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—— Abstract

The Target Visitation Problem (TVP) combines the Traveling Salesman Problem and the Linear
Ordering Problem, and thus serves as a natural model for route planning applications where both
the travel costs and the order of the sites to visit matter. More precisely, in addition to the costs
that apply for the selected links connecting two subsequently visited sites, the relative urgency of
visiting one site before another is quantified and taken into account. In this article, we present
refined integer linear programming formulations for the TVP, along with clarifications and extensions
regarding the description of the polytopes associated with their feasible solution sets by a minimal
set of linear equations and facet-defining inequalities. The practical effectiveness of exploiting the
proposed improvements by means of a branch-and-cut algorithm is demonstrated in a computational
study. In addition, we report the optimal values for some previously unsolved instances.
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1 Introduction

In the Target Visitation Problem (TVP), the task is to determine an ordering (permutation)
of a set of target locations (sites) that mazimizes the difference between the total sum of
pairwise rewards p;; € R, i # j, obtained when ranking a site ¢ (anywhere) before another site
j, and the total sum of pairwise costs c;; € R paid when ranking sites ¢ and j consecutively.
Considering a permutation as a site-traversal order, the rewards p;; may be interpreted
as the strength of the preference of visiting site ¢ before site j while the costs c;; may
reflect e.g. the traveling distance from 4 to j. Figure 1 displays which rewards and costs
effectively contribute to the objective value of an example ordering of five sites, and a more
formal problem definition is given at the beginning of Section 2. As this illustrates, the
TVP is a combination (and generalization) of the Linear Ordering Problem (LOP) and the
(Weighted) Asymmetric Hamiltonian Path Problem (AHPP) in a complete graph. With
only slight modifications, one may also consider it as a combination of the LOP and the
(Weighted) Asymmetric Traveling Salesman Problem (ATSP) [4, 5]. By choosing sufficiently
high rewards, it may further serve as a proxy for the ATSP with precedence constraints.
Moreover, each of these related combinatorial optimization problems is well-known to be
strongly N'P-hard whence so is the TVP [5, 6].

The TVP is a natural model for route planning problems where both the total travel
costs and the order of the visited sites are of (potentially competing) interest. A common
scenario is that the demands of supply (urgencies) and the supply times between locations
need to be juxtaposed in opposition, like in the seminal application with unmanned aerial
vehicles (drones) in [4]. This includes particularly the scheduling of rescue or relief missions

© Sven Mallach;
37 licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 8; pp. 8:1-8:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:sven.mallach@cs.uni-bonn.de
https://orcid.org/0000-0001-5335-0678
https://doi.org/10.4230/OASIcs.ATMOS.2025.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

8:2

Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

e
RO

Figure 1 An example permutation (Hamiltonian path) of five sites indicating which rewards and
costs contribute to its respective objective function value in terms of the TVP.

in disaster areas, the planning of town-cleaning or snow-plowing services [5], as well as
further applications in transportation where the route sequence is supposed to reflect visiting
preferences beyond the shortest distance or travel time, for instance to integrate an additional
route-internal pickup and delivery as considered e.g. in [2].

Since its introduction in 2004 by Grundel and Jeffcoat [4] who addressed the problem
with a local search approach, the TVP has mainly been studied in the context of integer
programming and polyhedral combinatorics by Hildenbrandt, especially in his PhD thesis [5]
and a related article [6]. In the dissertation, he also evaluated several heuristics. Furthermore,
there is a semidefinite programming relaxation for the TVP by Hungerldnder [7] as well as
further heuristics by Bldzsik et al. [2] and Arulselvan et al. [1].

In this work, we first present three integer programming (re)formulations for the TVP
which improve on their relatives from [5, 6] in terms of continuous relaxation strength,
preciseness in characterizing TVP solutions by means of compact constraint sets, and
solution times. An accompanying analysis of the impact of certain equation and inequality
classes provides a tidied-up dominance relation between candidate constraints that enforce
a consistent permutation or link different variable subsets. Then, we present revised and
extended results regarding the description of the polytopes associated with the proposed
formulations, i.e. the convex hull of the vectors describing their feasible solutions, by means of
a minimal set of linear equations and facet-defining inequalities. In an experimental study, we
demonstrate the practical effects of our refinements in terms of solving the formulations with
a branch-and-cut algorithm, and we report the optimal values for some previously unsolved
instances. Besides that, we draw relations to the Asymmetric Betweenness Problem and
the Quadratic Linear Ordering Problem which allow to translate certain structural results
between canonical integer programming formulations for these problems and for the TVP.

This paper is organized as follows. In Section 2, we first provide a more formal definition
of the TVP, we recall the two primary integer programs proposed in [5, 6], and we briefly
address further aspects of closely related work. We then present our refined formulations in
Section 3, along with accompanying results on their relaxation strength and the necessity of
certain constraint sets. Our polyhedral results are the subject of Section 4, and we report on
our computational experiments in Section 5. Finally, a brief conclusion is given in Section 6.

2 Preliminaries and Related Work

Let n € N be the number of target sites to be visited in the TVP and let II,, be the set of
all permutations of [n] == {1,...,n}. A permutation = € II,, is here treated as a bijective
function that maps each site ¢ € [n] to its position 7 (i) € [n], and where we conversely denote
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by 7~1() the site that is placed at the position i € [n]. The objective function of the TVP
may then be formally written as

n—1 n n—1
max y > ProtmiG) T D Crtin )y
i=1

i=1 j=i+1
or likewise as

max bi; — Cij-

>

I,
S gl @) < ()

>

i.g€mlim(G)=m(i)+1

As will become apparent in the following, the latter variant is particularly suited to be
implemented by means of common binary decision variables in an integer linear programming
(ILP) formulation. Since such formulations and accompanying polyhedral considerations
are the central subject of this work, we mainly concentrate the exposition of the prevalent
literature on the seminal (and so far, in all conscience, not otherwise resumed) research by
Hildenbrandt [5, 6]. Specifically, he presents several integer programs for the TVP, two of
which are in the focus of his investigations as well as of this paper.

The first, major, model by Hildenbrandt is called TVP-HP, and it combines the central
ingredients of known formulations for the AHPP and the LOP in a canonical way.

n

n—1 n n
max > Y Py + il —yi)) = Y ey (TVP-HP)
i=1 j=it1 i=1 j=1,j#i
s.t. Z Z zij=n—1 (1)
i=1 j=1,j#i
Z xi; <1 for all i € [n] (2)
J=1j#i
n
Z xi; <1 for all j € [n] (3)
i=1,5%i
Yij +Yjk — Yie < 1 for alli,j,k € [n]:i<j<k (4)
—Yij — Yjk + Yixr <0 foralli,jken]:i<j<k (5)
Tij —Yi; <0 forall i,j € [n] 19 < (6)
Tjs+yi; <1 foralli,j € [n]:i<j (7)
2 >0 foralli,je[n]:i#£j (8)
xy; € {0,1} foralli,j € [n]:i#j (9)
yi; € {0,1} foralli,jen]:i<y (10)

In this light, TVP-HP involves (AHPP) variables z;;, for i,j € [n], ¢ # j, where z;; = 1
if m(j) —w(i) =1 (i.e., site j is visited immediately after site ¢) and z;; = 0 otherwise, as
well as (LOP) variables y;;, for 4,5 € [n], i < j, where y;; = 1 if 7(i) < n(j) (i-e., site j is
visited anytime after site i) and y;; = 0 if 7(j) < (7). Assuming that the AHPP variables
take on binary values, the constraints (1)—(3) reflect that n — 1 immediate successor relations
(“edges”, when considering the permutation as a path) are established while each site has at
most one successor and at most one predecessor. Likewise, assuming that the LOP variables
take on binary values, the three-di-cycle inequalities (4) and (5) are known to be sufficient in
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order to uniquely determine a permutation 7 € II, [3]. In [5, 6], Hildenbrandt points out that
the linking of the two variable sets by means of inequalities (6) and (7) excludes disconnected
subpaths (respectively subtours) from the feasible set, i.e., they ensure that the binary values
of the AHPP variables are in one-to-one correspondence with a directed Hamiltonian path. In
the original presentation of TVP-HP in these references, the constraints (7) are nevertheless
missing despite they are hence necessary. At the same time, they are included in the list of
facet-defining inequalities for the related polytope that Hildenbrandt describes explicitly for
n = 4 and they also have been recognizably included when carrying out his computational
experiments with TVP-HP.
The second model in Hildenbrandt’s focus is an extended formulation, called TVP-E.

n—1 n n n
max Z Z (Pijyij + psi(1 = yij)) — Z Z CijTij (TVP-E)

i=1 j=i+1 i=1j=1,ji
s.t. (1)—(6), (8)—(10)
bjik + brji +bjei +yij =1 for all i,j5,k € [n] : i < j,k # {i,5} (11)
Tij — bijk — brij <0 foralli,j,ken]:i£j#k#i (12)
bik; > 0 foralli,j ke n]:i£j#k#i (13)
bi; € {0,1} foralli,jken]:i#j#k#i (14)

Specifically, he obtains TVP-E from TVP-HP by extending the latter in two steps.
First, he introduces the additional variables b;y;, for all ¢, j, k € [n], |{7, ], k}| = 3, with the
interpretation that b;r; = 1 if m(i) < w(k) < 7(j) (i.e., k is ranked between ¢ and j while 4 is
ranked before j) and b;; = 0 otherwise. Second, he appends the constraint sets (11) and (12)
to link these new variables to the AHPP respectively LOP variables. Thereby, the intuition
behind the inequalities (12) is that if site j is visited immediately after site ¢, then any other
site k must be visited either before or after both ¢ and j. Notably, the constraints (11) (only)
ensure that, if 7(j) < (i), then any other site & must be placed either before, in between,
or after this accordingly ordered pair. The reverse direction, i.e., bjji + bgi; + bip; = 1 if
(i) < m(j), is however missing.

Indeed, solutions where all the six b-variables associated with a fixed triple of sites
i,5,k € [n], i < j <k, are zero, are thus verifiably feasible for TVP-E (in addition to those
where these variables receive values that are consistent with the ordering expressed in the
LOP variables). Consequently, a feasible solution to the TVP unintendedly corresponds
to more than one feasible solution of TVP-E (which we will cure in Section 3). Since a
feasible TVP solution is correctly (and unambiguously) encoded in the integral AHPP- and
LOP-variables though, and since the b-variables do not affect the objective function, one may
still derive optimum solutions from TVP-E. Apart from that, the inequalities (7) are again
not included in the original presentation of TVP-E in [5, 6], and in this case they are indeed
negligible as they are implied by (11) and (12).

Even despite the unintended additional solutions, the upper bound on the optimal value
obtained when solving the continuous relaxation (i.e., the linear programming, or short LP,
relaxation that results from neglecting all integrality restrictions) of TVP-E is provably
at least as strong as the one obtained when solving the relaxation of TVP-HP, and is
experimentally observed in [5, 6] to be usually significantly stronger. Nevertheless, TVP-E
has not been further considered as an option for a branch-and-cut approach in these references,
due to the reported high solution times of its relaxation. As will be demonstrated in the
following sections, these solution times can however be improved by a careful reformulation.



S. Mallach

Another observation that rather appears as a detail in [5], and that will play an important
role for the refinement of TVP-HP, is that the three-di-cycle inequalities (4), (5) can be
extended in the here given common context with the AHPP-variables. These extended
three-di-cycle inequalities can be written as follows:

Yij +Yje — Yik + x5 < lforalli,jken]:i<j<k (15)
—Yij — Yjk + ik +xi; <O0foralli,jken]:i<j<k (16)
Yij +Yje — i +xp; < lforalld, jken]:i<j<k (17)
—Yij — Yjk + Yik + T <O0foralli,j,k €[n]:i<j<k (18)
Yij +Yje — Vi T2 < Lforalli,jken]:i<j<k (19)
—Yij — Yjk + Yik + ok <Oforalli,jken]:i<j<k (20)

For completeness, we remark that Hildenbrandt describes a further model that combines
the notion of a subsequently visited pair of sites and other sites ranked (somewhere) after
the respective pair, as well as a formulation based on distance variables. However, these
formulations were found to be significantly inferior to TVP-HP and TVP-E in [5], whence
we refer to this reference for further details. Finally, adapted formulations for the case where

the TVP is rather considered as a combination of the LOP and the ATSP are stated in [1, 5].

3 Three Refined Integer Programming Formulations for the TVP

In this section, our efforts are directed to derive integer programming formulations for the
TVP that fulfill two requirements. The first one is that the feasible solutions of a formulation
are in one-to-one correspondence with those of the TVP, and, to achieve compactness and
strength at the same time, the second one is that a formulation solely consists of equations
and inequalities which take part in a minimal description of the polytope that is given as
the convex hull of the (incidence) vectors describing these solutions. The latter condition
subdivides into the two necessities that each equation must be part of a minimum equation
system for the respective polytope and that every inequality must induce a facet of it. In total,
we present three according formulations which are subject to an experimental comparison in
Section 5. Besides that, the accompanying analysis of the impact of certain equation and
inequality classes serves as an intermediate step to the polyhedral results in Section 4.

As a first formulation, we propose TVP-XY, which is obtained from TVP-HP by replacing
the three-di-cycle inequalities (4) and (5) with their extended pendants (15)—(20).

n—1 n n n
max Z Z (Pijyis + pji(1 = yiz)) — Z Z CijTij (TVP-XY)
i=1 j=i+1 i=1 j=1,j#i

s.t. (1)=(3), (6)-(10), (15)—(20)

This comparably small change is motivated as follows. In [5, 6], Hildenbrandt defines the
polytope

n

P}y == conv {(x,y) € {0, 1}2(3)"'(2) : (z,y) satisfies (1)—(7) }

(related to TVP-HP) whose vertices are in one-to-one correspondence with the incidence
vectors of the feasible solutions to the TVP, expressed in AHPP- and LOP-variables. Also, the
equation (1) has been identified as a minimum equation system for P}y, and the inequalities
(2), (3), (6) and (7) have been identified as facets of P}, n > 4. However, the inequalities (4)
and (5) do not define facets of PJ,, n > 4, whereas the inequalities (15)-(20) do (facet class
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29 in [5]). Their exchange thus ensures the fulfillment of the second requirement mentioned
above. In addition, we propose and explicitly state TVP-XY to foster its consideration
and evaluation as a fundamental formulation on its own, which is also supported by our
computational results in Section 5. As opposed to that, in [5, 6], the replacement of (4)
and (5) by (15)—(20) is rather treated as optional, and the resulting computational effect,
especially regarding the upper bounds obtained from the continuous relaxation, cannot be
sufficiently deduced respectively distinguished from other effects that are subject to TVP-HP
simultaneously.

While all constraint classes of TVP-XY take part in a minimal description of Pfy,, it is
noteworthy that (as opposed to TVP-HP) TVP-XY is yet not irreducible in the sense that its
feasible solutions remain in one-to-one correspondence with those of the TVP when removing
inequalities (2) and (3). This is formally recorded in Proposition 1. In other words, these
inequalities are kept in TVP-XY only to strengthen its continuous relaxation. Moreover, by
construction, the latter provides an upper bound on the optimal value that is at least as
strong as the one of the continuous relaxation of TVP-HP.

» Proposition 1. Suppose that (x,y) is binary and satisfies (1), (6), (7), and (15)—(20).
Then, (x,y) is feasible for TVP-XY, i.e., it satisfies (2), (3) as well.

Proof. By the integrality of y and the extended three di-cycle inequalities (15)—(20), the
position of each site ¢ € [n] is given by 7(i) = 1+ 3 )¢y pei Ybi + 2Zpepmyicr(l — Yik)-
W.lo.g., let i be the site at position 7(i) € {1,...,n — 1}, and let k be its successor, i.e.,
n(k) = m(i) + 1. Then y;, = 1, and for any other site j € [n|, j # {i, k}, either y;; = 0
(respectively y;; = 1 if j < i) or y;r = 0 (respectively yx; = 1 if k& < j), but not both.
If i < j < k, it thus follows directly from (16) that x;; = 0, otherwise the same result
is established by another instance of (15)—(20) w.r.t. the matching index order. The only
variable that appears in (2) and that is not implied to be zero like this is 2%, hence (2) is
satisfied. Finally, if 7(i) = n, then z;; = 0 for all j € [n], j # {i, k}, due to (6) and (7), so
(2) is satisfied again. The proof for (3) is analogous. <

Our second and third formulations, called TVP-XYB and TVP-XYBR, respectively,
relate to TVP-E, i.e., reflect an extended formulation with asymmetric betweenness variables.
Since TVP-E does not fulfill the first requirement stated at the beginning of this section, we
first alter it to TVP-XYB which reads as follows:

n—1 n n n
max > > iy +u(l—y) =Y Y ey (TVP-XYB)
i=1 j=it1 i=1j=1,j7i
St brij + bikj + bijie + brji + bjri +bjir =1 foralli,jken]:i<j<k (21)
biji + brij + bikj — yi; = 0 for all 4,5,k € [n] 1 i < j, k # {i,j}  (22)
(1)=(3), (8)=(10), (12), (13)

Specifically, the addition of the equations (21) ensures that for each triple of sites i, j, k,
1 < j < k, exactly one of their six possible orderings is enforced. In addition, equations (22)
ensure b;jx + bgi; + bi; = 1 if 7(4) < w(j) which was the missing part in TVP-E. When
combined with (21), they imply equations (11), and that all b-variables are enforced to be
binary if all the y-variables are (see also Theorem 4 below) whence we omit (14).

Since the feasible solutions of TVP-XYB are thus in one-to-one correspondence with
those of the TVP, we now define the associated polytope given by the convex hull of the
respective incidence vectors involving components for all three variable classes. To emphasize
that it is actually not precisely the same polytope that Hildenbrandt defined in [5, 6] related
to TVP-E, which he called Pfrv;, we call the here considered polytope Pr which is:
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Plyg = conv {(m,y,b) € {0, 1}2(;)+(;)+6(g) : (x,y,b) satisfies (1)—(3), (12), (21)7(22)}

Since Pl is defined via integral vectors, the (extended) three-di-cycle inequalities could
be part of its definition but may also be omitted as a consequence of Theorem 3 below. For
the same reason and in fulfillment of the second requirement stated at the beginning of this
section, they are also not part of TVP-XYB. The equations (21) are added to TVP-XYB
because they are part of a minimum equation system for Pryyp, m > 4, as is shown in
Theorems 7, 8 (Corollary 9), and Theorem 11 in Section 4. In addition, it will become visible
from the proofs of the Theorems 2 and 3 that they have, in combination with equations (11),
or likewise with equations (22), a crucial impact on the strength of TVP-XYB, respectively
its continuous relaxation. Further, the inequalities (2), (3), and (12) are all facet-defining
for P}y (with a special exception regarding (2) and (3) for n = 4), see also Theorems 13
and 14 in Section 4. However, inequalities (2), (3) are again dispensable in terms of retaining
the one-to-one correspondence with the feasible solutions of the TVP, since an analogue of
Proposition 1 is readily at hand for TVP-XYB given Theorems 2 and 3 whose proofs do not
rely on (2) and (3). So again these inequalities are kept in TVP-XYB only to strengthen its
continuous relaxation.

» Theorem 2. Let (xz,y,b) be feasible for the continuous relazation of TVP-XYB and n > 4.
Then, for alli,j € [n}, 1< 7, Tij — Yij < 0 and Tji +yi; < 1.

Proof. We have z;; < b;j5+bgij < y;; where the first relation follows from (12) and the second
follows from (22). Moreover, (22) and (21) together imply the equation (11). Combining the
latter with (12) again, we obtain xj; < bjik + brji <1 — y;5. <

» Theorem 3. Let (xz,y,b) be feasible for the continuous relazation of TVP-XYB and n > 4.
Then (x,y,b) satisfies the extended three-di-cycle inequalities (15)-(20).

Proof. Fix some i, j, k € [n] where i < j < k. We prove the statement explicitly for (15) and
(16) while the other cases are analogous. To this end, we first combine the instances of (22)
respectively (11), depending on the index order, as follows:

brij + bijk + bikj = Yij
bijk + Djki + bjik = Yjk
brij + bjki + bgji =1 —yik

20kij + 2bijk + 2bjki + bing + bjik + brji =1+ vi5 + Yk — Yik

Substituting, in this sum, for the reordering b;x; + bjir + brji = 1 — brsj — bijr — bjri of
(21), we obtain the “base equation” bkij + bijk’ + bﬂﬂ' =Yij + Yjk — Yik-

Then, we substitute for b;r; based on accordingly resolving the equation bjr + byji +
bjki +yi; = 1 (which is (11) for ¢ < j and k) and rearranging terms. This gives

brij + bije +1 = yij = yij + Yjk — Yik + bjik + brji
————— ————
<yij >Zji

Due to (12), the right-hand side of this equation is at least as large as y;; + yjr — Yik + Tji,
which is the left-hand side of (15), and clearly, the left-hand side of the equation is smaller
than or equal to one.

ATMOS 2025



8:8

Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

To show that (16) is satisfied as well, we first negate the base equation and substitute
again for b;i; as above. This gives

bjik +brji =1+ yij = —Yij — Yjk + Yir + brij + bij -
~——— —_——

<l-yij >

Again by (12), we have —bpij — biji < —xyj, i.e., the right-hand side of the equation is as
least as large as —y;; — yjk + Yir + 245, which is the left-hand side of (16), while the left-hand
side of the equation is clearly non-positive. |

A further impression on the strength of the equations (21) and (22), or (21) and (11),
becomes apparent when considering a natural relation between TVP-XYB (TVP-E) and
formulations for the Asymmetric Betweenness Problem as well as the Quadratic Linear
Ordering Problem [8]. This relation is given by the correspondence b, = y;;y;x for all
i,j,k € [n] : i # j # k # 1, that applies to every feasible solution (here, y;; is to be replaced
by 1 —y;; if j < ¢ and y,i is to be replaced by 1 — yg; if & < j). In this respect, the
equations (21) and (22), respectively (21) and (11), imply that the b-variables are equal to
the associated product term when the y-variables take on binary values. This follows directly
from the following result (a proof can be derived from an analogue result in [8]):

» Theorem 4. Let (z,y,b) be a feasible solution to the continuous relaxation of TVP-
XYB. Then, for oll i,j,k € [n], |{i,4,k}| =3, it holds that bijr < yij, bijx < Yk, and
Yij + Yjk — bijr <1

Finally, we derive our third formulation TVP-XYBR from TVP-XYB which has less
variables and is more amenable to a cutting plane approach. To this end, we employ the
equations (21) and (22) to project out the variables b;jx, brji, bjki, and bj;. More precisely,
for each selection of 4, j,k € [n], i < j < k, we first build the intermediate set of linearly
independent equations which imply (21) and (22), see also [6, 8]:

brij + bikj + bijr —yi; = 0 foralli,jken]:i<j<k
bjit + bikj + bijr — yir = 0 foralli,j,k € [n]:i<j<k
bjik + bjki + bijk — yjr = 0 foralli,j,k€[n]:i<j<k
brji + bjri + bjir +yi; = 1 foralli,j,k€n]:i<j<k
Then, we resolve them for the aforementioned variables.
bijk = —brij — bikj + yij foralli,j,ken]:i<j<k
bjik = brij — Yij + Yik foralli,j,k € [n]:i<j<k
bjki = bikj — Yik + Yjk foralli,jik€n]:i<j<k
brji = 1 —Yjk — brij — b foralli,j,ken]:i<j<k

TVP-XYBR is then obtained from TVP-XYB by eliminating equations (21) and (22), by
substituting each of the aforementioned variables with the respective right-hand side in the
remaining constraints of TVP-XYB, and by adding inequalities to enforce the non-negativity
of these right-hand sides which gives (22a)—(22d).
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n—1 n n n
max Z Z (Pijyi; + pji(1 — yijz)) Z Z Cij%ij (TVP-XYBR)
=1 j=i+1 i=1 j=1,j#4
n n
s.t. Z Z Ty =n—1
i=1 j=1,j%#i
n
Z zy; <1 for all ¢ € [n]
=1,
Z zy; <1 for all j € [n]

i=1,j#i
brij + birj; —yi; <0 for all 7,45,k € [n] i<j<k (22a)
_bkij + Xij — Yik <0 for all 4,4,k € [TL] i<j<k (22b)
—bikj + Tik — Yk <0 foralli,jken]:i<j<k (22¢)
bkij +bik; +yi <1 for all 7,4,k € [’I’L] i<ji<k (22d)
Zij + bikg —yi; <0 foralli,jken]:i<j<k (12a)
Tk — bikj — brij +Vij — Vi <0 for all 7,4,k € [n] i<ji<k (12b)
Tji + Yij + Yjk — Yik + binj < 1 foralli,jken]:i<j<k (12¢)
Tik + Yik — Yjk — Yij + brij <0 foralli,jken]:i<j<k (12d)
Thi — bkij — bikj +Yik — Yk <0 for all 4,4,k € [n] <<k (126)
Ty + brij +yie <1 foralli,jken]:i<j<k (12f)

zi; >0 for all i,j € [n]:i#j
bikj7 bszo foralli,j,ke[n]:i<j<k
zi; € {0,1} foralli,je[n]:i#j
yi; € {0,1} foralli,jen]:i<j
4  Polyhedral Results for Pr .

In this section, we investigate the polytope Py defined in Section 3 and provide fundamental
As a
byproduct, these results also clarify some statements in [5, 6] about the polytope Pgry

results concerning its (minimal) description by linear equations and inequalities.

considered there.
Our starting point is the following result by Hildenbrandt:

» Lemma 5 (Lemma 4.11 in [5]). For n > 4, the equations (1), (21), and (22) are linearly
independent.

Deviating from the presentation in [5, 6], we however find that, if n = 4, then there is
another set of equations that is valid for all incidence vectors of feasible solutions to the
TVP consistently expressed in z-, y-, and b-variables.

» Theorem 6. The following equations are valid for Py p:

Z xw +$J1 Zyzg Z 1—yji)+z Z bijr =1 foralliec [4]

J€ld] j€l] J€l4] J€l4] ke[a]
J#i 1<y Jj<i J#i iFEkFE]
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Proof. Let < i1,19,13,74 > be a permutation of {1,2,3,4}. Then for the site ¢; at the j-th
position,
the number of path-neighbors is 246[4],5;623 (w40 + wgi;) = k with k = 2/if j € {2,3} and
k=1if j € {1,4},
the negated total number of successor sites is — EZGM’” <o Yije — 246[4]!@]_ (1 =yei;) =
J—4,
the number of successor site-pairs is 256[4]’#” Zme[4],ij;é{m,e} bi,em = k with k = 0 if
je{3,4), k=1ifj=2 and k=3ifj = L.
Therefore, for any fixed j € {1,2, 3,4}, the left-hand side of (23) evaluates to 1. <

The following theorem further establishes that the equations (1), (21), (22) do not
constitute a minimum equation system for P%VE, as there is a linearly independent selection
of equations (23) that is also linearly independent from those.

» Theorem 7. For n =4, the previously known equations (1), (21), (22), and three of the
four new equations (23) are linearly independent.

Proof. Consider the following excerpt of the equation system for the variables x12, 41, T42
and z43 (which only appear in (1) and (23)). Here (*) means that the respective entries may
be neglected for the argumentation.

Eq. X112 41 T42 T43 ...

M1 1.1 1 1 1 (»=n—-1
2)/0 0...0 0 0 0 (x) = 1
(22){ 0 0...0 O 0O O (x) = O
(23)1| 1 () 1 0 0 (x) = 1
(23)2 1 (*) 0 1 0 (x= 1
(23)3] 0 (*) 0 0 1 (x= 1

The 3x3 identity submatrix for the variables (columns) 41, #42 and z43 gives linear
independence for (23);—(23)3 among each other as well as from all rows except the first one,
while the column for 15 shows that the first row cannot be combined from (23);-(23)3 as
well. <

The instances of (1), (21), (22), and (23) considered in the proof of Theorem 7 amount
to 14+ 12 4+ 4 + 3 = 20 equations in total. Since there are 4 - 3 + (g) + 6(;1) = 42 variables in
TVP-XYB, Theorem 7 implies that dim Pig < 42 — 20 = 22 (while the dimension of P,
was stated to be 25 in [5, 6] which cannot be the case irrespective of its different definition).

» Theorem 8. The dimension dim Py of Pty is equal to 22.

Proof. Since there are 24 permutations of four sites, Piyp has 24 vertices. Let M be the
matrix having the incidence vectors of these vertices as its rows. Then dim Pgyg is equal to
the affine rank of M, denoted arank(M). We first determine that rank(M) = 23, i.e., 23 of
the 24 vertices are linearly independent. Moreover, (0,0,0) & Piyg, S0 Piyg is spanned by
22 affinely independent vectors, and arank(M) = rank(M) — 1 = 22. <

» Corollary 9. For n =4, a minimum equation system for P}y is given by (1), (21), (22),
and three of the four equations (23).
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To complete the picture, we verified that the following set of inequalities from appendix
A2 in [5] and (12) together induce all the facets of Piyp:

4
> —mig—bjgi—byi < —1forallijke[di#j<k#i (24)
0=1, 0
4
> —wpi —bijk — by < —1forallijke[d]:itj<k#i (25)
0=1, 0
Tik + Tij + Tjk + brjs + bigr — bije <1 foralld,j,k, 0 € 4] : [{i,j,k, £} =4 (26)
—Zj; — Tjo + Tek + brje + beir + bej
_béjk_békj SO for all i7jak7€€ [4] : |{Zv.]aka€}| =4 (27)
—Tj; — Xjr — T — Tkj — Tre + brje
+bgji — bejr < —1foralli,j,k, 0 € M]: |{i,j,k, £} =4 (28)
Zji + Thi + Thj + The + 2o — bjse
+bjok — brei — beik + bejr — bops <1 forall i, 5, k, £ € [4] : [{i,5,k, L} =4 (29)

In total, one obtains 144 inequalities. The inequality class “2” listed in appendix A.2 of [5] is
not facet-defining for Piyp (the dimension of their associated faces is 10).

The following lemma will simplify the proof of the subsequent theorem, and it follows
directly from according results for the HPP polytope [10] and the LOP polytope [3] of order
n, respectively.

» Lemma 10. For n > 4, there is no valid equation for Pty that has non-zero coefficients
for x-variables only and is linearly independent from (1), or that has non-zero coefficients
for y-variables only.

» Theorem 11. For n > 5, the equations (1), (21) and (22) constitute a minimum equation
system for Piy .

Proof. W.Lo.g., we consider the reduced space of the d(n) :=n(n — 1)+ () +2(}) variables
associated with TVP-XYBR, respectively with the projection Pty of Pryy onto the z,
Y, brij and b;; variables (which eliminates the equations (21) and (22), as described in
Section 3).

Let M, be the n! x d(n) zero-one matrix whose rows consist of the vertices of Py g,

i.e., the incidence vectors of all permutations 7 € II,, w.r.t. the aforementioned variables.

Moreover, let e, be the all-ones vector with n! components. In the following, the first n(n—1)
columns of M,, are referred to as X = (X;;), the following (g) columns as Y = (V;;), and
the final 2(%) columns are referred to as B = [(Bgy;)(Bik;)], i.e, My =[X Y B

Suppose that every (vertex) (z,y,b) € Pl satisfies the equation a'x + Ty +~Tb = 6.

e
Then («, 3,7,0) is a solution to the system M, (ﬁ) = den, and conversely, if («, 3,7,0) is
Y
a solution to this system, then o'z + 3Ty +~Tb = § is satisfied by every (x,y,b) € IBF}‘VE.
Now in order to prove the theorem, by Lemma 10, it suffices to show that there does not
exist an equation that is valid for P, and that either (a) links a y-variable with either
2- or b-variables or both, or that (b) links only b-variables among each other, or b- with
x-variables.

8:11
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@
We first show this for the case n = 5, and for convenience, we write the system Mj (ﬂ) =

'Y
des more explicitly as:

5 5 4 5 3 4 5
DY X+ D BuYi+ Y Y Y (WkisBrij + vk Birg) = des (%)
i=1 j=1,j#i i=1 j=it1 i=1 j=i+1 k=j+1

We may prove (a) by showing that all solutions to (x) have 8 = 0. To this end, consider
(x) as the set of constraints of a linear program in the variables «, 3,7, d, where we may
w.l.o.g. add the restriction § > 0 since the other variables are free in their sign. Moreover,
for all 4, j € [n], i < j, consider the (objective) function f;;(3) = e;rjﬂ, where e;; is the unit
vector of dimension (g) (here dimension 10) with the l-entry in the component associated
with 3;;. In other words, §;; is the only variable obtaining an objective coefficient of one
while all other variables receive a zero coefficient.

By solving the so defined LPs with objective max f;;(8) and with objective min f;;(5)
for all 7,5 € [5], i < j, we obtain that the optimal value is always f7;(8) = 0. This certifies

@

that truly no solution to Mj5 (ﬂ) = des with 5 # 0 exists, as such a solution was rewarded

v
by a positive or negative objective value in at least one of the considered LPs (if it existed,

such an LP would actually be unbounded).

To prove (b), we follow the same approach except for choosing the (objective) functions
frij(7) = egijv and fir;(v) = eiTqu/ for all 1 <i < j <k <5 (e has now dimension 2(2),
here 20). Each of the 40 LPs obtained in total for maximization and minimization is again

@
feasible with objective value zero. Thus, there is also no solution to Mj5 (ﬂ) = des with
v
7 #0.
Finally, we complete the proof by showing that if the claim holds for n = ¢, £ > 5, then

it holds as well for n = £ + 1. For the purpose of deriving a contradiction, suppose that
e
for n = £ + 1 there exists a solution to M, (B) = de, where 8 # 0 (y #0). W.lo.g,

~
let 5;; # 0 (yik; # 0), and choose a site v & {3, j} (v & {i,4,k}). Suppose that we fix v to

the last (or first) position. Then certain columns of X, Y, and B, which do not include Y;;
(Bikj) can be fixed to zero or one as well. Eliminating these variables, the remaining ones
correspond (after renumbering) to a TVP with n — 1 sites while the resolved equation still
has 8;; # 0 (vir; # 0) and is feasible for all vertices of ]3{3\7]}3 — a contradiction. <

We thus conclude the dimension stated by Hildenbrandt in [5, 6] (for Pgpy) holds true
for Piyg and n > 5.

» Corollary 12. For n > 5, dim P, =2(5) + (5) +6(3) —1—-(n—2)-(5) — (3) =
n(n=1) (21’7,[—1—5) _ 1.

2 3

In the remainder of this section, we provide the justifications for our decisions in Section 3
to keep the inequalities (2) and (3), as well as the inequalities (12), in our proposed
formulations. While we prove the latter ones to be facet-defining for Pfyp, n > 4, we
emphasize the special case that (2) and (3) do not define facets of Piyy (given the additional
equations), but do define facets for Ppy g, n > 5.

» Theorem 13. For n > 5, the inequalities (2) and (3) define facets of Pl p.
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Proof. Let S/ = {(z,y,b) € Piyg : >_j_; j» Tij = 1} be the face of Pftyp induced by (2)
w.r.t. i € [n]. It is easy to see that, for each i € [n], SI* is spanned by all the n! — (n — 1)!
incidence vectors that belong to the permutations of [n] where i is ranked at any but the
last position, as these satisfy the corresponding instances of (2) with equality.

Specifically, for n = 5, we have dim P2y = 49, and it may be verified for each i €
{1,...,5}, that the matrix M having the aforementioned 5! — 4! = 96 incidence vectors! as
its rows has rank 49. Therefore, and since (0,0,0) € S?, dim(S?) = rank(M) — 1 = 48, so
all the instances of (2) define facets of Piyp.

Given this basis, let the statement of the theorem be true for dimension n, but suppose, for
the purpose of showing a contradiction, that the inequality (2) w.r.t. some ¢ € [n+ 1] does not
define a facet of Pjsts. Then this implies (for a proof see e.g. the standard textbook [9]) the
existence of an equation a'z+ 3 y+~"b = § that is linearly independent from the equations
(1), (21), and (22) forming the minimum equation system according to Theorem 11 as well
as from Z;l;l]# z;; = 1, and that is valid for all incidence vectors in S"**. Among these
incidence vectors, there are n! many that correspond to the permutations where i € [n + 1]
is ranked first. Suppose now that we fix i to the first position by setting variables in (z,y, b)
accordingly, and thus obtain a new equation from a'a + 8Ty +~Tb = § that is still feasible
for the n! considered incidence vectors. Then, however, after re-indexing, this equation must
also be feasible for all vertices of Py, in terms of the remaining TVP without the fixed
i € [n + 1], which is a contradiction to the minimality of the equation system according to
Theorem 11.

The proof for the inequalities (3) is analogous. <

» Theorem 14. For n > 4, the inequalities (12) define facets of Php.

Proof. Let Si"jk ={(z,y,b) € P}y : ©ij — brij — bijr = 0} be the face of Py induced by
(12) w.r.t. i,5,k € [n], |{4,4,k}| = 3.

Each S{‘j & 1s spanned by all the incidence vectors belonging to the permutations of [n]
except those where i is ranked non-immediately before j and k is ranked either before i or
after j.

Specifically, for n = 4,5, 6, we verified explicitly that the matrices having these incidence
vectors as their rows have rank 22, 49, and 84, respectively, whence inequalities (12) define
facets of Piyg, Piyg and Pyp.

Given this basis, let the statement of the theorem be true for dimension n, but suppose, for

the purpose of showing a contradiction (starting from n = 5), that the inequality (12) w.r.t.

some 1,7,k € [n+ 2], |{4,4,k}| = 3, does not define a facet of P{f@,’é Then this implies the
existence of an equation a'z+ Ty +~"b = § that is linearly independent from the equations
(1), (21), and (22), forming the minimum equation system according to Theorem 11, as well
as from the equation x;; — br;; — bijr = 0, and that is valid for all incidence vectors in Snt2
Among these incidence vectors, there are n! many that correspond to the permutations where

i € [n+ 2] is ranked first and where j € [n + 2] is ranked last since then x;; = bg;; = by = 0.

Suppose now that we fix i to the first and j to the last position by setting variables in (z,y, b)
accordingly, and thus obtain a new equation from a2z + 37y +~Tb = § that is still feasible for
the n! considered incidence vectors. Then, however, after re-indexing, this equation must also
be feasible for all vertices of Py, i.e. regarding the remaining TVP without ¢ and j, which
is a contradiction to the minimality of the equation system according to Theorem 11. <«

L For n = 4, there are only 4! — 3! = 18 such incidence vectors whence these inequalities do not define
facets of Piyg.

ijk *
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5 Computational Experiments

Given the formulations from Section 3 and the according changes when compared to their
relatives, we provide an impression on the computational effects when they are solved with
a branch-and-cut algorithm implemented with a state-of-the-art ILP solver. Specifically,
TVP-XY involves a larger number of constraints than TVP-HP while it provides a stronger
continuous relaxation, and it is of interest whether this translates into a net improvement
regarding the ability to solve the ILP. The continuous relaxation of TVP-XYB is stronger
than the one of TVP-E while TVP-XYB is also more compact at the same time, but the
solution times for the relaxation of TVP-XYB are still high when compared to TVP-XY.
Here, the primary question is whether the variant TVP-XYBR, which consists of inequalities
only and is thus particularly suited to be solved by a cutting plane approach, can be solved
quickly enough such that the strong upper bounds provided by its relaxation make it truly
competitive to TVP-XY.

To address these questions, we employ the publicly available TVP instances that have
been used in [5, 6] as well. They involve between 26 and 45 sites and follow the naming
scheme “XX_ OOO_N_ID” where “XX” is a label that defines lower and upper bounds
on the ratio of the objective values of an optimal LOP solution frop and an optimal TSP
solution frgp, “O00” encodes the number of random interchanges of preference values when
creating the instance, “N” is the number of sites, and finally “ID” is a running index. Let
r = fLop/frsp. The label “XX” is “ER” if % <r< %, “LB” if % <r<3and “LD”if 3 < r.
The label “O00” is “CFO” if the preference values were left unchanged, “MCO” if iN2
random interchanges were made among them, and “BCQO” if %N 2 interchanges took place.
For further details on how the distance and preference values were derived, we refer to [5].

To solve the LP relaxations and ILPs, we use Gurobi (here in version 12.0.1), restricted
to a single thread and with the additional parameter settings Seed=1, and PreCrush=1, as
well as LazyConstraint=1 and MIPGap= 1075 in the ILP case. For each formulation, the
respective inequality classes of cubic cardinality are dynamically separated by enumeration,
and all violated inequalities found are passed to Gurobi. More precisely, they are manually
added when solving only the LP relaxation and then trigger a warmstart from the respective
solution, whereas when solving the ILP, they are handed over via the callback mechanism
both for the branch-and-bound node relaxations and as lazy constraints. For TVP-HP, these
separated constraints are the three-di-cycle inequalities (4)—(5), whereas for TVP-XY the
extended three-di-cycle inequalities (15)—(20) are separated. For TVP-XYB the inequalities
(12) are separated, and for TVP-XYBR, first the inequalities (22a)—(22d) and, if none of
these are violated, then inequalities (12a)—-(12f) are separated. When solving the continuous
relaxations, any of these dynamically added inequalities is also removed again if its left-hand
side, evaluated for the respective current solution, is at least by 10~ smaller than its right-
hand side and if it was not added just in the previous iteration. In case of the ILP runs, the
time limit for each instance was set to 15 minutes and the test system is equipped with an
AMD Ryzen 9 9900X processor, 96 GB RAM, and Ubuntu 24.04.2 LTS.

In Table 1, we list those instances where at least one of the models was solved to proven
optimality within this time frame. The first two columns display the name and the value of
an optimal solution (OPT) for the respective instance. Then, for each of the formulations
there is a block of columns. The first column “ILP [s/%]” shows either the time needed to
solve the ILP (in seconds) or, if the time limit was reached, in parenthesis the remaining gap
between the global upper bound (UB) obtained on the optimal value at termination, and the
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actual optimal value, calculated as 100%2. The second column “LP Bound” shows

the upper bound provided by the continuous relaxation of the respective formulation. This
column is omitted for TVP-XYBR since the bound is the same as with TVP-XYB. Finally,
the column “LP [s]” displays the time, in seconds, needed to solve the continuous relaxation.

Table 1 Computational results for the formulations TVP-HP, TVP-XY, TVP-XYB, and TVP-
XYBR, and all instances from the testbed that could be solved with at least one formulation (if
there is only one, then it is always TVP-XY) within 15 minutes.

TVP-HP TVP-XY TVP-XYB TVP-XYBR
Inst. OPT |ILP [s / %] LP Bound LP [s]|ILP [s / %] LP Bound LP [s]|ILP [s / %] LP Bound LP [s]|ILP [s / %] LP [s]
ER_CFO_30_1 -7300 67.80 91.17  0.01 32.96 -3469.20 0.03 141.50 -4688.47  3.32 156.14  0.62
ER_CFO_30_2 -11803 (15.37) 480.50  0.01 146.10 -2014.12  0.02 702.56 -4678.21  6.28 506.85  0.69
ER_CFO_35 1 -3198 (133.79) 10015.30 0.02 198.31  4827.20 0.03 (33.97)  3421.84 8.52 (61.87) 0.73
ER_CFO_40_1 -3000 611.08  4178.37 0.02 50.70 920.76  0.07 192.11 -377.33 37.82 891.44 1.97
ER_CFO_40 3 -10693 (8.02) -4182.40 0.02 229.77  -7060.67 0.09 (9.63) -8059.99 40.61 (12.88) 2.42
ER_CFO_40_5 -11827 362.53 -3812.54 0.03 84.46 -6195.17 0.07 175.79  -8842.04 50.02 754.11  2.29
LB CFO_ 26 1 24774 23.52  34948.17 0.01 5.23  31959.62 0.01 11.43  27488.75  0.52 1577  0.24
LB_CFO_26_2 8358 200.40 18201.33 0.01 41.84 14504.30 0.03 130.55 1275891 1.25 239.95 0.34
LB_CFO_26_3 5078 168.14 14713.45 0.01 57.75 12026.90 0.03 171.24 9308.24  0.82 224.32  0.29
LB_CFO_30_1 23715 177.81  34448.29 0.01 15.70  30543.88 0.01 34.31 28517.17  1.77 153.08  0.40
LB_CFO_30_2 4312 428.42 16138.97 0.01 61.85 12236.89 0.03 159.81  8654.11  3.89 316.27  0.79
LB_CFO_35 1 985 715.51 11581.64 0.01 137.84  8193.62 0.03 700.37  4811.02 10.16 557.10 1.30
LB_CFO_35_2 1932 651.90  9299.48 0.02 51.46  5106.41 0.05 491.06  4592.81 11.87 608.75 1.06
LB _CFO_40 1 21829 (10.36)  31801.50 0.01 523.47 27562.06 0.05 (8.38) 25560.57 34.85 (11.38) 2.04
LD_CFO_26_1 43677 259.21  58741.25 0.01 60.86 54214.19 0.03 147.17 51832.37 1.98 166.88  0.44
LD_CFO_35_1 163453 (2.64) 179161.00 0.01 315.20 175567.50 0.03 (1.91) 169349.05 10.72 (1.65) 1.46
ER_MCO_26_1 -7639 202.71  1331.96 0.03 42.79  -1009.25 0.04 198.17  -3325.27 4.31 219.96 0.57
ER_MCO_30_1 -4532 (76.33)  4702.52  0.06 220.51  1279.46 0.07 (20.14) -750.60 14.81 (27.70) 1.56
ER_MCO_30_2 -2314 (234.52)  9249.03 0.03 176.35  5055.46  0.06 469.36  3656.83  7.96 797.65 1.37
ER_MCO_30_3 -8787 169.94 -2938.36  0.03 12.96 -5613.54 0.09 23.48 -6647.23 11.31 78.62 1.23
ER_MCO_30_4 -4024 (123.85) 10089.52 0.03 139.20  3815.65 0.07 (8.69)  1185.79 11.36 (32.11) 1.48
ER_MCO_35_1 -8356 (23.89) 80.99 0.07 184.45 -3568.12 0.18 802.98 -4616.94 46.55 (18.99) 3.34
ER_MCO_40_1 -17246 837.55 -10134.67 0.15 80.42 -12866.08 0.32 296.25 -15584.65 149.71 708.72 8.43
LB_MCO_26_1 1826 220.24 14497.19  0.02 4.97 11609.81 0.03 93.48  9157.03  1.87 7241 0.59
LB_MCO_30_1 695 (612.54) 13666.96 0.04 36.96  8225.06 0.07 11771 4468.28 10.98 303.50 1.36
LB_MCO_ 35 1 16527 (40.00)  33236.17  0.06 558.08 25867.61 0.14 (21.00) 21617.76 31.93 (15.05) 3.28
LB_MCO_35_2 11561 (48.40)  25844.41 0.07 83.88 18658.23 0.12 320.10 14749.52 32.49 899.98  3.46
LD_MCO_30_1 246422 106.19 260607.05 0.04 13.10 249724.71 0.08 76.80 248297.25 11.25 111.31  1.37
LD_MCO_40_1 743577 (1.20) 768067.58 0.11 560.92 758705.45 0.15 (0.54) 752834.49 57.97 (0.77)  3.89
ER_BCO_26_1 -5600 61.42  4381.20 0.03 3.15  1553.00 0.03 8.95 -4187.86 4.76 92.02  1.00
ER_BCO_26_2 -221 85.83 11930.25 0.02 8.59  8055.90 0.04 31.61  1851.60 2.50 62.86 0.62
ER_BCO_35_1 -16328 (6.86) -4788.40 0.11 86.49 -7697.59 0.21 (4.55) -12726.68 62.74 (5.33) 4.7
ER_BCO_35_2 -6224 (78.43)  4369.33  0.07 81.02  -563.81 0.21 665.95 -1285.94 47.19 619.63 3.10
LB _BCO_30_1 2402 (132.43) 15073.67 0.04 48.23  8971.46 0.09 271.74  5459.97  9.79 143.91 1.68
LB_BCO_35 1 4213 (173.42) 17762.29 0.08 350.10 11388.41 0.22 (62.71) 9463.72  31.58 (42.74)  2.46

The results demonstrate that TVP-XY significantly improves over TVP-HP and also
remains the overall winner in these experiments as it is the only formulation that Gurobi
could solve to optimality for all of the displayed instances. In particular, the employed
branch-and-cut approach leads to only slightly increased times to solve the relaxation of
TVP-XY despite the larger set of constraints taken into account. Compared to TVP-XY, the
upper bounds provided by the LP relaxation of TVP-XYB are even again significantly better,
but the solution times remain high. TVP-XYBR then achieves a tremendous reduction of
these relaxation solution times, which is however still not sufficient to translate into a superior
ILP performance on the instance set considered. The competitiveness of TVP-XYBR might
still be improved by tuning the separation procedures as well as the selection of cutting
planes, or by employing further cutting planes, but this is out of the scope of this paper.

2 We use the optimal value as a reference to compute the gap, rather than the best feasible solution found,
because the major difficulty in the solution process is to improve the upper bound. As opposed to that,
Gurobi found good and optimal solutions relatively quickly even though we did not implement any
problem-specific heuristic. Using the lower bounds instead may thus lead to misleading values in the
rare cases where the best solution found at the occasion of the time limit was not yet (near-)optimal.
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Finally, we report in Table 2 optimal values of previously unsolved instances that we
could determine using longer runs with TVP-XY.

Table 2 Optimal solution values for four instances that remained unsolved in [5, 6].

Instance OPT
LB CFO 45 1 19877
LB _CFO 45 2 1082
LD CFO 45 2 133647
LB MCO 45 1 23301

6 Conclusion

In this paper, we have shown that the seminal integer programming formulations for the TVP
based on AHPP, LOP, and asymmetric betweenness variables, can be refined to exclusively
employ linear constraints which participate in a minimal description of the polytope that is
defined by the convex hull of their feasible solutions. We then demonstrated that this leads to
provably strengthened continuous relaxations as well as improved computational results when
the reformulations are solved with a branch-and-cut algorithm. Further, our investigations
revealed that results on the structure of the polytope associated with the formulation that is
extended with asymmetric betweenness variables needed to be revised. One the one hand,
this is motivated because the vertices of the respective polytope considered in the seminal
works [5, 6] are not in one-to-one correspondence with the feasible solutions to the TVP. On
the other, we found inconsistencies in the description of this polytope by means of a minimal
set of linear constraints. Addressing this, we found a new set of equations which is valid if
there are exactly four sites, and we clarified the dimension as well as the set of facet-defining
inequalities in this case. Moreover, we proved that the previously assumed closed form to
compute the dimension holds true when there are at least five sites and that the classical in-
and out-degree inequalities from the AHPP are then always facet-defining.

The so far established results build a fundament for further research regarding polyhedral
relaxations for the TVP. Particularly, it would be expedient to achieve further insights about
the facial structure of the polytopes associated with the TVP with at least five sites, also
because the knowledge of further classes of facet-defining inequalities may allow for a further
strengthening of branch-and-cut algorithms for the TVP.
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