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Abstract
In the sequential resource allocation problem there is a single divisible resource that is divided over
a number of clients. Allocations are made in a predetermined order and only upon arrival at a client
their demand for the resource is revealed; only the probability distribution of the demand of every
client is known to the supplier. We consider this problem from a fairness perspective, where the aim
is to balance allocations between individual clients. Several allocation policies have been proposed in
the literature. In this work, we introduce a new, non-adaptive policy based on linear programming
that can also incorporate group fairness. In addition, we provide an extensive computational study
to compare allocation policies on several fairness measures. Using an optimized implementation of
existing methods, we are able to evaluate significantly larger problem instances than those previously
considered in the literature.

2012 ACM Subject Classification Applied computing → Operations research

Keywords and phrases fairness, resource allocation, computational analysis

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.7

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.15825047

Funding This research is supported by NWO Gravitation Project NETWORKS, The Netherlands,
Grant Number 024.002.003.

1 Introduction

We consider the following sequential resource allocation problem. There is a (single) divisible
resource with an initial supply s, which has to be divided over n clients. Clients are visited
sequentially, in a predetermined order, identified as [n] := {1, . . . , n}. Each client has a
certain demand, which is the amount of the resource they want to receive from the supplier.
However, the demands are unknown to the supplier beforehand; it is only revealed when
arriving at the client. Instead, the probability distribution for every client is known to the
supplier in advance. Let Di for every client i ∈ [n] denote the random variable modelling
the demand of client i. We assume that the demand distributions for every client are
independent, discrete, and take a finite number of values. The initial supply s, the set
of demand distributions {Di : i ∈ [n]} for every client, together with a specific objective
(Section 2.1) define the Sequential Resource Allocation (SRA) problem. A solution
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7:2 Evaluating Fairness of Sequential Resource Allocation Policies

to the SRA problem comes in the form of a policy that determines the amount xi of the
resource that is allocated to client i ∈ [n] upon visiting that client, which may depend on the
allocation history of clients earlier in the sequence.

SRA serves as a basic online allocation problem with stochastic demand. In practice, the
problem arises with particular properties depending on the context. Several policies for SRA
have been proposed, see also Section 3. Among others, we mention Bassok and Ernst [1] who
are one of the first to consider the SRA problem, with the objective of maximizing revenue.
There are also settings where maximizing revenue or profit is not the main concern. For
instance, Lien et al. [2] consider a setting where the objective is to achieve equity among
clients, motivated by supplying regional and local food banks in Chicago in the United States.
Sinclair et al. [4] propose a model to make allocations close to the optimal offline Nash social
welfare solution, using a multicriteria objective approach. Sluijk et al. [5] consider a variant
of the SRA problem from a vehicle routing perspective, where they present a model that
finds a feasible solution that meets a fairness measure threshold. Manshadi et al. [3] study
the SRA problem motivated by allocating scarce medical supplies to hospitals during the
COVID-19 pandemic. They propose a policy, and show that, for the fairness measure they
consider, this policy matches theoretical upper bounds on what a policy can achieve in the
worst case.

It is a fact, however, that from a computational perspective, the size of instances solved
has been quite limited. For example, Lien et al. [2] evaluate instances with only up to six
clients, where Manshadi et al. [3] consider instances with only four clients. A salient feature
of all policies proposed for SRA is that the position of a client in the sequence may have a
profound impact on the amount of resource allocated to the client. Indeed, when considering
a setting where all clients are identical, i.e., have the same distribution Di = D, results
from Lien et al. [2] imply that for several policies the amount of resource allocated to clients
depends heavily on the position in which the client is served. This means that all existing
policies for SRA violate group fairness: the property that identical clients should be treated
equally. We propose a method that, by design, ensures that identical clients are allotted the
same amount of resource.

The main contributions of our paper can be summarized as follows.

Using an optimized implementation of existing methods, we provide an extensive compu-
tational study, enabling us to analyze several allocation policies for the SRA problem for
instances with over 20 clients.

We provide insight in how these policies behave and how the position of a client in the
sequence may affect how much of their demand of the resource gets allocated.

We provide a new, non-adaptive allocation policy, based on linear programming (LP), that
is explainable, transparent, and easy to operationalize in the online allocation process.
This policy incorporates group fairness constraints.

We also provide an adaptive variant of this new policy that performs well on individual
fairness measures.

The remainder of this article is structured as follows. In Section 2, we formally introduce
the problem and state the objectives we consider in this work. In Section 3 we revisit existing
allocation policies in more detail, while we also introduce our new LP-based policy. We
describe our extensive computational evaluation in Section 4 where we also discuss the results.
We conclude in Section 5.
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2 Notation and Terminology

In this section, we further introduce some notation and define the objectives for the SRA
problem. For a given client i ∈ [n] let µi and σ2

i denote the mean and variance of the demand
distribution Di, respectively. Let si = s −

∑i−1
j=1 xj denote the remaining available supply

upon visiting client i. An allocation is valid when xi ∈ [0, min{si, di}], i.e., we never allocate
more than the available supply or the demand of the client for the resource. When visiting
client i, the policy may, in order to determine the allocation xi, use:

the value of the initial supply s,
the observed realized demand di ∈ R+ of the visited client,
the realized demands d1, . . . , di−1 of the previously visited clients,
the realized allocations x1, . . . , xi−1 of the previously visited clients, and
the distributional knowledge of the demand of future clients, i.e., Di+1, . . . , Dn.

Given the allocation xi and the demand di of client i, the fill rate of this client is
defined as φi = xi/di. Naturally, the fill rate of any client is in the interval [0, 1]. We use
the notation φmin

i to denote the minimum fill rate of the clients 1 up to i, i.e., φmin
i =

min{φ1, . . . , φi}. Furthermore, we also use φ1 ∧ · · · ∧ φi to denote min{φ1, . . . , φi}. We
define φmin

0 = 1.
We assume that the initial supply, realized demands and allocations are from a discrete

set of values, as this is necessary for the computation of some existing policies in Section 3.
Without loss of generality, we then assume that these values are integer.

We use the supply scarcity R as a measure for the ratio of available supply with the
expected demand, defined as

R =
∑n

i=1 µi

s
. (1)

Our motivation is based on a setting where the initial supply is unlikely to meet the total
demand of all clients, i.e., when R < 1, which will typically occur in non-profit resource
allocation.

2.1 Objectives
We mainly focus on two objectives related to fairness of allocations, which are called ex-ante
and ex-post fairness by Manshadi et al. [3]. For the ex-post objective, the aim is to maximize
the expected minimum fill rate of all clients, i.e., maximize

E(d1,...,dn)∼(D1,...,Dn)[min{φi : i ∈ [n]}]. (2)

In contrast to maximizing the expected minimum fill rate, ex-ante fairness maximizes the
minimum expected fill rate of all clients, i.e.,

min{E(d1,...,dn)∼(D1,...,Dn)[φi] : i ∈ [n]}. (3)

When only a single allocation run is performed, only one realization of the demands is
observed. Then, the ex-post objective (2) may be the most appropriate objective, as this
ensures that for this single realization the minimum fill rate is maximum, in expectation.
However, when allocations are repeated, then (2) may yield too conservative allocations while
higher fill rates can be achieved. In this case, ex-ante fairness (3) may be more desirable to
achieve, both from the perspective of the policy designer, as well as from the perspective of
the client, as their expected fill rate over the repeated allocations is maximized. The existing
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7:4 Evaluating Fairness of Sequential Resource Allocation Policies

methods in the literature focus mainly on ex-post fairness. In the computational analysis
that we perform in Section 4, we will evaluate the existing policies as well as our new policy
on both the ex-post and ex-ante fairness objectives.

3 Policies

In this section, we give a detailed overview of existing allocation policies from the literature.
Furthermore, we introduce our new policies in Sections 3.5 and 3.6.

3.1 Optimal Expected Minimum Fill Rate Policy
Given full knowledge of the demand distributions of the clients, a policy that maximizes
the expected minimum fill rate, i.e., ex-post fairness, can be described by the following
recursive relation from Lien et al. [2]. Let Zi(si, φmin

i−1, di) denote the maximum expected
minimum fill rate for visiting all clients 1, . . . , n, given that the visited clients 1, . . . , i − 1
have a minimum fill rate φmin

i−1 and supply si is remaining when arriving at client i with
demand di. The optimal allocation policy can then be determined by solving the following
optimality equation, for any i ∈ [n − 1]:

Zi(si, φmin
i−1, di) = max

xi≤si∧di

Edi+1∼Di+1

[
φmin

i−1 ∧ xi

di
∧ Zi+1

(
si − xi, φmin

i−1 ∧ xi

di
, di+1

)]
. (4)

For the last node n in the sequence, we have

Zn(sn, φmin
n−1, dn) = φmin

n−1 ∧ sn ∧ dn

dn
. (5)

Then, the optimum expected minimum fill rate over the full sequence is given by

Fopt(s) = Ed1∼D1

[
Z1(s, 1, d1)

]
. (6)

This can be solved by dynamic programming, starting at the last client in the sequence
working in reverse order to the first client, filling a table Z with entries Zi(si, φmin

i−1, di) for
every i ∈ [n], si ∈ [s], di in the support of Di, and every possible fill rate φmin

i−1.
To apply this policy, the full table needs to be retained to look up the allocation for

every client during the allocation process, using the current history of allocations to previous
clients. In addition, it is necessary that the demand distribution as well as the allocations are
discrete, and the magnitude of the demand and supply levels directly influence the time and
space needed to compute the optimal policy. The amount of space needed to store the table
is of order O(n · s · ℓ3 · Dmax), while the computational time is O(n · s · ℓ3 · D2

max), where ℓ

is (maximum) number of demand levels of a client and Dmax is the maximum demand of
any client. In many cases, these complexities (in particular the space complexit) are so
high that the optimal policy can only be computed for small instances. Because of this,
several alternative policies are proposed that sacrifice optimality for improved time and space
complexity.

3.2 Optimal Forward Expected Minimum Fill Rate Policy
An alternative approach to designing a policy for the SRA problem is as follows. When arriving
at client i, we design a policy that maximizes the minimum fill rate of the clients i, . . . , n, i.e.,
we do not take the fill rates of the already visited clients 1, . . . , i − 1 into account. This is
also called the forward objective. The problem where the forward objective is maximized can
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be solved optimally using a similar approach as for finding the optimal expected minimum
fill rate in Section 3.1. When arriving at a client, the policy optimizing the forward objective
maximizes the expected fill rate over the current and future clients, i.e., the fill rates of
the already visited clients is not taken into consideration. The optimality equation is,
for i = 1, . . . , n − 1

Z⃗i
f (si, di) = max

xi≤si∧di

Edi+1∼Di+1

[
xi

di
∧ Z⃗i+1

f (si − xi, di+1)
]

, (7)

with for the last node n in the sequence

Z⃗n
f (sn, dn) = sn ∧ dn

dn
. (8)

This can also be solved by dynamic programming, where the table entries of Zf are filled
in reverse client order. Since the minimum fill rate for the previous clients is no longer a
parameter, this table can be stored in O(n · s · ℓ · Dmax) and filled in O(n · s · ℓ · D2

max) time.
Compared to the policy in Section 3.1, this policy requires significantly less time and space.

3.3 Two-Node Decomposition Heuristic

The two-node decomposition (TND) heuristic as proposed in the literature by Lien et al. [2]
is designed to maximize the expected minimum fill rate. At every client i ∈ [n], the allocation
is heuristically determined in two steps. First, the available supply is split in an allotment ŝi

that is available to solve the allocation problem for the current and next client in the sequence,
while the remaining supply is reserved for clients further in the sequence. The allotment is
proportional to the mean demand of the first two clients in the sequence relative to the total
mean demand of all unvisited clients, i.e.

ŝi = si
µi + µi+1∑N

j=i µj

. (9)

Second, the allotment is then used to determine an allocation for client i, based on its
observed demand di and the distributional knowledge of the demand of client i + 1. The
allocation is equal to

xTND
i = min{Ĥi(ŝi, di), φmin

i−1di} (10)

where Ĥi(ŝi, di) is an approximation of the optimal allocation in case there would only be
two clients i and i + 1 left. It is defined as

Ĥi(ŝi, di) = ŝi
di

di + m̃i+1 + δi+1
√

σi+1
, (11)

with

δi+1 = m̃i − m̃i+1

(m̃i + m̃i+1)/2 , (12)

where m̃i and σi denote the median and standard deviation of the demand of client i,
respectively. For the last client n in the sequence, the allocation is simply xn = min{sn, dn}.
For more details, we refer to the original paper of Lien et al. [2].

ATMOS 2025



7:6 Evaluating Fairness of Sequential Resource Allocation Policies

3.4 Projected Proportional Allocation Heuristic
Manshadi et al. [3] introduce the projected proportional allocation (PPA) heuristic. This
policy is designed to maximize ex-post fairness, and is based on the following idea. Suppose
that in an offline variant of the problem all demand realizations of all clients are known
a-priori. Then, the optimal (offline) allocation for every client i is

x∗
i = min

{
di, si

di∑
j∈[n] dj

}
. (13)

In the online setting, the future demand is unknown. The PPA allocation rule substitutes
the mean future demand as a heuristic policy, allocating

xPPA
i = min

{
di, si

di

di +
∑n

j=i+1 µj

}
. (14)

3.5 LP-Based Non-Adaptive Allocation Heuristic
In this work, we introduce a new, alternative, allocation policy using an LP-based approach.
The objective is to maximize ex-post fairness by maximizing the expected minimum fill rate.
The policy pre-assigns a single allocation value for each client, in order to keep the policy
compact. This can be modeled with the following program:

max
x1,...,xn

{∑
d1

· · ·
∑
dn

pd1,...,dn

[
x1

d1
∧ · · · ∧ xn

dn

]
: x1 + · · · + xn ≤ s

}
. (15)

Here, pd1,...,dn
is the probability that the scenario occurs that the n clients realize the

demands d1, . . . , dn. Note that the objective (as a sum of minima) is a concave function. It
can be modeled as a linear program, by introducing variables fd1,...,dn

for every “demand
scenario” that corresponds to each term in the objective. This yields the LP

maximize
∑

d1,...,dn

pd1,...,dn
fd1,...,dn

(16a)

subject to
n∑

i=1
xi ≤ s, (16b)

fd1,...,dn ≤ xi

di
∀i ∈ [n] ∀d1, . . . , dn, (16c)

xi ≥ 0 ∀i ∈ [n]. (16d)

Note that the number of variables depends largely on the number of scenarios, which can be
large when the number of clients and/or the number of demand realizations of the clients
is large. This is also the case for the optimal dynamic programming model. However, this
model can handle continuous allocations, i.e., allocations that are not limited to a discrete
set of values, and furthermore it is not sensitive to the magnitude of supply and demand
values. More importantly, this policy can incorporate group fairness. Indeed, when clients
with identical demand distributions are regarded as groups, this policy will allocate the same
amount of resource to each client in a group. Thus, there is an optimal solution to this model
where all clients from the same group will have an identical allocations.

An informal argument for this property is as follows. Suppose that there is an optimal
solution x where two clients i, j ∈ [n] with the same demand distribution have different
allocations in an optimal solution. Without loss of generality, assume that xi > xj . Then,



C. Hojny, F. C. R. Spieksma, and S. Wessel 7:7

we can construct another solution x′ where x′
i = x′

j = xj , and x′
k = xk for all k ∈ [n], k ̸= i

and k ̸= j which will have the same objective value, as the minimum fill rate will be identical
for allocation x and x′ in any demand realization. This allows for aggregation of these clients
in the model, ensuring faster computation times.

Suppose there are m groups (or types) of clients θ1, . . . , θm with n1, . . . , nm number of
clients, respectively. Then the aggregated model is as follows.

maximize
∑

d1,...,dm

pd1,...,dm
fd1,...,dm

(17a)

subject to
m∑

θ=1
nθxθ ≤ s, (17b)

fd1,...,dm
≤ xθ

dθ
∀θ ∈ [m] ∀d1, . . . , dm, (17c)

xθ ≥ 0 ∀θ ∈ [m]. (17d)

This makes the model significantly smaller when the number of groups is small, achieving
group fairness efficiently.

In addition, the allocation procedure is now simple: there is a single predetermined
allocation for every client, which is not only easily implemented when allocations take place,
but it is also explainable and easily communicated to clients.

3.6 LP-Based Adaptive Allocation Heuristic
The policy introduced in Section 3.5 can also be used as an adaptive policy by re-computing
the LP for the future clients after observing the demand of the current client. Thus, after
arriving at client i, the observed demand is di and the LP model is now adapted to only
include the current client with a deterministic demand di and all future clients with their
demand distribution, with the remaining supply si. The new solution yields an allocation xi

for the current client. Upon visiting the next client, the model is re-computed analogously.
The adaptive nature of this policy makes it more comparable to the other existing policies,

which are all also adaptive in nature. Note that this policy also violates group fairness.
This policy is expected to score higher on ex-ante individual fairness, as it can account for
uncertainty in the demand realizations throughout the client sequence. Furthermore, it
requires solving a linear program throughout the allocation process.

4 Computational Experiments

In order to evaluate the performance of the different policies described in Section 3 on
the various objectives, we have executed a large number of computational experiments. In
previous work, computational experiments were limited to considering only few clients. Lien
et al. [2] consider up to six clients, where Manshadi et al. [3] have instances with four clients.
While their experiments show that their heuristic policies perform well in comparison to
the optimal dynamic program, it is not clear whether this is intrinsic to their policies or a
consequence of the small number of clients in the instances. We therefore aim to provide a
more extensive computational analysis with significantly more clients.

In order to analyze the effects on client ordering, we evaluate the policies on instances
with up to 21 clients. For the optimal dynamic programming policy, this requires significant
optimization in the implementation in code in order to make it computationally feasible to
construct the dynamic programming table. The dynamic programing table must be filled in

ATMOS 2025



7:8 Evaluating Fairness of Sequential Resource Allocation Policies

reverse client order, but all entries in a “slice” of the table for a fixed client i can be computed
in parallel. Together with optimizing the memory layout of the dynamic programming
table, this allows for massive speedup in computation time when multiple cores or threads
can be utilized. A limiting factor remains the memory requirements, as the full dynamic
programming table needs to be stored to be used as a lookup table during the allocation
process.

The experiments are run on a computing cluster with Intel Xeon Platinum 8260 processors
at 2.40 GHz. Each processor has 24 threads and 256 GB available memory. The optimal
dynamic programming policy is computed in a parallelized implementation using 24 threads,
whereas all other policies are computed using a single thread. Policies requiring a linear
programming solver use Gurobi version 12.0.1. Our implementation is available at
https://doi.org/10.5281/zenodo.15825047.

4.1 Setup
We follow the general structure of generated instances used by Lien et al. [2]. We generate
instances with the following parameters.

The number of groups of clients of identical demand distribution is an element of {2, 3, 4}.
The total number of clients n, which is either small or large. Small instances have a total
number of clients of 14, 15, and 16 for 2, 3, and 4 groups of identical clients, respectively.
Large instances have 20 clients for 2 and 4 groups, and 21 clients for 3 groups.
The ordering of the groups of clients is specified under the Sequences column in Table 1.
The symbol CV↗ (CV↘, CV∼) refers to a setting where the coefficient of variation (CV)
is uniformly increasing (decreasing, alternating) with the position of the clients in the
sequence. A similar explanation applies to µ↗, µ↘, µ∼. The coefficient of variation is
defined as the ratio of the standard deviation σ to the mean µ, i.e., CV = σ/µ. For the
last two rows, the mean and coefficient of variation are matched as follows: clients with
the k-th largest µ have the k-th largest CV for any k, and vice versa. Each row in Table 1
therefore corresponds to 3 instances.
The interleaving of the groups, which is either separated or repeating. For example, in
an instance with 9 clients in 3 groups a, b, and c, the separated interleaving yields the
sequence aaabbbccc, while the repeating interleaving yields abcabcabc.
The initial supply scarcity R ∈ {0.5, 0.75, 1, 1.25, 1.5}, which is the fraction of the total
expected demand

∑n
i=1 µi that is available as initial supply of the resource.

The total number of instances that follows from this setup equals 3 · 2 · 30 · 2 · 5 = 1800. For
each of these instances, 250 simulations are performed on which every allocation method is
evaluated. The demand distributions of all clients follow a discretized gamma distribution
with mean µi and coefficient of variation CV, of which the domains are specified in Table 1.
The number of demand levels, i.e., the size of the support of the demand distribution, is
fixed to be 21.

For the adaptive version of the LP-based method we only evaluate instances with n = 14
or n = 15 clients, due to computational limitations.

4.2 Results
As our aim is to evaluate the policies with respect to their performance on the two objectives,
we choose to not report computation times, but restrict ourselves to the following general
comment. As expected, the optimal dynamic programming policy is the most time-intensive

https://doi.org/10.5281/zenodo.15825047
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Table 1 Group ordering scenarios.

µ CV Sequences

50 0.5–1.5 CV↗, CV↘, CV∼

150 0.5–1.5 CV↗, CV↘, CV∼

50 0.75–1.25 CV↗, CV↘, CV∼

150 0.75–1.25 CV↗, CV↘, CV∼

50–150 0.5 µ↗, µ↘, µ∼

50–150 1.5 µ↗, µ↘, µ∼

75–125 0.5 µ↗, µ↘, µ∼

75–125 1.5 µ↗, µ↘, µ∼

50–150 0.5–1.5 CV↗, CV↘, CV∼, large CV with large µ

50–150 0.5–1.5 CV↗, CV↘, CV∼, large CV with small µ

policy – an instance with 21 clients takes roughly 2 hours to solve on 24 threads, which
is a significant computation time. Furthermore, this policy requires more than 100 GB of
memory space to store the dynamic programming table.

We now discuss the performance of the policies on the two objectives. Tables 2 and 3
summarize average scores on the ex-post and ex-ante objectives for the evaluated policies: the
optimal dynamic program (Opt), the optimal forward dynamic program (Fw), the two-node
decomposition policy (TND), the projected proportional allocation policy (PPA), our non-
adaptive LP-based policy (Non-adaptive) and our adaptive LP-based policy (Adaptive). All
instances are grouped by supply scarcity R < 1, R = 1, and R > 1, as well as by the number
of clients n. The ex-post fairness performance of the TND heuristic and our non-adaptive
policy decreases when the number of clients increases, whereas the other policies retain
similar performance for different number of clients. Wile our non-adaptive policy clearly
does not perform well on the ex-post fairness objective compared to the other policies, it
does perform well on the ex-ante fairness objective, especially with supply scarcity R < 1
where it outperforms all other methods. The adaptive variant of our policy is competitive
with the other allocation policies on both ex-post and ex-ante fairness.

Figure 1 shows for all instances n = 21 clients and supply scarcity R = 0.5 and R = 1
the distribution of the fill rate of each client in the sequence. For each policy, a box plot
indicates the maximum and minimum fill rate, as well as the quantiles and the average fill
rate, indicated by a green line. It can be observed that the methods vary in variance of fill
rates allocated, where the optimal dynamic program has the lowest variance when supply is
scarce. Our non-adaptive policy achieves a fill rate of 1 often for any client in the sequence,
however with a high variance between allocation runs. It is also clearly visible that, for the
optimal dynamic program, the last client in the sequence will in many cases achieve a high fill
rate due to conservative allocation decisions for clients earlier in the sequence. Similar plots
for instances with a different number of clients, which are omitted due to space limitations,
show an identical trend.

To further evaluate the ex-ante individual fairness objective, we analyze the average
fill rate of every client in the sequence and take the minimum. To compare the overall
performance of the methods, we summarize the results by grouping the problem instances on
number of clients and supply scarcity. Figure 2 displays the average fill rate of each client in
the sequence for all instances of n = 15 clients for supply scarcity R > 1, R = 1, and R < 1,
respectively. Although omitted due to space limitations, the results for n ∈ {14, 20, 21} show

ATMOS 2025



7:10 Evaluating Fairness of Sequential Resource Allocation Policies

Table 2 Ex-post fairness.

Scarcity n Opt Fw TND PPA Non-adaptive Adaptive

R > 1 14 0.9581 0.9434 0.8621 0.9551 0.5386 0.9504
15 0.9611 0.9464 0.8666 0.9572 0.5199 0.9534
16 0.9616 0.9480 0.8594 0.9591 0.5066
20 0.9683 0.9560 0.8339 0.9647 0.4827
21 0.9704 0.9585 0.8390 0.9685 0.4729

R = 1 14 0.8103 0.7724 0.6963 0.7894 0.3936 0.7679
15 0.7999 0.7638 0.6873 0.7816 0.3783 0.7498
16 0.8045 0.7690 0.6788 0.7825 0.3696
20 0.8157 0.7796 0.6505 0.7889 0.3514
21 0.8099 0.7764 0.6439 0.7811 0.3433

R < 1 14 0.5141 0.4630 0.4373 0.4747 0.2443 0.4154
15 0.5064 0.4539 0.4272 0.4669 0.2362 0.4031
16 0.5071 0.4537 0.4226 0.4669 0.2312
20 0.5117 0.4544 0.4022 0.4660 0.2180
21 0.5077 0.4477 0.3992 0.4609 0.2144

Table 3 Ex-ante fairness.

Scarcity n Opt Fw TND PPA Non-adaptive Adaptive

R > 1 14 0.9691 0.9812 0.8631 0.9797 0.9214 0.9769
15 0.9735 0.9818 0.8680 0.9798 0.9195 0.9780
16 0.9723 0.9827 0.8603 0.9812 0.9151
20 0.9764 0.9871 0.8343 0.9847 0.9212
21 0.9792 0.9874 0.8393 0.9858 0.9195

R = 1 14 0.8490 0.9143 0.7002 0.9116 0.8652 0.8862
15 0.8444 0.9082 0.6921 0.9067 0.8591 0.8803
16 0.8441 0.9137 0.6810 0.9100 0.8564
20 0.8518 0.9221 0.6514 0.9149 0.8629
21 0.8488 0.9204 0.6449 0.9132 0.8612

R < 1 14 0.5694 0.6776 0.4412 0.6370 0.7354 0.6340
15 0.5607 0.6655 0.4316 0.6352 0.7308 0.6494
16 0.5589 0.6657 0.4251 0.6351 0.7277
20 0.5622 0.6669 0.4031 0.6346 0.7289
21 0.5576 0.6615 0.4002 0.6342 0.7263
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an almost identical trend. In situations where supply is not scarce, i.e., when R ≥ 1, the
non-adaptive policy performs significantly worse on ex-ante individual fairness. However,
when R < 1, which is often the case for applications for this problem, our method significantly
outperforms existing methods on ex-ante individual fairness. Moreover, it can be seen that
for all adaptive policies that the average fill rate of a client heavily depends on the place of
the client in the sequence, whereas our non-adaptive policy achieves a much more equal fill
rate for every client in the sequence. From a fairness perspective, the sequencing of customers
should not impact their fill rate and our policy may be beneficial in some applications.

Let us now discuss to what extent the order of the clients impacts the allocation. For
the ex-post objective, when the supply is scarce (R < 1), all policies perform best when
the clients are ordered by decreasing coefficient of variation. This confirms the results by
Lien et al. [2], and our computational analysis shows that this also extends to instances
with significantly more clients. The TND heuristic, however, performs best on instances
where the coefficient of variation is constant and small and where the mean demand of the
clients decreases in the order of the sequence. When R ≥ 1, all policies perform best when
the coefficient of variation is constant and small, as in this case a fill rate close to 1 can
be achieved for many clients. For the ex-ante objective when R < 1, the forward optimal
dynamic program and our policies perform best when the coefficient of variation is high for all
clients. The PPA heuristic and the optimal dynamic program perform best when the mean
demand is decreasing and the coefficient of variation is high. The TND heuristic performs
best on the ex-ante objective when the mean demand is decreasing and the coefficient of
variation is low for all clients.

5 Conclusion

In this work, we have conducted an extensive computational study on several allocation
policies for the sequential resource allocation problem. While several objectives can be used
to design a policy, we focus on maximizing fairness in several ways. The main focus is on
maximizing expected fill rates of the clients, which can be done in an ex-ante or ex-post
fashion. We add results on computational experiments to the existing body of literature on
sequential resource allocation, by evaluating significantly larger problem instances with up
to 21 clients. From these results, we confirm that existing heuristic methods perform well on
the ex-post and ex-ante fairness objective, also for large instances.

We additionally introduce a new allocation method based on a linear program, applied in
a non-adaptive and adaptive fashion. The non-adaptive policy can be a desirable property in
certain applications where dynamic allocation decisions are either not possible or not desired.
Furthermore, the non-adaptive policy is explainable and easily operationalized as it retains
a single allocation value for every client. The policy also allows the policy designer to also
include group fairness as an additional constraint on the allocations of the resource; our
method ensures that clients with the same demand distribution are assigned equal allocations.
From computational evaluation, it can be seen that this new allocation policy performs worse
on the ex-post fairness objective, whereas it outperforms existing methods on ex-ante fairness
when the supply of the resource is scarce. Furthermore, the average fill rate is much more
equal for all clients in the sequence compared to any of the methods, where effects of position
in the sequence are clearly noticeable.

For further work, it would be possible to explore whether our new method can be adapted
to further explore the trade-off between ex-post and ex-ante fairness. For example, pre-
computing multiple possible allocation values for every client that can be used based on
the realized demand during the allocation process possibly increases ex-post fairness, which
makes the policy in between the non-adaptive and adaptive variant introduced in this work.

ATMOS 2025
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(a) Fill rate distribution of clients for all instances with R = 0.5 and n = 21.
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(b) Fill rate distribution of clients for all instances with R = 1.0 and n = 21.

Figure 1 Distribution of fill rate of individual clients for the large size instances.
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(a) Average fill rate when R > 1.
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(b) Average fill rate when R = 1.
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(c) Average fill rate when R < 1.

Figure 2 Average fill rate per client in the sequence of all tested instances with n = 15, split on
supply scarcity.
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