factors – such as packaging quality, proximity to pickup points, and customer service –
can also play a role. Thus, a customer’s tolerance for delivery time may vary depending on
the fulfillment center handling the order.

As another example, consider an electronics manufacturer with multiple production lines.
Each line may differ in specialization and workload. A task could be completed quickly on a
lightly loaded line, but a more specialized line may produce a higher-quality result, justifying
a longer wait. In other words, the allowed due-date for the product may depend on the
production line to which it is assigned.
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5:2 Throughput Maximization with Machine-Dependent Due-Dates

Our model also arises in transportation systems, where different routes or depots lead to
different tolerances for travel time. For example, in a city’s public transit network, buses or
trains may be dispatched from different depots or yards, each serving routes with different
congestion patterns and travel conditions. Passengers’ tolerance for delays may be shorter
when the route is already prone to heavy traffic, but longer for routes that are typically more
reliable or comfortable. Likewise, in a tourist ferry system serving the same two ports via
different paths, some vessels take the fastest direct route while others meander along scenic
coastlines or through picturesque islands. Travelers are willing to accept a significantly longer
trip when the journey itself offers a richer experience, effectively extending the due-date
for arrival on that specific route. These examples demonstrate that machine-dependent
due-dates naturally arise in real-life applications, motivating our study beyond its theoretical
interest.

In this paper, we provide initial results for this setting, focusing on the fundamental
problem of maximizing throughput, defined as the number of non-tardy jobs. Surprisingly,
to the best of our knowledge, this variant has not been previously studied. We show that for
unit-length jobs, known scheduling techniques can be adapted to compute optimal solutions
efficiently. In contrast, when jobs have variable lengths, the problem exhibits substantial
differences from previously studied models.

2 Problem Statement and Preliminaries

An instance of a scheduling problem with machine-dependent due-dates (SMDD, for short)
is given by I = ⟨J, M, {pj}j∈J , {di,j}i∈M,j∈J⟩, where J is a set of n jobs, and M is a set of
m parallel machines. For every job j ∈ J, pj is the length of job j. For every machine i ∈ M

and job j ∈ J , di,j is the due-date of job j if processed on machine i. Some of our results
refer to instances with unit-length jobs, in which pj = 1 for all j ∈ J .

A schedule for an instance I is defined by a tuple s = ⟨s1, s2, . . . , sn⟩, where sj =
(mj , oj) ∈ (M ∪ {⊥}) × N. mj ∈ M ∪ {⊥} indicates the machine to which job j is assigned,
or ⊥ if the job is rejected (i.e., not scheduled on any machine). oj ∈ N indicates the order
on which it is assigned to the machine. We omit oj when it is clear from the context. For
each machine i ∈ M , let Ji = {j ∈ J | sj = i} denote the set of jobs assigned to machine i.
The load on machine i in schedule s, denoted Li(s), is the total processing time of jobs in Ji:
Li(s) =

∑
j∈Ji

pj . In the unit-length case, this simplifies to Li(s) = |Ji|.
The completion time Cj(s) of a job j ∈ Ji is defined as the sum of the processing times

of all jobs scheduled on machine i before job j, plus pj . The lateness of job j, assigned to
machine i, is Cj(s) − di,j , and its tardiness is Tj(s) = max(0, Cj(s) − di,j). Job j is called
tardy if Tj(s) > 0. Let Uj(s) ∈ {0, 1} denote the binary indicator of whether job j is either
rejected or tardy: Uj(s) = 1 iff sj = ⊥ or Cj(s) > dsj ,j . We omit s from the notation
when it is clear from context.

Our objective is to maximize the throughput, which is the number of jobs which are
not non-rejected and non-tardy. We denote this number, of satisfied jobs, by sat(s) =∣∣{j ∈ J | sj ̸= ⊥ and Cj(s) ≤ dsj ,j

}∣∣. Since we care only about throughput and not about
minimizing tardiness, we may assume w.l.o.g., that all non-satisfied jobs are rejected (i.e.,
sj = ⊥ if Cj(sj) > dsj ,j). This assumption simplifies the model without affecting the
objective. Using standard three-field scheduling notation [5], this problem can be described
as: P | di,j |

∑
j(1 − Uj).
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2.1 Our Results

We define the SMDD problem and present initial results. We first consider instances
with unit-length jobs. In Section 3 we present an optimal algorithm for the problem
P |pj = 1, di,j |

∑
j(1 − Uj). Our algorithm is based on reducing the problem to a weighted

maximum matching problem [13], and it can be extended for instances in which jobs have
machine-dependent release times and machine-dependent weights (reward for completion),
that is, P |pj = 1, ri,j , di,j |

∑
j wi,j(1 − Uj).

In Section 4 we turn to consider instances with arbitrary job lengths. We show that even
if we allow only two different lengths, specifically, if for all j, pj ∈ {1, 2} then the problem
becomes APX-hard. To isolate the role of the machine-dependent due-dates in this hardness
result, we present, in Section 5, an optimal algorithm for the case that for all j, pj ∈ {1, 2},
and the due-dates are not machine-dependent. That is, every job j is associated with a
due-date dj such that for all i, di,j = dj . Our optimal algorithm for this case can be extended
to solve P |pj ∈ P|

∑
j(1 − Uj) for any set P of integer job lengths, in time nO(|P|lcm(P)). We

conclude in Section 6 with a discussion and directions for future work regarding additional
objectives relevant for environments with machine-dependent due-dates.

2.2 Related Work

Scheduling theory is a very well studied field, dating back to the early 1950’s [5]. When
jobs are associated with due-dates, and processed sequentially by the machines, maximizing
the throughput is a classical well-studied objective. For a single machine, Moore-Hodgson’s
algorithm ([14]) solves the problem optimally. For parallel machines, the problem is NP-
hard even with preemptions allowed [10]. A more general setting in which jobs are also
associated with release times is also well-studied. Approximation algorithms, as well as
optimal algorithms for several restricted classes are presented in [4, 19, 1, 8]. The paper
[2] analyzes the impact of different scheduling policies on the throughput. When jobs have
equal-lengths, an optimal solution can be produced using max-flow techniques [3, 7]. A
variant of scheduling with machine-dependent due-dates is discussed in [6, 15]. In their
setting, each machine has a sorted list of due-dates, and the i’th job assigned to a machine
has the i’th due-date.

An instance of SMDD is given by an m × n matrix representing, for every job j and
machine i, the due-date of job j on machine i. There are several additional well-explored
scheduling problems whose input is given by an m × n matrix, stating a value for each
job-machine pair: (i) In scheduling on unrelated machines, for every job j and machine i,
we are given the processing time of job j if processed on machine i. The most classical
problem, of minimizing the makespan of a schedule on unrelated machines (R||Cmax) is
studied in [12], where a 2-approximation algorithms is given, as well as various hardness
results, (ii) In a shop scheduling environment, each job consists of m tasks. For each job
j and machine i, we are given the length of j’s task on machine i. The order according
to which the tasks should be processed may be flexible (openshop), uniform (flowshop) or
job-specific (jobshop). Unfortunately, except for some positive results for two machines,
solving shop-scheduling problems is computationally hard [11, 18]. (iii) In environments
where each machine has a different scheduling policy [20], for every machine we are given its
priority list - an order of the n jobs according to which it processes the jobs assigned to it.
The analysis of the above settings shows that having machine-dependent parameters makes
the problem computationally harder relative to the related-machines settings.

ATMOS 2025
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3 Optimal Algorithm for Unit-length Jobs

This section refers to instances in which all jobs have unit processing lengths, that is, for all
j ∈ J, pj = 1. We present an optimal algorithm for the problem. In fact, our algorithm fits a
more general setting, in which, in addition to the due-dates, for every job j and machine i,
we have machine-dependent release times and rewards. Formally, let ri,j be the release time
of job j if processed on machine i. Let ωi,j denote the reward from completing j on time
on machine i. For completeness, define ω⊥,j = 0. Note that the throughput maximization
problem P |pj = 1, di,j |

∑
j(1 − Uj) is the special case in which ri,j = 0 and ωi,j = 1 for

every job j and machine i. The proof of the following theorem is based on a reduction to a
weighted maximum matching problem [13].

▶ Theorem 1. The problem P |pj = 1, ri,j , di,j |
∑

j ωsj ,j(1 − Uj) is polynomially solvable.

Proof. We reduce the problem to a weighted maximum matching problem in a bipartite
graph. Given an instance ⟨J, M, {rj}j∈J , {dj}j∈J , ω⟩, of our scheduling problem, construct a
weighted bipartite graph (V ∪ U, E). The set V includes n job-vertices, {vj} for every job
1 ≤ j ≤ n. The set U includes mn slot-vertices, {uℓ

i}, for each 1 ≤ ℓ ≤ n and machine i ∈ M .
The set of edges is E = {(vj , uℓ

i) | rj(i) < ℓ ≤ dj(i)}. That is, every job-vertex is connected
to all the slot-vertices corresponding to a feasible assignment of j with regards to release
time and due-date. The weight of an edge (vj , uℓ

i) is ωj,i.
It is easy to see that every schedule with total reward W corresponds to a matching of

total weight W . Also, every feasible matching of weight W induces a valid schedule. All
jobs in this schedule are scheduled after their release time and before their due-date, and
their total reward is W . As a maximum weight matching can be found efficiently, and the
reduction is polynomial, the whole algorithm is polynomial.

Note that machines may have idle slots in the produced schedule. The number of idle
blocks can be minimized by shifting earlier jobs with early release times. Some idles may be
unavoidable due to the release times. ◀

4 APX-hardness Proof for pj ∈ {1, 2}

Unfortunately, the positive result for unit-length jobs cannot be extended even to highly
restricted classes of variable-length jobs. The following hardness result is based on a reduction
technique used in [12] to show NP-hardness of the minimum makespan problem on unrelated
machines (R||Cmax). We note, however, that its adaptation to SMDD with pj ∈ {1, 2} is
different, as the classical minimum makespan problem is efficiently solvable for such instances.

▶ Theorem 2. P |pj ∈ {1, 2}, di,j |
∑

j(1 − Uj) is APX-hard.

Proof. In order to prove APX-hardness, we use an L-reduction [16], defined as follows:

▶ Definition 3. Let Π1, Π2 be two optimization problems. We say Π1 L-reduces to Π2 if
there exist polynomial time computable functions f, g and constants α, β > 0 such that, for
every instance I ∈ Π1 the following holds:
1. f(I) ∈ Π2 such that , OPT (f(I)) ≤ α · OPT (I).
2. Given any solution φ to f(I), g(φ) is a feasible solution to I such that |OPT (I) −

value(g(φ))| ≤ β · |OPT (f(I)) − value(φ)|.

Our L-reduction is from 3-bounded 3-dimensional matching (3DM3). The input to the
problem is a set of triplets T ⊆ X × Y × Z, where |X| = |Y | = |Z| = k. The number of
occurrences of every element of X ∪ Y ∪ Z in T is at most 3. The number of triplets is
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|T | = m. The goal is to find a maximal subset T ′ ⊆ T , such that every element in X ∪ Y ∪ Z

appears at most once in T ′. This problem is known to be APX-hard [9]. Moreover, a stronger
hardness result shows the problem has an hardness gap even on instances with a matching of
size k [17], namely instances where there is a solution with k triplets.

Given an instance T of 3DM3, we construct an instance f(T ) of SMDD. For each triplet
containing element x ∈ X, we say it is a triplet of type x. Let tx be the number of triplets of
type x. For each triplet, there is a corresponding machine i for a total of m machines.

There are 2k element jobs, one for each element y ∈ Y , and one for each element z ∈ Z.
A job jy corresponding to an element y ∈ Y has di,jy

= 1 if y ∈ Ti where Ti is the triplet
corresponding to machine i, and di,jy

= 0, otherwise. A job jz corresponding to an element
z ∈ Z has di,jz = 2 if z ∈ Ti where Ti is the triplet corresponding to machine i, and di,jz = 0
otherwise. For every such element job j, pj = 1.

For every x ∈ X, there are tx − 1 dummy jobs jx such that di,jx = 2 if x ∈ Ti where Ti

is the triplet corresponding to machine i, and di,jx
= 0 otherwise. Note that there is one

dummy job for all but one of the tx machines corresponding to triplets of type x ∈ X, for a
total of m − k dummy jobs. For every dummy job j, pj = 2.

In order to complete the L-reduction, we prove the conditions of Definition 3 are met.
As a preliminary, we show that if T has a matching T ′ of size k, then OPT (f(T )) = m + k.
For a schedule s, let sat(s) =

∑
j(1 − Uj) be its throughput.

Let T ′ be a matching of size k. For each triplet (x, y, z) ∈ T ′, we can schedule the jobs
corresponding to y, z on the machine corresponding to the triplet. Note that both jobs are
satisfied. This leaves tx − 1 idle machines to which dummy jobs corresponding to x can be
assigned with completion time 2. Thus, we have a schedule in which m − k dummy jobs
are satisfied, and 2k element jobs are satisfied for a total of m + k satisfied jobs, proving
sat(OPT (f(T )) ≥ m + k. As there are no additional jobs, sat(OPT (f(T )) = m + k.

Given a schedule s, let g(s) be the set of triplets corresponding to machines on which
two jobs are assigned. The theorem follow from the following claims, showing that Definition
3 is satisfied for α = 4 and β = 1.

▷ Claim 4. If OPT (T ) = k then OPT (f(T )) ≤ 4k.

Proof. Since every element of X ∪ Y ∪ Z appears at most 3 times in T , m ≤ 3k. Thus,
OPT (f(T )) = m + k ≤ 3k + k = 4k. ◁

▷ Claim 5. OPT (T ) − g(s) ≤ (OPT (f(T )) − sat(s)).

Proof. Since we assume that T has a perfect matching, we have that OPT (T ) = k. Since we
proved that value(OPT (f(T )) = m+k, it is sufficient to prove that k−g(s) ≤ m+k−value(s).
Consider a schedule s of f(T ). Recall that every machine has 0, 1 or 2 jobs assigned to it.
Thus, sat(s) ≤ 2g(s) + (m − g(s)) = m + g(s). Therefore, k − g(s) ≤ m + k − sat(s) ≤
m + k − (m + g(s)) = k − g(s) as needed. ◁

◀

5 Optimal Algorithm for Job-dependent Due-dates

To isolate the impact of machine-dependent due-dates on the computational complexity of
the problem, We consider the case of machine-independent due-dates, that is, the problem
P ||

∑
j(1 − Uj). A simple reduction from the Partition problem implies that this problem

is NP-hard even on two machines, when all the jobs have the same machine-independent
due-date. Let P denote the set of possible job lengths. We assume that P ⊆ N. We
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5:6 Throughput Maximization with Machine-Dependent Due-Dates

present an optimal algorithm for the problem assuming P = {1, 2}. We then generalize
this algorithm and present an optimal algorithm for P |pj ∈ P|

∑
j(1 − Uj) whose running

time is nO(|P|lcm(P)). We note that the this problem is already known to be polynomially
solvable. However, our algorithm is based on dynamic programming, while previously known
algorithms ([19, 4]) use different techniques.

Our algorithm consists of two steps. In the first step, we guess the jobs that are going to
be satisfied. In the second step, we use dynamic programming to assign these jobs, such that
they are all satisfied in the resulting schedule.

Consider an optimal schedule s∗. For p ∈ {1, 2}, let kp be the number of satisfied jobs of
length p in s∗. By a simple exchange argument, we can assume that these kp jobs have the
maximal due-date among the jobs of length p in the instance. Thus, the choice of jobs is
determined by the values of k1 and k2, and the number of guesses needed is O(n2).

Next, we show how to construct a schedule of the chosen jobs. Similarly to Moore-
Hodgson’s algorithm for a single machine [14], we consider the jobs in EDD order. With m

parallel machines, a considered job has m possible assignments. Two natural heuristics are
to assign each job j to a least loaded machine, or to a most loaded machine on which it is
non-tardy. We start by providing simple examples showing that these approaches as well as
other greedy heuristics are sub-optimal.

Sub-optimality of a greedy approach. Consider 5 jobs {j1, . . . , j5}, such that p1 = p2 = 1,
p3 = p4 = p5 = 2, d1 = d2 = 2, and d3 = d4 = d5 = 4. There are 2 machines. In an optimal
schedule all jobs are satisfied, for example by assigning j1, j2, j3 to one machine, and j4, j5 to
the other. However if the jobs are assigned to lightly loaded machines in EDD order, j1 and
j2 are assigned to different machines, and only 4 jobs are assigned in the resulting schedule.

The next example demonstrates that a greedy approach in which the jobs are considered
in EDD order and each job is assigned to a most loaded machine on which it is non-tardy, is
sub-optimal. Consider 4 jobs {j1, . . . , j4}, such that p1 = p2 = 1, p3 = p4 = 2, d1 = d2 = 2,
and d3 = d4 = 3. There are 2 machines. In an optimal schedule all jobs are satisfied, for
example by assigning j1, j3 to one machine, and j2, j4 to the other. However if the jobs are
assigned to a most loaded feasible machine in EDD order, j1 and j2 are assigned to one
machine, and only one of the longer jobs can be satisfied.

Note that the above examples are valid regardless of tie breaking between jobs having
the same due-date.

Instead, in our algorithm, if there are multiple machines to which j can be assigned
without being late, we maintain all possibilities for the loads of the machines after its
assignment. In order to maintain a polynomial runtime, we only consider assignments to
machines such that the difference in loads between any two machines is at most 2. Formally,
we assume that after a job is assigned, for every machine i, its load is in {L, L − 1, L − 2}
for some value L. We can then store all possibilities of machine loads using a dynamic
programming approach, with an n × n × (n3) table S for all possible load options after a job
is considered.

Formally, the DP table includes boolean values such that S[j; L; x0, x1, x2] = True if
and only if there exists a schedule of the first j jobs in the EDD order such that, for
z ∈ {0, 1, 2}, exactly xz machines have load L − z, where L is the only integer for which∑j

ℓ=1 pℓ = x0L + x1(L − 1) + x2(L − 2), such that x0, x1, x2 are integers, and x0 > 0 (that
is, the most loaded machine has load L). No machine has load higher than L or lower than
L − 2. Note that for every choice of j, x0 > 0, x1, x2, there is a unique value of L for which
S[j; L; x0, x1, x2] may be true. Thus, the table can be constructed without the L-dimension,
resulting in a n × (n3) table. In the sequel, we include the value of L in the table S for
clarity.
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Initially, S[0; 0; m, 0, 0] = True, and for every other value of x0, x1, x2, S[0; 0; x0, x1, x2] =
False. That is, before any jobs are considered, the only possible schedule is of m machines
with load 0.

For j > 0, consider first the case pj = 1. The table S is updated as follows:
1. If x2 > 0 and S[j − 1; L; x0, x1, x2] = True, then S[j; L; x0, x1 + 1, x2 − 1] = True. This

corresponds to adding j to a machine with load L − 2. Note that since the jobs are sorted
in EDD order, it must be that dj ≥ L > L − 1, so j is satisfied.

2. If x1 > 0 and S[j − 1; L; x0, x1, x2] = True, then S[j; L; x0 + 1, x1 − 1, x2] = True. This
corresponds to adding j to a machine with load L − 1. Note that since the jobs are sorted
in EDD order, it must be that dj ≥ L, so j is satisfied.

3. If dj ≥ L+1, x0 > 0, and S[j−1; L; x0, x1, 0] = True, then S[j; L+1; 1, x0−1, x1] = True.
This corresponds to adding j to a machine with load L. Note that we only consider
this if no machines have load L − 2 when j is considered, thus maintaining a maximum
difference of 2 between the loads of different machine.

For j > 0, and pj = 2, the table S is updated as follows:
1. If x2 > 0 and S[j − 1; L; x0, x1, x2] = True, then S[j; L; x0 + 1, x1, x2 − 1] = True. This

corresponds to adding j to a machine with load L − 2. Note that since the jobs are sorted
in EDD order, dj ≥ L, so j is satisfied.

2. If dj ≥ L+1, x1 > 0, and S[j−1; L; x0, x1, 0] = True, then S[j; L+1; 1, x0, x1−1] = True.
This corresponds to adding j to a machine with load L − 1. Note that we only consider
this if no machines have load L − 2 when j is considered, thus maintaining a maximum
difference of 2 between the loads of different machines.

3. If dj ≥ L + 2, x0 > 0, and S[j − 1; L; x0, 0, 0] = True, then S[j; L + 2; 1, 0, x0 − 1] = True.
This corresponds to adding j to a machine with load L. Note that we only consider this if
no machines have load L − 2 or L − 1 when j is considered, thus maintaining a maximum
difference of 2 between the loads of different machines.

We are now ready to describe the algorithm for P |pj ∈ {1, 2}|
∑

j(1 − Uj).

Algorithm 1 Algorithm for P |pj ∈ {1, 2}|
∑

j
(1 − Uj).

1: Guess 0 ≤ k1 ≤ |{j|pj = 1}|, and 0 ≤ k2 ≤ |{j|pj = 2}|.
2: Let S be an n × n × n3 table initialized to False.
3: Let S[0; 0; m, 0, 0] = True

4: Let J be the set of k1 highest due-date 1-jobs, and k2 highest due-date 2-jobs.
5: for all jobs j=1 to |J |, considered in EDD order do
6: Update S[j; L; x0, x1, x2] for every L, x0, x1, x2.
7: end for
8: Let x0, x1, x2, L be values for which S[|J |; L; x0, x1, x2] = True. Return a corresponding

schedule.

▶ Theorem 6. Algorithm 1 computes an optimal schedule for P |pj ∈ {1, 2}|
∑

j(1 − Uj).

Proof. We first justify the fact that the table S considers only partial assignments of jobs in
EDD order, in which the maximal gap in the loads of different machines is 2.

▷ Claim 7. There exists an optimal schedule O such that (i) the internal order of jobs on
any machine is EDD, and (ii) when the jobs are considered in EDD order, for every j, after
the assignment of job j, the maximal gap in loads between machines is 2.

ATMOS 2025



5:8 Throughput Maximization with Machine-Dependent Due-Dates

Proof. Consider an optimal schedule O. Simple exchange argument implies the first property
in the claim, that is, the jobs assigned to each machine in O are sorted in EDD order.
Therefore, we can assume O is constructed by iterating over jobs in EDD order, and assigning
the jobs one after the other with no intended idle. Assume by contradiction that there is some
job such that after it is assigned to machine i, there is a machine i′ such that Li − Li′ > 2.
Let j0 be the first job for which this occurs.

Let A be the set of jobs considered after j0 that are assigned to i, and let B be the set of
jobs considered after j0 that are assigned to i′. If B ̸= ∅, let j1 be the first job in B. We
describe how to convert O to another schedule, O′, in which all the jobs are satisfied and the
gap between i and i′ reduces to at most 2.

For jobs considered before j0, they are assigned to the same machine as in O. j0 is
assigned to i′ instead of i, and since the jobs are sorted in EDD order, it remains satisfied.
We prove there is a valid assignment of the remaining jobs. For a job assigned to a machine
other than i or i′ in O, it is assigned to the same machine in O′, and is clearly satisfied. For
jobs in A ∪ B, we divide into cases. A visual description of the constructed assignment is
given in Figure 1.

𝑖

𝑖′

𝑖

𝑖′

𝑗0…

𝑗1

𝑗0

… 𝑗1

𝑗0…
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…

𝑗0

𝑗2

𝑗1 𝑗2

𝑗0…

𝑗1

…

𝑗0

𝑗2

𝑗1

𝑗2
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𝑗1𝑗0

…

𝑗1

Figure 1 Converting O to O′.

1. If B = ∅, we assign all jobs in A to i. They are clearly satisfied as the load on i in O′

after a job is considered, is lower than the load on i in O after the same job is considered.
2. If pj0 = pj1 , assign j1 to i, all jobs in A to i, and all jobs in B \ {j1} to i′. j1 is satisfied

since the jobs are sorted in EDD order. All remaining jobs are satisfied as they are
processed at the same time in O and O′.

3. If pj0 = 2 and pj1 = 1. If B = {j1}, assign j1 to i and all jobs in A to i, and clearly all
jobs are satisfied. Otherwise, let j2 be the second job in B.
If pj2 = 1, assign j1 and j2 to i, and all jobs in A, B \ {j1, j2} to i, i′ respectively. If
pj2 = 2, assign j1 to i′, j2 to i, and all jobs in A, B \ {j1, j2} to i, i′ respectively. j1, j2
are satisfied since the jobs are sorted in EDD order, and the remaining jobs are satisfied
as they are processed at the same time in O, O′.

4. If pj0 = 1 and pj1 = 2, since j0 is the first job such that Li − Li′ > 2 after its assignment,
we have Li − Li′ = 3. Thus, when j0 is assigned to i′ instead of i, Li − Li′ = 1. We
assign j1 to i′, all jobs in A to i′, and all jobs in B \ {j1} to i.
j1 is satisfied as the jobs are sorted in EDD order. Since the due-dates are not machine-
dependent, and all jobs in A, B \ {j1} are processed at the same time in O and O′, they
are also satisfied in O′.

Note that O′ is an optimal schedule with the same assigned jobs as O. Additionally, after
j0 is assigned the difference in loads between machines is at most 2. Therefore, by repeating
this procedure we arrive at an optimal schedule such that the gap between machine loads is
at most 2 after each job is assigned. ◁



S. Rosner and T. Tamir 5:9

Let O be an optimal schedule fulfilling the conditions specified in Claim 7. Assume that
for each p ∈ {1, 2}, there are k⋆

p satisfied p-jobs in O. Recall that we can assume these jobs
are the k⋆

p p-jobs with maximal due-date.
Consider Algorithm 1 for a guess of k⋆

1 , k⋆
2 jobs with length 1, 2, respectively. The jobs in

Algorithm 1 are assigned in EDD order, and by the definition of S, a valid assignment of
k⋆

1 + k⋆
2 jobs will be constructed. ◀

Algorithm 1 is for the specific case pj ∈ P = {1, 2} for every j. For other integer values
of P, it is possible to generalize Algorithm 1 to an algorithm for P |pj ∈ P|

∑
j(1 − Uj) that

has a running time of nO(|P|lcm(P)).
The generalization is based on the fact that regardless of P , every instance has an optimal

schedule in which the internal order of jobs on any machine is EDD, and the fact that if we
can bound the maximal gap between the loads of different machines, then it is simple to
extend the dynamic programming table S to consider all partial schedules.

We generalize Claim 7 and show that for any P, there exists an optimal assignment in
which the maximal gap between any two machines is lcm(P) · (|P| + 1). The idea is to
consider j0, the first job such that after it is placed, Li − Li′ > lcm(P) · (|P| + 1). Consider
the set A of jobs of total processing time at least lcm(P) · |P| most recently processed on i

when j0 is assigned. Note that j0 ∈ A. As there are only |P| different job sizes and they all
divide lcm(P), there must be a subset of jobs A′ ⊆ A with total length exactly lcm(P) in A.

Let B be the minimal set of jobs with total processing time at least lcm(P) · |P| assigned
to i′ after j0 is considered. As there are only |P| different job sizes and they all divide
lcm(P), there must be a subset of jobs B′ ⊆ B with total processing time exactly lcm(P).
We assign the jobs in A′ to i′, and the jobs in B′ to i.

As the jobs are considered in EDD order, they are all satisfied. All jobs assigned later
are assigned to the same time slot, so they remain satisfied. By repeating this procedure, we
are left with a schedule with a maximal gap of lcm(P) · (|P| + 1).

Thus, we can conclude the following.

▶ Theorem 8. An optimal schedule for P |pj ∈ P|
∑

j(1 − Uj) can be computed in time
nO(|P|lcm(P)).

6 Discussion

We introduced and studied a natural generalization of classical scheduling problems, in
which due-dates are machine-dependent. This setting models practical environments such as
manufacturing, transportation, and logistics systems where job tolerance depends on the
specific machine handling the job.

We focused on the objective of maximizing throughput, defined as the number of non-
rejected and non-tardy jobs. We presented a polynomial-time algorithm for unit-length jobs,
which is suitable also in the presence of machine-dependent release times and weights, and
showed that the problem becomes APX-hard even for instances with pj ∈ {1, 2}. To isolate
the source of this hardness, we provided an optimal dynamic programming algorithm for
instances with job-dependent due-dates and a constant number of job lengths.

Our results establish the computational landscape of this model and motivate further
exploration. In particular, it would be interesting to study approximation algorithms for the
general case, parameterized complexity with respect to the number of machines or job types,
and extensions to additional objectives such as minimizing maximal or total tardiness (Tmax

or
∑

j Tj) as well as instances with non-identical machines.

ATMOS 2025
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