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Abstract
Network design problems have been studied from the 1950s, as they can be used in a wide range
of real-world applications, e.g., design of communication and transportation networks. In classical
network design problems, the objective is to minimize the cost of routing the demand flow through
a graph. In this paper, we introduce a generalized version of such a problem, where the objective is
to tradeoff routing costs and delivery speed; we introduce the concept of speed-coverage, which is
defined as the number of unique items that can be sent to destinations in less than 1-day. Speed-
coverage is a function of both the network design and the inventory stored at origin nodes, e.g.,
an item can be delivered in 1-day if it is in-stock at an origin that can reach a destination within
24 hours. Modeling inventory is inherently complex, since inventory coverage is described by an
integer function with a large number of points (exponential to the number of origin sites), each
one to be evaluated using historical data. To bypass this complexity, we first leverage a parametric
optimization approach, which converts the non-linear joint routing and speed-coverage optimization
problem into an equivalent mixed-integer linear program. Then, we propose a sampling strategy to
avoid evaluating all the points of the speed-coverage function. The proposed method is evaluated
on a series of numerical tests with representative scenarios and network sizes. We show that when
considering the routing costs and monetary gains resulting from speed-coverage, our approach
outperforms the baseline by 8.36% on average.
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1 Introduction

1.1 Background & Motivation
Expedite delivery services are becoming increasingly important for e-commerce supply chains
such as Amazon, Alibaba and Walmart as they improve directly customer experience and
can indirectly contribute to attaining key sustainability goals. Indeed, the option of expedite
delivery increases naturally the range of items customers are willing to purchase from e-
commerce platforms instead of visiting physical retail (brick-and-mortar) shops, and this
has been found to reduce transportation-based carbon emissions in many scenarios [23, 21].
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9:2 Speed-Aware Network Design: A Parametric Optimization Approach

Figure 1 Middle-mile network design problem where destination nodes – i.e., distribution centers
– are connected to origin nodes – i.e., warehouse where items are stored. Note that origin nodes have
partially overlapping inventory, e.g., the inventory stored at Origin 2 and Origin 3 is also stored
at Origin 1. Thus, connecting with speed-paths Origin 1 to destination nodes allows us to offer
expedite delivery services for all items.

These reasons contribute to a growing volume of research aiming to improve expedite delivery
by means of last-mile routing optimization [17], vehicle dispatch scheduling [16], or innovative
crowd-shipping models [8], among others.

Nevertheless, the above works overlook the role of the middle-mile network connecting
warehouses (origins) to distribution centers (destinations) in the efficacy and feasibility of
such expedite delivery services. As the demand grows, items have to be stored at out-of-city
warehouses, and therefore, the possibility of offering expedite delivery for these items is
shaped by the network connections. This situation creates an unavoidable tension between
cost and speed when designing the transportation network. To reduce costs we need to
minimize the number of trucks used to ship orders to customers. Such a goal can be achieved
by leveraging intermediate consolidation hubs between origin and destination nodes. Consider
the example from Figure 1, where we have nine commodities – one for each origin-destination
pair – requiring one-third of truck’s capacity. By utilizing intermediate consolidation hubs,
the network configuration from Figure 1 requires only seven trucks to route packages. In
contrast, serving these same nine commodities through speed-paths – i.e., paths directly
connecting origins to destinations – would require nine trucks, one for each origin-destination
pair. To tackle the tradeoff between volume consolidation and opening speed-paths, many
studies formulate the middle-mile network design problem as a minimum-cost flow problem
with maximum path-length constraints, or aim to balance transit times with path costs (see
Sec. 1.2).

Yet, a key factor that has been largely overlooked is the effect of the network connectivity
on the share of inventory for which we can offer expedite deliver services. In this paper, we
propose to measure such an effect by evaluating the network’s speed-coverage, which we define
as the number of unique items that can be delivered in 1-day. Speed-coverage is a function
of (a) the network topology which determines the transit time from origins to destinations
and (b) the inventory stored at origin nodes. We recognize an inherent tradeoff: connecting
an origin to a destination via a short route (speed-path) increases the speed-coverage, but
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may increase routing cost by making volume consolidation more difficult. Additionally, the
benefit of speed-paths to speed-coverage exhibits diminishing returns. The more speed-paths
we introduce, the less their differential impact to the overall speed-coverage objective. In
this work, we formulate a problem that captures exactly these tradeoffs and then propose a
technique to solve for the jointly optimal routing costs and speed-coverage for the general
case when origins have partially overlapping inventory. To the best of our knowledge, this
paper is the first to introduce a mathematical formulation of these tradeoffs, and a scalable
methodology for solving the optimization problem.

1.2 Literature Review
As the importance of, and demand for, expedite delivery services grows, the design of speed-
aware middle-mile networks becomes an increasing priority for service providers. Prior works
on network design that cater for delivery speed include the hub-network design problem
with time-definite delivery. In this setting, the objective is to decide hub locations together
with routing paths, and speed deadlines are captured through path-eligibility constraints,
see e.g., [7]. Similarly, [27] optimizes the location of hubs, assignment of demand centers to
hubs, and the vehicle routing. Expanding on these ideas, [25] considers additionally hub
capacity constraints; [3] studies a single-hub overnight delivery system and optimizes routing
subject to timing constraints; and [28] focuses on express air-service and decides which routes
to operate with the company-owned cargo planes and how much capacity to purchase on
commercial flights. Finally, [14] studies the middle-mile consolidation problem with delivery
deadlines while accounting for consolidation delays. Similar models have been studied in
the context of scheduled service network design that optimizes small (less-than-truckload)
inter-city shipments with timing constraints for the delivery or intermediate hops, see [15]
and references therein. All the above works model the delivery time requirements through
path-length constraints, e.g., a subset of origin-destination nodes are forced to be connected
via paths that have transit time smaller than a predefined threshold. In contrast to this
binary approach of enforcing time constraints, our work explicitly optimizes the tradeoff
between speed and cost, providing a flexible framework for network design decisions.

Time-expanded graphs are one of the most common tools for capturing such timing
restrictions but increase the problem’s dimension and compound their solution, cf. [19]. This
modeling approach augments the dimension of the problem and therefore its complexity.
For this reason, several approaches based on decomposition methods [26, 11], adaptive
discretization techniques [5], and model condensation strategies [19] have been proposed.
The key difference of our approach from these prior works is that we explicitly consider the
overlap of inventory at origins to determine the number of unique items that are eligible
for a 1-day delivery option. We do not assume to have an analytical model that captures
how the delivery speed affects the inventory, but instead we provide a practical methodology
for directly incorporating data-sets and look-up tables in the optimization problem. A key
element of our strategy is a parametric linear model [2] which allows to express the inventory
function in a compact and tractable form. Parametric optimization has been particularly
successful for a range of applications, see [22], but, to the best of the authors knowledge has
not been employed for expedite delivery optimization in middle-mile networks.

1.3 Methodology & Contributions
Jointly optimizing network design decisions and speed-coverage is a challenging problem.
First of all, the network design problem, even without the speed-coverage objective, is already
NP-hard to solve optimally when one has to (a) use unsplittable paths, (b) add integer link
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9:4 Speed-Aware Network Design: A Parametric Optimization Approach

capacities (trucks), and (c) consider a large number of multi-hop path variables, [9, 10].
Secondly, the inventory effect of each new speed-path depends on which other origins are
connected to a desination. In other words, speed-path assignment decisions are coupled
across all origins serving a certain destination, but also across origins that use intersecting (at
one or more edges) paths due to the edge capacities. Third, the inventory coverage function –
i.e., the function mapping a set of origins to the number of unique items stored at these nodes
– does not admit a convenient analytical expression. In fact, this function depends on the
inventory overlap at origins, and in practice can be calculated using inventory datasets and
look-up tables. This function format, unfortunately, does not facilitate – actually prohibits –
its direct inclusion in the network optimization program, as it renders the problem highly
nonlinear – see equation (4) from Section 2 for further details.

Our method relies on multi-parametric optimization [12, 22] to create a continuous
(concave) approximation of the inventory function. This uses as input the available inventory
data-points – i.e., the number of unique items stored at a set of origin nodes – and creates a
continuous piecewise affine interpolation over the convex combination of the input data-points.
We prove that this approximation is exact at the input data-points, and hence can serve
as a meaningful proxy for maximizing this metric of interest. This, in turn, enables the
inclusion of the inventory function in the network design problem, without inflating it with
new discrete variables. The result of this new joint formulation is a speed-aware middle-mile
network, where the designer can tradeoff network costs with the number of unique items
that can be delivered to customers in 1-day. Finally, we take an extra step to reduce the
dimension of this problem through a sampling process, namely a low-complexity practical
algorithm for selecting the approximation data-points used to approximate inventory overlap
at origin nodes.

In summary, the main contributions of this paper are as follows: (i) We introduce the
speed-aware network design problem of jointly optimizing network costs and speed-coverage,
which we define as the share of unique items for which we can offer a 1-day delivery option.
(ii) We introduce a parametric-based modeling approach for enabling this joint optimization,
overcoming the lack of a tractable analytical expressions for the number of unique items
stored at a set of origin nodes. (iii) We further propose a simple and practical sampling
algorithm for reducing the size of the approximation problem, trading off interpolation
accuracy in a systematic fashion. (iv) The proposed joint model and approximation strategy
are evaluated numerically in extensive tests on representatives scenarios.

1.4 Paper Organization & Notation

The rest of this paper is organized as follows. Section 2 introduces the speed-aware minimum
cost Multicommodity Capacitated Network Design problem under study. Section 3 describes
the proposed reformulation based on a parametric interpolation, and the related approxima-
tion strategy; and Section 4 presents a series of numerical experiments with representative
scenarios and different network sizes. We conclude and present future works in Section 5.

Throughout the paper we define the sets of (non-negative) reals and integers as (Rn
+)Rn

and (Zn
+)Zn, respectively. Vectors are denoted by boldface lowercase letters and sets by

uppercase italic letters, e.g., v ∈ Rn and C. Given a set of vectors C = {v1, v2}, we denote
the cardinality of C as |C| and its convex hull as Cvx(C). Finally, we define the vectors of
zeros 0n ∈ Rn, ones 1n ∈ Rn, and the unit base vector of zeros having one only in the ith
component as ei

n = [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ Rn.
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2 Model and Problem Formulation

2.1 Minimum cost MCND-U
We first introduce the standard minimum cost Multicommodity Capacitated Network Design
with Unsplittable demands (MCND-U) problem, which aims to assign one path to each
commodity and open trucks on links to transport orders at minimum cost. Our network is
modeled with a directed graph G = (V, E), where V = O∪D∪H is the set of nodes, consisting
of the set O of nO origins, the set D of nD destinations and the set H of nH other interim
nodes (or hubs), and E is the set of directed links. We are given a set K of K commodities,
where each commodity k = (ok, dk) originates from an origin ok ∈ O towards a destination
dk ∈ D, and has volume vk ≥0. We are also given a set of active network paths P , where Pk

is used to denote the active paths of commodity k and Pk∋e ⊆ Pk the active commodity k

paths that traverse link e ∈ E . Our goal is to assign exactly one path to each commodity
and we do so using the path selection vector x = (xp ∈ {0, 1}, p ∈ P).1 Furthermore, the
links have capacities that depend on our choice of opened trucks, where opening a truck
costs ce on link e ∈ E and adds capacity Ve ∈ Rn

+. We use the truck deployment vector
y = (ye ∈ Z+, e ∈ E) to decide how many trucks are opened on each link. The minimum cost
MCND-U problem is to assign paths to commodities with x and open trucks with y in order
to transport the volumes at a minimum cost:

P1 : min
x,y

∑
e∈E

ceye

subject to
∑
k∈K

∑
p∈Pk∋e

vkxp ≤ Veye ∀e ∈ E ,

∑
p∈Pk

xp = 1 ∀k ∈ K,

xp ∈ {0, 1} ∀k ∈ K, p ∈ Pk,

ye ∈ Z+ ∀e ∈ E .

(1)

Problem P1 is the standard MCND-U problem studied in the literature, for instance see [13],
which is known to be NP–hard [9, 10] – See Section 1.3 for details.

2.2 Modeling network speed
In this work we augment the MCND-U problem with a novel speed model, that captures the
number of customer orders that can be delivered within a day, a service that is called Next
Day Delivery (NDD), see [4]. Let us consider a destination node d, which serves a number of
customers in a given area. Whenever a customer in that area makes an order, we say that
the order is covered (with NDD service) if the ordered item is stored in any of the origins
that are connected to d with a short path, where a path is said to be short if its total transit
time is less than an input parameter; if path p is short we will write wp = 1, else it is long
and we write wp = 0. Notice, we require two conditions for NDD: (i) the ordered item is
in the storage of some origin node, and (ii) that origin node is connected to d with a path
that is short. First, let us study how we measure NDD coverage in a scenario where (ii) is
always satisfied, i.e., for now, we consider networks where all paths are short. We introduce

1 We do not need to index variables x with commodities because each path p can only be used by a single
commodity, the one that corresponds to the origin-destination pair of the path.
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9:6 Speed-Aware Network Design: A Parametric Optimization Approach

the coverage function Id which counts the number of covered orders at a destination d. It
is typically impossible to derive the analytical form of Id, but it is reasonable to estimate
Id from available large datasets; using these datasets, one can compute an estimate of the
number of covered unique NDD orders.

Figure 2 Venn diagram of two origin nodes storing items that are being ordered; although the
sum of individually unique ordered items stored in the two nodes is 50 + 60 = 110, the actual total
unique items are only 90 due to overlap between the two inventories.

For example, see Figure 2. Assuming both origins of Figure 2 are connected to d with
short paths, Id would evaluate to 90 items in this example, and we may imagine that in more
complicated scenarios, the computation of Id would boil down into counting unique orders in
large datasets of requests and inventories. The model, however, becomes more interesting
when we study networks that include long paths, where condition (ii) is not always satisfied.
In such a case, depending on our path assignment decisions x, an origin-destination pair
(o, d) may not be able to transport items eligible for NDD. For instance, if (o, d) commodity
is assigned a long path, the contribution of o-inventory to Id should not be counted because
although the inventory is available, its delivery takes more than one day. We should then
adjust the coverage function Id to reflect this. A naive approach would be to adjust it
to Id(x) to denote the dependence on path assignment, but instead we use an alternative
approach that reduces significantly the dimensions, and hence the complexity of computing
this function: we use the dependent speed variables

z = (zod, (o, d) ∈ K), (2)

where zod = 1 if the path selected to connect o to d is short. Since we have only one assigned
path per commodity (i.e., it holds

∑
p∈Pk

xp = 1) it follows that

zod =
∑

p∈Pk

wpxp, ∀k = (o, d),

where recall that wp = 1 if p is short, and 0 otherwise. Using variables z we can write down
the form of Id for the toy scenario of Figure 2:

Id(z) = 60z1d(1 − z2d) + 50z2d(1 − z1d) + 90z1dz2d. (3)

More broadly, the function will have the form:

Id(z) =
∑

s∈PS(Od)

βs

∏
i∈s

zid

∏
j /∈s

(1 − zjd), (4)

where PS(.) is the power set, Od is the set of origins that form a commodity with d, and βs

is the unique item count of subset s of origins – we may obtain parameters βs by performing
counting operations on our large datasets. Note, that this function would need to have many
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more terms if we were to use path assignment variables x (one additive term for each element
in the powerset of active paths), hence we have effectively reduced the number of times we
need to count parameters in large datasets by an exponential factor. Also, observe that the
form of (4) demonstrates well how deeply intertwined is the speed objective Id(z) with the
cost optimization of the MCND-U problem (1), both depending on our choice of x. Some
paths may offer better consolidation by mixing volume in consolidation hubs, but because
they are longer, they result in smaller NDD coverage. In the next subsection we augment
the standard MCND-U problem with our newly introduced speed model.

2.3 Speed-aware MCND-U

The NDD coverage impacts customer satisfaction and shapes long-term revenues. We model
this effect with a customer conversion factor γ >0; in practice, this factor can be estimated
by analyzing customer behaviors via A/B testing. Therefore, our focus in this paper is to
minimize the transportation costs and maximize long-term revenues from NDD coverage,
which is formalized in the following optimization program:

P2 : min
x,y,z

∑
e∈E

ceye − γ
∑
d∈D

Id(z)

subject to
∑
k∈K

∑
p∈Pk∋e

vkxp ≤ Veye ∀e ∈ E ,

∑
p∈Pk

xp = 1 ∀k ∈ K,

zod =
∑

p∈Pk

wpxp, ∀k = (o, d) ∈ K,

xp ∈ {0, 1} ∀k ∈ K, p ∈ Pk,

ye ∈ Z+ ∀e ∈ E ,

zod ∈ {0, 1} ∀o ∈ O, d ∈ D.

(5)

Problem P2 is extremely difficult to solve. Evidently, it is a generalization of the NP–hard
MCND-U, but a major additional complexity factor is function Id. This coverage function
is known to be submodular [4], i.e., the more short paths we assign (by switching z to z′),
the smaller is the benefit Id(z′) − Id(z) per added short path, due to overlapping inventory
between origins. The domain of function Id(z) has 2nO points, each one of which requires a
full computation on the large dataset. In fact, it is known that even finding the maximum
point of such a function is an NP–hard problem [20, 18], let alone considering it inside a
broader optimization problem as in P2. Last, observe that the objective of P2 is non-linear,
see for example (4). From previous studies in the space of maximum coverage problem [1] we
know that the non-linear components of (4) would make even the continuous relaxation of P2
NP–hard. For realistic e-commerce scenarios with multiple origins serving each destination,
and a network with many destinations, solving P2 or even obtaining a lower bound via its
continuous relaxation is intractable.

In this paper, we overcome this challenge by leveraging multi-parametric programming
[12, 22] to create an interpolation (or continuous extension) of integer functions Id, d ∈ D,
which in turn allows us to propose a solution methodology for the speed-aware MCND-U.

ATMOS 2025



9:8 Speed-Aware Network Design: A Parametric Optimization Approach

(a) Dataset of speed-path assignments and unique
items stored at origin nodes.

(b) Piecewise linear interpolation of the speed-
path assignement from Figure 3a.

Figure 3 Illustration of the approximation strategy for the example from Figure 2, where a
destination d is connected to Origin 1 and Origin 2.

3 Solution Approach

Our solution methodology is based on replacing the term Id(z) in (5) with a continuous
extension, by interpolating integer points using parametric optimization. As we explain
below, this interpolation is carefully designed to lead to a concave function, which eventually
allows us to reformulate the speed-aware MCND-U as a Mixed-Integer Linear Programming
(MILP). Finally, to reduce the dimensions and make the resulting problem tractable, we
utilize an additional approximation technique to eliminate many of the integer points, and
only consider a subset of them.

3.1 Parametric interpolation of unique inventory
We will interpolate between the integer points of function Id, which are denoted with z
and introduced in (2). For reasons that will become clear below when we present our
approximation technique, we will introduce additional notation zi

d to enumerate the vector
pointing to the ith integer point of Id(z). Hence,

Zd =
{

z1
d, z2

d, . . . , zncomb
d

}
, (6)

is another way to express the domain of Id(z) and we have ncomb = 2nO . See for example
Figure 3a.

For any vector zi
d, we can use inventory data to compute the number of unique items

Id(zi
d) for which we can offer NDD at d ∈ D. Then, for a vector zd in the convex hull of Zd,

we can use the following optimization problem to interpolate Id(zi
d):

Ĩd(zd) = max
αd∈Rncomb

+

ncomb∑
i=1

αi
dId(zi

d)

subject to
ncomb∑
i=1

αi
dzi

d = zd,

ncomb∑
i=1

αi
d = 1.

(7)

Notice that problem (7) is a linear parametric program and therefore Ĩd is a concave piecewise
linear function [6, Chapter 6]; we may think of Ĩd as an extension of Id, referred to in the
literature as the concave closure [24]. We will leverage the concavity of the extended function
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Ĩd to reformulate (5) as a MILP. Note, that submodular functions may also be approximated
by their convex closure, which is achieved by replacing the min operator with the max in (7).
In this work, we have used the concave closure as this allows us to reformulate the speed-aware
network design problem (5) as mixed-integer linear minimization problem, whereas using the
convex closure would have resulted in a min-max mixed integer optimization problem.

We highlight that the interpolation from (7) is exact at all integer points zd ∈ Zd, since
for each integer point zj

d ∈ Zd we must have that zj
d =

∑ncomb
i=1 αi

dzi
d, hence αj

d = 1 and
Ĩd(zj

d) = αj
dId(zj

d) = Id(zj
d). Note that Ĩd is exact at the integer points only when each

zi
d ∈ Zd is an extreme point, i.e., it cannot be expressed as a convex combination of the

vectors in {Zd \ zi
d}. This condition holds in our case, and yields the following proposition:

▶ Proposition 1. Let the function Ĩd be defined by the parametric program (7). For all
integer points zd ∈ Zd we have that

Id(zd) = Ĩd(zd).

Proof. Consider the optimization (7) evaluated at zi
d, i.e., Ĩ(zi

d). By definition we have
that zi

d are vertices of a hypercube and hence zi
d /∈ Cvx(Zd \ zi

d) for all zi
d ∈ Zd. Thus, we

have that setting αi
d = 1 is the unique feasible solution to Ĩd(zi

d). Thus, we conclude that
Ĩd(zi

d) = αi
dId(zi

d) = Id(zd). ◀

In Section 3.2 we combine the parametric extension of Id with the speed-aware MCND-U
to obtain a MILP.

3.2 Parametric speed-aware MCND-U
Next, we reformulate the speed-aware MCND-U presented in (5) replacing the term Id(z)
with its parametric interpolation Ĩd(z) from (7):

min
x,y,{zd,αd}d∈D

∑
e∈E

ceye − γ
∑
d∈D

ncomb∑
i=1

αi
dId(zi

d)

subject to
∑
k∈K

∑
p∈Pk∋e

vkxp ≤ Veye ∀e ∈ E ,

∑
p∈Pk

xp = 1 ∀k ∈ K,

zod =
∑

p∈Pk

wpxp, ∀k = (o, d) ∈ K,

ncomb∑
i=1

αi
dzi

d = zd,

ncomb∑
i=1

αi
d = 1 ∀d ∈ D,

xp ∈ {0, 1} ∀k ∈ K, ∀p ∈ Pk,

ye ∈ Z+ ∀e ∈ E ,

zod ∈ {0, 1} ∀o ∈ O, d ∈ D,

αd ∈ Rncomb
+ ∀d ∈ D.

(8)

The above MILP is equivalent to the original problem (5), as the interpolation from (7) is
exact at integer points, as discussed in Proposition 1. The main advantage of our reformulation
is that it can be solved with off-the-shelf solvers. Unfortunately, for each destination d ∈ D
there are up to 2ncomb pre-computed vectors zi

d that make the reformulation intractable for
real-world problems. Thus, in the next section, we propose an algorithm to select only a
subset of assignments to reduce the problem dimensionality.

ATMOS 2025
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3.3 Approximation Strategy
Estimating the coverage function Id(z) at all integer points z ∈ Zd from (6) and then solving
(8) are both intractable due to the very large number of such points. In this section, we
provide heuristics to select a subset of such vectors Z̃d ⊂ Zd, to simplify (8). While this
approximation introduces some loss in accuracy, we aim to select points that maintain a
reasonable balance between computational efficiency and solution quality. Dropping vectors
from Zd means that certain paths will always be chosen to be long, and hence, our heuristics
attempt to drop the origins that are expected to have the smallest contributions to coverage.

The first step is to rank all origins in terms of individual coverage achieved by taking
the short path from this origin and long paths from all others, denoted with Id(1o) for
origin o ∈ O. Calculating individual coverage is a cheap operation (only nO calculations
per destination), and intuitively helps us prioritize origins with large inventory capabilities –
notice, however, that due to inventory overlap, choosing the top origins in this regard does
not guarantee maximal coverage. Below we use the notation Td(κ) ⊆ O to denote the top
κ origins with individual coverage. Note, that κ is a user-defined hyper-parameter, which
controls the complexity/performance tradeoff of our heuristic.

Our strategy employs four sets of vectors, Z̃d = {H0, H1, H2, H3} that contain a subset
of all possible speed variable assignments. We use the terms “short” and “long” to refer to
the speed variable assignments: when we say an origin has a “short” path to a destination
(zod = 1), it means that origin o can offer next-day delivery to destination d. Conversely, a
“long” path (zod = 0) indicates that origin o cannot provide next-day delivery to destination
d. Based on this terminology we define the following sets:
1. H0: all short/long combinations of origins in Td(κ) (2κ cases).
2. H1: all origins in Td(κ) are short, and one of the remaining origins short (no − κ cases).
3. H2: all origins in Td(κ) are long, and one of the remaining origins short (no − κ cases).
4. H3: all origins in Td(i), i = κ + 1, . . . , no are short and the rest long (no − κ cases).
Note that our heuristic strategy has reduced significantly the amount of vectors for which
we need to calculate coverage and add to (8), from 2nO down to 2κ + 3(nO − κ), and we
can use κ to control how small this number is, trading off with the achieved accuracy of the
optimization. We provide an illustrative example for κ = 2 and no = 5:

H0 = {z̃1
d =

[
0 0 0 0 0

]⊤
, z̃2

d =
[
1 0 0 0 0

]⊤
,

z̃3
d =

[
0 1 0 0 0

]⊤
, z̃4

d =
[
1 1 0 0 0

]⊤}.

H1 = {z̃5
d =

[
1 1 1 0 0

]⊤
, z̃6

d =
[
1 1 0 1 0

]⊤
, z̃7

d =
[
1 1 0 0 1

]⊤}.

H2 = {z̃8
d =

[
0 0 1 0 0

]⊤
, z̃9

d =
[
0 0 0 1 0

]⊤
, z̃10

d =
[
0 0 0 0 1

]⊤}.

H3 = {z̃11
d =

[
1 1 1 0 0

]⊤
, z̃12

d =
[
1 1 1 1 0

]⊤
, z̃13

d =
[
1 1 1 1 1

]⊤}.

Given Z̃d, we use the below program to approximate coverage:

Ĩd(zd) = max
αd

∑
i

αi
dId(z̃i

d)

subject to
∑

i

αi
dz̃i

d = zd,∑
i

αi
d = 1.

(9)

In the next section, we empirically analyze the effect of our approximation technique on
run-time and solution quality.
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Algorithm 1 Heuristic to select subset Z̃d.

Require: κ.
1: for d ∈ D do
2: Initialize Z̃d = ∅.
3: Calculate Id(1o) for all o, rank them, and derive Td(κ).
4: Add H0 = {z : zod = 1 ∀o ∈ S, zod = 0 ∀o /∈ S, ∀S ⊆ Td(κ)}.
5: Add H1 = {z : zod = 1 ∀o ∈ Td(κ), zõd = 1 õ /∈ Td(κ), zod = 0 ∀o /∈ Td(κ) ∪ {õ}}.
6: Add H2 = {z : zod = 0 ∀o ∈ Td(κ), zõd = 1 õ /∈ Td(κ), zod = 0 ∀o /∈ Td(κ) ∪ {õ}}.
7: Add H3 = {z : zod = 1 ∀o∈Td(i) and zod = 0 ∀o /∈ Td(i), i = κ + 1, . . . , nO}.
8: end for
9: Return: Set of vectors Z̃d for all d ∈ D.

4 Experiments

We evaluate the proposed approach using a range of representative scenarios. First, we
examine how optimizing jointly for speed and costs affects the network topology. Afterwards,
we analyze the effect of the approximation from Algorithm 1 on the solution quality. To
perform these analyses, we randomly generate networks with nO origins, nD destinations,
and 5 intermediate nodes that can be used to consolidate volume. For each origin-destination
pair, the demand is randomly generated together with the travel times and transportation
costs that are proportional to the traveled distance – the location of all nodes is randomly
selected from a uniform distribution. To serve one origin-destination pair, the optimizer can
select either a direct path connecting the two nodes, or a path going through one of the five
intermediate nodes. We assume that overall there are nit = 50nO unique items that we can
offer to customers. For each origin i, we generate a random vector vi ∈ {0, 1}nit , where each
jth entry indicates if item j is stored at origin i. If the travel time from an origin o to a
destination d is less than max_tt = 8 hours, we assume that we can offer NND for all items
stored at origin o ∈ O.

4.1 Trading-off transportation costs and speed
In this section, we demonstrate through empirical experiments how the parameter γ controls
the trade-off between transportation costs and speed-coverage in the network design. Higher
values of γ result in networks that provide speed-paths for a broader range of unique
items, while lower values prioritize cost minimization by encouraging consolidation through
intermediate hubs. Table 1 shows results for five randomly generated networks. For each
network, we solve three optimization problems: in the first problem, we optimize only for
transportation costs – i.e., we set γ = 0; in the second problem we set γ = 0.1; and in the
third we use γ = 1. The solver terminates either when the gap is below 0.1% or the solution
time exceeds two hours. As expected, for larger values of γ both transportation costs and
the average number of unique items eligible for NDD increase, i.e., the optimizer decides
to open more expensive connections to gain revenues from NDD. Note that the number of
direct paths (not crossing any intermediate hub) increases with γ, as they have lower transit
time and thus are more likely to offer NDD. In all experiments, we set the parameter κ from
Algorithm 1 equal to 10, meaning that the approximation from (9) is exact for the unique
items delivered by the top 10 origins for each destination – see Section 4.2 for an empirical
analysis on the effect of κ on the solution. Indeed, we notice from Table 1 that for nO = 10
the approximate average number of unique items eligible for NDD (column Avg. Items

ATMOS 2025
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Table 1 Experimental results for five randomly generated networks. For each network, we run
the proposed method for γ ∈ {0, 0.1, 1} to show the effect of revenues from NDD on the network
topology.

nO nD Costs Avg. Items App. Avg. Items γ Directs Sol. Time %Gap

10 10 689.1 0 342.8 0 20 58.4 0.06
10 10 698.5 383.7 383.7 0.1 26 10.9 0
10 10 731.9 404 404 1 30 2.6 0.02

10 20 1419.2 0 370.75 - 58 7200 1.85
10 20 1435.5 403.55 403.55 0.1 72 7200 2.51
10 20 1490.4 411.6 411.6 1 80 7200 0.19

20 10 1392.2 0 770.4 0 63 1196.1 0.1
20 10 1413.6 806.5 811.2 0.1 73 1799.2 0.1
20 10 1501.8 839.4 839.4 1 98 438.8 0.1

50 10 3528.2 2010 2032.2 0 149 7200 7.55
50 10 3489.8 2025.3 2037.3 0.1 146 7200 3.65
50 10 3653.4 2092.7 2092.7 1 178 7200 0.63

100 100 62204.2 0 3651.1 0 2254 7200 2.82
100 100 65258.6 4154.37 4172.14 0.1 3335 7200 8.43
100 100 66314.6 4211.57 4211.57 1 3383 7200 0.58

App.) matches the exact number (column Avg. Items). On the other hand, for nO = 100,
the proposed strategy only computes a lower bound to the average number of unique items
eligible for NDD at a destination d ∈ D.

4.2 The effect of the proposed approximation
In this section, we test how the parameter κ from Algorithm 1 affects the solution quality.
Table 2 shows results for five different networks and parameter κ ∈ {1, 5, 10}. The table
reports also results for the baseline cost-optimal network (in blue) that is obtained minimizing
only the transportation costs, i.e., the optimizer does not approximate revenues from NDD
and therefore the parameter κ is not required to run the baseline. For all cases we report
the total cost defined as the difference between the transportation costs and revenues from
speed-paths2 (column Cost-Rev.). For κ = 1, in Algorithm 1 we do not consider different
combinations of origins offering NDD at a destination, but we simply sort origins by number
of unique items eligible for NDD and we use the heuristic described in Section 3.3. This
strategy allows us to prune the origins combinations used to construct the approximation
from (9). On the other hand for κ ∈ {5, 10}, after sorting the origins by the number of unique
items eligible for NDD, we consider all possible combination for the top κ origins and for
the remaining we leverage the heuristic from Algorithm 1. As discussed in Section 3.3, this
approximation allows us to reduce the number of constraints needed to build function (7).
However when κ is smaller than the number of origins nO, the number of unique items
computed using (9) is only an approximation. This fact is shown in Table 2, where we

2 As in Problem 5, revenues from speed-paths are computed by summing all unique items eligible for
NDD at each destination and using the conversion factor γ.
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compare the true revenues (column Rev.) and the approximated revenues (column App.
Rev.) obtained by multiplying the number of unique items eligible for NDD by the coefficient
γ. Finally, we notice that the total cost (column Cost-Rev.) defined as the difference
between the transportation cost and the revenues from NDD decreases for larger value of
κ. Note that for κ = 1, the approximation from (9) is constructed using napp = 59 data
points, while for κ = 10 the approximation is constructed with napp = 1081, i.e., for κ = 10
we increase by 94.5% the number of data points used compared with the approximation with
κ = 1. From the experiments in Table 2, we notice that using 94.5% more data points in the
approximation from (9) improves on average the network cost by 1.79%, i.e., as expected a
more accurate approximation of revenues from NDD allows us to design a better network by
trading off transportation costs and from NDD services. It is also interesting to notice that
even for κ = 1, our approach is able to reduce the overall cost – i.e., the cost defined as the
difference between transportation cost and revenues from speed-paths – by 8.36% compared
to the baseline (in blue).

Finally, we investigate the effect of the parameter κ on the computation time. Table 3
shows both solver times and pre-processing times needed to compute the data points napp

used to construct the approximation from (9). We notice that increasing κ leads to higher
pre-processing and solver time, as more data points are used for approximating the number
of unique items eligible for NDD. However, we notice that increasing κ from 10 to 16 results
in only a 0.57% cost improvement, while the computation cost increases by 1.9x. This result

Table 2 Experimental results for five randomly generated network. For each networks, we run
the proposed method for γ = 0.1 and κ ∈ {1, 5, 10}. As baseline we compute the cost optimal
network. Thus, for the baseline (in blue) we do not have approximated revenues and a value for the
parameter κ that is not used to in the optimization.

nO nD Costs App. Rev. Rev. Cost - (App. Rev.) Cost - Rev. κ %Gap

10 10 689.1 - 342.8 689.1 346.3 - 0
10 10 698.5 383.7 383.7 314.8 314.8 1 0
10 10 698.5 383.7 383.7 314.8 314.8 5 0
10 10 698.5 383.7 383.7 314.8 314.8 10 0

10 20 1419.2 - 370.7 1419.2 677.7 - 1.8
10 20 1459.7 405.9 407 647.9 645.7 1 3.4
10 20 1434.1 397.8 400.7 638.5 632.7 5 2.8
10 20 1435.5 403.5 403.5 628.4 628.4 10 2.5

20 10 1392.2 - 770.4 1392.2 621.8 - 0.1
20 10 1422.9 807.3 815.7 615.6 607.2 1 0.1
20 10 1422.9 807.3 815.7 615.6 607.2 5 0.1
20 10 1413.6 806.5 811.2 607.1 602.4 10 0.1

50 10 3375.8 - 1845.2 3375.8 1530.6 - 1.8
50 10 3528.2 2010 2032.2 1518.2 1496.0 1 7.5
50 10 3499.0 2031.5 2039.1 1467.5 1459.9 5 3.8
50 10 3489.8 2025.3 2037.3 1464.4 1452.4 10 3.6

100 100 62204.2 - 3651.1 62204.2 25693.2 - 2.8
100 100 65911.4 4159.3 4175.7 24317.9 24154.2 1 11.2
100 100 65531.7 4156.8 4173.1 23963.2 23800.5 5 9.5
100 100 65258.6 4154.3 4172.1 23714.9 23537.2 10 8.4
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Table 3 Experimental results showing how the computational time changes as a function of the
user defined parameter κ ∈ {1, 5, 10}.

nO nD Cost-(App. Rev) Cost-Rev Pre. Time Sol Time Gap(%) κ napp

20 10 1392.2 621.8 0.08 1184.9 0.1 - 0
20 10 615.6 607.2 0.08 577.8 0.1 1 59
20 10 615.6 607.2 0.11 261.2 0.1 5 89
20 10 607.1 602.4 1.59 3851.9 0.1 10 1081
20 10 602.8 601.2 6.52 3146.9 0.1 12 4153
20 10 599.0 599.0 36.0 6871.8 0.1 14 16441
20 10 599.0 599.0 334.7 6978.5 0.1 16 65593

highlights the effectiveness of the approximation from Algorithm 1, where we ranked origins
by the number of unique items eligible for NDD and considered all possible combination for
a subset of them.

5 Conclusion

In this paper, we consider the problem of jointly optimizing transportation costs and the
share of inventory with a Next Day Delivery (NDD) option. Compared to previous methods,
we account for overlapping inventory at origin nodes and how it affects the selection of
speed-paths, i.e., origin-destination connections with a short travel time that enable NDD.
The inventory is modeled with a coverage function, that requires the computation of a very
large number of integer points. To tackle this complexity, we present an approach based
on parametric optimization to construct a continuous extension of the inventory coverage
function. Such an approximation requires solving a parametric linear program where the
number of constraints increase exponentially with the number of origin nodes. To mitigate
this issue, we present a sampling algorithm to tradeoff the accuracy of our approximation
with computational complexity. The efficacy of the proposed approach is demonstrated on
randomly generated networks, where we show that our strategy beats the baseline approach
that computes a cost optimal network without optimizing for revenues from NDD.
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