
25th Symposium on Algorithmic
Approaches for Transportation
Modelling, Optimization, and
Systems

ATMOS 2025, September 18–19, 2025, Warsaw, Poland

Edited by

Jonas Sauer
Marie Schmidt

OASIcs – Vo l . 137 – ATMOS 2025 www.dagstuh l .de/oas i c s

Editors

Jonas Sauer
University of Bonn, Germany
jsauer1@uni-bonn.de

Marie Schmidt
University of Würzburg, Germany
marie.schmidt@uni-wuerzburg.de

ACM Classification 2012
Theory of computation → Design and analysis of algorithms; Mathematics of computing → Discrete
mathematics; Mathematics of computing → Combinatorics; Theory of computation → Mathematical
optimization; Mathematics of computing → Graph theory; Applied computing → Transportation

ISBN 978-3-95977-404-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-404-8.

Publication date
October, 2025

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists all publications of this volume in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2025.0

ISBN 978-3-95977-404-8 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0002-7196-7468
mailto:jsauer1@uni-bonn.de
https://orcid.org/0000-0001-9563-9955
mailto:marie.schmidt@uni-wuerzburg.de
https://www.dagstuhl.de/dagpub/978-3-95977-404-8
https://www.dagstuhl.de/dagpub/978-3-95977-404-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.ATMOS.2025.0
https://www.dagstuhl.de/dagpub/978-3-95977-404-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

ATMOS 2025

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Jonas Sauer and Marie Schmidt . 0:vii

Committees
. 0:ix–0:x

List of Authors
. 0:xi–0:xii

Regular Papers

The Fair Periodic Assignment Problem
Rolf Nelson van Lieshout and Bartholomeüs Theodorus Cornelis van Rossum 1:1–1:16

A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing
Fabian Löbel and Niels Lindner . 2:1–2:19

Directed Temporal Tree Realization for Periodic Public Transport: Easy and
Hard Cases

Julia Meusel, Matthias Müller-Hannemann, and Klaus Reinhardt 3:1–3:22

Visualization of Event Graphs for Train Schedules
Johann Hartleb, Marie Schmidt, Samuel Wolf, and Alexander Wolff 4:1–4:20

Throughput Maximization in a Scheduling Environment with Machine-Dependent
Due-Dates

Shaul Rosner and Tami Tamir . 5:1–5:10

VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling
Konstantinos Karathanasis, Spyros Kontogiannis, Asterios Pegos,
Vasileios Sofianos, and Christos Zaroliagis . 6:1–6:21

Evaluating Fairness of Sequential Resource Allocation Policies: A Computational
Study

Christopher Hojny, Frits C. R. Spieksma, and Sten Wessel . 7:1–7:14

Refined Integer Programs and Polyhedral Results for the Target Visitation
Problem

Sven Mallach . 8:1–8:17

Speed-Aware Network Design: A Parametric Optimization Approach
Ugo Rosolia, Marc Bataillou Almagro, George Iosifidis, Martin Gross, and
Georgios Paschos . 9:1–9:16

A Genetic Algorithm for Multi-Capacity Fixed-Charge Flow Network Design
Caleb Eardley, Dalton Gomez, Ryan Dupuis, Michael Papadopoulos, and Sean Yaw 10:1–10:14

Design of Distance Tariffs in Public Transport
Philine Schiewe, Anita Schöbel, and Reena Urban . 11:1–11:20

Separator-Based Alternative Paths in Customizable Contraction Hierarchies
Scott Bacherle, Thomas Bläsius, and Michael Zündorf . 12:1–12:16

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:vi Contents

Multi-Criteria Route Planning with Little Regret
Carina Truschel and Sabine Storandt . 13:1–13:20

Using A* for Optimal Train Routing on Moving Block Systems
Stefan Engels and Robert Wille . 14:1–14:18

Exact and Heuristic Dynamic Taxi Sharing with Transfers Using Shortest-Path
Speedup Techniques

Johannes Breitling and Moritz Laupichler . 15:1–15:22

A Model for Strategic Ridepooling and Its Integration with Line Planning
Lena Dittrich, Michael Rihlmann, Sarah Roth, and Anita Schöbel 16:1–16:20

The Line-Based Dial-a-Ride Problem with Transfers
Jonas Barth, Kendra Reiter, and Marie Schmidt . 17:1–17:20

Energy-Efficient Line Planning by Implementing Express Lines
Sarah Roth and Anita Schöbel . 18:1–18:21

Preface

For the 25th time, the ATMOS symposium brought together a diverse community of
researchers, students, and practitioners interested in all kinds and aspects of Algorithmic
Approaches for Transportation Modelling, Optimization and Systems. This year, the ATMOS
symposium was hosted by the University of Warsaw in Warsaw, Poland on September 18-19
2025 as part of ALGO 2025, the major European event for everyone with an interest in
algorithms.

ATMOS welcomes all submissions which are related to modeling and solving optimization
problems related to transportation systems. We received a total of twenty-nine submissions,
covering network design, resource allocation, scheduling, and routing, problems that arise in
the transportation of goods and in schedule-based and on-demand passenger transport, as
well as neighboring problems, which develop and apply a diverse set of exact and heuristic
algorithmic approaches and mathematical programming techniques. Besides “classical” cost-
and time-related objectives we observe a shift towards including performance indicators
related to ecological and social sustainability like emissions or fairness. All manuscripts were
reviewed by at least three PC members and were evaluated on originality, technical quality,
and relevance to the topics of the symposium. Based on the reviews, the program committee
selected eighteen submissions to be presented at the symposium. Altogether, they quite
remarkably demonstrate the wide applicability of algorithmic optimization on transportation
problems.

In addition, as one of the keynote talks presented at ALGO 2025, Marjan van den Akker
(Utrecht University, the Netherlands) kindly agreed to give us “A glimpse into OR for airline
operations and why this is (not?) public transportation”.

We would like to thank: the Steering Committee of ATMOS for giving us the opportunity
to serve as Program Chairs of ATMOS 2025; all the authors who submitted their papers; the
members of the ATMOS 2025 Program Committee and the sub-reviewers for their valuable
work in evaluating all the submissions and selecting the papers appearing in this volume;
Marjan van den Akker for accepting our invitation to present an invited talk; the ALGO 2025
Organizing Committee, in particular Paweł Rzążewski and Marcin Pilipczuk, for hosting
the symposium as part of ALGO 2025. We would also like to acknowledge the use of the
EasyChair system for the great help in managing the submission and review processes, and
Schloss Dagstuhl for publishing the proceedings of ATMOS 2025 in its OASIcs series.

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Committees

Program committee chairs
Jonas Sauer, University of Bonn, Germany
Marie Schmidt, University of Würzburg, Germany

Program committee members
Moritz Baum, Apple, Switzerland
Valentina Cacchiani, University of Bologna, Italy
David Coudert, INRIA, France
Twan Dollevoet, Erasmus University Rotterdam, the Netherlands
Mattia D’Emidio, University of L’Aquila, Italy
Lukas Graf, University of Passau, Germany
Loïc Hélouët, INRIA Rennes, France
Richard Lusby, Technical University of Denmark, Denmark
Gabor Maroti, Vrije Universiteit Amsterdam, the Netherlands
Matúš Mihalák, University of Maastricht, the Netherlands
Federico Perea, University de Seville, Spain
Léa Ricard, EPFL, Switzerland
Philine Schiewe, Aalto University, Finland
Christiane Schmidt, Linköping University, Sweden
Sebastian Stiller, Technical University Braunschweig, Germany
Sabine Storandt, University of Konstanz, Germany

Steering committee
Matthias Müller-Hannemann, University of Halle, Germany
Marie Schmidt, University of Würzburg, Germany
Anita Schöbel, University of Kaiserslautern-Landau, Germany
Christos Zaroliagis, University of Patras, Greece (chair)

Organizing committee
Jadwiga Czyżewska, MIMUW, University of Warsaw
Tomáš Masařík, MIMUW, University of Warsaw
Marcin Pilipczuk, MIMUW, University of Warsaw (co-chair)
Jakub Radoszewski, MIMUW, University of Warsaw
Paweł Rzążewski, MiNI PW & MIMUW, University of Warsaw (co-chair)
Wiktor Zuba, MIMUW, University of Warsaw

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:x Committees

List of subreviewers
Laura Bülte
Andrea D’Ascenzo
David Dekker
Gregor Diatzko
Ruoying Li
Philip Mayer

List of Authors

Marc Bataillou Almagro (9)
Amazon Science & Tech, Luxembourg,
Luxembourg

Scott Bacherle (12)
Karlsruhe Institute of Technology, Germany

Jonas Barth (17)
Department of Computer Science, University of
Würzburg, Germany

Thomas Bläsius (12)
Karlsruhe Institute of Technology, Germany

Johannes Breitling (15)
Karlsruhe Institute of Technology, Germany

Lena Dittrich (16)
Department of Mathematics, RPTU University
Kaiserslautern-Landau, Germany

Ryan Dupuis (10)
School of Computing, Montana State University,
Bozeman, MT, USA

Caleb Eardley (10)
School of Computing, Montana State University,
Bozeman, MT, USA

Stefan Engels (14)
Chair for Design Automation, Technical
University of Munich, Germany

Dalton Gomez (10)
School of Computing, Montana State University,
Bozeman, MT, USA

Martin Gross (9)
Amazon Science & Tech, Luxembourg,
Luxembourg

Johann Hartleb (4)
DB InfraGO AG, Berlin, Germany

Christopher Hojny (7)
Department of Mathematics and Computer
Science, Eindhoven University of Technology,
The Netherlands

George Iosifidis (9)
Delft University of Technology, The Netherlands

Konstantinos Karathanasis (6)
Department of Computer Engineering and
Informatics, University of Patras, Greece; PIKEI
New Technologies, Patras, Greece

Spyros Kontogiannis (6)
Department of Computer Engineering and
Informatics, University of Patras, Greece;
Computer Technology Institute and Press
Diophantus, Patras, Greece

Moritz Laupichler (15)
Karlsruhe Institute of Technology, Germany

Niels Lindner (2)
Freie Universität Berlin, Germany

Fabian Löbel (2)
Zuse Institute Berlin, Germany

Sven Mallach (8)
Chair of Management Science, University of
Siegen, Germany; University of Bonn, Germany

Julia Meusel (3)
Martin Luther University Halle-Wittenberg,
Germany

Matthias Müller-Hannemann (3)
Martin Luther University Halle-Wittenberg,
Germany

Michael Papadopoulos (10)
Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, NY, USA

Georgios Paschos (9)
Amazon Science & Tech, Luxembourg,
Luxembourg

Asterios Pegos (6)
Department of Computer Engineering and
Informatics, University of Patras, Greece; PIKEI
New Technologies, Patras, Greece

Klaus Reinhardt (3)
Martin Luther University Halle-Wittenberg,
Germany

Kendra Reiter (17)
Department of Computer Science, University of
Würzburg, Germany

Michael Rihlmann (16)
Fraunhofer Institute for Industrial Mathematics
ITWM, Kaiserslautern, Germany

Shaul Rosner (5)
Tel-Aviv University, Israel

Ugo Rosolia (9)
Amazon Science & Tech, Luxembourg,
Luxembourg

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.ATMOS.2025.9
https://doi.org/10.4230/OASIcs.ATMOS.2025.12
https://orcid.org/0009-0004-5776-0489
https://doi.org/10.4230/OASIcs.ATMOS.2025.17
https://orcid.org/0000-0003-2450-744X
https://doi.org/10.4230/OASIcs.ATMOS.2025.12
https://orcid.org/0009-0000-9706-0074
https://doi.org/10.4230/OASIcs.ATMOS.2025.15
https://orcid.org/0009-0006-6093-2610
https://doi.org/10.4230/OASIcs.ATMOS.2025.16
https://orcid.org/0009-0005-7431-738X
https://doi.org/10.4230/OASIcs.ATMOS.2025.10
https://orcid.org/0000-0001-9711-4458
https://doi.org/10.4230/OASIcs.ATMOS.2025.10
https://orcid.org/0000-0002-0844-586X
https://doi.org/10.4230/OASIcs.ATMOS.2025.14
https://orcid.org/0009-0001-9321-1055
https://doi.org/10.4230/OASIcs.ATMOS.2025.10
https://doi.org/10.4230/OASIcs.ATMOS.2025.9
https://orcid.org/0000-0001-8101-1542
https://doi.org/10.4230/OASIcs.ATMOS.2025.4
https://orcid.org/0000-0002-5324-8996
https://doi.org/10.4230/OASIcs.ATMOS.2025.7
https://doi.org/10.4230/OASIcs.ATMOS.2025.9
https://orcid.org/0009-0004-1741-3693
https://doi.org/10.4230/OASIcs.ATMOS.2025.6
https://orcid.org/0000-0002-8559-6418
https://doi.org/10.4230/OASIcs.ATMOS.2025.6
https://orcid.org/0009-0001-1193-3477
https://doi.org/10.4230/OASIcs.ATMOS.2025.15
https://orcid.org/0000-0002-8337-4387
https://doi.org/10.4230/OASIcs.ATMOS.2025.2
https://orcid.org/0000-0001-5433-184X
https://doi.org/10.4230/OASIcs.ATMOS.2025.2
https://orcid.org/0000-0001-5335-0678
https://doi.org/10.4230/OASIcs.ATMOS.2025.8
https://orcid.org/0009-0001-2880-1390
https://doi.org/10.4230/OASIcs.ATMOS.2025.3
https://orcid.org/0000-0001-6976-0006
https://doi.org/10.4230/OASIcs.ATMOS.2025.3
https://orcid.org/0000-0001-6750-5992
https://doi.org/10.4230/OASIcs.ATMOS.2025.10
https://orcid.org/0000-0002-5922-1612
https://doi.org/10.4230/OASIcs.ATMOS.2025.9
https://orcid.org/0009-0005-3072-5912
https://doi.org/10.4230/OASIcs.ATMOS.2025.6
https://orcid.org/0009-0002-7002-4051
https://doi.org/10.4230/OASIcs.ATMOS.2025.3
https://orcid.org/0009-0004-7281-6516
https://doi.org/10.4230/OASIcs.ATMOS.2025.17
https://orcid.org/0009-0007-5639-583X
https://doi.org/10.4230/OASIcs.ATMOS.2025.16
https://orcid.org/0009-0006-4671-2566
https://doi.org/10.4230/OASIcs.ATMOS.2025.5
https://orcid.org/0000-0002-1682-0551
https://doi.org/10.4230/OASIcs.ATMOS.2025.9
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xii Authors

Sarah Roth (16, 18)
Department of Mathematics, RPTU University
Kaiserslautern-Landau, Germany

Philine Schiewe (11)
Department of Mathematics and Systems
Analysis, Aalto University, Finland

Marie Schmidt (4, 17)
Universität Würzburg, Germany

Anita Schöbel (11, 16, 18)
Department of Mathematics, RPTU University
Kaiserslautern-Landau, Germany; Fraunhofer
Institute of Industrial Mathematics ITWM,
Kaiserslautern, Germany

Vasileios Sofianos (6)
Department of Computer Engineering and
Informatics, University of Patras, Greece; PIKEI
New Technologies, Patras, Greece

Frits C.R. Spieksma (7)
Department of Mathematics and Computer
Science, Eindhoven University of Technology,
The Netherlands

Sabine Storandt (13)
University of Konstanz, Germany

Tami Tamir (5)
Reichman University, Herzliya, Israel

Carina Truschel (13)
University of Konstanz, Germany

Reena Urban (11)
Department of Mathematics, RPTU University
of Kaiserslautern-Landau, Germany

Rolf Nelson van Lieshout (1)
Eindhoven University of Technology, The
Netherlands

Bartholomeüs Theodorus Cornelis van
Rossum (1)
Eindhoven University of Technology, The
Netherlands

Sten Wessel (7)
Department of Mathematics and Computer
Science, Eindhoven University of Technology,
The Netherlands

Robert Wille (14)
Chair for Design Automation, Technical
University of Munich, Germany

Samuel Wolf (4)
Universität Würzburg, Germany

Alexander Wolff (4)
Universität Würzburg, Germany

Sean Yaw (10)
School of Computing, Montana State University,
Bozeman, MT, USA

Christos Zaroliagis (6)
Department of Computer Engineering and
Informatics, University of Patras, Greece;
Computer Technology Institute and Press
Diophantus, Patras, Greece

Michael Zündorf (12)
Karlsruhe Institute of Technology, Germany

https://orcid.org/0009-0005-3681-4465
https://doi.org/10.4230/OASIcs.ATMOS.2025.16
https://doi.org/10.4230/OASIcs.ATMOS.2025.18
https://orcid.org/0000-0002-4223-3246
https://doi.org/10.4230/OASIcs.ATMOS.2025.11
https://orcid.org/0000-0001-9563-9955
https://doi.org/10.4230/OASIcs.ATMOS.2025.4
https://doi.org/10.4230/OASIcs.ATMOS.2025.17
https://orcid.org/0000-0002-9306-5529
https://doi.org/10.4230/OASIcs.ATMOS.2025.11
https://doi.org/10.4230/OASIcs.ATMOS.2025.16
https://doi.org/10.4230/OASIcs.ATMOS.2025.18
https://orcid.org/0000-0002-7652-5802
https://doi.org/10.4230/OASIcs.ATMOS.2025.6
https://orcid.org/0000-0002-2547-3782
https://doi.org/10.4230/OASIcs.ATMOS.2025.7
https://orcid.org/0000-0001-5411-3834
https://doi.org/10.4230/OASIcs.ATMOS.2025.13
https://orcid.org/0000-0002-8409-562X
https://doi.org/10.4230/OASIcs.ATMOS.2025.5
https://orcid.org/0009-0009-7582-7209
https://doi.org/10.4230/OASIcs.ATMOS.2025.13
https://orcid.org/0000-0002-9340-9387
https://doi.org/10.4230/OASIcs.ATMOS.2025.11
https://orcid.org/0000-0001-9918-5962
https://doi.org/10.4230/OASIcs.ATMOS.2025.1
https://orcid.org/0000-0002-8234-5373
https://doi.org/10.4230/OASIcs.ATMOS.2025.1
https://orcid.org/0000-0002-0677-4854
https://doi.org/10.4230/OASIcs.ATMOS.2025.7
https://orcid.org/0000-0002-4993-7860
https://doi.org/10.4230/OASIcs.ATMOS.2025.14
https://orcid.org/0009-0009-7098-6147
https://doi.org/10.4230/OASIcs.ATMOS.2025.4
https://orcid.org/0000-0001-5872-718X
https://doi.org/10.4230/OASIcs.ATMOS.2025.4
https://orcid.org/0000-0002-5518-3604
https://doi.org/10.4230/OASIcs.ATMOS.2025.10
https://orcid.org/0000-0003-1425-5138
https://doi.org/10.4230/OASIcs.ATMOS.2025.6
https://orcid.org/0009-0004-3289-6670
https://doi.org/10.4230/OASIcs.ATMOS.2025.12

The Fair Periodic Assignment Problem
Rolf Nelson van Lieshout # Ñ

Eindhoven University of Technology, The Netherlands

Bartholomeüs Theodorus Cornelis van Rossum #Ñ

Eindhoven University of Technology, The Netherlands

Abstract
We study the periodic assignment problem, in which a set of periodically repeating tasks must be
assigned to workers within a repeating schedule. The classical efficiency objective is to minimize the
number of workers required to operate the schedule. We propose a O(n log n) algorithm to solve
this problem. Next, we formalize a notion of fairness among workers, and impose that each worker
performs the same work over time. We analyze the resulting trade-off between efficiency and fairness,
showing that the price of fairness is at most one extra worker, and that such a fair solution can
always be found using the Nearest Neighbor heuristic. We characterize all instances that admit a
solution that is both fair and efficient, and use this result to develop a O(n log n) exact algorithm
for the fair periodic assignment problem. Finally, we show that allowing aperiodic schedules never
reduces the price of fairness.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Math-
ematics of computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases Cyclic scheduling, Fairness, Traveling Salesman Problem

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.1

1 Introduction

Public transport schedules exhibit a high degree of periodicity across multiple time scales. On
short time scales, timetables often repeat every hour or even more frequently; on longer time
scales, crew rosters typically follow multi-week cycles. This recurring structure motivates
the study of the Periodic Assignment Problem (PAP), where resources – such as vehicles,
platforms, or crew members – must be assigned to tasks within a repeating schedule [1, 2, 10].

When assigning vehicles or platforms, the primary objective is operational efficiency
and adherence to capacity constraints. However, when assigning crew members, fairness
becomes a central concern: it is desirable that all employees perform the same work over
time, rather than being locked into fixed subsets of tasks. While fair periodic rosters are
widely used in both rail [2] and bus systems [11], the fundamental trade-off between fairness
(in workload distribution) and efficiency (in the number of required workers) has not been
formally quantified.

In this paper, we make this trade-off explicit. We formalize a natural fairness criterion –
requiring that all workers cyclically perform the same set of tasks – and study its impact on
scheduling efficiency. We characterize the structure of fair periodic assignments and present
efficient algorithms to compute fair schedules that require a minimal number of workers.

1.1 Problem Description
Consider a set of n timed tasks I to be performed periodically by a pool of homogeneous
workers. The schedule has a fixed period T (typically one week in rostering contexts), and
each task i ∈ I is defined by a T -periodic open interval (ai, bi) with ai, bi ∈ [0, T). This
interval may wrap around the end of the period, i.e., it is possible that ai > bi. The duration
of task i is

© Rolf Nelson van Lieshout and Bartholomeüs Theodorus Cornelis van Rossum;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 1; pp. 1:1–1:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:r.n.v.lieshout@tue.nl
http://www.rolfvanlieshout.com
https://orcid.org/0000-0001-9918-5962
mailto:b.t.c.v.rossum@tue.nl
https://sites.google.com/view/bartvanrossum
https://orcid.org/0000-0002-8234-5373
https://doi.org/10.4230/OASIcs.ATMOS.2025.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

1:2 The Fair Periodic Assignment Problem

c(i) := [bi − ai]T ,

where [·]T denotes the modulo-T operator mapping values to [0, T).
The r-th occurrence of task i is performed in the interval (ai + rT, bi + rT). Workers are

immediately available for a new task after completing one (any required rest time can be
absorbed into task durations). A worker who completes the r-th occurrence of task i can
begin the r-th occurrence of task j if bi ≤ aj , or the (r + 1)-th occurrence of task j otherwise.
In general, the transition time between task i and task j is independent of r and defined as

cij := [aj − bi]T .

These transitions define a complete directed transition graph G = (I,A), where A := I × I
includes all possible task-to-task transitions.

We now formalize the optimization problem of finding an efficient periodic assignment.

▶ Definition 1. Given a period T ∈ N, a set of T -periodic tasks I, and a transition graph
G = (I,A), the Periodic Assignment Problem (PAP) is to find a subset of arcs M⊆ A such
that:
a) The total transition time

∑
(i,j)∈M cij is minimized,

b) For every task i ∈ I, M includes exactly one arc entering and one arc leaving i.

The second condition requires every task to have exactly one predecessor and one successor.
Consequently, any feasible solution M defines a collection of disjoint cycles, where each
cycle represents the sequence of tasks repeatedly executed by a group of workers. A cycle C
covering tasks IC with transitions AC requires w(C) workers, where

w(C) = 1
T

 ∑
i∈IC

c(i) +
∑

(i,j)∈AC

cij

 .

Since the durations of tasks are fixed, minimizing total transition time is equivalent to
minimizing the number of workers required to operate the schedule.

Figure 1 shows a PAP instance, together with three possible representations of an efficient
solution that requires the minimum of two workers. In Figure 1a, the tasks to be performed
periodically are labeled I1, . . . , I4 and displayed as circular arcs. Dotted arcs indicate the
transition arcs in the efficient solution, requiring two workers to operate two disjoint schedules
of two tasks each. Figure 1b represents the same solution as a set of disjoint directed cycles
in the transition graph, where each node corresponds to a task and the durations of the
transitions are given on the arcs. Finally, Figure 1c visualizes the solution explicitly as a
periodic schedule for two workers.

In general periodic assignments, workers corresponding to different cycles are consistently
performing disjoint subsets of tasks (see Figure 1). To enforce fairness – that all workers
perform exactly the same sequence of tasks – we require thatM forms a single directed cycle
covering all tasks, i.e., a Hamiltonian cycle. This gives rise to the fair variant of the PAP:

▶ Definition 2. Given a period T ∈ N, a set of T -periodic tasks I, and a transition graph
G = (I,A), the Fair Periodic Assignment Problem (FPAP) is to find a subset of arcs M⊆ A
such that:
a) The total transition time

∑
(i,j)∈M cij is minimized,

b) M defines a Hamiltonian cycle in G.

R. N. van Lieshout and B. T. C. van Rossum 1:3

I1

I2

I3

I4

0
T
4

T
2

3T
4

(a) Arc representation.

I1 I2

I3 I4

T
12

T
12

T
12

T
12

(b) Graph representation.

Worker

0 T
2

T

1

2

I4 I3

I2 I1

(c) Schedule representation.

Figure 1 Different representations of an efficient solution.

Clearly, the FPAP is a special case of the classical Traveling Salesman Problem (TSP),
where tasks act as cities and transition times define pairwise distances.

Figure 2 displays three representations of a fair solution to a FPAP instance featuring
the same set of tasks as Figure 1. Since a fair solution featuring two workers is not possible,
the fair solution requires the use of long transition arcs, as shown explicitly in Figures 2a
and 2b. The schedule representation in Figure 2c directly shows that the fair assignment
requires three workers. Note that the period of the schedule is longer than T , the period of
the instance.

I1

I2

I3

I4

0
T
4

T
2

3T
4

(a) Arc representation.

I1 I2

I3 I4

T
3

T
3

T
3

T
3

(b) Graph representation.

Worker

0 T 2T 3T

1

2

3

I4 I1 I3 I2

I2 I4 I1 I3

I3 I2 I4 I1

(c) Schedule representation.

Figure 2 Different representations of a fair solution.

Finally, we introduce a lower bound on the number of workers required in any periodic
assignment. Let I(t) denote the number of tasks that intersect time t ∈ [0, T), and define
the system’s load as

L := max
t∈[0,T)

I(t).

The instance of Figure 1 has a load of L = 2, matching the number of workers in the efficient
solution.

1.2 Background and Related Literature
In the special case where there is some t′ such that I(t′) = 0, [7] show that PAP reduces
to coloring an interval graph, yielding a periodic assignment with L workers, matching the
lower bound. [6] provide an O(n log n) algorithm for computing such a coloring. Also the
FPAP is easily solved in this case: at time t′ all workers are idling, so L workers can cycle
through the L colors to cover all tasks, again matching the lower bound.

ATMOS 2025

1:4 The Fair Periodic Assignment Problem

In the general case, L workers still suffice for PAP, as follows from Dilworth’s theorem [9].
An optimal assignment can be found via linear programming, the Hungarian algorithm, or
the O(n2 log n) algorithm of [10].

To the best of our knowledge, we are the first to study the FPAP. However, a similar
problem is considered in [4], which was presented at ATMOS 2024 and served as a direct
inspiration for this work. Rather than requiring strict fairness, the authors consider balanced
assignments that are asymptotically fair, i.e., where workers perform the same work in the
long-run average. They reduce the problem to a construction involving pebbles on arc-colored
Eulerian graphs, showing that if a balanced assignment for w workers exists, it can be found
in polynomial time. Their initial construction yields a period bounded by w2 · w!, but in a
subsequent extension [5], the authors improve this to a linear period.

Other special cases of the TSP are surveyed in [3] and other cyclic scheduling problems
are discussed in [8].

1.3 Main Contributions
The main contributions of this paper are fourfold. First, we present an O(n log n) exact
algorithm for the PAP, improving upon the previous best O(n2 log n) runtime. Second, we
prove that the classical Nearest Neighbor heuristic for TSP yields a fair periodic assignment
requiring at most L + 1 workers, implying that the price of fairness is at most one additional
worker. This bound is tight. Third, we develop an O(n log n) exact algorithm for the FPAP
based on subtour patching. Fourth, we show that allowing longer assignment periods and
requiring balancedness rather than fairness does not reduce the number of required workers.

2 Periodic Assignment

In this section, we characterize optimal solutions to PAP, which we use later on to solve the
FPAP. Moreover, we present a new O(n log n) algorithm for solving PAP.

2.1 Theory
We begin by defining notation relevant to the PAP. Transition arc (i, j) ∈ A corresponds
to the T -periodic interval [bi, aj]. Analogous to I(t), for a periodic assignment M⊆ A, let
M(t) denote the number of transition arcs in M whose associated interval intersects time
t ∈ [0, T), and let

c(I) :=
∑
i∈I

c(i) =
∫ T

0
I(t)dt and c(M) :=

∑
(i,j)∈M

cij =
∫ T

0
M(t)dt.

Since workers are either performing tasks or transitioning between tasks, it holds that the
sum I(t) +M(t) equals the number of workers required to operate the schedule for all
t ∈ [0, T), which also equals (c(I) + c(M)) /T . Combining insights from [9] and [10], we now
characterize the optimal periodic assignment, which uses exactly L workers.

▶ Theorem 3. Let M∗ ⊆ A denote a feasible periodic assignment. The following statements
are equivalent:

(i) M∗ is an optimal solution to PAP,
(ii) c(I) + c(M∗) = LT ,
(iii) I(t) +M∗(t) = L for all t ∈ [0, T),
(iv) M∗(t′) = 0 for some t′ ∈ [0, T).

R. N. van Lieshout and B. T. C. van Rossum 1:5

Proof. (iv) ⇒ (iii): Since all workers are either busy performing tasks or transitioning,
the total number of workers at any time t is I(t) +M∗(t). By assumption, there exists a
t′ ∈ [0, T) such that M∗(t′) = 0, implying I(t′) +M∗(t′) ≤ L. Conversely, since I(t) attains
its maximum at some t′′, we have I(t′′) = L, so I(t′′)+M∗(t′′) ≥ L. Because the total number
of workers is constant over time, we must have that I(t) +M∗(t) = L for all t ∈ [0, T).

(iii)⇒ (ii): Integrating over the interval [0, T) yields:

c(I) + c(M∗) =
∫ T

0
I(t) +M∗(t) dt =

∫ T

0
L dt = LT.

(ii)⇒ (i): If c(I) + c(M∗) = LT , then the schedule uses exactly L workers over time,
matching the theoretical lower bound. Hence, M∗ must be optimal.

(i) ⇒ (iv): Suppose, for contradiction, that M∗(t) ≥ 1 for all t ∈ [0, T). Then, there
exists a subset of transition arcs whose intervals fully cover [0, T). Without loss of generality,
let these intervals be N ∗ = {[b1, a1], . . . , [bm, am]}, where

b1 < am < b2 < a1 < . . . < bm < am−1.

We can now construct a shorter matching N ′ = {[b1, am], [b2, a1], . . . , [bm, am−1]}, which
reduces the total transition time. This contradicts the optimality of M∗. Therefore,
M∗(t) = 0 must hold for some t ∈ [0, T). ◀

2.2 Algorithms
Every transition arc (i, j) ∈ A in the PAP corresponds to a periodic interval [bi, aj], and its
cost depends only on the length of this interval. Therefore, solving PAP is equivalent to
matching each end time bi to a start time aj such that the resulting intervals minimize the
total transition time.

Crucially, the identity of individual tasks does not affect the optimality of the assignment
– only the multiset of start and end times matters. More specifically, tasks with identical start
and end times can be freely swapped without affecting the number of required workers. This
insight enables an efficient algorithm, which we call Shift-Sort-and-Match. It improves
upon the O(n2 log n) method of [10] by reducing the complexity to O(n log n), primarily by
exploiting this structural invariance.

Algorithm 1 outlines the procedure. The algorithm first shifts all start and end times
such that I(0) = L, the maximum number of simultaneously active tasks. It then sorts all
start and end times into a single array, and greedily matches each end time to the earliest
available start time. Note that the algorithm computes an optimal assignment in terms of a
matching between end and start times (still denoted by M); the task-to-task assignment can
be recovered by tracing these matched time points back to their associated tasks.

The shifting step of Algorithm 1 requires both the maximum L and a maximizer t∗ of
I(t). After sorting all events, these can be computed by sweeping through the timeline and
maintaining a counter that increments at every start time and decrements at every end time,
while keeping track of the interval (ai, bj) where the counter reaches its highest value. The
maximum load L is then given by the largest value observed by the counter. Finally, any
point within the interval (ai, bj) where this maximum occurs can be chosen as the maximizer
t∗. This procedure takes O(n log n) due to the initial sorting step.

▶ Theorem 4. The Shift-Sort-and-Match algorithm computes an optimal periodic
assignment M∗ for the Periodic Assignment Problem in O(n log n) time.

ATMOS 2025

1:6 The Fair Periodic Assignment Problem

Algorithm 1 Shift-Sort-and-Match.

1: Shift all start and end times such that I(0) = L

2: Construct array R with all starts and ends, each tagged with its type
3: Sort R in increasing order; break ties by placing ends before starts
4: Initialize empty stack Q for unmatched ends
5: Initialize matching M← ∅
6: Set i← 1
7: while i ≤ |R| do
8: if R[i] is a start then
9: Pop top element e from stack Q

10: Add arc (e, R[i]) to M
11: i← i + 1
12: else
13: Push R[i] onto stack Q

14: i← i + 1
15: end if
16: end while
17: return M

Proof. We begin by analyzing the time complexity. Recall that computing L and the
maximizer t∗ takes O(n log n). Sorting 2n time points also takes O(n log n), and the main
loop of the algorithm executes O(n) operations, each taking O(1) time. Hence, the total
runtime is O(n log n).

To prove correctness, we show that the algorithm constructs a feasible assignment
satisfying condition (iv) from Theorem 3, which implies optimality.

We first show that the stack size when processing an event at time t equals L − I(t).
Initially, the stack is empty and I(t) = L. Each step of the algorithm maintains this invariant
through the following cases:

Case 1 (Line 8): If R[i] is a start, then I(t) increases by 1, and the stack size decreases
by 1.
Case 2 (Line 12): Otherwise, R[i] is an end; I(t) decreases by 1, and the stack size
increases by 1.

This invariant yields the following consequences:
1. The stack size remains nonnegative at all times.
2. When processing a start, the stack must be nonempty, ensuring a valid match.
3. At termination, I(t) = L again, so the stack is empty.

Together, these observations confirm that all starts are matched to ends – by popping
from the stack in Line 9 – ensuring feasibility of the assignment.

For optimality, note that all arcs match from a lower index to a higher index. In particular,
no transition arcs “loop” around time t = 0. Hence M∗(0) = 0, which implies the solution is
optimal by property (iv) of Theorem 3. ◀

3 Fair Periodic Assignment

Imposing fairness in the periodic assignment problem amounts to requiring that the assignment
(M) defines a Hamiltonian cycle in the transition graph. Unlike in the standard PAP, this
condition makes the specific identities of transition arcs essential, as these determine whether
there are any subtours or not.

R. N. van Lieshout and B. T. C. van Rossum 1:7

This additional constraint makes the problem strictly harder: it is no longer guaranteed
that a solution exists using only L workers. As illustrated in Figure 2, certain FPAP instances
necessarily involve long transition arcs, forcing any fair solution to use L + 1 = 3 workers
instead of L = 2. Remarkably, we show that this is the worst-case scenario: every FPAP
instance can be solved using either L or L + 1 workers.

This section proceeds as follows. First, we prove that the Nearest Neighbor heuristic
always yields a fair solution with at most L + 1 workers. Then, we characterize the class of
FPAP instances that admit a fair solution using exactly L workers. Building on this result,
we then present an exact algorithm for solving FPAP.

3.1 Nearest Neighbor
The Nearest Neighbor heuristic is a classical heuristic for the TSP, and repeatedly matches
the current task with the closest unvisited task until all tasks are visited. This is formalized
in Algorithm 2.

Algorithm 2 Nearest Neighbor.

1: Set current task i to arbitrary task u

2: Store unvisited tasks I \ {i} in U
3: Sort U based on increasing start time
4: Initialize matching M← ∅
5: while |U| ≥ 1 do
6: Let v be task in U closest to i

7: Add arc (i, v) to M
8: Remove v from U
9: i← v

10: end while
11: Add arc (i, u) to M
12: return M

To demonstrate the heuristic, we consider the same instance as in Figure 1 but now
without task I2. Figure 3 illustrates that Nearest Neighbor, starting from task I4, returns
a solution with three workers, as indicated by the use of long transition arcs. In contrast,
the optimal solution only uses two. As the following theorem shows, this corresponds to the
worst-case performance of this heuristic.

I1

I3

I4

0
T
4

T
2

3T
4

(a) Nearest Neighbor.

I1

I3

I4

0
T
4

T
2

3T
4

(b) Optimal.

Figure 3 Nearest Neighbor solution versus optimal solution.

ATMOS 2025

1:8 The Fair Periodic Assignment Problem

▶ Theorem 5. The Nearest Neighbor algorithm returns a fair periodic assignment
requiring at most L + 1 workers in O(n log n) time.

Proof. We first analyze the runtime. A crucial observation is that the distance of the current
task to the next depends solely on the end time of the current task and start time of the
next task. If unvisited tasks are stored in increasing order of start time, one can efficiently
find the closest unvisited task. To this end, we store the unvisited tasks U in a self-balancing
binary search tree, allowing us to maintain a fixed task order even as tasks are visited and
removed throughout the course of the algorithm. Constructing this tree takes O(n log n).
Finding the next task v and removing it from U both take O(log n). Since O(n) operations
are required until all tasks are visited, the total time complexity is O(n log n).

Nearest Neighbor always returns a fair periodic assignment. It remains to show that
this assignment requires at most L+1 workers. Suppose, to the contrary, that the assignment
requires more than L + 1 workers. Let t = 0 correspond to the start of the first task that is
visited. If the assignment requires more than L + 1 workers, there is some task i = (a, b) that
is started after L periods, i.e., after L complete revolutions around the circle. This means
that in the first L periods, a task is performed at time a. Together with task i, this implies
the existence of some small ε > 0 such that I(a + ε) = L + 1, a contradiction. ◀

The performance guarantee of Nearest Neighbor allows us to upper-bound the number
of additional workers required to operate a fair assignment, i.e., the price of fairness.

▶ Corollary 6. The price of fairness is 1/L.

Proof. An efficient assignment always requires exactly L workers. Nearest Neighbor
returns a fair solution with at most L + 1 workers. This upper bound is tight, see, e.g.,
Figure 2. It follows that the price of fairness equals (L+1)−L

L = 1
L . ◀

3.2 Theory
We now aim to characterize the instances that admit a solution that is both fair and efficient,
i.e., require no more than L workers. Remark that, in any efficient solution, workers are only
idle during periods in which the load is not maximal, i.e., for which I(t) < L. We refer to
such intervals as idle intervals. Since a worker is idle right before and after performing a
task, tasks act as connections between idle intervals. Moreover, the transition arcs in any
efficient solution are fully contained in idle intervals. As transition arcs determine which
tasks are performed consecutively, they implicitly define which idle intervals are visited along
each (sub)tour.

In case a solution consists of multiple subtours, we distinguish two cases. If two disjoint
cycles share transition arcs in the same idle interval, exchanging the end tasks between two
transition arcs in this interval may patch the cycles together, reducing the number of subtours
by one without increasing the transition costs and bringing us closer to a fair solution. If
they are not simultaneously idle, however, such a procedure is impossible and a fair solution
with L workers is out of reach. In this case, the disjoint cycles can only be patched together
by transition arcs that are active outside of idle intervals, implying the use of at least one
additional worker compared to an efficient solution. The connectivity of idle intervals thus
contains crucial information regarding the existence of a fair solution with L workers.

In the remainder of this section, we show that the way in which tasks connect idle intervals
provides a necessary and sufficient condition for the existence of solutions that are both
efficient and fair. In particular, we show that such solutions can always be constructed from
efficient solutions through patching.

R. N. van Lieshout and B. T. C. van Rossum 1:9

I1

I2

I3

I4

0
T
4

T
2

3T
4

(a) Instance A.

I1

I2

I3

I4

0
T
4

T
2

3T
4

(b) Instance B.

Figure 4 Two instances of the periodic assignment problem. Instance A does not admit a fair
and efficient solution, while instance B does.

Throughout, we illustrate our analysis on the instances in Figure 4. The instance in
Figure 4a equals that of Figure 2 and does not admit a fair solution with L = 2 workers. In
contrast, the slightly modified instance in Figure 4b does admit a fair and efficient solution.

We proceed by formalizing the notion of idle interval.

▶ Definition 7. An idle interval k is a maximal T -periodic closed interval [sk, ek] satisfying
L− I(t) > 0 for all t ∈ [sk, ek].

An interval is maximal when it is not contained in another interval. It is easy to see that
each instance admits at most n idle intervals. Moreover, the start and end time of each
interval correspond to the end and start time of some tasks, respectively. The idle intervals
of instances A and B are shown in Figures 5a and 5b, respectively. Observe that the number
of idle workers L− I(t) need not be constant within an idle interval.

L − I(t)

0 T
4

T
2

3T
4

T
0

1

2
S1 S2 S3 S4

(a) Idle time function of A.

L − I(t)

0 T
4

T
2

3T
4

T
0

1

2

S1

S2 S3

(b) Idle time function of B.

S1 S2

S3 S4

I2 I1 I3 I4

(c) Idle interval graph of A.

S1 S2

S3

I1

I2I3 I4

(d) Idle interval graph of B.

Figure 5 Idle time function and idle interval graph of instance A and B.

By optimality, efficient assignments do not make use of transition arcs outside idle
intervals.

ATMOS 2025

1:10 The Fair Periodic Assignment Problem

▶ Lemma 8. In any optimal periodic assignment, every transition arc is contained in an
idle interval.

Proof. Denote the optimal assignment by M∗ and suppose, to the contrary, that transition
arc (i, j) ∈M∗ is not contained in any idle interval. Choose any t in the T -periodic interval
[bi, aj]. Since (i, j) is not contained in any idle interval, it follows from Definition 7 that
I(t) = L. As arc (i, j) is also active at time t, it holds that I(t) +M∗(t) ≥ L + 1. By
statement (iii) of Theorem 3, this contradicts optimality of M∗. ◀

Our goal is to study how the connectivity of idle intervals determines the number of
disjoint cycles in a periodic assignment. To this end, we introduce the idle interval graph,
representing how the various tasks connect different idle intervals.

▶ Definition 9. Let S denote the set of idle intervals. The idle interval graph is the directed
multigraph H = (S,B) that contains an arc (k, l) for every task i ∈ I satisfying ai ∈ [sk, ek]
and bi ∈ [sl, el].

To see that this is well-defined, note that I(ai), I(bi) < L for all i ∈ I. In other words,
for each task there are unique idle intervals at its start and end time, respectively. By
construction, the number of arcs |B| is always equal to exactly n. Moreover, any feasible
periodic assignment covers all tasks once, and thereby implicitly includes all arcs of H.

Figures 5c and 5d illustrate the idle interval graphs of instances A and B, respectively.
The number of idle intervals, and hence the number of nodes in the graph, differs across the
two instances. Moreover, we find that the idle interval graph of instance B is connected,
while that of instance A is not.

It turns out that efficient solutions on instances with a connected idle interval graph
always satisfy the following condition: if they are not fair, they contain overlapping transition
arcs belonging to disjoint cycles.

▶ Lemma 10. If the idle interval graph H is weakly connected, and an optimal periodic
assignment M∗ consists of disjoint cycles, then there exists a pair of overlapping transition
arcs belonging to disjoint cycles.

Proof. We first show that at least two disjoint cycles must contain transition arcs traversing
the same idle interval. To the contrary, suppose that no two cycles share arcs in an idle
interval. Take any cycle C1 ∈ M∗, and denote by S1 ⊆ S all the idle intervals traversed
along this cycle. By assumption, all the cycles in M′ =M∗ \ C1 only traverse idle intervals
in S ′ = S \ S1. Clearly, S ′ is nonempty. Let B′ ⊆ B be the arcs connecting S ′ and S1. By
connectivity of H, this set is nonempty. Consider any arc (k, l) ∈ B′. Recall that this arc
is induced by some task i ∈ I. Without loss of generality, assume that k ∈ S1 and l ∈ S ′.
If task i is covered by C1, this cycle would contain a transition arc in l, a contradiction.
Similarly, if task i is covered by some cycle in M′, it would contain a transition arc in k,
another contradiction. Since the task must be covered on exactly one cycle, we conclude
that there must exist two disjoint cycles containing transition arcs in the same idle interval.

Now assume that two disjoint cycles contain transition arcs in the same idle interval
[s, e] ∈ S. We show that their transition arcs must overlap at some time in [s, e].

Let C1 be the cycle whose earliest transition arc starts at time s. By definition of the idle
interval and optimality of M∗, such a cycle exists. We distinguish two cases. First, suppose
that the transition arcs in C1 are continuously active from time s until time e. Let C2 be any
other disjoint cycle active in the same idle interval. Clearly, any transition arc from C2 will
overlap with some arc of C1. Alternatively, suppose that the transition arcs in C1 are active

R. N. van Lieshout and B. T. C. van Rossum 1:11

from time s until some time t1 < e, and potentially later in the idle interval too. Let C2 be
the disjoint cycle passing through the same idle interval whose earliest transition arc has
the second-earliest start time. Denote this start time by t2. If t2 ≤ t1, the corresponding
transition arc must intersect with some arc in C1. If t2 > t1, no transition arcs are active in
the interval (t1, t2). This contradicts the definition of the idle interval and optimality of M∗,
stating that M∗(t) ≥ 1 for all t ∈ [s, e]. Hence, at least two transition arcs from disjoint
cycles must overlap. ◀

As outlined before, these overlapping arcs provide opportunities for patching. Indeed, we
show that patching can always be used to obtain a fair and efficient solution on instances
satisfying the conditions of Lemma 10.

▶ Theorem 11. An instance admits a fair solution with L workers if and only if the idle
interval graph H is weakly connected.

Proof. First, let M∗ be any fair solution with L workers. This single cycle visits all nodes
(idle intervals) and arcs (tasks) of the idle interval graph. Clearly, the idle interval graph
must be connected.

Now suppose that the idle interval graph is connected, and let M∗ be any solution with
L workers. If it consists of a single cycle, we are done. Assume that it consists of at least two
disjoint cycles. By Lemma 10, there exists a pair of overlapping transition arcs (i1, j1), (i2, j2)
belonging to disjoint cycles. We can reduce the number of disjoint cycles by one through
a patching operation. In particular, we replace the original, overlapping transition arcs by
(i1, j2) and (i2, j1). The total transition time of the assignment, and hence the number of
required workers, is unaffected by this operation. The number of disjoint cycles, however,
decreases by one. As the original number of disjoint cycles is at most n, repeating this
procedure at most n− 1 times is guaranteed to return a fair solution with L workers. ◀

To illustrate the patching idea, we return to the idle interval graphs of instances A and
B in Figures 5c and 5d, respectively. In line with Theorem 11, we find that the graph
of instance A, for which no fair solution with L = 2 workers exists, is not connected. In
contrast, the graph of instance B is connected, showing that this instance admits a fair
solution with two workers. It does not imply, however, that every efficient solution to this
instance is fair. For example, the solution consisting of two disjoint cycles (I1 → I2 → I1)
and (I3 → I4 → I3) is efficient but not fair. However, these two disjoint cycles can be patched
to form a single fair solution with two workers. For example, transition arcs (I1, I2) and
(I4, I3) overlap at time t = T

4 . Patching these two arcs yields the fair and efficient solution
(I1 → I3 → I4 → I2 → I1).

We conclude our theoretical analysis by pointing out that Theorem 11 provides an elegant,
alternative way of arriving at the price of fairness in Corollary 6. In particular, we can view
the price of fairness as the minimum increase in the load required to make the idle interval
graph connected. Consider an instance for which the idle interval graph is unconnected. It
can easily be made connected by adding a series of artificial tasks that span the period exactly
once and start and end at the start and end times of consecutive intervals, respectively. The
resulting instance has load L + 1, and always admits a fair assignment using L + 1 workers.

3.3 Patching
The proof of Theorem 11 shows that, on instances admitting a fair and efficient solution, any
efficient solution containing disjoint cycles can be made fair by a finite number of patching
operations. We now show how to efficiently implement such a patching procedure and obtain
a O(n log n) exact algorithm for FPAP, which we call Patching.

ATMOS 2025

1:12 The Fair Periodic Assignment Problem

Algorithm 3 Patching.

1: Compute efficient assignment M← Shift-Sort-and-Match
2: Compute the number of disjoint cycles C in M
3: Initialize array U , where entry U [i] stores the original cycle index of task i

4: Initialize array V of size C, where V [k] stores the index of the cycle to which the cycle
originally indexed by k has been patched. Initially, V [k] = k for all k ∈ [C]

5: Construct array of transition arcs R, sorted by increasing start time
6: Initialize patching arc (i, j)← R[1]
7: for m = 2, . . . , |R| do
8: Retrieve current arc (k, l)← R[m]
9: if bk > aj then

10: Update patching arc (i, j)← (k, l)
11: else if V [U [k]] ̸= V [U [i]] then
12: Perform patching by replacing arcs (i, j), (k, l) in M with (i, l), (k, j)
13: Update cycle indices V [U [k]], V [U [l]]← V [U [i]]
14: C ← C − 1
15: if aj > al then
16: Update patching arc (i, j)← (k, j)
17: else
18: Update patching arc (i, j)← (i, l)
19: end if
20: else if al > aj then
21: Update patching arc (i, j)← (k, l)
22: end if
23: end for
24: if C = 1 then
25: return M
26: end if
27: return Nearest Neighbor

The algorithm is described in Algorithm 3. It effectively performs the patching procedure
outlined in the proof of Theorem 11. Starting from an efficient periodic assignment, it
processes all transition arcs in chronological order, patching overlapping arcs that belong to
disjoint cycles. We store the cycle indices in a dedicated two-array data structure, to ensure
that the cycle indices can be updated in constant time after each patching operation. Once all
arcs have been processed, the assignment is guaranteed to be free from overlapping transition
arcs belonging to disjoint cycles. By Theorem 11, this returns a fair and efficient solution
on all instances whose idle interval graph is connected. If the assignment still consists of
disjoint cycles, we conclude that the idle interval graph must be disconnected. In this case,
at least L + 1 workers are required in a fair solution, and Nearest Neighbor is called to
find such a solution.

To ensure that overlapping transition arcs of disjoint cycles can always be patched,
Patching makes use of a so-called patching arc. This patching arc is the transition arc
with the maximum end time among all previously processed arcs, including arcs obtained
through patching. Since arcs are processed in increasing order of start time, the next
processed transition arc will always overlap with the patching arc, provided that it belongs
to the same idle interval. This way, any transition arc belonging to a different cycle can be
successfully patched. It follows that Patching correctly eliminates all overlapping transition
arcs belonging to disjoint cycles.

R. N. van Lieshout and B. T. C. van Rossum 1:13

▶ Theorem 12. The Patching algorithm returns an optimal fair periodic assignment in
O(n log n) time.

Proof. We start with a complexity analysis. Computing an efficient assignment with Shift-
Sort-and-Match takes O(n log n). One can compute all cycles in O(n) by iterating once
over all transition arcs. Constructing the cycle index arrays U and V also takes linear time.
Sorting the transition arcs R by increasing start time requires O(n log n). All O(n) operations
in the for-loop take O(1): patching itself takes constant time, and the arrays U and V allow
us to update the cycle index of each task in constant time as well. Finally, calling Nearest
Neighbor takes O(n log n). The overall time complexity becomes O(n log n).

It is clear that Patching returns a fair periodic assignment. To prove optimality, we
distinguish between two cases. If the instance admits a fair solution with L workers, by the
proof of Theorem 11 it suffices to show that Patching successfully patches all overlapping
transition arcs belonging to different cycles. If the instance does not admit such a solution,
Nearest Neighbor returns an optimal fair solution requiring L + 1 workers.

We now show that the algorithm correctly eliminates all overlapping transition arcs
belonging to different cycles. In particular, we show that patching arc (i, j) always overlaps
with, and hence can be patched with, the next processed transition arc (k, l), whenever (k, l)
belongs to the same idle interval as (i, j).

Without loss of generality, assume that the initial patching arc R[1] marks the start of an
idle interval. Assume that the current patching arc is (i, j), and we are processing arc (k, l).
In case the IF-statement on Line 9 evaluates to true, it must hold that (k, l) belongs to a
different idle interval than (i, j). To the contrary, suppose that they belong to the same idle
interval but bk > aj . Since we always update the patching arc to the processed transition arc
with the latest end time, this would imply that no transition arcs are active in the interval
(aj , bk), contradicting the definition of idle interval and efficiency ofM. Since the arcs belong
to different idle intervals, we do not perform patching but simply update the patching arc.

Now, assume that the two arcs belong to the same idle interval but to disjoint cycles, i.e.,
Line 11 evaluates to true. We can patch the two arcs whenever they overlap, i.e., whenever the
interval [bi, aj]∩ [bk, al] = [max{bi, bk}, min{aj , al}] is nonempty. Since we process transition
arcs in increasing order of their start time, it holds that bi ≤ bk. From Line 9, it follows that
aj ≥ bk. Hence, the two arcs overlap, and we perform a patching operation. Moreover, we
update the patching arc to the processed transition arc with the latest end time.

Finally, in case the two arcs belong to the same idle interval but the same cycle, we do not
perform a patching operation. Instead, on Line 21 we update the patching arc to preserve
the required property that it has the maximum end time among all processed transition
arcs. ◀

Interestingly, we are not aware of a more efficient algorithm for testing the existence
of a fair and efficient periodic assignment than Patching, which directly computes the
optimal fair assignment. The obvious alternative way of testing the conditions of Theorem 11
is to construct the idle interval graph and perform a depth-first search to determine its
connectivity. While the latter step takes linear time as O(|S|+ |B|) = O(n), computing the
idle intervals themselves requires a sorting of the tasks, bringing the time complexity to
O(n log n), i.e., the same as Patching.

4 Fair versus Balanced Assignments

Thus far, we considered assignments that define periodic schedules: if there are q workers,
a worker performing some task in period p also performs this task in periods p + zq for
any z ∈ Z≥0. In contrast, [4] and [5] consider general aperiodic assignments and develop

ATMOS 2025

1:14 The Fair Periodic Assignment Problem

conditions for when such an assignment is balanced. Informally, this means that an assignment
is fair in the long term average. In this section, we show that there are no benefits for
allowing aperiodic assignments, or periodic assignments that repeat with a longer period
than the number of workers: if there is a balanced, potentially aperiodic assignment, there
also exists a fair periodic assignment with the same number of workers.

Following [4], an assignment for q workers is a function f : I × Z≥0 → [q], where
f(i, r) = m means that the r-th occurrence of task i is performed by worker m. An
assignment is feasible if no worker is assigned to two overlapping tasks. More formally, this
requires that f(i, r) ̸= f(i′, r′) whenever (ai + r, bi + r) ∩ (ai′ + r′, bi′ + r′) ̸= ∅ for all i ≠ i′

and r, r′. An assignment is balanced if for all tasks i ∈ I and all workers m

lim
p→∞

1
p
|{r ∈ [p] : f(i, r) = m}| = 1

q
.

In other words, in the long term average, all workers perform all tasks with the same
proportion.

We let IR denote the roll-out of the task set, i.e., the set containing the intervals
(ai + rT, bi + rT) for all i ∈ I and r ∈ Z≥0. Let IR(t) denote the number of active tasks at
time t ≥ 0. The definition of idle intervals naturally extends to the roll-out:

▶ Definition 13. A rolled-out idle interval k is a maximal closed interval [sk, ek] satisfying
L− IR(t) > 0 for all t ∈ [sk, ek].

Since tasks repeat periodically, it holds that IR(t + rT) = I(t) for all r ∈ Z≥0 and all t.
Hence, every regular idle interval (as defined in Section 3) is associated with an infinite
number of corresponding rolled-out idle intervals. Analogous to the periodic case, we can
define a graph that represents the connections between the idle intervals:

▶ Definition 14. Let SR denote the set of idle intervals. The rolled-out idle interval graph
is the directed multigraph HR = (SR,BR) that contains an arc (k, l) for every task i ∈ IR

satisfying ai ∈ [sk, ek] and bi ∈ [sl, el].

Since there is an infinite number of rolled-out idle intervals, the rolled-out idle interval graph
is an infinite graph. Moreover, while the periodic idle interval graph is cyclic, the rolled-out
idle interval graph is acyclic, as all arcs go forward in time. Figure 6 shows the first three
periods of the rolled-out idle interval graph corresponding to a roll-out of instance B.

S0
1

S0
2

S0
3

S1
1

S1
2

S1
3

S2
1

S2
2

S2
3

...

A0
2

A0
3

A1
2

A1
3

A2
2

A2
3

A0
4 A1

4

A0
1 A1

1

A2
1

A2
4

Figure 6 Rolled-out idle interval graph of instance B, showing the first three periods.

There is a many-to-one mapping from nodes and arcs in the rolled-out graph to nodes
and arcs in the periodic graph. This results in the following observation:

R. N. van Lieshout and B. T. C. van Rossum 1:15

▶ Observation 15. The rolled-out idle interval graph HR is weakly connected if and only the
idle interval graph H is connected.

We can now prove a counterpart of Theorem 11 for aperiodic instances.

▶ Theorem 16. An instance admits a balanced assignment with L workers if and only if the
rolled-out idle interval graph HR is weakly connected.

Proof. If HR is weakly connected, H is connected. It follows from Theorem 11 that there
exists a fair periodic assignment with L workers, which also defines a balanced assignment.

To prove the other direction, assume that the rolled-out idle interval graph is not weakly
connected. This implies that there are tasks that are not connected through idle intervals.
In a balanced schedule, however, workers must perform all (periodic) tasks, necessitating
the use of long transition arcs that cross idle intervals. At such instants, there are L active
task arcs and at least one active transition arc, so at least L + 1 workers are required in a
balanced solution. ◀

Recall that there always exists a fair periodic assignment with L + 1 workers. It directly
follows from Theorem 16 that imposing balancedness instead of the stricter fairness criterion
does not provide any benefits in terms of efficiency:

▶ Corollary 17. An instance admits a balanced assignment with q workers if and only if the
instance admits a fair periodic assignment with q workers.

References
1 Enrico Bortoletto, Rolf N van Lieshout, Berenike Masing, and Niels Lindner. Periodic Event

Scheduling with Flexible Infrastructure Assignment. In 24th Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024), volume
123 of Open Access Series in Informatics (OASIcs), pages 4:1–4:18, Dagstuhl, Germany, 2024.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2024.4.

2 Thomas Breugem, Twan Dollevoet, and Dennis Huisman. Is equality always desirable?
Analyzing the trade-off between fairness and attractiveness in crew rostering. Management
Science, 68(4):2619–2641, 2022. doi:10.1287/mnsc.2021.4005.

3 Rainer E Burkard, Vladimir G Deineko, Rene Van Dal, Jack AA van der Veen, and Gerhard J
Woeginger. Well-solvable special cases of the traveling salesman problem: A survey. SIAM
Review, 40(3):496–546, 1998. doi:10.1137/S0036144596297514.

4 Héloïse Gachet and Frédéric Meunier. Balanced Assignments of Periodic Tasks. In Paul C.
Bouman and Spyros C. Kontogiannis, editors, 24th Symposium on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2024), volume 123 of Open
Access Series in Informatics (OASIcs), pages 5:1–5:12, Dagstuhl, Germany, 2024. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2024.5.

5 Héloïse Gachet and Frédéric Meunier. Balanced assignments of periodic tasks. CoRR, 2025.
arXiv:2407.05485.

6 Gupta, Lee, and Leung. An optimal solution for the channel-assignment problem. IEEE
Transactions on Computers, C-28(11):807–810, 1979. doi:10.1109/TC.1979.1675260.

7 Jan H. M. Korst, Emile H. L. Aarts, Jan Karel Lenstra, and Jaap Wessels. Periodic assignment
and graph colouring. Discrete Applied Mathematics, 51(3):291–305, 1994. doi:10.1016/
0166-218X(92)00036-L.

8 Eugene Levner, Vladimir Kats, David Alcaide López de Pablo, and T.C.E. Cheng. Complexity
of cyclic scheduling problems: A state-of-the-art survey. Computers & Industrial Engineering,
59(2):352–361, 2010. doi:10.1016/j.cie.2010.03.013.

ATMOS 2025

https://doi.org/10.4230/OASIcs.ATMOS.2024.4
https://doi.org/10.1287/mnsc.2021.4005
https://doi.org/10.1137/S0036144596297514
https://doi.org/10.4230/OASIcs.ATMOS.2024.5
https://arxiv.org/abs/2407.05485
https://doi.org/10.1109/TC.1979.1675260
https://doi.org/10.1016/0166-218X(92)00036-L
https://doi.org/10.1016/0166-218X(92)00036-L
https://doi.org/10.1016/j.cie.2010.03.013

1:16 The Fair Periodic Assignment Problem

9 James B Orlin. Minimizing the number of vehicles to meet a fixed periodic schedule: An
application of periodic posets. Operations Research, 30(4):760–776, 1982. doi:10.1287/OPRE.
30.4.760.

10 Rolf N van Lieshout. Integrated periodic timetabling and vehicle circulation scheduling.
Transportation Science, 55(3):768–790, 2021. doi:10.1287/trsc.2020.1024.

11 Lin Xie and Leena Suhl. Cyclic and non-cyclic crew rostering problems in public bus transit.
OR Spectrum, 37:99–136, 2015. doi:10.1007/s00291-014-0364-9.

https://doi.org/10.1287/OPRE.30.4.760
https://doi.org/10.1287/OPRE.30.4.760
https://doi.org/10.1287/trsc.2020.1024
https://doi.org/10.1007/s00291-014-0364-9

A Geometric Approach to Integrated Periodic
Timetabling and Passenger Routing
Fabian Löbel #

Zuse Institute Berlin, Germany

Niels Lindner #

Freie Universität Berlin, Germany

Abstract
We offer a geometric perspective on the problem of integrated periodic timetabling and passenger
routing in public transport. Inside the space of periodic tensions, we single out those regions, where
the same set of paths provides shortest passenger routes. This results in a polyhedral subdivision,
which we combine with the known decomposition by polytropes. On each maximal region of the
common refinement, the integrated problem is solvable in polynomial time. We transform these
insights into a new geometry-driven primal heuristic, integrated tropical neighborhood search (ITNS).
Computationally, we compare implementations of ITNS and the integrated (restricted) modulo
network simplex algorithm on the TimPassLib benchmark set, and contribute better solutions in
terms of total travel time for all but one of the twenty-five instances for which a proven optimal
solution is not yet known.

2012 ACM Subject Classification Applied computing → Transportation; Mathematics of computing
→ Combinatorial optimization; Theory of computation → Network optimization

Keywords and phrases Periodic Timetabling, Passenger Routing, Polyhedral Complexes

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.2

Funding Fabian Löbel: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center
MATH+ (EXC-2046/1, project ID: 390685689).

1 Introduction

Public transport systems constitute the backbone of urban mobility in many areas, some
of which are used by several million daily passengers. A skillful design of those systems is
not only important for their regular users, but is also key to attract more passengers, which
is a designated goal to improve sustainability, space consumption, and overall efficiency
of mobility. Ideally, individuals will base their mode and route choice on their expected
travel time. One key characteristic of efficient public transport is to bundle passengers on
similar routes, that are operated with discrete frequencies. Therefore, it is unavoidable that
passengers will spend some time waiting, e.g., before being able to board the next vehicle.
For a public transport operator, it is thus necessary to offer a service that balances the needs
of the passengers, so that the journey duration is adequate for most of the users.

For example, when creating a timetable, it is a reasonable goal to minimize the total
travel time for all passengers. Unfortunately, periodic timetable optimization, which is
mathematically often formulated in terms of the Periodic Event Scheduling Problem (PESP)
[9, 21], is a very challenging NP-hard problem [14]. Even worse, the PESP model assumes
that passengers always use the same route, regardless of the timetable. In practice, the
opposite is true: Passengers choose their paths through the public transport network by the
currently operated timetable. Consequently, it is only natural to include the route choice of
passengers into the timetabling problem.

© Fabian Löbel and Niels Lindner;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 2; pp. 2:1–2:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.loebel@zib.de
https://orcid.org/0000-0001-5433-184X
mailto:lindner@zib.de
https://orcid.org/0000-0002-8337-4387
https://doi.org/10.4230/OASIcs.ATMOS.2025.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

2:2 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

In this paper, we therefore investigate the problem of Integrated Periodic Timetabling and
Passenger Routing (TimPass) [1, 6, 17, 18, 19, 20, 22]. The problem can be formulated as a
bilinear mixed integer program and is hard to solve to optimality in practice. While a vast
supply of heuristics for periodic timetabling is known [3], this is less true for the integrated
problem, although there is some literature [11, 15, 16, 18]. Of course, a straightforward
technique is to design iterative approaches, that compute a passenger routing, then improve
the timetable for that routing, until at some point the passenger routes are changed again,
and so forth. In real-world instances, not only the timetabling subproblem is difficult, but also
frequent shortest path computations, that are necessary to evaluate the actual quality of a
timetable, turn out to be a huge computational bottleneck. The sweet spot is hence to decide
when to keep the current routing, and when to recompute passenger paths. For example, the
modulo network simplex (MNS) algorithm [13] can be generalized to a family of heuristic
algorithms for TimPass that differ in the frequency of shortest path computations [10].

Our theoretical main contribution is a geometric answer to this question. The space
of solutions to the TimPass problem can be parametrized in terms of periodic tensions,
i.e., the collection of durations of activities such as driving between two stations, dwelling
inside a vehicle, or performing a transfer. This space admits a polyhedral decomposition
by regions, such that for all tensions inside a region, the same set of paths is a shortest
path for all origin-destination pairs [8]. Moreover, the tension space is known to admit a
decomposition into polytropes [5]. The latter insight has led to tropical neighborhood search
(TNS), a geometry-inspired PESP heuristic [4]. Considering the common refinement of the
shortest path subdivision with the polytrope decomposition, we obtain a subdivision of the
periodic tension space such that on each region, the TimPass problem becomes polynomial-
time solvable (Corollary 14). When restricting to a polytrope, the computation of shortest
paths for a single origin-destination pair can already be simplified (Lemma 11, Theorem 12,
Corollary 13).

On the practical side, we introduce integrated tropical neighborhood search (ITNS), in
a coarse and in a fine variant. The geometric idea is to solve TimPass on a region of the
subdivision, and then to scan neighboring regions for improvements. We benchmark ITNS
against integrated MNS techniques on the TimPass benchmark set [17]. As a result, we obtain
better solutions for six of the instances within an hour on a regular desktop workstation,
and can improve on the best known solution for all but three instances by taking advantage
of parallelization on a compute cluster. Note that two of those three instances have already
been solved to optimality previously.

The paper is structured as follows: We review the construction and introduce our notation
of extended event-activity networks in Section 2, which allows us to define the TimPass
problem. In Section 3, we recall the (restricted) integrated modulo network simplex algorithm.
The geometric picture is unfolded in Section 4, leading to the integrated tropical neighborhood
search algorithm presented in Section 5. Our computational results on the TimPassLib
instances are evaluated in Section 6. We conclude the paper in Section 7.

2 Problem Modeling

This paper revolves around the Integrated Periodic Timetabling and Passenger Routing
Problem (TimPass). It is based on a directed graph, which we call the extended event-activity
network. We briefly explain the features of such networks in Section 2.1, before describing
the TimPass optimization problem in Section 2.2.

F. Löbel and N. Lindner 2:3

2.1 Extended Event-Activity Networks
Originally proposed in [21], an event-activity network is a directed graph G = (V, A) whose
vertices are called events and whose arcs are called activities.

We are particularly concerned with timetabling in public transport. Each line or trip of
a public transport network admits an alternating sequence of departure and arrival events,
connected by an alternating sequence of driving and dwelling activities. Relations between
different trips can be described by further activities, such as transfer activities that model
passenger transfers, or headway activities that ensure a certain time distance between two
events. An example network is depicted in Figure 1. The goal of timetabling is then to
assign times to the events such that the resulting activity duration between adjacent events
is within pre-specified bounds.

arrival event
departure event

driving activity
dwelling activity
transfer activity

Figure 1 Example of an event-activity network: A bifurcation of a red and a blue line with a few
passenger transfers.

A passenger journey in a public transportation network has a natural interpretation as a
path in a classical event-activity network. However, when a timetable and hence activity
lengths (called tensions) have been determined, it is not reasonable to solve a shortest path
problem on G as is: Passengers are typically not required to start and end their journey at
specific departure or arrival events. Instead, they might choose any line serving a close-by
stop within walking distance of their point of origin. Analogously, it makes little sense to
select a specific arrival event of a specific line at a specific stop as the endpoint of a journey.

We therefore extend the event-activity network by source cells and target cells that model
the origins and destinations of passengers, respectively. Source cells have no incoming edges
and can be connected to several departure events by means of access activities. In the same
vein, target cells have no outgoing edges, but can be reached from several arrival events by
other access activities. Those access activities allow, e.g., to model walking times to different
stop locations.

▶ Definition 1 (Extended Event-Activity Network). An extended event-activity network is a
directed graph G = (V, A) such that

V = Vdep
.
∪ Varr

.
∪ Vsource

.
∪ Vtarget,

A = Aaccess
.
∪ Adrive

.
∪ Adwell

.
∪ Atransfer

.
∪ Aother,

Aaccess ⊆ (Vsource × Vdep) ∪ (Varr × Vtarget),
Adrive ⊆ Vdep × Varr,

Adwell ⊆ Varr × Vdep,

Atransfer ⊆ Varr × Vdep.

ATMOS 2025

2:4 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

The same construction appears in, for example, [20, 10, 18, 12]. To illustrate, the event-
activity network of Figure 1 is extended in Figure 2.

arrival event
departure event

source cell
target cell

driving activity
dwelling activity
transfer activity
access activity

Figure 2 Example of an extended event-activity network, extending Figure 1 by source cells,
target cells, and access activities at each station.

We can now interpret passenger routes as special paths in an extended event-activity
network G, which connect source cells in Vsource to target cells in Vtarget such that they
begin and end with a respective access activity and their remaining activities come from
Adrive

.
∪ Adwell

.
∪ Atransfer. Moreover, if we are given an appropriate time duration for each

activity, we can ask for a shortest passenger route from a source cell s to a target cell t,
and answer with a shortest s-t-path in G. How to find these times is the subject of the
subsequent subsection.

2.2 The TimPass Problem
The TimPass problem is an extension of the Periodic Event Scheduling Problem (PESP) for
periodic timetabling to extended event-activity networks incorporating passenger routing.

▶ Definition 2 (TimPass). Consider a tuple (G, T, p, ℓ, u, D), where
G = (V, A) is an extended event-activity network,
T ∈ N is a period time,
ρ ∈ R≥0 is a transfer penalty,
ℓ ∈ RA

≥0 are lower bounds on activity lengths,
u ∈ RA

≥0 with 0 ≤ u − ℓ < T are upper bounds on activity lengths,
D = (dst) ∈ RVsource×Vtarget

≥0 is an origin-destination (OD) matrix.
The Integrated Periodic Timetabling and Passenger Routing Problem (TimPass) is to find a
periodic timetable π ∈ [0, T)Vdep∪Varr and a periodic tension x ∈ RA such that

πj − πi ≡ xa mod T for all a = (i, j) ∈ A \ Aaccess,
ℓa ≤ xa ≤ ua for all a ∈ A \ Aaccess,
the total travel time

∑
(s,t)∈Vsource×Vtarget

dstτst is minimum, where τst is the cost of a
shortest s-t-path in G with respect to activity costs cx given by

cx
a :=


ℓa if a ∈ Aaccess,

xa + ρ if a ∈ Atransfer,

xa otherwise,

for all a ∈ A. (1)

F. Löbel and N. Lindner 2:5

The periodic timetable π gives the departure and arrival times, which repeat with a period
time of T . The periodic tension x captures the length of each activity a = (i, j) ∈ A \ Aaccess
and is determined up to an integer multiple of T by the event potentials πi and πj such that
ℓ ≤ x ≤ u holds. Since the duration of access activities models walking times, we consider
their tensions fixed to their lower bounds. To route the passengers, we assume that for each
OD pair (s, t) ∈ Vsource × Vtarget, all dst passengers travel along the same shortest path. This
path is determined based on the travel times derived from the periodic tension x and the
lower bounds of the access activities. Additionally, each transfer activity incurs a penalty,
with its actual duration increased by a supplement of ρ.
▶ Remark 3. Since determining the existence of a feasible periodic timetable is already
NP-hard [14], this property naturally extends from PESP to TimPass.
It is straightforward to state a mixed-integer programming formulation for TimPass:

Minimize
∑

a∈A\Aaccess

waxa +
∑

a∈Atransfer

ρwa +
∑

a∈Aaccess

ℓawa (2)

subject to πj − πi + Tza = xa, a = (i, j) ∈ A \ Aaccess, (3)
ℓa ≤ xa ≤ ua, a ∈ A \ Aaccess, (4)
0 ≤ πi ≤ T − 1, i ∈ Vdep ∪ Varr, (5)

za ∈ Z, a ∈ A \ Aaccess (6)

wa =
∑

(s,t)∈D

∑
p∈Pst:a∈p

dstfp, a ∈ A, (7)

∑
p∈Pst

fp = 1, (s, t) ∈ D, (8)

fp ∈ {0, 1}, p ∈ Pst, (s, t) ∈ D (9)

Here, we write D := {(s, t) ∈ Vsource × Vtarget | dst > 0} for the set of OD pairs with positive
demand. The constraints (3)–(6) define PESP, while (8)–(9) describe the selection of exactly
one s-t-path per OD pair (s, t) ∈ D from the set of all such paths Pst. The number of
passengers wa on each activity a ∈ A is then simply the sum over all passengers whose
selected s-t-path contains a, as dictated by constraint (7). The objective (2) is to minimize
the total (perceived, if ρ > 0) travel time of all passengers.
▶ Remark 4. A solution of (2)–(9) can be recovered in polynomial time from a periodic
timetable π: For each a = (i, j) ∈ A, set xa := (πj − πi − ℓa) mod T + ℓa. Alternatively, π

can be reconstructed from x by a graph traversal [9]. The path variables fp can be obtained
by computing shortest s-t-paths for all (s, t) ∈ D.
▶ Remark 5. There are several ways to reformulate the program (2)–(9). For instance, the
Periodic Event Scheduling Problem admits formulations using integral cycle bases, or time
expansion. Likewise, the TimPass model can be adapted. For example, the constraint (9)
may also be replaced by fp ≥ 0, and there is also a time-expanded version.

3 The Restricted Integrated Modulo Network Simplex Algorithm

In this paper, we will not focus on mixed-integer programming techniques to solve TimPass,
but rather on heuristic combinatorial algorithms. In this section, we recall the integrated
modulo network simplex algorithm as introduced in [10].

ATMOS 2025

2:6 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

The modulo network simplex (MNS) method adapts the well-known network simplex for
periodic timetabling [13]. Feasible solutions of PESP (constraints (3)–(6)) can be encoded by
spanning tree structures T = Tℓ

.
∪ Tu, which are spanning trees of the event-activity network

where tree activity tensions are fixed to either their lower or upper bound. We can explore
the solution space from a given initial timetable by iteratively adding a co-tree activity to
the tree and removing one of the activities along the induced fundamental cycle. This yields
a neighborhood relation between spanning tree structures. The method terminates, generally
in a local optimum, if neither any pivot operation nor shifting of event timings along special
cuts yields an improved objective value.

Let G be an extended event-activity network. The association between solutions and
spanning tree structures on G[Vdep ∪ Varr] holds for TimPass [2] as well, we merely have
to decide when the passenger paths are updated throughout the procedure. One approach
is to simply compute the shortest s-t-path for every OD pair (s, t) ∈ D once stuck in a
local optimum, or after every pivot operation. We have found previously however that this
approach does not perform significantly better than solving PESP with fixed passenger paths
and then computing the shortest paths of the final timetable [10].

Instead, when we determine the next improving pivot operation and compare the objective
value of the current tree structure to each of its neighbors, we have to examine the neighbors
under their respective optimal passenger paths. Since the number of co-tree activities whose
tensions are altered by the pivot operation can be arbitrarily large, there is no obvious way
to tell which shortest passenger paths are different in the neighboring solution. Therefore, for
every pivot candidate that results in a feasible timetable, we have to run Dijkstra’s algorithm
for every cell s ∈ Vsource. We call this method the integrated modulo network simplex (IMNS).
It requires O(|T | · |A \ (Aaccess ∪ T)| · |Vsource|) = O(|Vdep ∪ Varr| · |A \ Aaccess| · |Vsource|)
executions of Dijkstra’s algorithm to obtain shortest passenger path trees in each iteration.
Clearly, this is computationally intractable on large instance sizes.

To address this, we have previously devised the restricted integrated modulo network
simplex (RIMNS) [10]. For a given k, we first compute the k shortest paths using at most
two transfers for every OD pair (s, t) ∈ D assuming every activity has its tension at the lower
bound. If every connection between s and t requires at least three transfers, we store only
a single shortest path. When examining the pivot candidates, we simply select whichever
path is shortest under the resulting activity tensions from each OD pair’s current path pool.
After the pivot operation, we compute the actual shortest paths, update the objective if
needed, and add any new s-t-path to the respective pool. Note that it suffices to store access
and transfer activities to fully encode a passenger path due to the structure of extended
event-activity networks. Moreover, we have empirically determined k = 20 to offer the best
trade-off between runtime penalty and solution quality impact [10]. We use this method as a
benchmark in our computational study presented in Section 6.

4 Geometric Interpretation of TimPass

As seen in the last section, the core question in the integrated modulo network simplex
algorithm is when to compute a new routing of the passenger paths. We will now gain insight
on this matter from a geometric point of view, developing a new heuristic for TimPass. To
do so, we begin with a minimalistic example.

F. Löbel and N. Lindner 2:7

4.1 Introductory Examples
▶ Example 6 (Slow line and express line). We consider a TimPass instance as shown in
Figure 3. We take T = 20 and assume that all but the two transfer activities (dotted arrows)
are fixed, i.e. ℓa = ua, and that there are no transfer penalties. In this network, there are
only two possible passenger paths from s to t: The path pr uses the red slow line, the other
path pb includes the blue express line. Let x1 and x2 denote the periodic tensions of the two
transfer arcs, respectively. We make the following observation: The path pr is a shortest
s-t-path if and only if f x1 + x2 ≥ 15, and pb is a shortest s-t-path if and only if x1 + x2 ≤ 15.

s t
[10, 10] [1, 1] [28, 28] [1, 1] [10, 10]

[15, 15]

[2,
21]

[2, 21]

[2, 2] [2, 2]

Figure 3 Extended event-activity network for Example 6, with labels [ℓa, ua] for each activity a.

For the timetabling part, we note that in this instance, a periodic tension is fully
determined by x1 and x2. However, feasible periodic tensions are only those where both paths
take the same time modulo T due to the cycle periodicity property [9, 14]. When depicting
the possible values of x1 and x2 according to their bounds as the square [2, 21] × [2, 21], we
hence identify the two blue highlighted line segments in Figure 4 as the space of feasible
periodic tensions.

x1

x2

2 15 21

2

15

21

pb

pr

Figure 4 Geometry of Example 6. For clarity, note that the extension of the lower left blue line
segment intersects the axes in (0, 15) and (15, 0), while the extension of the upper right blue line
segment intersects in (0, 35) and (35, 0). This corresponds to setting the tension of either transfer
activity to 0 which violates the bounds [2, 21] and is hence outside the feasible region.

The hyperplane x1 + x2 = 15 divides the square into two polytopes: For (x1, x2) on the
bottom-left side (orange in Figure 4), pb is shorter than pr, and on the top-right side (grey
in Figure 4), pr is shorter than pb.

We conclude from Figure 4 that any (x1, x2) with x1 + x2 = 15 is an optimal solution to
the TimPass instance: In this case, pr and pb provide the same travel time and taking the
blue express line can never be faster anyway, since we need to transfer back to the red slow
line to reach cell t.

ATMOS 2025

2:8 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

In a geometric language, we can make the following observations in Figure 4:
1. The space of feasible periodic tensions is a disjoint union of line segments in the square.
2. The hyperplane x1 + x2 = 15 subdivides the square into two polytopes, where each

polytope corresponds to the region where one of the two paths is a shortest path.
3. A line segment of feasible tensions is never part of the interior of more than one shortest

path region.

▶ Example 7 (Two lines). We now turn to a TimPass instance with an extended event-activity
network as in Figure 5. Again, there is a red line and a blue line, but we can reach t from s

using three paths: pbb (blue-blue), pbr (blue-red), prr (red-red). The only interesting tensions
are xbr for the transfer from blue to red and xrr for the dwelling activity of the red line. The
shortest s-t path is

pbb if xbr ≥ 10 and xrr ≥ 10,
pbr if xbr ≤ 10 and xbr ≤ xrr,
prr if xrr ≤ 10 and xrr ≤ xbr.

(10)

s t

[10, 10] [2, 21] [20, 20]

[10, 10] [10, 10] [20, 20]
[2, 21]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

Figure 5 Extended event-activity network for Example 7, with labels [ℓa, ua] for each activity a.

In Figure 6, we illustrate this situation: By the lower and upper bounds, (xbr, xrr) lives
again in the square [2, 21] × [2, 21]. The square is now divided into three regions according to
(10). In this example, any combination of (xbr, xrr) determines a feasible periodic tension:
The event-activity network without the access activities forms a tree.

xbr

xrr

2 10 21

2

10

21

pbbpbr

prr

Figure 6 Geometry of Example 7.

Revisiting the three geometric observations from Example 6, we note for Example 7:
1. The space of feasible tension is the full square.
2. The three paths give rise to a polyhedral subdivision of the square, each maximal region

corresponding to the unique shortest s-t-path with respect to the periodic tensions of
that region.

3. The shortest path subdivision is also a proper subdivision of the square of periodic
tensions.

F. Löbel and N. Lindner 2:9

Our interpretations look different at first glance. We offer a unifying perspective in the
next subsection.

4.2 Theoretic Results
We will now generalize the geometric observations made in the previous examples. Let
I = (G, T, ρ, ℓ, u, D) be a TimPass instance.

▶ Definition 8 (Periodic Tension Spaces). The fractional periodic tension polytope of I is

XLP :=
∏

a∈A\Aaccess

[ℓa, ua].

The periodic tension space of I is

X := {x ∈ XLP | ∃ π ∈ [0, T)Vdep∪Varr ∀a = (i, j) ∈ A \ Aaccess : πj − πi ≡ xa mod T}.

The fractional tension polytope is the space of all vectors x ∈ RA\Aaccess that satisfy
the constraints of the linear programming relaxation of (2)–(9). XLP is by definition a
hyperrectangle, such as the squares in Example 6 and Example 7. The periodic tension space
X is the space of vectors x that are feasible for the mixed-integer program (2)–(9), e.g., the
blue line segments in Figure 4 and the full square in Figure 6.

▶ Definition 9 (Polytrope [5]). For each z ∈ ZA, we define the polytrope

R(z) := {x ∈ XLP | ∃ π ∈ RVdep∪Varr ∀a = (i, j) ∈ A \ Aaccess : πj − πi + Tza = xa}.

We refer to [7] for the origin of the name polytrope, and recall a few results from [5]: Let Γ
be the cycle matrix of an integral cycle basis of the induced subgraph G[Vdep ∪ Varr].
1. For z, z′ ∈ ZA we have either R(z) ∩ R(z′) = ∅ or R(z) = R(z′), the latter case occurring

if and only if Γz = Γz′.
2. The periodic tension space is the union of all R(z), taken over all z ∈ ZA.
3. For each z ∈ ZA, solving PESP restricted to x ∈ R(z) is a linear program dual to

minimum cost network flow, and hence solvable in polynomial time.
4. One can define a neighborhood relation such that two non-empty polytropes R(z) and

R(z′) are neighbors if Γz and Γz′ differ by ± a column of Γ.
These insights led to tropical neighborhood search, a powerful heuristic for the Periodic Event
Scheduling Problem [4]. This is a local search that starts with a non-empty polytrope and
scans for improving neighbors. Any polytrope has at most 2|A \ Aaccess| neighbors, and
PESP can be solved on each polytrope in polynomial time.

We will generalize tropical neighborhood search to integrated tropical neighborhood search
(ITNS). To this end, we need to include passenger paths into our considerations.

▶ Definition 10 (Shortest Path Subdivision). Let s ∈ Vsource, t ∈ Vtarget and let p be an
s-t-path in G. We define

Ss,t(p) := {x ∈ XLP | c(x)(p) ≤ c(x)(p′) for all s-t-paths p′},

where cx is the cost function defined in (1). The collection of Ss,t(p) gives rise to the shortest
path subdivision Ss,t of XLP.

ATMOS 2025

2:10 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

Speaking geometrically, finding a passenger routing for a periodic tension x ∈ X then
amounts to determining, for each (s, t) ∈ D, an s-t-path p such that x ∈ Ss,t(p). In Figure 4,
the orange polytope is Ss,t(pb), defined by the inequality x1 + x2 ≤ 15, and the grey polytope
is Ss,t(pr), defined by x1 + x2 ≥ 15. Analogously, we see the subdivision of the square XLP
into Ss,t(pbb), Ss,t(pbr), Ss,t(prr) in Figure 6 according to (10).

The shortest path subdivision Ss,t of XLP naturally induces a subdivision of each polytrope
R(z). Looking at Figure 4, this subdivision is rather trivial, as is confirmed by the following:

▶ Lemma 11. Let u ∈ Vdep, v ∈ Varr, z ∈ ZA. Then p is a shortest u-v-path w.r.t. cx for
some x ∈ R(z) if and only if it is a shortest u-v-path w.r.t. cz, where

cz
a :=

{
za + ρ

T if a ∈ Atransfer,

za otherwise
for all a ∈ A \ Aaccess.

Proof. Let p be a u-v-path. By the construction of extended event-activity networks, p

cannot contain access activities. For x ∈ R(z), we find a periodic timetable π such that
xa = πj − πi + Tza for all a = (i, j) ∈ A \ Aaccess, and therefore

cx(p) =
∑

a∈p∩(A\Aaccess)

xa +
∑

a∈p∩Atransfer

ρ

=
∑

a=(i,j)∈p∩(A\Aaccess)

(πj − πi + Tza) +
∑

a∈p∩Atransfer

ρ

= πv − πu + T
∑

a=(i,j)∈p∩(A\Aaccess)

za +
∑

a∈p∩Atransfer

ρ

= πv − πu + Tcz(p).

Therefore, if p and p′ are u-v-paths, then cx(p) ≤ cx(p′) holds if and only if cz(p) ≤ cz(p′). ◀

The consequences of Lemma 11 are remarkable: For all tensions inside a polytrope R(z),
the same path can be chosen for a shortest path, as the costs depend only on z – as long as the
path starts at a departure event and ends at an arrival event. This result naturally extends
to paths from source to target cells, where each of them is connected to a single event only, as
is the case in Example 6. However, Example 7 demonstrates that this is no longer true when
cell nodes are adjacent to multiple events. For a vertex u ∈ G, we define its out-neighborhood
N+(u) = {v ∈ V | (u, v) ∈ A} and its in-neighborhood N−(u) = {v ∈ V | (v, u) ∈ A}.

▶ Theorem 12. Let s ∈ Vsource and t ∈ Vtarget and z ∈ ZA. Then Ss,t induces a polyhedral
subdivision of R(z). Each maximal region of the subdivision is parametrized by a departure
event u ∈ N+(s), an arrival event v ∈ N−(t), and given by Ss,t(p) ∩ R(z) for a shortest
s-t-path p containing the access activities (s, u) and (v, t).

Proof. Let x ∈ R(z), u ∈ N+(s), v ∈ N−(t), and let p be an s-t-path using (s, u) and (v, t).
Then

cx(p) = ℓsu + ℓvt +
∑

a∈p∩(A\Aaccess)

cx
a. (11)

As in the proof of Lemma 11,

cx(p) = ℓsu + ℓvt + πv − πu + T
∑

a∈p∩(A\Aaccess)

cz
a. (12)

F. Löbel and N. Lindner 2:11

In particular, the cost cx of a path p depends only on z, its first departure event, and
its last arrival event. If p′ is another s-t-path that contains (s, u) and (v, t) as well, then
cx(p) ≤ cx(p′) if and only if cz(p) ≤ cz(p′). The maximal regions of R(z) induced by the
shortest path subdivision Ss,t are hence described by a pair (u, v) ∈ N+(s) × N−(t) such
that a shortest s-t-path w.r.t. cx contains both (s, u) and (v, t) for all x in that region. Due
to Lemma 11, this shortest path can be chosen to be the same in each such region, say pu,v.
The region Ss,t(pu,v) ∩ R(z) is then described by the inequalities

cx(pu,v) ≤ cx(pu′,v′) for all (u′, v′) ∈ N+(s) × N−(t) \ {(u, v)}. ◀

▶ Corollary 13. For a single OD pair (s, t) ∈ Vsource × Vtarget and an arbitrary z ∈ ZA, a
shortest s-t-path w.r.t. cx among all x ∈ R(z) can be found in polynomial time.

Proof. A tension x ∈ R(z) can be found in polynomial time by the discussion following
Definition 9. By Theorem 12, the shortest path subdivision Ss,t subdivides R(z) into at most
|N+(s)| · |N−(t)| maximal polyhedral regions. Using Lemma 11, for each such region Ru,v

labeled by u and v, we can compute a representing path pu,v such that Ru,v = Ss,t(pu,v)∩R(z)
by computing a shortest path u-v-path w.r.t. cz, and adding the activities (s, u) and (v, t).
We then determine an optimal tension xu,v ∈ Ss,t(pu,v) ∩ R(z) by finding an optimal solution
x to the linear program

Minimize
∑

a∈puv∩(A\Aaccess)

dstxa (13)

subject to πj − πi + Tza = xa, a = (i, j) ∈ A \ Aaccess, (14)
ℓa ≤ xa ≤ ua, a ∈ A \ Aaccess, (15)

πi ∈ R, i ∈ Vdep ∪ Varr. (16)

This linear program is the restriction of (2)–(9) to the fixed periodic offset z and the fixed
path puv, where we dropped the now constant summand∑

a∈pu,v∩Atransfer

dstρ + dstℓsu + dstℓvt

in the objective function, and enlarged the domain of π according to the definition of R(z).
It remains to select the best tension among the xu,v for all (u, v) ∈ N+(s) × N−(t). ◀

The method in the proof of Corollary 13 is based on the polynomial number of maximal
regions of the shortest path subdivision of R(z). For more than one OD pair, this number
however becomes exponential, as the regions of the common refinement of all shortest path
subdivisions Ss,t are

R(z) ∩
⋂

(s,t)∈Vsource×Vtarget

Ss,t(pus,t,vs,t) (17)

for all combinations of (us,t, vs,t) ∈ N+(s) × N−(t) for all (s, t) ∈ Vsource × Vtarget. These
regions single out those periodic tensions, where the same set of passenger routes yields
shortest paths for all OD pairs.

When considering all OD pairs, we can hence not expect a polynomial-time algorithm for
TimPass on R(z). However, on a single region of the common refinement of all shortest path
subdivisions, there is a positive result.

ATMOS 2025

2:12 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

▶ Corollary 14. Let z ∈ ZA and let R be a maximal region of the common refinement of all
shortest path subdivisions Ss,t for all OD pairs (s, t). Suppose that R is described in terms
of (us,t, vs,t) ∈ N+(s) × N−(t) for all (s, t) ∈ Vsource × Vtarget. Then TimPass can be solved
in polynomial time when x is restricted to R(z) ∩ R.

Proof. We determine pus,t,vs,t for all (s, t) as in the proof of Corollary 13. We then solve the
restriction of (2)–(9) to the fixed z and the chosen paths, which boils down to solving the
linear program (14)–(16) w.r.t. to the objective function∑

a∈A\Aaccess

waxa, where wa :=
∑

(s,t)∈D: a∈pus,t,vs,t

dst. ◀

5 Integrated Tropical Neighborhood Search

We now turn back to the question of when to reroute passengers in an alternating timetabling-
routing procedure such as the integrated modulo network simplex (cf. Section 3). The
geometric answer from Section 4 is the following: The passenger routing can be chosen to
be the same on each of the regions (17). However, this investigation is limited to a single
polytrope R(z). In our upcoming local search algorithm, integrated tropical neighborhood
search (ITNS), we will therefore always re-route the passengers when we leave a polytrope.
Inside a polytrope, we will either find a solution heuristically using Corollary 14, or be
more extensive and scan for local improvements by modifying one OD pair at a time only
(Corollary 13).

We outline the three components of ITNS on a high level.

5.1 The Coarse Polytrope Heuristic
In the coarse polytrope heuristic, for a given initial tension x ∈ R(z), we determine the
region R in the sense of (17) such that x ∈ R ∩ R(z) and solve TimPass optimally by means
of Corollary 14. To this end, we solve the linear program indicated in the proof, and its
optimal objective value will give the minimum total travel time on R ∩ R(z).

▶ Algorithm 15 (Coarse Polytrope Heuristic).
Input: periodic tension x ∈ R(z)
Output: periodic tension x∗ ∈ R(z) and its total travel time τ∗

1. For all (s, t) ∈ D, compute shortest paths ps,t w.r.t. cx, giving (us,t, vs,t) ∈ N+(s)×N−(t).
2. Solve TimPass on (17) via Corollary 14 to obtain a tension x∗ ∈ R(z) and its total travel

time τ∗. Return x∗ and τ∗.

5.2 The Fine Polytrope Heuristic
The fine polytrope heuristic proceeds as the coarse heuristic, but then tries to improve the
solution by re-routing passengers for single OD pairs in the spirit of Corollary 13.

▶ Algorithm 16 (Fine Polytrope Heuristic).
Input: periodic tension x ∈ R(z)
Output: periodic tension x∗ ∈ R(z) and its total travel time τ∗

1. Obtain x∗ ∈ R(z) ∩
⋂

(s,t)∈Vsource×Vtarget
Ss,t(ps,t) from Algorithm 15.

2. For a list of OD pairs (s, t):

F. Löbel and N. Lindner 2:13

Enumerate the regions Ss,t(pu,v) be computing representing s-t-paths pu,v as in the
proof of Corollary 13.
For each such region, replace ps,t by pu,v and solve TimPass on the new region via
Corollary 14.
If a solution with better travel time has been found, set ps,t := pu,v and update x∗.

3. Return x∗ and its total travel time τ∗.

In view of Theorem 12, Step (2) can be understood as a heuristic exploration of the neighboring
regions of R(z) ∩

⋂
(s,t)∈Vsource×Vtarget

Ss,t(ps,t). The algorithm may be fine-tuned by adapting
the selection and sorting of the OD pairs. Note that for the linear programs in (2), only the
objective function changes, so that warm-starting is possible.

5.3 Integrated Tropical Neighborhood Search
We embed the two polytrope heuristics into tropical neighborhood search for periodic
timetabling [4].

▶ Algorithm 17 (Integrated Tropical Neighborhood Search, ITNS).
Input: feasible TimPass instance
Output: periodic tension x∗ ∈ R(z) and its total travel time τ∗

1. Compute a feasible solution to TimPass, giving x ∈ R(z).
2. Obtain xz ∈ R(z) and τz by Algorithm 15 or Algorithm 16.
3. Use Algorithm 15 to compute τz′ with tension xz′ ∈ R(z′) among all neighbors R(z′) of

R(z).
4. If there is no z′ with τz′

< τz, return xz and τz.
5. Choose a z′ with τz′

< τz, set z := z′ and go to Step (2).

As computing shortest paths for all OD pairs is the major bottleneck, we do not use
the fine polytrope heuristic in Step (3). Depending on the algorithm chosen in Step (2), we
speak of coarse or fine ITNS. The ITNS might be refined in several ways, e.g., by different
pivot or quality-first rules, see [4].

6 Computational Study

We present novel computational results of applying the (restricted) integrated modulo network
simplex and the coarse/fine integrated tropical neighborhood search to the TimPassLib
benchmark library [17].

6.1 Obtaining an Initial Solution
All presented algorithms in this paper are neighborhood searches that require an initial
feasible timetable. We outline a heuristic to obtain those by constructing a spanning tree
structure T = Tℓ

.
∪ Tu. First, note that it is usually assumed that ua = ℓa + T − 1 holds for

transfer activities a ∈ Atransfer. So if Aother = ∅, adding all driving and dwelling activities to
the lower bound tree Tℓ and connecting the resulting line components by transfer activities
always yields a feasible timetable. We can weigh the transfer activities by the number of
passengers on them subject to a lower bound routing, i.e., with respect to shortest paths
when all tensions xa are at their lower bound ℓa. If there are any other activities in Aother,
then special care has to be taken to ensure feasibility:

ATMOS 2025

2:14 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

Turnaround activities model the required downtime between the end of a line and the
beginning of its reversal direction due to constraints such as driver breaks. Thus, the
driving and dwelling activities of a line, its reversal direction and turnover activities
form a cycle whose tensions have to sum to zero modulo the period time T due to the
cycle periodicity property. We always add this cycle to the tree omitting one of its
activities. Some activities may have to have their tension fixed to the upper bound to
ensure feasibility.
If a line is repeated within the global period of the instance, its events are copied
appropriately often in the event-activity network and connected by synchronization
activities. We construct the connected tree component of a line to always include all of
its repetitions along those timing activities.
Like transfers, headway activities connect line components but may have bounds that
impact feasibility. When we add a line component to the tree under consideration of the
previous two points, we collect all outgoing transfer and headway activities. We then
process them in some order to either connect additional lines to the growing tree or,
if both events incident to the activity are already in the tree, we store them for later.
Once we have connected all lines and the tree is spanning, we check if the tension of
the remaining co-tree activities is feasible. If not, we attempt pivot operations and to
switch up membership in Tℓ and Tu along the fundamental cycle until we have a feasible
timetable, or we have to give up.

Whether this process succeeds in finding a feasible timetable is sensitive to the order in which
we process transfer and other activities. It always succeeds on the TimPassLib instances if
we process activities in Aother in decreasing order of ua − ℓa and then the transfer activities
weighted by the lower bound routing, or, if this fails, in increasing order of ua − ℓa until
ua − ℓa > T/2, then the weighted transfer activities, then the remaining other activities.

6.2 Computational Results

We ran C++ implementations of our proposed methods on an initial solution obtained as
explained in the previous subsection on each TimPassLib instance with a time limit of an hour.
For an overview on the instance sizes we refer to [17] and https://timpasslib.aalto.fi/.
For ITNS, we report the best solutions in terms of total travel time found across three
parameter settings concerning a quality-first rule and numbers of OD pairs considered in
Step (3) of Algorithm 16. We always sort the OD pairs with respect to decreasing weighted
slack along the current path p, i.e., dst

∑
a∈p(xa − ℓa), so that heavy demand relations with

much longer travel times than necessary come first.
All computations have been carried out on an Intel Core i7-9700K CPU with 64 GB

RAM. The results are presented in Table 1 in the appendix.
For six of the instances, we provide better incumbent solutions (Hamburg, grid, long,

metro, Erding20, Erding21). The Stuttgart instance is very large and causes a memory
problem in the ITNS implementation. The RIMNS performs particularly strong. For ITNS,
the coarse version is on level with RIMNS, better on larger instances, but worse on smaller.

The fine ITNS is never better than coarse ITNS. This is also highlighted in Table 2 in the
appendix, where we collect the computation times and the total travel time improvement
in relation to the initial solution. It turns out – see that last column of Table 2 – that the
improvements made in (2) of Algorithm 16 are very minor, while moving to neighboring
polytropes has a larger impact on the total travel time. In particular, it is not advisable to
spend computation time for the fine ITNS.

https://timpasslib.aalto.fi/

F. Löbel and N. Lindner 2:15

Unfortunately, we could not determine better travel times for the RxLy instances within
one hour, whose current incumbents are based on a heavy machinery of periodic timetable
optimization [3, 17]. However, since our methods performed strongly on the instances where
the time limit was not an issue, we became curious if we would be able to beat the best
known incumbents if we allotted more computation time. Moreover, it is straightforward to
parallelize the exploration of the neighborhood of the current solution for both MNS and
TNS, and the shortest path computations for TNS, yielding massive speed-up by moving to
high-throughput cluster nodes with 96 threads composed of Intel Xeon Gold 6342 CPUs with
512 GB RAM. Within a wall time limit of 24 hours, we provide better incumbent solutions
for all TimPassLib instances except toy, toy2, and Stuttgart, see Table 3 in the appendix.
Note that toy and toy2 have already been solved to proven optimality previously. It becomes
apparent that RIMNS outperforms coarse ITNS in this setting, the latter stopping earlier
with worse local optima. The 24 new incumbents have all been computed by RIMNS, while
coarse ITNS improves the TimPassLib bounds only for 6 instances.

7 Conclusion and Outlook

We have analyzed the geometry of integrated periodic timetabling and passenger routing,
culminating in an extension of tropical neighborhood search to an integrated setting. The
ITNS heuristic is complementary to the IMNS algorithm family, and is of a similar computa-
tional power. Both are promising candidates to get a fast good-quality solution for TimPass
problems, as is demonstrated by our new incumbent solutions for the TimPassLib instances.

What remains open on the theory side is to settle the complexity status of optimizing
TimPass over a single polytrope for all OD pairs simultaneously. Another line of future
work, more on the practical side, would be to integrate the path restriction techniques from
RIMNS into ITNS. In general, we believe that including ITNS into larger frameworks for
solving TimPass instances will prove useful, and that further algorithmic refinements and
implementation improvements are possible.

References
1 Ralf Borndörfer, Heide Hoppmann, and Marika Karbstein. Passenger routing for peri-

odic timetable optimization. Public Transport, 9(1):115–135, 2017. doi:10.1007/
s12469-016-0132-0.

2 Ralf Borndörfer, Heide Hoppmann, Marika Karbstein, and Fabian Löbel. The Modulo
Network Simplex with Integrated Passenger Routing. In Andreas Fink, Armin Fügenschuh,
and Martin Josef Geiger, editors, Operations Research Proceedings 2016, pages 637–644.
Springer International Publishing, 2017. doi:10.1007/978-3-319-55702-1_84.

3 Ralf Borndörfer, Niels Lindner, and Sarah Roth. A concurrent approach to the peri-
odic event scheduling problem. Journal of Rail Transport Planning & Management, 15:100175,
2020. doi:10.1016/j.jrtpm.2019.100175.

4 Enrico Bortoletto, Niels Lindner, and Berenike Masing. Tropical Neighbourhood Search: A
New Heuristic for Periodic Timetabling. In Mattia D’Emidio and Niels Lindner, editors,
22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2022), volume 106 of Open Access Series in Informatics (OASIcs), pages
3:1–3:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN:
2190-6807. doi:10.4230/OASIcs.ATMOS.2022.3.

5 Enrico Bortoletto, Niels Lindner, and Berenike Masing. The Tropical and Zonotopal Geo-
metry of Periodic Timetables. Discrete & Computational Geometry, 2024. doi:10.1007/
s00454-024-00686-2.

ATMOS 2025

https://doi.org/10.1007/s12469-016-0132-0
https://doi.org/10.1007/s12469-016-0132-0
https://doi.org/10.1007/978-3-319-55702-1_84
https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/10.4230/OASIcs.ATMOS.2022.3
https://doi.org/10.1007/s00454-024-00686-2
https://doi.org/10.1007/s00454-024-00686-2

2:16 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

6 Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel. Integrating
Passengers’ Routes in Periodic Timetabling: A SAT approach. In Marc Goerigk and Renato F.
Werneck, editors, 16th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2016), volume 54 of Open Access Series in Informatics
(OASIcs), pages 3:1–3:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/OASIcs.ATMOS.2016.3.

7 Michael Joswig and Katja Kulas. Tropical and ordinary convexity combined. Advances
in Geometry, 10(2):333–352, 2010. Publisher: De Gruyter Section: Advances in Geometry.
doi:10.1515/advgeom.2010.012.

8 Michael Joswig and Benjamin Schröter. Parametric Shortest-Path Algorithms via Tropical
Geometry. Mathematics of Operations Research, 47(3):2065–2081, 2022. Publisher: INFORMS.
doi:10.1287/moor.2021.1199.

9 Christian Liebchen. Periodic timetable optimization in public transport. PhD thesis, Technicsche
Universität Berlin, 2006.

10 Fabian Löbel, Niels Lindner, and Ralf Borndörfer. The Restricted Modulo Network Simplex
Method for Integrated Periodic Timetabling and Passenger Routing. In Janis S. Neufeld, Udo
Buscher, Rainer Lasch, Dominik Möst, and Jörn Schönberger, editors, Operations Research
Proceedings 2019, pages 757–763, Cham, 2020. Springer International Publishing. doi:10.
1007/978-3-030-48439-2_92.

11 Bernardo Martin-Iradi and Stefan Ropke. A column-generation-based matheuristic for periodic
and symmetric train timetabling with integrated passenger routing. European Journal of
Operational Research, 297(2):511–531, 2022. doi:10.1016/j.ejor.2021.04.041.

12 Berenike Masing, Niels Lindner, and Enrico Bortoletto. Computing All Shortest Passenger
Routes with a Tropical Dijkstra Algorithm, 2024. arXiv:2412.14654 [math]. doi:10.48550/
arXiv.2412.14654.

13 Karl Nachtigall and Jens Opitz. Solving Periodic Timetable Optimisation Problems by Modulo
Simplex Calculations. In Matteo Fischetti and Peter Widmayer, editors, 8th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08),
volume 9 of Open Access Series in Informatics (OASIcs), pages 1–15, Dagstuhl, Germany, 2008.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2008.1588.

14 Michiel A. Odijk. Construction of periodic timetables, Part 1: A cutting plane algorithm.
Technical Report 94-61, TU Delft, 1994.

15 Gert-Jaap Polinder, Marie Schmidt, and Dennis Huisman. Timetabling for strategic passenger
railway planning. Transportation Research Part B: Methodological, 146:111–135, 2021. doi:
10.1016/j.trb.2021.02.006.

16 Stephanie Riedmüller. A path-based model for integrated periodic timetabling and passenger
routing. Master’s thesis, Freie Universität Berlin, 2023.

17 Philine Schiewe, Marc Goerigk, and Niels Lindner. Introducing TimPassLib – A Library for
Integrated Periodic Timetabling and Passenger Routing. Operations Research Forum, 4, 2023.
doi:10.1007/s43069-023-00244-1.

18 Philine Schiewe and Anita Schöbel. Periodic Timetabling with Integrated Routing: Toward
Applicable Approaches. Transportation Science, 54(6):1714–1731, 2020. Publisher: INFORMS.
doi:10.1287/trsc.2019.0965.

19 Marie Schmidt. Integrating Routing Decisions in Public Transportation Problems. Springer
Optimization and Its Applications. Springer New York, NY, 2014. doi:10.1007/
978-1-4614-9566-6.

20 Marie Schmidt and Anita Schöbel. Timetabling with passenger routing. OR Spectrum,
37(1):75–97, 2015. doi:10.1007/s00291-014-0360-0.

21 Paolo Serafini and Walter Ukovich. A Mathematical Model for Periodic Scheduling Problems.
SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989. doi:10.1137/0402049.

22 Michael Siebert and Marc Goerigk. An experimental comparison of periodic timetabling models.
Computers & Operations Research, 40(10):2251–2259, 2013. doi:10.1016/j.cor.2013.04.002.

https://doi.org/10.4230/OASIcs.ATMOS.2016.3
https://doi.org/10.1515/advgeom.2010.012
https://doi.org/10.1287/moor.2021.1199
https://doi.org/10.1007/978-3-030-48439-2_92
https://doi.org/10.1007/978-3-030-48439-2_92
https://doi.org/10.1016/j.ejor.2021.04.041
https://doi.org/10.48550/arXiv.2412.14654
https://doi.org/10.48550/arXiv.2412.14654
https://doi.org/10.4230/OASIcs.ATMOS.2008.1588
https://doi.org/10.1016/j.trb.2021.02.006
https://doi.org/10.1016/j.trb.2021.02.006
https://doi.org/10.1007/s43069-023-00244-1
https://doi.org/10.1287/trsc.2019.0965
https://doi.org/10.1007/978-1-4614-9566-6
https://doi.org/10.1007/978-1-4614-9566-6
https://doi.org/10.1007/s00291-014-0360-0
https://doi.org/10.1137/0402049
https://doi.org/10.1016/j.cor.2013.04.002

F. Löbel and N. Lindner 2:17

A Result Tables

Table 1 Total travel times for the TimPassLib instances. Some instance names have been
shortened for readability. We feature the best known lower bound and best known solution as
reported on https://timpasslib.aalto.fi/ as of July 4, 2025. Any solution by the integrated
modulo network simplex, restricted integrated modulo network simplex, coarse or fine integrated
tropical neighborhood search beating the currently best known solution is underlined. The blue
solutions highlight which paradigm – MNS or TNS – is better.

instance best known
bound

best known
solution IMNS RIMNS coarse ITNS fine ITNS

Hamburg 139 892 927 141 629 305 141 610 697 141 610 697 141 842 262 141 842 262
Schweiz 60 084 289 62 622 935 65 322 356 63 899 227 64 910 675 65 014 781

toy 21 466 21 466 21 466 21 466 21 466 21 466
toy2 19 114 19 114 19 123 19 130 19 198 19 198

regional 1 804 642 1 834 884 1 855 092 1 855 092 1 855 092 1 855 092
grid 47 824 49 279 48 894 48 922 49 775 49 787
long 64 906 980 67 480 984 68 300 017 67 468 861 68 296 696 68 296 696

metro 11 978 129 12 019 079 11 997 040 12 029 681 12 029 681 12 029 681
Erding20 12 206 083 12 258 126 12 239 162 12 239 477 12 270 189 12 270 701
Erding21 12 206 083 12 307 765 12 258 531 12 258 986 12 298 178 12 300 257

Stuttgart 45 072
189 100

48 325
440 573

48 724
661 870

48 724
661 870

48 724
661 870

48 724
661 870

R1L1 522 575 407 542 908 145 548 590 857 547 888 106 548 783 948 549 254 243
R1L2 522 212 362 542 381 697 546 637 453 546 637 453 547 430 602 547 793 546
R1L3 522 199 838 543 067 240 547 066 363 547 052 294 547 404 978 548 056 874
R1L4 520 799 059 537 879 494 541 161 369 540 579 945 541 612 283 541 795 513
R2L1 650 575 045 681 061 389 687 561 970 686 752 397 686 026 782 686 571 886
R2L2 650 293 220 676 836 085 687 143 153 687 298 476 685 036 749 686 155 351
R2L3 649 767 761 675 793 893 681 918 089 681 601 445 680 839 415 681 528 634
R2L4 647 184 195 667 537 183 671 675 462 670 364 469 670 698 507 670 824 345
R3L1 665 804 283 694 086 648 704 342 418 702 079 664 702 474 126 703 168 722
R3L2 665 719 574 694 334 373 704 352 020 701 666 941 702 618 923 703 427 280
R3L3 665 595 680 691 688 857 699 347 941 695 870 751 697 620 096 698 196 101
R3L4 662 251 432 681 343 018 683 500 409 683 500 409 682 766 750 682 999 085
R4L1 723 276 168 754 707 390 764 266 997 764 266 997 762 687 598 763 002 450
R4L2 724 254 447 754 453 547 761 855 406 761 855 406 760 035 236 760 596 205
R4L3 722 434 044 751 351 849 755 869 038 755 869 038 754 672 008 754 766 718
R4L4 720 103 154 738 792 466 742 256 165 742 256 165 741 051 497 741 154 025

ATMOS 2025

https://timpasslib.aalto.fi/

2:18 A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

Table 2 Running times in seconds, improvement in terms of total travel time in comparison to
the initial solution for the two ITNS algorithms, and improving/total number of OD pairs considered
in Step (2) of Algorithm 16. The Stuttgart and RxLy instances hit the time limit of one hour.

instance coarse ITNS
time [s]

fine ITNS
time [s]

coarse ITNS
improvement

fine ITNS
improvement

fine ITNS
improving/total pairs

Erding20 201.671 599.255 3686 3174 2/80
Erding21 172.526 410.702 22991 20912 1/120
Hamburg 0.955 3.966 201416 201416 0/20
Schweiz 3600 3600 411681 307575 1/96

toy 0.224 1.323 8300 8300 1/80
toy2 0.260 2.798 0 0 0/10

regional 2.743 5.020 0 0 0/10
grid 13.171 13.162 126 114 0/60
long 105.494 183.894 3321 3321 0/30

metro 3.489 11.497 0 0 0/10
Stuttgart — — 0 0 0/0

R1L1 — — 1850443 1380148 3/120
R1L2 — — 1866879 1503935 6/155
R1L3 — — 1448324 796428 4/78
R1L4 — — 1180361 997131 2/84
R2L1 — — 2910082 2364978 3/155
R2L2 — — 3423781 2305179 2/140
R2L3 — — 2587672 1898453 4/102
R2L4 — — 976955 851117 3/50
R3L1 — — 1868292 1173696 4/67
R3L2 — — 1733097 924740 2/62
R3L3 — — 1727845 1151840 5/51
R3L4 — — 733659 501324 2/22
R4L1 — — 1579399 1264547 2/50
R4L2 — — 1820170 1259201 1/50
R4L3 — — 1197030 1102320 2/40
R4L4 — — 1204668 1102140 5/50

F. Löbel and N. Lindner 2:19
Ta

bl
e

3
W

e
pr

ov
id

e
im

pr
ov

ed
in

cu
m

be
nt

s
(u

nd
er

lin
ed

)
fo

r
al

lb
ut

th
re

e
T

im
Pa

ss
Li

b
in

st
an

ce
s

af
te

r
al

lo
tt

in
g

m
or

e
co

m
pu

tin
g

re
so

ur
ce

s
in

th
e

fo
rm

of
96

C
PU

th
re

ad
s

an
d

a
ru

nt
im

e
lim

it
of

24
ho

ur
s

w
al

lt
im

e
(t

im
e

lim
it

hi
t:

—
).

N
ot

e
th

at
th

e
to

y
in

st
an

ce
s

ha
ve

al
re

ad
y

be
en

so
lv

ed
to

op
tim

al
ity

pr
ev

io
us

ly
an

d
th

at
St

ut
tg

ar
t

is
no

to
rio

us
ly

ch
al

le
ng

in
g.

T
he

re
la

tiv
e

im
pr

ov
em

en
t

is
ca

lc
ul

at
ed

by
(o

ld
ga

p
−

ne
w

ga
p)

/
ol

d
ga

p.

in
st

an
ce

T
im

Pa
ss

Li
b

pa
ra

lle
liz

ed
R

IM
N

S
pa

ra
lle

liz
ed

co
ar

se
IT

N
S

be
st

kn
ow

n
bo

un
d

pr
ev

io
us

be
st

so
lu

tio
n

so
lu

tio
n

pr
ev

io
us

ga
p

[%
]

im
pr

ov
ed

ga
p

[%
]

re
la

tiv
e

im
-

pr
ov

em
en

t
[%

]
tim

e
[s

]
so

lu
tio

n
tim

e
[s

]

H
am

bu
rg

13
98

92
92

7
14

16
29

30
5

14
16

10
69

7
1.

24
1.

23
1.

07
2

14
18

42
26

2
1

Sc
hw

ei
z

60
08

42
89

62
62

29
35

62
48

42
32

4.
23

3.
99

5.
46

25
47

4
64

90
64

82
60

6
to

y
21

46
6

21
46

6
21

46
6

0.
00

—
—

<
1

21
46

6
<

1
to

y2
19

11
4

19
11

4
19

11
4

0.
00

—
—

<
1

19
19

8
<

1
re

gi
on

al
18

04
64

2
18

34
88

4
18

27
12

4
1.

68
1.

25
25

.6
6

25
18

55
09

2
1

gr
id

47
82

4
49

27
9

48
89

4
3.

04
2.

24
26

.4
6

15
49

77
5

3
lo

ng
64

90
69

80
67

48
09

84
67

18
97

46
3.

97
3.

52
11

.4
1

—
68

29
66

96
38

m
et

ro
11

97
81

29
12

01
90

79
11

99
70

40
0.

34
0.

16
53

.8
2

20
0

12
02

96
81

2
E

rd
in

g2
0

12
20

60
83

12
25

81
26

12
23

91
62

0.
43

0.
27

36
.4

4
42

1
12

27
01

89
20

2
E

rd
in

g2
1

12
20

60
83

12
30

77
65

12
25

85
31

0.
83

0.
43

48
.4

2
41

0
12

29
81

78
41

1
St

ut
tg

ar
t

45
07

21
89

10
0

48
32

54
40

57
3

48
72

46
61

87
0

7.
22

—
—

—
48

72
46

61
87

0
—

R
1L

1
52

25
75

40
7

54
29

08
14

5
54

08
95

61
1

3.
89

3.
51

9.
90

34
26

2
54

65
03

68
7

18
48

9
R

1L
2

52
22

12
36

2
54

23
81

69
7

54
00

26
01

6
3.

86
3.

41
11

.6
8

51
36

7
54

45
94

20
7

19
54

7
R

1L
3

52
21

99
83

8
54

30
67

24
0

54
04

84
60

7
4.

00
3.

50
12

.3
8

59
19

3
54

48
03

28
5

16
80

1
R

1L
4

52
07

99
05

9
53

78
79

49
4

53
33

50
77

6
3.

28
2.

41
26

.5
2

—
53

87
89

77
1

30
12

6
R

2L
1

65
05

75
04

5
68

10
61

38
9

67
42

14
81

7
4.

69
3.

63
22

.4
6

—
68

26
08

88
5

29
37

9
R

2L
2

65
02

93
22

0
67

68
36

08
5

67
45

39
52

3
4.

08
3.

73
8.

61
—

68
08

97
56

6
38

06
2

R
2L

3
64

97
67

76
1

67
57

93
89

3
67

25
06

99
8

4.
01

3.
50

12
.5

1
—

67
73

13
41

1
31

85
4

R
2L

4
64

71
84

19
5

66
75

37
18

3
66

12
62

17
9

3.
14

2.
18

30
.5

7
—

66
72

77
86

2
—

R
3L

1
66

58
04

28
3

69
40

86
64

8
68

94
39

20
6

4.
25

3.
55

16
.4

7
—

69
71

77
07

2
53

18
2

R
3L

2
66

57
19

57
4

69
43

34
37

3
69

01
22

29
2

4.
30

3.
67

14
.6

5
—

69
58

94
37

4
69

36
6

R
3L

3
66

55
95

68
0

69
16

88
85

7
68

64
86

15
7

3.
92

3.
14

19
.9

0
—

69
39

36
88

7
57

76
0

R
3L

4
66

22
51

43
2

68
13

43
01

8
67

62
01

29
7

2.
88

2.
11

26
.7

4
—

67
95

96
91

5
—

R
4L

1
72

32
76

16
8

75
47

07
39

0
75

18
88

17
2

4.
35

3.
96

8.
97

—
75

86
84

32
7

51
00

3
R

4L
2

72
42

54
44

7
75

44
53

54
7

75
09

17
30

2
4.

17
3.

68
11

.7
5

—
75

75
84

92
2

47
39

9
R

4L
3

72
24

34
04

4
75

13
51

84
9

74
73

09
21

7
4.

00
3.

44
14

.0
0

—
75

13
46

58
1

—
R

4L
4

72
01

03
15

4
73

87
92

46
6

73
54

12
80

8
2.

60
2.

13
18

.0
8

—
73

81
68

29
8

—

ATMOS 2025

Directed Temporal Tree Realization for Periodic
Public Transport: Easy and Hard Cases
Julia Meusel #

Martin Luther University Halle-Wittenberg, Germany

Matthias Müller-Hannemann #

Martin Luther University Halle-Wittenberg, Germany

Klaus Reinhardt #

Martin Luther University Halle-Wittenberg, Germany

Abstract
We study the complexity of the directed periodic temporal graph realization problem. This work is
motivated by the design of periodic schedules in public transport with constraints on the quality
of service. Namely, we require that the fastest path between (important) pairs of vertices is upper
bounded by a specified maximum duration, encoded in an upper distance matrix D. While previous
work has considered the undirected version of the problem, the application in public transport
schedule design requires the flexibility to assign different departure times to the two directions of
an edge. A problem instance can only be feasible if all values of the distance matrix are at least
shortest path distances. However, the task of realizing exact fastest path distances in a periodic
temporal graph is often too restrictive. Therefore, we introduce a minimum slack parameter k that
describes a lower bound on the maximum allowed waiting time on each path. We concentrate on
tree topologies and provide a full characterization of the complexity landscape with respect to the
period ∆ and the minimum slack parameter k, showing a sharp threshold between NP-complete
cases and cases which are always realizable. We also provide hardness results for the special case of
period ∆ = 2 for general directed and undirected graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Discrete mathematics

Keywords and phrases Periodic timetabling, service quality, temporal graph, graph realization,
complexity

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.3

Related Version Full Version: http://arxiv.org/abs/2504.07920
A 5-page version has appeared as a brief announcement in SAND 2025 : https://doi.org/10.4230/
LIPIcs.SAND.2025.21

1 Introduction

Designing periodic schedules for public transport is notoriously difficult. Periodic schedules
are desirable for several practical and operational reasons. They are easier to memorize,
and travelers can better plan their journeys if services run at regular intervals. Periodicity
also enables coordinated connections between different lines at central hubs and simplifies
crew and vehicle scheduling. In this paper, we consider the quality of service provided by
a periodic schedule from a passenger’s perspective. Specifically, we address the question
of whether it is possible to design a periodic schedule for a given network that guarantees
travel time bounds between important pairs of stops. We model this as a graph realization
problem.

Graph realization problems are a central area of research that has been studied extensively
since the 1960s for undirected [6, 9, 10] and directed graphs [1, 4, 8]. Given a set of constraints,
the objective is to find a graph that satisfies them, or to decide that no such graph exists.

© Julia Meusel, Matthias Müller-Hannemann, and Klaus Reinhardt;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 3; pp. 3:1–3:22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julia.meusel@informatik.uni-halle.de
https://orcid.org/0009-0001-2880-1390
mailto:matthias.mueller-hannemann@informatik.uni-halle.de
https://orcid.org/0000-0001-6976-0006
mailto:klaus.reinhardt@informatik.uni-halle.de
https://orcid.org/0009-0002-7002-4051
https://doi.org/10.4230/OASIcs.ATMOS.2025.3
http://arxiv.org/abs/2504.07920
https://doi.org/10.4230/LIPIcs.SAND.2025.21
https://doi.org/10.4230/LIPIcs.SAND.2025.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

3:2 Directed Temporal Tree Realization for Periodic Public Transport

Restrictions on degrees [2, 6, 10], distances between vertices [3, 9, 22], eccentricities [14], and
connectivity [5, 11] have been studied in detail. Recently, the study of realization problems
on temporal graphs was started by Klobas et al. [12, 13]. Temporal graphs are graphs that
have a fixed set of vertices and a set of edges that changes over time. Each edge of a static
graph is assigned a set of timestamps at which it is active. In a periodic temporal graph,
the set of timestamps is repeated periodically for all edges. Informally, a temporal path is a
sequence of consecutive edges in the underlying static graph and corresponding increasing
timestamps at which they are active. Klobas et al. and Mertzios et al. examined restrictions
on the travel time between pairs of vertices in periodic temporal graphs: upper bounds as
well as exact values [12, 13, 16].

This leads to several variants of the Temporal Graph Realization problem (TGR)
that have been studied: In the periodic TGR, all timestamps are repeated periodically. The
simple periodic TGR allows only one timestamp per period, unlike the multi-label periodic
TGR. The constraints on fastest travel times can be either exact values or upper bounds. If
the given underlying graph is a tree, we call the problem Temporal Tree Realization
(TTR). In addition to communication networks such as social networks or satellite links,
Klobas et al. mention transportation networks as examples of potential applications for the
TTR [12, 13]. However, unlike the flow of information in satellite links, transportation
networks typically do not carry passengers on an edge in both directions at the same time.
Therefore, we examine the directed case as a natural generalization. Since most public
transportation lines run in both directions, we will mostly consider bidirected graphs. In tree
structures this is necessary to ensure that every vertex is reachable from every other vertex.

With an application in public transport in mind, the input graph models the infrastructure
network where vertices correspond to locations of stops (or stations) and edges connect
neighboring stops served by a bus, tram, train or the like. In public transport, typical values
for the period ∆ are 5, 10, 15 or 20 minutes in urban transport, and 30, 60 or 120 minutes
in long-distance train networks. The timestamp of an edge (u, v) can be interpreted as the
departure time of some vehicle at u. In a practical setting, traveling along an edge e requires
ℓe ∈ N time. An edge of length ℓ can be equivalently replaced by a simple path of ℓ edges of
unit length as shown in Figure 1. While such a transformation blows up the graph size, it
does not change the complexity of the problem (since hardness results are established even
for unit length graphs). For simplicity, we will therefore consider only unit-length graphs.

Informally, given a directed, strongly connected graph as the underlying static graph as
well as a period ∆ and upper bounds on the travel time between each pair of vertices, the
objective is to compute a (single) periodic timestamp for each directed edge such that a
fastest temporal path between any two vertices does not exceed the given upper bound. The
upper bounds between pairs of vertices can be interpreted as a guaranteed quality of service
that must be met. The bounds are specified by a matrix D of integers or ∞. The latter
means that we do not impose any restriction on the fastest path between the corresponding
vertices. Motivated by transportation networks with fixed traffic lines, we consider only
one global period instead of allowing different periods for all edges. Since waiting times
are unavoidable and natural, for example, due to transfer times at transit hubs, we assume
that there is a small amount of waiting time allowed on all shortest paths and introduce a
minimum slack parameter k that specifies how much waiting time is at least acceptable on all
shortest routes. This parameter gives us some leeway to work with, as waiting is necessary
even on very small instances, such as the one shown in Figure 1.

Travelers on a public transport network typically have to change trains along the way.
In practice, a minimum transfer time must be planned for each change. For simplicity, we
consider only the case where all transfer times are 0. However, one could easily extend the

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:3

5a

4
b

5

4

6
c

6

6

3d 6
e

3 f

(a) An infrastructure
network G labeled with
distances (in minutes)
between vertices (stops).

c

a

d

e3
4

10 2

b

3
1

4
0

10
2
2

34
0
4

4 02
1

3 1

f
1231

0
23

01
234

4321 1 2 3
3 2 1 0 4 3

(b) A graph in which phantom stops have been inserted so that all edges have
unit length. Here, the labels define a schedule where each value denotes a
departure time with respect to a global period of ∆ = 5. The resulting graph
with its labeling forms a periodic temporal graph.

Figure 1 Example: The infrastructure network G = (V, E) with edge lengths (left) can be
modelled with unit length edges by inserting phantom stops between already existing stops (right).
No upper bounds are set for travel times from and to these phantom stops. Suppose we have a period
of ∆ = 5 and the following upper bounds: Da,e = 17, Da,b = 9, and Df,b = 13. Assuming, without
loss of generality, that the label of the edge connecting a to the first phantom stop is assigned the
timestamp 0, the given upper bounds on the travel times enforce the black edge labels. A temporal
graph with edge labels as specified respects these upper bounds. The timestamps of a fastest
temporal path from f to e may be, for example, 1, 2, 3, 6, 7, 8, 9, 10, 11, giving it a duration of 11,
whereas the static distance of f and e is only 9. On this fastest path, one would wait at vertex d for
two timesteps before traversing the next edge with label 1 = 6 mod 5 at time 6. Therefore, adding
an upper bound Df,e = 9 would make the instance infeasible.

model by imposing non-trivial minimum transfer times at each stop. More precisely, one
could add constraints specifying that the difference between the arrival time at a stop and
the departure time on a leaving edge must be at least a given stop-specific constant (the
minimum transfer time at this stop).

Related work. Klobas et al. show that the Simple Periodic TGR with exact given fastest
travel times is NP-hard even for a small constant period ∆ ≥ 3 [12, 13, Theorem 3]. However,
if the underlying static graph is a tree, the problem is solvable in polynomial time [12, 13,
Theorem 27]. It is fixed-parameter tractable (FPT) with respect to the feedback edge number
of the underlying graph but W[1]-hard when parameterized by the feedback vertex number
of the underlying graph [12, 13, Theorem 29 and Theorem 4].

While the Simple Periodic Temporal Graph Realization problem with exact given
fastest travel times is solvable in polynomial time on trees, Mertzios et al. showed that the
problem given upper bounds on the fastest travel times is NP-hard even if the underlying
static graph is a tree or even a star [16, Theorem 5]. This still holds for a constant period of
∆ = 2 and when the input tree G has a constant diameter or a constant maximum degree [16,
Theorem 5]. However, it is FPT with respect to the number of leaves in the input tree G [16,
Theorem 19].

While Klobas et al. and Mertzios et al. only allow one timestamp per edge, Erlebach
et al. consider several timestamps per edge [7]. They examine both the periodic and the
non-periodic variant with exact given fastest travel times. Among other results, they show
that the Multi-Label Periodic Temporal Graph Realization problem is NP-hard,
even if the underlying static graph is a star for any number ℓ ≥ 5 of labels per edge. All
these models have in common that labels (periodic timestamps) are assigned to edges.

Important related problem versions assign periodic labels to vertices. The Periodic
Event Scheduling Problem (PESP), introduced by Serafini and Ukovich in 1989 [21], is
widely used to schedule reoccurring events in public transport. Here the input is a so-called
event-activity network N = (V, A), a period ∆, and time windows [ℓa, ua] for each activity

ATMOS 2025

3:4 Directed Temporal Tree Realization for Periodic Public Transport

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

∆

0

1

2

3

4

5

6

7

8

9

10

11

12

k

a b d f d e d e d e d e d e d e d e d e d e d e d e d e d e

a b g h e

a b c c g h g h g h g h e e e e e e e e e e e e e e e e e e

a b c c g h g h g h g h e e e e e e e e e e e e e e e e e e

a b c c c c g h g h g h g h g h g h g h e e e e e e e e e e

a b c c c c g h g h g h g h g h g h g h e e e e e e e e e e

a b c c c c c c g h g h g h g h g h g h g h g h g h g h e e

a b c c c c c c g h g h g h g h g h g h g h g h g h g h e e

a b c c c c c c c c g h g h g h g h g h g h g h g h g h g h

a b c c c c c c c c g h g h g h g h g h g h g h g h g h g h

a b c c c c c c c c c c g h g h g h g h g h g h g h g h g h

a b c c c c c c c c c c g h g h g h g h g h g h g h g h g h

a b c c c c c c c c c c c c g h g h g h g h g h g h g h g h

Complexity for values of k and ∆

always realizable

NPC with linear size gadget

NPC with quadratic size gadget

Figure 2 Complexity of the Directed Upper-Bounded Periodic Temporal Tree Realiza-
tion Problem for different values of the minimum slack parameter k and period ∆ (∆-k-DiTTR).
The labeling of the boxes indicates which proof was employed to achieve the respective result, where
Theorem 20 is used for all NP-complete cases: (a) Theorem 6, (b) Corollary 8, (c) Theorem 7,
(d) Lemma 14, (e) Lemma 15, (f) Lemma 16, (g) Lemma 17, and (h) Lemma 18. Cases in which the
undirected problem version is NP-complete but all instances of the directed version are realizable
are outlined in red (see Theorem 20).

a ∈ A. The set V models events (think of an arrival or departure of a vehicle at a stop)
and the set A ⊂ V × V so-called activities. Activities model driving between neighboring
stops, dwelling at a stop, transfers between different vehicles or safety constraints (minimal
headways). In PESP, one seeks a periodic timestamp πv ∈ {0, 1, . . . , ∆ − 1} for each event
v ∈ V such that (πw − πv) mod ∆ ∈ [ℓ(v,w), u(v,w)] for all (v, w) ∈ A. The time window
[ℓa, ua] of an activity models lower and upper bounds on the difference of the timestamps
between the corresponding events. In other words, the difference ua − ℓa bounds the slack
(waiting time) which can be introduced on activity a. In stark contrast to our model, these
restrictions are local constraints between adjacent events, not global constraints between
arbitrary events as considered in this paper. The PESP is known to be NP-complete for
fixed ∆ ≥ 3 [21, 17], but efficiently solvable for ∆ = 2 [19, page 87]. Deciding the feasibility
of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the
carvingwidth is 3 [15].

Our contribution. In this paper, we investigate the complexity of the Directed Upper-
Bounded Periodic Temporal Graph Realization Problem (DiTGR) and the Di-
rected Upper-Bounded Periodic Temporal Tree Realization Problem (DiTTR).
Our main results are as follows:

We provide an efficiently checkable necessary and sufficient condition for feasibility in
DiTTR when all pairs of vertices must be realized on shortest paths without waiting
time. The basic insight is that the solvability for such instances depends on the distance
between branching vertices of the given graph topology.
We then introduce the parameter k, which specifies the minimum waiting time to be
allowed on each shortest path (the slack), i.e., for all pairs of vertices u and v we require
that the duration bound Du,v is at least the distance of u and v in the underlying static

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:5

graph plus the constant k. We fully characterize the complexity of the problem for
bidirected tree topologies in terms of period ∆ and slack parameter k. For each possible
combination of parameters ∆ and k, we either prove that the problem is easily solvable
or hard, see Figure 2.
We also investigate in more detail the special case of a given period ∆ = 2. This turns
out to be NP-complete in general (for both directed and undirected graphs), but can be
solved efficiently on directed bipartite graphs and graphs in which all shortest paths are
unique.

Organization of the paper. In Section 2, we start with a formal problem definition. Then,
in Section 3 we will first characterize feasible instances by providing a necessary and sufficient
condition and then present all cases where instances with a bidirected tree topology can be
easily solved. We will also discuss in more detail the special case of a given period ∆ = 2. In
Section 4, we give our hardness results for the remaining instances with a directed bidirected
tree topology. Finally, we conclude in Section 5 with a summary and suggestions for future
work.

2 Formal Problem Definition

As we mainly consider the problem for directed graphs, all following definitions deal with
directed temporal graphs. Both undirected edges and directed arcs are referred to as edges.
The definitions for undirected temporal graphs are analogous. For temporal graphs and
periodic temporal graphs, we follow the notation of Klobas et al. [12, 13]:

▶ Definition 1. A temporal graph is a pair (G, Λ), where G = (V, E) is the underlying
(static) graph and Λ : E → 2N0 is a function, that assigns a set of discrete timestamps to
each edge.

▶ Definition 2. A ∆-periodic temporal graph is a triple (G = (V, E), λ : E → {0, 1, . . . , ∆ −
1}, ∆) which denotes the temporal graph (G, Λ) where ∀e ∈ E : Λ(e) = {λ(e) + i · ∆ | i ∈ N0}.

Informally, a temporal path is a sequence that denotes consecutive edges on a path in the
underlying static graph and the times at which they are traversed. No vertex can be visited
more than once. Recent literature distinguishes between the strict and non-strict version.
Throughout the paper we only consider strict paths: The timestamps have to be strictly
increasing. Formally, we can define a temporal path as follows:

▶ Definition 3. A temporal s-z-path of length ℓ in a directed temporal graph (G, Λ) is a
sequence P = (vi−1, vi, ti)ℓ

i=1 for which the following holds:
v0 = s ∧ vℓ = z

∀i, j ∈ {0, . . . , ℓ}, i ̸= j : vi ̸= vj

∀i ∈ {1, . . . , ℓ} : (vi−1, vi) ∈ E

∀i ∈ {1, . . . , ℓ} : ti ∈ Λ((vi−1, vi))
∀i ∈ {2, . . . , ℓ} : ti−1 < ti

The traversal of an edge requires one time unit. The temporal s-z-path starts or begins
at vertex s at time t1, it reaches or arrives at vertex z at time tℓ + 1.

▶ Definition 4. The duration d(P) of a temporal path P = (vi−1, vi, ti)ℓ
i=1 is defined as

d(P) = tℓ + 1 − t1.

Let d̂(u, v) be the static distance of u and v in the underlying static graph. The undirected
and directed problem versions can now be stated as follows.

ATMOS 2025

3:6 Directed Temporal Tree Realization for Periodic Public Transport

Periodic Upper-Bounded Temporal Graph Realization (TGR)
Input: An undirected, connected graph G = (V, E) with V = {v1, v2, . . . , vn}, an n × n

matrix D of positive integers where ∀u, v ∈ V : Du,v ≥ d̂(u, v), and a positive
integer ∆.

Question: Does there exist a ∆-periodic labeling λ : E → {0, 1, . . . , ∆ − 1} such that, for
every i, j, the duration of a fastest temporal path from vi to vj in the ∆-periodic
temporal graph (G, λ, ∆) is at most Di,j?

The restriction of TGR where the given graph is a tree is called TTR. To generalize
the undirected problem version to the directed one, we restrict the considered graphs to the
simplest case: we only consider directed graphs obtained by replacing each undirected edge
with two antiparallel directed edges. We call graphs that are created this way bidirected.

Periodic Upper-Bounded Temporal Directed Graph Realization (DiTGR)
Input: A directed, strongly connected graph G = (V, E) with V = {v1, v2, . . . , vn}, an

n×n matrix D of positive integers where ∀u, v ∈ V : Du,v ≥ d̂(u, v), and a positive
integer ∆.

Question: Does there exist a ∆-periodic labeling λ : E → {0, 1, . . . , ∆ − 1} such that, for
every i, j, the duration of a fastest temporal path from vi to vj in the ∆-periodic
temporal graph (G, λ, ∆) is at most Di,j?

The restriction of DiTGR to inputs of such graphs derived from trees by adding two
directed edges (u, v) and (v, u) for every undirected edge {u, v} is called DiTTR. This means
that for any pair of vertices (u, v) there is exactly one path from u to v in the underlying
static graph. Furthermore, we only consider instances where ∀u, v ∈ V : Du,v ≥ d̂(u, v),
because all other instances cannot be realized anyway. The duration of a fastest temporal
path from u to v depending on λ is denoted by dλ(u, v). We simply write d(u, v) whenever
λ is clear from the context. For brevity, we write λ(u, v) instead of λ((u, v)). The waiting
time at vertex vi on a path P = (vi−1, vi, ti)ℓ

i=1 is ti+1 − ti − 1 for 1 ≤ i < ℓ. The waiting
time on a path P is the sum of the waiting time at all its vertices. In a bidirected tree it is
equal to the difference d(v0, vℓ) − d̂(v0, vℓ) on a fastest path. In Figure 1b, the static distance
d̂(f, e) between the vertices f and e is 9, whereas the duration of the fastest temporal path
between them is d(f, e) = 11, with a waiting time of 2 = 6 − 3 − 1 only at vertex d. For
a vertex v, we denote by δ+(v) its static outdegree, by δ−(v) its static indegree, and by
δ(v) = δ+(v) + δ−(v) its (total) static degree; N(v) refers to the set of its neighbors.

For any pair of vertices (v, w) the duration of a fastest temporal path P = (vi−1, vi, ti)ℓ
i=1

can be at most d(P) ≤ (d̂(v, w) − 1) · ∆ + 1. This bound is achieved if λ(vi−1, vi) is equal for
all i ∈ {1, . . . , ℓ}. Therefore, any value of Dv,w with Dv,w ≥ (d̂(v, w) − 1) · ∆ + 1 is no real
restriction. We write any such value simply as Dv,w = ∞ or omit it entirely.

The slack parameter k is an implicit parameter of D: D is restricted by ∀v, w ∈ V :
Dv,w ≥ d̂(v, w) + k. For trees, this means that k is the minimum permitted waiting time
on any path, since paths are unique. We call the versions of TTR and DiTTR where the
parameters ∆ and k are fixed ∆-k-TTR respectively ∆-k-DiTTR.

3 Characterization of Feasible Instances

3.1 A Necessary and Sufficient Condition for Feasibility in DiTTR
Before we look at the hardness results for the DiTTR problem, let us consider a special
case: There is no waiting time allowed on any shortest path. As the underlying static graph
is a tree, all paths are shortest paths and no waiting is allowed on any path. Therefore,

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:7

the given travel times are not just upper bounds but exact values. Since there is only one
path between every pair of vertices, this means ∀u, v ∈ V : Du,v = d̂(u, v). For undirected
graphs, this special case is also covered by the result of Klobas et al. for the exact TTR: it
is decidable in polynomial time whether the instance is realizable [12, 13, Theorem 27]. We
provide a simple characterization of the realizability of an instance of DiTTR. To do this,
we introduce so-called branching vertices. We will call a vertex with a degree of at least 6
branching vertex.

▶ Observation 5. An instance of DiTTR with ∀u, v ∈ V : Du,v = d̂(u, v) is realizable exactly
when the distance of any pair of branching vertices is a multiple of ∆/2.

Proof. First we observe that a vertex with a static degree of at least 6 corresponds to a
vertex with a static degree of at least 3 in the underlying undirected tree. As can easily be
seen from the following argument, all branching vertices have fixed arrival and departure
times, i.e. all incoming edges of a branching vertex have the same label, as well as all outgoing
edges. Let v be a branching vertex and let for some neighbor w of v w.l.o.g. λ(w, v) = ∆ − 1.
For all outgoing edges (v, x) of v excluding (v, w) this means λ(v, x) = 0 as no waiting is
allowed. This in turn requires λ(x, v) = ∆ − 1 for the remaining incoming edges (x, v).
The latter implies λ(v, w) = 0. Let y and z be two branching vertices with distance d̂(y, z)
and let t(y), t(z) be the timestamps of their incoming edges. Then the timestamps of
their outgoing edges have to be (t(y) + 1) mod ∆ and (t(z) + 1) mod ∆, respectively. Let
P = (y = v0, v1, t1) . . . (vℓ−1, z = vℓ, tℓ) be a fastest temporal y-z-path and its length ℓ.
By Definition 4, the duration of P is d(P) = tℓ − t1 + 1. We note that for any feasible
solution d(P) = d(y, z) = d̂(y, z). To not exceed Dy,z = d̂(y, z) the following must hold:
∃i ∈ N0 : i · ∆ + t(z) = tℓ = d(P) + t1 − 1 = d̂(y, z) + (t(y) + 1) − 1. By definition and due
to symmetry, this means: t(z) ≡ d̂(y, z) + t(y) (mod ∆) and t(y) ≡ d̂(y, z) + t(z) (mod ∆).
Therefore, the following must also apply: 0 ≡ 2 · d̂(y, z) (mod ∆).

If the distance of any pair of branching vertices is a multiple of ∆/2, we can start at an
arbitrary branching vertex r and set its arrival time to ∆−1. Without waiting, the departure
time of this vertex is 0. Then we can assign labels iteratively as enforced by already labeled
adjacent edges as specified in Algorithm 1. (However, we emphasize that we have to choose
the root as a branching vertex here.) As all branching vertices have a distance of a multiple
of ∆/2, this procedure assigns them fixed arrival and departure times with no waiting. Hence,
with such a labeling there is a temporal path between every pair of vertices without waiting.
If there are no branching vertices at all, we can assign increasing labels independently for
both directions of the path. ◀

This necessary and sufficient condition implies immediately a linear time algorithm
for these instances. This does not contradict our observation that the problem becomes
NP-complete if waiting times are allowed, i.e., Du,v ≥ d̂(u, v). This is even true for the slack
parameter k = 0, since k is a only lower bound for the allowed waiting time.

3.2 Efficiently Solvable Cases
In this section we demonstrate how to realize all instances with ∆ ≤ k + 1 for odd ∆ and
with ∆ ≤ k + 2 for even ∆. Just for completeness, we start with the trivial case ∆ = 1.

▶ Theorem 6. For ∆ = 1 all instances of TGR and DiTGR are feasible.

Proof. Obviously, all labels are forced to have the same value λ = 0. Since the period ∆ is 1,
there is no waiting time at all at any vertex. So every shortest path in the underlying static
graph can be realized as a fastest temporal path with duration equal to its length, which
means that all instances are realizable. ◀

ATMOS 2025

3:8 Directed Temporal Tree Realization for Periodic Public Transport

Algorithm 1 Realizing instances that can always be realized
Choose an arbitrary vertex r as root.
For each edge e = (a, b), do:

if e points away from the root ,
set λ(a, b) = d̂(r, a) mod ∆

if e points to the root ,
set λ(a, b) = (∆ − d̂(r, a)) mod ∆

(a) Realization for k + 1 ≥ ∆ = 3. (b) Realization for k + 2 ≥ ∆ = 4.

Figure 3 Example: Two realizations with waiting times at most ∆ − 1 respectively ∆ − 2 as
constructed by Algorithm 1.

▶ Theorem 7. All instances of DiTTR with ∆ ≤ k + 1 for odd ∆ and with ∆ ≤ k + 2 for
even ∆ are feasible.

Proof. All instances with ∆ ≤ k + 1 for odd ∆ and with ∆ ≤ k + 2 for even ∆ can be
realized by a simple algorithm detailed in Algorithm 1. First, choose an arbitrary vertex r as
the root. Then, traverse the tree and, depending on its distance from the root and whether
it points to or away from the root, assign a label to each edge as specified in Algorithm 1.
Two realizations computed by this algorithm can be seen in Figure 3. There are three cases
for the direction of a path between two vertices:
1. The path runs entirely towards the root.
2. The path leads strictly away from the root.
3. The path first heads towards the root and then changes direction away from it.
In the first two cases there is no delay at all. For the last case, it is easy to see that waiting
time can only occur when changing direction and therefore only once per path. Thus, the
maximum waiting time is at most ∆ − 1 on any path. If ∆ is even, the waiting time is
at most ∆ − 2, because by construction incoming and outgoing edges of every vertex are
assigned values of different parity. Hence, there cannot be two identical labels in a row on a
path. ◀

▶ Corollary 8. All instances of DiTTR with ∆ = 2 are feasible.

This follows from Theorem 7 with ∆ = 2 and k = 0 and can easily be generalized to
directed bipartite graphs.

▶ Corollary 9. All instances of DiTGR where the input is restricted to a directed bipartite
graph G = (U, V, E) with E ⊆ (U × V) ∪ (V × U) and period ∆ = 2 are feasible.

Proof. Given any directed, bipartite graph G = (U, V, E) with E ⊆ (U × V) ∪ (V × U) and
∆ = 2, set λ(e0) = 0 for all e0 ∈ E ∩ (U × V) and λ(e1) = 1 for all e1 ∈ E ∩ (V × U).
Since every path in G alternates between vertices in U and vertices in V , there is no waiting
time. ◀

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:9

(a) A graph G with a feasible labeling for
the case D′

0,10 = 3.
(b) The bicolored graph G′

corresponding to the label-
ing of G in Figure 4a with
D′

0,10 = 3.

(c) The graph G′′ with
D′′

1,10 = 4 is not bipartite.
The dotted lines indicate an
cycle of odd length.

Figure 4 Example: A graph G = (V, E) containing one bidirected cycle of odd length and two
attached trees. The auxiliary graphs G′ = (E, E′) and G′′ = (E, E′′) for two different matrices D′ and
D′′ with D′

3,0 = D′′
3,0 = 2, D′

6,0 = D′′
6,0 = 4, D′

7,9 = D′′
7,9 = 6, D′

9,1 = D′′
9,1 = 4, D′

10,3 = D′′
10,3 = 3

and D′
0,10 = 3, D′′

1,10 = 4. Black and dotted edges are derived by the specific D′ or D′′, whereas
gray edges correspond to potential additional constraints for general D. The graph G′

1 in Figure 4b
is bicolored. The colors of the vertices correspond to the feasible labeling shown in Figure 4a. The
graph G′′ is not bipartite, the instance with D′′ is therefore infeasible.

A graph where all shortest paths are unique is called geodetic [18, p. 105] or min-
unique [20].

▶ Theorem 10. Instances of DiTGR with period ∆ = 2 which are restricted to a directed
geodetic graph G = (V, E) with Du,v ∈ {d̂(u, v), ∞} for all u, v ∈ V can be decided in
polynomial time.

Proof. We show this by giving a reduction to 2–Vertex-Coloring as shown in Figure 4.
Note that as the graph is geodetic there is by definition a unique shortest path in the underlying
static graph for every pair of vertices (v, w) [18, p. 105]. Given an instance (G = (V, E), D, ∆),
let P ⊆ 2E be the set of all edge sets of paths in G and let Pe ⊆ P \ {∅} be the set of edge
sets of all shortest paths where no waiting time is allowed. We construct an undirected
auxiliary graph G′ = (E, E′) with E′ = {{(x, y), (y, z)} | ∃P ∈ Pe : (x, y), (y, z) ∈ P}. This
means that the labeling has to be chosen such that λ(x, y) = (1 − λ(y, z)) mod ∆ for any
{(x, y), (y, z)} ∈ E′ since waiting at y on the way from x to z is not allowed. As ∆ = 2,
this is true if and only if λ(x, y) ̸= λ(y, z) for all {(x, y), (y, z)} ∈ E′. Thus, given a feasible
coloring C : E → {0, 1} for G′, we can set λ(x, y) = C((x, y)) for all (x, y) ∈ E. Therefore,
the instance is feasible if and only if G′ is bipartite which can be decided in polynomial
time. ◀

In sharp contrast, we will show in the following section, that DiTGR is NP-complete for
general graphs even for the special case that ∆ = 2.

4 Hardness Results

In this section, we present several hardness results. First, we extend the previously known
hard cases by showing that TGR and DiTGR are hard for ∆ = 2. Second, we present
hardness results for all remaining cases of values for k and ∆ for DiTTR.

4.1 NP-completeness of DiTGR and TGR for ∆ = 2
▶ Theorem 11. DiTGR is NP-complete even for the special case where period ∆ = 2, the
edges E are bidirected, the constraints D are symmetric and the only odd cycle in G is a
triangle.

ATMOS 2025

3:10 Directed Temporal Tree Realization for Periodic Public Transport

Figure 5 Construction with gadgets for the variables x, y, z and for the clause C1 = (x ∨ y ∨ z).
The dashed edges indicate the basic structure. The edges for the variable gadgets are solid, and
those for the clauses are dotted.

Proof. We reduce 3-SAT to DiTGR as follows: Given a 3-CNF formula Φ = {C1, . . . , Cm}
with a set of variables X, construct a graph G = (V, E) with

V = {T, F, 0, 1, 2, 3} ∪ {x, x, x′|x ∈ X} ∪ Φ
E = {(2, 1), (1, 2), (3, T), (T, 3), (1, T), (T, 1), (1, 0), (0, 1), (T, 0), (0, T), (F, 0), (0, F)}

∪ {(0, x), (x, 0), (0, x), (x, 0)|x ∈ X}
∪ {(x, x′), (x′, x), (x, x′), (x′, x)|x ∈ X}
∪ {(l, C), (C, l)|l ∈ {x, x|x ∈ X} ∧ C ∈ Φ ∧ l ∈ C}

as shown in Figure 5 and set the upper bounds D as follows:

D2,F = DF,2 = D3,2 = D2,3 = D3,F = DF,3 = 3
DT,x′ = Dx′,T = DF,x′ = Dx′,F = 3 for all x ∈ X

Dx,x = Dx,x = 2 for all x ∈ X

DT,C = DC,T = 3 for all C ∈ Φ

All other values of D are set to ∞. For each pair of vertices with a finite distance bound,
this enforces that we have to realize a labeling without waiting on some shortest path. Let
without loss of generality λ(T, 1) = 0. Then the upper bounds D between the vertices 2,
3 and F enforce that λ(T, 1) = λ(1, T) = λ(T, 0) = λ(0, T) = λ(1, 0) = λ(0, 1) = 0 and
λ(3, T) = λ(T, 3) = λ(2, 1) = λ(1, 2) = λ(F, 0) = λ(0, F) = 1.

For each variable x ∈ X, there exist two possible shortest paths from 0 and therefore
from T respectively F to x′: one over x and one over x. Since the paths from T and the
paths from F start with different labels (0 respectively 1), they also have to continue with
different labels to avoid waiting. This means λ(0, x) = 1 − λ(0, x) = 1 − λ(x, x′) = λ(x, x′).
The same holds for the opposite direction: λ(x, 0) = 1 − λ(x, 0) = 1 − λ(x′, x) = λ(x′, x).
Then Dx,x = Dx,x = 2 enforces that the labels in both directions have to be the same, i.e.
λ(0, x) = λ(x, 0): Going without waiting from x to x over 0 requires λ(x, 0) = 1 − λ(0, x) =
λ(0, x). Going over x′ requires λ(x, x′) = 1 − λ(x′, x) = λ(x′, x) which results in the same
labeling.

For every clause C = {l1, l2, l3} there are three shortest paths from T to C: each one
leads over one of the literals l1, l2 and l3 in C. A fastest path can only have a duration of 3
as enforced by the upper bounds, if the edge (0, l) to the literal l has the label 1. Therefore
at least one of the edges (0, l1), (0, l2), (0, l3) has to have the label 1.

An assignment a : X 7→ {0, 1} corresponds to the labeling of the edges from 0 to the
variables, i.e. λ(0, x) = λ(x, 0) = a(x) for all x ∈ X. If Φ ∈ 3-SAT and a is a satisfying
assignment, then we extend λ to λ(l, C) = λ(C, l) = 1 − λ(0, l) for every clause C ∈ Φ which

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:11

is satified by the literal l, which leads to no waiting on the path between T and C and
thus (G, D, 2) ∈ DiTGR. If (G, D, 2) ∈ DiTGR with the labeling λ, then the corresponding
assignment a must satisfy Φ ∈ 3-SAT. ◀

From the proof, we can therefore conclude:

▶ Corollary 12. TGR is NP-complete even for the special case that ∆ = 2.

4.2 NP-complete Cases with Linear Size Gadgets
In this and the following subsection we present hardness results for all other cases, i.e. for
all pairs of values (k, ∆) as shown in Figure 2. In all cases, the basic idea is to construct
gadgets to enforce that for some specific edge (v1, v2) the timestamps for both directions
have the same value, i.e. λ(v1, v2) = λ(v2, v1). However, every value of λ is possible, it is not
restricted by the gadget. In fact, every solution implies ∆ − 1 further symmetrical solutions
in which all values are shifted by some value x < ∆. By enforcing this for every single edge
of an instance I, we can reduce the undirected TTR to DiTTR. All gadgets considered in
this paper have a size polynomial in ∆ and k. We distinguish between cases where we found
linear-size gadgets and cases where we found quadratic-size gadgets.

▶ Lemma 13. If there is a polynomial size gadget which is a realizable instance of ∆-k-
DiTTR and which enforces λ(v1, v2) = λ(v2, v1) for some specific pair of vertices (v1, v2),
we can reduce ∆-k-TTR to ∆-k-DiTTR.

Proof. Let I = (G = (V, E), D, ∆) be an instance of TTR and (Ĝ, D̂, ∆) be a gadget
enforcing λ(a, b) = λ(b, a). First we create a directed graph G′ by replacing every undirected
edge of G by two antiparallel directed edges. Then we enforce λ(v, w) = λ(w, v) for every
edge e = {u, v} ∈ E by inserting a copy of the gadget into G′, identifying (u, v) with (a, b)
and (v, u) with (b, a), and setting D′ consistently with D and D̂. Since the resulting graph is
a tree (G and the gadget G′ are trees that are connected by one common edge) and any two
copies of the gadget share at most one common vertex the construction does not produce
any shortcuts.

Thus, every valid solution λ′ for DiTTR with respect to G′ and D′ immediately implies
a valid solution λ for TTR if we set λ({u, v}) = λ′((u, v)) = λ′((v, u)). Conversely, we can
construct a valid solution for DiTTR from a valid solution for TTR by setting λ′((u, v)) =
λ′((v, u)) = λ({u, v}). Since the gadget is feasible, there exists a solution where the timestamp
of the edges (a, b) and (b, a) is 0. We can then set the labels in the copy of the gadget for
each edge {u, v} to a solution that is shifted modulo ∆ by λ({u, v}). Since ∆ and k are
fixed, this construction is possible in polynomial time if the time to compute the gadget is a
function of only ∆ and k. ◀

▶ Lemma 14. We can construct a gadget G∆,0 that enforces λ(v1, v2) = λ(v2, v1) for some
pair of vertices (v1, v2) for odd period ∆ and minimum slack k = 0.

Proof. We construct this gadget as follows:

V = {1, . . . , 4 + ⌊∆
2 ⌋}

E = {(1, 3), (3, 1), (2, 3), (3, 2)}

∪ {(i, i + 1)|i ∈ {3, . . . , 3 + ⌊∆
2 ⌋}} ∪ {(i + 1, i)|i ∈ {3, . . . , 3 + ⌊∆

2 ⌋}}

D1,2 = D2,1 = 2

D1,4+⌊ ∆
2 ⌋ = D4+⌊ ∆

2 ⌋,1 = D2,4+⌊ ∆
2 ⌋ = D4+⌊ ∆

2 ⌋,2 = 2 + ⌊∆
2 ⌋

ATMOS 2025

3:12 Directed Temporal Tree Realization for Periodic Public Transport

Figure 6 Gadget for ∆ =
3 and k = 0 that enforces
λ(4, 5) = λ(5, 4). The dotted
lines indicate Dv,w < ∞.

Figure 7 Gadget for ∆ =
5 and k = 1 that enforces
λ(3, 4) = λ(4, 3). The dotted
lines indicate Dv,w < ∞.

Figure 8 Gadget for ∆ =
4 and k = 0 that enforces
λ(4, 5) = λ(5, 4). The dotted
lines indicate Dv,w < ∞.

All other values of D are set to ∞. As no waiting time is allowed, vertex 3 has a fixed
arrival/departure time (see proof for Observation 5). Let t(3) be the timestamps of its
incoming edges. For the sake of convenience, let us assume that t(3) = ∆ − 1 and that
the departure time is 0. This implies λ(3, 4) = 0 and therefore λ(3 + ⌊ ∆

2 ⌋, 4 + ⌊ ∆
2 ⌋) = ⌊ ∆

2 ⌋.
Symmetrically, the following is also true: λ(4, 3) = ∆−1 and λ(4+⌊ ∆

2 ⌋, 3+⌊ ∆
2 ⌋) = ∆−1−⌊ ∆

2 ⌋.
As ∆ is odd this means λ(4 + ⌊ ∆

2 ⌋, 3 + ⌊ ∆
2 ⌋) = λ(3 + ⌊ ∆

2 ⌋, 4 + ⌊ ∆
2 ⌋) = ⌊ ∆

2 ⌋. Therefore we
can enforce λ(v1, v2) = λ(v2, v1) for the vertices v1 = 3 + ⌊ ∆

2 ⌋ and v2 = 4 + ⌊ ∆
2 ⌋. ◀

For ∆ = 3 the gadget is shown in Figure 6. In this gadget, λ(5, 4) = λ(4 + ⌊ ∆
2 ⌋, 3 + ⌊ ∆

2 ⌋) =
λ(3 + ⌊ ∆

2 ⌋, 4 + ⌊ ∆
2 ⌋) = λ(4, 5) is enforced. This gadget has a size linear in ∆ and only six

values in D that are not infinity. Furthermore, D is symmetric.

▶ Lemma 15. There is a gadget G∆,k that even with the limitation Du,v ≥ d̂(u, v) + k

enforces λ(v1, v2) = λ(v2, v1) for some pair of vertices (v1, v2) as long as ∆ ≥ 4 · k + 1 ∧ k ≥ 1
and minimum slack k is odd. For any even values of k with ∆ ≥ 4 · k + 5 we can simply use
the gadget for k + 1.

Proof. The following gadget enforces λ(3 + ⌊ k
2 ⌋, 3 + ⌈ k

2 ⌉) = λ(3 + ⌈ k
2 ⌉, 3 + ⌊ k

2 ⌋):

V = {1, . . . , k + 5}
E = {(k + 3, k + 4), (k + 4, k + 3), (k + 3, k + 5), (k + 5, k + 3)}

∪ {(1, 3), (3, 1), (2, 3), (3, 2)}
∪ {(i, i + 1)|i ∈ {3, . . . , k + 2}}
∪ {(i + 1, i)|i ∈ {3, . . . , k + 2}}

D2,1 = Dk+4,k+5 = k + 2
D2,k+5 = Dk+4,1 = 2 · k + 2

All other values of D are set to ∞. Let w.l.o.g. λ(k + 4, k + 3) = 0. We show that there is
only one solution by looking at possible values of λ for the edges from and to leaves. We
observe d̂(k + 4, 1) = d̂(2, k + 5) = k + 2. As there is no waiting required but at most a
waiting time of k allowed on the path from vertex k + 4 to vertex 1, the following must hold:
λ(3, 1) ∈ {k + 1, . . . , 2 · k + 1} (recall ∆ ≥ 4 · k + 1). That means in turn that λ(2, 3) is in
the range {0, 1, . . . , 2 · k}. The corner case λ(2, 3) = 0 occurs when λ(3, 1) = k + 1 and with
maximum waiting time. Conversely, with λ(3, 1) = 2 · k + 1 and with no waiting time, λ(2, 3)
is at most 2 · k.

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:13

In the same way we can conclude that λ(k + 3, k + 5) ∈ {k + 1, . . . , 4 · k, (4 · k + 1) mod ∆}.
Because ∆ ≥ 4 ·k +1 only the last item may be affected by the modulo operator and would be
assigned the value 0 in that case. Suppose now that λ(k + 3, k + 5) ∈ {k + 2, . . . , 4 · k, (4 · k +
1) mod ∆}, i.e. any other possible value than k+1. Then d(k+4, k+5) ≥ k+2−0+1 = k+3 >

Dk+4,k+5 = k + 2 and thus, the solution cannot be valid for these values of λ(k + 3, k + 5).
Therefore λ(k + 3, k + 5) = k + 1 which means that there is no waiting time at all on the
paths from k + 4 to 1 and from 2 to k + 5 but a waiting time of k on the paths from 2 to 1
and from k + 4 to k + 5. Thus, λ(3 + ⌊ k

2 ⌋, 3 + ⌈ k
2 ⌉) = ⌈ k

2 ⌉ = λ(3 + ⌈ k
2 ⌉, 3 + ⌊ k

2 ⌋). Therefore
we can enforce λ(v1, v2) = λ(v2, v1) for the vertices v1 = 3 + ⌈ k

2 ⌉ and v2 = 3 + ⌊ k
2 ⌋. ◀

Figure 7 shows the gadget for ∆ = 5 and k = 1. This gadget also has a size linear in k

and therefore also in ∆ and a constant amount of values in D that are not infinity. The
constraints D are not symmetric; however, setting them as such doesn’t affect the proof: For
all feasible solutions λ(3 + ⌊ k

2 ⌋, 3 + ⌈ k
2 ⌉) = λ(3 + ⌈ k

2 ⌉, 3 + ⌊ k
2 ⌋) holds and there is still at least

one feasible solution.

▶ Lemma 16. There is a gadget for ∆ = 4 and k = 0 that enforces λ(v1, v2) = λ(v2, v1) for
some pair of vertices (v1, v2).

The rough idea is that we need a break in symmetry. So we start with two copies of a known
gadget (see Lemma 14) that we merge at the edges for which we can enforce equality of
the labels. The resulting gadget would be infeasible, so we relax the constraints D slightly,
making them asymmetric, and thereby obtain a feasible gadget of constant size with the
claimed property.

Proof. The following gadget enforces λ(4, 5) = λ(5, 4). It is shown in Figure 8. On the path
from vertex 8 to vertex 1, waiting time is allowed, but only at vertex 4. Symmetrically, there
can be no waiting time on the path from 2 to 6 except at vertex 5.

V = {1, . . . , 7}
E = {(1, 3), (3, 1), (2, 3), (3, 2)} ∪ {(6, 7), (7, 6), (6, 8), (8, 6)}

∪ {(i, i + 1)|i ∈ {3, . . . , 5}} ∪ {(i + 1, i)|i ∈ {3, . . . , 5}}
D1,2 = D2,1 = D7,8 = D8,7 = 2
D5,7 = D4,1 = 2
D8,4 = D2,5 = 3
D8,1 = D2,7 = 6

All other values of D are set to ∞. Let w.l.o.g. λ(8, 6) = 1. As no waiting is allowed at
vertex 6, it has a fixed arrival/departure time of 2. This leads to λ(5, 6) = λ(7, 6) = 1,
λ(6, 5) = λ(6, 7) = λ(6, 8) = 2 and combined with D8,4 = 3 to λ(5, 4) = 3. On the path
from vertex 2 to vertex 7, waiting time is only allowed at vertex 5 and must not exceed
one time step. Thus, λ(4, 5) ∈ {3, 0} and λ(3, 4) ∈ {2, 3}. Furthermore the following
holds: λ(4, 3) ∈ {0, 1}. Because there can be no waiting time at vertex 3, it has a fixed
arrival/departure time and λ(3, 4) − λ(4, 3) ≡ 1 (mod ∆). Therefore only λ(4, 3) = 1 and
λ(3, 4) = 2 is feasible. Hence, λ(4, 5) = 3 = λ(5, 4). ◀

4.3 NP-Complete Cases with Quadratic Size Gadgets
For the remaining cases with odd period ∆, we have found a gadget of quadratic size
2 · (1 + ∆ · (k + 1)), the shape of which is reminiscent of a comb.

ATMOS 2025

3:14 Directed Temporal Tree Realization for Periodic Public Transport

Figure 9 The gadget for ∆ = 3, k = 1 which enforces λ(0, 0) = λ(0, 0), λ(3, 3) = λ(3, 3) and
λ(6, 6) = λ(6, 6).

▶ Lemma 17. There is a gadget Gi that even with the limitation Du,v ≥ d̂(u, v) + k enforces
λ(v1, v2) = λ(v2, v1) for some pair of vertices (v1, v2) as long as ∆ ≥ k + 2 ∧ k ≥ 1 and
period ∆ is odd.

The gadget for ∆ = 3, k = 1 is shown in Figure 9.

Proof. We show the result for k = ∆ − 2. This inherits to all smaller k since the limitation
for those is weaker and thus complements to Theorem 7 for odd ∆.

The following gadget enforces λ(0, 0) = λ(0, 0) as shown in Figure 10:

V = {0, . . . , (k + 1)∆, 0, . . . , (k + 1)∆}
E = {(i − 1, i), (i, i − 1) | 1 ≤ i ≤ (k + 1)∆}

∪ {(i, i), (i, i) | 0 ≤ i ≤ (k + 1)∆}

Di,j = d̂(i, j) + k for all 0 ≤ i, j ≤ (k + 1)∆

All other values of D are set to ∞. In the following, we will call the part that consists of
the vertices {0, . . . , (k + 1)∆} the main path. We call the direction from 0 to (k + 1)∆ the
forward direction. The reverse direction is called the backward direction.

We investigate the increase of the maximum waiting time in forward direction to (respec-
tively in backward direction from) i defined by

w+
λ (i) := max

j<i
{d(j, i) − d̂(j, i)} and analogously

w−
λ (i) := max

j<i
{d(i, j) − d̂(i, j)}.

We show that both w+
λ and w−

λ have to increase after every ∆ edges on the main path. This
means there is waiting time in one direction on the main path at all vertices i · ∆.

We have w+
λ (0) = w−

λ (0) = −∞ since there is no j < i. We can easily choose λ such that
w+

λ (1) = w−
λ (1) = 0. An equivalent inductive definition is

w+
λ (i + 1) = max{w+

λ (i) + (λ(i, i + 1) − λ(i − 1, i) − 1) mod ∆,

(λ(i, i + 1) − λ(i, i) − 1) mod ∆} and analogously
w−

λ (i + 1) = max{w−
λ (i) + (λ(i, i − 1) − λ(i + 1, i) − 1) mod ∆,

(λ(i, i) − λ(i + 1, i) − 1) mod ∆}.

Figure 10 The gadget (G = (V, E), D, ∆) with a feasible labeling for any odd value of ∆.

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:15

Figure 11 Let w.l.o.g. λ(i, i − 1) = 0. For
the case xi > w+

λ (i) we get w−
λ (i+1) = w−

λ (i).
Figure 12 Let w.l.o.g. λ(i, i − 1) = 0.

For the case xi ≤ w+
λ (i) we get w−

λ (i + 1) =
max{w−

λ (i), xi + 1}.

For the case that there is no waiting at i on the main path in either direction, this is simplified
to

w+
λ (i + 1) = max{w+

λ (i), (λ(i, i + 1) − λ(i, i) − 1) mod ∆} and analogously
w−

λ (i + 1) = max{w−
λ (i), (λ(i, i) − λ(i + 1, i) − 1) mod ∆}.

We want to have each increase of the maximum waiting time on the main path as late
as possible in forward direction. We first derive conditions under which w−

λ (i) respectively
w+

λ (i) must increase. We then show that there is a solution in which we have the increase as
late as possible and in which the waiting time just does not exceed k. At every increase, we
have to wait in one direction on the main path. As the gadget is symmetrical, an earlier
increase is also not possible, as that would mean waiting on the main path at a later point
viewed from the other side. No increase, that means w−

λ (i + 1) = w−
λ (i), requires that there

is no waiting at vertex i on the main path, i.e. λ(i, i − 1) ≡ λ(i + 1, i) + 1 (mod ∆) (see
Figure 11 and Figure 12). However, there can be waiting at vertex i on the path from i + 1
to i as long as it does not exceed the previous maximum waiting time. Note that we can wait
at i on the way from i − 1 to i at most k − w+

λ (i) times, otherwise we would wait on the way
from some j to i more than k times. This means λ(i, i) − (λ(i − 1, i) + 1) ≤ k − w+

λ (i). Let
xi = (λ(i − 1, i) − λ(i, i − 1)) mod ∆. We will discuss two cases: xi > w+

λ (i) and xi ≤ w+
λ (i).

The first case allows us to set λ(i, i) = (λ(i + 1, i) + 1) mod ∆ = λ(i, i − 1) as in Figure 11
since (λ(i, i − 1) − (λ(i − 1, i) + 1)) mod ∆ = (−xi − 1) mod ∆ ≤ ∆ − 2 − w+

λ (i) = k − w+
λ (i).

This means there is no waiting at vertex i on the path from i+1 to i. We could also wastefully
set λ(i, i) to any value that agrees with both constraints (waiting from i − 1 and waiting
from i + 1). In any case, there is no increase of the maximum waiting time in backwards
direction, i.e. w−

λ (i + 1) = w−
λ (i).

In the other case, the smallest timestamp we can assign to (i, i) is (λ(i − 1, i) + 1) mod ∆
(see Figure 12) which leads to the smallest possible waiting time to i. This enforces
w−

λ (i + 1) > w−
λ (i) only if the waiting time exceeds the previous maximum waiting time, i.e.

(λ(i, i) − (λ(i + 1, i) + 1)) mod ∆ = (λ(i − 1, i) − λ(i + 1, i)) mod ∆ = xi + 1 mod ∆ > w−
λ (i).

Therefore, there is an increase with xi ≥ w−
λ (i).

This means that with λ(i, i − 1) ≡ λ(i + 1, i) + 1 (mod ∆) an increase of the waiting
time w−

λ (i + 1) > w−
λ (i) is enforced if and only if w+

λ (i) ≥ xi ≥ w−
λ (i) and analogously

w+
λ (i + 1) > w+

λ (i) is enforced if and only if w−
λ (i) ≥ xi ≥ w+

λ (i).
Starting as in Figure 10 with λ(0, 0) = λ(0, 0) and no waiting at vertex 0, we get

w−
λ (i) = w+

λ (i) = 0 for 1 ≤ i ≤ ∆ (since xi = 2i (mod ∆) assumes all values < ∆ once),
and only at vertex ∆, we get λ(∆ − 1, ∆) = λ(∆, ∆ − 1) which means x∆ = 0 enforcing an
increase of the waiting time to w−

λ (∆ + 1) = w+
λ (∆ + 1) = 1. If we would instead start with

λ(0, 0) ̸= λ(0, 0) then we would get xi = 0 already for an i < ∆ leading to an earlier increase.

ATMOS 2025

3:16 Directed Temporal Tree Realization for Periodic Public Transport

Figure 13 Let w.l.o.g. λ(i, i − 1) = 0. For the case xi = w−
λ (i) = w+

λ (i) we choose λ(i + 1, i) such
that w−

λ (i + 1) = w+
λ (i + 1) = w−

λ (i) + 1 and in this way the value of xi+1 is increased by 3 instead
of 2 relative to xi. This means that for the following ∆ − 1 vertices, the value xj will run through
all other values modulo ∆, before it becomes w−

λ (j) again.

Figure 14 If we do not wait at vertex ∆ in one direction on the main path, we get w+
λ (∆+h+1) =

w+
λ (∆ + h + 1) = 1 for h := ∆−1

2 leading to an increase w+
λ (∆ + h + 2) = w+

λ (∆ + h + 2) = 2 at
vertex ∆ + h + 1 already.

In fact, we can set λ(∆, ∆ + 1) = (λ(∆ − 1, ∆) + 1) mod ∆ and λ(∆ + 1, ∆) = (λ(∆, ∆ −
1) − 2) mod ∆ as in Figure 13. We then set λ(∆, ∆) = λ(∆, ∆) = (λ(∆, ∆ − 1) − 1) mod ∆
and in this way get w−

λ (i) = w+
λ (i) = 1 for ∆ < i ≤ 2∆ and only at vertex 2∆, we get

λ(2∆ − 1, 2∆) ≡ λ(2∆, 2∆ − 1) + 1 (mod ∆) enforcing an increase of the waiting time to
w+

λ (2∆ + 1) = w+
λ (2∆ + 1) = 2.

By induction on j, we can then set λ(j∆, j∆ + 1) = (λ(j∆ − 1, j∆) + 1) mod ∆ and
λ(j∆+1, j∆) = (λ(j∆, j∆−1)−2) mod ∆ as well as λ(j∆, j∆) = λ(j∆, j∆) = (λ(j∆, j∆−
1) − j) mod ∆. This way we get w−

λ (i) = w+
λ (i) = j for j∆ < i ≤ (j + 1)∆ and only at vertex

(j + 1)∆, we get x(j+1)∆ = j enforcing an increase of the waiting time to w−
λ (j∆ + 1) =

w+
λ (j∆ + 1) = j. The increase just reaches vertex (k + 1)∆ at the end of the gadget with the

allowed waiting time of k, where there is no further increase as it is the last vertex. This is
accomplished by waiting in one of the two directions on the main path at vertices i · ∆ for
1 ≤ i ≤ k.

However, if we do not wait in one of the two directions on the main path in one of these k

cases as in Figure 13 but instead continue as in Figure 12, the increase of w+
λ and w−

λ would
already be enforced the next time on a position ∆+1

2 later, as shown in Figure 14. In the
figure, this position would be ∆ + ∆+1

2 = ∆ + h + 1. Nevertheless, the increase would be
enforced after every ∆ steps from this point on, which would lead to a waiting time of k + 1
before the end of the gadget.

Figure 15 Waiting already at ∆ − 1 leads to w+
λ (∆) = 0 and w−

λ (∆) = 1 = x∆ for h := ∆−1
2

immediately leading to w−
λ (∆ + 1) = 1 and even w+

λ (∆ + 1) = 2.

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:17

Figure 16 The gadget consists of ∆ subgadgets, where the second is upside down and overlaps
wit the first and the third at one edge and the others are connected by a path of length ∆ − 2. The
waiting time between two vertices within a subgadget is limited to k.

Conversely, if we wait earlier than necessary in either direction on the main path, this
would mean an increase later than possible in the symmetric case. Another way to see this is
shown in Figure 15. Waiting early forces an increase at the next multiple of ∆ anyway. This
means that λ(0, 0) = λ(0, 0) and symmetrically λ((k+1)∆, (k + 1)∆) = λ((k + 1)∆, (k+1)∆)
is enforced in the gadget. ◀

(a) Realization for the gadget from Lemma 17 for even ∆ starting with λ(0, 0) = λ(0, 0) + 1.

(b) Realization for the gadget from Lemma 17 for even ∆ starting with λ(0, 0) = λ(0, 0).

Figure 17 Two realizations for the gadget from Lemma 17 for even ∆. It turns out that starting
the labeling with λ(0, 0) = λ(0, 0) + 1 requires waiting one time at some vertex (here h) in both
directions (see Figure 17a) but that starting the labeling with λ(0, 0) = λ(0, 0) requires waiting even
two times at some vertex (here h) in both directions (see Figure 17b). Therefore we cannot use this
gadget to enforce λ(0, 0) = λ(0, 0) for even ∆.

Finally, we have constructed a similar gadget for the remaining cases with even ∆.

▶ Lemma 18. There is a gadget Gi that even with the limitation Du,v ≥ d̂(u, v) + k enforces
λ(e1, e2) = λ(e2, e1) for some pair of vertices (e1, e2) as long as ∆ ≥ k + 3 ∧ k ≥ 1 and
period ∆ is even.

The gadget is shown in Figure 16. We show that there cannot be any waiting time in the
first subgadget, since the remaining subgadgets and paths already enforce a total waiting
time of k by investigating again the increase in maximum waiting time on the main path to
and from some vertex i.

Proof. For even ∆ the same gadget as in Lemma 17 does not enforce λ(0, 0) = λ(0, 0). In
fact, starting with λ(0, 0) = λ(0, 0) requires more waiting than starting with λ(0, 0) ̸= λ(0, 0)
as can be seen in Figure 17. The comparison of both solutions favors a labeling that does
not meet our requirements. For this reason the following construction uses a more complex

ATMOS 2025

3:18 Directed Temporal Tree Realization for Periodic Public Transport

gadget as sketched in Figure 16. We show the result for k = ∆ − 3. This inherits to all
smaller k since the limitation for those is weaker and thus complements to Theorem 7 for
even ∆.

Let h := ∆/2 and ℓ = 3∆ − 3 + (2∆ − 3)(∆ − 3). The following gadget of length
d̂(0, ℓ) = ℓ + 2(∆ − 1) as depicted in Figure 16 enforces λ(0, 0) = λ(0, 0):

V = {0, . . . , ℓ, 0, . . . , ℓ}
E = {(i − 1, i), (i, i − 1) | 1 ≤ i ≤ ∆ − 1}

∪ {(i, i), (i, i) | 0 ≤ i ≤ ∆ − 1}
∪ {(i − 1, i), (i, i − 1) | ∆ ≤ i ≤ 2∆ − 2}
∪ {(i, i), (i, i) | ∆ − 1 ≤ i ≤ 2∆ − 2}
∪ {(i − 1, i), (i, i − 1) | 2∆ − 1 + j(2∆ − 3) ≤ i ≤ 3∆ − 3 + j(2∆ − 3),

0 ≤ j ≤ ∆ − 3}
∪ {(i, i), (i, i) | 2∆ − 2 + j(2∆ − 3) ≤ i ≤ 3∆ − 3 + j(2∆ − 3),

0 ≤ j ≤ ∆ − 3
∪ {(i − 1, i), (i, i − 1) | 3∆ − 2 + j(2∆ − 3) ≤ i ≤ 4∆ − 5 + j(2∆ − 3),

0 ≤ j < ∆ − 4}

Di,j = d̂(i, j) + k for all 0 ≤ i, j ≤ ∆ − 1

Di,j = d̂(i, j) + k for all ∆ − 1 ≤ i, j ≤ 2∆ − 2

Di,j = d̂(i, j) + k for all 2∆ − 2 + j(2∆ − 3) ≤ i, j ≤ 3∆ − 3 + p(2∆ − 3),

0 ≤ p < ∆ − 3

D0,ℓ = d̂(0, ℓ) + k

All other values of D are set to ∞. For simplicity we give the vertex set as
{0, . . . , ℓ, 0, . . . , ℓ} instead of explicitly removing the isolated vertices. We show that there is
a labeling for the gadget in which the waiting on the main path takes place exclusively in
both directions of the k connecting paths instead of on the subgadgets corresponding to the
canonical gadget in Lemma 17. Furthermore any λ has to wait at least two times in any
direction in the context (the path or the neighboring subgadgets) of each connecting path.
This leaves no waiting time for the first subgadget, which enforces λ(0, 0) = λ(0, 0).

First we examine the waiting times for each subgadget individually before we investigate
them in the context of the whole gadget. In the solution without waiting on the main paths
of the subgadgets the labeling is the same for each subgadget.

▷ Claim 19. Each subgadget consisting of a comb of 2∆ vertices enforces either λ(0, 0) =
λ(0, 0) = λ(∆ − 1, ∆ − 1) = λ(∆ − 1, ∆ − 1) or requires waiting on the main path at least
two times in the total of both directions.

Proof. We define the waiting time w+
λ and w−

λ as before in Lemma 17 and make similar
conclusions which differ in the following statements because ∆ − k is now 3 instead of 2: We
still have λ(i, i) − (λ(i − 1, i) + 1) ≤ k − w+

λ and now discuss the two cases xi > w+
λ (i) + 1

and xi ≤ w+
λ (i) + 1. Again, the first case allows us to set λ(i, i) = (λ(i + 1, i) + 1) mod ∆ =

λ(i, i − 1) (see Figure 11) since (λ(i, i − 1) − λ(i − 1, i) − 1) mod ∆ = (−xi − 1) mod ∆ ≤
∆ − 3 − w+

λ (i) = k − w+
λ (i) with no increase of the waiting time in backwards direction, i.e.

w−
λ (i + 1) = w−

λ (i). In the other case, the smallest timestamp time we can assign (i, i) is
again (λ(i − 1, i) + 1) mod ∆. This enforces w−

λ (i + 1) > w−
λ (i) only if the waiting time

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:19

Figure 18 A subgadget with a feasible labeling without waiting on the main path. Observe that
λ is symmetric on the subgadget.

Figure 19 A labeling for the subgadget starting with x0 odd that would lead to w+
λ (∆−1) = k+1.

exceeds the previous maximum waiting time, which means (λ(i, i)−(λ(i+1, i)+1)) mod ∆ =
(λ(i − 1, i) − λ(i + 1, i)) mod ∆ = (xi + 1) mod ∆ > w−

λ (i) (see Figure 12). Therefore there
is an increase with xi ≥ w−

λ (i).
That means with λ(i, i − 1) ≡ λ(i + 1, i) + 1 (mod ∆) an increase of the waiting time

w−
λ (i + 1) > w−

λ (i) is enforced if and only if w+
λ (i) + 1 ≥ xi ≥ w−

λ (i) and analogously
w+

λ (i + 1) > w+
λ (i) is enforced if and only if w−

λ (i) + 1 ≥ xi ≥ w+
λ (i).

Starting with the equal labeling λ(0, 0) = λ(0, 0) and no waiting at vertex 0, we get
w−

λ (i) = w+
λ (i) = 0 for 1 ≤ i ≤ h := ∆/2 and only here, we get λ(h − 1, h) = λ(h, h − 1) = h

enforcing an increase of the waiting time to w−
λ (h + 1) = w+

λ (h + 1) = 1. But here again
we have xh+1 = λ(h, h + 1) − λ(h + 1, h) = w+

λ (h + 1) enforcing an increase of the waiting
time to w−

λ (h + 2) = w+
λ (h + 2) = 2 + 1 = 3. By induction on j, we have xh+j = w+

λ (h + j)
enforcing an increase of the waiting time to w+

λ (h + j + 1) = w+
λ (h + j + 1) = 2j + 1.

This just reaches ∆ − 1 at the end of the subgadget as shown in Figure 18 with the
allowed waiting time of k = 2h − 3. However, waiting on the main path in one of the two
directions as in Figure 13 would not help since xh+j = w+

λ (h + j) + 1 still enforces an increase
of the waiting time.

The same holds if we start differently as can be seen in the following consideration: If
we start with values where λ(0, 0) − λ(0, 0) is even then we would get the latest increase
with λ(0, 0) = λ(0, 0), since xi = 2i (mod ∆) assumes all even values < ∆ once. Values
λ(0, 0) ̸= λ(0, 0) would mean a larger difference x0 and would lead to xi = 0 already for an
i < h leading to an earlier increase. Like before, waiting on the main path in one direction
does not change this.

In case λ(0, 0) − λ(0, 0) is odd we get the latest increase with x0 = 1, since xi = 2i + 1
(mod ∆) assumes all odd values < ∆ once. A larger difference x0 would cause the increase to
happen at latest at vertex h, which requires an additional increase at vertex h + 1 and this in
turn an increase at vertex h+2 and so on. This is shown in Figure 19. The increase progresses
like this until we reach vertex ∆ − 2 with x∆−2 = k and w−

λ (∆ − 2) = w+
λ (∆ − 2) = k − 1,

which also enforces an increase. We get a maximum waiting time of k + 1 at vertex ∆ − 1,
therefore not producing a feasible labeling. Waiting once in one of the two directions in this
case would mean that λ(∆ − 1, ∆ − 1) − λ(∆ − 1, ∆ − 1) is even. Therefore, we can apply
symmetry to show that waiting once still does not help. ◁

ATMOS 2025

3:20 Directed Temporal Tree Realization for Periodic Public Transport

We can construct a solution by choosing λ such that there is no waiting time in any of the
subgadgets and for all subgadgets the following holds: λ(0, 0) = λ(0, 0) = λ(∆ − 1, ∆ − 1) =
λ(∆ − 1, ∆ − 1). As the paths consist of ∆ − 1 vertices and consequently ∆ − 2 edges we
have to wait one time in each direction on the path for this to be possible. As the gadget
contains k paths this does not exceed the at most allowed waiting time.

If we do not wait two times on any path we prevent one of the neighboring subgadgets
from starting with equal values in both directions on the first or last edge. Because of
Claim 19 we would have to wait at least two times in the respective subgadget. Therefore,
waiting at least two times is required in the context of each of the k paths and thus, no waiting
is possible in the first subgadget. Hence, for the first subgadget, which is not contained in
the context of any path, λ(0, 0) = λ(0, 0) holds. ◀

▶ Theorem 20. For every ∆ and k with ∆ > k + 2 or ∆ = k + 2 with ∆ odd, ∆-k-DiTTR
is NP-complete. Therefore the problem DiTTR is NP-complete.

Proof. The construction in Proposition 6 of [16] to show that TTR is NP-complete holds
for any ∆ ≥ 3 and all values of k with k + 2 ≤ ∆, because Du,v ∈ {d̂(u, v) + ∆ − 2, ∞}. Note
that the reduction from vertex coloring implies strong NP-completeness. This covers all cases
as claimed in Figure 2. We can combine Lemma 13 and the lemmas referenced in Figure 2
to show that for every ∆ and k with ∆ > k + 2 or ∆ = k + 2 with ∆ odd, ∆-k-DiTTR is
NP-complete. That also means DiTTR is NP-complete since already the special versions
∆-k-DiTTR, where k, which is an implicit parameter of D in the input, and ∆ are two
constants in one of the cases (d)-(h) in Figure 2, are NP-complete. This also holds if ∆ is
part of the input, as TTR is strongly NP-complete. ◀

Remark: The proof of Theorem 20 also implies that for even ∆ > 2 and ∆ = k + 2
the undirected problem version is NP-complete, while every instance of the corresponding
directed problem version is realizable, as indicated in Figure 2.

5 Conclusion and Further Research

In this paper, we have initiated the study of the directed version of the graph realization
problem for periodic temporal graphs subject to pairwise upper bounds on the fastest paths.
We obtained hardness results for several special cases and identified some easily solvable ones.
For trees, we provided a full characterization for all periods ∆ and all values of the minimum
slack parameter k, giving a lower bound on the maximum allowed waiting time on each path.

For future work, many problem variants are worth further consideration. An interesting
extension would be to also consider upper bounds on the slack. Instead of uniform bounds
on the slack, one could also consider multiplicative bounds to reflect that more waiting is
acceptable on longer paths. Or one could turn the problem into an optimization problem
where one wants to minimize some measure of the deviation from the fastest paths or the
desired quality of service. In some practical applications, it is useful to further restrict the
labeling with additional constraints. For example, when planning train or tram timetables
for single-track lines, it is necessary to ensure that a corresponding track section is only
served in one direction at a time. Thus, an interesting type of constraint could be to require
a solution with λ(a, b) ̸= λ(b, a) for all (or only certain specified) pairs of vertices a, b ∈ V .
According to the proof of Theorem 11, this is NP-complete for ∆ = 2 for general graphs,
which motivates the problem for trees but the constructions in this paper using Theorem 20
do not work with this property.

J. Meusel, M. Müller-Hannemann, and K. Reinhardt 3:21

Further theoretical investigations may consider more general graph classes than just trees.
Finally, it would be interesting to investigate the practical solvability of instances derived
from real network topologies.

References
1 Richard P. Anstee. Properties of a class of (0,1)-matrices covering a given matrix. Canadian

Journal of Mathematics, 34(2):438–453, 1982. doi:10.4153/CJM-1982-029-3.
2 Jamil N. Ayoub and Ivan T. Frisch. Degree realization of undirected graphs in reduced form.

Journal of the Franklin Institute, 289(4):303–312, 1970. doi:10.1016/0016-0032(70)90273-5.
3 Amotz Bar-Noy, David Peleg, Mor Perry, and Dror Rawitz. Graph realization of distance sets.

Theoretical Computer Science, 1019:114810, 2024. doi:10.1016/j.tcs.2024.114810.
4 Wai-Kai Chen. On the realization of a (p,s)-digraph with prescribed degrees. Journal of the

Franklin Institute, 281(5):406–422, 1966. doi:10.1016/0016-0032(66)90301-2.
5 Jack Edmonds. Existence of k-edge connected ordinary graphs with prescribed degrees. J.

Res. Nat. Bur. Standards Sect. B, 68:73–74, 1964.
6 Paul Erdős and Tibor Gallai. Graphs with prescribed degrees of vertices. Mat. Lapok,

11:264–274, 1960.
7 Thomas Erlebach, Nils Morawietz, and Petra Wolf. Parameterized Algorithms for Multi-Label

Periodic Temporal Graph Realization. In Arnaud Casteigts and Fabian Kuhn, editors, 3rd
Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024), volume 292
of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:16, Dagstuhl,
Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
SAND.2024.12.

8 D. Ray Fulkerson. Zero-one matrices with zero trace. Pacific Journal of Mathematics,
10(3):831–836, 1960.

9 S. Louis Hakimi and Stephen S. Yau. Distance matrix of a graph and its realizability. Quarterly
of Applied Mathematics, 22:305–317, 1965.

10 Václav Havel. Poznámka o existenci konečných grafů. Časopis pro pěstování matematiky,
080(4):477–480, 1955. URL: http://eudml.org/doc/19050.

11 Daniel J. Kleitman and D. L. Wang. Decomposition of a graph realizing a degree sequence
into disjoint spanning trees. SIAM Journal on Applied Mathematics, 30(2):206–221, 1976.

12 Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. Realizing temporal
graphs from fastest travel times, 2024. doi:10.48550/arXiv.2302.08860.

13 Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. Temporal Graph
Realization from Fastest Paths. In Arnaud Casteigts and Fabian Kuhn, editors, 3rd Symposium
on Algorithmic Foundations of Dynamic Networks (SAND 2024), volume 292 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 16:1–16:18, Dagstuhl, Germany, 2024.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SAND.2024.16.

14 Linda Lesniak. Eccentric sequences in graphs. Periodica Mathematica Hungarica, 6(4):287–293,
December 1975. doi:10.1007/BF02017925.

15 Niels Lindner and Julian Reisch. An analysis of the parameterized complexity of periodic
timetabling. J. of Scheduling, 25(2):157–176, 2022. doi:10.1007/s10951-021-00719-1.

16 George B. Mertzios, Hendrik Molter, Nils Morawietz, and Paul G. Spirakis. Realizing
temporal transportation trees, April 2025. Extended abstract to appear in Proceedings of
51st International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2025),
LNCS, Springer. doi:10.48550/arXiv.2403.18513.

17 Michiel A. Odijk. Construction of periodic timetables, part 1: A cutting plane algorithm.
Technical report, Technical Report 94-61, TU Delft, 1994.

18 Øystein Ore. Theory of graphs, volume XXXVIII of American Mathematical Society Colloquium
Publications. American Mathematical Society, Providence, RI, 1965. Second printing.

ATMOS 2025

https://doi.org/10.4153/CJM-1982-029-3
https://doi.org/10.1016/0016-0032(70)90273-5
https://doi.org/10.1016/j.tcs.2024.114810
https://doi.org/10.1016/0016-0032(66)90301-2
https://doi.org/10.4230/LIPIcs.SAND.2024.12
https://doi.org/10.4230/LIPIcs.SAND.2024.12
http://eudml.org/doc/19050
https://doi.org/10.48550/arXiv.2302.08860
https://doi.org/10.4230/LIPIcs.SAND.2024.16
https://doi.org/10.1007/BF02017925
https://doi.org/10.1007/s10951-021-00719-1
https://doi.org/10.48550/arXiv.2403.18513

3:22 Directed Temporal Tree Realization for Periodic Public Transport

19 Leon W. P. Peeters. Cyclic railway timetable optimization. PhD thesis, Erasmus Research
Institute of Management, Erasmus University Rotterdam, The Netherlands, 2003.

20 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM Journal on
Computing, 29(4):1118–1131, 2000. doi:10.1137/S0097539798339041.

21 Paolo Serafini and Walter Ukovich. A mathematical model for periodic scheduling problems.
SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989. doi:10.1137/0402049.

22 Hiroshi Tamura, Masakazu Sengoku, Shoji Shinoda, and Takeo Abe. Realization of a network
from the upper and lower bounds of the distances (or capacities) between vertices. In 1993
IEEE International Symposium on Circuits and Systems (ISCAS), pages 2545–2548. IEEE,
1993.

https://doi.org/10.1137/S0097539798339041
https://doi.org/10.1137/0402049

Visualization of Event Graphs for Train Schedules
Johann Hartleb #

DB InfraGO AG, Berlin, Germany

Marie Schmidt #Ñ

Universität Würzburg, Germany

Samuel Wolf #Ñ

Universität Würzburg, Germany

Alexander Wolff Ñ

Universität Würzburg, Germany

Abstract
Train timetables can be represented as event graphs, where events correspond to a train passing
through a location at a certain point in time. A visual representation of an event graph is important
for many applications such as dispatching and (the development of) dispatching software. A common
way to represent event graphs are time-space diagrams. In such a diagram, key locations are visualized
on the y-axis and time on the x-axis of a coordinate system. A train’s movement is then represented
as a connected sequence of line segments in this coordinate system. This visualization allows for
an easy detection of infrastructure conflicts and safety distance violations. However, time-space
diagrams are usually used only to depict event graphs that are restricted to corridors, where an
obvious ordering of the locations exists.

In this paper, we consider the visualization of general event graphs in time-space diagrams, where
the challenge is to find an ordering of the locations that produces readable drawings. We argue that
this means to minimize the number of turns, i.e., the total number of changes in y-direction. To this
end, we establish a connection between this problem and Maximum Betweenness. Then we develop
a preprocessing strategy to reduce the instance size. We also propose a parameterized algorithm and
integer linear programming formulations. We experimentally evaluate the preprocessing strategy
and the integer programming formulations on a real-world dataset. Our best algorithm solves every
instance in the dataset in less than a second. This suggests that turn-optimal time-space diagrams
can be computed in real time.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability; Theory of computation → Computational geometry

Keywords and phrases Graph Drawing, Event Graphs, Integer Linear Programming, Parameterized
Algorithms, Treewidth

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.4

1 Introduction

Train schedules are subject to constant changes due to interferences such as temporary
infrastructure malfunctions or congestion resulting from high traffic volume. As a consequence,
train schedules must be adjusted in real-time to remedy the disturbances via rerouting and
other means. In recent years, the computer-assisted execution of this process has gained track.
DB InfraGO AG, a subsidiary of Deutsche Bahn AG, is developing approaches based on
so-called event graphs [8] as an underlying structure that encodes the necessary information
to (re-)compute a train schedule. An event graph models trains running on specific routes
on an infrastructure via events.

▶ Definition 1 (Event Graph). An event graph E is a directed graph. Let V (E) denote the
vertex set of E. Each vertex v of E, called event, is associated with a location ℓ(v), a positive
integer train(v), and a point of time t(v) when the event is scheduled. For two different

© Johann Hartleb, Marie Schmidt, Samuel Wolf, and Alexander Wolff;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 4; pp. 4:1–4:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:johann.hartleb@deutschebahn.com
https://orcid.org/0000-0001-8101-1542
mailto:marie.schmidt@uni-wuerzburg.de
https://www.informatik.uni-wuerzburg.de/en/algo/team/schmidt-marie/
https://orcid.org/0000-0001-9563-9955
mailto:samuel.wolf@uni-wuerzburg.de
https://www.informatik.uni-wuerzburg.de/en/algo/team/wolf-samuel/
https://orcid.org/0009-0009-7098-6147
https://www.informatik.uni-wuerzburg.de/en/algo/team/wolff-alexander/
https://orcid.org/0000-0001-5872-718X
https://doi.org/10.4230/OASIcs.ATMOS.2025.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

4:2 Visualization of Event Graphs for Train Schedules

(a) (b)

time

lo
ca
ti
o
n
s

2
4
3
1

6
5

time

lo
ca
ti
o
n
s

3
4
5

2
1
6

1

2

4

6

3

5

3

1

2

1

1

2

Figure 1 (a) Two different time-space diagrams of the same event graph E with locations {1, . . . , 6}.
(b) The location graph of E ; the colored paths are the train lines, the gray numbers are the weights.

events u and w, if t(u) = t(w), then train(u) ̸= train(w) and ℓ(u) ̸= ℓ(w). There is an arc
(u, w) in E if (i) train(u) = train(w), (ii) t(u) < t(w), and (iii) there is no event v with
train(v) = train(u) and t(u) < t(v) < t(w).

For a train z, we call the sequence v1, . . . , vj of all events with train(v1) = · · · = train(vj) = z

ordered by t(·) the train line of train z.
For the further automation and for real-time human intervention with timetables, it is

important that large event graphs can be easily understood by humans.
If the event graph corresponds to trains running on a corridor, i.e., trains running from

point a to point b in a linear piece of infrastructure, time-space diagrams are a common
way to represent the event graph. A time-space diagram can be described as a straight-line
drawing of the event graph with the additional constraint that all vertices that belong to
the same location lie on the same horizontal line and that the x-coordinate of each vertex is
given by its point in time.

In this paper, we investigate the possibility to use time-space diagrams for visualizations
for general event graphs, i.e., event graphs that are generally not based on a linear piece of
infrastructure. We are not aware of any previous work on the visualization of general event
graphs. Formally, a time-space diagram can be defined as follows.

▶ Definition 2 (Time-Space Diagram). Let E be an event graph, let Y = |ℓ(V (E))|, and
let y : ℓ(V (E)) → {1, 2, . . . , Y } be a bijection. The time-space diagram induced by y is the
straight-line drawing of E in the plane where event v is mapped to the point (t(v), y(ℓ(v))).

In a time-space diagram (see Figure 1a for two examples), we call y(p) the level of
location p. We also refer to a time-space diagram of an event graph as a drawing of the event
graph. If an event graph is based on a corridor, the corridor induces a natural order of the
locations: consecutive locations are assigned consecutive levels. In this way, train lines in
the time-space diagram correspond to polylines that go only up- or downwards. However,
on general event graphs where the trains do not run on a linear piece of infrastructure, this
intuitive assignment is far from trivial, and it is not immediately clear which criteria yield a
comprehensible drawing. Figure 2 shows two possible time-space diagrams for the same event
graph, one that minimizes the number of crossings of line segments (a classical objective in
graph drawing) and one that minimizes the number of turns which we define as follows.

J. Hartleb, M. Schmidt, S. Wolf, and A. Wolff 4:3

Figure 2 Two time-space diagrams of the same event graph. Left: A crossing-minimal drawing
with zero crossings (and 71 turns). Right: A turn-minimal drawing with one turn (and five crossings).

Given a drawing Γ of an event graph E and three consecutive events of a train line in E
with pairwise distinct locations p, q, r, we say that there is a turn in Γ if the level of q is
smaller/larger than the levels of p and r.1

Figure 2 and further experiments suggest that minimizing the number of turns leads to
time-space diagrams that are significantly better to interpret than drawings that minimize
the number of crossings. Therefore, we consider the following problem in this paper.

▶ Problem 3 (Turn Minimization). Given an event graph E, find a time-space diagram
of E that minimizes the total number of turns along the train lines defined by E.

A connection to Maximum Betweenness. Note that the number of turns in a time-space
diagram is determined solely by the function y which represents an ordering of the locations.
Therefore, Turn Minimization is closely related to the following problem.

▶ Problem 4 (Maximum Betweenness [16]). Let S be a finite set, and let R ⊆ S × S × S

be a finite set of ordered triplets called restrictions. A total order ≺ satisfies a restriction
(a, b, c) ∈ R if either a ≺ b ≺ c or c ≺ b ≺ a holds. Find a total order that maximizes the
number of satisfied restrictions.

In fact, there is a straightforward translation that transforms optimal solutions of Turn
Minimization to optimal solutions of Maximum Betweenness and vice versa. However,
note that the objective functions of these problems differ. In Turn Minimization we
minimize the number of turns, which corresponds to minimizing the number of unsatisfied
restrictions in Maximum Betweenness.

Maximum Betweenness and other slightly modified variants have been studied ex-
tensively [5–7,17–19] mainly motivated by applications in biology. In particular, Opatrny
showed that Maximum Betweenness is NP-hard [16]. Further, the problem admits
1/2-approximation algorithms [4,13], but for any ε > 0 it is NP-hard to compute a (1/2 + ε)-
approximation [1].

Several exact algorithms have been proposed. There is an intuitive integer linear program
formulation that uses linear orderings. This formulation has been used in various variants
and algorithms as a baseline before [5, 6]. We state this formulation in Section 5 since we
also use this formulation as a starting point. Note that this formulation requires O(|S|3)

1 Note that this definition does not consider the case where consecutive events have the same location. It
is easy to see, however, that we can normalize any event graph such that consecutive events always
have different locations without changing the number of turns in an optimal solution.

ATMOS 2025

4:4 Visualization of Event Graphs for Train Schedules

many constraints due the transitivity constraints for the linear ordering and the fact that
there can be O(|S|3) many restrictions. This may result in long computation times. Since
applications in biology often deal with a large number of restrictions, improvements of
this formulation have been made via cutting-plane approaches that target the transitivity
and the restriction constraints using the trivial lifting technique2 [5, 6]. To overcome the
issue of a cubic number of transitivity constraints, a mixed-integer linear program has been
proposed [19] that circumvents the large number of constraints entirely by modelling a linear
ordering with continuous variables that are required to be distinct. As a consequence, this
formulation runs faster than the intuitive formulation. However, this program requires a
user-specified parameter that influences the runtime significantly and is not obvious to choose.

Note that due to the relationship between Turn Minimization and Maximum Between-
ness, exact algorithmic approaches for one of the problems can be directly transferred to the
other, while approximation guarantees cannot. However, most of the algorithmic approaches
for Maximum Betweenness are optimized for instances where the ratio between |R| and |S|
is large, while this ratio is only moderate in our setting. As a result, in our setting, the
transitivity constraints become the bottleneck as opposed to the constraints that model the
restrictions in R. Another notable difference is that in Turn Minimization we have access
to additional information on the relations between restrictions (the train lines). We strive
to leverage these differences to develop new approaches. In particular, we consider the case
that instances admit drawings with a small number of turns (as otherwise a drawing would
not be comprehensible). Further, we consider the case that the underlying infrastructure of
the event graph is sparse (as this is common in train infrastructure).

Contribution. First, we consider Turn Minimization from a (parameterized) complexity
theoretic perspective; see Section 3. In particular, we show that it is NP-hard to compute
an α-approximation for any constant α ≥ 1 and that the problem is para-NP-hard when
parameterized by the number of turns. The problem is also para-NP-hard when parameterized
by the vertex cover number of the location graph, a graph that represents the infrastructure.
Second, we propose a preprocessing strategy that reduces a given event graph E into a smaller
event graph E ′ that admits drawings with the same number of turns; see Section 4. Third,
we refine the intuitive integer linear program in two different ways; see Section 5. The first
refinement is a simple cutting-plane approach that iteratively adds transitivity constraints
until a valid (optimal) solution is found. The second refinement uses a tree decomposition to
find a light-weight formulation of the problem. We conclude with an experimental analysis
and future work in Sections 6 and 7. While the preprocessing strategy cannot be easily
translated to the Maximum Betweenness problem, our remaining results carry over.

2 Preliminaries

Let S be a finite set, and k be a positive integer. Let [S]k denote the set {X : X ⊆ S, |X| = k}
of k-element subsets of S. We call (A, B) with A ∪ B = V (G) a separation of a graph G

if, on every a–b path with a ∈ A and b ∈ B, there is at least one vertex in A ∩ B. We call
A ∩ B a separator. If a separator is a single vertex, we call this vertex a cut vertex. If a
separator consists of two vertices, then we call the two vertices a separating pair. We say
that a connected graph is biconnected if it does not contain a cut vertex. Similarly, we say

2 Here: complete linear descriptions of smaller instances (S, R) are used to generate valid inequalities for
larger instances (S′, R′) where S ⊆ S′, R ⊆ R′.

J. Hartleb, M. Schmidt, S. Wolf, and A. Wolff 4:5

that a biconnected graph is triconnected if it does not contain a separating pair. A partition
of (A, B) of the vertex set of a graph is a cut. The cut set of (A, B) is the set of edges with
one vertex in A and one vertex in B. The size of a cut is the size of the cut set.

Problems that can be solved in time f(k) · nc, where f is a computable function, c > 0 is
a constant, n the input size, and k is a parameter, are known as fixed-parameter tractable
(parameterized by the parameter k). The complexity class FPT contains precisely all such
fixed parameter tractable problems with the respective parameter k. If a problem remains
NP-hard even on instances, where the parameter k is bounded, we say that the problem
is para-NP-hard when parameterized by k. The study of FPT algorithms is particularly
motivated by scenarios where certain instances have properties, described by the parameter,
that are small or constant, making FPT algorithms efficient for these instances.

We define two auxiliary graphs that capture the connections between locations in E ,
which we use in our algorithms.

▶ Definition 5 (Location Graph). Let E be an event graph. The location graph L of E is an
undirected weighted graph whose vertices are the locations of E. For two locations p ̸= q, the
weight w({p, q}) of the edge {p, q} in L corresponds to the number of arcs (u, v) or (v, u) in
the event graph E such that ℓ(u) = p and ℓ(v) = q and train(u) = train(v). If w({p, q}) = 0,
then p and q are not adjacent in L.

See Figure 1b for an example of a location graph. Note that the train line of a train z in
the event graph corresponds to a walk (a not necessarily simple path) in the location graph.
Slightly abusing notation, we also call this walk in the location graph a train line of z.

▶ Definition 6 (Augmented Location Graph). Let E be an event graph. The augmented
location graph L′ of E is the supergraph of the location graph L of E that additionally
contains, for each triplet (v, v′, v′′) of locations that are consecutive along a train line in E,
the edge {ℓ(v), ℓ(v′′)}.

The augmented graph L′ has the crucial property that every three such consecutive events,
whose locations can potentially cause a turn, induce a triangle in L′.

Tree decompositions. Intuitively, a tree decomposition is a decomposition of a graph G

into a tree T which gives structural information about the separability of G. The treewidth
of a graph G is a measure that captures how similar a graph G is to a tree. For instance,
every tree has treewidth 1, the graph of a (k × k)-grid has treewidth k, and the treewidth of
the complete graph Kn is n − 1. More formally, a tree decomposition T = (T, {Xt}t∈V (T))
of G consists of a tree T and, for each node t of T , of a subset Xt of V (G) called bag such
that (see Figure 3 for an example):
(T1) the union of all bags is V (G),
(T2) for every edge {u, v} of G, the tree T contains a node t such that {u, v} ⊆ Xt, and
(T3) for every vertex v of G, the nodes whose bags contain v induce a connected subgraph

of T .
The width of a tree decomposition is defined as max{|Xt| : t ∈ V (T)} − 1; for example, the
tree decomposition in Figure 3 has width 2. The treewidth of a graph G, tw(G), is the
smallest value such that G admits a tree decomposition of this width. Any tree decomposition
(T, {Xt}t∈V (T)) has the following properties.
(P1) For every edge {a, b} of T , the graph T − {a, b} has two connected components Ta

and Tb, where Ta contains a and Tb contains b. They induce a separation (A, B) =
(
⋃

t∈V (Ta) Xt,
⋃

t∈V (Tb) Xt) of G with separator Xa ∩Xb. In particular, A∩B = Xa ∩Xb,
and G does not contain any edge between a vertex in A \ Xa and a vertex in B \ Xb.

(P2) For every clique K of G, the tree T contains a node t such that V (K) ⊆ Xt.

ATMOS 2025

4:6 Visualization of Event Graphs for Train Schedules

Figure 3 Example of a tree decomposition (right) of the graph on the left. Each bag of the tree
decomposition is depicted as the graph it induces.

3 Problem Complexity

We study the approximability of Turn Minimization and consider the tractability of Turn
Minimization with respect to parameters that we expect to be small in our instances. We
obtain negative results for the approximability and for most of the considered parameters,
but we propose an FPT algorithm parameterized by the treewidth of the augmented location
graph.

While NP-hardness of Turn Minimization is easy to see due to the one-to-one cor-
respondence (of problem instances and optimal solutions) to Maximum Betweenness,
approximability results for Maximum Betweenness do not carry over because of the differ-
ent objectives. In fact, by close inspection of the natural transformation between instances
of the two problems (that we give in the proof of Theorem 7), we are able to deduce that
there is neither a multiplicative nor an additive constant factor approximation algorithm
for Turn Minimization, unless P = NP. Furthermore, we can derive from the reduction
that, unless P = NP, there is no efficient algorithm even for instances where the number of
turns is bounded. By a reduction from the decision version of MaxCut, we can also show
that the problem is NP-hard when parametrized by the vertex cover number. MaxCut asks
whether there is a cut of size at least k in a given graph.

▶ Theorem 7 (⋆). Turn Minimization
(i) is para-NP-hard with respect to the natural parameter, the number of turns,
(ii) is para-NP-hard with respect to the vertex cover number of the location graph,
(iii) does not admit polynomial-time multiplicative or additive approximation algorithms

unless P = NP.

Note that (ii) also implies that Turn Minimization is para-NP-hard if parameterized
by the treewidth of the location graph L since the treewidth of a graph is bounded by the
vertex cover number of the graph. Therefore, there is no fixed-parameter tractable algorithm
with respect to the treewidth of L, unless P = NP. However, we obtain the following result.

▶ Theorem 8 (⋆). Let E be an event graph, and let L′ be its augmented location graph.
Computing a turn-optimal time-space diagram of E is fixed-parameter tractable with respect
to the treewidth of L′.

Proof sketch. For every triplet of consecutive events, the corresponding locations form a
triangle in L′. Hence, due to Property (P2), in any tree decomposition of L′, there is a bag
that contains the three locations. Thus, every potential turn occurs in at least one bag, and
it suffices to run a standard dynamic program over a (nice) tree decomposition of L′. ◀

Note that this result might not be practical since the treewidth of the augmented location
graph might be considerably larger than the treewidth of the location graph.

J. Hartleb, M. Schmidt, S. Wolf, and A. Wolff 4:7

4 An Exact Reduction Rule

In this section we describe how to reduce the event graph based on the identification and
contraction of simple substructures in the location graph. Consider the location graph L
of an event graph E . We call a vertex p of L a terminal if a train starts or ends at p. We
say that a path in L is a chain if each of its vertices has degree exactly 2 in L and the path
cannot be extended without violating this property. If a chain contains no terminals, and
no train line restricted to this chain induces a cycle, then there is always a turn-minimal
drawing of E that contains no turn along the chain. This is due to the fact that any turn on
the chain can be moved to a non-chain vertex adjacent to one of the chain endpoints. We
now generalize this intuition, assuming that L is not triconnected.

Let {s, t} be a separating pair of L, let C be a connected component of L \ {s, t}, and let
C ′ = L[V (C) ∪ {s, t}]. We call C a transit component if (i) C does not contain any terminal,
and (ii) the trains passing through C ′ via s also pass through t (before possibly passing
through s again). A transit component C is contractible if, for each path associated to a
train line in C, we can assign a direction such that the resulting directed graph is acyclic.

▶ Reduction Rule 1 (Transit Component Contraction). Let E be an event graph, and let L
be the location graph of E . If L is not triconnected, then let {s, t} be a separating pair of L
and let C be a contractible transit component of L \ {s, t}. For each train z that traverses C,
replace in E the part of the train line of z between the events that correspond to s and t by
the arc (directed according to time) that connects the two events.

▶ Theorem 9. Let E be an event graph. If E ′ is an event graph that results from applying
Reduction Rule 1 to E, then a turn-optimal drawing of E and a turn-optimal drawing of E ′

have the same number of turns.

Proof. Let k be the number of turns in a turn-optimal drawing Γ of an event graph E
and let k′ be the number of turns in a turn-optimal drawing Γ′ of an event graph E after
Reduction Rule 1 was applied on the contractible transit component C. Further, for the
sake of simplicity, assume that any train traversing C traverses C only once. If a train z

traverses C multiple times, the same arguments apply for each connected component of
the train line of z going through C. Note that this can indeed happen (if the event graph
represents a schedule that contains a train that moves through C periodically).

Without increasing the number of turns, we now transform Γ′ into a drawing of E that
contains C, as follows. Let {s, t} be the pair that separates C from L \ C. Let y′(s) and
y′(t) be the levels of s and t in Γ′, respectively. Without loss of generality, assume that
y′(s) < y′(t). Since C is contractible, C admits an acyclic (topological) ordering of the
locations in C such that the train line of every train traversing C is directed from s to t.
Let ≺C be such an ordering and let z be a train traversing C, where z′ = ⟨v1, . . . , vj⟩ is the
component of the train line of z that traverses C such that ℓ(v1) = s and ℓ(vj) = t. Since
≺C is a valid acyclic topological ordering, it holds that ℓ(vi) ≺C ℓ(vi+1) for each 1 ≤ i < j.
Thus, by extending y′ so that each vertex p in C is assigned a level y′(p) ∈]y′(s), y′(t)[, with
p, q ∈ V (C) and y′(p) < y′(q) if and only if p ≺C q, no additional turns are introduced in
the transformed drawing. As a result, we obtain a drawing of E that contains C and has the
same number of turns as Γ′. Hence k ≤ k′.

Conversely, we transform Γ into a drawing with at most k turns where the component C is
contracted. Let {s, t} be the pair that separates C from L\C. Let y(s) and y(t) be the levels
of s and t in Γ. Without loss of generality, y(s) < y(t). First, assume that for each p ∈ V (C)
it holds that y(s) < y(p) < y(t). Then, contracting C into a single edge transforms Γ into

ATMOS 2025

4:8 Visualization of Event Graphs for Train Schedules

Figure 4 The block-cut tree (right) of the graph (left). The cut vertices are colored and are
represented as circles in the block-cut tree. The maximal biconnected components are represented
as rectangles.

a drawing of the reduced instance with at most k turns. Now, let L ⊆ V (C) be the set of
vertices below s, and let U ⊆ V (C) be the set of vertices above t. We describe only how to
handle U since L can be handled analogously. Let ∆ be the number of train lines with at
least one vertex in U . We reorder the levels of the vertices in U according to a topological
ordering of C restricted to U and move all vertices in U such that their levels are between
y(t) and Y = max{y(p′) : y(p′) < y(t), p′ ∈ V (C)}. Each train line with at least one vertex
in U corresponds to at least one turn in U , namely a turn at the vertex of a train line with
the largest level. Therefore, moving and reordering U removes at least ∆ turns. Also, the
movement and reordering of U results in at most ∆ turns more at t since the only vertices
that were moved are vertices in U . After moving and reordering U and L, we are in the first
case and can hence contract C. Summing up, we can transform a turn-optimal drawing Γ
of an event graph E into a drawing with a contracted component C without changing the
number of turns, implying that k′ ≤ k.

We conclude that Reduction Rule 1 is sound. ◀

Note that we can apply Reduction Rule 1 exhaustively in cubic time (in the number of
vertices and edges of L and E): we iterate over all (up to O(|V (L)|2) many) separating pairs
and contract each connected component with respect to the current pair, if possible. Below
we show that, using two data structures, we can speed up the application of Reduction Rule 1
considerably.

Block-cut trees. A block-cut tree represents a decomposition of a graph into maximal
biconnected components (called blocks) and cut vertices. Given a graph G, let C be the set
of cut vertices of G, and let B be the set of blocks of G. Note that two blocks share at most
one vertex with each other, namely a cut vertex. The block-cut tree Tbc of G (see Figure 4
for an example) has a node for each element of B ∪ C and an edge between b ∈ B and c ∈ C
if and only if c is contained in the component represented by b. Note that the leaves of a
block-cut tree are B-nodes. For example, the block-cut tree of a biconnected graph is a single
node. The block-cut tree of an n-vertex path is itself a path, with 2n − 3 nodes.

SPQR-trees. If a graph G is biconnected, an SPQR-tree represents the decomposition of
G into its triconnected components via separating pairs, where S (series), P (parallel), Q
(a single edge), and R (remaining or rigid) stand for the different node types of the tree
that represent how the triconnected components compose G. An SPQR-tree represents all
planar embeddings of a graph. Therefore, SPQR-trees are widely used in graph drawing
and beyond [15]. SPQR-trees are defined in several ways in the literature. Here, we recall
the definition of Gutwenger and Mutzel [10], which is based on an earlier definition of Di
Battista and Tamassia [2].

J. Hartleb, M. Schmidt, S. Wolf, and A. Wolff 4:9

P

P

S S
R

s

t

e

P
S

R

Figure 5 The SPQR-tree (right) of the graph on the left, with respect to the edge e. The nodes
of the tree are the rectangles. Each rectangle contains the skeleton of the corresponding node. The
dashed edge in the representation of a node µ is the virtual edge of the parent of µ. The thick purple
edges in the skeletons represent child components. The solid black edges are the real edges of the
graph. Q-nodes are omitted for simplicity. In each rectangle, the two green vertices are the poles
of the corresponding skeleton. The grey P-node is the unique child of the root (a Q-node) which
represents the reference edge e.

Let G be a multi-graph. A split pair is either a separating pair or a pair of adjacent
vertices. A split component of a split pair {u, v} is either an edge {u, v} or a maximal
subgraph C (containing {u, v}) of G such that {u, v} is not a split pair of C. Let {s, t} be a
split pair of G. A maximal split pair {u, v} of G with respect to {s, t} is a pair such that,
for any other split pair {u′, v′}, the vertices u, v, s, and t are in the same split component.
Let e = {s, t} be an edge of G called reference edge. The SPQR-tree Tspqr of G with respect
to e is a rooted tree whose nodes are of four types: S, P, Q, and R. Each node µ of Tspqr has
an associated biconnected multi-graph called the skeleton of µ. Every vertex in a skeleton
corresponds to a vertex in G and every edge {u, v} in a skeleton corresponds to a child
of µ that represents a split component of G that is separated by {u, v}. The tree Tspqr is
recursively defined as follows (see Figure 5 for an example):
Trivial Case: If G consists of exactly two parallel edges between s and t, then Tspqr consists

of a single Q-node whose skeleton is G itself.
Parallel Case: If the split pair {s, t} has at least three split components G1, . . . , Gk, the root

of Tspqr is a P-node µ whose skeleton consists of k parallel edges e1, . . . , ek between s

and t.
Series Case: If the split pair {s, t} has exactly two split components, one of them is e, and

the other is denoted with G′. If G′ has cut vertices c1, . . . , ck−1 (k ≥ 2) that partition
G into its blocks G1, . . . , Gk, in this order from s to t, the root of Tspqr is an S-node µ

whose skeleton is the cycle e0, e1, . . . , ek, where e0 = e, c0 = s, ck = t, and ei = (ci−1, ci)
for i = 1, . . . , k.

Rigid Case: If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the maximal split
pairs of G with respect to {s, t} and let Gi (i = 1, . . . , k) be the union of all the split
components of {si, ti} but the one containing e. The root of Tspqr is an R-node whose
skeleton is obtained from G by replacing each subgraph Gi with the edge ei = {si, ti}.

Except for the trivial case, every node µ of Tspqr has children µ1, . . . , µk such that µi is
the root of the SPQR-tree of Gi ∪ei with respect to ei. The reference edge e is represented by
a Q-node which is the root of Tspqr. Each edge ei in the skeleton of µ is associated with the
child µi of µ. This edge is also present in µi and is called virtual edge in µi. The endpoints
of edge ei are called poles of the node µi. The pertinent graph Gµ of µ is the subgraph of G

that corresponds to the real edges (Q-nodes) in the subtree rooted at µ.

ATMOS 2025

4:10 Visualization of Event Graphs for Train Schedules

▶ Theorem 10. If L is the location graph of an event graph E, then Reduction Rule 1 can be
applied exhaustively in time linear in the number of vertices and edges of L and E.

Proof. Let L be the connected location graph of an event graph E . If the location graph is
not connected we can apply the algorithm on every connected component of L. We consider
the case where L is not biconnected as this case also handles the biconnected subgraphs
of L and can therefore easily be adapted for the case where L is biconnected. We start by
decomposing L into a block-cut tree Tbc with vertex set B ∪ C. For every block b in B we do
the following. We construct an SPQR-tree T b

spqr of the biconnected component corresponding
to the block b and temporarily mark all cut vertices of C contained in b as terminal in b so
that no cut vertex can be contracted while we process T b

spqr. Let µr be the root of T b
spqr and

let Eµ be the event graph that corresponds to the pertinent graph Lµ for a node µ in T b
spqr.

We say a train loops at vertex s for some split pair {s, t}, if there is a train whose train line
contains the subsequence ⟨t, s, t⟩. Intuitively, we traverse T b

spqr bottom-up, and mark nodes
in T b

spqr (and the corresponding edge in their parent) as contractible or non-contractible and
modify Eµ using Reduction Rule 1. Due to the correspondence between vertices in a skeleton
and vertices in L we use “vertex in a skeleton” and “vertex in L” interchangeably. We do
the following depending on the type of µ ̸= µr.
Q-node: We mark the edge corresponding to µ in the skeleton of the parent of µ as contractible

(a contraction of the real edge corresponding to µ does not result in a different graph). If
there is a train that loops at one of the poles of µ, we mark this pole as terminal.

S-node: Let ⟨c1, . . . , ck−1⟩ be the path that corresponds to the skeleton of µ without the
virtual edge of its parent. Every maximal subpath of contractible edges that does not
contain any terminal ci is therefore a contractible transit component. Thus, we can
apply Reduction Rule 1 on the graph that is induced by this subpath. If the entire path
⟨c1, . . . , ck−1⟩ is contractible, then we mark the edge corresponding to µ in the skeleton of
µ’s parent as contractible, otherwise we mark it as non-contractible. In the contractible
case, we check if there is a train that loops at the poles of µ. If this is the case, we mark
the corresponding pole(s) as terminal.

P-node: Let e1, . . . , ek be the edges between the poles of µ without the virtual edge corres-
ponding to the parent of µ. We consider every contractible edge among e1, . . . , ek as a
single transit component C and apply Reduction Rule 1. Note that C is a contractible
transit component since the union of parallel contractible transit components is again
a contractible transit component. If every edge e1, . . . , ek is contractible, we mark the
edge corresponding to µ in the skeleton of µ’s parent as contractible. Further, we check if
there is a train that loops at the poles of µ. If this is the case, we mark the corresponding
pole(s) as terminal.

R-node: Let C be the skeleton of µ without the virtual edge of its parent. If every edge
in C is contractible, then we test if C is a contractible transit component with respect to
the poles of µ. If this is the case, we apply Reduction Rule 1 on C and mark the edge
corresponding to µ in the skeleton of µ’s parent as contractible. Again, if there is a train
that loops at one of the poles of µ, we mark the corresponding pole(s) as terminal.

To process the root µr of T b
spqr, we do the following depending on the type of the single

child µc of µr. If µc is an S-node, we check if the edge corresponding to µc is marked as
contractible. If this is the case, we mark b as contractible. Otherwise, we consider the
maximal subpath of the skeleton of µc that now contains the edge corresponding to µr and
apply Reduction Rule 1, if possible. If µc is a P- or R-node, we mark b as contractible if
µc is also contractible. To complete the processing of b, we finally check whether there is a
train that loops at one of the poles of µr, if this is the case we mark b as non-contractible.

J. Hartleb, M. Schmidt, S. Wolf, and A. Wolff 4:11

Additionally, if this pole is also a cut vertex, we mark it as terminal. It remains to test for
one special case. If for every skeleton in T b

spqr every edge is marked as contractible, except
for a single edge e′ in an R-node, test if L \ Ce′ is a contractible transit component where
Ce′ is the split component of e′. If this is the case apply Reduction Rule 1.

After we have completed every block b in B, we mark every node c in C as contractible if
c is not a terminal. Finally, we proceed similarly to the S-node previously. For every chain
in Tbc that contains only contractible vertices, we apply Reduction Rule 1.

A block-cut tree and an SPQR-tree can be computed in linear time each [10,12]. It is
easy to see that the total size of all skeletons is linear in the size of the location graph. Since
each node is processed in time linear in the size of its skeleton and of the corresponding event
graph, the entire algorithm takes time linear in the sizes of L and E . ◀

5 Exact Integer Linear Programming Approaches

To state an ILP for Turn Minimization, we transform a given event graph E and its location
graph L into an equivalent Maximum Betweenness instance (S, R), where S = V (L) and R

contains all triplets of locations of consecutive events in all train lines of E . However, we
state the ILP in the context of Turn Minimization and minimize the number of violated
constraints. We start with the intuitive integer linear program.

We assume that the set of restrictions R is ordered arbitrarily, and we denote the i-th
element in R by (p, q, r)i. Further, let U = {(p, q, r) : {p, r} ∈ [S]2, q ∈ S, q ̸= p, q ̸= r}. For
each pair of elements p, q ∈ S with p ̸= q, let xpq ∈ {0, 1} be a binary decision variable,
where xpq = 1 means that p ≺ q. We require xpq = 1 − xqp to ensure asymmetry. Further,
we model the transitivity constraints of an ordering for (p, q, r) ∈ U using the constraint

xpr ≥ xpq + xqr − 1,

i.e., the constraint ensures that if p ≺ q and q ≺ r, then p ≺ r must hold as well.
It remains to count the number of restrictions (p, q, r)i ∈ R that are violated. For this

purpose, we introduce a binary variable bi for each restriction (p, q, r)i ∈ R. The intended
meaning of bi = 1 is that restriction i is violated. Note that a restriction (p, q, r)i is similar to
a transitivity constraint. If q ≺ p and q ≺ r, or p ≺ q and r ≺ q, then bi = 1. Thus, for each
restriction (p, q, r)i the following two constraints force bi = 1 if the restriction is violated.

bi ≥ xqp + xqr − 1
bi ≥ xpq + xrq − 1.

Thus, we obtain the following formulation (ILP1):

minimize
∑

(p,q,r)i∈R

bi (1a)

subject to xpq = 1 − xqp ∀ {p, q} ∈ [S]2, (1b)
xpr ≥ xpq + xqr − 1 ∀ (p, q, r) ∈ U, (1c)

bi ≥ xqp + xqr − 1 ∀ (p, q, r)i ∈ R, (1d)
bi ≥ xpq + xrq − 1 ∀ (p, q, r)i ∈ R, (1e)

xpq ∈ {0, 1} ∀ (p, q) ∈ S2, p ̸= q, (1f)
bi ∈ {0, 1} ∀ (p, q, r)i ∈ R (1g)

ATMOS 2025

4:12 Visualization of Event Graphs for Train Schedules

Cutting plane approach. As a first improvement over ILP1, we test a cutting plane approach.
We start by solving a relaxation of ILP1 that omits only the transitivity constraints (1c). To
solve the separation problem, i.e., to find violated constraints (1c), we search for up to k

cycles in the auxiliary graph G′ that contains a vertex for each location and has a directed
edge (p, q) if and only if xpq = 1. A cycle in G′ then corresponds to a violated transitivity
constraint. Note that for each pair of vertices p ̸= q in G′, there is either an edge (p, q)
or an edge (q, p), due to constraints (1b). Therefore, G′ is a tournament graph. It is well
known [14] that if there is a cycle in a tournament graph G′, then there is also a cycle of
length 3 in G′. Thus, it suffices to search for cycles of length 3.

An integer linear program via tree decompositions. We now propose a formulation that
reduces the number of transitivity constraints by exploiting the structure of the location
graph. In particular, given a tree decomposition T = (T, {Xt}t∈V (T)) of L, we modify ILP1
by using Ut = {(p, q, r) : {p, r} ∈ [Xt]2, q ∈ Xt, q ̸= p, q ̸= r} instead of U . Thus, we obtain
the following formulation (ILP2):

minimize
∑

(p,q,r)i∈R

bi (2a)

subject to xpq = 1 − xqp ∀ (p, q) ∈
⋃

t∈V (T)

[Xt]2, (2b)

xpr ≥ xpq + xqr − 1 ∀ (p, q, r) ∈
⋃

t∈V (T)

Ut, (2c)

bi ≥ xqp + xqr − 1 ∀ (p, q, r)i ∈ R, (2d)
bi ≥ xpq + xrq − 1 ∀ (p, q, r)i ∈ R, (2e)

xpq ∈ {0, 1} ∀ t ∈ V (T) ∀(p, q) ∈ X2
t , p ̸= q, (2f)

bi ∈ {0, 1} ∀ (p, q, r)i ∈ R (2g)

In other words, instead of introducing transitivity constraints for every triplet of locations
in U , we restrict the transitivity constraints to triplets of locations that appear together in at
least one bag. The intuition behind this formulation is the following. Consider a separation
(A, B) in L with a separator A ∩ B. It is possible to find a turn-optimal ordering of L
by separately finding turn-optimal orderings of L[A] and L[B] with the property that the
ordering of A ∩ B is consistent in both orderings. In particular, programs for L[A] and L[B]
need to share only constraints for vertices in A ∩ B. Note that this intuition works only if
we apply one separator to the location graph. For example, if we want to solve L[A] and
L[B] recursively, we need to separate L throughout the recursion, as vertices can be part of
multiple separators across different recursion steps. In this case, orderings of separators that
are consistent for specific separations might be in conflict with each other. We show that a
conflict between multiple separations cannot happen if we use a tree decomposition for the
separation of L.

▶ Theorem 11. Let E be an event graph. If x is an optimal solution to ILP2, then x implies
a turn-minimal ordering of the locations in E.

Proof. First, observe that if the variables of type xpq indeed form a valid total ordering,
then every possible turn is counted correctly by the variables bi. Specifically, for every triplet
(p, q, r) ∈ R, the variables xpq (xqp) and xqr (xrq) exist since every triplet in R forms a path
of length 2 in L, and every edge in L is contained in at least one bag due to (T2). Thus, it
remains to show that the variables of type xpq model a valid total ordering.

J. Hartleb, M. Schmidt, S. Wolf, and A. Wolff 4:13

Consider the directed graph G′ whose vertices correspond to the vertices in L and that
has a directed edge (p, q) if and only if xpq = 1. The underlying undirected graph of G′ is a
supergraph of L, and the tree decomposition T of L is also a valid tree decomposition of G′.
Note that if G′ is acyclic, then the variables of type xpq model a valid ordering. Towards a
proof by contradiction, suppose that this is not the case and that G′ does contain a cycle.
Let C be a shortest cycle in G′. If C has length 3, then C is a clique and due to (P2), the
tree T has a node t such that C ⊆ Xt. Due to constraints (1c), however, for every bag Xi

of T , the graph G′[Xi] is acyclic. Hence, C is a cycle of length at least 4.
We claim that every bag of T contains at most two vertices of C. Otherwise, there would

be two vertices u and w of C that are not consecutive along C but, due to constraints (2f),
the graph G′ would contain the edge (u, w) or the edge (w, u). In the first case, the path
from w to u along C plus the edge (u, w) would yield a directed cycle. In the second case,
the path from u to w along C plus the edge (w, u) would also yield a directed cycle. In
both cases, the resulting cycle would be shorter than C (since u and w are not consecutive
along C). This yields the desired contradiction and shows our claim.

Note that T restricted to C is also a tree decomposition. However, since every bag
contains at most two vertices of C, the restricted tree decomposition would have width 1,
which is a contradiction since every tree decomposition of a cycle has width at least 2. Thus,
the directed cycle C does not exist, and G′ is acyclic. ◀

Note that this formulation requires only O(tw(L)2 · |V (L)|) variables and O(tw(L)3 · |V (L)|)
many constraints. This is a significant improvement over ILP1 if tw(L) is small, which can
be expected since train infrastructure is usually sparse and “tree-like”.

6 Experimental Analysis

We tested the effectiveness of the reduction rule and the runtime of our formulations on
an anonymized and perturbed dataset with 19 instances provided by DB InfraGO AG; see
Figure 6 for an overview of the dataset. Our computations show that the minimum number
of turns is between 0 and 5 in the provided dataset. We implemented our algorithms in the
programming language Python. We used Networkx [11] to handle most of the graph operations
and Gurobi (version 12.0.1) [9] to solve the integer linear programs. All experiments were
conducted on a laptop running Fedora 40 with Kernel 6.10.6 using an Intel-7-8850U CPU
with four physical cores and 16 GB RAM.

100 200 300 400 500

Number of Locations

500

1000

N
u

m
b

er
of

E
ve

n
ts

0 3 6 9 12 15 18

Number of Trains

0

1

2

3

4

Figure 6 Left: Instances with respect to the number of events and the number of locations. Right:
The histogram depicts the frequency of instances (y-axis) with a given number of trains (x-axis) in
the dataset; e.g., there are five instances with five trains.

ATMOS 2025

4:14 Visualization of Event Graphs for Train Schedules

10
-1

10
-2

10
-3

10
-4

20
-0

20
-1

20
-2

20
-3

20
-4

50
-0

50
-1

50
-2

50
-3

50
-4

80
-0

80
-1

80
-2

80
-3

80
-4

0

100

200

300

400

500
Initial

Reduced

N
u
m
b
er

of
L
o
ca
ti
on

s
Figure 7 Results of the effectiveness of applying contractions, restricted to contracting chains.

The bar diagram shows the number of locations in each instance before and after contraction.

Effectiveness of the reduction rule. Our implementation of Reduction Rule 1 is restricted
to exhaustively contract chains. But even with this restriction, the reduction rule proves to
be effective on the provided dataset. On average, the number of locations was reduced by
75%, where the best result was a reduction by 89% (instance 50-4) and the worst result was
a reduction by 55% (instance 20-3). A full evaluation is shown in Figure 7.

Runtime of the ILPs. Each formulation was implemented with only one variable for each
unordered pair of locations and without constraints (1b). Instead, if we created variable xpq

for the unordered pair {p, q} and xqp was needed in the formulation, we substituted 1 − xpq

for xqp. Since the computation of an optimal tree decomposition is NP-hard, we used the
Min-Degree Heuristic implemented in Networkx to compute a tree decomposition for ILP2.
The additional time needed for computing this tree decomposition was counted towards the
runtime of ILP2. We tested the cutting plane method and ILP2 on the original instances
which we call initial instances and the instances that were reduced by our implementation
of Reduction Rule 1 which we call reduced instances. We imposed a time limit of one hour
on every experiment. The result of each experiment is the average value over 5 repetitions
of the experiment. The cutting plane approach on the initial instances was able to solve 11
out of 19 instances. An instance was either always solved to optimality or never solved to
optimality across all repetitions of the experiment. The largest instance that was solved to
optimality contained 465 locations (and 19 trains) and was solved in 3509 s. The smallest
instance that was not solved within the time limit contained 277 locations (and 8 trains). In
contrast, the cutting plane approach was able to solve every reduced instance within 70 s.
Applied to the reduced instances, the cutting plane approach was 625 times faster than when
applied to the initial instances (averaged over those that were solved within the time limit).
See Figure 8 for more details on the performance of the cutting plane approach. ILP2 solved
every instance (initial or reduced) in less than a second (see Figure 8 for details). Still, the
reduction helped, making ILP2 on average 3.98 times faster than on the initial instances. On
the reduced instances, ILP2 was on average 103 times faster than the cutting plane approach
on the reduced instances (and 22,845 times faster than the cutting plane approach on the
initial instances).

7 Conclusion and Future Work

In this paper we have considered the problem of visualizing general event graphs as time-space
diagrams. We established a connection between minimizing the number of turns in a time-
space diagram and Maximum Betweenness, we proposed a preprocessing method to reduce
the size of event graphs, and proposed two different integer linear program formulations.

J. Hartleb, M. Schmidt, S. Wolf, and A. Wolff 4:15

200 400

Initial Number of Locations

10−1

101

103

R
u

n
ti

m
e

[s
]

200 400

Initial Number of Locations

0.0

0.2

0.4

R
u

n
ti

m
e

[s
]

Initial Reduced

Figure 8 Runtimes of the cutting plane approach (left) and of ILP2 (right), on the initial and the
reduced instances.

We evaluated the performance of our algorithms on a real-world data set and observed
that our best algorithms were able to solve every instance within one second. This suggests
that turn-optimal time-space diagrams can be used in a real-time environment in practice.
This can facilitate dispatching and the development of dispatching software.

Future work includes evaluating the usefulness and comprehensibility of the generated
drawings in a real-life scenario, as well as exploring alternative optimization criteria that
may yield improved visualizations. Secondary optimization steps that are applied as a
post-processing to a turn-optimal drawing such as minimizing the number of crossings while
keeping the ordering of locations might produce even better drawings. Since event graph
visualizations represent time schedules, changes in the underlying schedule can lead to
significant shifts in layout. An important direction for future work is developing techniques
to preserve the user’s mental map during such updates.

References
1 Per Austrin, Rajsekar Manokaran, and Cenny Wenner. On the NP-hardness of approximating

ordering-constraint satisfaction problems. Theory of Computing, 11(10):257–283, 2015. doi:
10.4086/toc.2015.v011a010.

2 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25(5):956–997, 1996. doi:10.1137/S0097539794280736.

3 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

4 Benny Chor and Madhu Sudan. A geometric approach to betweenness. SIAM Journal on
Discrete Mathematics, 11(4):511–523, 1998. doi:10.1137/S0895480195296221.

5 Thomas Christof, Michael Jünger, John Kececioglu, Petra Mutzel, and Gerhard Reinelt. A
branch-and-cut approach to physical mapping of chromosomes by unique end-probes. Journal
of Computational Biology, 4(4):433–447, 1997. doi:10.1089/cmb.1997.4.433.

6 Thomas Christof, Marcus Oswald, and Gerhard Reinelt. Consecutive ones and a betweenness
problem in computational biology. In Int. Conf. Integer Programming & Combin. Optimization,
pages 213–228, 1998. doi:10.1007/3-540-69346-7_17.

7 Vladimir Filipović, Aleksandar Kartelj, and Dragan Matić. An electromagnetism metaheuristic
for solving the maximum betweenness problem. Applied Soft Computing, 13(2):1303–1313,
2013. doi:10.1016/j.asoc.2012.10.015.

8 Rihab Gorsane, Khalil Gorsan Mestiri, Daniel Tapia Martinez, Vincent Coyette, Beyrem
Makhlouf, Gereon Vienken, Minh Tri Truong, Andreas Söhlke, Johann Hartleb, Amine Kerkeni,
Irene Sturm, and Michael Küpper. Reinforcement learning based train rescheduling on event
graphs. In 26th Int. Conf. Intell. Transport. Syst. (ITSC), pages 874–879. IEEE, 2023.
doi:10.1109/ITSC57777.2023.10422531.

ATMOS 2025

https://doi.org/10.4086/toc.2015.v011a010
https://doi.org/10.4086/toc.2015.v011a010
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1137/S0895480195296221
https://doi.org/10.1089/cmb.1997.4.433
https://doi.org/10.1007/3-540-69346-7_17
https://doi.org/10.1016/j.asoc.2012.10.015
https://doi.org/10.1109/ITSC57777.2023.10422531

4:16 Visualization of Event Graphs for Train Schedules

9 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL: https://www.
gurobi.com.

10 Carsten Gutwenger and Petra Mutzel. A linear time implementation of spqr-trees. In Joe
Marks, editor, 8th Int. Symp. Graph Drawing (GD), volume 1984 of LNCS, pages 77–90.
Springer, 2000. doi:10.1007/3-540-44541-2_8.

11 Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In 7th Python Sci. Conf. (SciPy), pages 11–15, 2008.
doi:10.25080/TCWV9851.

12 John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph manipulation.
Commun. ACM, 16(6):372–378, 1973. doi:10.1145/362248.362272.

13 Yury Makarychev. Simple linear time approximation algorithm for betweenness. Operations
Research Letters, 40(6):450–452, 2012. doi:10.1016/j.orl.2012.08.008.

14 John W. Moon. On subtournaments of a tournament. Canadian Mathematical Bulletin,
9(3):297–301, 1966. doi:10.4153/CMB-1966-038-7.

15 Petra Mutzel. The SPQR-tree data structure in graph drawing. In Jos C. M. Baeten, Jan Karel
Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, 30th Int. Colloq. Automata,
Languages & Programming (ICALP), volume 2719 of LNCS, pages 34–46. Springer, 2003.
doi:10.1007/3-540-45061-0_4.

16 Jaroslav Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111–114, 1979.
doi:10.1137/0208008.

17 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991. doi:
10.1016/0022-0000(91)90023-X.

18 Aleksandar Savić. On solving the maximum betweenness problem using genetic algorithms.
Serdica Journal of Computing, 3(3):299–308, 2009. doi:10.55630/sjc.2009.3.299-308.

19 Aleksandar Savić, Jozef Kratica, Marija Milanović, and Djordje Dugošija. A mixed integer
linear programming formulation of the maximum betweenness problem. European Journal of
Operational Research, 206(3):522–527, 2010. doi:10.1016/j.ejor.2010.02.028.

A Complexity Results for the Turn-Minimization Problem

Betweenness is the decision version of Maximum Betweenness which asks whether an
ordering exists that satisfies all restrictions. Betweenness was shown to be NP-hard by
Opatrny [16]. To prove NP-hardness of Turn Minimization we provide a simple reduction
from Betweenness which can be used to derive that Turn Minimization is also hard
to approximate with constant (multiplicative or additive) factor and para-NP-hard for the
natural parameter, the number of turns.

To prove the second part of the theorem, ie., that Turn Minimization is para-NP-hard
if parameterized by the vertex cover number of the location graph, we use a reduction from
MaxCut. The decision version of MaxCut asks whether there is a cut of size at least k in
a given graph.

▶ Theorem 7 (⋆). Turn Minimization
(i) is para-NP-hard with respect to the natural parameter, the number of turns,
(ii) is para-NP-hard with respect to the vertex cover number of the location graph,
(iii) does not admit polynomial-time multiplicative or additive approximation algorithms

unless P = NP.

Proof. Let (S, R) be an instance of the Betweenness problem. We construct an instance
for Turn Minimization corresponding to (S, R). Let S be the set of locations of the event
graph that we want to construct. In order to construct the event graph E , we consider R in an
arbitrary but fixed order, where we let the i-th element in the order be denoted by (ai, bi, ci).

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.25080/TCWV9851
https://doi.org/10.1145/362248.362272
https://doi.org/10.1016/j.orl.2012.08.008
https://doi.org/10.4153/CMB-1966-038-7
https://doi.org/10.1007/3-540-45061-0_4
https://doi.org/10.1137/0208008
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.55630/sjc.2009.3.299-308
https://doi.org/10.1016/j.ejor.2010.02.028

J. Hartleb, M. Schmidt, S. Wolf, and A. Wolff 4:17

For each triplet (ai, bi, ci) ∈ R, we construct a path Ξi in E which is composed of three events
Ξi = ⟨v1

i , v2
i , v3

i ⟩ such that ℓ(v1
i) = ai, ℓ(v2

i) = bi, ℓ(v3
i) = ci and t(v1

i) < t(v2
i) < t(v3

i). This
path Ξi can be considered as a train moving from location ai to ci over bi.

▷ Claim 12. Using this transformation, (S, R) has a valid ordering ≺, satisfying all restrictions
in R if and only if the transformed instance E can be drawn as a time-space diagram Γ
without any turns.

Proof. Let (S, R) be a Betweenness instance with a valid ordering ≺. If arranging the
locations of E on levels from top to bottom according to ≺, for each triplet (ai, bi, ci) ∈ R it
holds that either ai ≺ bi ≺ ci or ci ≺ bi ≺ ai. By construction each Ξi corresponding to a
constraint (ai, bi, ci) ∈ R is a path of events with three consecutive locations ai, bi, ci, thus
Ξi is either monotonically increasing or decreasing in Γ. Therefore, no turn occurs.

Conversely, assume there is a turn-free drawing Γ of the transformed instance (E , Y).
Let ≺ be the ordering of S implied by the mapping y of Γ.

Now, assume that ≺ is violates a constraint in (ai, bi, ci) ∈ R. Thus, bi is not between ai

and ci in ≺. Then, in the corresponding path Ξi the location bi is also not between ai and
ci in the mapping y. Therefore, y(bi) is the smallest/largest level of the three levels y(ai),
y(bi), y(ci), implying a turn in Γ; a contradiction. ◁

In the reduction, we have shown that we can decide Betweenness by testing whether
there are no turns in the instance for Turn Minimization obtained in the transformation.
This immediately eliminates the possibility of a parameterized algorithm (unless P = NP)
whose only parameter is the number of turns as we would then be able to decide Betweenness
in polynomial time. Thus, we have shown (i).

Approximation algorithms with a multiplicative or constant additive factor are also
impossible (unless P = NP) for similar reasons. A multiplicative α-approximation algorithm
is ruled out by the fact that such an approximation algorithm would have to solve the cases
with 0 = 0 · α turns optimally.

If there was an additive β-approximation algorithm for a β ∈ poly(|V (E)|), we could copy
each gadget β + 1 times. By duplicating the gadgets β + 1 times, a turn in one gadget causes
all other copies of the gadget to have a turn as well. Thus, the number of turns is divisible by
β + 1. If there was an optimal mapping from locations to levels without turns, the additive
algorithm would also have to return the optimal value, since the only number in the range
{0, β} that is divisible by β + 1 is 0, implying that we could again use this algorithm to
decide Betweenness. Thus, we have shown (iii).

In order to show (ii), we carry out a simple reduction from MaxCut. Let (G, k) be an
instance to MaxCut. To transform (G, k) into an instance of Turn Minimization we
construct the following event graph E . Let z be an auxiliary vertex and let V (G) ∪ {z} be
the locations in E . For each {u, v} ∈ E(G), we add a train line corresponding to locations
(u, z, v) into E .

▷ Claim 13. Using the transformation as described above, (G, k) has a cut of size k if and
only if the transformed instance E can be drawn as a time-space diagram with n − k turns.

Proof. Let (G, k) be a MaxCut instance and let (S, T) be a cut of size k in G with
C = {{s, t} : s ∈ S, t ∈ T}. We construct an ordering of the locations of E in the following
way. Every vertex in S is placed below z and every vertex in T is placed above z in an
arbitrary order. Since E contains only train lines of the form (u, z, v), for each {u, v} ∈ E(G),
this corresponds to a drawing of E , where every train line corresponding to an edge in C is
drawn without a turn, and every train line whose edge is either contained in S or in T is
drawn with a turn. Since (S, T) is a cut of size k, this drawing has n − k turns.

ATMOS 2025

4:18 Visualization of Event Graphs for Train Schedules

Conversely, let E be the transformed instance, let Γ be a drawing of E with n − k turns
and let ≺ be the ordering of locations of E implied by Γ. We set S = {s ∈ V (L(E)) : s ≺ z}
and T = {t ∈ V (L(E)) : z ≺ t}. The size of the resulting cut (S, T) is k, which can be shown
analogously to the previous argument. ◁

Note that this transformation results in a location graph of E that is a star graph with z

in the center. Since a star graph has a vertex cover number of 1, there is no algorithm
parameterized by the vertex cover number, unless P = NP. ◀

In order to show Theorem 8, we use a specific type of tree decomposition. We call a tree
decomposition T = (T, {Xt}t∈V (T)) nice, if T is rooted at a leaf node r, the leaf nodes in T

have empty bags, and all other nodes are one of the three following different types. A node t

is of type introduce if t has exactly one child c, and Xt = Xc ∪{v} for some v /∈ Xc. Similarly,
a node t is of type forget, if t has exactly one child c, and Xc = Xt ∪ {v} for some v /∈ Xt.
The third type is a join node, which is a node t with two children i, j ∈ V (T) whose bags
contain the same vertices of V , i.e., Xt = Xi = Xj . Further, we require that the root node r

is of type forget and that every leaf node in T is associated with an empty bag. Given an
arbitrary tree decomposition, a nice tree decomposition of the same graph can be computed
in polynomial time preserving the width of the given decomposition such that this nice tree
decomposition contains O(tw(G) · n) many nodes [3].

▶ Theorem 8 (⋆). Let E be an event graph, and let L′ be its augmented location graph.
Computing a turn-optimal time-space diagram of E is fixed-parameter tractable with respect
to the treewidth of L′.

Proof. We begin with introducing notation. In the following we refer to the time-space
diagram simply as “drawing” and for the sake of brevity we say “a drawing of location
graph L” where we mean the drawing of E restricted to the locations contained in L. Given
a strict total order ≺ on a finite set S, the rank(b) of an element b ∈ S is the position in
the unique enumeration of S such that for each pair a ≺ b, a is enumerated before b. Thus,
rank(b) = |{a ∈ S | a ≺ b}| + 1.

Let T = (T, {Xt}t∈V (T)) be a nice tree decomposition of L′ rooted at some r ∈ V (T).
For some t ∈ V (T), we define the subgraph L′

t of L′ to be the graph induced by the union
of bags contained in the subtree of T rooted at t. For instance, the induced graph L′

r with
respect to the subtree rooted at the root node r is precisely L′.

Further, let πt be an order of the vertices in the bag Xt. We say that a drawing respects πt

if the vertices in Xt are drawn such that for all p, q ∈ Xt with p ≺πt
q vertex p is drawn

above vertex q (i.e., is assigned a higher level). With πt
p→i we denote the order πt which

is extended by a vertex p such that p has rank(p) = i within the extended order πt
p→i and

all other vertices in the order that previously had a rank of at least i now have their rank
increased by 1. Additionally, let πt be an order of the vertices in the bag Xt and let c be a
child of t with I = Xt ∩ Xc. We write πt|c for the order πt restricted to the vertices in I.
Lastly, we define b(p, πt) to be the number of turns for which p is one of the three locations
(pi−1, pi, pi+1) of a turn in a drawing of L′[Xt] respecting πt. Similarly, we write b(Xt, πt)
for the total number of turns occurring in a drawing of L′[Xt] respecting the order πt, where
all three locations (pi−1, pi, pi+1) of a turn are contained in Xt. Note that each drawing of
L′[Xt] respecting πt has the same number of turns since πt dictates an ordering on every
vertex in Xt.

J. Hartleb, M. Schmidt, S. Wolf, and A. Wolff 4:19

Now, let L′ be a given augmented location graph and let T = (T, {Xt}t∈V (T)) be a nice
tree decomposition of L′ rooted at a leaf r ∈ V (T). We define D[t, πt] to be the number of
turns in a turn-optimal drawing of L′

t respecting the order πt. Therefore, D[r, πr] corresponds
to the number of turns of a turn-optimal drawing of E , since r is the root of T and r is
associated with a leaf bag Xr = ∅.

We show how D[t, πt] can be calculated by the following recursive formulas depending on
the node type of t. Based on this recursive formulation, the actual optimal ordering of the
locations in E can be extracted via a straightforward backtracking algorithm.

Leaf node (except root): Since the associated bag Xt of a leaf node t is empty, L′
t is an

empty graph and therefore the minimum number of turns of a turn-optimal drawing of L′
t

is D[t, πt] = 0.
Introduce node: Let p be the vertex that has been introduced in node t, and let c be the

only child of t, then

D[t, πt] = D[c, πt|c] + b(p, πt).

Inductively, D[c, πt|c] corresponds to the number of turns of a turn-optimal drawing of L′
c

respecting the order πt restricted to vertices in Xc. The node t extends the graph L′
c by

the vertex p, introducing edges between p and vertices N(p) ∩ Xt that can cause turns
including p. These turns are counted by b(p, πt). Since πt dictates the relative position
of every vertex in N [p], a turn-optimal drawing of L′

t respecting πt must contain every
newly introduced turn.
Note that we count a turn at most once in this setting: First, the vertex p is introduced
exactly once in L′

t by the definition of a nice tree decomposition. Further, by the
definition of b, we count a turn only if one location of its consecutive events vi−1, vi, vi+1
is p. Therefore, during the computation of D[c, πt], the turns involving p have not been
counted previously.

Forget node: Let Xt = Xc \{p} be the bag of t, where p is the vertex that has been forgotten
in node t and where c is the only child of t, then

D[t, πt] = min{D[c, πt
p→i] : i = 1, . . . , |Xc|}.

At node t, we remove vertex p from the bag Xc, therefore L′
t = L′

c. The ordering πt

dictates the drawing for L′[Xc] in a turn-optimal drawing in L′
t except for p. Thus, the

number of turns of a turn-optimal drawing of L′
t respecting πt must be a turn-optimal

drawing in L′
c respecting the order πt, where p is inserted into the order πt for some

rank(p) = i.
Note that every turn involved in a turn-optimal drawing respecting πt

p→i for an optimal i is
accounted for precisely once since p be can forgotten only once. Since p was forgotten, Xt

is a separating set that separates p from every other vertex in L′ \ L′
t, implying that the

neighbourhood of p was already processed in L′
c. Further, since the locations of every

possible turn are a triangle in L′, we know that there is an already processed bag that
contains all three locations of consecutive events vi−1, vi, vi−1 that can cause a turn.

Join node: Let i and j be the two children of node t, then we can calculate the number of
turns in a drawing of Gt respecting πt by

D[t, πt] = D[i, πt] + D[j, πt] − b(Xt, πt).

At a join node, two independent connected components of T are joined, where L′
i and

L′
j have only vertices in Xt in common. By induction, D[i, πt] and D[j, πt] contain the

number of turns in a turn-optimal drawing in L′
i and a turn-optimal drawing in L′

j ,

ATMOS 2025

4:20 Visualization of Event Graphs for Train Schedules

where both drawings respect πt. Consequently, by summing the number of turns in both
drawings L′

i and L′
j , we count turns occurring in Xt twice. Therefore, we need to subtract

turns whose three corresponding vertices are contained in Xt. Further, note that no new
vertex is introduced in a join node, thus no new turn can occur.

With the description of the recursive formulation of D[t, πt], we have shown that a turn
(pi−1, pi, pi+1) in a turn-optimal drawing is counted at least once in an introduce node of
the last introduced vertex p of (pi−1, pi, pi+1). We have also argued in the description of the
forget node that a turn at p is counted at most once. Therefore, we count every turn exactly
once in a drawing calculated by D[r,∅], concluding the correctness of the algorithm.

As for the runtime, note that b(p, πt) can be computed in O(|Xt|2) time by annotating
every clique {p, q, r} in L′ corresponding to a potential turn by the number of distinct
consecutive event triplets mapping to locations p, q, and r. Since p is involved in each clique,
we can enumerate every clique {p, q, r} in O(|Xt|2) time and due to the annotation, a clique
can be processed in constant time. In order to count the total number of turns b(Xt, πt)
in a bag Xt, we need O(|Xt|3) time. Assuming the algorithm operates on a nice tree
decomposition T of width tw(L′), there are O(tw(L′) ·n) many bags in T . For a node t in the
tree decomposition, we have to guess O((tw(L′) + 1)!) many orders. If t is a leaf node, it can
be processed in constant time. Given an order πt, we can compute any introduce, forget, or
join node in O(tw(L′)3) time, yielding an overall runtime of O((tw(L′) + 1)! · tw(L′)4 · n). ◀

Throughput Maximization in a Scheduling
Environment with Machine-Dependent Due-Dates
Shaul Rosner #

Tel-Aviv University, Israel

Tami Tamir #

Reichman University, Herzliya, Israel

Abstract
We consider a scheduling environment in which jobs are associated with machine-dependent due-dates.
This natural setting arises in systems where clients’ tolerance depends on the service provider.

The objective is to maximize throughput, defined as the number of non-tardy jobs. The
problem exhibits significant differences from previously studied scheduling models. We analyze its
computational complexity both in general and for the special case of unit-length jobs.

In the unit-length setting, we provide an optimal algorithm that also extends to cases with
machine-dependent release times and machine-dependent weights (i.e., rewards depending on the
machine that completes the job).

For jobs with different lengths, we show that even the unweighted problem without release times,
with only two different lengths, specifically, for all j, pj ∈ {1, 2}, is APX-hard. To isolate the role of
machine-dependent due-dates in this hardness result, we present an optimal algorithm for the case
where all pj ∈ 1, 2 and due-dates are not machine-dependent. This algorithm further extends to
instances with a constant number of integer processing times.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Scheduling, Throughput maximization, Machine-dependent due-dates, Com-
putational Complexity

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.5

1 Introduction

In many scheduling environments, jobs are associated with due-dates, and each job is expected
to be completed before its due-date. This classical setting has been extensively studied
since the 1950s [18], and the landscape is well understood for various objectives, such as
minimizing the number of tardy jobs, maximum tardiness, or total tardiness. In this paper,
we consider a more general setting in which due-dates are machine-dependent – that is, the
allowed completion time for a job may vary depending on the machine to which it is assigned.

In our model, for every job j and machine i, we are given the tolerance of job j if processed
on machine i, interpreted as its due-date on that machine. Such a setting arises in a range
of real-world systems. For example, consider an online retailer during a busy season. The
company operates multiple fulfillment centers, each with distinct capacities, locations, and
shipping capabilities. While customer satisfaction is generally influenced by delivery speed,
other factors – such as packaging quality, proximity to pickup points, and customer service –
can also play a role. Thus, a customer’s tolerance for delivery time may vary depending on
the fulfillment center handling the order.

As another example, consider an electronics manufacturer with multiple production lines.
Each line may differ in specialization and workload. A task could be completed quickly on a
lightly loaded line, but a more specialized line may produce a higher-quality result, justifying
a longer wait. In other words, the allowed due-date for the product may depend on the
production line to which it is assigned.

© Shaul Rosner and Tami Tamir;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 5; pp. 5:1–5:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:srosner@tauex.tau.ac.il
https://orcid.org/0009-0006-4671-2566
mailto:tami@runi.ac.il
https://orcid.org/0000-0002-8409-562X
https://doi.org/10.4230/OASIcs.ATMOS.2025.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

5:2 Throughput Maximization with Machine-Dependent Due-Dates

Our model also arises in transportation systems, where different routes or depots lead to
different tolerances for travel time. For example, in a city’s public transit network, buses or
trains may be dispatched from different depots or yards, each serving routes with different
congestion patterns and travel conditions. Passengers’ tolerance for delays may be shorter
when the route is already prone to heavy traffic, but longer for routes that are typically more
reliable or comfortable. Likewise, in a tourist ferry system serving the same two ports via
different paths, some vessels take the fastest direct route while others meander along scenic
coastlines or through picturesque islands. Travelers are willing to accept a significantly longer
trip when the journey itself offers a richer experience, effectively extending the due-date
for arrival on that specific route. These examples demonstrate that machine-dependent
due-dates naturally arise in real-life applications, motivating our study beyond its theoretical
interest.

In this paper, we provide initial results for this setting, focusing on the fundamental
problem of maximizing throughput, defined as the number of non-tardy jobs. Surprisingly,
to the best of our knowledge, this variant has not been previously studied. We show that for
unit-length jobs, known scheduling techniques can be adapted to compute optimal solutions
efficiently. In contrast, when jobs have variable lengths, the problem exhibits substantial
differences from previously studied models.

2 Problem Statement and Preliminaries

An instance of a scheduling problem with machine-dependent due-dates (SMDD, for short)
is given by I = ⟨J, M, {pj}j∈J , {di,j}i∈M,j∈J⟩, where J is a set of n jobs, and M is a set of
m parallel machines. For every job j ∈ J, pj is the length of job j. For every machine i ∈ M

and job j ∈ J , di,j is the due-date of job j if processed on machine i. Some of our results
refer to instances with unit-length jobs, in which pj = 1 for all j ∈ J .

A schedule for an instance I is defined by a tuple s = ⟨s1, s2, . . . , sn⟩, where sj =
(mj , oj) ∈ (M ∪ {⊥}) × N. mj ∈ M ∪ {⊥} indicates the machine to which job j is assigned,
or ⊥ if the job is rejected (i.e., not scheduled on any machine). oj ∈ N indicates the order
on which it is assigned to the machine. We omit oj when it is clear from the context. For
each machine i ∈ M , let Ji = {j ∈ J | sj = i} denote the set of jobs assigned to machine i.
The load on machine i in schedule s, denoted Li(s), is the total processing time of jobs in Ji:
Li(s) =

∑
j∈Ji

pj . In the unit-length case, this simplifies to Li(s) = |Ji|.
The completion time Cj(s) of a job j ∈ Ji is defined as the sum of the processing times

of all jobs scheduled on machine i before job j, plus pj . The lateness of job j, assigned to
machine i, is Cj(s) − di,j , and its tardiness is Tj(s) = max(0, Cj(s) − di,j). Job j is called
tardy if Tj(s) > 0. Let Uj(s) ∈ {0, 1} denote the binary indicator of whether job j is either
rejected or tardy: Uj(s) = 1 iff sj = ⊥ or Cj(s) > dsj ,j . We omit s from the notation
when it is clear from context.

Our objective is to maximize the throughput, which is the number of jobs which are
not non-rejected and non-tardy. We denote this number, of satisfied jobs, by sat(s) =∣∣{j ∈ J | sj ̸= ⊥ and Cj(s) ≤ dsj ,j

}∣∣. Since we care only about throughput and not about
minimizing tardiness, we may assume w.l.o.g., that all non-satisfied jobs are rejected (i.e.,
sj = ⊥ if Cj(sj) > dsj ,j). This assumption simplifies the model without affecting the
objective. Using standard three-field scheduling notation [5], this problem can be described
as: P | di,j |

∑
j(1 − Uj).

S. Rosner and T. Tamir 5:3

2.1 Our Results

We define the SMDD problem and present initial results. We first consider instances
with unit-length jobs. In Section 3 we present an optimal algorithm for the problem
P |pj = 1, di,j |

∑
j(1 − Uj). Our algorithm is based on reducing the problem to a weighted

maximum matching problem [13], and it can be extended for instances in which jobs have
machine-dependent release times and machine-dependent weights (reward for completion),
that is, P |pj = 1, ri,j , di,j |

∑
j wi,j(1 − Uj).

In Section 4 we turn to consider instances with arbitrary job lengths. We show that even
if we allow only two different lengths, specifically, if for all j, pj ∈ {1, 2} then the problem
becomes APX-hard. To isolate the role of the machine-dependent due-dates in this hardness
result, we present, in Section 5, an optimal algorithm for the case that for all j, pj ∈ {1, 2},
and the due-dates are not machine-dependent. That is, every job j is associated with a
due-date dj such that for all i, di,j = dj . Our optimal algorithm for this case can be extended
to solve P |pj ∈ P|

∑
j(1 − Uj) for any set P of integer job lengths, in time nO(|P|lcm(P)). We

conclude in Section 6 with a discussion and directions for future work regarding additional
objectives relevant for environments with machine-dependent due-dates.

2.2 Related Work

Scheduling theory is a very well studied field, dating back to the early 1950’s [5]. When
jobs are associated with due-dates, and processed sequentially by the machines, maximizing
the throughput is a classical well-studied objective. For a single machine, Moore-Hodgson’s
algorithm ([14]) solves the problem optimally. For parallel machines, the problem is NP-
hard even with preemptions allowed [10]. A more general setting in which jobs are also
associated with release times is also well-studied. Approximation algorithms, as well as
optimal algorithms for several restricted classes are presented in [4, 19, 1, 8]. The paper
[2] analyzes the impact of different scheduling policies on the throughput. When jobs have
equal-lengths, an optimal solution can be produced using max-flow techniques [3, 7]. A
variant of scheduling with machine-dependent due-dates is discussed in [6, 15]. In their
setting, each machine has a sorted list of due-dates, and the i’th job assigned to a machine
has the i’th due-date.

An instance of SMDD is given by an m × n matrix representing, for every job j and
machine i, the due-date of job j on machine i. There are several additional well-explored
scheduling problems whose input is given by an m × n matrix, stating a value for each
job-machine pair: (i) In scheduling on unrelated machines, for every job j and machine i,
we are given the processing time of job j if processed on machine i. The most classical
problem, of minimizing the makespan of a schedule on unrelated machines (R||Cmax) is
studied in [12], where a 2-approximation algorithms is given, as well as various hardness
results, (ii) In a shop scheduling environment, each job consists of m tasks. For each job
j and machine i, we are given the length of j’s task on machine i. The order according
to which the tasks should be processed may be flexible (openshop), uniform (flowshop) or
job-specific (jobshop). Unfortunately, except for some positive results for two machines,
solving shop-scheduling problems is computationally hard [11, 18]. (iii) In environments
where each machine has a different scheduling policy [20], for every machine we are given its
priority list - an order of the n jobs according to which it processes the jobs assigned to it.
The analysis of the above settings shows that having machine-dependent parameters makes
the problem computationally harder relative to the related-machines settings.

ATMOS 2025

5:4 Throughput Maximization with Machine-Dependent Due-Dates

3 Optimal Algorithm for Unit-length Jobs

This section refers to instances in which all jobs have unit processing lengths, that is, for all
j ∈ J, pj = 1. We present an optimal algorithm for the problem. In fact, our algorithm fits a
more general setting, in which, in addition to the due-dates, for every job j and machine i,
we have machine-dependent release times and rewards. Formally, let ri,j be the release time
of job j if processed on machine i. Let ωi,j denote the reward from completing j on time
on machine i. For completeness, define ω⊥,j = 0. Note that the throughput maximization
problem P |pj = 1, di,j |

∑
j(1 − Uj) is the special case in which ri,j = 0 and ωi,j = 1 for

every job j and machine i. The proof of the following theorem is based on a reduction to a
weighted maximum matching problem [13].

▶ Theorem 1. The problem P |pj = 1, ri,j , di,j |
∑

j ωsj ,j(1 − Uj) is polynomially solvable.

Proof. We reduce the problem to a weighted maximum matching problem in a bipartite
graph. Given an instance ⟨J, M, {rj}j∈J , {dj}j∈J , ω⟩, of our scheduling problem, construct a
weighted bipartite graph (V ∪ U, E). The set V includes n job-vertices, {vj} for every job
1 ≤ j ≤ n. The set U includes mn slot-vertices, {uℓ

i}, for each 1 ≤ ℓ ≤ n and machine i ∈ M .
The set of edges is E = {(vj , uℓ

i) | rj(i) < ℓ ≤ dj(i)}. That is, every job-vertex is connected
to all the slot-vertices corresponding to a feasible assignment of j with regards to release
time and due-date. The weight of an edge (vj , uℓ

i) is ωj,i.
It is easy to see that every schedule with total reward W corresponds to a matching of

total weight W . Also, every feasible matching of weight W induces a valid schedule. All
jobs in this schedule are scheduled after their release time and before their due-date, and
their total reward is W . As a maximum weight matching can be found efficiently, and the
reduction is polynomial, the whole algorithm is polynomial.

Note that machines may have idle slots in the produced schedule. The number of idle
blocks can be minimized by shifting earlier jobs with early release times. Some idles may be
unavoidable due to the release times. ◀

4 APX-hardness Proof for pj ∈ {1, 2}

Unfortunately, the positive result for unit-length jobs cannot be extended even to highly
restricted classes of variable-length jobs. The following hardness result is based on a reduction
technique used in [12] to show NP-hardness of the minimum makespan problem on unrelated
machines (R||Cmax). We note, however, that its adaptation to SMDD with pj ∈ {1, 2} is
different, as the classical minimum makespan problem is efficiently solvable for such instances.

▶ Theorem 2. P |pj ∈ {1, 2}, di,j |
∑

j(1 − Uj) is APX-hard.

Proof. In order to prove APX-hardness, we use an L-reduction [16], defined as follows:

▶ Definition 3. Let Π1, Π2 be two optimization problems. We say Π1 L-reduces to Π2 if
there exist polynomial time computable functions f, g and constants α, β > 0 such that, for
every instance I ∈ Π1 the following holds:
1. f(I) ∈ Π2 such that , OPT (f(I)) ≤ α · OPT (I).
2. Given any solution φ to f(I), g(φ) is a feasible solution to I such that |OPT (I) −

value(g(φ))| ≤ β · |OPT (f(I)) − value(φ)|.

Our L-reduction is from 3-bounded 3-dimensional matching (3DM3). The input to the
problem is a set of triplets T ⊆ X × Y × Z, where |X| = |Y | = |Z| = k. The number of
occurrences of every element of X ∪ Y ∪ Z in T is at most 3. The number of triplets is

S. Rosner and T. Tamir 5:5

|T | = m. The goal is to find a maximal subset T ′ ⊆ T , such that every element in X ∪ Y ∪ Z

appears at most once in T ′. This problem is known to be APX-hard [9]. Moreover, a stronger
hardness result shows the problem has an hardness gap even on instances with a matching of
size k [17], namely instances where there is a solution with k triplets.

Given an instance T of 3DM3, we construct an instance f(T) of SMDD. For each triplet
containing element x ∈ X, we say it is a triplet of type x. Let tx be the number of triplets of
type x. For each triplet, there is a corresponding machine i for a total of m machines.

There are 2k element jobs, one for each element y ∈ Y , and one for each element z ∈ Z.
A job jy corresponding to an element y ∈ Y has di,jy

= 1 if y ∈ Ti where Ti is the triplet
corresponding to machine i, and di,jy

= 0, otherwise. A job jz corresponding to an element
z ∈ Z has di,jz = 2 if z ∈ Ti where Ti is the triplet corresponding to machine i, and di,jz = 0
otherwise. For every such element job j, pj = 1.

For every x ∈ X, there are tx − 1 dummy jobs jx such that di,jx = 2 if x ∈ Ti where Ti

is the triplet corresponding to machine i, and di,jx
= 0 otherwise. Note that there is one

dummy job for all but one of the tx machines corresponding to triplets of type x ∈ X, for a
total of m − k dummy jobs. For every dummy job j, pj = 2.

In order to complete the L-reduction, we prove the conditions of Definition 3 are met.
As a preliminary, we show that if T has a matching T ′ of size k, then OPT (f(T)) = m + k.
For a schedule s, let sat(s) =

∑
j(1 − Uj) be its throughput.

Let T ′ be a matching of size k. For each triplet (x, y, z) ∈ T ′, we can schedule the jobs
corresponding to y, z on the machine corresponding to the triplet. Note that both jobs are
satisfied. This leaves tx − 1 idle machines to which dummy jobs corresponding to x can be
assigned with completion time 2. Thus, we have a schedule in which m − k dummy jobs
are satisfied, and 2k element jobs are satisfied for a total of m + k satisfied jobs, proving
sat(OPT (f(T)) ≥ m + k. As there are no additional jobs, sat(OPT (f(T)) = m + k.

Given a schedule s, let g(s) be the set of triplets corresponding to machines on which
two jobs are assigned. The theorem follow from the following claims, showing that Definition
3 is satisfied for α = 4 and β = 1.

▷ Claim 4. If OPT (T) = k then OPT (f(T)) ≤ 4k.

Proof. Since every element of X ∪ Y ∪ Z appears at most 3 times in T , m ≤ 3k. Thus,
OPT (f(T)) = m + k ≤ 3k + k = 4k. ◁

▷ Claim 5. OPT (T) − g(s) ≤ (OPT (f(T)) − sat(s)).

Proof. Since we assume that T has a perfect matching, we have that OPT (T) = k. Since we
proved that value(OPT (f(T)) = m+k, it is sufficient to prove that k−g(s) ≤ m+k−value(s).
Consider a schedule s of f(T). Recall that every machine has 0, 1 or 2 jobs assigned to it.
Thus, sat(s) ≤ 2g(s) + (m − g(s)) = m + g(s). Therefore, k − g(s) ≤ m + k − sat(s) ≤
m + k − (m + g(s)) = k − g(s) as needed. ◁

◀

5 Optimal Algorithm for Job-dependent Due-dates

To isolate the impact of machine-dependent due-dates on the computational complexity of
the problem, We consider the case of machine-independent due-dates, that is, the problem
P ||

∑
j(1 − Uj). A simple reduction from the Partition problem implies that this problem

is NP-hard even on two machines, when all the jobs have the same machine-independent
due-date. Let P denote the set of possible job lengths. We assume that P ⊆ N. We

ATMOS 2025

5:6 Throughput Maximization with Machine-Dependent Due-Dates

present an optimal algorithm for the problem assuming P = {1, 2}. We then generalize
this algorithm and present an optimal algorithm for P |pj ∈ P|

∑
j(1 − Uj) whose running

time is nO(|P|lcm(P)). We note that the this problem is already known to be polynomially
solvable. However, our algorithm is based on dynamic programming, while previously known
algorithms ([19, 4]) use different techniques.

Our algorithm consists of two steps. In the first step, we guess the jobs that are going to
be satisfied. In the second step, we use dynamic programming to assign these jobs, such that
they are all satisfied in the resulting schedule.

Consider an optimal schedule s∗. For p ∈ {1, 2}, let kp be the number of satisfied jobs of
length p in s∗. By a simple exchange argument, we can assume that these kp jobs have the
maximal due-date among the jobs of length p in the instance. Thus, the choice of jobs is
determined by the values of k1 and k2, and the number of guesses needed is O(n2).

Next, we show how to construct a schedule of the chosen jobs. Similarly to Moore-
Hodgson’s algorithm for a single machine [14], we consider the jobs in EDD order. With m

parallel machines, a considered job has m possible assignments. Two natural heuristics are
to assign each job j to a least loaded machine, or to a most loaded machine on which it is
non-tardy. We start by providing simple examples showing that these approaches as well as
other greedy heuristics are sub-optimal.

Sub-optimality of a greedy approach. Consider 5 jobs {j1, . . . , j5}, such that p1 = p2 = 1,
p3 = p4 = p5 = 2, d1 = d2 = 2, and d3 = d4 = d5 = 4. There are 2 machines. In an optimal
schedule all jobs are satisfied, for example by assigning j1, j2, j3 to one machine, and j4, j5 to
the other. However if the jobs are assigned to lightly loaded machines in EDD order, j1 and
j2 are assigned to different machines, and only 4 jobs are assigned in the resulting schedule.

The next example demonstrates that a greedy approach in which the jobs are considered
in EDD order and each job is assigned to a most loaded machine on which it is non-tardy, is
sub-optimal. Consider 4 jobs {j1, . . . , j4}, such that p1 = p2 = 1, p3 = p4 = 2, d1 = d2 = 2,
and d3 = d4 = 3. There are 2 machines. In an optimal schedule all jobs are satisfied, for
example by assigning j1, j3 to one machine, and j2, j4 to the other. However if the jobs are
assigned to a most loaded feasible machine in EDD order, j1 and j2 are assigned to one
machine, and only one of the longer jobs can be satisfied.

Note that the above examples are valid regardless of tie breaking between jobs having
the same due-date.

Instead, in our algorithm, if there are multiple machines to which j can be assigned
without being late, we maintain all possibilities for the loads of the machines after its
assignment. In order to maintain a polynomial runtime, we only consider assignments to
machines such that the difference in loads between any two machines is at most 2. Formally,
we assume that after a job is assigned, for every machine i, its load is in {L, L − 1, L − 2}
for some value L. We can then store all possibilities of machine loads using a dynamic
programming approach, with an n × n × (n3) table S for all possible load options after a job
is considered.

Formally, the DP table includes boolean values such that S[j; L; x0, x1, x2] = True if
and only if there exists a schedule of the first j jobs in the EDD order such that, for
z ∈ {0, 1, 2}, exactly xz machines have load L − z, where L is the only integer for which∑j

ℓ=1 pℓ = x0L + x1(L − 1) + x2(L − 2), such that x0, x1, x2 are integers, and x0 > 0 (that
is, the most loaded machine has load L). No machine has load higher than L or lower than
L − 2. Note that for every choice of j, x0 > 0, x1, x2, there is a unique value of L for which
S[j; L; x0, x1, x2] may be true. Thus, the table can be constructed without the L-dimension,
resulting in a n × (n3) table. In the sequel, we include the value of L in the table S for
clarity.

S. Rosner and T. Tamir 5:7

Initially, S[0; 0; m, 0, 0] = True, and for every other value of x0, x1, x2, S[0; 0; x0, x1, x2] =
False. That is, before any jobs are considered, the only possible schedule is of m machines
with load 0.

For j > 0, consider first the case pj = 1. The table S is updated as follows:
1. If x2 > 0 and S[j − 1; L; x0, x1, x2] = True, then S[j; L; x0, x1 + 1, x2 − 1] = True. This

corresponds to adding j to a machine with load L − 2. Note that since the jobs are sorted
in EDD order, it must be that dj ≥ L > L − 1, so j is satisfied.

2. If x1 > 0 and S[j − 1; L; x0, x1, x2] = True, then S[j; L; x0 + 1, x1 − 1, x2] = True. This
corresponds to adding j to a machine with load L − 1. Note that since the jobs are sorted
in EDD order, it must be that dj ≥ L, so j is satisfied.

3. If dj ≥ L+1, x0 > 0, and S[j−1; L; x0, x1, 0] = True, then S[j; L+1; 1, x0−1, x1] = True.
This corresponds to adding j to a machine with load L. Note that we only consider
this if no machines have load L − 2 when j is considered, thus maintaining a maximum
difference of 2 between the loads of different machine.

For j > 0, and pj = 2, the table S is updated as follows:
1. If x2 > 0 and S[j − 1; L; x0, x1, x2] = True, then S[j; L; x0 + 1, x1, x2 − 1] = True. This

corresponds to adding j to a machine with load L − 2. Note that since the jobs are sorted
in EDD order, dj ≥ L, so j is satisfied.

2. If dj ≥ L+1, x1 > 0, and S[j−1; L; x0, x1, 0] = True, then S[j; L+1; 1, x0, x1−1] = True.
This corresponds to adding j to a machine with load L − 1. Note that we only consider
this if no machines have load L − 2 when j is considered, thus maintaining a maximum
difference of 2 between the loads of different machines.

3. If dj ≥ L + 2, x0 > 0, and S[j − 1; L; x0, 0, 0] = True, then S[j; L + 2; 1, 0, x0 − 1] = True.
This corresponds to adding j to a machine with load L. Note that we only consider this if
no machines have load L − 2 or L − 1 when j is considered, thus maintaining a maximum
difference of 2 between the loads of different machines.

We are now ready to describe the algorithm for P |pj ∈ {1, 2}|
∑

j(1 − Uj).

Algorithm 1 Algorithm for P |pj ∈ {1, 2}|
∑

j
(1 − Uj).

1: Guess 0 ≤ k1 ≤ |{j|pj = 1}|, and 0 ≤ k2 ≤ |{j|pj = 2}|.
2: Let S be an n × n × n3 table initialized to False.
3: Let S[0; 0; m, 0, 0] = True

4: Let J be the set of k1 highest due-date 1-jobs, and k2 highest due-date 2-jobs.
5: for all jobs j=1 to |J |, considered in EDD order do
6: Update S[j; L; x0, x1, x2] for every L, x0, x1, x2.
7: end for
8: Let x0, x1, x2, L be values for which S[|J |; L; x0, x1, x2] = True. Return a corresponding

schedule.

▶ Theorem 6. Algorithm 1 computes an optimal schedule for P |pj ∈ {1, 2}|
∑

j(1 − Uj).

Proof. We first justify the fact that the table S considers only partial assignments of jobs in
EDD order, in which the maximal gap in the loads of different machines is 2.

▷ Claim 7. There exists an optimal schedule O such that (i) the internal order of jobs on
any machine is EDD, and (ii) when the jobs are considered in EDD order, for every j, after
the assignment of job j, the maximal gap in loads between machines is 2.

ATMOS 2025

5:8 Throughput Maximization with Machine-Dependent Due-Dates

Proof. Consider an optimal schedule O. Simple exchange argument implies the first property
in the claim, that is, the jobs assigned to each machine in O are sorted in EDD order.
Therefore, we can assume O is constructed by iterating over jobs in EDD order, and assigning
the jobs one after the other with no intended idle. Assume by contradiction that there is some
job such that after it is assigned to machine i, there is a machine i′ such that Li − Li′ > 2.
Let j0 be the first job for which this occurs.

Let A be the set of jobs considered after j0 that are assigned to i, and let B be the set of
jobs considered after j0 that are assigned to i′. If B ̸= ∅, let j1 be the first job in B. We
describe how to convert O to another schedule, O′, in which all the jobs are satisfied and the
gap between i and i′ reduces to at most 2.

For jobs considered before j0, they are assigned to the same machine as in O. j0 is
assigned to i′ instead of i, and since the jobs are sorted in EDD order, it remains satisfied.
We prove there is a valid assignment of the remaining jobs. For a job assigned to a machine
other than i or i′ in O, it is assigned to the same machine in O′, and is clearly satisfied. For
jobs in A ∪ B, we divide into cases. A visual description of the constructed assignment is
given in Figure 1.

𝑖

𝑖′

𝑖

𝑖′

𝑗0…

𝑗1

𝑗0

… 𝑗1

𝑗0…

𝑗1

…

𝑗0

𝑗2

𝑗1 𝑗2

𝑗0…

𝑗1

…

𝑗0

𝑗2

𝑗1

𝑗2

𝑗0…

𝑗1𝑗0

…

𝑗1

Figure 1 Converting O to O′.

1. If B = ∅, we assign all jobs in A to i. They are clearly satisfied as the load on i in O′

after a job is considered, is lower than the load on i in O after the same job is considered.
2. If pj0 = pj1 , assign j1 to i, all jobs in A to i, and all jobs in B \ {j1} to i′. j1 is satisfied

since the jobs are sorted in EDD order. All remaining jobs are satisfied as they are
processed at the same time in O and O′.

3. If pj0 = 2 and pj1 = 1. If B = {j1}, assign j1 to i and all jobs in A to i, and clearly all
jobs are satisfied. Otherwise, let j2 be the second job in B.
If pj2 = 1, assign j1 and j2 to i, and all jobs in A, B \ {j1, j2} to i, i′ respectively. If
pj2 = 2, assign j1 to i′, j2 to i, and all jobs in A, B \ {j1, j2} to i, i′ respectively. j1, j2
are satisfied since the jobs are sorted in EDD order, and the remaining jobs are satisfied
as they are processed at the same time in O, O′.

4. If pj0 = 1 and pj1 = 2, since j0 is the first job such that Li − Li′ > 2 after its assignment,
we have Li − Li′ = 3. Thus, when j0 is assigned to i′ instead of i, Li − Li′ = 1. We
assign j1 to i′, all jobs in A to i′, and all jobs in B \ {j1} to i.
j1 is satisfied as the jobs are sorted in EDD order. Since the due-dates are not machine-
dependent, and all jobs in A, B \ {j1} are processed at the same time in O and O′, they
are also satisfied in O′.

Note that O′ is an optimal schedule with the same assigned jobs as O. Additionally, after
j0 is assigned the difference in loads between machines is at most 2. Therefore, by repeating
this procedure we arrive at an optimal schedule such that the gap between machine loads is
at most 2 after each job is assigned. ◁

S. Rosner and T. Tamir 5:9

Let O be an optimal schedule fulfilling the conditions specified in Claim 7. Assume that
for each p ∈ {1, 2}, there are k⋆

p satisfied p-jobs in O. Recall that we can assume these jobs
are the k⋆

p p-jobs with maximal due-date.
Consider Algorithm 1 for a guess of k⋆

1 , k⋆
2 jobs with length 1, 2, respectively. The jobs in

Algorithm 1 are assigned in EDD order, and by the definition of S, a valid assignment of
k⋆

1 + k⋆
2 jobs will be constructed. ◀

Algorithm 1 is for the specific case pj ∈ P = {1, 2} for every j. For other integer values
of P, it is possible to generalize Algorithm 1 to an algorithm for P |pj ∈ P|

∑
j(1 − Uj) that

has a running time of nO(|P|lcm(P)).
The generalization is based on the fact that regardless of P , every instance has an optimal

schedule in which the internal order of jobs on any machine is EDD, and the fact that if we
can bound the maximal gap between the loads of different machines, then it is simple to
extend the dynamic programming table S to consider all partial schedules.

We generalize Claim 7 and show that for any P, there exists an optimal assignment in
which the maximal gap between any two machines is lcm(P) · (|P| + 1). The idea is to
consider j0, the first job such that after it is placed, Li − Li′ > lcm(P) · (|P| + 1). Consider
the set A of jobs of total processing time at least lcm(P) · |P| most recently processed on i

when j0 is assigned. Note that j0 ∈ A. As there are only |P| different job sizes and they all
divide lcm(P), there must be a subset of jobs A′ ⊆ A with total length exactly lcm(P) in A.

Let B be the minimal set of jobs with total processing time at least lcm(P) · |P| assigned
to i′ after j0 is considered. As there are only |P| different job sizes and they all divide
lcm(P), there must be a subset of jobs B′ ⊆ B with total processing time exactly lcm(P).
We assign the jobs in A′ to i′, and the jobs in B′ to i.

As the jobs are considered in EDD order, they are all satisfied. All jobs assigned later
are assigned to the same time slot, so they remain satisfied. By repeating this procedure, we
are left with a schedule with a maximal gap of lcm(P) · (|P| + 1).

Thus, we can conclude the following.

▶ Theorem 8. An optimal schedule for P |pj ∈ P|
∑

j(1 − Uj) can be computed in time
nO(|P|lcm(P)).

6 Discussion

We introduced and studied a natural generalization of classical scheduling problems, in
which due-dates are machine-dependent. This setting models practical environments such as
manufacturing, transportation, and logistics systems where job tolerance depends on the
specific machine handling the job.

We focused on the objective of maximizing throughput, defined as the number of non-
rejected and non-tardy jobs. We presented a polynomial-time algorithm for unit-length jobs,
which is suitable also in the presence of machine-dependent release times and weights, and
showed that the problem becomes APX-hard even for instances with pj ∈ {1, 2}. To isolate
the source of this hardness, we provided an optimal dynamic programming algorithm for
instances with job-dependent due-dates and a constant number of job lengths.

Our results establish the computational landscape of this model and motivate further
exploration. In particular, it would be interesting to study approximation algorithms for the
general case, parameterized complexity with respect to the number of machines or job types,
and extensions to additional objectives such as minimizing maximal or total tardiness (Tmax

or
∑

j Tj) as well as instances with non-identical machines.

ATMOS 2025

5:10 Throughput Maximization with Machine-Dependent Due-Dates

References
1 A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of multiple

machines in real-time scheduling. SIAM J. Comput., 31(2):331–352, 2001. doi:10.1137/
S0097539799354138.

2 D. Briskorn and S. Waldherr. Anarchy in the Uj : Coordination mechanisms for minimizing
the number of late jobs. European Journal of Operational Research, 301(3):815–827, 2022.
doi:10.1016/j.ejor.2021.11.047.

3 J. L. Bruno, E. G. Coffman Jr., and R. Sethi. Scheduling independent tasks to reduce mean
finishing time. Commun. ACM, 17(7):382–387, 1974. doi:10.1145/361011.361064.

4 C. Durr and M. Hurand. Finding total unimodularity in optimization problems solved by linear
programs. In 14th European Symp. on Algorithms (ESA), 2006. doi:10.1007/11841036_30.

5 R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math,
5:287–326, 1979.

6 N. G. Hall. Scheduling problems with generalized due dates. IIE Transactions, 18(2):220–222,
1986.

7 W. A. Horn. Technical note—minimizing average flow time with parallel machines. Operations
Research, 21(3):846–847, 1973. doi:10.1287/opre.21.3.846.

8 D. Hyatt-Denesik, M. Rahgoshay, and M. R. Salavatipour. Approximations for throughput
maximization. Algorithmica, 86:1545–1577, 2024. doi:10.1007/s00453-023-01201-4.

9 V. Kann. Maximum bounded 3-dimensional matching is max snp-complete. Information
Processing Letters, 37:27–35, 1991. doi:10.1016/0020-0190(91)90246-E.

10 E. L. Lawler. Recent results in the theory of machine scheduling. In A. Bachem, M. Groetschel,
and B. Korte, editors, Mathematical Programming: The State of the Art, pages 202–234.
Springer, 1982. doi:10.1007/978-3-642-68874-4_9.

11 J. K. Lenstra and A. H. G. Rinnooy Kan. Computational complexity of discrete optimization
problems. Ann. Discrete Math., 4:121–140, 1979.

12 J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unrelated
parallel machines. Mathematical Programming, 46:259–271, 1990. doi:10.1007/BF01585745.

13 L. Lovász and M. D. Plummer. Matching theory, volume 367. American Math Soc., 2009.

14 M. J. Moore. An n job, one machine sequencing algorithm for minimizing the number of late
jobs. Management Science, 15(1):102–109, 1968.

15 B. Mor, G. Mosheiov, and D. Shabtay. Scheduling problems on parallel machines with machine-
dependent generalized due-dates. Ann Oper Res., 2025. doi:10.1007/s10479-025-06468-0.

16 C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.
Journal of Computer and System Sciences, 43(3):425–440, 1991. doi:10.1016/0022-0000(91)
90023-X.

17 E. Petrank. The hardness of approximation: gap location. Computational Complexity,
4(2):133–157, 1994. doi:10.1007/BF01202286.

18 M. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2008.

19 J. Sgall. Open problems in throughput scheduling. In 20th European Symp. on Algorithms
(ESA), 2012. doi:10.1007/978-3-642-33090-2_2.

20 V. R. Vijayalakshmi, M. Schröder, and T. Tamir. Minimizing total completion time with
machine-dependent priority lists. European J. of Operational Research, 315(3):844–854, 2024.
doi:10.1016/j.ejor.2023.12.030.

https://doi.org/10.1137/S0097539799354138
https://doi.org/10.1137/S0097539799354138
https://doi.org/10.1016/j.ejor.2021.11.047
https://doi.org/10.1145/361011.361064
https://doi.org/10.1007/11841036_30
https://doi.org/10.1287/opre.21.3.846
https://doi.org/10.1007/s00453-023-01201-4
https://doi.org/10.1016/0020-0190(91)90246-E
https://doi.org/10.1007/978-3-642-68874-4_9
https://doi.org/10.1007/BF01585745
https://doi.org/10.1007/s10479-025-06468-0
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1007/BF01202286
https://doi.org/10.1007/978-3-642-33090-2_2
https://doi.org/10.1016/j.ejor.2023.12.030

VRP-Inspired Techniques for Discrete
Dynamic Berth Allocation and Scheduling
Konstantinos Karathanasis #

Department of Computer Engineering and Informatics, University of Patras, Greece
PIKEI New Technologies, Patras, Greece

Spyros Kontogiannis #

Department of Computer Engineering and Informatics, University of Patras, Greece
Computer Technology Institute and Press Diophantus, Patras, Greece

Asterios Pegos #

Department of Computer Engineering and Informatics, University of Patras, Greece
PIKEI New Technologies, Patras, Greece

Vasileios Sofianos #

Department of Computer Engineering and Informatics, University of Patras, Greece
PIKEI New Technologies, Patras, Greece

Christos Zaroliagis #

Department of Computer Engineering and Informatics, University of Patras, Greece
Computer Technology Institute and Press Diophantus, Patras, Greece

Abstract
The Berth Allocation and Scheduling Problem (BASP) is a critical optimization challenge in maritime
logistics, aiming to assign arriving vessels to berths efficiently, while adhering to practical constraints.
Exploiting the connection of BASP with the Heterogeneous Vehicle Routing Problem with Time
Windows (HVRPTW), we propose a mixed integer linear programming (MILP) formulation for a
variant of BASP which is of utmost importance in real-world scenarios: the Dynamic Discrete Berth
Allocation and Scheduling Problem with Time Windows (DDBASPTW). Consequently, inspired by the
wealth of constructive and improvement heuristics for VRP, we design, implement and experimentally
evaluate three constructive heuristics, Nearest Neighbour (NN), Insertion (INS), a quick-and-dirty
variant of Insertion (qd-INS), as well as two improvement heuristics, Swap and Reinsert, taking into
consideration both the online and the offline scenario with respect to vessel arrivals. Finally, we
propose, implement and experimentally evaluate, custom-tailored variants for DDBASPTW of a
single-solution metaheuristic, the Adaptive Large Neighborhood Search (ALNS), and of two population-
based metaheuristics, the Genetic Algorithm (GA) and the Cuckoo Search Algorithm (CSA), which
are aimed to solve the offline version of the problem. An extensive experimental evaluation compares
these techniques against a generic state-of-the-art MILP solver. Results demonstrate that certain
variants of INS not only are extremely fast and deliver competitive solutions, achieving a practical
trade-off between execution times and quality of solutions. The improvement heuristics further
refine the initial solutions, especially for weaker constructive approaches, offering a lightweight yet
effective enhancement mechanism. The metaheuristics consistently yield high-quality solutions with
significantly lower computational times compared to the exact MILP solver, making them well-suited
for use in real-time or large-scale operational environments.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases Berth Allocation and Scheduling, Heuristics, Metaheuristics, Mixed Integer
Linear Programming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.6

Funding This work is partially supported by the EU I3 Instrument under GA No 101115116 (project
AMBITIOUS) and by the University of Patras under GA No 83770 (programme “MEDICUS”).

© Konstantinos Karathanasis, Spyros Kontogiannis, Asterios Pegos, Vasileios Sofianos, and Christos
Zaroliagis;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 6; pp. 6:1–6:21

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k_karathanasis@ac.upatras.gr
https://orcid.org/0009-0004-1741-3693
mailto:spyridon.kontogiannis@upatras.gr
https://orcid.org/0000-0002-8559-6418
mailto:a.pegos@ac.upatras.gr
https://orcid.org/0009-0005-3072-5912
mailto:sofianosv@ac.upatras.gr
https://orcid.org/0000-0002-7652-5802
mailto:zaro@ceid.upatras.gr
https://orcid.org/0000-0003-1425-5138
https://doi.org/10.4230/OASIcs.ATMOS.2025.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

6:2 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

1 Introduction

In recent decades, the volume of goods that is transported globally has shown consistent
growth [10], reflecting similar trends in maritime trade. Approximately 12 billion tons of
traded goods were transported by sea in 2022, accounting for roughly 49% of total trade,
nearly double the proportion transported by air [11]. The ongoing growth of maritime trade
introduces significant challenges for marine container terminal operators. These challenges
must be addressed using appropriate strategies to meet market demands. Therefore, more
efficient management of resources and berthing slots is required, so as to improve service
quality, accommodate a greater number of vessels, and reduce berthing costs. Employing
optimized techniques for berth allocation and scheduling is essential to achieving these goals.

The Berth Allocation and Scheduling Problem (BASP) aims to provide a service schedule
for each arriving vessel, offering the optimal berthing position and mooring time, while
avoiding collisions and adhering to all practical constraints. The variants of BASP are
classified in three categories, depending on the spatial characteristics of the wharves: discrete,
continuous, or hybrid [7] (cf. Figure 1). In the discrete version, a wharf is divided into
distinct berthing segments, each capable of accommodating a single vessel at a time, subject
to spatial constraints. In contrast, in the continuous version of the problem, a vessel can
moor anywhere along the length of the wharf, with berthing positions assigned according to
the specific requirements of each vessel rather than fixed positions. Finally, in the hybrid
version, the wharf is divided into distinct berthing positions, but a vessel may occupy multiple
segments or share a berthing segment with another vessel simultaneously. The variants of

Figure 1 Illustration of berthing layouts: Discrete (left), Continuous (middle), and Hybrid (right).

BASP are also classified depending on the expected arrival times of vessels, as either static,
dynamic, or uncertain. In static BASP, it is assumed that all vessels already arrived at the
port and are awaiting service. In dynamic BASP, the vessels are assumed to arrive at the
port at different times, but their arrival times may be either unknown (online scenario) or a
priori known (offline scenario) to the scheduler. In the uncertain case, vessel arrival times
are subject to uncertainty due to external factors. By combining the previously mentioned
categorizations, specific problem variants can be derived, which are encoded in this paper
as XYBASP for X ∈ {D(iscrete), C(ontinuous), H(ybrid)} and Y ∈ {D(ynamic), S(tatic),
U(ncertain)}. E.g., DDBASP is the discrete dynamic variant, CSBASP is the continuous
static variant, etc. Interestingly, DDBASP shares notable similarities with the Vehicle
Routing Problem (VRP) [17], a foundational optimization problem in logistics, focusing
on determining efficient routes for a fleet of vehicles to service a set of customers. VRP
aims to minimize operational costs, e.g., travel distance or time, while respecting several
spatiotemporal constraints for the involved stakeholders (workers and customers). Challenges
of real-world logistics have led to numerous variations of VRP, including the Vehicle Routing
Problem with Time Windows (VRPTW) which incorporates temporal requirements for
customer service, and the Heterogeneous Vehicle Routing Problem (HVRP) which accounts

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:3

for fleets of vehicles with varying capacities, costs, and characteristics. The combination
of these two variations results in the Heterogeneous Vehicle Routing Problem with Time
Windows (HVRPTW), a highly realistic and challenging variant, which tries to balance
vehicle heterogeneity with temporal constraints, and is especially relevant in applications
like urban logistics and e-commerce.

Related Work. BASP is a critical optimization problem in port operations due to its
significant impact on efficiency and costs. Since this is a computationally challenging (NP-
hard) problem [8], exact methods are rather inapplicable in real-world scenarios because of
the increasing complexity of modern BASP variants. As a consequence, approximate and
heuristic methods are often preferred in practice. The majority of research on DDBASP has
mainly focused on exact solvers and generic metaheuristics. To our knowledge, there is lack of
extensive experimental evaluations of various heuristic techniques which are custom-tailored
for DDBASP, as is for example the case for other well-known fundamental optimization
problems (like TSP and VRP).

Three mathematical models for DDBASP were considered and experimentally evaluated
in [3], one of which being based on a VRPTW formulation of the problem. However, this
work has several limitations: (i) It does not account for vessels and berths of different sizes,
whereas many real-world instances involve vessels of varying types and berths of different
spatial characteristics and operational capabilities. (ii) It does not allow for denial of service
for some vessels, rendering many real-world instances infeasible, although daily practice is
actually based on best-effort approaches. (iii) It does not distinguish between soft deadlines
(e.g., requested departure times by the vessels) and hard time windows (e.g., commitment of
the port authority to deliver service no later than a maximum delay beyond the requested
departure time), which is also typical practice in daily port management. (iv) Only generic
exact solvers were considered and experimentally evaluated on the proposed DDBASP models.

A self-adaptive evolutionary algorithm was introduced in [5] to solve a Mixed-Integer
Linear Programming (MILP) formulation for DDBASP, aimed at minimizing a weighted sum
of waiting times, handling times and late departures, which is then compared against a generic
exact solver. Moreover, a mathematical formulation for DDBASP was also introduced in [13]
and a Bee Colony Optimization-based metaheuristic was deployed for its solution, which was
experimentally evaluated against an exact solver. Nevertheless, in both these approaches no
denial of service to vessels is allowed, no soft and hard deadlines were considered, and there is
no comparison with other heuristic and metaheuristic approaches which are custom-tailored
for DDBASP.

A MILP model for the continuous variant, CDBASP, was introduced in [1, 2], aiming
to minimize the total turnaround cost. Moreover, the Cuckoo Search Algorithm (CSA) was
proposed and experimentally evaluated on relatively small instances. Nevertheless only
high-level information is provided in [1, 2] for creating the initial population and for the
reproduction process which, if applied verbatim, would almost certainly lead to infeasible
solutions, especially for the discrete variants of BASP that is studied in our work.

Recent contributions further illustrate that berth allocation remains an active and evolving
research topic. For example, the berth allocation and quay crane assignment problem with
crane travel and setup times is studied in [4], proposing MILP formulations and hybrid
exact/metaheuristic approaches for solving them. More recently, berth allocation and time-
varying quay crane scheduling during emergencies is investigated in [15], introducing a
bi-objective MILP formulation and an improved particle swarm optimization algorithm
to solve it. These works highlight the increasing interest of the community in developing

ATMOS 2025

6:4 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

sophisticated optimization models and algorithms for BASP. However, their focus is on
integrated berth-crane assignment and energy-related objectives, which is different from the
problem that is considered in the present work.

Our Contribution. The focus of our study is to propose and experimentally evaluate
heuristic and metaheuristic techniques which are custom-tailored for DDBASP under real-
world considerations, such as potential denial of service, heterogeneity of both vessels
and berths, and consideration of soft and hard deadlines. Towards this direction, we
formulate DDBASP with Time Windows (DDBASPTW) as a generalization of the HVRPTW
formulation proposed in [3], enabling the deployment and adaptation of well-established
heuristic techniques from vehicle routing to berth allocation. Each vessel should be assigned
for service to an eligible berth for a unique (continuous) time interval, causing a vessel-
dependent servicing cost which accounts for waiting times, handling times and late departures
from the berths. Otherwise, vessels that are declined service incur service-rejection costs.
Exploiting our formulation, we then adjust two well-known constructive heuristics for VRP
instances to address the challenges of DDBASPTW, namely, Nearest Neighbour (NN) and
Insertion (INS). We also introduce the quick-and-dirty Insertion (qd-INS) heuristic, which
provides competitive but much faster solutions than INS. For each heuristic we implement
two versions: the offline version which utilizes the complete knowledge of vessel arrivals
to determine a solution, and the online version where the vessels are assigned to berths,
one after the other, immediately when they are revealed to the system in a predetermined
order (in our case, increasing arrival times). Additionally, we adjust to DDBASPTW two
improvement heuristics for VRP, namely, Reinsert and Swap, which are used to explore the
neighborhood of incumbent solutions of the previously mentioned constructive heuristics for
local improvements. Finally, we deploy for DDBASPTW the single-solution metaheuristic
Adaptive Large Neighborhood Search (ALNS), as well as two population-based metaheuristics,
the Cuckoo Search Algorithm (CSA) and the Genetic Algorithm (GA), aiming to provide
solutions of near-optimal quality within reasonable time.

In all our techniques, an elementary operation that is repeatedly executed and thus
constitutes a crucial bottleneck for their efficiency, is the detection of potential conflicts of
a candidate servicing interval for a particular vessel (e.g., a newly arrived vessel that must
be assigned to some berth, or an already assigned vessel that is to be relocated in hope for
an improved solution) with an existing berth schedule. We have chosen to represent berth
schedules as interval trees, so as to efficiently conduct these conflict detections.

We also conduct a thorough experimental evaluation comparing all our techniques w.r.t.
their computational requirements and the quality of the proposed solutions, with the optimal
solutions provided by a generic branch-and-cut MILP solver of Gurobi1. For the needs of
our experiments we introduce a synthetic data generation process, which in our opinion is of
independent interest, that creates large synthetic data sets whose characteristics resemble
those of small real-world benchmark data sets that we have at our disposal. The experimental
results demonstrate that our constructive heuristics for DDBASPTW exhibit extremely fast
execution times with acceptable solution quality, and often achieving high-quality results.
Among them, the variants of INS outperform those of NN. The experimental evaluation
also demonstrates the effectiveness of our metaheuristic approaches, with ALNS consistently
delivering high-quality solutions for this particularly challenging problem. Compared to the
constructive heuristics, all the metaheuristic techniques are definitely slower but provide

1 https://www.gurobi.com

https://www.gurobi.com

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:5

significantly better solutions. In several instances, ALNS even finds the optimal solution,
and achieves gaps no greater than 29% across all our data sets. This is a remarkable
performance, given that even the exact solver of Gurobi reports optimality gaps ranging
up to 8% in some data sets. In addition to its strong solution quality, ALNS significantly
outperforms the MILP solver in terms of execution times, achieving speedups ranging from
353 up to 83076 among our experimental data sets. Finally, our improvement heuristics
for DDBASPTW consistently enhance incumbent solutions whenever there is indeed room
for such an improvement, achieving noticeable quality gains with minimal computational
overhead, thereby complementing both constructive heuristics and metaheuristics within our
solution framework.

2 Problem Description & Mathematical Formulation

In this section, we introduce a mathematical model formulating a DDBASPTW instance
as a generalization of an HVRPTW instance. HVRPTW is modelled on a directed graph
G = (V, E), where the set of nodes V = S ∪ {o, d} includes a set S of nodes representing
customer-service points, assigned to an eligible vehicle from a fleet B, as well as two special
nodes o and d representing an origin-depot and a destination-depot for all the vehicles of
B; the set of (directed) edges is E = (o × S) ∪ (S × d) ∪ (S × S) ∪ (o, d). The task of each
vehicle is then represented as an (o, d)-subtour, i.e., a sequence of nodes from V starting at o

and ending at d, with intermediate nodes corresponding to customer-service points to be
served in a particular order.

Table 1 Notation.

Category Symbol Description
Sets, i, k ∈ S Indices that indicate (as subscripts) vessels from S.
Indices and j ∈ B Index that indicates (as superscript) berths from B.
Special
Nodes

o, d Origin-depot and destination-depot for a VRP instance, corre-
sponding to initial-state and final-state of each berth.

Variables

xj
i,k Indicator variable declaring that i, k ∈ S are both assigned to

berth j ∈ B for their service, with k being served right after the
completion of i’s service.

tj
i Mooring time of i ∈ S at berth j ∈ B to start being served.

hi Handling time for i ∈ S at the berth to which it has been assigned.
tld

i Late departure time for i ∈ S from the berth to which it was
served.

Parameters

T ea
i Estimated Time of Arrival for vessel i ∈ S.

T rd
i Requested Time of Departure for i ∈ S.

Hj
i Handling time for i ∈ S at berth j ∈ B.

N j Number of cranes operating at berth j ∈ B.
T Time of a single crane to load/discharge a unit quantity.
Qi Cargo Quantity of vessel i ∈ S.
Pi Penalty associated with i ∈ S.

Li, Di Length and draft of vessel i ∈ S, respectively.
Lj , Dj Length and draft of berth j ∈ B, respectively.

Cw
i , Ch

i , Cld
i Per time-unit costs for waiting, handling and late departure,

respectively.
T dp Delay Policy (time units)
M Sufficiently large positive integer

ATMOS 2025

6:6 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

We adapt such a HVRPTW instance to our DDBASPTW context as follows: Each
vehicle is perceived as a berth j ∈ B, while the customer-service points correspond to vessels
waiting to be moored and served by a berth. Each vessel i ∈ S has an estimated time of
arrival T ea

i and a requested time of departure T rd
i . The terminal enforces a delay policy

T dp, representing the maximum delay beyond a vessel’s requested time of departure. This
results in a (hard) time window [T ea

i , T rd
i + T dp] within which vessel i must be moored to

a berth and complete its service, otherwise it is rejected. Each vessel i ∈ S carries a cargo
quantity Qi and a desirable number of cranes which could ideally be used for its service.
Furthermore, vessel i is associated with a penalty Pi, representing the total loss incurred by
the terminal operator if it is eventually decided to deny servicing it. It is also associated
with three servicing cost parameters, Cw

i , Ch
i , Cld

i , representing the per-unit time costs for
waiting to be moored, for being handled at some berth, and for its departure being delayed
beyond T rd

i , respectively.
Regarding the infrastructure, the wharf is assumed to be partitioned into a set B of

heterogeneous berths, each berth j ∈ B differing in its length Lj , draft Dj and number of
operational cranes N j . All cranes are assumed to operate at the same rate, i.e., they require
an equal amount of time T to serve (i.e., load or unload) one unit of cargo.

The assignment of a subset of vessels Sj ⊆ S to a particular berth j ∈ B in a specific
servicing order is represented by its subtour Pj , i.e., a sequence of nodes from V (with
no repetitions), starting from depot o, then “visiting” the nodes in Sj (representing the
vessels) in a particular order, and finally ending at depot d. Note that Pj represents just a
simple (o, d)-path in G, and every edge (i, k) ∈ E, if included in Pj , declares the immediate
precedence of vessel i (or the origin) over vessel k (or the destination), in j’s servicing
order. Each vessel i ∈ S is also characterized by its length Li and draft Di, which must be
compatible with the corresponding attributes of the berth to which it is assigned. Assigning
vessel i to a berth j ∈ B may lead to waiting times, handling times and departure delays.
The waiting time of i refers to the delay between its arrival time and the start of its mooring
at j. The handling time of i is determined by the specific vessel-berth combination, reflecting
the duration required by j to serve (e.g., load or unload) i, based on i’s cargo and on j’s
operational parameters. A departure delay for i occurs when its service by j finishes after its
requested departure time. The objective is to minimize the total cost incurred from vessel
waiting times, handling times and departure delays, while abiding with all the spatiotemporal
constraints, as well as the penalties for vessels that are eventually not assigned to any berth.
The feasible solutions of the model consist of a collection of non-overlapping subtours (i.e.,
internally vertex-disjoint (o, d)-paths in G) for all berths. To formalize this problem, the
following assumptions are made: (i) the total number of vessels arriving within the planning
horizon is known in advance; (ii) each vessel requires a single, continuous time interval for
being handled; (iii) all berths are empty at the start of the planning horizon.

Our MILP model for DDBASPTW (cf. Figure 2 for the MILP, and Table 1 for the used
notation) considers two types of variables. The first type are (boolean) decision variables
xj

i,k, defined for triples (i, k, j) ∈ S × S × B, indicating whether vessel k immediately follows
vessel i in berth j’s subtour. The second type are (continuous) temporal variables defined
for pairs (i, j) ∈ S × B, representing, respectively, the mooring time tj

i of vessel i at berth
j (being equal to T ea

i if i is not assigned to j), the handling time hi (i.e., the duration
of its servicing) of i and the delay tld

i (i.e., beyond T rd
i) in i’s departure time right after

the completion of its service, by the berth to which it was moored. The objective function
(1) aims to minimize the aggregate costs for all vessels’ waiting times, handling times and
departure delays, or penalties when denying service. Constraint (2) requires that each vessel

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:7

minimize
∑
i∈S

∑
j∈B

Cw
i · (tj

i − T ea
i) +

∑
i∈S

(Cld
i · tld

i + Ch
i · hi)

+
∑
i∈S

Pi ·
(

1 −
∑
j∈B

∑
k∈S∪{d}, i ̸=k

xj
i,k

)
(1)

s.t. :∑
j∈B

∑
k∈S∪{d}, i ̸=k

xj
i,k ≤ 1, ∀i ∈ S (2)

∑
k∈S∪{d}

xj
o,k = 1, ∀j ∈ B (3)

∑
k∈S∪{d}, i ̸=k

xj
i,k =

∑
k∈S∪{o}, i ̸=k

xj
k,i, ∀i ∈ S, ∀j ∈ B (4)

Li ·
∑

k∈S∪{d}, i ̸=k

xj
i,k ≤ Lj , ∀i ∈ S, ∀j ∈ B (5)

Di ·
∑

k∈S∪{d}, i ̸=k

xj
i,k ≤ Dj , ∀i ∈ S, ∀j ∈ B (6)

hi ≥ Hj
i ·

∑
k∈S∪{d}, i ̸=k

xj
i,k, ∀i ∈ S, ∀j ∈ B (7)

tj
i ≥ T ea

i , ∀i ∈ S, ∀j ∈ B (8)

tj
i + hi ≤ T rd

i + T dp, ∀i ∈ S, ∀j ∈ B (9)

tj
i + hi − tj

k ≤ (1 − xj
i,k) · M, ∀i, k ∈ S, ∀j ∈ B (10)

tld
i = max{tj

i + hi − T rd
i , 0}, ∀i ∈ S, ∀j ∈ B (11)

Figure 2 MILP Formulation for DDBASPTW. Parameters in boldfaced small letters (e.g.,
xj

i,k, tj
i , or hi) indicate (decision, or temporal) variables to the MILP. Parameters in capital letters

(e.g., T ea
i , T dp, or Hj

i) indicate constants, which are provided as input.

is assigned to at most one berth, thereby preventing double bookings. Observe that no
two consecutive vessels in a subtour can be identical, which is reflected by having i ̸= k.
Constraint (3) ensures that each berth’s shift begins from the origin-depot o and finishes
at the destination-depot d. Observe that each berth will definitely start and complete its
own shift, even if the corresponding subtour goes directly from the origin-depot o to the
destination-depot d, resulting in no vessels being serviced by it. Constraint (4) guarantees the
continuity of the servicing process by maintaining flow conservation at each vessel’s servicing
point: Each berth enters and exits a vessel’s servicing point exactly the same number of
times. The spatial constraints for length-eligibility (5) and draft-eligibility (6), extend beyond
the traditional framework of HVRPTW. These constraints ensure that a vessel may only be
assigned to a berth with sufficient spatial dimensions. Constraint (7) defines the handling
time for vessel i, depending on the berth to which it is assigned. The handling time is
influenced by several parameters: vessel i’s cargo quantity Qi, the time T required for a
single crane to handle one unit of cargo, the number N j of operational cranes at berth j, and
the maximum number of cranes that vessel i may utilize. The effective number of cranes used
is the minimum of the mooring berth’s available cranes and the vessel’s crane requirement.
Thus, the potential handling time of vessel i at some berth j should be proportional to its

ATMOS 2025

6:8 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

cargo divided by this effective number of cranes of j that could actually be utilized for i’s
cargo, scaled by T . All this information is precomputed per vessel-berth pair (i, j) and stored
by the input parameter Hj

i , which is the ceiling (to preserve integrity of the input data) of
the previously mentioned computation. The temporal constraints (8) and (9) enforce the
(hard) time window constraints; each vessel i that is not denied service should be served by
some berth within the predefined time window [T ea

i , T rd
i + T dp]. In particular, Constraint (8)

ensures that i’s service cannot begin before its estimated time of arrival (T ea
i). Constraint

(9) dictates that i’s service-completion time at berth j, tj
i + hi, must not exceed i’s latest

allowable departure time T rd
i + T dp. Constraint (10) prevents simultaneous servicing of two

different vessels at the same berth. M is a large positive integer introduced to linearize the
otherwise non-linear constraint. Finally, Constraint (11) defines the departure delay (tld

i),
which is equal to the maximum of 0 and i’s actual departure time (i.e., estimated time of
arrival plus handling time) from j minus its requested time of departure.

As an example, consider the dataset 10-5 constructed by our data generation process (cf.
Section 4.1), consisting of 10 vessels and 5 berths. Figure 3a shows the corresponding flow
graph G, containing a 10-clique at its centre, with its edges depicted in orange. The origin o

has out-degree 11, while the destination d has in-degree 11. Finally, the “idle-subtour” path
is represented by the black edge (o, d). The optimal solution produced by the exact MILP
solver indicates the subtours followed by the 5 berths, as shown in Figure 3b.

0

4

5

3

9

1

2

6

7

8ο d

(a)

0

4

5

3

9

1

2

6

7

8ο d

Berth 1

Berth 3

Berth 5

Berth 2

Berth 4

(b)

Figure 3 Flow graph for the data set D10-5. (a) The initial flow-graph G = (V, E). (b) The
optimal solution for the MILP instance, returned by the Gurobi exact solver. Berth 1 : (o, 8, 9, d),
Berth 2 : (o, 3, 7, d), Berth 3 : (o, 2, 0, d), Berth 4 : (o, 6, d), Berth 5 : (o, 1, 4, 5, d).

3 Heuristics, Improvement Heuristics & Metaheuristics

Although generic (such as Gurobi or CPLEX) exact MILP solvers can be used to solve
instances of DDBASPTW which are formulated as shown in Figure 2, the NP-hardness [8] of
the problem renders this approach rather prohibitive even for relatively small instances. In
real-world scenarios where timely decision-making is critical, waiting for an exact solution may
not be acceptable. Instead, high-quality solutions produced by constructive and improvement
heuristics or by metaheuristics, which require notably less computational time, are often
preferred. These approaches sacrifice (smoothly) the optimality guarantee in favor of efficiency,
making them suitable for addressing large-scale instances effectively. In recent years, much
effort has been made in developing efficient constructive heuristics for VRP [9]. Improvement
heuristics can also be applied after the construction of an initial solution, to further enhance
solution quality through local optimization techniques. In this section we demonstrate how
some well-known VRP heuristic techniques can be adapted for, and applied to DDBASPTW.

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:9

3.1 Constructive Heuristics
Constructive heuristics for VRP build routing solutions incrementally, starting with an empty
solution and repeatedly extending it, following predefined empirical rules. In our context,
these heuristics produce the subtours for the berths (which are perceived as servicing vehicles)
as they service the vessels (corresponding to customers to be served). For each berth, a
subtour is determined as a sequence of vessels assigned to it, representing the order by
which these particular vessels are moored to and then served by the berth. The appropriate
temporal constraints are then easy to check along this subtour. In particular, if vessel i

is assigned to berth j with mooring time tj
i , no other vessel can be assigned to j during

the interval [tj
i , tj

i + hi], where hi represents the handling time required for i. Vessel i is
considered compatible with berth j if all the relevant spatial and temporal constraints are
preserved: Li ≤ Lj , Di ≤ Dj , and tj

i ∈
[
T ea

i , T rd
i + T dp − hi

]
.

Nearest Neighbour. Nearest Neighbour (NN), is the simplest constructive heuristic for
VRP instances. The core idea of NN is to iteratively extend existing subtours by appending
unassigned vessels to the ends of the subtours of the nearest berths which are eligible for
them. As a distance metric between a vessel and a berth’s subtour, we consider the marginal
increase in cost resulting from the vessel’s insertion at the current endpoint of the berth’s
subtour, that is, the difference in the subtour’s objective value before and after the assignment.
Initially, all subtours are empty, and the heuristic proceeds by appending vessels to the
subtours of eligible berths for them, until all vessels have been assigned or there are no
eligible berths for any of the remaining unassigned vessels.

In the sequential variant of NN, the berth subtours are constructed one by one, expanding
each time the current berth’s subtour with the nearest compatible vessel that is still unassigned,
until it cannot accommodate any more vessels, before proceeding to the next berth. In the
parallel variant of NN, which is the one implemented in this work, all berth subtours are
constructed simultaneously. In each iteration, each berth’s subtour is extended with the
closest compatible unassigned customer, which means that at most |B| customers will be
added. The parallel version often achieves better berth utilization, as it avoids the imbalance
typically seen in the sequential version, where the last berth tends to service fewer vessels.

Finally, we consider this (parallel) variant of NN in two different scenarios with respect to
the revelation of vessel arrivals. The first scenario, tagged as the complete knowledge Nearest
Neighbour heuristic (ck-NN), exploits the a priori knowledge of all vessel arrivals. In each
iteration it attempts to expand the subtour of every berth once. For each berth, the heuristic
appends the nearest unassigned vessel. As previously mentioned, the nearest unassigned
vessel to a berth is the one that results in the smallest marginal increase in total cost when
appended to the end of its subtour. This process repeats in a round-robin fashion among the
berths, until all vessels have been assigned or there are no other feasible assignments. The
second scenario, tagged as the predetermined order Nearest Neighbour heuristic (po-NN),
aims to adapt NN for online situations where there is no prior knowledge of all arrivals of
vessels, but they are revealed to the heuristic one by one. Therefore, in each iteration of
po-NN, only one vessel is processed, according to a predetermined order, and is assigned to
the nearest eligible berth. Naturally, the order in which vessels are processed can influence
significantly the quality of the resulting solution. In this work we focus on the most natural
order, indicated by the arrival times of the vessels.

Insertion. Insertion (INS) is a constructive heuristic that, unlike the NN method, evaluates
all possible positions within each subtour to identify the optimal insertion point of some
unassigned vessel, without changing the relative order of the already assigned vessels in the

ATMOS 2025

6:10 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

subtours. By considering all possible positions, the mooring times of already assigned vessels
may be adjusted, provided they still satisfy all the relevant temporal constraints. As in the
case of NN, two variants of INS are implemented, predetermined order Insertion (po-INS)
which processes and allocates vessels in a predetermined order, and complete knowledge
Insertion (ck-INS) which leverages full knowledge of all vessels. The po-INS variant begins by
initializing an empty subtour for each berth and, in each iteration, inserts the next unassigned
vessel according to the predetermined order, into an eligible subtour. After evaluating all
the marginal cost increases for inserting the vessel to the cheapest position of each subtour,
the subtour with the smallest marginal cost is eventually chosen for the insertion of the new
vessel. The marginal cost of assigning vessel i to berth j is defined as the sum of i’s actual
waiting time tj

i −T ea
i , its handling time hi, and its potential departure delay tld

i . In addition,
it includes the cumulative increases in waiting times and departure delays for other vessels
k already scheduled at berth j after i, due to shifts in their mooring times tj

k caused by
inserting i into j’s subtour. As already mentioned, in this work we consider that the vessels
are revealed according to their increasing estimated times of arrivals. In contrast, ck-INS
operates in |S| iterations, where each iteration evaluates all possible insertion positions for
every unassigned vessel in each berth, always selecting the insertion that results in the lowest
increase of the overall cost.

Quick and Dirty Insertion. The quick and dirty Insertion heuristic (qd-INS) is a restriction
of INS, designed to compute even more efficiently a feasible solution, while maintaining
an acceptable level of solution quality. The key distinction from INS lies in the following
restriction: when inserting a new vessel, not only the relative order, but also the actual
mooring times of all the previously assigned vessels to subtours cannot be altered. In other
words, this is a non-preemptive variant of the INS heuristic (exactly like the NN heuristic),
since it does not affect at all the assignments of previously allocated vessels. As a result, only
insertion positions that leave existing mooring times unchanged are considered eligible. This
non-preemption limitation reduces the number of eligible insertion positions, thereby speeding
up the process. The algorithm evaluates all eligible positions across all subtours and selects
the one that minimizes the additional cost for the new vessel. This time, the additional
cost is defined solely by the new vessel i’s waiting time tj

i − T ea
i , its handling time hi, and

its potential departure delay tld
i . Once more, the order in which vessels are processed can

significantly influence the final outcome. When the vessels are handled in a predetermined
order, the corresponding variant of qd-INS is referred to as predetermined order quick and
dirty Insertion (po-qd-INS). The complete knowledge quick and dirty Insertion (ck-qd-INS)
is the variant of qd-INS that leverages full vessel information in advance.

3.2 Improvement Heuristics

Improvement heuristics explore the neighbourhood of the incumbent solution to achieve
improvements in the objective value in a stronger preemptive manner that allows not only the
temporal relocation of a vessel to a different slot of the same berth, but also its reassignment
to a different berth. They typically converge quickly to a locally optimal solution w.r.t.
the particular governing rule that determines the candidate berths and vessel servicing
positions, and thus are efficient at solving large-scale routing problems [9]. In this section,
we demonstrate how some well-known VRP improvement heuristics can be adapted to
DDBASPTW.

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:11

Reinsert. The Reinsert improvement heuristic iteratively refines a given solution by se-
lectively removing vessels from an existing schedule and then trying to reinsert them into
alternative berths, in hope of improving the overall objective value. In each round, the
algorithm performs a full pass over all vessels in the current schedule. For each vessel, it
evaluates the effect of removing it from its assigned berth and attempting an insertion into an
alternative eligible berth and berthing position, respecting all the vessel-to-berth eligibility
constraints. If such a reinsertion leads to an improved solution, then the incumbent solution
is immediately updated and the algorithm proceeds to the next vessel. The process continues
until a full pass over all vessels fails to discover an improved solution.

Swap. The Swap improvement heuristic explores the neighbourhood of the current solution
by evaluating all feasible pairwise exchanges of vessel assignments between two berths.
Specifically, it generates all valid vessel pairs whose berth assignments could potentially be
swapped without violating any vessel-to-berth eligibility constraint. For each candidate pair,
the algorithm attempts to insert each vessel into the berth originally assigned to the other.
If both these insertions are feasible and the resulting solution improves the overall objective
value, the swap is immediately accepted and the current solution is updated; otherwise,
the incumbent solution remains unchanged. The algorithm then proceeds to evaluate the
next pair. By systematically exploring all such pairwise exchanges, the heuristic efficiently
identifies and applies locally improving moves that may reduce the overall cost.

3.3 Metaheuristics
Heuristics provide a fast and practical way to either construct incrementally a solution or
improve an existing solution, but they often come with limitations. Their design typically
focuses on local optimization, which naturally leads to suboptimal global solutions. Addi-
tionally, many heuristics are sensitive to input order or initial conditions, which may affect
their consistency and effectiveness. To address these challenges, metaheuristic approaches are
employed. Metaheuristics provide high-level algorithm principles [6] that are less problem-
dependent and incorporate concepts inspired by natural phenomena or physical processes.
By leveraging these principles, a metaheuristic facilitates a more thorough exploration of
the solution space, improving both the quality and the robustness of the resulting solutions.
Metaheuristics are typically categorized into two classes: (i) single-solution methods which
iteratively modify and improve a single candidate solution; and (ii) population-based meth-
ods, which operate on, and evolve a set of solutions simultaneously. In this section, one
single-solution metaheuristic and two population-based metaheuristics are presented.

Cuckoo Search Algorithm. The Cuckoo Search Algorithm (CSA) [19] is a population-based
metaheuristic optimization algorithm inspired by the breeding behavior of certain cuckoo
species. Some cuckoos lay their eggs in the nests of other host birds. Hosts that discover
these foreign eggs may either discard them or abandon the nest entirely. Inspired by this
reproductive strategy, the following three rules are implemented to apply CSA to optimization
problems: (i) Each cuckoo lays one egg at a time in a randomly selected nest; (ii) the best
nests, containing eggs of high quality, are preserved and carried forward to the next iteration;
(iii) the number of host nests is fixed and cuckoo eggs are discovered by host birds with a
probability pcsa ∈ (0, 1).

While CSA is rarely applied to VRP variants, its simplicity and ease of implementation
make it a useful choice for experimentation and as a benchmarking baseline. CSA is adjusted
for DDBASPTW as follows (cf. Algorithm 1): A nest is a set of unique assignments of

ATMOS 2025

6:12 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

vessels for their servicing, where each vessel assignment is a pair of values (time, berth) that
signifies the mooring time of the vessel at the particular berth. An egg represents either a
berth or a mooring time for a particular vessel. The cuckoo egg represents a new assignment
for a vessel (either a new berth, or a new mooring time). The total number of nests indicates
the entire population of solutions. Each nest contains 2N eggs, i.e., two eggs (representing
berth and mooring time) for each of the N vessels. In general, the goal of CSA is to employ
cuckoo eggs for the exploration and replacement of nests with lower quality.

At first, m nests are created, forming the initial population, from a set of initial solutions
which are generated using a slightly modified version of the po-INS heuristic; before processing
the vessels, a shuffling step is applied, altering the order in which the vessels are processed. As
a result, different vessel-allocation orders are produced for po-INS. In the initial population,
the nest with the lowest cost (i.e., objective value) is identified. The reproduction step is
carried out first: for each existing nest, a proportion pv of vessels is randomly selected, and a
mutation operator is applied to the solution for each of them. The mutation operator consists
of moving the selected vessel to a new, randomly chosen berth. The vessels that remain in
the previous berth rearrange their mooring times (but not their relative order) to reduce
their waiting times and departure delays as much as possible. A check is performed next to
determine if the mutant nest is better than the original nest, comparing their objective values.
In that case, the mutant nest replaces the original one. Following this, the probabilistic
event of the host discovering the cuckoo’s egg is implemented. This probability, pcsa, ensures
that in each iteration, approximately a fraction pcsa of the population is replaced by newly
generated random solutions. These new solutions are once again provided by po-INS after
shuffling the vessels. The nest with the lowest objective value in the current iteration is
identified and compared with the best nest discovered so far. If its cost is lower than the
currently best solution, it replaces it. The algorithm terminates when a predefined number of
iterations is reached. CSA leverages the rapid execution of po-INS, which is called numerous
times, making its speed essential for ensuring the overall computational efficiency of CSA.

Algorithm 1 Cuckoo Search Algorithm.
Input: Set of berths, set of n vessels
Output: xbest: best nest found

1 Initialize a population X of size m;
/* f(x) denotes the objective value of solution x */

2 xbest ← find a nest (i.e., solution) with the lowest objective value f(x) in population X;
3 for t← 1 to number of iterations do
4 for i← 1 to m do
5 xnew ← Perform mutation operation for pv · n randomly selected vessels on X[i];
6 if f(xnew) < f(X[i]) then X[i]← xnew;
7 end
8 for i← 1 to m do
9 if rand(0, 1) ≤ pcsa then X[i]← newly generated solution;

10 end
11 xlocalbest ← Find nest with lowest objective value among the current nests of X;
12 if f(xlocalbest) < f(xbest) then xbest ← xlocalbest;
13 end
14 return xbest;

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:13

Genetic Algorithm. The Genetic Algorithm (GA) is a well-known population-based meta-
heuristic which is inspired by a biological evolution process. GA mimics the Darwinian theory
of survival of the fittest in nature. The variants of GA are commonly used to generate high
quality solutions to VRP instances and BASP instances via biologically inspired operators
such as selection, crossover and mutation. In the context of the GA, a solution, i.e., a
complete assignment of all vessels (if possible) to berthing positions, is often referred to as a
chromosome.

The variant of GA that is implemented in this work for DDBASPTW (cf. Algorithm 2)
begins by generating an initial population of size m, following the same procedure that was
described for CSA. It then proceeds with a predefined number of iterations. In each iteration,
m pairs of “chromosomes” (i.e., solutions in the current population) are selected as parents
for the offspring population using binary tournament selection. In a binary tournament, two
chromosomes are randomly chosen, and the one with the better objective value is selected.
After selecting m parent pairs, a crossover operation is applied to generate offspring; for
each vessel present in the parent solutions, the offspring inherits the assignment from one
of the two parents with equal probability (50%). If an inherited assignment conflicts with
previously inherited ones, the vessel is temporarily excluded from the offspring and stored
for later reinsertion. These unassigned vessels are subsequently reinserted using a po-INS
based repair mechanism. Next, the mutation operator, exactly as described in the previous
section for CSA, is applied to each offspring. Consequently, the newly generated population,
consisting of the m offspring solutions, replaces entirely the parent population. At the end
of each iteration, the best solution found so far is updated, whenever a better one exists in
the current population. Upon completion of all iterations, the algorithm returns the best
solution found.

Algorithm 2 Genetic Algorithm.
Input: Set of berths; Set of vessels; Number of iterations;
Output: xbest : best solution found

1 Initialize a population of size m, applying po-INS to randomly shuffled orders of the vessels;
/* f(x) denotes the objective value of solution x */

2 xbest ← The solution with the lowest objective value f(x) in the population;
3 for number-of-iterations rounds do
4 Select m pairs of chromosomes (i.e., solutions) from the population;
5 Apply a crossover operation to each pair of chromosomes, to create an offspring;
6 Apply mutation to each offspring;
7 Replace the population with newly generated population of offsprings;
8 x′ ← The solution with the lowest objective value in the population;
9 if f(x′) < f(xbest) then xbest ← x′;

10 end
11 return xbest;

Adaptive Large Neighborhood Search. Adaptive Large Neighborhood Search (ALNS) is a
single-solution metaheuristic which was first introduced by Stefan Ropke and David Pisinger
[16] as an extension of the Large Neighborhood Search (LNS) metaheuristic. LNS iteratively
destroys and repairs a solution by applying one destroy operator and subsequently a repair
operator. The destroy operator removes parts of a solution while the repair operator reinserts
the removed parts making it a complete solution. Similar to its preceding method, ALNS
deploys the same sub-classes of operators: destroy and repair. A current solution will

ATMOS 2025

6:14 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

be destroyed by the destroy operators and then repaired using the repair operators. The
novelty of ALNS is that it now allows us to utilize multiple operators within the same
searching process in an adaptive way, where this adaptiveness is attained by recording
weights representing the effectiveness of each destroy-repair pair in producing better solutions
and dynamically adjusting the random selection of destroy-repair methods proportionally to
these weights [18]. ALNS is one of the most widely used metaheuristics for solving instances
of VRP variants, and in this section, we adapt it to address DDBASPTW.

ALNS takes as input a feasible initial solution x, a set of destroy and a set of repair
operators, and a parameter called updatePeriod. The algorithm returns the best solution
found, denoted by xbest. The algorithm works as follows (cf. Algorithm 3): Initially, a
temporary solution x is constructed and the weights and selection probabilities associated
with each operator are uniform. The algorithm then proceeds iteratively for a fixed number
of iterations. In each iteration, one destroy and one repair operator are selected using the
roulette wheel mechanism: each operator is selected with a probability proportional to its
weight, which reflects its effectiveness so far. These operators are then applied to modify the
current solution. The resulting solution x′ is evaluated and potentially accepted based on a
simulated annealing criterion, which accepts x′ unconditionally if it improves the objective
value (i.e., f(x′) < f(x)). Otherwise, it accepts x′ with a probability e−(f(x′)−f(x))/T , where
T is a temperature parameter. This mechanism allows the algorithm to escape from local
optima by occasionally accepting worse solutions. The temperature T gradually decreases
by performing the operation T = aT in each updating period, using a cooling rate α, where
0 < α < 1, thereby reducing the likelihood of accepting inferior solutions over time. If
the new solution improves upon the best solution found so far, it replaces xbest. Every
updatePeriod iterations, the weights and selection probabilities of the operators are updated
to reflect their effectiveness so far. An operator’s effectiveness weight is evaluated based on
how frequently it has led to an accepted solution based on the simulated annealing criterion,
relative to the number of times it was applied. Once the termination condition is satisfied,
the algorithm returns the best solution obtained.

Algorithm 3 Adaptive Large Neighborhood Search.
Input: A feasible solution x, destroy and repair operators, parameter updateP eriod

Output: xbest : best solution found
1 xbest ← x; x′ ← x; i← 1;
2 Initialize weights and probabilities;
3 for t← 1 to number of iterations do
4 Select a destroy and a repair operator;
5 x′ ← repair(destroy(x));
6 if accept(x′, x) then x← x′;

/* f(x) denotes the objective value of solution x */
7 if f(x) < f(xbest) then xbest ← x;
8 if i = updateP eriod then
9 Update weights and probabilities; i← 0;

10 end
11 i← i + 1;
12 end
13 return xbest;

Five destroy operators were implemented to selectively dismantle parts of the current
solution: (i) random removals of assigned vessels (nodes), (ii) clearance of randomly selected
berths (subtours), (iii) removal of vessels that significantly contribute to the total objective
cost (commonly referred to as Worst Removal), (iv) removal of vessels that are spatially

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:15

similar to a selected seed vessel (a special case of the well-known Shaw Removal, based on
physical attributes such as length or draft) and (v) removal of vessels that are temporally
similar to a selected seed vessel (also a special case of the Shaw Removal, based on mooring
time). The extent of destruction is governed by a parameter deg, known as the degree of
destruction, which controls the proportion of the solution to be removed. A sufficiently high
value of deg allows the removal of structurally important parts of the solution, increasing
the likelihood of escaping from local optima and improving the solution quality.

Six repair operators were implemented to reconstruct solutions after destruction. Three
of these are based on po-qd-INS, differing only in the order in which the removed vessels are
processed. Specifically, the orderings are determined by T ea

i , T rd
i and Pi (which can also be

thought of as a measure of importance). The fourth repair operator leverages the po-INS
heuristic, using the order in which the vessels were removed. The fifth operator repairs
the solution using the ck-NN heuristic of constructing solutions. Finally, the sixth repair
operator is based on a 2-regret-insertion, which iteratively selects and inserts a vessel that
possesses the largest regret value in the list of removed (and still unassigned) vessels. The
regret value of a vessel is obtained by taking the difference between the cost resulting from
the best insertion position and the cost resulting from the second best insertion position.

3.4 Implementation Details
In our implementation, we used interval trees [14] to represent the subtour of each berth.
An interval tree is a self-balancing binary tree that stores intervals in the format [low, high].
The left subtree contains intervals that precede the node’s interval, while the right subtree
contains those that follow. In this work, interval trees only represent feasible vessel-to-
berth assignments, so all intervals are non-overlapping. They efficiently support insertion,
deletion, interval searching, and overlap detection. Since each berth’s subtour is defined by its
occupancy periods, using interval trees allows efficient checks for availability within specific
time intervals. By maintaining balance through rotations during updates, all operations –
namely insertion, deletion, and overlap checking – run in O(log(n)) time, where n is the
number of stored intervals.

4 Experimental Evaluation

All experiments were conducted on an Ubuntu 22.04 PC equipped with an AMD EPYC 7552
48-Core Processor and 256 GB of RAM. The algorithms were implemented in C++, and the
MILP models were solved using Gurobi 12.0.0 with default settings, utilizing 32 threads.

4.1 Data Generation
For our experimental evaluation, we used publicly available data on vessel arrivals and
berthing activity from [12], complemented by a synthetic-data generator that produces
instances resembling real-world conditions. At the port level, berth depths are generally
standardized to accommodate a wide range of vessels. In our case, the port consists of three
types of berths (A, B, and C) with respective depths of 9, 12, and 14 meters. Type A

berths have lengths uniformly sampled from the range [50, 170] ≡ 0(mod 5) meters and are
equipped with a random number of cranes between 1 and 5. Type B berths have lengths in
the range [171, 230] ≡ 0(mod 5) meters and 2 to 6 cranes, while type C berths range from
[231, 350] ≡ 0(mod 5) meters in length and are randomly assigned between 2 and 8 cranes.
As far as vessels are concerned, we allocated them to the three berth types, defining the
range of lengths permissible for each type. Regarding vessel drafts, since our port cannot

ATMOS 2025

6:16 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

accommodate vessels with a draft exceeding 14 meters, it is more realistic to employ a
sigmoid curve with a plateau at 14 meters. Subsequently, the vessel drafts can be selected
through a uniformly random (R) selection around this value within a few units. In particular,
vessel i’s draft is determined as follows:

Di = R
(

max
{

1, σ(Li) − 2
}

, min
{

14, σ(Li) + 2
})

(12)

where σ(Li) = 14
1 + e−0.02·(Li−187.5) . The maximum number of cranes that could be em-

ployed for servicing vessel i is determined according to the uniformly random selection
R

(
max

{
1,

[
Li/50

]
− 2

}
,
[
Li/50

]
+ 2

)
, where [x] represents the integer part of a real number

x. This formula ensures that the maximum number of cranes required for vessel i is propor-
tional to its length, while maintaining variability within a reasonable range. The lower bound
guarantees that at least one crane is required, even for smaller vessels. As the length of the
vessel increases, more cranes could be employed to accommodate the larger volume of cargo
and operational complexity. The cargo quantity carried by a vessel, measured in Twenty-feet
Equivalent Units (TEU), is uniformly at random selected, depending on its length, as follows:
(i) up to 100m: between 25 and 100 TEU; (ii) from 100 up to 150m: between 100 and 500
TEU; (iii) from 150 up to 200m: between 500 and 1250 TEU; (iv) from 200 up to 250m:
between 1000 and 2250 TEU; (v) from 250 up to 300m: between 2000 and 3500 TEU; and
(vi) over 300m: between 3000 and 5000 TEU. These intervals reflect the increasing cargo
capacity of larger vessels, ensuring that the dataset maintains a realistic distribution of cargo
loads. The random selection of cargo values within the specified ranges assures a controlled
variability to the dataset while preserving logical consistency in the vessel size-to-cargo ratio.

Finally, each vessel i ∈ S is associated with a penalty Pi, which is incurred only if the
vessel is denied service by a solution. The penalty is designed to be sufficiently high to
deter the exact MILP solver from leaving a vessel unserviced, except for situations where the
problem would otherwise be infeasible. The penalty is defined as follows:

Pi = (T rd
i + T dp − T ea

i) · Cw
i + T dp · Cld

i + hworst
i · Ch

i (13)

where hworst
i denotes the worst case handling time for vessel i, among all eligible berths.

4.2 Calibration of Parameters for Metaheuristic Algorithms
We specify the parameter values used in our metaheuristic implementations, which were
calibrated through preliminary experiments towards both efficiency in the quality of the
resulting solutions and fairness in their comparison with each other in the final experimental
evaluation. For CSA, the population size m is 100, with 100 iterations, a mutation proportion
pv of 0.25, and discovery probability pcsa of 0.45. For GA, the population size and number of
iterations are also set to 100. For ALNS, we use 1000 iterations and an updatePeriod of 50.
The initial solution is generated via the po-INS heuristic. The simulated annealing acceptance
criterion uses a dynamically initialized temperature based on operator performance in the
first 5 iterations, a cooling ratio a = 0.8, and a destruction degree deg randomly chosen each
iteration in the range [0, 0.4] times the number of vessels.

4.3 Experimental Results
For the experimental evaluation, the cost parameters Cw

i , Ch
i , and Cld

i are all set to 1 euro,
and the time unit is standardized to 1 hour. For instance, if hi = 2, vessel i requires 2
hours for being handled by the berth to which it is assigned, and contributes 2 euros to the
objective function. The time required for a single crane to load or discharge one unit of cargo
is set to T = 5 minutes = (1/12) hours, and the delay policy is set to T dp = 10 hours.

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:17

Results on Constructive Heuristics and Metaheuristics. Table 2 compares ten methods:
Gurobi (GRB) (using a generic branch and cut algorithm), po-NN, ck-NN, po-INS, ck-INS,
po-qd-INS, ck-qd-INS, CSA, GA, and ALNS. The comparison is based on computation times,
optimality gaps, and number of vessels allocated across various data sets, all with a one-week
planning horizon. The data set corresponding to each block of results is indicated in the first
column, using the notation X-Y, where X denotes the number of vessels and Y the number of
berths. For each such X-Y benchmark case size, we generated ten different random instances.
Each random instance was solved twenty times to obtain stable runtime measurements. For
heuristic methods, the execution time is the average over these twenty runs. For metaheuristic
methods, both the execution time and the objective value are averaged over the twenty runs.
The median across the ten random instances per X-Y size is then presented in the tables as
follows. The “Time” row shows the execution time (in seconds). The “VA” row indicates the
number of assigned vessels in each method’s solution. The “Gap” row reflects the relative
error from the reference value used for comparison. When GRB reaches an optimal solution
(i.e., Gap = 0), the heuristic and metaheuristic methods are evaluated against this optimal
value. If GRB fails to reach optimality within a three-hour limit for the execution time
(i.e., Gap > 0), the comparison is made using a derived lower bound, computed from the
objective value reported by GRB and the optimality gap it had reached at the time limit. In
both cases, the relative error is computed as the difference between the method’s objective
value and the reference value, divided by the reference value. Instances where GRB hits
the three-hour time limit are marked with an asterisk next to the execution time in the
tables. Gap values in Table 2 are reported as decimals but represent percentages (e.g., a
value of 0.2 corresponds to a 20% gap). Overall, the benchmark instances reflect realistic
operational scales, with sizes larger or comparable to those of major terminals, such as the
Piraeus Container Terminal [12] which can service up to 11 vessels simultaneously.

In terms of performance, the ck-NN heuristic successfully serves all vessels in 9 out of 13
benchmark cases, but optimality gaps range from 17% to 41% which are considered rather
unsatisfactory. When not all vessels are assigned to berths, objective values increase due to
the penalties applied for unallocated vessels. As expected, po-NN performs poorly across
all benchmark cases, as it is a very naive approach. The po-INS heuristic assigns all vessels
to berths in 12 out of 13 benchmark cases, failing only on benchmark case 40-10, where it
assigns one fewer vessel than Gurobi. However, it is worth noting that this is an exceptionally
difficult benchmark case, because even Gurobi manages to berth only 39 vessels within the
three-hour limit.

For the benchmark cases where all vessels are successfully moored, po-INS achieves gaps
ranging from 3.7% to 26.5%. In contrast, the performance of ck-INS is significantly worse,
primarily due to its tendency to postpone the consideration of large vessels, which have high
handling costs and fewer compatible berths, until later in the construction. By the time these
vessels are considered, their feasible berths are often already occupied and the algorithm
cannot reassign previously placed vessels or even reorder them, leading to denial of service
for these vessels and, thus, high penalties in the objective value of the resulting solution.
The po-qd-INS heuristic assigns all vessels to berths in 11 out of 13 benchmark cases with
gaps varying from 5.7% to 27%. The ck-qd-INS variant also exhibits poor performance for
the same reasons as ck-INS, as it similarly delays the consideration of larger vessels, leading
to denial of service for many of them and thus incurring high penalties. Overall, we observe
that po-NN, ck-INS, and ck-qd-INS yield unsatisfactory results and are excluded from further
discussion. Among the remaining heuristics, it is evident that ck-NN performs the worst.
Between po-INS and po-qd-INS, the former delivers higher solution quality, albeit with a

ATMOS 2025

6:18 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

Table 2 Experimental results on Constructive Heuristics and Metaheuristics. In each scenario, the
best running time and the smallest relative error are indicated by blue-boldface and red-boldface,
respectively, among the three metaheuristics.

Data Set Metric NN INS CSA GA ALNS GRBck po po ck po-qd ck-qd

25-10
Time 0.00001 0.00001 0.00009 0.00058 0.00002 0.00008 0.129 0.047 0.039 10.6
VA 25 25 25 24 25 22 25 25 25 25
Gap 0.22 0.4 0.037 26 0.057 59 0.034 0.037 0.02 0

30-10
Time 0.00001 0.00001 0.00011 0.001 0.00002 0.00011 0.32 0.064 0.059 6.2
VA 30 30 30 29 30 29 30 30 30 30
Gap 0.17 0.3 0.065 41 0.065 41.2 0.007 0.027 0 0

35-10
Time 0.00001 0.00001 0.00013 0.00189 0.00003 0.00023 0.52 0.085 0.093 32
VA 35 34 35 33 34 30 35 35 35 35
Gap 0.18 8.4 0.12 34 8.14 85.1 0.029 0.026 0.007 0

40-10
Time 0.00002 0.00001 0.00016 0.002 0.00003 0.00027 0.64 0.12 0.03 101
VA 36 36 38 35 38 31 38 39 38 39
Gap 0.89 1.3 0.36 3.1 0.29 4.8 0.36 0.006 0.29 0

45-10
Time 0.00002 0.00001 0.0002 0.003 0.00004 0.0004 0.82 0.09 0.13 10800*
VA 44 43 45 41 45 37 45 45 45 45
Gap 19.96 7 0.18 49 0.24 94.9 0.164 0.169 0.079 0.042

60-20
Time 0.00003 0.00002 0.0003 0.005 0.00007 0.00074 1.04 0.161 0.38 10800*
VA 60 60 60 57 60 55 60 60 60 60
Gap 0.34 0.48 0.20 50 0.20 80.5 0.15 0.10 0.09 0.073

65-20
Time 0.00004 0.00002 0.00040 0.00858 0.00008 0.00096 1.98 0.15 0.55 10800*
VA 65 65 65 63 65 60 65 65 65 65
Gap 0.30 0.55 0.13 40 0.13 74.1 0.10 0.09 0.07 0.04

70-20
Time 0.00004 0.00002 0.00045 0.01216 0.00009 0.001 2.30 0.19 0.63 10800*
VA 69 68 70 65 70 63 70 70 70 70
Gap 3.35 9.85 0.20 60.4 0.21 73 0.14 0.12 0.08 0.04

75-20
Time 0.00004 0.00002 0.00055 0.01 0.0001 0.001 2.74 0.21 0.94 10800*
VA 75 75 75 73 75 68 75 75 75 75
Gap 0.41 0.52 0.265 30.3 0.265 81.9 0.21 0.20 0.13 0.06

80-20
Time 0.00004 0.00002 0.00058 0.014 0.0001 0.001 2.93 0.22 1.07 10800*
VA 79 79 80 75 80 73 80 80 80 80
Gap 5 12 0.16 59.86 0.19 77.4 0.13 0.12 0.08 0.07

85-20
Time 0.00008 0.00002 0.0006 0.019 0.0001 0.002 3.13 0.29 1.24 10800*
VA 84 84 85 82 85 76 85 85 85 85
Gap 11.9 13 0.10 30.59 0.11 65.6 0.14 0.11 0.09 0.08

90-20
Time 0.00005 0.00003 0.0007 0.02 0.0001 0.002 3.55 0.30 1.35 10800*
VA 90 89 90 84 90 78 90 90 90 90
Gap 0.4 6 0.191 60.52 0.195 109.5 0.114 0.121 0.09 0.07

100-25
Time 0.00006 0.00003 0.0009 0.045 0.0001 0.005 4.03 0.37 2.1 10800*
VA 100 99 100 96 100 91 100 100 100 100
Gap 0.33 2.2 0.08 31.2 0.09 56.2 0.058 0.054 0.048 0.034

slight increase in computational time. The po-qd-INS heuristic outperforms po-INS only
in cases where both of them fail to allocate two vessels. Lastly, in four benchmark cases,
namely, 30-10, 60-20, 65-20 and 75-20, po-INS and po-qd-INS produce identical objective
values, which can be attributed to the predetermined vessel ordering used in both methods.

Regarding the metaheuristics, we observe that all three algorithms successfully allocate
all vessels to berths in 12 out of 13 benchmark cases. In all cases, the metaheuristics
consistently produce higher-quality solutions than the constructive heuristics, albeit with
increased computational times. Among them, ALNS achieves the best performance, except
for benchmark case 40-10, where only GA matches GRB in terms of the number of allocated
vessels to berths. Overall, CSA and GA yield solutions of comparable quality, but GA is
significantly faster. In summary, ALNS delivers the highest-quality solutions among all meth-
ods evaluated and, while slower than the constructive heuristics and the GA metaheuristic,
it remains computationally efficient. Specifically, in the 12 benchmark cases where all vessels

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:19

are successfully allocated to berths, ALNS achieves optimality gaps ranging from 0% to
13% compared to GRB’s gap which ranges from 0% to 8%, while being faster than GRB by
factors ranging from 353 to 83, 076.

Experimental Results on Improvement Heuristics. Table 3 presents the results of the
improvement heuristics Swap and Reinsert, applied to the base heuristics ck-NN, po-INS,
and po-qd-INS. For each benchmark case, the improvements were applied to all 10 instances
and the median values across these instances are reported. The “Before” columns report the
gap achieved by each base heuristic prior to applying the improvement heuristics (identical
to the values in Table 2). The “Time” columns indicate the execution time in seconds per
improvement heuristic, while the “Gap” columns show the updated gaps after applying Swap
and Reinsert, respectively. We report results only for po-NN, po-INS, and po-qd-INS, as
these were shown to be the best-performing constructive heuristics in Table 2.

Swap significantly enhances solution quality, particularly for the ck-NN heuristic which
typically produces initial solutions with substantial room for improvement. In contrast, in
benchmark cases such as 25-10 and 30-10, where po-INS and po-qd-INS already produce
almost optimal solutions, the Swap heuristic offers little or no improvement. Similarly,
in cases where some vessels remain unallocated, the Swap heuristic has limited impact,
as the penalty for unassigned vessels tends to dominate the overall objective value. The
Reinsert heuristic exhibits similar behaviour, proving especially effective when applied to
ck-NN solutions for the same reasons. Again, when solutions are almost optimal, or when
unassigned vessels drive the objective, Reinsert contributes minimally to the solution quality.
When comparing Swap and Reinsert, there is no clear winner; both perform comparably and
provide improvements when the solution space allows for meaningful adjustments. When
benchmarked against metaheuristics, both improvement heuristics are faster but generally
yield solutions of lower quality than CSA and GA and consistently worse than ALNS. Overall,
when the initial solution is sufficiently suboptimal, both Swap and Reinsert effectively enhance
solution quality, therefore standing between constructive heuristics and metaheuristics in the
Pareto frontiers of the solution-quality to execution-time diagrams.

5 Conclusions and Future Work

In this work, we introduced a novel mathematical formulation of DDBASPTW, modeling
it as an instance of HVRPTW. We then adapted two VRP constructive heuristics to the
DDBASPTW, namely, Nearest Neighbour (NN) and Insertion (INS), and proposed qd-INS, a
fast “quick-and-dirty” variant of INS. For all these heuristics, we considered both the online
scenario and the case in which all vessel information is known in advance. Furthermore,
we incorporated two improvement heuristics, Reinsert and Swap, both drawn again from
the VRP literature, and applied one single-solution metaheuristic (ALNS) as well as two
population-based metaheuristics (CSA and GA).

Our experimental results demonstrated that the VRP-inspired techniques adapted for
DDBASPTW achieve satisfactory performances. In particular, ALNS exhibited outstanding
results, producing solutions close to those obtained by exact solvers, while requiring signifi-
cantly less computational time, making it a highly effective choice for real-time applications.
Future work will focus on further exploring the connection between variants of BASP and
VRP, with the aim of developing more advanced and specialized solution methods for BASP.
Additionally, we plan to investigate alternative metaheuristic techniques to further enhance
performance and address increasingly complex and dynamic problem settings.

ATMOS 2025

6:20 VRP-Inspired Techniques for Discrete Dynamic Berth Allocation and Scheduling

Table 3 Experimental results on Improvement Heuristics.

Alg. Before Swap Reinsert
Gap Time Gap Time Gap

25-10
ck-NN 0.22 0.0003 0.16 0.0005 0.05
po-INS 0.037 0.0004 0.037 0.0002 0.037

po-qd-INS 0.057 0.0004 0.037 0.0002 0.057
30-10

ck-NN 0.17 0.0006 0.045 0.0005 0.10
po-INS 0.065 0.0009 0.064 0.0004 0.065

po-qd-INS 0.065 0.0008 0.064 0.0003 0.065
35-10

ck-NN 0.18 0.0012 0.0849 0.0015 0.04
po-INS 0.12 0.0018 0.07 0.0013 0.05

po-qd-INS 8.14 0.0015 8.06 0.0007 8.06
40-10

ck-NN 0.89 0.0011 0.88 0.0007 0.88
po-INS 0.36 0.0018 0.35 0.001 0.35

po-qd-INS 0.29 0.0017 0.28 0.0008 0.28
45-10

ck-NN 19.96 0.0017 19.85 0.0016 19.85
po-INS 0.18 0.0026 0.16 0.0013 0.1

po-qd-INS 0.24 0.0021 0.14 0.0011 0.18
60-20

ck-NN 0.34 0.0035 0.20 0.0022 0.25
po-INS 0.20 0.0044 0.18 0.0024 0.16

po-qd-INS 0.20 0.0040 0.18 0.0022 0.17
65-20

ck-NN 0.30 0.0039 0.20 0.0049 0.20
po-INS 0.13 0.0052 0.12 0.0031 0.10

po-qd-INS 0.13 0.0049 0.12 0.0039 0.11

Alg. Before Swap Reinsert
Gap Time Gap Time Gap

70-20
ck-NN 3.35 0.0070 3.25 0.0043 3.28
po-INS 0.2 0.0105 0.16 0.0035 0.11

po-qd-INS 0.21 0.0105 0.14 0.0031 0.08
75-20

ck-NN 0.41 0.007 0.17 0.004 0.30
po-INS 0.265 0.008 0.22 0.005 0.21

po-qd-INS 0.265 0.008 0.23 0.003 0.21
80-20

ck-NN 5.00 0.008 4.90 0.006 14.93
po-INS 0.16 0.010 0.14 0.004 0.12

po-qd-INS 0.19 0.009 0.15 0.005 0.13
85-20

ck-NN 11.9 0.012 11.78 0.011 11.84
po-INS 0.10 0.014 0.08 0.005 0.09

po-qd-INS 0.11 0.013 0.08 0.004 0.09
90-20

ck-NN 0.4 0.014 0.28 0.005 0.29
po-INS 0.191 0.020 0.182 0.006 0.187

po-qd-INS 0.195 0.020 0.189 0.005 0.19
100-25

ck-NN 0.33 0.024 0.117 0.020 0.193
po-INS 0.08 0.028 0.07 0.007 0.07

po-qd-INS 0.09 0.027 0.08 0.007 0.075

References

1 Sheraz Aslam, Michalis Michaelides, and Herodotos Herodotou. Optimizing multi-quay berth
allocation using the cuckoo search algorithm. In Optimizing Multi-Quay Berth Allocation
using the Cuckoo Search Algorithm, March 2022. doi:10.5220/0011081200003191.

2 Sheraz Aslam, Michalis P. Michaelides, and Herodotos Herodotou. Enhanced berth al-
location using the cuckoo search algorithm. SN Comput. Sci., 3(4):325, 2022. doi:
10.1007/S42979-022-01211-Z.

3 Katja Buhrkal, Sara Zuglian, Stefan Ropke, Jesper Larsen, and Richard Lusby. Models for the
discrete berth allocation problem: A computational comparison. Transportation Research Part
E: Logistics and Transportation Review, 47:461–473, July 2011. doi:10.1016/j.tre.2010.11.
016.

4 Juan F. Correcher, Federico Perea, and Ramon Alvarez-Valdes. The berth allocation and
quay crane assignment problem with crane travel and setup times. Computers & Operations
Research, 162:106468, 2024. doi:10.1016/j.cor.2023.106468.

5 Maxim A. Dulebenets, Masoud Kavoosi, Olumide Abioye, and Junayed Pasha. A self-adaptive
evolutionary algorithm for the berth scheduling problem: Towards efficient parameter control.
Algorithms, 11(7), 2018. doi:10.3390/a11070100.

6 Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer,
2010.

7 Bokang Li, Zeinab Elmi, Ashley Manske, Edwina Jacobs, Yui-yip Lau, Qiong Chen, and
Maxim A. Dulebenets. Berth allocation and scheduling at marine container terminals: A
state-of-the-art review of solution approaches and relevant scheduling attributes. J. Comput.
Des. Eng., 10(4):1707–1735, 2023. doi:10.1093/JCDE/QWAD075.

https://doi.org/10.5220/0011081200003191
https://doi.org/10.1007/S42979-022-01211-Z
https://doi.org/10.1007/S42979-022-01211-Z
https://doi.org/10.1016/j.tre.2010.11.016
https://doi.org/10.1016/j.tre.2010.11.016
https://doi.org/10.1016/j.cor.2023.106468
https://doi.org/10.3390/a11070100
https://doi.org/10.1093/JCDE/QWAD075

K. Karathanasis, S. Kontogiannis, A. Pegos, V. Sofianos, and C. Zaroliagis 6:21

8 Andrew Lim. The berth planning problem. Operations Research Letters, 22(2):105–110, 1998.
doi:10.1016/S0167-6377(98)00010-8.

9 Fei Liu, Chengyu Lu, Lin Gui, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Heuristics
for vehicle routing problem: A survey and recent advances. CoRR, abs/2303.04147, 2023.
doi:10.48550/arXiv.2303.04147.

10 United Nations Conference on Trade and Development (UNCTAD). Handbook of statistics,
2023.

11 World Trade Organization. World trade statistical review, 2023.
12 Piraeus Container Terminal S.A. Piraeus Container Terminal, 2025. URL: https://www.pct.

com.gr.
13 Luigi Pio Prencipe and Mario Marinelli. A novel mathematical formulation for solving the

dynamic and discrete berth allocation problem by using the bee colony optimisation algorithm.
Applied Intelligence, 51(7):4127–4142, July 2021. doi:10.1007/S10489-020-02062-Y.

14 Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An Intro-
duction. Texts and Monographs in Computer Science. Springer, 1985. doi:10.1007/
978-1-4612-1098-6.

15 Lingyu Ran, Boning Liu, Guiqing Zhang, and Yongxi Cheng. An improved particle swarm
optimization algorithm for berth allocation and time-variant quay crane scheduling problem
during an emergency. Expert Syst. Appl., 269:126406, 2025. doi:10.1016/J.ESWA.2025.
126406.

16 Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science, 40:455–472,
November 2006. doi:10.1287/trsc.1050.0135.

17 Paolo Toth, Daniele Vigo, Paolo Toth, and Daniele Vigo. Vehicle Routing: Problems, Methods,
and Applications, Second Edition. Society for Industrial and Applied Mathematics, USA, 2014.

18 Setyo Tri Windras Mara, Rachmadi Norcahyo, Panca Jodiawan, Luluk Lusiantoro, and
Achmad Pratama Rifai. A survey of adaptive large neighborhood search algorithms and
applications. Computers & Operations Research, 146:105903, 2022. doi:10.1016/j.cor.2022.
105903.

19 Xin-She Yang and Suash Deb. Cuckoo search via levy flights, 2010. arXiv:1003.1594.

ATMOS 2025

https://doi.org/10.1016/S0167-6377(98)00010-8
https://doi.org/10.48550/arXiv.2303.04147
https://www.pct.com.gr
https://www.pct.com.gr
https://doi.org/10.1007/S10489-020-02062-Y
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1016/J.ESWA.2025.126406
https://doi.org/10.1016/J.ESWA.2025.126406
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1016/j.cor.2022.105903
https://doi.org/10.1016/j.cor.2022.105903
https://arxiv.org/abs/1003.1594

Evaluating Fairness of Sequential Resource
Allocation Policies: A Computational Study
Christopher Hojny #Ñ

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Frits C. R. Spieksma #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Sten Wessel1 #Ñ

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Abstract
In the sequential resource allocation problem there is a single divisible resource that is divided over
a number of clients. Allocations are made in a predetermined order and only upon arrival at a client
their demand for the resource is revealed; only the probability distribution of the demand of every
client is known to the supplier. We consider this problem from a fairness perspective, where the aim
is to balance allocations between individual clients. Several allocation policies have been proposed in
the literature. In this work, we introduce a new, non-adaptive policy based on linear programming
that can also incorporate group fairness. In addition, we provide an extensive computational study
to compare allocation policies on several fairness measures. Using an optimized implementation of
existing methods, we are able to evaluate significantly larger problem instances than those previously
considered in the literature.

2012 ACM Subject Classification Applied computing → Operations research

Keywords and phrases fairness, resource allocation, computational analysis

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.7

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.15825047

Funding This research is supported by NWO Gravitation Project NETWORKS, The Netherlands,
Grant Number 024.002.003.

1 Introduction

We consider the following sequential resource allocation problem. There is a (single) divisible
resource with an initial supply s, which has to be divided over n clients. Clients are visited
sequentially, in a predetermined order, identified as [n] := {1, . . . , n}. Each client has a
certain demand, which is the amount of the resource they want to receive from the supplier.
However, the demands are unknown to the supplier beforehand; it is only revealed when
arriving at the client. Instead, the probability distribution for every client is known to the
supplier in advance. Let Di for every client i ∈ [n] denote the random variable modelling
the demand of client i. We assume that the demand distributions for every client are
independent, discrete, and take a finite number of values. The initial supply s, the set
of demand distributions {Di : i ∈ [n]} for every client, together with a specific objective
(Section 2.1) define the Sequential Resource Allocation (SRA) problem. A solution

1 Corresponding author

© Christopher Hojny, Frits C. R. Spieksma, and Sten Wessel;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 7; pp. 7:1–7:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:c.hojny@tue.nl
https://chojny.win.tue.nl/
https://orcid.org/0000-0002-5324-8996
mailto:f.c.r.spieksma@tue.nl
https://orcid.org/0000-0002-2547-3782
mailto:s.wessel@tue.nl
https://stenwessel.nl
https://orcid.org/0000-0002-0677-4854
https://doi.org/10.4230/OASIcs.ATMOS.2025.7
https://doi.org/10.5281/zenodo.15825047
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

7:2 Evaluating Fairness of Sequential Resource Allocation Policies

to the SRA problem comes in the form of a policy that determines the amount xi of the
resource that is allocated to client i ∈ [n] upon visiting that client, which may depend on the
allocation history of clients earlier in the sequence.

SRA serves as a basic online allocation problem with stochastic demand. In practice, the
problem arises with particular properties depending on the context. Several policies for SRA
have been proposed, see also Section 3. Among others, we mention Bassok and Ernst [1] who
are one of the first to consider the SRA problem, with the objective of maximizing revenue.
There are also settings where maximizing revenue or profit is not the main concern. For
instance, Lien et al. [2] consider a setting where the objective is to achieve equity among
clients, motivated by supplying regional and local food banks in Chicago in the United States.
Sinclair et al. [4] propose a model to make allocations close to the optimal offline Nash social
welfare solution, using a multicriteria objective approach. Sluijk et al. [5] consider a variant
of the SRA problem from a vehicle routing perspective, where they present a model that
finds a feasible solution that meets a fairness measure threshold. Manshadi et al. [3] study
the SRA problem motivated by allocating scarce medical supplies to hospitals during the
COVID-19 pandemic. They propose a policy, and show that, for the fairness measure they
consider, this policy matches theoretical upper bounds on what a policy can achieve in the
worst case.

It is a fact, however, that from a computational perspective, the size of instances solved
has been quite limited. For example, Lien et al. [2] evaluate instances with only up to six
clients, where Manshadi et al. [3] consider instances with only four clients. A salient feature
of all policies proposed for SRA is that the position of a client in the sequence may have a
profound impact on the amount of resource allocated to the client. Indeed, when considering
a setting where all clients are identical, i.e., have the same distribution Di = D, results
from Lien et al. [2] imply that for several policies the amount of resource allocated to clients
depends heavily on the position in which the client is served. This means that all existing
policies for SRA violate group fairness: the property that identical clients should be treated
equally. We propose a method that, by design, ensures that identical clients are allotted the
same amount of resource.

The main contributions of our paper can be summarized as follows.

Using an optimized implementation of existing methods, we provide an extensive compu-
tational study, enabling us to analyze several allocation policies for the SRA problem for
instances with over 20 clients.

We provide insight in how these policies behave and how the position of a client in the
sequence may affect how much of their demand of the resource gets allocated.

We provide a new, non-adaptive allocation policy, based on linear programming (LP), that
is explainable, transparent, and easy to operationalize in the online allocation process.
This policy incorporates group fairness constraints.

We also provide an adaptive variant of this new policy that performs well on individual
fairness measures.

The remainder of this article is structured as follows. In Section 2, we formally introduce
the problem and state the objectives we consider in this work. In Section 3 we revisit existing
allocation policies in more detail, while we also introduce our new LP-based policy. We
describe our extensive computational evaluation in Section 4 where we also discuss the results.
We conclude in Section 5.

C. Hojny, F. C. R. Spieksma, and S. Wessel 7:3

2 Notation and Terminology

In this section, we further introduce some notation and define the objectives for the SRA
problem. For a given client i ∈ [n] let µi and σ2

i denote the mean and variance of the demand
distribution Di, respectively. Let si = s −

∑i−1
j=1 xj denote the remaining available supply

upon visiting client i. An allocation is valid when xi ∈ [0, min{si, di}], i.e., we never allocate
more than the available supply or the demand of the client for the resource. When visiting
client i, the policy may, in order to determine the allocation xi, use:

the value of the initial supply s,
the observed realized demand di ∈ R+ of the visited client,
the realized demands d1, . . . , di−1 of the previously visited clients,
the realized allocations x1, . . . , xi−1 of the previously visited clients, and
the distributional knowledge of the demand of future clients, i.e., Di+1, . . . , Dn.

Given the allocation xi and the demand di of client i, the fill rate of this client is
defined as φi = xi/di. Naturally, the fill rate of any client is in the interval [0, 1]. We use
the notation φmin

i to denote the minimum fill rate of the clients 1 up to i, i.e., φmin
i =

min{φ1, . . . , φi}. Furthermore, we also use φ1 ∧ · · · ∧ φi to denote min{φ1, . . . , φi}. We
define φmin

0 = 1.
We assume that the initial supply, realized demands and allocations are from a discrete

set of values, as this is necessary for the computation of some existing policies in Section 3.
Without loss of generality, we then assume that these values are integer.

We use the supply scarcity R as a measure for the ratio of available supply with the
expected demand, defined as

R =
∑n

i=1 µi

s
. (1)

Our motivation is based on a setting where the initial supply is unlikely to meet the total
demand of all clients, i.e., when R < 1, which will typically occur in non-profit resource
allocation.

2.1 Objectives
We mainly focus on two objectives related to fairness of allocations, which are called ex-ante
and ex-post fairness by Manshadi et al. [3]. For the ex-post objective, the aim is to maximize
the expected minimum fill rate of all clients, i.e., maximize

E(d1,...,dn)∼(D1,...,Dn)[min{φi : i ∈ [n]}]. (2)

In contrast to maximizing the expected minimum fill rate, ex-ante fairness maximizes the
minimum expected fill rate of all clients, i.e.,

min{E(d1,...,dn)∼(D1,...,Dn)[φi] : i ∈ [n]}. (3)

When only a single allocation run is performed, only one realization of the demands is
observed. Then, the ex-post objective (2) may be the most appropriate objective, as this
ensures that for this single realization the minimum fill rate is maximum, in expectation.
However, when allocations are repeated, then (2) may yield too conservative allocations while
higher fill rates can be achieved. In this case, ex-ante fairness (3) may be more desirable to
achieve, both from the perspective of the policy designer, as well as from the perspective of
the client, as their expected fill rate over the repeated allocations is maximized. The existing

ATMOS 2025

7:4 Evaluating Fairness of Sequential Resource Allocation Policies

methods in the literature focus mainly on ex-post fairness. In the computational analysis
that we perform in Section 4, we will evaluate the existing policies as well as our new policy
on both the ex-post and ex-ante fairness objectives.

3 Policies

In this section, we give a detailed overview of existing allocation policies from the literature.
Furthermore, we introduce our new policies in Sections 3.5 and 3.6.

3.1 Optimal Expected Minimum Fill Rate Policy
Given full knowledge of the demand distributions of the clients, a policy that maximizes
the expected minimum fill rate, i.e., ex-post fairness, can be described by the following
recursive relation from Lien et al. [2]. Let Zi(si, φmin

i−1, di) denote the maximum expected
minimum fill rate for visiting all clients 1, . . . , n, given that the visited clients 1, . . . , i − 1
have a minimum fill rate φmin

i−1 and supply si is remaining when arriving at client i with
demand di. The optimal allocation policy can then be determined by solving the following
optimality equation, for any i ∈ [n − 1]:

Zi(si, φmin
i−1, di) = max

xi≤si∧di

Edi+1∼Di+1

[
φmin

i−1 ∧ xi

di
∧ Zi+1

(
si − xi, φmin

i−1 ∧ xi

di
, di+1

)]
. (4)

For the last node n in the sequence, we have

Zn(sn, φmin
n−1, dn) = φmin

n−1 ∧ sn ∧ dn

dn
. (5)

Then, the optimum expected minimum fill rate over the full sequence is given by

Fopt(s) = Ed1∼D1

[
Z1(s, 1, d1)

]
. (6)

This can be solved by dynamic programming, starting at the last client in the sequence
working in reverse order to the first client, filling a table Z with entries Zi(si, φmin

i−1, di) for
every i ∈ [n], si ∈ [s], di in the support of Di, and every possible fill rate φmin

i−1.
To apply this policy, the full table needs to be retained to look up the allocation for

every client during the allocation process, using the current history of allocations to previous
clients. In addition, it is necessary that the demand distribution as well as the allocations are
discrete, and the magnitude of the demand and supply levels directly influence the time and
space needed to compute the optimal policy. The amount of space needed to store the table
is of order O(n · s · ℓ3 · Dmax), while the computational time is O(n · s · ℓ3 · D2

max), where ℓ

is (maximum) number of demand levels of a client and Dmax is the maximum demand of
any client. In many cases, these complexities (in particular the space complexit) are so
high that the optimal policy can only be computed for small instances. Because of this,
several alternative policies are proposed that sacrifice optimality for improved time and space
complexity.

3.2 Optimal Forward Expected Minimum Fill Rate Policy
An alternative approach to designing a policy for the SRA problem is as follows. When arriving
at client i, we design a policy that maximizes the minimum fill rate of the clients i, . . . , n, i.e.,
we do not take the fill rates of the already visited clients 1, . . . , i − 1 into account. This is
also called the forward objective. The problem where the forward objective is maximized can

C. Hojny, F. C. R. Spieksma, and S. Wessel 7:5

be solved optimally using a similar approach as for finding the optimal expected minimum
fill rate in Section 3.1. When arriving at a client, the policy optimizing the forward objective
maximizes the expected fill rate over the current and future clients, i.e., the fill rates of
the already visited clients is not taken into consideration. The optimality equation is,
for i = 1, . . . , n − 1

Z⃗i
f (si, di) = max

xi≤si∧di

Edi+1∼Di+1

[
xi

di
∧ Z⃗i+1

f (si − xi, di+1)
]

, (7)

with for the last node n in the sequence

Z⃗n
f (sn, dn) = sn ∧ dn

dn
. (8)

This can also be solved by dynamic programming, where the table entries of Zf are filled
in reverse client order. Since the minimum fill rate for the previous clients is no longer a
parameter, this table can be stored in O(n · s · ℓ · Dmax) and filled in O(n · s · ℓ · D2

max) time.
Compared to the policy in Section 3.1, this policy requires significantly less time and space.

3.3 Two-Node Decomposition Heuristic

The two-node decomposition (TND) heuristic as proposed in the literature by Lien et al. [2]
is designed to maximize the expected minimum fill rate. At every client i ∈ [n], the allocation
is heuristically determined in two steps. First, the available supply is split in an allotment ŝi

that is available to solve the allocation problem for the current and next client in the sequence,
while the remaining supply is reserved for clients further in the sequence. The allotment is
proportional to the mean demand of the first two clients in the sequence relative to the total
mean demand of all unvisited clients, i.e.

ŝi = si
µi + µi+1∑N

j=i µj

. (9)

Second, the allotment is then used to determine an allocation for client i, based on its
observed demand di and the distributional knowledge of the demand of client i + 1. The
allocation is equal to

xTND
i = min{Ĥi(ŝi, di), φmin

i−1di} (10)

where Ĥi(ŝi, di) is an approximation of the optimal allocation in case there would only be
two clients i and i + 1 left. It is defined as

Ĥi(ŝi, di) = ŝi
di

di + m̃i+1 + δi+1
√

σi+1
, (11)

with

δi+1 = m̃i − m̃i+1

(m̃i + m̃i+1)/2 , (12)

where m̃i and σi denote the median and standard deviation of the demand of client i,
respectively. For the last client n in the sequence, the allocation is simply xn = min{sn, dn}.
For more details, we refer to the original paper of Lien et al. [2].

ATMOS 2025

7:6 Evaluating Fairness of Sequential Resource Allocation Policies

3.4 Projected Proportional Allocation Heuristic
Manshadi et al. [3] introduce the projected proportional allocation (PPA) heuristic. This
policy is designed to maximize ex-post fairness, and is based on the following idea. Suppose
that in an offline variant of the problem all demand realizations of all clients are known
a-priori. Then, the optimal (offline) allocation for every client i is

x∗
i = min

{
di, si

di∑
j∈[n] dj

}
. (13)

In the online setting, the future demand is unknown. The PPA allocation rule substitutes
the mean future demand as a heuristic policy, allocating

xPPA
i = min

{
di, si

di

di +
∑n

j=i+1 µj

}
. (14)

3.5 LP-Based Non-Adaptive Allocation Heuristic
In this work, we introduce a new, alternative, allocation policy using an LP-based approach.
The objective is to maximize ex-post fairness by maximizing the expected minimum fill rate.
The policy pre-assigns a single allocation value for each client, in order to keep the policy
compact. This can be modeled with the following program:

max
x1,...,xn

{∑
d1

· · ·
∑
dn

pd1,...,dn

[
x1

d1
∧ · · · ∧ xn

dn

]
: x1 + · · · + xn ≤ s

}
. (15)

Here, pd1,...,dn
is the probability that the scenario occurs that the n clients realize the

demands d1, . . . , dn. Note that the objective (as a sum of minima) is a concave function. It
can be modeled as a linear program, by introducing variables fd1,...,dn

for every “demand
scenario” that corresponds to each term in the objective. This yields the LP

maximize
∑

d1,...,dn

pd1,...,dn
fd1,...,dn

(16a)

subject to
n∑

i=1
xi ≤ s, (16b)

fd1,...,dn ≤ xi

di
∀i ∈ [n] ∀d1, . . . , dn, (16c)

xi ≥ 0 ∀i ∈ [n]. (16d)

Note that the number of variables depends largely on the number of scenarios, which can be
large when the number of clients and/or the number of demand realizations of the clients
is large. This is also the case for the optimal dynamic programming model. However, this
model can handle continuous allocations, i.e., allocations that are not limited to a discrete
set of values, and furthermore it is not sensitive to the magnitude of supply and demand
values. More importantly, this policy can incorporate group fairness. Indeed, when clients
with identical demand distributions are regarded as groups, this policy will allocate the same
amount of resource to each client in a group. Thus, there is an optimal solution to this model
where all clients from the same group will have an identical allocations.

An informal argument for this property is as follows. Suppose that there is an optimal
solution x where two clients i, j ∈ [n] with the same demand distribution have different
allocations in an optimal solution. Without loss of generality, assume that xi > xj . Then,

C. Hojny, F. C. R. Spieksma, and S. Wessel 7:7

we can construct another solution x′ where x′
i = x′

j = xj , and x′
k = xk for all k ∈ [n], k ̸= i

and k ̸= j which will have the same objective value, as the minimum fill rate will be identical
for allocation x and x′ in any demand realization. This allows for aggregation of these clients
in the model, ensuring faster computation times.

Suppose there are m groups (or types) of clients θ1, . . . , θm with n1, . . . , nm number of
clients, respectively. Then the aggregated model is as follows.

maximize
∑

d1,...,dm

pd1,...,dm
fd1,...,dm

(17a)

subject to
m∑

θ=1
nθxθ ≤ s, (17b)

fd1,...,dm
≤ xθ

dθ
∀θ ∈ [m] ∀d1, . . . , dm, (17c)

xθ ≥ 0 ∀θ ∈ [m]. (17d)

This makes the model significantly smaller when the number of groups is small, achieving
group fairness efficiently.

In addition, the allocation procedure is now simple: there is a single predetermined
allocation for every client, which is not only easily implemented when allocations take place,
but it is also explainable and easily communicated to clients.

3.6 LP-Based Adaptive Allocation Heuristic
The policy introduced in Section 3.5 can also be used as an adaptive policy by re-computing
the LP for the future clients after observing the demand of the current client. Thus, after
arriving at client i, the observed demand is di and the LP model is now adapted to only
include the current client with a deterministic demand di and all future clients with their
demand distribution, with the remaining supply si. The new solution yields an allocation xi

for the current client. Upon visiting the next client, the model is re-computed analogously.
The adaptive nature of this policy makes it more comparable to the other existing policies,

which are all also adaptive in nature. Note that this policy also violates group fairness.
This policy is expected to score higher on ex-ante individual fairness, as it can account for
uncertainty in the demand realizations throughout the client sequence. Furthermore, it
requires solving a linear program throughout the allocation process.

4 Computational Experiments

In order to evaluate the performance of the different policies described in Section 3 on
the various objectives, we have executed a large number of computational experiments. In
previous work, computational experiments were limited to considering only few clients. Lien
et al. [2] consider up to six clients, where Manshadi et al. [3] have instances with four clients.
While their experiments show that their heuristic policies perform well in comparison to
the optimal dynamic program, it is not clear whether this is intrinsic to their policies or a
consequence of the small number of clients in the instances. We therefore aim to provide a
more extensive computational analysis with significantly more clients.

In order to analyze the effects on client ordering, we evaluate the policies on instances
with up to 21 clients. For the optimal dynamic programming policy, this requires significant
optimization in the implementation in code in order to make it computationally feasible to
construct the dynamic programming table. The dynamic programing table must be filled in

ATMOS 2025

7:8 Evaluating Fairness of Sequential Resource Allocation Policies

reverse client order, but all entries in a “slice” of the table for a fixed client i can be computed
in parallel. Together with optimizing the memory layout of the dynamic programming
table, this allows for massive speedup in computation time when multiple cores or threads
can be utilized. A limiting factor remains the memory requirements, as the full dynamic
programming table needs to be stored to be used as a lookup table during the allocation
process.

The experiments are run on a computing cluster with Intel Xeon Platinum 8260 processors
at 2.40 GHz. Each processor has 24 threads and 256 GB available memory. The optimal
dynamic programming policy is computed in a parallelized implementation using 24 threads,
whereas all other policies are computed using a single thread. Policies requiring a linear
programming solver use Gurobi version 12.0.1. Our implementation is available at
https://doi.org/10.5281/zenodo.15825047.

4.1 Setup
We follow the general structure of generated instances used by Lien et al. [2]. We generate
instances with the following parameters.

The number of groups of clients of identical demand distribution is an element of {2, 3, 4}.
The total number of clients n, which is either small or large. Small instances have a total
number of clients of 14, 15, and 16 for 2, 3, and 4 groups of identical clients, respectively.
Large instances have 20 clients for 2 and 4 groups, and 21 clients for 3 groups.
The ordering of the groups of clients is specified under the Sequences column in Table 1.
The symbol CV↗ (CV↘, CV∼) refers to a setting where the coefficient of variation (CV)
is uniformly increasing (decreasing, alternating) with the position of the clients in the
sequence. A similar explanation applies to µ↗, µ↘, µ∼. The coefficient of variation is
defined as the ratio of the standard deviation σ to the mean µ, i.e., CV = σ/µ. For the
last two rows, the mean and coefficient of variation are matched as follows: clients with
the k-th largest µ have the k-th largest CV for any k, and vice versa. Each row in Table 1
therefore corresponds to 3 instances.
The interleaving of the groups, which is either separated or repeating. For example, in
an instance with 9 clients in 3 groups a, b, and c, the separated interleaving yields the
sequence aaabbbccc, while the repeating interleaving yields abcabcabc.
The initial supply scarcity R ∈ {0.5, 0.75, 1, 1.25, 1.5}, which is the fraction of the total
expected demand

∑n
i=1 µi that is available as initial supply of the resource.

The total number of instances that follows from this setup equals 3 · 2 · 30 · 2 · 5 = 1800. For
each of these instances, 250 simulations are performed on which every allocation method is
evaluated. The demand distributions of all clients follow a discretized gamma distribution
with mean µi and coefficient of variation CV, of which the domains are specified in Table 1.
The number of demand levels, i.e., the size of the support of the demand distribution, is
fixed to be 21.

For the adaptive version of the LP-based method we only evaluate instances with n = 14
or n = 15 clients, due to computational limitations.

4.2 Results
As our aim is to evaluate the policies with respect to their performance on the two objectives,
we choose to not report computation times, but restrict ourselves to the following general
comment. As expected, the optimal dynamic programming policy is the most time-intensive

https://doi.org/10.5281/zenodo.15825047

C. Hojny, F. C. R. Spieksma, and S. Wessel 7:9

Table 1 Group ordering scenarios.

µ CV Sequences

50 0.5–1.5 CV↗, CV↘, CV∼

150 0.5–1.5 CV↗, CV↘, CV∼

50 0.75–1.25 CV↗, CV↘, CV∼

150 0.75–1.25 CV↗, CV↘, CV∼

50–150 0.5 µ↗, µ↘, µ∼

50–150 1.5 µ↗, µ↘, µ∼

75–125 0.5 µ↗, µ↘, µ∼

75–125 1.5 µ↗, µ↘, µ∼

50–150 0.5–1.5 CV↗, CV↘, CV∼, large CV with large µ

50–150 0.5–1.5 CV↗, CV↘, CV∼, large CV with small µ

policy – an instance with 21 clients takes roughly 2 hours to solve on 24 threads, which
is a significant computation time. Furthermore, this policy requires more than 100 GB of
memory space to store the dynamic programming table.

We now discuss the performance of the policies on the two objectives. Tables 2 and 3
summarize average scores on the ex-post and ex-ante objectives for the evaluated policies: the
optimal dynamic program (Opt), the optimal forward dynamic program (Fw), the two-node
decomposition policy (TND), the projected proportional allocation policy (PPA), our non-
adaptive LP-based policy (Non-adaptive) and our adaptive LP-based policy (Adaptive). All
instances are grouped by supply scarcity R < 1, R = 1, and R > 1, as well as by the number
of clients n. The ex-post fairness performance of the TND heuristic and our non-adaptive
policy decreases when the number of clients increases, whereas the other policies retain
similar performance for different number of clients. Wile our non-adaptive policy clearly
does not perform well on the ex-post fairness objective compared to the other policies, it
does perform well on the ex-ante fairness objective, especially with supply scarcity R < 1
where it outperforms all other methods. The adaptive variant of our policy is competitive
with the other allocation policies on both ex-post and ex-ante fairness.

Figure 1 shows for all instances n = 21 clients and supply scarcity R = 0.5 and R = 1
the distribution of the fill rate of each client in the sequence. For each policy, a box plot
indicates the maximum and minimum fill rate, as well as the quantiles and the average fill
rate, indicated by a green line. It can be observed that the methods vary in variance of fill
rates allocated, where the optimal dynamic program has the lowest variance when supply is
scarce. Our non-adaptive policy achieves a fill rate of 1 often for any client in the sequence,
however with a high variance between allocation runs. It is also clearly visible that, for the
optimal dynamic program, the last client in the sequence will in many cases achieve a high fill
rate due to conservative allocation decisions for clients earlier in the sequence. Similar plots
for instances with a different number of clients, which are omitted due to space limitations,
show an identical trend.

To further evaluate the ex-ante individual fairness objective, we analyze the average
fill rate of every client in the sequence and take the minimum. To compare the overall
performance of the methods, we summarize the results by grouping the problem instances on
number of clients and supply scarcity. Figure 2 displays the average fill rate of each client in
the sequence for all instances of n = 15 clients for supply scarcity R > 1, R = 1, and R < 1,
respectively. Although omitted due to space limitations, the results for n ∈ {14, 20, 21} show

ATMOS 2025

7:10 Evaluating Fairness of Sequential Resource Allocation Policies

Table 2 Ex-post fairness.

Scarcity n Opt Fw TND PPA Non-adaptive Adaptive

R > 1 14 0.9581 0.9434 0.8621 0.9551 0.5386 0.9504
15 0.9611 0.9464 0.8666 0.9572 0.5199 0.9534
16 0.9616 0.9480 0.8594 0.9591 0.5066
20 0.9683 0.9560 0.8339 0.9647 0.4827
21 0.9704 0.9585 0.8390 0.9685 0.4729

R = 1 14 0.8103 0.7724 0.6963 0.7894 0.3936 0.7679
15 0.7999 0.7638 0.6873 0.7816 0.3783 0.7498
16 0.8045 0.7690 0.6788 0.7825 0.3696
20 0.8157 0.7796 0.6505 0.7889 0.3514
21 0.8099 0.7764 0.6439 0.7811 0.3433

R < 1 14 0.5141 0.4630 0.4373 0.4747 0.2443 0.4154
15 0.5064 0.4539 0.4272 0.4669 0.2362 0.4031
16 0.5071 0.4537 0.4226 0.4669 0.2312
20 0.5117 0.4544 0.4022 0.4660 0.2180
21 0.5077 0.4477 0.3992 0.4609 0.2144

Table 3 Ex-ante fairness.

Scarcity n Opt Fw TND PPA Non-adaptive Adaptive

R > 1 14 0.9691 0.9812 0.8631 0.9797 0.9214 0.9769
15 0.9735 0.9818 0.8680 0.9798 0.9195 0.9780
16 0.9723 0.9827 0.8603 0.9812 0.9151
20 0.9764 0.9871 0.8343 0.9847 0.9212
21 0.9792 0.9874 0.8393 0.9858 0.9195

R = 1 14 0.8490 0.9143 0.7002 0.9116 0.8652 0.8862
15 0.8444 0.9082 0.6921 0.9067 0.8591 0.8803
16 0.8441 0.9137 0.6810 0.9100 0.8564
20 0.8518 0.9221 0.6514 0.9149 0.8629
21 0.8488 0.9204 0.6449 0.9132 0.8612

R < 1 14 0.5694 0.6776 0.4412 0.6370 0.7354 0.6340
15 0.5607 0.6655 0.4316 0.6352 0.7308 0.6494
16 0.5589 0.6657 0.4251 0.6351 0.7277
20 0.5622 0.6669 0.4031 0.6346 0.7289
21 0.5576 0.6615 0.4002 0.6342 0.7263

C. Hojny, F. C. R. Spieksma, and S. Wessel 7:11

an almost identical trend. In situations where supply is not scarce, i.e., when R ≥ 1, the
non-adaptive policy performs significantly worse on ex-ante individual fairness. However,
when R < 1, which is often the case for applications for this problem, our method significantly
outperforms existing methods on ex-ante individual fairness. Moreover, it can be seen that
for all adaptive policies that the average fill rate of a client heavily depends on the place of
the client in the sequence, whereas our non-adaptive policy achieves a much more equal fill
rate for every client in the sequence. From a fairness perspective, the sequencing of customers
should not impact their fill rate and our policy may be beneficial in some applications.

Let us now discuss to what extent the order of the clients impacts the allocation. For
the ex-post objective, when the supply is scarce (R < 1), all policies perform best when
the clients are ordered by decreasing coefficient of variation. This confirms the results by
Lien et al. [2], and our computational analysis shows that this also extends to instances
with significantly more clients. The TND heuristic, however, performs best on instances
where the coefficient of variation is constant and small and where the mean demand of the
clients decreases in the order of the sequence. When R ≥ 1, all policies perform best when
the coefficient of variation is constant and small, as in this case a fill rate close to 1 can
be achieved for many clients. For the ex-ante objective when R < 1, the forward optimal
dynamic program and our policies perform best when the coefficient of variation is high for all
clients. The PPA heuristic and the optimal dynamic program perform best when the mean
demand is decreasing and the coefficient of variation is high. The TND heuristic performs
best on the ex-ante objective when the mean demand is decreasing and the coefficient of
variation is low for all clients.

5 Conclusion

In this work, we have conducted an extensive computational study on several allocation
policies for the sequential resource allocation problem. While several objectives can be used
to design a policy, we focus on maximizing fairness in several ways. The main focus is on
maximizing expected fill rates of the clients, which can be done in an ex-ante or ex-post
fashion. We add results on computational experiments to the existing body of literature on
sequential resource allocation, by evaluating significantly larger problem instances with up
to 21 clients. From these results, we confirm that existing heuristic methods perform well on
the ex-post and ex-ante fairness objective, also for large instances.

We additionally introduce a new allocation method based on a linear program, applied in
a non-adaptive and adaptive fashion. The non-adaptive policy can be a desirable property in
certain applications where dynamic allocation decisions are either not possible or not desired.
Furthermore, the non-adaptive policy is explainable and easily operationalized as it retains
a single allocation value for every client. The policy also allows the policy designer to also
include group fairness as an additional constraint on the allocations of the resource; our
method ensures that clients with the same demand distribution are assigned equal allocations.
From computational evaluation, it can be seen that this new allocation policy performs worse
on the ex-post fairness objective, whereas it outperforms existing methods on ex-ante fairness
when the supply of the resource is scarce. Furthermore, the average fill rate is much more
equal for all clients in the sequence compared to any of the methods, where effects of position
in the sequence are clearly noticeable.

For further work, it would be possible to explore whether our new method can be adapted
to further explore the trade-off between ex-post and ex-ante fairness. For example, pre-
computing multiple possible allocation values for every client that can be used based on
the realized demand during the allocation process possibly increases ex-post fairness, which
makes the policy in between the non-adaptive and adaptive variant introduced in this work.

ATMOS 2025

7:12 Evaluating Fairness of Sequential Resource Allocation Policies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Client

0.0

0.2

0.4

0.6

0.8

1.0
Fil

l r
at

e

Opt Fw TND PPA Non-adaptive

(a) Fill rate distribution of clients for all instances with R = 0.5 and n = 21.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Client

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fil
l r

at
e

Opt Fw TND PPA Non-adaptive

(b) Fill rate distribution of clients for all instances with R = 1.0 and n = 21.

Figure 1 Distribution of fill rate of individual clients for the large size instances.

C. Hojny, F. C. R. Spieksma, and S. Wessel 7:13

2 4 6 8 10 12 14
Client

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Fil
l r

at
e

Method
Adaptive
Fw
Non-adaptive
Opt
PPA
TND

(a) Average fill rate when R > 1.

2 4 6 8 10 12 14
Client

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fil
l r

at
e

Method
Adaptive
Fw
Non-adaptive
Opt
PPA
TND

(b) Average fill rate when R = 1.

2 4 6 8 10 12 14
Client

0.5

0.6

0.7

0.8

0.9

Fil
l r

at
e

Method
Adaptive
Fw
Non-adaptive
Opt
PPA
TND

(c) Average fill rate when R < 1.

Figure 2 Average fill rate per client in the sequence of all tested instances with n = 15, split on
supply scarcity.

ATMOS 2025

7:14 Evaluating Fairness of Sequential Resource Allocation Policies

References
1 Yehuda Bassok and Ricardo Ernst. Dynamic allocations for multi-product distribution.

Transportation Science, 29(3):256–266, 1995. doi:10.1287/trsc.29.3.256.
2 Robert W. Lien, Seyed M. R. Iravani, and Karen R. Smilowitz. Sequential resource allocation

for nonprofit operations. Operations Research, 62(2):301–317, 2014. doi:10.1287/opre.2013.
1244.

3 Vahideh Manshadi, Rad Niazadeh, and Scott Rodilitz. Fair dynamic rationing. Management
Science, 69(11):6818–6836, 2023. doi:10.1287/mnsc.2023.4700.

4 Sean R. Sinclair, Gauri Jain, Siddhartha Banerjee, and Christina Lee Yu. Sequential fair
allocation of limited resources under stochastic demands. Preprint, 2022. arXiv:2011.14382.

5 N Sluijk, W Rei, J Kinable, M Gendreau, and T Van Woensel. Fair stochastic vehicle routing
with partial deliveries. Preprint, 2023. URL: https://optimization-online.org/?p=22778.

https://doi.org/10.1287/trsc.29.3.256
https://doi.org/10.1287/opre.2013.1244
https://doi.org/10.1287/opre.2013.1244
https://doi.org/10.1287/mnsc.2023.4700
https://arxiv.org/abs/2011.14382
https://optimization-online.org/?p=22778

Refined Integer Programs and Polyhedral Results
for the Target Visitation Problem
Sven Mallach #

Chair of Management Science, University of Siegen, Germany
University of Bonn, Germany

Abstract
The Target Visitation Problem (TVP) combines the Traveling Salesman Problem and the Linear
Ordering Problem, and thus serves as a natural model for route planning applications where both
the travel costs and the order of the sites to visit matter. More precisely, in addition to the costs
that apply for the selected links connecting two subsequently visited sites, the relative urgency of
visiting one site before another is quantified and taken into account. In this article, we present
refined integer linear programming formulations for the TVP, along with clarifications and extensions
regarding the description of the polytopes associated with their feasible solution sets by a minimal
set of linear equations and facet-defining inequalities. The practical effectiveness of exploiting the
proposed improvements by means of a branch-and-cut algorithm is demonstrated in a computational
study. In addition, we report the optimal values for some previously unsolved instances.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Applied
computing → Transportation; Mathematics of computing → Linear programming; Mathematics of
computing → Integer programming

Keywords and phrases Route planning, Transportation, Logistics, Traveling salesman problem,
Linear ordering problem, Polyhedral Combinatorics, Branch-and-cut, Integer Programming, Linear
programming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.8

1 Introduction

In the Target Visitation Problem (TVP), the task is to determine an ordering (permutation)
of a set of target locations (sites) that maximizes the difference between the total sum of
pairwise rewards pij ∈ R, i ̸= j, obtained when ranking a site i (anywhere) before another site
j, and the total sum of pairwise costs cij ∈ R paid when ranking sites i and j consecutively.
Considering a permutation as a site-traversal order, the rewards pij may be interpreted
as the strength of the preference of visiting site i before site j while the costs cij may
reflect e.g. the traveling distance from i to j. Figure 1 displays which rewards and costs
effectively contribute to the objective value of an example ordering of five sites, and a more
formal problem definition is given at the beginning of Section 2. As this illustrates, the
TVP is a combination (and generalization) of the Linear Ordering Problem (LOP) and the
(Weighted) Asymmetric Hamiltonian Path Problem (AHPP) in a complete graph. With
only slight modifications, one may also consider it as a combination of the LOP and the
(Weighted) Asymmetric Traveling Salesman Problem (ATSP) [4, 5]. By choosing sufficiently
high rewards, it may further serve as a proxy for the ATSP with precedence constraints.
Moreover, each of these related combinatorial optimization problems is well-known to be
strongly N P-hard whence so is the TVP [5, 6].

The TVP is a natural model for route planning problems where both the total travel
costs and the order of the visited sites are of (potentially competing) interest. A common
scenario is that the demands of supply (urgencies) and the supply times between locations
need to be juxtaposed in opposition, like in the seminal application with unmanned aerial
vehicles (drones) in [4]. This includes particularly the scheduling of rescue or relief missions

© Sven Mallach;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 8; pp. 8:1–8:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sven.mallach@cs.uni-bonn.de
https://orcid.org/0000-0001-5335-0678
https://doi.org/10.4230/OASIcs.ATMOS.2025.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

8:2 Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

+ p23

432 5 1
+ p25
− c25

+ p53
− c53

+ p31
− c31

+ p14
− c14

+ p21
+ p24

+ p34

+ p51
+ p54

Figure 1 An example permutation (Hamiltonian path) of five sites indicating which rewards and
costs contribute to its respective objective function value in terms of the TVP.

in disaster areas, the planning of town-cleaning or snow-plowing services [5], as well as
further applications in transportation where the route sequence is supposed to reflect visiting
preferences beyond the shortest distance or travel time, for instance to integrate an additional
route-internal pickup and delivery as considered e.g. in [2].

Since its introduction in 2004 by Grundel and Jeffcoat [4] who addressed the problem
with a local search approach, the TVP has mainly been studied in the context of integer
programming and polyhedral combinatorics by Hildenbrandt, especially in his PhD thesis [5]
and a related article [6]. In the dissertation, he also evaluated several heuristics. Furthermore,
there is a semidefinite programming relaxation for the TVP by Hungerländer [7] as well as
further heuristics by Blázsik et al. [2] and Arulselvan et al. [1].

In this work, we first present three integer programming (re)formulations for the TVP
which improve on their relatives from [5, 6] in terms of continuous relaxation strength,
preciseness in characterizing TVP solutions by means of compact constraint sets, and
solution times. An accompanying analysis of the impact of certain equation and inequality
classes provides a tidied-up dominance relation between candidate constraints that enforce
a consistent permutation or link different variable subsets. Then, we present revised and
extended results regarding the description of the polytopes associated with the proposed
formulations, i.e. the convex hull of the vectors describing their feasible solutions, by means of
a minimal set of linear equations and facet-defining inequalities. In an experimental study, we
demonstrate the practical effects of our refinements in terms of solving the formulations with
a branch-and-cut algorithm, and we report the optimal values for some previously unsolved
instances. Besides that, we draw relations to the Asymmetric Betweenness Problem and
the Quadratic Linear Ordering Problem which allow to translate certain structural results
between canonical integer programming formulations for these problems and for the TVP.

This paper is organized as follows. In Section 2, we first provide a more formal definition
of the TVP, we recall the two primary integer programs proposed in [5, 6], and we briefly
address further aspects of closely related work. We then present our refined formulations in
Section 3, along with accompanying results on their relaxation strength and the necessity of
certain constraint sets. Our polyhedral results are the subject of Section 4, and we report on
our computational experiments in Section 5. Finally, a brief conclusion is given in Section 6.

2 Preliminaries and Related Work

Let n ∈ N be the number of target sites to be visited in the TVP and let Πn be the set of
all permutations of [n] := {1, . . . , n}. A permutation π ∈ Πn is here treated as a bijective
function that maps each site i ∈ [n] to its position π(i) ∈ [n], and where we conversely denote

S. Mallach 8:3

by π−1(i) the site that is placed at the position i ∈ [n]. The objective function of the TVP
may then be formally written as

max
π∈Πn

n−1∑
i=1

n∑
j=i+1

pπ−1(i)π−1(j) −
n−1∑
i=1

cπ−1(i)π−1(i+1),

or likewise as

max
π∈Πn

∑
i,j∈[n]:π(i)<π(j)

pij −
∑

i,j∈[n]:π(j)=π(i)+1

cij .

As will become apparent in the following, the latter variant is particularly suited to be
implemented by means of common binary decision variables in an integer linear programming
(ILP) formulation. Since such formulations and accompanying polyhedral considerations
are the central subject of this work, we mainly concentrate the exposition of the prevalent
literature on the seminal (and so far, in all conscience, not otherwise resumed) research by
Hildenbrandt [5, 6]. Specifically, he presents several integer programs for the TVP, two of
which are in the focus of his investigations as well as of this paper.

The first, major, model by Hildenbrandt is called TVP-HP, and it combines the central
ingredients of known formulations for the AHPP and the LOP in a canonical way.

max
n−1∑
i=1

n∑
j=i+1

(pijyij + pji(1 − yij)) −
n∑

i=1

n∑
j=1,j ̸=i

cijxij (TVP-HP)

s.t.
n∑

i=1

n∑
j=1,j ̸=i

xij = n − 1 (1)

n∑
j=1,j ̸=i

xij ≤ 1 for all i ∈ [n] (2)

n∑
i=1,j ̸=i

xij ≤ 1 for all j ∈ [n] (3)

yij + yjk − yik ≤ 1 for all i, j, k ∈ [n] : i < j < k (4)
−yij − yjk + yik ≤ 0 for all i, j, k ∈ [n] : i < j < k (5)

xij − yij ≤ 0 for all i, j ∈ [n] : i < j (6)
xji + yij ≤ 1 for all i, j ∈ [n] : i < j (7)

xij ≥ 0 for all i, j ∈ [n] : i ̸= j (8)
xij ∈ {0, 1} for all i, j ∈ [n] : i ̸= j (9)
yij ∈ {0, 1} for all i, j ∈ [n] : i < j (10)

In this light, TVP-HP involves (AHPP) variables xij , for i, j ∈ [n], i ̸= j, where xij = 1
if π(j) − π(i) = 1 (i.e., site j is visited immediately after site i) and xij = 0 otherwise, as
well as (LOP) variables yij , for i, j ∈ [n], i < j, where yij = 1 if π(i) < π(j) (i.e., site j is
visited anytime after site i) and yij = 0 if π(j) < π(i). Assuming that the AHPP variables
take on binary values, the constraints (1)–(3) reflect that n − 1 immediate successor relations
(“edges”, when considering the permutation as a path) are established while each site has at
most one successor and at most one predecessor. Likewise, assuming that the LOP variables
take on binary values, the three-di-cycle inequalities (4) and (5) are known to be sufficient in

ATMOS 2025

8:4 Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

order to uniquely determine a permutation π ∈ Πn [3]. In [5, 6], Hildenbrandt points out that
the linking of the two variable sets by means of inequalities (6) and (7) excludes disconnected
subpaths (respectively subtours) from the feasible set, i.e., they ensure that the binary values
of the AHPP variables are in one-to-one correspondence with a directed Hamiltonian path. In
the original presentation of TVP-HP in these references, the constraints (7) are nevertheless
missing despite they are hence necessary. At the same time, they are included in the list of
facet-defining inequalities for the related polytope that Hildenbrandt describes explicitly for
n = 4 and they also have been recognizably included when carrying out his computational
experiments with TVP-HP.

The second model in Hildenbrandt’s focus is an extended formulation, called TVP-E.

max
n−1∑
i=1

n∑
j=i+1

(pijyij + pji(1 − yij)) −
n∑

i=1

n∑
j=1,j ̸=i

cijxij (TVP-E)

s.t. (1)–(6), (8)–(10)
bjik + bkji + bjki + yij = 1 for all i, j, k ∈ [n] : i < j, k ̸= {i, j} (11)

xij − bijk − bkij ≤ 0 for all i, j, k ∈ [n] : i ̸= j ̸= k ̸= i (12)
bikj ≥ 0 for all i, j, k ∈ [n] : i ̸= j ̸= k ̸= i (13)
bikj ∈ {0, 1} for all i, j, k ∈ [n] : i ̸= j ̸= k ̸= i (14)

Specifically, he obtains TVP-E from TVP-HP by extending the latter in two steps.
First, he introduces the additional variables bikj , for all i, j, k ∈ [n], |{i, j, k}| = 3, with the
interpretation that bikj = 1 if π(i) < π(k) < π(j) (i.e., k is ranked between i and j while i is
ranked before j) and bikj = 0 otherwise. Second, he appends the constraint sets (11) and (12)
to link these new variables to the AHPP respectively LOP variables. Thereby, the intuition
behind the inequalities (12) is that if site j is visited immediately after site i, then any other
site k must be visited either before or after both i and j. Notably, the constraints (11) (only)
ensure that, if π(j) < π(i), then any other site k must be placed either before, in between,
or after this accordingly ordered pair. The reverse direction, i.e., bijk + bkij + bikj = 1 if
π(i) < π(j), is however missing.

Indeed, solutions where all the six b-variables associated with a fixed triple of sites
i, j, k ∈ [n], i < j < k, are zero, are thus verifiably feasible for TVP-E (in addition to those
where these variables receive values that are consistent with the ordering expressed in the
LOP variables). Consequently, a feasible solution to the TVP unintendedly corresponds
to more than one feasible solution of TVP-E (which we will cure in Section 3). Since a
feasible TVP solution is correctly (and unambiguously) encoded in the integral AHPP- and
LOP-variables though, and since the b-variables do not affect the objective function, one may
still derive optimum solutions from TVP-E. Apart from that, the inequalities (7) are again
not included in the original presentation of TVP-E in [5, 6], and in this case they are indeed
negligible as they are implied by (11) and (12).

Even despite the unintended additional solutions, the upper bound on the optimal value
obtained when solving the continuous relaxation (i.e., the linear programming, or short LP,
relaxation that results from neglecting all integrality restrictions) of TVP-E is provably
at least as strong as the one obtained when solving the relaxation of TVP-HP, and is
experimentally observed in [5, 6] to be usually significantly stronger. Nevertheless, TVP-E
has not been further considered as an option for a branch-and-cut approach in these references,
due to the reported high solution times of its relaxation. As will be demonstrated in the
following sections, these solution times can however be improved by a careful reformulation.

S. Mallach 8:5

Another observation that rather appears as a detail in [5], and that will play an important
role for the refinement of TVP-HP, is that the three-di-cycle inequalities (4), (5) can be
extended in the here given common context with the AHPP-variables. These extended
three-di-cycle inequalities can be written as follows:

yij + yjk − yik + xji ≤ 1 for all i, j, k ∈ [n] : i < j < k (15)
−yij − yjk + yik + xij ≤ 0 for all i, j, k ∈ [n] : i < j < k (16)

yij + yjk − yik + xkj ≤ 1 for all i, j, k ∈ [n] : i < j < k (17)
−yij − yjk + yik + xjk ≤ 0 for all i, j, k ∈ [n] : i < j < k (18)

yij + yjk − yik + xik ≤ 1 for all i, j, k ∈ [n] : i < j < k (19)
−yij − yjk + yik + xki ≤ 0 for all i, j, k ∈ [n] : i < j < k (20)

For completeness, we remark that Hildenbrandt describes a further model that combines
the notion of a subsequently visited pair of sites and other sites ranked (somewhere) after
the respective pair, as well as a formulation based on distance variables. However, these
formulations were found to be significantly inferior to TVP-HP and TVP-E in [5], whence
we refer to this reference for further details. Finally, adapted formulations for the case where
the TVP is rather considered as a combination of the LOP and the ATSP are stated in [1, 5].

3 Three Refined Integer Programming Formulations for the TVP

In this section, our efforts are directed to derive integer programming formulations for the
TVP that fulfill two requirements. The first one is that the feasible solutions of a formulation
are in one-to-one correspondence with those of the TVP, and, to achieve compactness and
strength at the same time, the second one is that a formulation solely consists of equations
and inequalities which take part in a minimal description of the polytope that is given as
the convex hull of the (incidence) vectors describing these solutions. The latter condition
subdivides into the two necessities that each equation must be part of a minimum equation
system for the respective polytope and that every inequality must induce a facet of it. In total,
we present three according formulations which are subject to an experimental comparison in
Section 5. Besides that, the accompanying analysis of the impact of certain equation and
inequality classes serves as an intermediate step to the polyhedral results in Section 4.

As a first formulation, we propose TVP-XY, which is obtained from TVP-HP by replacing
the three-di-cycle inequalities (4) and (5) with their extended pendants (15)–(20).

max
n−1∑
i=1

n∑
j=i+1

(pijyij + pji(1 − yij)) −
n∑

i=1

n∑
j=1,j ̸=i

cijxij (TVP-XY)

s.t. (1)–(3), (6)–(10), (15)–(20)

This comparably small change is motivated as follows. In [5, 6], Hildenbrandt defines the
polytope

P n
TV := conv

{
(x, y) ∈ {0, 1}2(n

2)+(n
2) : (x, y) satisfies (1)–(7)

}
(related to TVP-HP) whose vertices are in one-to-one correspondence with the incidence
vectors of the feasible solutions to the TVP, expressed in AHPP- and LOP-variables. Also, the
equation (1) has been identified as a minimum equation system for P n

TV, and the inequalities
(2), (3), (6) and (7) have been identified as facets of P n

TV, n ≥ 4. However, the inequalities (4)
and (5) do not define facets of P n

TV, n ≥ 4, whereas the inequalities (15)–(20) do (facet class

ATMOS 2025

8:6 Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

29 in [5]). Their exchange thus ensures the fulfillment of the second requirement mentioned
above. In addition, we propose and explicitly state TVP-XY to foster its consideration
and evaluation as a fundamental formulation on its own, which is also supported by our
computational results in Section 5. As opposed to that, in [5, 6], the replacement of (4)
and (5) by (15)–(20) is rather treated as optional, and the resulting computational effect,
especially regarding the upper bounds obtained from the continuous relaxation, cannot be
sufficiently deduced respectively distinguished from other effects that are subject to TVP-HP
simultaneously.

While all constraint classes of TVP-XY take part in a minimal description of P n
TV, it is

noteworthy that (as opposed to TVP-HP) TVP-XY is yet not irreducible in the sense that its
feasible solutions remain in one-to-one correspondence with those of the TVP when removing
inequalities (2) and (3). This is formally recorded in Proposition 1. In other words, these
inequalities are kept in TVP-XY only to strengthen its continuous relaxation. Moreover, by
construction, the latter provides an upper bound on the optimal value that is at least as
strong as the one of the continuous relaxation of TVP-HP.

▶ Proposition 1. Suppose that (x, y) is binary and satisfies (1), (6), (7), and (15)–(20).
Then, (x, y) is feasible for TVP-XY, i.e., it satisfies (2), (3) as well.

Proof. By the integrality of y and the extended three di-cycle inequalities (15)–(20), the
position of each site i ∈ [n] is given by π(i) = 1 +

∑
k∈[n],k<i yki +

∑
k∈[n],i<k(1 − yik).

W.l.o.g., let i be the site at position π(i) ∈ {1, . . . , n − 1}, and let k be its successor, i.e.,
π(k) = π(i) + 1. Then yik = 1, and for any other site j ∈ [n], j ≠ {i, k}, either yij = 0
(respectively yji = 1 if j < i) or yjk = 0 (respectively ykj = 1 if k < j), but not both.
If i < j < k, it thus follows directly from (16) that xij = 0, otherwise the same result
is established by another instance of (15)–(20) w.r.t. the matching index order. The only
variable that appears in (2) and that is not implied to be zero like this is xik, hence (2) is
satisfied. Finally, if π(i) = n, then xij = 0 for all j ∈ [n], j ̸= {i, k}, due to (6) and (7), so
(2) is satisfied again. The proof for (3) is analogous. ◀

Our second and third formulations, called TVP-XYB and TVP-XYBR, respectively,
relate to TVP-E, i.e., reflect an extended formulation with asymmetric betweenness variables.
Since TVP-E does not fulfill the first requirement stated at the beginning of this section, we
first alter it to TVP-XYB which reads as follows:

max
n−1∑
i=1

n∑
j=i+1

(pijyij + pji(1 − yij)) −
n∑

i=1

n∑
j=1,j ̸=i

cijxij (TVP-XYB)

s.t. bkij + bikj + bijk + bkji + bjki + bjik = 1 for all i, j, k ∈ [n] : i < j < k (21)
bijk + bkij + bikj − yij = 0 for all i, j, k ∈ [n] : i < j, k ̸= {i, j} (22)

(1)–(3), (8)–(10), (12), (13)

Specifically, the addition of the equations (21) ensures that for each triple of sites i, j, k,
i < j < k, exactly one of their six possible orderings is enforced. In addition, equations (22)
ensure bijk + bkij + bikj = 1 if π(i) < π(j) which was the missing part in TVP-E. When
combined with (21), they imply equations (11), and that all b-variables are enforced to be
binary if all the y-variables are (see also Theorem 4 below) whence we omit (14).

Since the feasible solutions of TVP-XYB are thus in one-to-one correspondence with
those of the TVP, we now define the associated polytope given by the convex hull of the
respective incidence vectors involving components for all three variable classes. To emphasize
that it is actually not precisely the same polytope that Hildenbrandt defined in [5, 6] related
to TVP-E, which he called P n

ETV, we call the here considered polytope P n
TVE which is:

S. Mallach 8:7

P n
TVE := conv

{
(x, y, b) ∈ {0, 1}2(n

2)+(n
2)+6(n

3) : (x, y, b) satisfies (1)–(3), (12), (21)–(22)
}

Since P n
TVE is defined via integral vectors, the (extended) three-di-cycle inequalities could

be part of its definition but may also be omitted as a consequence of Theorem 3 below. For
the same reason and in fulfillment of the second requirement stated at the beginning of this
section, they are also not part of TVP-XYB. The equations (21) are added to TVP-XYB
because they are part of a minimum equation system for P n

TVE, n ≥ 4, as is shown in
Theorems 7, 8 (Corollary 9), and Theorem 11 in Section 4. In addition, it will become visible
from the proofs of the Theorems 2 and 3 that they have, in combination with equations (11),
or likewise with equations (22), a crucial impact on the strength of TVP-XYB, respectively
its continuous relaxation. Further, the inequalities (2), (3), and (12) are all facet-defining
for P n

TVE (with a special exception regarding (2) and (3) for n = 4), see also Theorems 13
and 14 in Section 4. However, inequalities (2), (3) are again dispensable in terms of retaining
the one-to-one correspondence with the feasible solutions of the TVP, since an analogue of
Proposition 1 is readily at hand for TVP-XYB given Theorems 2 and 3 whose proofs do not
rely on (2) and (3). So again these inequalities are kept in TVP-XYB only to strengthen its
continuous relaxation.

▶ Theorem 2. Let (x, y, b) be feasible for the continuous relaxation of TVP-XYB and n ≥ 4.
Then, for all i, j ∈ [n], i < j, xij − yij ≤ 0 and xji + yij ≤ 1.

Proof. We have xij ≤ bijk+bkij ≤ yij where the first relation follows from (12) and the second
follows from (22). Moreover, (22) and (21) together imply the equation (11). Combining the
latter with (12) again, we obtain xji ≤ bjik + bkji ≤ 1 − yij . ◀

▶ Theorem 3. Let (x, y, b) be feasible for the continuous relaxation of TVP-XYB and n ≥ 4.
Then (x, y, b) satisfies the extended three-di-cycle inequalities (15)–(20).

Proof. Fix some i, j, k ∈ [n] where i < j < k. We prove the statement explicitly for (15) and
(16) while the other cases are analogous. To this end, we first combine the instances of (22)
respectively (11), depending on the index order, as follows:

bkij + bijk + bikj = yij

bijk + bjki + bjik = yjk

bkij + bjki + bkji = 1 − yik

2bkij + 2bijk + 2bjki + bikj + bjik + bkji = 1 + yij + yjk − yik

Substituting, in this sum, for the reordering bikj + bjik + bkji = 1 − bkij − bijk − bjki of
(21), we obtain the “base equation” bkij + bijk + bjki = yij + yjk − yik.

Then, we substitute for bjki based on accordingly resolving the equation bjik + bkji +
bjki + yij = 1 (which is (11) for i < j and k) and rearranging terms. This gives

bkij + bijk︸ ︷︷ ︸
≤yij

+1 − yij = yij + yjk − yik + bjik + bkji︸ ︷︷ ︸
≥xji

Due to (12), the right-hand side of this equation is at least as large as yij + yjk − yik + xji,
which is the left-hand side of (15), and clearly, the left-hand side of the equation is smaller
than or equal to one.

ATMOS 2025

8:8 Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

To show that (16) is satisfied as well, we first negate the base equation and substitute
again for bjki as above. This gives

bjik + bkji︸ ︷︷ ︸
≤1−yij

−1 + yij = −yij − yjk + yik + bkij + bijk︸ ︷︷ ︸
≥xij

.

Again by (12), we have −bkij − bijk ≤ −xij , i.e., the right-hand side of the equation is as
least as large as −yij − yjk + yik + xij , which is the left-hand side of (16), while the left-hand
side of the equation is clearly non-positive. ◀

A further impression on the strength of the equations (21) and (22), or (21) and (11),
becomes apparent when considering a natural relation between TVP-XYB (TVP-E) and
formulations for the Asymmetric Betweenness Problem as well as the Quadratic Linear
Ordering Problem [8]. This relation is given by the correspondence bijk = yijyjk for all
i, j, k ∈ [n] : i ̸= j ̸= k ̸= i, that applies to every feasible solution (here, yij is to be replaced
by 1 − yji if j < i and yjk is to be replaced by 1 − ykj if k < j). In this respect, the
equations (21) and (22), respectively (21) and (11), imply that the b-variables are equal to
the associated product term when the y-variables take on binary values. This follows directly
from the following result (a proof can be derived from an analogue result in [8]):

▶ Theorem 4. Let (x, y, b) be a feasible solution to the continuous relaxation of TVP-
XYB. Then, for all i, j, k ∈ [n], |{i, j, k}| = 3, it holds that bijk ≤ yij, bijk ≤ yjk, and
yij + yjk − bijk ≤ 1

Finally, we derive our third formulation TVP-XYBR from TVP-XYB which has less
variables and is more amenable to a cutting plane approach. To this end, we employ the
equations (21) and (22) to project out the variables bijk, bkji, bjki, and bjik. More precisely,
for each selection of i, j, k ∈ [n], i < j < k, we first build the intermediate set of linearly
independent equations which imply (21) and (22), see also [6, 8]:

bkij + bikj + bijk − yij = 0 for all i, j, k ∈ [n] : i < j < k

bjik + bikj + bijk − yik = 0 for all i, j, k ∈ [n] : i < j < k

bjik + bjki + bijk − yjk = 0 for all i, j, k ∈ [n] : i < j < k

bkji + bjki + bjik + yij = 1 for all i, j, k ∈ [n] : i < j < k

Then, we resolve them for the aforementioned variables.

bijk = −bkij − bikj + yij for all i, j, k ∈ [n] : i < j < k

bjik = bkij − yij + yik for all i, j, k ∈ [n] : i < j < k

bjki = bikj − yik + yjk for all i, j, k ∈ [n] : i < j < k

bkji = 1 − yjk − bkij − bikj for all i, j, k ∈ [n] : i < j < k

TVP-XYBR is then obtained from TVP-XYB by eliminating equations (21) and (22), by
substituting each of the aforementioned variables with the respective right-hand side in the
remaining constraints of TVP-XYB, and by adding inequalities to enforce the non-negativity
of these right-hand sides which gives (22a)–(22d).

S. Mallach 8:9

max
n−1∑
i=1

n∑
j=i+1

(pijyij + pji(1 − yij)) −
n∑

i=1

n∑
j=1,j ̸=i

cijxij (TVP-XYBR)

s.t.
n∑

i=1

n∑
j=1,j ̸=i

xij = n − 1

n∑
j=1,j ̸=i

xij ≤ 1 for all i ∈ [n]

n∑
i=1,j ̸=i

xij ≤ 1 for all j ∈ [n]

bkij + bikj − yij ≤ 0 for all i, j, k ∈ [n] : i < j < k (22a)
−bkij + xij − yik ≤ 0 for all i, j, k ∈ [n] : i < j < k (22b)
−bikj + xik − yjk ≤ 0 for all i, j, k ∈ [n] : i < j < k (22c)
bkij + bikj + yjk ≤ 1 for all i, j, k ∈ [n] : i < j < k (22d)
xij + bikj − yij ≤ 0 for all i, j, k ∈ [n] : i < j < k (12a)

xik − bikj − bkij + yij − yik ≤ 0 for all i, j, k ∈ [n] : i < j < k (12b)
xji + yij + yjk − yik + bikj ≤ 1 for all i, j, k ∈ [n] : i < j < k (12c)
xjk + yik − yjk − yij + bkij ≤ 0 for all i, j, k ∈ [n] : i < j < k (12d)

xki − bkij − bikj + yik − yjk ≤ 0 for all i, j, k ∈ [n] : i < j < k (12e)
xkj + bkij + yjk ≤ 1 for all i, j, k ∈ [n] : i < j < k (12f)

xij ≥ 0 for all i, j ∈ [n] : i ̸= j

bikj , bkij ≥ 0 for all i, j, k ∈ [n] : i < j < k

xij ∈ {0, 1} for all i, j ∈ [n] : i ̸= j

yij ∈ {0, 1} for all i, j ∈ [n] : i < j

4 Polyhedral Results for P n
TVE

In this section, we investigate the polytope P n
TVE defined in Section 3 and provide fundamental

results concerning its (minimal) description by linear equations and inequalities. As a
byproduct, these results also clarify some statements in [5, 6] about the polytope P n

ETV
considered there.

Our starting point is the following result by Hildenbrandt:

▶ Lemma 5 (Lemma 4.11 in [5]). For n ≥ 4, the equations (1), (21), and (22) are linearly
independent.

Deviating from the presentation in [5, 6], we however find that, if n = 4, then there is
another set of equations that is valid for all incidence vectors of feasible solutions to the
TVP consistently expressed in x-, y-, and b-variables.

▶ Theorem 6. The following equations are valid for P 4
TVE:∑

j∈[4]
j ̸=i

(xij + xji) −
∑
j∈[4]
i<j

yij −
∑
j∈[4]
j<i

(1 − yji) +
∑
j∈[4]
j ̸=i

∑
k∈[4]

i ̸=k ̸=j

bijk = 1 for all i ∈ [4] (23)

ATMOS 2025

8:10 Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

Proof. Let < i1, i2, i3, i4 > be a permutation of {1, 2, 3, 4}. Then for the site ij at the j-th
position,

the number of path-neighbors is
∑

ℓ∈[4],ℓ̸=ij
(xijℓ + xℓij

) = k with k = 2 if j ∈ {2, 3} and
k = 1 if j ∈ {1, 4},
the negated total number of successor sites is −

∑
ℓ∈[4],ij<ℓ yijℓ −

∑
ℓ∈[4],ℓ<ij

(1 − yℓij
) =

j − 4,
the number of successor site-pairs is

∑
ℓ∈[4],ℓ̸=ij

∑
m∈[4],ij ̸={m,ℓ} bijℓm = k with k = 0 if

j ∈ {3, 4}, k = 1 if j = 2, and k = 3 if j = 1.
Therefore, for any fixed j ∈ {1, 2, 3, 4}, the left-hand side of (23) evaluates to 1. ◀

The following theorem further establishes that the equations (1), (21), (22) do not
constitute a minimum equation system for P 4

TVE, as there is a linearly independent selection
of equations (23) that is also linearly independent from those.

▶ Theorem 7. For n = 4, the previously known equations (1), (21), (22), and three of the
four new equations (23) are linearly independent.

Proof. Consider the following excerpt of the equation system for the variables x12, x41, x42
and x43 (which only appear in (1) and (23)). Here (∗) means that the respective entries may
be neglected for the argumentation.

Eq. x12 . . . x41 x42 x43 . . .

(1) 1 1 . . . 1 1 1 1 (∗) = n − 1
(21) 0 0 . . . 0 0 0 0 (∗) = 1
(22) 0 0 . . . 0 0 0 0 (∗) = 0
(23)1 1 (∗) 1 0 0 (∗) = 1
(23)2 1 (∗) 0 1 0 (∗) = 1
(23)3 0 (∗) 0 0 1 (∗) = 1

The 3x3 identity submatrix for the variables (columns) x41, x42 and x43 gives linear
independence for (23)1–(23)3 among each other as well as from all rows except the first one,
while the column for x12 shows that the first row cannot be combined from (23)1–(23)3 as
well. ◀

The instances of (1), (21), (22), and (23) considered in the proof of Theorem 7 amount
to 1 + 12 + 4 + 3 = 20 equations in total. Since there are 4 · 3 +

(4
2
)

+ 6
(4

3
)

= 42 variables in
TVP-XYB, Theorem 7 implies that dim P 4

TVE ≤ 42 − 20 = 22 (while the dimension of P 4
ETV

was stated to be 25 in [5, 6] which cannot be the case irrespective of its different definition).

▶ Theorem 8. The dimension dim P 4
TVE of P 4

TVE is equal to 22.

Proof. Since there are 24 permutations of four sites, P 4
TVE has 24 vertices. Let M be the

matrix having the incidence vectors of these vertices as its rows. Then dim P 4
TVE is equal to

the affine rank of M , denoted arank(M). We first determine that rank(M) = 23, i.e., 23 of
the 24 vertices are linearly independent. Moreover, (0, 0, 0) ̸∈ P 4

TVE, so P 4
TVE is spanned by

22 affinely independent vectors, and arank(M) = rank(M) − 1 = 22. ◀

▶ Corollary 9. For n = 4, a minimum equation system for P 4
TVE is given by (1), (21), (22),

and three of the four equations (23).

S. Mallach 8:11

To complete the picture, we verified that the following set of inequalities from appendix
A.2 in [5] and (12) together induce all the facets of P 4

TVE:

4∑
ℓ=1,ℓ̸=i

−xiℓ − bjki − bkji ≤ −1 for all i, j, k ∈ [4] : i ̸= j < k ̸= i (24)

4∑
ℓ=1,ℓ̸=i

−xℓi − bijk − bikj ≤ −1 for all i, j, k ∈ [4] : i ̸= j < k ̸= i (25)

xik + xij + xjk + bkji + biℓk − bijk ≤ 1 for all i, j, k, ℓ ∈ [4] : |{i, j, k, ℓ}| = 4 (26)
−xji − xjℓ + xℓk + bkjℓ + bℓik + bℓji

−bℓjk − bℓkj ≤ 0 for all i, j, k, ℓ ∈ [4] : |{i, j, k, ℓ}| = 4 (27)
−xji − xjℓ − xki − xkj − xkℓ + bkjℓ

+bℓji − bℓjk ≤ −1 for all i, j, k, ℓ ∈ [4] : |{i, j, k, ℓ}| = 4 (28)
xji + xki + xkj + xkℓ + xℓi − bjiℓ

+bjℓk − bkℓi − bℓik + bℓjk − bℓki ≤ 1 for all i, j, k, ℓ ∈ [4] : |{i, j, k, ℓ}| = 4 (29)

In total, one obtains 144 inequalities. The inequality class “2” listed in appendix A.2 of [5] is
not facet-defining for P 4

TVE (the dimension of their associated faces is 10).
The following lemma will simplify the proof of the subsequent theorem, and it follows

directly from according results for the HPP polytope [10] and the LOP polytope [3] of order
n, respectively.

▶ Lemma 10. For n ≥ 4, there is no valid equation for P n
TVE that has non-zero coefficients

for x-variables only and is linearly independent from (1), or that has non-zero coefficients
for y-variables only.

▶ Theorem 11. For n ≥ 5, the equations (1), (21) and (22) constitute a minimum equation
system for P n

TVE.

Proof. W.l.o.g., we consider the reduced space of the d(n) := n(n − 1) +
(

n
2
)

+ 2
(

n
3
)

variables
associated with TVP-XYBR, respectively with the projection P̄ n

TVE of P n
TVE onto the x,

y, bkij and bikj variables (which eliminates the equations (21) and (22), as described in
Section 3).

Let Mn be the n! × d(n) zero-one matrix whose rows consist of the vertices of P̄ n
TVE,

i.e., the incidence vectors of all permutations π ∈ Πn w.r.t. the aforementioned variables.
Moreover, let en! be the all-ones vector with n! components. In the following, the first n(n−1)
columns of Mn are referred to as X = (Xij), the following

(
n
2
)

columns as Y = (Yij), and
the final 2

(
n
3
)

columns are referred to as B = [(Bkij)(Bikj)], i.e, Mn = [X Y B].
Suppose that every (vertex) (x, y, b) ∈ P̄ n

TVE satisfies the equation αTx + βTy + γTb = δ.

Then (α, β, γ, δ) is a solution to the system Mn

(
α
β
γ

)
= δen!, and conversely, if (α, β, γ, δ) is

a solution to this system, then αTx + βTy + γTb = δ is satisfied by every (x, y, b) ∈ P̄ n
TVE.

Now in order to prove the theorem, by Lemma 10, it suffices to show that there does not
exist an equation that is valid for P̄ n

TVE, and that either (a) links a y-variable with either
x- or b-variables or both, or that (b) links only b-variables among each other, or b- with
x-variables.

ATMOS 2025

8:12 Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

We first show this for the case n = 5, and for convenience, we write the system M5

(
α
β
γ

)
=

δe5! more explicitly as:
5∑

i=1

5∑
j=1,j ̸=i

αijXij +
4∑

i=1

5∑
j=i+1

βijYij +
3∑

i=1

4∑
j=i+1

5∑
k=j+1

(γkijBkij + γikjBikj) = δe5! (∗)

We may prove (a) by showing that all solutions to (∗) have β = 0. To this end, consider
(∗) as the set of constraints of a linear program in the variables α, β, γ, δ, where we may
w.l.o.g. add the restriction δ ≥ 0 since the other variables are free in their sign. Moreover,
for all i, j ∈ [n], i < j, consider the (objective) function fij(β) := eT

ijβ, where eij is the unit
vector of dimension

(
n
2
)

(here dimension 10) with the 1-entry in the component associated
with βij . In other words, βij is the only variable obtaining an objective coefficient of one
while all other variables receive a zero coefficient.

By solving the so defined LPs with objective max fij(β) and with objective min fij(β)
for all i, j ∈ [5], i < j, we obtain that the optimal value is always f∗

ij(β) = 0. This certifies

that truly no solution to M5

(
α
β
γ

)
= δe5! with β ̸= 0 exists, as such a solution was rewarded

by a positive or negative objective value in at least one of the considered LPs (if it existed,
such an LP would actually be unbounded).

To prove (b), we follow the same approach except for choosing the (objective) functions
fkij(γ) := eT

kijγ and fikj(γ) := eT
ikjγ for all 1 ≤ i < j < k ≤ 5 (e has now dimension 2

(
n
3
)
,

here 20). Each of the 40 LPs obtained in total for maximization and minimization is again

feasible with objective value zero. Thus, there is also no solution to M5

(
α
β
γ

)
= δe5! with

γ ̸= 0.
Finally, we complete the proof by showing that if the claim holds for n = ℓ, ℓ ≥ 5, then

it holds as well for n = ℓ + 1. For the purpose of deriving a contradiction, suppose that

for n = ℓ + 1 there exists a solution to Mn

(
α
β
γ

)
= δen! where β ̸= 0 (γ ̸= 0). W.l.o.g.,

let βij ̸= 0 (γikj ≠ 0), and choose a site v ̸∈ {i, j} (v ̸∈ {i, j, k}). Suppose that we fix v to
the last (or first) position. Then certain columns of X, Y, and B, which do not include Yij

(Bikj) can be fixed to zero or one as well. Eliminating these variables, the remaining ones
correspond (after renumbering) to a TVP with n − 1 sites while the resolved equation still
has βij ̸= 0 (γikj ̸= 0) and is feasible for all vertices of P̄ n−1

TVE – a contradiction. ◀

We thus conclude the dimension stated by Hildenbrandt in [5, 6] (for P n
ETV) holds true

for P n
TVE and n ≥ 5.

▶ Corollary 12. For n ≥ 5, dim P n
TVE = 2

(
n
2
)

+
(

n
2
)

+ 6
(

n
3
)

− 1 − (n − 2) ·
(

n
2
)

−
(

n
3
)

=
n(n−1)

2 · (2n+5)
3 − 1.

In the remainder of this section, we provide the justifications for our decisions in Section 3
to keep the inequalities (2) and (3), as well as the inequalities (12), in our proposed
formulations. While we prove the latter ones to be facet-defining for P n

TVE, n ≥ 4, we
emphasize the special case that (2) and (3) do not define facets of P 4

TVE (given the additional
equations), but do define facets for P n

TVE, n ≥ 5.

▶ Theorem 13. For n ≥ 5, the inequalities (2) and (3) define facets of P n
TVE.

S. Mallach 8:13

Proof. Let Sn
i = {(x, y, b) ∈ P n

TVE :
∑n

j=1,j ̸=i xij = 1} be the face of P n
TVE induced by (2)

w.r.t. i ∈ [n]. It is easy to see that, for each i ∈ [n], Sn
i is spanned by all the n! − (n − 1)!

incidence vectors that belong to the permutations of [n] where i is ranked at any but the
last position, as these satisfy the corresponding instances of (2) with equality.

Specifically, for n = 5, we have dim P 5
TVE = 49, and it may be verified for each i ∈

{1, . . . , 5}, that the matrix M having the aforementioned 5! − 4! = 96 incidence vectors1 as
its rows has rank 49. Therefore, and since (0, 0, 0) ̸∈ S5

i , dim(S5
i) = rank(M) − 1 = 48, so

all the instances of (2) define facets of P 5
TVE.

Given this basis, let the statement of the theorem be true for dimension n, but suppose, for
the purpose of showing a contradiction, that the inequality (2) w.r.t. some i ∈ [n+1] does not
define a facet of P n+1

TVE. Then this implies (for a proof see e.g. the standard textbook [9]) the
existence of an equation αTx + βTy + γTb = δ that is linearly independent from the equations
(1), (21), and (22) forming the minimum equation system according to Theorem 11 as well
as from

∑n+1
j=1,j ̸=i xij = 1, and that is valid for all incidence vectors in Sn+1

i . Among these
incidence vectors, there are n! many that correspond to the permutations where i ∈ [n + 1]
is ranked first. Suppose now that we fix i to the first position by setting variables in (x, y, b)
accordingly, and thus obtain a new equation from αTx + βTy + γTb = δ that is still feasible
for the n! considered incidence vectors. Then, however, after re-indexing, this equation must
also be feasible for all vertices of P n

TVE, in terms of the remaining TVP without the fixed
i ∈ [n + 1], which is a contradiction to the minimality of the equation system according to
Theorem 11.

The proof for the inequalities (3) is analogous. ◀

▶ Theorem 14. For n ≥ 4, the inequalities (12) define facets of P n
TVE.

Proof. Let Sn
ijk = {(x, y, b) ∈ P n

TVE : xij − bkij − bijk = 0} be the face of P n
TVE induced by

(12) w.r.t. i, j, k ∈ [n], |{i, j, k}| = 3.
Each Sn

ijk is spanned by all the incidence vectors belonging to the permutations of [n]
except those where i is ranked non-immediately before j and k is ranked either before i or
after j.

Specifically, for n = 4, 5, 6, we verified explicitly that the matrices having these incidence
vectors as their rows have rank 22, 49, and 84, respectively, whence inequalities (12) define
facets of P 4

TVE, P 5
TVE and P 6

TVE.
Given this basis, let the statement of the theorem be true for dimension n, but suppose, for

the purpose of showing a contradiction (starting from n = 5), that the inequality (12) w.r.t.
some i, j, k ∈ [n + 2], |{i, j, k}| = 3, does not define a facet of P n+2

TVE. Then this implies the
existence of an equation αTx + βTy + γTb = δ that is linearly independent from the equations
(1), (21), and (22), forming the minimum equation system according to Theorem 11, as well
as from the equation xij − bkij − bijk = 0, and that is valid for all incidence vectors in Sn+2

ijk .
Among these incidence vectors, there are n! many that correspond to the permutations where
i ∈ [n + 2] is ranked first and where j ∈ [n + 2] is ranked last since then xij = bkij = bijk = 0.
Suppose now that we fix i to the first and j to the last position by setting variables in (x, y, b)
accordingly, and thus obtain a new equation from αTx+βTy +γTb = δ that is still feasible for
the n! considered incidence vectors. Then, however, after re-indexing, this equation must also
be feasible for all vertices of P n

TVE, i.e. regarding the remaining TVP without i and j, which
is a contradiction to the minimality of the equation system according to Theorem 11. ◀

1 For n = 4, there are only 4! − 3! = 18 such incidence vectors whence these inequalities do not define
facets of P 4

TVE.

ATMOS 2025

8:14 Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

5 Computational Experiments

Given the formulations from Section 3 and the according changes when compared to their
relatives, we provide an impression on the computational effects when they are solved with
a branch-and-cut algorithm implemented with a state-of-the-art ILP solver. Specifically,
TVP-XY involves a larger number of constraints than TVP-HP while it provides a stronger
continuous relaxation, and it is of interest whether this translates into a net improvement
regarding the ability to solve the ILP. The continuous relaxation of TVP-XYB is stronger
than the one of TVP-E while TVP-XYB is also more compact at the same time, but the
solution times for the relaxation of TVP-XYB are still high when compared to TVP-XY.
Here, the primary question is whether the variant TVP-XYBR, which consists of inequalities
only and is thus particularly suited to be solved by a cutting plane approach, can be solved
quickly enough such that the strong upper bounds provided by its relaxation make it truly
competitive to TVP-XY.

To address these questions, we employ the publicly available TVP instances that have
been used in [5, 6] as well. They involve between 26 and 45 sites and follow the naming
scheme “XX_OOO_N_ID” where “XX” is a label that defines lower and upper bounds
on the ratio of the objective values of an optimal LOP solution fLOP and an optimal TSP
solution fTSP, “OOO” encodes the number of random interchanges of preference values when
creating the instance, “N” is the number of sites, and finally “ID” is a running index. Let
r = fLOP/fTSP. The label “XX” is “ER” if 1

2 ≤ r ≤ 3
2 , “LB” if 3

2 < r ≤ 3 and “LD” if 3 < r.
The label “OOO” is “CFO” if the preference values were left unchanged, “MCO” if 1

4 N2

random interchanges were made among them, and “BCO” if 1
2 N2 interchanges took place.

For further details on how the distance and preference values were derived, we refer to [5].

To solve the LP relaxations and ILPs, we use Gurobi (here in version 12.0.1), restricted
to a single thread and with the additional parameter settings Seed=1, and PreCrush=1, as
well as LazyConstraint=1 and MIPGap= 10−6 in the ILP case. For each formulation, the
respective inequality classes of cubic cardinality are dynamically separated by enumeration,
and all violated inequalities found are passed to Gurobi. More precisely, they are manually
added when solving only the LP relaxation and then trigger a warmstart from the respective
solution, whereas when solving the ILP, they are handed over via the callback mechanism
both for the branch-and-bound node relaxations and as lazy constraints. For TVP-HP, these
separated constraints are the three-di-cycle inequalities (4)–(5), whereas for TVP-XY the
extended three-di-cycle inequalities (15)–(20) are separated. For TVP-XYB the inequalities
(12) are separated, and for TVP-XYBR, first the inequalities (22a)–(22d) and, if none of
these are violated, then inequalities (12a)–(12f) are separated. When solving the continuous
relaxations, any of these dynamically added inequalities is also removed again if its left-hand
side, evaluated for the respective current solution, is at least by 10−4 smaller than its right-
hand side and if it was not added just in the previous iteration. In case of the ILP runs, the
time limit for each instance was set to 15 minutes and the test system is equipped with an
AMD Ryzen 9 9900X processor, 96 GB RAM, and Ubuntu 24.04.2 LTS.

In Table 1, we list those instances where at least one of the models was solved to proven
optimality within this time frame. The first two columns display the name and the value of
an optimal solution (OPT) for the respective instance. Then, for each of the formulations
there is a block of columns. The first column “ILP [s/%]” shows either the time needed to
solve the ILP (in seconds) or, if the time limit was reached, in parenthesis the remaining gap
between the global upper bound (UB) obtained on the optimal value at termination, and the

S. Mallach 8:15

actual optimal value, calculated as 100UB−OPT
|OPT|

2. The second column “LP Bound” shows
the upper bound provided by the continuous relaxation of the respective formulation. This
column is omitted for TVP-XYBR since the bound is the same as with TVP-XYB. Finally,
the column “LP [s]” displays the time, in seconds, needed to solve the continuous relaxation.

Table 1 Computational results for the formulations TVP-HP, TVP-XY, TVP-XYB, and TVP-
XYBR, and all instances from the testbed that could be solved with at least one formulation (if
there is only one, then it is always TVP-XY) within 15 minutes.

TVP-HP TVP-XY TVP-XYB TVP-XYBR
Inst. OPT ILP [s / %] LP Bound LP [s] ILP [s / %] LP Bound LP [s] ILP [s / %] LP Bound LP [s] ILP [s / %] LP [s]
ER_CFO_30_1 -7300 67.80 91.17 0.01 32.96 -3469.20 0.03 141.50 -4688.47 3.32 156.14 0.62
ER_CFO_30_2 -11803 (15.37) 480.50 0.01 146.10 -2014.12 0.02 702.56 -4678.21 6.28 506.85 0.69
ER_CFO_35_1 -3198 (133.79) 10015.30 0.02 198.31 4827.20 0.03 (33.97) 3421.84 8.52 (61.87) 0.73
ER_CFO_40_1 -3000 611.08 4178.37 0.02 50.70 920.76 0.07 192.11 -377.33 37.82 891.44 1.97
ER_CFO_40_3 -10693 (8.02) -4182.40 0.02 229.77 -7060.67 0.09 (9.63) -8059.99 40.61 (12.88) 2.42
ER_CFO_40_5 -11827 362.53 -3812.54 0.03 84.46 -6195.17 0.07 175.79 -8842.04 50.02 754.11 2.29
LB_CFO_26_1 24774 23.52 34948.17 0.01 5.23 31959.62 0.01 11.43 27488.75 0.52 15.77 0.24
LB_CFO_26_2 8358 200.40 18201.33 0.01 41.84 14504.30 0.03 130.55 12758.91 1.25 239.95 0.34
LB_CFO_26_3 5078 168.14 14713.45 0.01 57.75 12026.90 0.03 171.24 9308.24 0.82 224.32 0.29
LB_CFO_30_1 23715 177.81 34448.29 0.01 15.70 30543.88 0.01 34.31 28517.17 1.77 153.08 0.40
LB_CFO_30_2 4312 428.42 16138.97 0.01 61.85 12236.89 0.03 159.81 8654.11 3.89 316.27 0.79
LB_CFO_35_1 985 715.51 11581.64 0.01 137.84 8193.62 0.03 700.37 4811.02 10.16 557.10 1.30
LB_CFO_35_2 1932 651.90 9299.48 0.02 51.46 5106.41 0.05 491.06 4592.81 11.87 608.75 1.06
LB_CFO_40_1 21829 (10.36) 31801.50 0.01 523.47 27562.06 0.05 (8.38) 25560.57 34.85 (11.38) 2.04
LD_CFO_26_1 43677 259.21 58741.25 0.01 60.86 54214.19 0.03 147.17 51832.37 1.98 166.88 0.44
LD_CFO_35_1 163453 (2.64) 179161.00 0.01 315.20 175567.50 0.03 (1.91) 169349.05 10.72 (1.65) 1.46
ER_MCO_26_1 -7639 202.71 1331.96 0.03 42.79 -1009.25 0.04 198.17 -3325.27 4.31 219.96 0.57
ER_MCO_30_1 -4532 (76.33) 4702.52 0.06 220.51 1279.46 0.07 (20.14) -750.60 14.81 (27.70) 1.56
ER_MCO_30_2 -2314 (234.52) 9249.03 0.03 176.35 5055.46 0.06 469.36 3656.83 7.96 797.65 1.37
ER_MCO_30_3 -8787 169.94 -2938.36 0.03 12.96 -5613.54 0.09 23.48 -6647.23 11.31 78.62 1.23
ER_MCO_30_4 -4024 (123.85) 10089.52 0.03 139.20 3815.65 0.07 (8.69) 1185.79 11.36 (32.11) 1.48
ER_MCO_35_1 -8356 (23.89) 80.99 0.07 184.45 -3568.12 0.18 802.98 -4616.94 46.55 (18.99) 3.34
ER_MCO_40_1 -17246 837.55 -10134.67 0.15 80.42 -12866.08 0.32 296.25 -15584.65 149.71 708.72 8.43
LB_MCO_26_1 1826 220.24 14497.19 0.02 4.97 11609.81 0.03 93.48 9157.03 1.87 72.41 0.59
LB_MCO_30_1 695 (612.54) 13666.96 0.04 36.96 8225.06 0.07 117.71 4468.28 10.98 303.50 1.36
LB_MCO_35_1 16527 (40.00) 33236.17 0.06 558.08 25867.61 0.14 (21.00) 21617.76 31.93 (15.05) 3.28
LB_MCO_35_2 11561 (48.40) 25844.41 0.07 83.88 18658.23 0.12 320.10 14749.52 32.49 899.98 3.46
LD_MCO_30_1 246422 106.19 260607.05 0.04 13.10 249724.71 0.08 76.80 248297.25 11.25 111.31 1.37
LD_MCO_40_1 743577 (1.20) 768067.58 0.11 560.92 758705.45 0.15 (0.54) 752834.49 57.97 (0.77) 3.89
ER_BCO_26_1 -5600 61.42 4381.20 0.03 3.15 1553.00 0.03 8.95 -4187.86 4.76 92.02 1.00
ER_BCO_26_2 -221 85.83 11930.25 0.02 8.59 8055.90 0.04 31.61 1851.60 2.50 62.86 0.62
ER_BCO_35_1 -16328 (6.86) -4788.40 0.11 86.49 -7697.59 0.21 (4.55) -12726.68 62.74 (5.33) 4.74
ER_BCO_35_2 -6224 (78.43) 4369.33 0.07 81.02 -563.81 0.21 665.95 -1285.94 47.19 619.63 3.10
LB_BCO_30_1 2402 (132.43) 15073.67 0.04 48.23 8971.46 0.09 271.74 5459.97 9.79 143.91 1.68
LB_BCO_35_1 4213 (173.42) 17762.29 0.08 350.10 11388.41 0.22 (62.71) 9463.72 31.58 (42.74) 2.46

The results demonstrate that TVP-XY significantly improves over TVP-HP and also
remains the overall winner in these experiments as it is the only formulation that Gurobi
could solve to optimality for all of the displayed instances. In particular, the employed
branch-and-cut approach leads to only slightly increased times to solve the relaxation of
TVP-XY despite the larger set of constraints taken into account. Compared to TVP-XY, the
upper bounds provided by the LP relaxation of TVP-XYB are even again significantly better,
but the solution times remain high. TVP-XYBR then achieves a tremendous reduction of
these relaxation solution times, which is however still not sufficient to translate into a superior
ILP performance on the instance set considered. The competitiveness of TVP-XYBR might
still be improved by tuning the separation procedures as well as the selection of cutting
planes, or by employing further cutting planes, but this is out of the scope of this paper.

2 We use the optimal value as a reference to compute the gap, rather than the best feasible solution found,
because the major difficulty in the solution process is to improve the upper bound. As opposed to that,
Gurobi found good and optimal solutions relatively quickly even though we did not implement any
problem-specific heuristic. Using the lower bounds instead may thus lead to misleading values in the
rare cases where the best solution found at the occasion of the time limit was not yet (near-)optimal.

ATMOS 2025

8:16 Refined Integer Programs and Polyhedral Results for the Target Visitation Problem

Finally, we report in Table 2 optimal values of previously unsolved instances that we
could determine using longer runs with TVP-XY.

Table 2 Optimal solution values for four instances that remained unsolved in [5, 6].

Instance OPT
LB_CFO_45_1 19877
LB_CFO_45_2 1082
LD_CFO_45_2 133647
LB_MCO_45_1 23301

6 Conclusion

In this paper, we have shown that the seminal integer programming formulations for the TVP
based on AHPP, LOP, and asymmetric betweenness variables, can be refined to exclusively
employ linear constraints which participate in a minimal description of the polytope that is
defined by the convex hull of their feasible solutions. We then demonstrated that this leads to
provably strengthened continuous relaxations as well as improved computational results when
the reformulations are solved with a branch-and-cut algorithm. Further, our investigations
revealed that results on the structure of the polytope associated with the formulation that is
extended with asymmetric betweenness variables needed to be revised. One the one hand,
this is motivated because the vertices of the respective polytope considered in the seminal
works [5, 6] are not in one-to-one correspondence with the feasible solutions to the TVP. On
the other, we found inconsistencies in the description of this polytope by means of a minimal
set of linear constraints. Addressing this, we found a new set of equations which is valid if
there are exactly four sites, and we clarified the dimension as well as the set of facet-defining
inequalities in this case. Moreover, we proved that the previously assumed closed form to
compute the dimension holds true when there are at least five sites and that the classical in-
and out-degree inequalities from the AHPP are then always facet-defining.

The so far established results build a fundament for further research regarding polyhedral
relaxations for the TVP. Particularly, it would be expedient to achieve further insights about
the facial structure of the polytopes associated with the TVP with at least five sites, also
because the knowledge of further classes of facet-defining inequalities may allow for a further
strengthening of branch-and-cut algorithms for the TVP.

References
1 Ashwin Arulselvan, Clayton W. Commander, and Panos M. Pardalos. A random keys

based genetic algorithm for the target visitation problem. In Panos M. Pardalos, Robert
Murphey, Don Grundel, and Michael J. Hirsch, editors, Advances in Cooperative Control and
Optimization, pages 389–397, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

2 Zoltán Blázsik, Tamás Bartók, Balázs Imreh, Csanád Imreh, and Zoltán Kovács. Heuristics on a
common generalization of TSP and LOP. Pure Mathematics and Applications, 17(3-4):229–239,
2006.

3 Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the linear ordering polytope.
Mathematical Programming, 33(1):43–60, 1985. doi:10.1007/BF01582010.

4 Don A. Grundel and David E. Jeffcoat. Formulation and solution of the target visitation prob-
lem. In AIAA 1st Intelligent Systems Technical Conference, number 2004-6212 in AIAA, pages
1–6. American Institute of Aeronautics and Astronautics, 2004. doi:10.2514/6.2004-6212.

https://doi.org/10.1007/BF01582010
https://doi.org/10.2514/6.2004-6212

S. Mallach 8:17

5 Achim Hildenbrandt. The Target Visitation Problem. PhD thesis, Universität Heidelberg,
Germany, 2015. doi:10.11588/heidok.00017993.

6 Achim Hildenbrandt. A branch-and-cut algorithm for the target visitation problem.
EURO Journal on Computational Optimization, 7(3):209–242, 2019. doi:10.1007/
s13675-019-00111-x.

7 Philipp Hungerländer. A semidefinite optimization approach to the target visitation problem.
Optimization Letters, 9(8):1703–1727, December 2015. doi:10.1007/s11590-014-0824-9.

8 Sven Mallach. Binary programs for asymmetric betweenness problems and relations to the
quadratic linear ordering problem. EURO Journal on Computational Optimization, 11:1–21,
2023. doi:10.1016/j.ejco.2023.100071.

9 George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, Inc., New York, NY, USA, 1988.

10 Maurice Queyranne and Yaoguang Wang. Hamiltonian path and symmetric travelling sales-
man polytopes. Mathematical Programming, 58(1):89–110, January 1993. doi:10.1007/
BF01581260.

ATMOS 2025

https://doi.org/10.11588/heidok.00017993
https://doi.org/10.1007/s13675-019-00111-x
https://doi.org/10.1007/s13675-019-00111-x
https://doi.org/10.1007/s11590-014-0824-9
https://doi.org/10.1016/j.ejco.2023.100071
https://doi.org/10.1007/BF01581260
https://doi.org/10.1007/BF01581260

Speed-Aware Network Design: A Parametric
Optimization Approach
Ugo Rosolia #

Amazon Science & Tech, Luxembourg, Luxembourg

Marc Bataillou Almagro #

Amazon Science & Tech, Luxembourg, Luxembourg

George Iosifidis #

Delft University of Technology, The Netherlands

Martin Gross #

Amazon Science & Tech, Luxembourg, Luxembourg

Georgios Paschos #

Amazon Science & Tech, Luxembourg, Luxembourg

Abstract
Network design problems have been studied from the 1950s, as they can be used in a wide range
of real-world applications, e.g., design of communication and transportation networks. In classical
network design problems, the objective is to minimize the cost of routing the demand flow through
a graph. In this paper, we introduce a generalized version of such a problem, where the objective is
to tradeoff routing costs and delivery speed; we introduce the concept of speed-coverage, which is
defined as the number of unique items that can be sent to destinations in less than 1-day. Speed-
coverage is a function of both the network design and the inventory stored at origin nodes, e.g.,
an item can be delivered in 1-day if it is in-stock at an origin that can reach a destination within
24 hours. Modeling inventory is inherently complex, since inventory coverage is described by an
integer function with a large number of points (exponential to the number of origin sites), each
one to be evaluated using historical data. To bypass this complexity, we first leverage a parametric
optimization approach, which converts the non-linear joint routing and speed-coverage optimization
problem into an equivalent mixed-integer linear program. Then, we propose a sampling strategy to
avoid evaluating all the points of the speed-coverage function. The proposed method is evaluated
on a series of numerical tests with representative scenarios and network sizes. We show that when
considering the routing costs and monetary gains resulting from speed-coverage, our approach
outperforms the baseline by 8.36% on average.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases Network Design, Transportation Networks, Mixed-Integer Programming,
Speed-Coverage, Parametric Optimization

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.9

1 Introduction

1.1 Background & Motivation
Expedite delivery services are becoming increasingly important for e-commerce supply chains
such as Amazon, Alibaba and Walmart as they improve directly customer experience and
can indirectly contribute to attaining key sustainability goals. Indeed, the option of expedite
delivery increases naturally the range of items customers are willing to purchase from e-
commerce platforms instead of visiting physical retail (brick-and-mortar) shops, and this
has been found to reduce transportation-based carbon emissions in many scenarios [23, 21].

© Ugo Rosolia, Marc Bataillou Almagro, George Iosifidis, Martin Gross, and Georgios Paschos;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 9; pp. 9:1–9:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:urosolia@amazon.lu
https://orcid.org/0000-0002-1682-0551
mailto:maalmagr@amazon.fr
mailto:G.Iosifidis@tudelft.nl
mailto:grosmar@amazon.lu
mailto:paschosg@amazon.lu
https://orcid.org/0000-0002-5922-1612
https://doi.org/10.4230/OASIcs.ATMOS.2025.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

9:2 Speed-Aware Network Design: A Parametric Optimization Approach

Figure 1 Middle-mile network design problem where destination nodes – i.e., distribution centers
– are connected to origin nodes – i.e., warehouse where items are stored. Note that origin nodes have
partially overlapping inventory, e.g., the inventory stored at Origin 2 and Origin 3 is also stored
at Origin 1. Thus, connecting with speed-paths Origin 1 to destination nodes allows us to offer
expedite delivery services for all items.

These reasons contribute to a growing volume of research aiming to improve expedite delivery
by means of last-mile routing optimization [17], vehicle dispatch scheduling [16], or innovative
crowd-shipping models [8], among others.

Nevertheless, the above works overlook the role of the middle-mile network connecting
warehouses (origins) to distribution centers (destinations) in the efficacy and feasibility of
such expedite delivery services. As the demand grows, items have to be stored at out-of-city
warehouses, and therefore, the possibility of offering expedite delivery for these items is
shaped by the network connections. This situation creates an unavoidable tension between
cost and speed when designing the transportation network. To reduce costs we need to
minimize the number of trucks used to ship orders to customers. Such a goal can be achieved
by leveraging intermediate consolidation hubs between origin and destination nodes. Consider
the example from Figure 1, where we have nine commodities – one for each origin-destination
pair – requiring one-third of truck’s capacity. By utilizing intermediate consolidation hubs,
the network configuration from Figure 1 requires only seven trucks to route packages. In
contrast, serving these same nine commodities through speed-paths – i.e., paths directly
connecting origins to destinations – would require nine trucks, one for each origin-destination
pair. To tackle the tradeoff between volume consolidation and opening speed-paths, many
studies formulate the middle-mile network design problem as a minimum-cost flow problem
with maximum path-length constraints, or aim to balance transit times with path costs (see
Sec. 1.2).

Yet, a key factor that has been largely overlooked is the effect of the network connectivity
on the share of inventory for which we can offer expedite deliver services. In this paper, we
propose to measure such an effect by evaluating the network’s speed-coverage, which we define
as the number of unique items that can be delivered in 1-day. Speed-coverage is a function
of (a) the network topology which determines the transit time from origins to destinations
and (b) the inventory stored at origin nodes. We recognize an inherent tradeoff: connecting
an origin to a destination via a short route (speed-path) increases the speed-coverage, but

U. Rosolia, M. B. Almagro, G. Iosifidis, M. Gross, and G. Paschos 9:3

may increase routing cost by making volume consolidation more difficult. Additionally, the
benefit of speed-paths to speed-coverage exhibits diminishing returns. The more speed-paths
we introduce, the less their differential impact to the overall speed-coverage objective. In
this work, we formulate a problem that captures exactly these tradeoffs and then propose a
technique to solve for the jointly optimal routing costs and speed-coverage for the general
case when origins have partially overlapping inventory. To the best of our knowledge, this
paper is the first to introduce a mathematical formulation of these tradeoffs, and a scalable
methodology for solving the optimization problem.

1.2 Literature Review
As the importance of, and demand for, expedite delivery services grows, the design of speed-
aware middle-mile networks becomes an increasing priority for service providers. Prior works
on network design that cater for delivery speed include the hub-network design problem
with time-definite delivery. In this setting, the objective is to decide hub locations together
with routing paths, and speed deadlines are captured through path-eligibility constraints,
see e.g., [7]. Similarly, [27] optimizes the location of hubs, assignment of demand centers to
hubs, and the vehicle routing. Expanding on these ideas, [25] considers additionally hub
capacity constraints; [3] studies a single-hub overnight delivery system and optimizes routing
subject to timing constraints; and [28] focuses on express air-service and decides which routes
to operate with the company-owned cargo planes and how much capacity to purchase on
commercial flights. Finally, [14] studies the middle-mile consolidation problem with delivery
deadlines while accounting for consolidation delays. Similar models have been studied in
the context of scheduled service network design that optimizes small (less-than-truckload)
inter-city shipments with timing constraints for the delivery or intermediate hops, see [15]
and references therein. All the above works model the delivery time requirements through
path-length constraints, e.g., a subset of origin-destination nodes are forced to be connected
via paths that have transit time smaller than a predefined threshold. In contrast to this
binary approach of enforcing time constraints, our work explicitly optimizes the tradeoff
between speed and cost, providing a flexible framework for network design decisions.

Time-expanded graphs are one of the most common tools for capturing such timing
restrictions but increase the problem’s dimension and compound their solution, cf. [19]. This
modeling approach augments the dimension of the problem and therefore its complexity.
For this reason, several approaches based on decomposition methods [26, 11], adaptive
discretization techniques [5], and model condensation strategies [19] have been proposed.
The key difference of our approach from these prior works is that we explicitly consider the
overlap of inventory at origins to determine the number of unique items that are eligible
for a 1-day delivery option. We do not assume to have an analytical model that captures
how the delivery speed affects the inventory, but instead we provide a practical methodology
for directly incorporating data-sets and look-up tables in the optimization problem. A key
element of our strategy is a parametric linear model [2] which allows to express the inventory
function in a compact and tractable form. Parametric optimization has been particularly
successful for a range of applications, see [22], but, to the best of the authors knowledge has
not been employed for expedite delivery optimization in middle-mile networks.

1.3 Methodology & Contributions
Jointly optimizing network design decisions and speed-coverage is a challenging problem.
First of all, the network design problem, even without the speed-coverage objective, is already
NP-hard to solve optimally when one has to (a) use unsplittable paths, (b) add integer link

ATMOS 2025

9:4 Speed-Aware Network Design: A Parametric Optimization Approach

capacities (trucks), and (c) consider a large number of multi-hop path variables, [9, 10].
Secondly, the inventory effect of each new speed-path depends on which other origins are
connected to a desination. In other words, speed-path assignment decisions are coupled
across all origins serving a certain destination, but also across origins that use intersecting (at
one or more edges) paths due to the edge capacities. Third, the inventory coverage function –
i.e., the function mapping a set of origins to the number of unique items stored at these nodes
– does not admit a convenient analytical expression. In fact, this function depends on the
inventory overlap at origins, and in practice can be calculated using inventory datasets and
look-up tables. This function format, unfortunately, does not facilitate – actually prohibits –
its direct inclusion in the network optimization program, as it renders the problem highly
nonlinear – see equation (4) from Section 2 for further details.

Our method relies on multi-parametric optimization [12, 22] to create a continuous
(concave) approximation of the inventory function. This uses as input the available inventory
data-points – i.e., the number of unique items stored at a set of origin nodes – and creates a
continuous piecewise affine interpolation over the convex combination of the input data-points.
We prove that this approximation is exact at the input data-points, and hence can serve
as a meaningful proxy for maximizing this metric of interest. This, in turn, enables the
inclusion of the inventory function in the network design problem, without inflating it with
new discrete variables. The result of this new joint formulation is a speed-aware middle-mile
network, where the designer can tradeoff network costs with the number of unique items
that can be delivered to customers in 1-day. Finally, we take an extra step to reduce the
dimension of this problem through a sampling process, namely a low-complexity practical
algorithm for selecting the approximation data-points used to approximate inventory overlap
at origin nodes.

In summary, the main contributions of this paper are as follows: (i) We introduce the
speed-aware network design problem of jointly optimizing network costs and speed-coverage,
which we define as the share of unique items for which we can offer a 1-day delivery option.
(ii) We introduce a parametric-based modeling approach for enabling this joint optimization,
overcoming the lack of a tractable analytical expressions for the number of unique items
stored at a set of origin nodes. (iii) We further propose a simple and practical sampling
algorithm for reducing the size of the approximation problem, trading off interpolation
accuracy in a systematic fashion. (iv) The proposed joint model and approximation strategy
are evaluated numerically in extensive tests on representatives scenarios.

1.4 Paper Organization & Notation

The rest of this paper is organized as follows. Section 2 introduces the speed-aware minimum
cost Multicommodity Capacitated Network Design problem under study. Section 3 describes
the proposed reformulation based on a parametric interpolation, and the related approxima-
tion strategy; and Section 4 presents a series of numerical experiments with representative
scenarios and different network sizes. We conclude and present future works in Section 5.

Throughout the paper we define the sets of (non-negative) reals and integers as (Rn
+)Rn

and (Zn
+)Zn, respectively. Vectors are denoted by boldface lowercase letters and sets by

uppercase italic letters, e.g., v ∈ Rn and C. Given a set of vectors C = {v1, v2}, we denote
the cardinality of C as |C| and its convex hull as Cvx(C). Finally, we define the vectors of
zeros 0n ∈ Rn, ones 1n ∈ Rn, and the unit base vector of zeros having one only in the ith
component as ei

n = [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ Rn.

U. Rosolia, M. B. Almagro, G. Iosifidis, M. Gross, and G. Paschos 9:5

2 Model and Problem Formulation

2.1 Minimum cost MCND-U
We first introduce the standard minimum cost Multicommodity Capacitated Network Design
with Unsplittable demands (MCND-U) problem, which aims to assign one path to each
commodity and open trucks on links to transport orders at minimum cost. Our network is
modeled with a directed graph G = (V, E), where V = O∪D∪H is the set of nodes, consisting
of the set O of nO origins, the set D of nD destinations and the set H of nH other interim
nodes (or hubs), and E is the set of directed links. We are given a set K of K commodities,
where each commodity k = (ok, dk) originates from an origin ok ∈ O towards a destination
dk ∈ D, and has volume vk ≥0. We are also given a set of active network paths P , where Pk

is used to denote the active paths of commodity k and Pk∋e ⊆ Pk the active commodity k

paths that traverse link e ∈ E . Our goal is to assign exactly one path to each commodity
and we do so using the path selection vector x = (xp ∈ {0, 1}, p ∈ P).1 Furthermore, the
links have capacities that depend on our choice of opened trucks, where opening a truck
costs ce on link e ∈ E and adds capacity Ve ∈ Rn

+. We use the truck deployment vector
y = (ye ∈ Z+, e ∈ E) to decide how many trucks are opened on each link. The minimum cost
MCND-U problem is to assign paths to commodities with x and open trucks with y in order
to transport the volumes at a minimum cost:

P1 : min
x,y

∑
e∈E

ceye

subject to
∑
k∈K

∑
p∈Pk∋e

vkxp ≤ Veye ∀e ∈ E ,

∑
p∈Pk

xp = 1 ∀k ∈ K,

xp ∈ {0, 1} ∀k ∈ K, p ∈ Pk,

ye ∈ Z+ ∀e ∈ E .

(1)

Problem P1 is the standard MCND-U problem studied in the literature, for instance see [13],
which is known to be NP–hard [9, 10] – See Section 1.3 for details.

2.2 Modeling network speed
In this work we augment the MCND-U problem with a novel speed model, that captures the
number of customer orders that can be delivered within a day, a service that is called Next
Day Delivery (NDD), see [4]. Let us consider a destination node d, which serves a number of
customers in a given area. Whenever a customer in that area makes an order, we say that
the order is covered (with NDD service) if the ordered item is stored in any of the origins
that are connected to d with a short path, where a path is said to be short if its total transit
time is less than an input parameter; if path p is short we will write wp = 1, else it is long
and we write wp = 0. Notice, we require two conditions for NDD: (i) the ordered item is
in the storage of some origin node, and (ii) that origin node is connected to d with a path
that is short. First, let us study how we measure NDD coverage in a scenario where (ii) is
always satisfied, i.e., for now, we consider networks where all paths are short. We introduce

1 We do not need to index variables x with commodities because each path p can only be used by a single
commodity, the one that corresponds to the origin-destination pair of the path.

ATMOS 2025

9:6 Speed-Aware Network Design: A Parametric Optimization Approach

the coverage function Id which counts the number of covered orders at a destination d. It
is typically impossible to derive the analytical form of Id, but it is reasonable to estimate
Id from available large datasets; using these datasets, one can compute an estimate of the
number of covered unique NDD orders.

Figure 2 Venn diagram of two origin nodes storing items that are being ordered; although the
sum of individually unique ordered items stored in the two nodes is 50 + 60 = 110, the actual total
unique items are only 90 due to overlap between the two inventories.

For example, see Figure 2. Assuming both origins of Figure 2 are connected to d with
short paths, Id would evaluate to 90 items in this example, and we may imagine that in more
complicated scenarios, the computation of Id would boil down into counting unique orders in
large datasets of requests and inventories. The model, however, becomes more interesting
when we study networks that include long paths, where condition (ii) is not always satisfied.
In such a case, depending on our path assignment decisions x, an origin-destination pair
(o, d) may not be able to transport items eligible for NDD. For instance, if (o, d) commodity
is assigned a long path, the contribution of o-inventory to Id should not be counted because
although the inventory is available, its delivery takes more than one day. We should then
adjust the coverage function Id to reflect this. A naive approach would be to adjust it
to Id(x) to denote the dependence on path assignment, but instead we use an alternative
approach that reduces significantly the dimensions, and hence the complexity of computing
this function: we use the dependent speed variables

z = (zod, (o, d) ∈ K), (2)

where zod = 1 if the path selected to connect o to d is short. Since we have only one assigned
path per commodity (i.e., it holds

∑
p∈Pk

xp = 1) it follows that

zod =
∑

p∈Pk

wpxp, ∀k = (o, d),

where recall that wp = 1 if p is short, and 0 otherwise. Using variables z we can write down
the form of Id for the toy scenario of Figure 2:

Id(z) = 60z1d(1 − z2d) + 50z2d(1 − z1d) + 90z1dz2d. (3)

More broadly, the function will have the form:

Id(z) =
∑

s∈PS(Od)

βs

∏
i∈s

zid

∏
j /∈s

(1 − zjd), (4)

where PS(.) is the power set, Od is the set of origins that form a commodity with d, and βs

is the unique item count of subset s of origins – we may obtain parameters βs by performing
counting operations on our large datasets. Note, that this function would need to have many

U. Rosolia, M. B. Almagro, G. Iosifidis, M. Gross, and G. Paschos 9:7

more terms if we were to use path assignment variables x (one additive term for each element
in the powerset of active paths), hence we have effectively reduced the number of times we
need to count parameters in large datasets by an exponential factor. Also, observe that the
form of (4) demonstrates well how deeply intertwined is the speed objective Id(z) with the
cost optimization of the MCND-U problem (1), both depending on our choice of x. Some
paths may offer better consolidation by mixing volume in consolidation hubs, but because
they are longer, they result in smaller NDD coverage. In the next subsection we augment
the standard MCND-U problem with our newly introduced speed model.

2.3 Speed-aware MCND-U

The NDD coverage impacts customer satisfaction and shapes long-term revenues. We model
this effect with a customer conversion factor γ >0; in practice, this factor can be estimated
by analyzing customer behaviors via A/B testing. Therefore, our focus in this paper is to
minimize the transportation costs and maximize long-term revenues from NDD coverage,
which is formalized in the following optimization program:

P2 : min
x,y,z

∑
e∈E

ceye − γ
∑
d∈D

Id(z)

subject to
∑
k∈K

∑
p∈Pk∋e

vkxp ≤ Veye ∀e ∈ E ,

∑
p∈Pk

xp = 1 ∀k ∈ K,

zod =
∑

p∈Pk

wpxp, ∀k = (o, d) ∈ K,

xp ∈ {0, 1} ∀k ∈ K, p ∈ Pk,

ye ∈ Z+ ∀e ∈ E ,

zod ∈ {0, 1} ∀o ∈ O, d ∈ D.

(5)

Problem P2 is extremely difficult to solve. Evidently, it is a generalization of the NP–hard
MCND-U, but a major additional complexity factor is function Id. This coverage function
is known to be submodular [4], i.e., the more short paths we assign (by switching z to z′),
the smaller is the benefit Id(z′) − Id(z) per added short path, due to overlapping inventory
between origins. The domain of function Id(z) has 2nO points, each one of which requires a
full computation on the large dataset. In fact, it is known that even finding the maximum
point of such a function is an NP–hard problem [20, 18], let alone considering it inside a
broader optimization problem as in P2. Last, observe that the objective of P2 is non-linear,
see for example (4). From previous studies in the space of maximum coverage problem [1] we
know that the non-linear components of (4) would make even the continuous relaxation of P2
NP–hard. For realistic e-commerce scenarios with multiple origins serving each destination,
and a network with many destinations, solving P2 or even obtaining a lower bound via its
continuous relaxation is intractable.

In this paper, we overcome this challenge by leveraging multi-parametric programming
[12, 22] to create an interpolation (or continuous extension) of integer functions Id, d ∈ D,
which in turn allows us to propose a solution methodology for the speed-aware MCND-U.

ATMOS 2025

9:8 Speed-Aware Network Design: A Parametric Optimization Approach

(a) Dataset of speed-path assignments and unique
items stored at origin nodes.

(b) Piecewise linear interpolation of the speed-
path assignement from Figure 3a.

Figure 3 Illustration of the approximation strategy for the example from Figure 2, where a
destination d is connected to Origin 1 and Origin 2.

3 Solution Approach

Our solution methodology is based on replacing the term Id(z) in (5) with a continuous
extension, by interpolating integer points using parametric optimization. As we explain
below, this interpolation is carefully designed to lead to a concave function, which eventually
allows us to reformulate the speed-aware MCND-U as a Mixed-Integer Linear Programming
(MILP). Finally, to reduce the dimensions and make the resulting problem tractable, we
utilize an additional approximation technique to eliminate many of the integer points, and
only consider a subset of them.

3.1 Parametric interpolation of unique inventory
We will interpolate between the integer points of function Id, which are denoted with z
and introduced in (2). For reasons that will become clear below when we present our
approximation technique, we will introduce additional notation zi

d to enumerate the vector
pointing to the ith integer point of Id(z). Hence,

Zd =
{

z1
d, z2

d, . . . , zncomb
d

}
, (6)

is another way to express the domain of Id(z) and we have ncomb = 2nO . See for example
Figure 3a.

For any vector zi
d, we can use inventory data to compute the number of unique items

Id(zi
d) for which we can offer NDD at d ∈ D. Then, for a vector zd in the convex hull of Zd,

we can use the following optimization problem to interpolate Id(zi
d):

Ĩd(zd) = max
αd∈Rncomb

+

ncomb∑
i=1

αi
dId(zi

d)

subject to
ncomb∑
i=1

αi
dzi

d = zd,

ncomb∑
i=1

αi
d = 1.

(7)

Notice that problem (7) is a linear parametric program and therefore Ĩd is a concave piecewise
linear function [6, Chapter 6]; we may think of Ĩd as an extension of Id, referred to in the
literature as the concave closure [24]. We will leverage the concavity of the extended function

U. Rosolia, M. B. Almagro, G. Iosifidis, M. Gross, and G. Paschos 9:9

Ĩd to reformulate (5) as a MILP. Note, that submodular functions may also be approximated
by their convex closure, which is achieved by replacing the min operator with the max in (7).
In this work, we have used the concave closure as this allows us to reformulate the speed-aware
network design problem (5) as mixed-integer linear minimization problem, whereas using the
convex closure would have resulted in a min-max mixed integer optimization problem.

We highlight that the interpolation from (7) is exact at all integer points zd ∈ Zd, since
for each integer point zj

d ∈ Zd we must have that zj
d =

∑ncomb
i=1 αi

dzi
d, hence αj

d = 1 and
Ĩd(zj

d) = αj
dId(zj

d) = Id(zj
d). Note that Ĩd is exact at the integer points only when each

zi
d ∈ Zd is an extreme point, i.e., it cannot be expressed as a convex combination of the

vectors in {Zd \ zi
d}. This condition holds in our case, and yields the following proposition:

▶ Proposition 1. Let the function Ĩd be defined by the parametric program (7). For all
integer points zd ∈ Zd we have that

Id(zd) = Ĩd(zd).

Proof. Consider the optimization (7) evaluated at zi
d, i.e., Ĩ(zi

d). By definition we have
that zi

d are vertices of a hypercube and hence zi
d /∈ Cvx(Zd \ zi

d) for all zi
d ∈ Zd. Thus, we

have that setting αi
d = 1 is the unique feasible solution to Ĩd(zi

d). Thus, we conclude that
Ĩd(zi

d) = αi
dId(zi

d) = Id(zd). ◀

In Section 3.2 we combine the parametric extension of Id with the speed-aware MCND-U
to obtain a MILP.

3.2 Parametric speed-aware MCND-U
Next, we reformulate the speed-aware MCND-U presented in (5) replacing the term Id(z)
with its parametric interpolation Ĩd(z) from (7):

min
x,y,{zd,αd}d∈D

∑
e∈E

ceye − γ
∑
d∈D

ncomb∑
i=1

αi
dId(zi

d)

subject to
∑
k∈K

∑
p∈Pk∋e

vkxp ≤ Veye ∀e ∈ E ,

∑
p∈Pk

xp = 1 ∀k ∈ K,

zod =
∑

p∈Pk

wpxp, ∀k = (o, d) ∈ K,

ncomb∑
i=1

αi
dzi

d = zd,

ncomb∑
i=1

αi
d = 1 ∀d ∈ D,

xp ∈ {0, 1} ∀k ∈ K, ∀p ∈ Pk,

ye ∈ Z+ ∀e ∈ E ,

zod ∈ {0, 1} ∀o ∈ O, d ∈ D,

αd ∈ Rncomb
+ ∀d ∈ D.

(8)

The above MILP is equivalent to the original problem (5), as the interpolation from (7) is
exact at integer points, as discussed in Proposition 1. The main advantage of our reformulation
is that it can be solved with off-the-shelf solvers. Unfortunately, for each destination d ∈ D
there are up to 2ncomb pre-computed vectors zi

d that make the reformulation intractable for
real-world problems. Thus, in the next section, we propose an algorithm to select only a
subset of assignments to reduce the problem dimensionality.

ATMOS 2025

9:10 Speed-Aware Network Design: A Parametric Optimization Approach

3.3 Approximation Strategy
Estimating the coverage function Id(z) at all integer points z ∈ Zd from (6) and then solving
(8) are both intractable due to the very large number of such points. In this section, we
provide heuristics to select a subset of such vectors Z̃d ⊂ Zd, to simplify (8). While this
approximation introduces some loss in accuracy, we aim to select points that maintain a
reasonable balance between computational efficiency and solution quality. Dropping vectors
from Zd means that certain paths will always be chosen to be long, and hence, our heuristics
attempt to drop the origins that are expected to have the smallest contributions to coverage.

The first step is to rank all origins in terms of individual coverage achieved by taking
the short path from this origin and long paths from all others, denoted with Id(1o) for
origin o ∈ O. Calculating individual coverage is a cheap operation (only nO calculations
per destination), and intuitively helps us prioritize origins with large inventory capabilities –
notice, however, that due to inventory overlap, choosing the top origins in this regard does
not guarantee maximal coverage. Below we use the notation Td(κ) ⊆ O to denote the top
κ origins with individual coverage. Note, that κ is a user-defined hyper-parameter, which
controls the complexity/performance tradeoff of our heuristic.

Our strategy employs four sets of vectors, Z̃d = {H0, H1, H2, H3} that contain a subset
of all possible speed variable assignments. We use the terms “short” and “long” to refer to
the speed variable assignments: when we say an origin has a “short” path to a destination
(zod = 1), it means that origin o can offer next-day delivery to destination d. Conversely, a
“long” path (zod = 0) indicates that origin o cannot provide next-day delivery to destination
d. Based on this terminology we define the following sets:
1. H0: all short/long combinations of origins in Td(κ) (2κ cases).
2. H1: all origins in Td(κ) are short, and one of the remaining origins short (no − κ cases).
3. H2: all origins in Td(κ) are long, and one of the remaining origins short (no − κ cases).
4. H3: all origins in Td(i), i = κ + 1, . . . , no are short and the rest long (no − κ cases).
Note that our heuristic strategy has reduced significantly the amount of vectors for which
we need to calculate coverage and add to (8), from 2nO down to 2κ + 3(nO − κ), and we
can use κ to control how small this number is, trading off with the achieved accuracy of the
optimization. We provide an illustrative example for κ = 2 and no = 5:

H0 = {z̃1
d =

[
0 0 0 0 0

]⊤
, z̃2

d =
[
1 0 0 0 0

]⊤
,

z̃3
d =

[
0 1 0 0 0

]⊤
, z̃4

d =
[
1 1 0 0 0

]⊤}.

H1 = {z̃5
d =

[
1 1 1 0 0

]⊤
, z̃6

d =
[
1 1 0 1 0

]⊤
, z̃7

d =
[
1 1 0 0 1

]⊤}.

H2 = {z̃8
d =

[
0 0 1 0 0

]⊤
, z̃9

d =
[
0 0 0 1 0

]⊤
, z̃10

d =
[
0 0 0 0 1

]⊤}.

H3 = {z̃11
d =

[
1 1 1 0 0

]⊤
, z̃12

d =
[
1 1 1 1 0

]⊤
, z̃13

d =
[
1 1 1 1 1

]⊤}.

Given Z̃d, we use the below program to approximate coverage:

Ĩd(zd) = max
αd

∑
i

αi
dId(z̃i

d)

subject to
∑

i

αi
dz̃i

d = zd,∑
i

αi
d = 1.

(9)

In the next section, we empirically analyze the effect of our approximation technique on
run-time and solution quality.

U. Rosolia, M. B. Almagro, G. Iosifidis, M. Gross, and G. Paschos 9:11

Algorithm 1 Heuristic to select subset Z̃d.

Require: κ.
1: for d ∈ D do
2: Initialize Z̃d = ∅.
3: Calculate Id(1o) for all o, rank them, and derive Td(κ).
4: Add H0 = {z : zod = 1 ∀o ∈ S, zod = 0 ∀o /∈ S, ∀S ⊆ Td(κ)}.
5: Add H1 = {z : zod = 1 ∀o ∈ Td(κ), zõd = 1 õ /∈ Td(κ), zod = 0 ∀o /∈ Td(κ) ∪ {õ}}.
6: Add H2 = {z : zod = 0 ∀o ∈ Td(κ), zõd = 1 õ /∈ Td(κ), zod = 0 ∀o /∈ Td(κ) ∪ {õ}}.
7: Add H3 = {z : zod = 1 ∀o∈Td(i) and zod = 0 ∀o /∈ Td(i), i = κ + 1, . . . , nO}.
8: end for
9: Return: Set of vectors Z̃d for all d ∈ D.

4 Experiments

We evaluate the proposed approach using a range of representative scenarios. First, we
examine how optimizing jointly for speed and costs affects the network topology. Afterwards,
we analyze the effect of the approximation from Algorithm 1 on the solution quality. To
perform these analyses, we randomly generate networks with nO origins, nD destinations,
and 5 intermediate nodes that can be used to consolidate volume. For each origin-destination
pair, the demand is randomly generated together with the travel times and transportation
costs that are proportional to the traveled distance – the location of all nodes is randomly
selected from a uniform distribution. To serve one origin-destination pair, the optimizer can
select either a direct path connecting the two nodes, or a path going through one of the five
intermediate nodes. We assume that overall there are nit = 50nO unique items that we can
offer to customers. For each origin i, we generate a random vector vi ∈ {0, 1}nit , where each
jth entry indicates if item j is stored at origin i. If the travel time from an origin o to a
destination d is less than max_tt = 8 hours, we assume that we can offer NND for all items
stored at origin o ∈ O.

4.1 Trading-off transportation costs and speed
In this section, we demonstrate through empirical experiments how the parameter γ controls
the trade-off between transportation costs and speed-coverage in the network design. Higher
values of γ result in networks that provide speed-paths for a broader range of unique
items, while lower values prioritize cost minimization by encouraging consolidation through
intermediate hubs. Table 1 shows results for five randomly generated networks. For each
network, we solve three optimization problems: in the first problem, we optimize only for
transportation costs – i.e., we set γ = 0; in the second problem we set γ = 0.1; and in the
third we use γ = 1. The solver terminates either when the gap is below 0.1% or the solution
time exceeds two hours. As expected, for larger values of γ both transportation costs and
the average number of unique items eligible for NDD increase, i.e., the optimizer decides
to open more expensive connections to gain revenues from NDD. Note that the number of
direct paths (not crossing any intermediate hub) increases with γ, as they have lower transit
time and thus are more likely to offer NDD. In all experiments, we set the parameter κ from
Algorithm 1 equal to 10, meaning that the approximation from (9) is exact for the unique
items delivered by the top 10 origins for each destination – see Section 4.2 for an empirical
analysis on the effect of κ on the solution. Indeed, we notice from Table 1 that for nO = 10
the approximate average number of unique items eligible for NDD (column Avg. Items

ATMOS 2025

9:12 Speed-Aware Network Design: A Parametric Optimization Approach

Table 1 Experimental results for five randomly generated networks. For each network, we run
the proposed method for γ ∈ {0, 0.1, 1} to show the effect of revenues from NDD on the network
topology.

nO nD Costs Avg. Items App. Avg. Items γ Directs Sol. Time %Gap

10 10 689.1 0 342.8 0 20 58.4 0.06
10 10 698.5 383.7 383.7 0.1 26 10.9 0
10 10 731.9 404 404 1 30 2.6 0.02

10 20 1419.2 0 370.75 - 58 7200 1.85
10 20 1435.5 403.55 403.55 0.1 72 7200 2.51
10 20 1490.4 411.6 411.6 1 80 7200 0.19

20 10 1392.2 0 770.4 0 63 1196.1 0.1
20 10 1413.6 806.5 811.2 0.1 73 1799.2 0.1
20 10 1501.8 839.4 839.4 1 98 438.8 0.1

50 10 3528.2 2010 2032.2 0 149 7200 7.55
50 10 3489.8 2025.3 2037.3 0.1 146 7200 3.65
50 10 3653.4 2092.7 2092.7 1 178 7200 0.63

100 100 62204.2 0 3651.1 0 2254 7200 2.82
100 100 65258.6 4154.37 4172.14 0.1 3335 7200 8.43
100 100 66314.6 4211.57 4211.57 1 3383 7200 0.58

App.) matches the exact number (column Avg. Items). On the other hand, for nO = 100,
the proposed strategy only computes a lower bound to the average number of unique items
eligible for NDD at a destination d ∈ D.

4.2 The effect of the proposed approximation
In this section, we test how the parameter κ from Algorithm 1 affects the solution quality.
Table 2 shows results for five different networks and parameter κ ∈ {1, 5, 10}. The table
reports also results for the baseline cost-optimal network (in blue) that is obtained minimizing
only the transportation costs, i.e., the optimizer does not approximate revenues from NDD
and therefore the parameter κ is not required to run the baseline. For all cases we report
the total cost defined as the difference between the transportation costs and revenues from
speed-paths2 (column Cost-Rev.). For κ = 1, in Algorithm 1 we do not consider different
combinations of origins offering NDD at a destination, but we simply sort origins by number
of unique items eligible for NDD and we use the heuristic described in Section 3.3. This
strategy allows us to prune the origins combinations used to construct the approximation
from (9). On the other hand for κ ∈ {5, 10}, after sorting the origins by the number of unique
items eligible for NDD, we consider all possible combination for the top κ origins and for
the remaining we leverage the heuristic from Algorithm 1. As discussed in Section 3.3, this
approximation allows us to reduce the number of constraints needed to build function (7).
However when κ is smaller than the number of origins nO, the number of unique items
computed using (9) is only an approximation. This fact is shown in Table 2, where we

2 As in Problem 5, revenues from speed-paths are computed by summing all unique items eligible for
NDD at each destination and using the conversion factor γ.

U. Rosolia, M. B. Almagro, G. Iosifidis, M. Gross, and G. Paschos 9:13

compare the true revenues (column Rev.) and the approximated revenues (column App.
Rev.) obtained by multiplying the number of unique items eligible for NDD by the coefficient
γ. Finally, we notice that the total cost (column Cost-Rev.) defined as the difference
between the transportation cost and the revenues from NDD decreases for larger value of
κ. Note that for κ = 1, the approximation from (9) is constructed using napp = 59 data
points, while for κ = 10 the approximation is constructed with napp = 1081, i.e., for κ = 10
we increase by 94.5% the number of data points used compared with the approximation with
κ = 1. From the experiments in Table 2, we notice that using 94.5% more data points in the
approximation from (9) improves on average the network cost by 1.79%, i.e., as expected a
more accurate approximation of revenues from NDD allows us to design a better network by
trading off transportation costs and from NDD services. It is also interesting to notice that
even for κ = 1, our approach is able to reduce the overall cost – i.e., the cost defined as the
difference between transportation cost and revenues from speed-paths – by 8.36% compared
to the baseline (in blue).

Finally, we investigate the effect of the parameter κ on the computation time. Table 3
shows both solver times and pre-processing times needed to compute the data points napp

used to construct the approximation from (9). We notice that increasing κ leads to higher
pre-processing and solver time, as more data points are used for approximating the number
of unique items eligible for NDD. However, we notice that increasing κ from 10 to 16 results
in only a 0.57% cost improvement, while the computation cost increases by 1.9x. This result

Table 2 Experimental results for five randomly generated network. For each networks, we run
the proposed method for γ = 0.1 and κ ∈ {1, 5, 10}. As baseline we compute the cost optimal
network. Thus, for the baseline (in blue) we do not have approximated revenues and a value for the
parameter κ that is not used to in the optimization.

nO nD Costs App. Rev. Rev. Cost - (App. Rev.) Cost - Rev. κ %Gap

10 10 689.1 - 342.8 689.1 346.3 - 0
10 10 698.5 383.7 383.7 314.8 314.8 1 0
10 10 698.5 383.7 383.7 314.8 314.8 5 0
10 10 698.5 383.7 383.7 314.8 314.8 10 0

10 20 1419.2 - 370.7 1419.2 677.7 - 1.8
10 20 1459.7 405.9 407 647.9 645.7 1 3.4
10 20 1434.1 397.8 400.7 638.5 632.7 5 2.8
10 20 1435.5 403.5 403.5 628.4 628.4 10 2.5

20 10 1392.2 - 770.4 1392.2 621.8 - 0.1
20 10 1422.9 807.3 815.7 615.6 607.2 1 0.1
20 10 1422.9 807.3 815.7 615.6 607.2 5 0.1
20 10 1413.6 806.5 811.2 607.1 602.4 10 0.1

50 10 3375.8 - 1845.2 3375.8 1530.6 - 1.8
50 10 3528.2 2010 2032.2 1518.2 1496.0 1 7.5
50 10 3499.0 2031.5 2039.1 1467.5 1459.9 5 3.8
50 10 3489.8 2025.3 2037.3 1464.4 1452.4 10 3.6

100 100 62204.2 - 3651.1 62204.2 25693.2 - 2.8
100 100 65911.4 4159.3 4175.7 24317.9 24154.2 1 11.2
100 100 65531.7 4156.8 4173.1 23963.2 23800.5 5 9.5
100 100 65258.6 4154.3 4172.1 23714.9 23537.2 10 8.4

ATMOS 2025

9:14 Speed-Aware Network Design: A Parametric Optimization Approach

Table 3 Experimental results showing how the computational time changes as a function of the
user defined parameter κ ∈ {1, 5, 10}.

nO nD Cost-(App. Rev) Cost-Rev Pre. Time Sol Time Gap(%) κ napp

20 10 1392.2 621.8 0.08 1184.9 0.1 - 0
20 10 615.6 607.2 0.08 577.8 0.1 1 59
20 10 615.6 607.2 0.11 261.2 0.1 5 89
20 10 607.1 602.4 1.59 3851.9 0.1 10 1081
20 10 602.8 601.2 6.52 3146.9 0.1 12 4153
20 10 599.0 599.0 36.0 6871.8 0.1 14 16441
20 10 599.0 599.0 334.7 6978.5 0.1 16 65593

highlights the effectiveness of the approximation from Algorithm 1, where we ranked origins
by the number of unique items eligible for NDD and considered all possible combination for
a subset of them.

5 Conclusion

In this paper, we consider the problem of jointly optimizing transportation costs and the
share of inventory with a Next Day Delivery (NDD) option. Compared to previous methods,
we account for overlapping inventory at origin nodes and how it affects the selection of
speed-paths, i.e., origin-destination connections with a short travel time that enable NDD.
The inventory is modeled with a coverage function, that requires the computation of a very
large number of integer points. To tackle this complexity, we present an approach based
on parametric optimization to construct a continuous extension of the inventory coverage
function. Such an approximation requires solving a parametric linear program where the
number of constraints increase exponentially with the number of origin nodes. To mitigate
this issue, we present a sampling algorithm to tradeoff the accuracy of our approximation
with computational complexity. The efficacy of the proposed approach is demonstrated on
randomly generated networks, where we show that our strategy beats the baseline approach
that computes a cost optimal network without optimizing for revenues from NDD.

References
1 Alexander A Ageev and Maxim I Sviridenko. Pipage rounding: A new method of constructing

algorithms with proven performance guarantee. Journal of Combinatorial Optimization,
8:307–328, 2004. doi:10.1023/B:JOCO.0000038913.96607.C2.

2 Bernd Bank, Jürgen Guddat, Diethard Klatte, Bernd Kummer, and Klaus Tammer. Non-linear
parametric optimization, volume 58. Walter de Gruyter GmbH & Co KG, 1982.

3 Cynthia Barnhart and Rina R Schneur. Air network design for express shipment service.
Operations Research, 44(6):852–863, 1996. doi:10.1287/OPRE.44.6.852.

4 Konstantinos Benidis, Georgios Paschos, Martin Gross, and George Iosifidis. Middle-mile
optimization for next-day delivery. arXiv preprint arXiv:2310.18388, 2023.

5 Natashia L Boland and Martin WP Savelsbergh. Perspectives on integer programming for
time-dependent models. Top, 27(2):147–173, 2019.

6 Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for linear and
hybrid systems. Cambridge University Press, 2017.

7 James F Campbell. Hub location for time definite transportation. Computers & Operations
Research, 36(12):3107–3116, 2009. doi:10.1016/J.COR.2009.01.009.

https://doi.org/10.1023/B:JOCO.0000038913.96607.C2
https://doi.org/10.1287/OPRE.44.6.852
https://doi.org/10.1016/J.COR.2009.01.009

U. Rosolia, M. B. Almagro, G. Iosifidis, M. Gross, and G. Paschos 9:15

8 Valentina Carbone, Aurélien Rouquet, and Christine Roussat. The rise of crowd logistics: a
new way to co-create logistics value. Journal of Business Logistics, 38(4):238–252, 2017.

9 Sunil Chopra, Itzhak Gilboa, and S Trilochan Sastry. Source sink flows with capacity installation
in batches. Discrete Applied Mathematics, 85(3):165–192, 1998. doi:10.1016/S0166-218X(98)
00024-9.

10 Bernard Fortz, Luís Gouveia, and Martim Joyce-Moniz. Models for the piecewise linear
unsplittable multicommodity flow problems. European Journal of Operational Research,
261(1):30–42, 2017. doi:10.1016/J.EJOR.2017.01.051.

11 Ioannis Fragkos, Jean-François Cordeau, and Raf Jans. Decomposition methods for large-scale
network expansion problems. Transportation Research Part B: Methodological, 144:60–80,
2021.

12 Tomas Gal and Josef Nedoma. Multiparametric linear programming. Management Science,
18(7):406–422, 1972.

13 Bernard Gendron, Teodor Gabriel Crainic, and Antonio Frangioni. Multicommodity capacitated
network design. In Telecommunications network planning, pages 1–19. Springer, 1999.

14 Lacy M Greening, Mathieu Dahan, and Alan L Erera. Lead-time-constrained middle-mile
consolidation network design with fixed origins and destinations. Transportation Research
Part B: Methodological, 174:102782, 2023.

15 Mike Hewitt and Fabien Lehuede. New formulations for the scheduled service network design
problem. Transportation Research Part B: Methodological, 172:117–133, 2023.

16 Mathias A Klapp, Alan L Erera, and Alejandro Toriello. The one-dimensional dynamic dispatch
waves problem. Transportation Science, 52(2):402–415, 2018. doi:10.1287/TRSC.2016.0682.

17 Vienna Klein and Claudius Steinhardt. Dynamic demand management and online tour
planning for same-day delivery. European Journal of Operational Research, 307(2):860–886,
2022. doi:10.1016/J.EJOR.2022.09.011.

18 Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3(71-
104):3, 2014.

19 Cristiana L Lara, Jochen Koenemann, Yisu Nie, and Cid C de Souza. Scalable timing-aware
network design via lagrangian decomposition. European Journal of Operational Research,
309(1):152–169, 2023. doi:10.1016/J.EJOR.2023.01.018.

20 George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14:265–294, 1978.
doi:10.1007/BF01588971.

21 Henrik Pålsson, Fredrik Pettersson, and Lena Winslott Hiselius. Energy consumption in
e-commerce versus conventional trade channels-insights into packaging, the last mile, unsold
products and product returns. Journal of cleaner production, 164:765–778, 2017.

22 Iosif Pappas, Dustin Kenefake, Baris Burnak, Styliani Avraamidou, Hari S Ganesh, Justin
Katz, Nikolaos A Diangelakis, and Efstratios N Pistikopoulos. Multiparametric programming
in process systems engineering: Recent developments and path forward. Frontiers in Chemical
Engineering, 2:620168, 2021.

23 Sadegh Shahmohammadi, Zoran JN Steinmann, Lau Tambjerg, Patricia van Loon, JM Henry
King, and Mark AJ Huijbregts. Comparative greenhouse gas footprinting of online versus
traditional shopping for fast-moving consumer goods: A stochastic approach. Environmental
science & technology, 54(6):3499–3509, 2020.

24 Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization
via the multilinear relaxation and contention resolution schemes. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 783–792, 2011. doi:
10.1145/1993636.1993740.

25 Haotian Wu, Ian Herszterg, Martin Savelsbergh, and Yixiao Huang. Service network design
for same-day delivery with hub capacity constraints. Transportation Science, 57(1):273–287,
2023. doi:10.1287/TRSC.2022.1155.

ATMOS 2025

https://doi.org/10.1016/S0166-218X(98)00024-9
https://doi.org/10.1016/S0166-218X(98)00024-9
https://doi.org/10.1016/J.EJOR.2017.01.051
https://doi.org/10.1287/TRSC.2016.0682
https://doi.org/10.1016/J.EJOR.2022.09.011
https://doi.org/10.1016/J.EJOR.2023.01.018
https://doi.org/10.1007/BF01588971
https://doi.org/10.1145/1993636.1993740
https://doi.org/10.1145/1993636.1993740
https://doi.org/10.1287/TRSC.2022.1155

9:16 Speed-Aware Network Design: A Parametric Optimization Approach

26 Yu Yao, Xiaoning Zhu, Hongyu Dong, Shengnan Wu, Hailong Wu, Lu Carol Tong, and
Xuesong Zhou. ADMM-based problem decomposition scheme for vehicle routing problem with
time windows. Transportation Research Part B: Methodological, 129:156–174, 2019.

27 Baris Yildiz, Hande Yaman, and Oya Ekin Karasan. Hub location, routing, and route dimen-
sioning: Strategic and tactical intermodal transportation hub network design. Transportation
Science, 55(6):1351–1369, 2021. doi:10.1287/TRSC.2021.1070.

28 Barış Yıldız and Martin Savelsbergh. Optimizing package express operations in china. European
Journal of Operational Research, 300(1):320–335, 2022. doi:10.1016/J.EJOR.2021.09.035.

https://doi.org/10.1287/TRSC.2021.1070
https://doi.org/10.1016/J.EJOR.2021.09.035

A Genetic Algorithm for Multi-Capacity
Fixed-Charge Flow Network Design
Caleb Eardley #

School of Computing, Montana State University, Bozeman, MT, USA

Dalton Gomez
School of Computing, Montana State University, Bozeman, MT, USA

Ryan Dupuis
School of Computing, Montana State University, Bozeman, MT, USA

Michael Papadopoulos
Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA

Sean Yaw #

School of Computing, Montana State University, Bozeman, MT, USA

Abstract
The Multi-Capacity Fixed-Charge Network Flow (MC-FCNF) problem, a generalization of the
Fixed-Charge Network Flow problem, aims to assign capacities to edges in a flow network such
that a target amount of flow can be hosted at minimum cost. The cost model for both problems
dictates that the fixed cost of an edge is incurred for any non-zero amount of flow hosted by that
edge. This problem naturally arises in many areas including infrastructure design, transportation,
telecommunications, and supply chain management. The MC-FCNF problem is NP-Hard, so solving
large instances using exact techniques is impractical. This paper presents a genetic algorithm
designed to quickly find high-quality flow solutions to the MC-FCNF problem. The genetic algorithm
uses a novel solution representation scheme that eliminates the need to repair invalid flow solutions,
which is an issue common to many other genetic algorithms for the MC-FCNF problem. The genetic
algorithm’s utility is demonstrated with an evaluation using real-world CO2 capture, transportation,
and storage infrastructure design data. The evaluation results highlight the genetic algorithm’s
potential for solving large-scale network design problems.

2012 ACM Subject Classification Applied computing → Transportation; Computing methodologies
→ Planning and scheduling; Theory of computation → Network flows

Keywords and phrases Fixed-Charge Network Flow, Genetic Algorithm, Matheuristic, Infrastructure
Design

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.10

Related Version Previous Version: https://arxiv.org/abs/2411.05798

Funding This research was funded by the U.S. Department of Energy’s Fossil Energy Office through
the Carbon Utilization and Storage Partnership (CUSP) for the Western USA (Award No. DE-
FE0031837) as well as by the U.S. National Science Foundation through the Research Experience
for Undergraduates program (Award No. 2243010).

1 Introduction

The Multi-Capacity Fixed-Charge Network Flow (MC-FCNF) problem is a well-studied
optimization problem encountered in many domains including infrastructure design, trans-
portation, telecommunications, and supply chain management [16, 26, 27]. In the MC-FCNF
problem, each edge in the network has multiple capacities available to it, with each capa-
city having its own fixed construction and variable utilization costs. The objective of the
MC-FCNF problem is to assign capacities to edges in the network such that a target flow

© Caleb Eardley, Dalton Gomez, Ryan Dupuis, Michael Papadopoulos, and Sean Yaw;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 10; pp. 10:1–10:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:caleb.eardley@student.montana.edu
https://orcid.org/0000-0001-9711-4458
https://orcid.org/0009-0001-9321-1055
https://orcid.org/0009-0005-7431-738X
https://orcid.org/0000-0001-6750-5992
mailto:sean.yaw@montana.edu
https://orcid.org/0000-0002-5518-3604
https://doi.org/10.4230/OASIcs.ATMOS.2025.10
https://arxiv.org/abs/2411.05798
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

10:2 A Genetic Algorithm for Multi-Capacity Fixed-Charge Flow Network Design

amount can be hosted at minimal cost. The MC-FCNF problem is a generalization of the
Fixed-Charge Network Flow (FCNF) problem, which has a single capacity (and fixed and
variable costs) available per edge. The MC-FCNF problem is NP-Hard to approximate within
the natural logarithm of the number of vertices in the graph [27]. As such, finding optimal
solutions to large instances is often computationally infeasible.

Significant work has already been done on solving the MC-FCNF and FCNF problems
using many techniques including mathematical programming, branch and bound, and exact
optimization approaches [14, 15, 21, 10, 8]. Multi-capacity edge networks are often referred
to as buy-at-bulk network design problems, and are often framed as facility location problems,
which is similar to the MC-FCNF problem but with added demand constraints on sinks [13,
4, 1]. Genetic algorithms have also been introduced for variants of the MCNF problem [9, 2,
28, 25, 12, 30, 29, 19].

In this paper, we introduce a novel genetic algorithm to solve the MC-FCNF problem.
The novel contribution of our genetic algorithm is the representation of a flow solution
by an array of parameters that scale the fixed-costs for each edge in the network. This
representation ensures that each array corresponds to a valid flow, thereby eliminating
the need for computationally expensive repair functions that are required by other genetic
algorithms for the MC-FCNF problem [9, 2, 25, 17, 30, 29, 19]. By avoiding costly repair
functions, the proposed algorithm is able to efficiently find high-quality solutions to very
large MC-FCNF problem instances. The proposed genetic algorithm is inspired by slope
scaling techniques previously employed for the FCNF problem [14, 7]. It is a matheuristic,
as it employs mathematical programming to calculate a flow solution from a linear program
parameterized with the fixed-cost scaling arrays [11]. Our genetic algorithm is similar to
an algorithm proposed by [6], though ours takes a different two-stage approach to handle
multi-capacity edges. Additionally, we provide more insight into the existence of the optimal
solution in the search space.

An evaluation is presented that designs CO2 capture and storage (CCS) infrastructure
deployments using real-world data composed of thousands of vertices and tens of thousands
of edges. In the evaluation, the genetic algorithm is compared to the solution of an optimal
integer linear program formulation of the MC-FCNF problem. Results from the evaluation
demonstrate the utility of the genetic algorithm for very large networks, even if the solution
is very small compared to the full network.

The rest of this paper is organized as follows: Section 2 formally introduces the MC-
FCNF program and formulates it as an integer linear program. Section 3 presents a linear
programming modification to the integer linear program that serves as the core to the genetic
algorithm. Sections 4 and 5 introduce the genetic algorithm and discuss the existence of
the optimal solution in the search space. Section 6 presents an evaluation of the genetic
algorithm on real-world CCS data and the paper is concluded in Section 7.

2 Problem Formulation

MC-FCNF is formulated as follows: Given a directed graph with vertices V , edges E, a
source s ∈ V with no incoming edges, and a sink t ∈ V with no outgoing edges, flow must be
assigned to the edges such that the target amount of flow T is sent from the source vertex
to the sink vertex. There is a set K of the possible capacities for each edge. Each capacity
option k ∈ K for an edge e ∈ E has a fixed cost aek, and a variable cost bek. Assignment
of flow to an edge incurs the total fixed cost, as well as the variable cost per unit of flow.
The assigned flow must preserve the conservation of flow, meet the target flow amount, and
minimize the overall cost.

C. Eardley, D. Gomez, R. Dupuis, M. Papadopoulos, and S. Yaw 10:3

This problem can also be formulated as an integer linear program (ILP), as shown below:

Instance Input Parameters:
V Vertex set
E Directed edge set
K Set of possible capacities for each edge
s ∈ V Source vertex with no incoming edges
t ∈ V Sink vertex with no outgoing edges
ck Capacity of k

aek Fixed construction cost of edge e with capacity k

bek Variable utilization cost of edge e with capacity k

T Target flow amount
Decision Variables:

yek ∈ {0, 1} Use indicator for edge e with capacity k

fek ∈ R≥0 Amount of flow on edge e with capacity k

Objective Function:

min
∑
e∈E

∑
k∈K

(
aekyek + bekfek

)
(1)

Subject to the following constraints:

fek ≤ ckyek, ∀e ∈ E, k ∈ K (2)∑
k∈K

yek ≤ 1, ∀e ∈ E (3)∑
e∈E:

src(e)=v

∑
k∈K

fek =
∑

e′∈E:
dest(e′)=v

∑
k∈K

fe′k, ∀v ∈ V \ {s, t} (4)

∑
e∈E:

src(e)=s

∑
k∈K

fek = T (5)

Where constraint (2) enforces the capacity of each edge and forces yek to be set to one if
fek is non-zero. Constraint (3) allows at most one capacity to be deployed on each edge.
Constraint (4) enforces conservation of flow at each internal vertex. Constraint (5) ensures
that the total flow amount meets the target.

Since the MC-FCNF problem is NP-Hard, solving this ILP is intractable for large
instances [27]. The objective of this paper is to introduce a novel algorithm that efficiently
finds high-quality solutions to this ILP without directly solving it.

3 Non-Integer Linear Program

In this section, we introduce a linear program (LP) that is a modification of the ILP presented
in Section 2. Since it is an LP, this new formulation can be solved optimally in polynomial
time. This LP forms the foundation of the genetic algorithm discussed in Section 4. Two
components of the ILP change to turn it into an appropriate LP:
1. The binary decision variables yek are removed, thereby turning the model into an LP.

Since the yek variables are removed, the fixed costs are then scaled and combined with
the variable costs.

2. A new scaling parameter, dek, is introduced for each capacity on each edge that will scale
the fixed cost of the edge. These parameters form the representation of a flow solution in
the genetic algorithm.

ATMOS 2025

10:4 A Genetic Algorithm for Multi-Capacity Fixed-Charge Flow Network Design

Let gek be the decision variable representing the amount of flow on edge e with capacity
k in the LP, analogous to the fek decision variable in the ILP. Then, the objective function
of the LP is:

min
∑
e∈E

∑
k∈K

(aek

dek
+ bek

)
gek (6)

The constraints in the LP mirror the constraints in the ILP:

gek ≤ ck, ∀e ∈ E, k ∈ K (7)∑
e∈E:

src(e)=v

∑
k∈K

gek =
∑

e′∈E:
dest(e′)=v

∑
k∈K

ge′k, ∀v ∈ V \ {s, t} (8)

∑
e∈E:

src(e)=s

∑
k∈K

gek = T (9)

Where constraint (7) enforces the capacity of each edge. Constraint (8) enforces conservation
of flow at each internal vertex. Constraint (9) ensures that the total flow amount meets the
target.

The output of this LP is a flow value for each gek. Of course, the optimal flow found
by the LP is likely not an optimal solution for the ILP. The true cost of the LP’s solution
can be determined by calculating its value when input into the ILP’s objective function in
Equation (1). This is first done by defining an edge-use indicator function zek and assigning
it values as follows:

zek =
{

1, if gek > 0
0, if gek = 0

(10)

This makes the true cost of the LP’s solution equal to:∑
e∈E

∑
k∈K

(
aekzek + bekgek

)
(11)

The genetic algorithm in Section 4 works by varying the dek scaling parameters and
scoring the resulting optimal gek values found by the LP using Equation (11).

4 Genetic Algorithm

Genetic algorithms are a common evolutionary heuristic method used for searching and
optimization. Genetic algorithms manage a population of organisms that each correspond
to a solution to the problem. The population evolves over iterations of the algorithm
using evolutionary processes observed in nature including selection, crossover, and mutation
operations. Selection is the process of deciding which organisms of the population continue
into the next iteration (i.e., next generation). This is the mechanism that allows the algorithm
to prioritize organisms that correspond to better solutions to the problem and control the size
of the population. Crossover is the generation of a new organism from two existing organisms,
analogous to biological reproduction. Similarly, mutation is the slight modification of an
organism into a new one corresponding to a different solution. Crossover and mutation
operations are the mechanisms that allow the algorithm to search for new, and possibly
better, solutions.

C. Eardley, D. Gomez, R. Dupuis, M. Papadopoulos, and S. Yaw 10:5

A number of genetic algorithms have been developed to solve various versions of the
FCNF problem. In these algorithms, organisms are broadly represented as either individual
edges, or predefined routes through the network. Representing organisms as individual edges
typically involves a binary variable for each edge indicating its availability for use [9, 29].
Alternatively, representing organisms as predefined routes involves a binary variable for
each route in a set of predefined routes through the network [2, 25, 19]. In the case of
the individual edge representation, generating the initial population, crossover operations,
and mutation operations often requires repairing the organism, as random sets of edges are
unlikely to result in valid flows. Using predefined routes simplifies repairing operations, but
may still require repair in the event of capacity constraint violations, and is likely to result
in sub-optimal solutions due to the limited set of routing options. The genetic algorithms
that use these representations address the issue by employing computationally expensive
repair functions to make organisms correspond to valid flows. Instead of representing an
organism in this fashion, we represent it as an array of the fixed-cost scaling parameters dek

introduced in Section 3. Then, the solution corresponding to this organism is the set of flow
values gek found by the LP from Section 3. The result of this representation is that we can
guarantee the solution corresponding to any organism is a valid flow, since the LP enforces
that. This avoids costly repair functions and is the key to the efficiency of our approach.

The motivation for using the fixed-cost scaling parameters as the organism representation
is that it allows control over the amount of fixed-costs incurred, while also removing the
integer variables from the optimal ILP. As the scaling parameter decreases to zero, the
scaled fixed-cost increases to infinity, thereby dissuading selection of that edge by the LP.
Conversely, as the scaling parameter increases to infinity, the scaled fixed-cost approaches
zero, thereby encouraging selection of that edge by the LP. The genetic algorithm is tasked
with searching for an organism of scaling parameters whose corresponding flow solution is
as close to optimal for the ILP as possible. Given that the genetic algorithm is using the
fixed-cost scaling parameters as a proxy for a solution instead of using a solution directly, an
important question is whether or not there exists a set of scaling parameters that yields an
optimal flow solution. A proof that such a set of scaling parameters is guaranteed to exist
is presented in Section 5. The key components and workflow of the genetic algorithm are
described below:

Fitness Function

Genetic algorithms use fitness functions to rank and compare the population of organisms to
aid the selection process. Our fitness function first determines the flow solution for a given
organism by solving the LP in Section 3 to get the gek flow values. After the gek values
are determined, the solution’s true cost in the context of the optimal ILP is calculated by
Equation (11). The output of Equation (11) is used as the fitness of the organism, where
lower values correspond to higher fitness.

Selection Function

To keep the size of the population computationally manageable, a selection function is
employed to prune the population at each iteration. A selection function is also used to
identify the organisms for crossover operations. Our genetic algorithm implements a binary
tournament selection function in an effort to prioritize high fitness organisms, while not
ignoring all low fitness organisms. In binary tournament selection, two random organisms
are selected, and the one with the higher fitness is kept, while the other is discarded. This

ATMOS 2025

10:6 A Genetic Algorithm for Multi-Capacity Fixed-Charge Flow Network Design

ensures that high-fitness organisms are likely to remain in the population while maintaining
the possibility for low-fitness ones to survive as well. Binary tournament selection is repeated
until the number of organisms in the population is at the desired size.

Crossover Function

A crossover function is used to generate a new child organism from two parent organisms
already in the population. Our crossover function first randomly selects two parent organisms
from the existing population. A child organism is constructed by taking a random interval
of the dek array from the first parent, combined with the remaining values from the second
parent.

Mutation Function

In order to mimic evolution and introduce another element of randomness into the search, a
mutation function is used to further alter child organisms. After a child organism is generated
with the crossover function, it may be randomly selected for mutation. During a mutation
operation, a number of dek values in the organism are selected and, with equal probability,
either incremented up or down a random amount between zero and one. Mutated dek values
are not allowed to go below a lower bound to avoid negative values and divide by zero issues.

Genetic Algorithm

Using the functions described above, our algorithm operates as follows: First, an initial
population of organisms is randomly generated. Each organism in the initial population is
initialized as a dek array filled with a random value between ϵ > 0 and the average value of
the fixed-costs in the input instance. After the initial population of organisms are created,
the algorithm proceeds in an iterative fashion: At each iteration, the fitness of each organism
is first calculated as described above. While the population size is less than some threshold,
the crossover function is executed to generate child organisms. The child organisms are
also subject to randomized mutations from the mutation function. Once the population has
increased in size to the designated threshold, the selection function is run to reduce its size
while statistically discarding the lower fitness organisms. The algorithm keeps executing
iterations until the running time reaches a designated time limit.

CPLEX Polishing

Once the time limit has been reached, the most fit organism’s gek flow values are used as a
warm start for IBM’s CPLEX optimization software. CPLEX polishing is run for one fifth of
the total time limit resulting in the final flow values returned by the algorithm.

5 Optimal Search Viability

The purpose of this section is to show that the genetic algorithm is capable of finding the
optimal solution of the ILP. This claim is not trivial, as the search space of the genetic
algorithm is the set of possible dek arrays, which are merely a proxy for flow values, the
property we are actually optimizing for.

The original motivation for formulating the LP in Section 3 and representing the organisms
in the genetic algorithm as dek arrays follows from the following false claim:

C. Eardley, D. Gomez, R. Dupuis, M. Papadopoulos, and S. Yaw 10:7

▷ Claim 1. If each dek equals the optimal ILP flow value for edge e with capacity k, then
the optimal flow found by the resulting LP is also an optimal flow for the ILP.

The rationale for this claim is that if each dek and gek both equal the optimal ILP flow
values, then the cost of the LP’s objective function from Equation (6) will equal the optimal
cost of the ILP’s objective function from Equation (1). Claim 1 is also the stated motivation
behind other similar genetic algorithms for the FCNF problem [6]. This claim is shown to be
false in Figure 1 with the displayed fixed costs (ae), variable costs (be), capacities (ce), and
a capture target of three. In this instance, the optimal ILP solution is to set the amount
of flow on e1 and e3 to two and the amount of flow on e2 and e4 to one for a total cost of
20. Setting de1 and de3 to two and de2 and de4 to one yields the LP objective of minimizing
7ge1 + 6ge2 . The optimal solution to this is to set the amount of flow on e1 and e3 to one and
the amount of flow on e2 and e4 to two for a total cost of 21, thereby contradicting Claim 1.

𝑠 𝑡

𝒂𝒆 𝒃𝒆 𝒄𝒆
𝒆𝟏 10 2 2
𝒆𝟐 3 3 2
𝒆𝟑 0 0 2
𝒆𝟒 0 0 2

𝑒! 𝑒"

𝑒# 𝑒$

Figure 1 Counterexample to Claim 1 with the displayed fixed costs (ae), variable costs (be),
capacities (ce), and a capture target of three. In this instance, the optimal ILP solution is 20 with a
flow of two units on e1 and e3 and one unit on e2 and e4. The corresponding optimal LP solution is
21 with a flow of one unit on e1 and e3 and two units on e2 and e4.

Since Claim 1 is false, along with the fact that the dek arrays are only proxies for the
flow value solutions we seek, it remains to be shown that there actually exists a set of dek

values that will result in the genetic algorithm finding optimal flow values for the ILP.

▶ Theorem 1. For every problem instance, there exists a set of dek values such that the
optimal flow found by the resulting LP is also an optimal flow for the ILP.

Proof. Let fopt
ek be the optimal flow values found by the ILP and define the set of dek values

as follows:

dek =
{

ϵ > 0, if fopt
ek = 0

∞, if fopt
ek > 0

(12)

When dek is set to an ϵ-value near zero, the scaled fixed cost aek

dek
makes those edges

prohibitively expensive to include in LP solutions, so long as valid solutions exist that do
not use those edges (such as the valid solution fopt

ek). Likewise, if dek is set to a very large
value, the scaled fixed cost is near zero. These dek values effectively restrict the LP to only
selecting the edges and capacities with non-zero fopt

ek values.
Suppose that H ⊆ E × K is the set of edge-capacity pairs where yopt

ek equals one. Then,
given the dek values resulting from Equation (12), the objective for the LP becomes:

∑
e∈E

∑
k∈K

(
aek

dek
+ bek

)
gek =

∑
ek∈H

bekgek

ATMOS 2025

10:8 A Genetic Algorithm for Multi-Capacity Fixed-Charge Flow Network Design

Let gopt
ek be optimal flow values to the LP. We aim to show that gopt

ek is also an optimal
flow for the ILP. First, gopt

ek is a valid solution to the ILP since gopt
ek is a valid flow of the ILP’s

target value on an identical graph with the same capacities. Showing that gopt
ek is optimal for

the ILP can be accomplished by using gopt
ek to feed the definitions for zek in Equation (10)

and showing that:∑
e∈E

∑
k∈K

(
aekzopt

ek + bekgopt
ek

)
=

∑
e∈E

∑
k∈K

(
aekyopt

ek + bekfopt
ek

)
zopt

ek must equal one for all edges in H. If zopt
ek equals zero for some edge in H, then the

fixed costs incurred by gopt
ek are lower than the fixed costs incurred by fopt

ek . Also, since gopt
ek

is optimal for the LP,∑
ek∈H

bekgopt
ek ≤

∑
ek∈H

bekfopt
ek

Thus, if zopt
ek equals zero for some edge in H, gopt

ek is a lower cost flow for the ILP than the
optimal fopt

ek , which is a contradiction. Therefore, fopt
ek and gopt

ek must incur identical fixed
costs and zopt

ek must equal one for all edges in H.
Suppose that,∑
ek∈H

bekgopt
ek <

∑
ek∈H

bekfopt
ek

This implies that,∑
ek∈H

aek +
∑

ek∈H

bekgopt
ek <

∑
ek∈H

aek +
∑

ek∈H

bekfopt
ek

=⇒
∑

ek∈H

(
aek + bekgopt

ek

)
<

∑
ek∈H

(
aek + bekfopt

ek

)
=⇒

∑
e∈E

∑
k∈K

(
aekzopt

ek + bekgopt
ek

)
<

∑
e∈E

∑
k∈K

(
aekyopt

ek + bekfopt
ek

)
which is a contradiction, since fopt

ek is an optimal flow value for the ILP, and thus cannot be
more expensive than the valid flow gopt

ek . Thus,∑
ek∈H

bekgopt
ek =

∑
ek∈H

bekfopt
ek

which implies that,∑
e∈E

∑
k∈K

(
aekzopt

ek + bekgopt
ek

)
=

∑
e∈E

∑
k∈K

(
aekyopt

ek + bekfopt
ek

)
Therefore, defining the dek values as in Equation (12) yields an LP whose optimal flow values
correspond to optimal flow values of the ILP. ◀

6 Evaluation

To demonstrate the efficiency and effectiveness of the genetic algorithm presented in Section 4,
an evaluation was conducted using CO2 capture and storage (CCS) infrastructure design data.
CCS is a climate change mitigation strategy that involves capturing CO2 from industrial
sources, notably power generation, transporting the CO2 in a pipeline network, and injecting

C. Eardley, D. Gomez, R. Dupuis, M. Papadopoulos, and S. Yaw 10:9

it into geological reservoirs for long-term sequestration. Large-scale CCS adoption will
require the optimization of infrastructure for hundreds of sources and sinks and thousands of
kilometers of pipelines. The CCS infrastructure design problem aims to answer the question:
What sources and sinks should be opened, and where should pipelines be deployed (and at
what capacity) to process a defined amount of CO2 at minimum cost. CCS sources and sinks
both have fixed construction (or retrofit) costs, variable utilization costs, and capacities (or
emission limits). Pipelines have multiple capacities available, depending on the diameter of
the pipeline installed. Pipelines also have fixed construction costs and variable transportation
costs that are dependent on the capacity selected. Unlike the MC-FCNF problem, the CCS
infrastructure design problem has multiple sources and sinks, as well as node-specific costs
and capacities. However, CCS infrastructure design instances can be reduced into MC-FCNF
instances by introducing a super source and super sink, and by translating node costs and
capacities onto edges [24, 27].

The genetic algorithm was implemented and integrated into SimCCS, the Java-based
CCS infrastructure optimization software, which uses CPLEX as its optimization model
solver [20]. Initial performance simulations guided the parameterization of the genetic
algorithm to have a population size of 10, and mutation and crossover probability of both
50%. A mutation probability of 50% means that each organism has a 50% chance of mutation,
and a crossover probability of 50% means that 50% of the population (without organism
repetition) is crossed over with a random other organism in each iteration of the genetic
algorithm. All reported genetic algorithm values are the average of three runs. The optimal
ILP from Section 2 was implemented in SimCCS using CPLEX as well. SimCCS was used
as a standardized way to represent CCS data and for problem and solution visualization.
Timing was coded directly into SimCCS to ensure only the algorithm of interest was being
timed during simulation. Simulations were run on a machine with Ubuntu 20.04.5, an Intel
Xeon W-2255 processor running at 3.7 GHz, and 64 GB of RAM. SimCCS on this machine
used IBM’s CPLEX optimization tool, version 22.1.1.0.

The genetic algorithm was tested on two CCS infrastructure design datasets. The first
dataset covers the United State’s state of California and consists of 190 sources with a total
annual emission rate of 88.39 MtCO2/yr, 102 sinks with a total lifetime storage capacity of
37.18 GtCO2, and 1188 possible pipeline components (i.e., edges in the graph) with a total
length of 17940.88 km and 11 possible capacities on each edge. This data was collected as
part of the US Department of Energy’s (DOE) Carbon Utilization and Storage Partnership
project, one of the DOE’s Regional Initiatives to Accelerate CCS Deployment. A map of
this dataset is presented in Figure 2.

The second dataset covers the contiguous United States and consists of 2746 sources with
a total annual emission rate of 532.61 MtCO2/yr, 1202 sinks with a total lifetime storage
capacity of 2691.86 GtCO2, and 22597 possible pipeline components with a total length of
424674.41 km and 11 possible capacities on each edge. This data was collected by Carbon
Solutions, LLC as part of a study conducted by the Clean Air Task Force [3, 5]. Storage
data was generated using the SCO2T geologic sequestration tool [23]. A map of this dataset
is presented in Figure 3.

Candidate pipeline routes were generated in SimCCS using its candidate network
generation algorithms [31]. The National Energy Technology Laboratory’s CO2 Transport
Cost Model was used by SimCCS to determine fixed construction and variable utilization
costs for the 11 discrete pipeline capacity options [22].

To assess the efficiency of the genetic algorithm, its solution cost was compared to the
solution cost found by CPLEX solving the optimal ILP, with both methods being allowed
to run for set running time periods. For the California dataset, those running time periods

ATMOS 2025

10:10 A Genetic Algorithm for Multi-Capacity Fixed-Charge Flow Network Design

Figure 2 CCS dataset for the state of California consisting of sources (red), sinks (blue), and
possible pipeline routes.

were 0.5, 1, 2, 4, and 8 hours. The target flow amount (T) was set to 80 MtCO2/yr for
all of the California scenarios. For the contiguous United States dataset, the running time
periods were 0.5, 1, 2, 4, 8 and 16 hours. The target flow amount was set to 500 MtCO2/yr
for the contiguous United States scenarios. Figure 4 presents each algorithm’s solution cost
over the running time periods for the California dataset, and Figure 5 presents the same
results for the contiguous United States dataset. The cost of the best solution found by the
genetic algorithm in the California dataset was within 0.5% of the ILP’s solution across all
running times. Conversely, the cost of the best solution found by the genetic algorithm in the
contiguous United States dataset was 17% lower than the ILP’s solution after one hour, 7%
lower after four hours, and 2% lower after 16 hours. This suggests that the genetic algorithm
may have utility for very large problem instances. The utility for small instances is likely
limited, due to the speed of CPLEX. Further, in applications that require rapid computation
of MC-FCNF solutions, the genetic algorithm may exhibit beneficial performance for even
smaller instances.

Problem solvability is not only related to instance size, but also the amount of target
flow being found. To identify the impact that target flow amount has on solution quality,
scenarios were run on the contiguous United States dataset where the target flow amount
was varied from 1 MtCO2/yr to 532 MtCO2/yr. The maximum annual capturable amount
of CO2 for this dataset is 532.61 MtCO2/yr. Each algorithm was given two hours to solve
each scenario. Figure 6 presents each algorithm’s solution cost for the various target flow
amounts. Table 1 presents the specific solution cost values and the percent improvement of
the genetic algorithm’s solution over the ILP’s solution. Other than in very low and high
target flow amount scenarios, the genetic algorithm was fairly consistent in its improvement
over the ILP. Interestingly, in the low target flow amount scenario, the genetic algorithm
performed the best relative to the ILP. This suggests that the genetic algorithm could have
utility in a very large problem instance, even if the target flow amount is quite small. This is
likely a very realistic scenario, where a relatively small target is sought amongst a very large
space of options, and provides a compelling argument for the utility of the genetic algorithm.

C. Eardley, D. Gomez, R. Dupuis, M. Papadopoulos, and S. Yaw 10:11

Figure 3 CCS dataset for the contiguous United States consisting of sources (red), sinks (blue),
and possible pipeline routes.

2.707

2.709

2.711

2.713

2.715

2.717

2.719

2.721

2.723

2.725

0 2 4 6 8

So
lu
tio

n
Co

st
 ($

B/
yr
)

Running Time (hours)

ILP
Genetic Algorithm

Figure 4 Solution cost versus running time
for the genetic algorithm and optimal ILP on
the California dataset.

39

40

41

42

43

44

45

46

47

0 2 4 6 8 10 12 14 16

So
lu
tio

n
Co

st
 ($

B/
yr
)

Running Time (hours)

ILP
Genetic Algorithm

Figure 5 Solution cost versus running time
for the genetic algorithm and optimal ILP on
the contiguous United States dataset.

7 Conclusion

In this paper, we addressed the MC-FCNF problem by formulating it as an ILP and proposing
a novel genetic algorithm to find high-quality solutions efficiently, using a relaxation of the
ILP to an LP to ensure the solutions of the GA are valid solutions and do not need repairing.
The key novel component of our approach is the use of fixed-cost scaling parameters as
a proxy for direct flow values, allowing the genetic algorithm to search the solution space
effectively without the need for computationally expensive repair functions.

Our genetic algorithm demonstrated significant efficiency and effectiveness in solving
the MC-FCNF problem. By integrating the algorithm into the SimCCS infrastructure
optimization software, we were able to evaluate its performance on real-world CCS infrastruc-
ture design data. The results showed that the genetic algorithm consistently outperformed
CPLEX solving an ILP on very large problem instances, and matched CPLEX’s performance
on moderately sized problem instances. The evaluation demonstrated the potential of the
genetic algorithm in handling large and complex networks with varied target flow objectives,
across a wide range of running time requirements.

ATMOS 2025

10:12 A Genetic Algorithm for Multi-Capacity Fixed-Charge Flow Network Design

0
5

10
15
20
25
30
35
40
45
50

0 100 200 300 400 500

So
lu

tio
n

Co
st

 ($
B/

yr
)

Target Flow Amount (MtCO2/yr)

ILP
Genetic Algorithm

Figure 6 Solution cost versus target flow
amount for the genetic algorithm and optimal
ILP. Specific solution cost values are presented
in Table 1.

Table 1 Solution Values With Varying Flow
Targets

Target Flow ILP Genetic %
Amount Algorithm Improvement

1.00 0.04 0.03 25.00
66.50 3.35 3.22 3.88
133.00 7.84 7.41 5.48
199.50 13.00 12.25 5.77
266.00 18.78 17.94 4.47
332.50 24.84 23.77 4.31
399.00 31.06 29.86 3.86
465.50 38.05 35.98 5.44
532.00 49.44 43.58 11.65

The genetic algorithm presented in this paper offers a robust and scalable solution to the
MC-FCNF problem, providing an efficient alternative to traditional ILP solvers in realistic
scenarios. Future work could involve tailoring the genetic algorithm to more specialized
versions of the FCNF problem, including phased network deployments [18]. The genetic
algorithm could also be generalized to multi-commodity fixed-charge network design problems.
The fixed-cost scaling parameter technique may also prove useful in building evolutionary
algorithms for other problems that can be modeled as network flow problems (e.g., facility
location problems). Future work could include implementing this genetic algorithm approach
for use in facility location applications and testing it against benchmark datasets. Future
work could also include pursuing real-time applications where low computational running
time is more critical than infrastructure design problems. Finally, further exploring the
performance of the genetic algorithm on very large instances with small target flows could
reveal useful applications of the genetic algorithm to real-world problems.

References
1 Ashwin Arulselvan, Mohsen Rezapour, and Wolfgang A. Welz. Exact Approaches for Design-

ing Multifacility Buy-at-Bulk Networks. INFORMS Journal on Computing, 29(4):597–611,
November 2017. doi:10.1287/IJOC.2017.0752.

2 Huynh Thi Thanh Binh and Son Hong Ngo. Survivable flows routing in large scale network
design using genetic algorithm. In Advances in Computer Science and its Applications: CSA
2013, pages 345–351, 2014.

3 Carbon Solutions, LLC. https://www.carbonsolutionsllc.com/, 2024.
4 Deeparnab Chakrabarty, Alina Ene, Ravishankar Krishnaswamy, and Debmalya Panigrahi.

Online Buy-at-Bulk Network Design. SIAM J. Comput., 47(4):1505–1528, January 2018.
doi:10.1137/16M1117317.

5 Clean Air Task Force. More for less: Strengthening epa’s proposed carbon pollution
standards can achieve greater emissions reductions at a lower cost, 2023. URL: https:
//www.regulations.gov/comment/EPA-HQ-OAR-2023-0072-0893.

6 Ovidiu Cosma, Petrica C Pop, and Cosmin Sabo. An efficient hybrid genetic algorithm
for solving a particular two-stage fixed-charge transportation problem. In Hybrid Artificial
Intelligent Systems: 14th International Conference, HAIS 2019, León, Spain, September 4–6,
2019, Proceedings 14, pages 157–167. Springer, 2019. doi:10.1007/978-3-030-29859-3_14.

https://doi.org/10.1287/IJOC.2017.0752
https://www.carbonsolutionsllc.com/
https://doi.org/10.1137/16M1117317
https://www.regulations.gov/comment/EPA-HQ-OAR-2023-0072-0893
https://www.regulations.gov/comment/EPA-HQ-OAR-2023-0072-0893
https://doi.org/10.1007/978-3-030-29859-3_14

C. Eardley, D. Gomez, R. Dupuis, M. Papadopoulos, and S. Yaw 10:13

7 Teodor Gabriel Crainic, Bernard Gendron, and Geneviève Hernu. A Slope Scaling/Lagrangean
Perturbation Heuristic with Long-Term Memory for Multicommodity Capacitated Fixed-
Charge Network Design. Journal of Heuristics, 10(5):525–545, September 2004. doi:10.1023/
B:HEUR.0000045323.83583.BD.

8 Moustapha Diaby. Successive Linear Approximation Procedure for Generalized Fixed-Charge
Transportation Problems. Journal of the Operational Research Society, 42(11):991–1001,
November 1991.

9 Samira Doostie, Tetsuhei Nakashima-Paniagua, and John Doucette. A novel genetic algorithm-
based methodology for large-scale fixed charge plus routing network design problem with
efficient operators. IEEE Access, 9:114836–114853, 2021. doi:10.1109/ACCESS.2021.3104794.

10 Burak Ekşioğlu, Sandra Duni Ekşioğlu, and Panos M. Pardalos. Solving Large Scale Fixed
Charge Network Flow Problems. In Equilibrium Problems and Variational Models, Nonconvex
Optimization and Its Applications, pages 163–183. Springer US, Boston, MA, 2003.

11 Martina Fischetti and Matteo Fischetti. Matheuristics. In Handbook of Heuristics, pages 121–
153. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-07124-4_14.

12 Dalila B.M.M. Fontes and José Fernando Gonçalves. Heuristic solutions for general concave
minimum cost network flow problems. Networks, 50:67–76, April 2007. doi:10.1002/NET.
20167.

13 Zachary Friggstad, Mohsen Rezapour, Mohammad R. Salavatipour, and Jose A. Soto. LP-Based
Approximation Algorithms for Facility Location in Buy-at-Bulk Network Design. Algorithmica,
81(3):1075–1095, March 2019. doi:10.1007/S00453-018-0458-X.

14 Bernard Gendron, Saïd Hanafi, and Raca Todosijević. Matheuristics based on iterative linear
programming and slope scaling for multicommodity capacitated fixed charge network design.
European Journal of Operational Research, 268(1):70–81, July 2018. doi:10.1016/J.EJOR.
2018.01.022.

15 Bernard Gendron and Mathieu Larose. Branch-and-price-and-cut for large-scale multicommod-
ity capacitated fixed-charge network design. EURO Journal on Computational Optimization,
2(1-2):55–75, 2014. doi:10.1007/S13675-014-0020-9.

16 Fred Glover. Parametric ghost image processes for fixed-charge problems: A study of transport-
ation networks. Journal of Heuristics, 11:307–336, 2005. doi:10.1007/S10732-005-2135-X.

17 Jung-Bok Jo, Yinzhen Li, and Mitsuo Gen. Nonlinear fixed charge transportation problem by
spanning tree-based genetic algorithm. Computers & Industrial Engineering, 53(2):290–298,
September 2007. doi:10.1016/J.CIE.2007.06.022.

18 Erick C Jones Jr, Sean Yaw, Jeffrey A Bennett, Jonathan D Ogland-Hand, Cooper Strahan,
and Richard S Middleton. Designing multi-phased CO2 capture and storage infrastructure
deployments. Renewable and Sustainable Energy Transition, 2:100023, 2022.

19 Sam Kwong, Tak-Ming Chan, Kim-Fung Man, and HW Chong. The use of multiple objective
genetic algorithm in self-healing network. Applied Soft Computing, 2(2):104–128, 2002. doi:
10.1016/S1568-4946(02)00033-9.

20 Richard S Middleton, Sean P Yaw, Brendan A Hoover, and Kevin M Ellett. SimCCS: An open-
source tool for optimizing CO2 capture, transport, and storage infrastructure. Environmental
Modelling & Software, 124:104560, 2020.

21 Artyom Nahapetyan and Panos Pardalos. Adaptive dynamic cost updating procedure for
solving fixed charge network flow problems. Computational Optimization and Applications,
39(1):37–50, January 2008. doi:10.1007/S10589-007-9060-X.

22 National Energy Technology Laboratory. FE/NETL CO2 transport cost model,
2018. URL: https://www.netl.doe.gov/research/energy-analysis/searchpublications/
vuedetails?id=543.

23 Jonathan Ogland-Hand, Kyle J Cox, Benjamin M Adams, Jeffrey A Bennett, Peter J Johnson,
Erin J Middleton, Carl J Talsma, and Richard S Middleton. How to net-zero america:
Nationwide cost and capacity estimates for geologic CO2 storage, 2023.

ATMOS 2025

https://doi.org/10.1023/B:HEUR.0000045323.83583.BD
https://doi.org/10.1023/B:HEUR.0000045323.83583.BD
https://doi.org/10.1109/ACCESS.2021.3104794
https://doi.org/10.1007/978-3-319-07124-4_14
https://doi.org/10.1002/NET.20167
https://doi.org/10.1002/NET.20167
https://doi.org/10.1007/S00453-018-0458-X
https://doi.org/10.1016/J.EJOR.2018.01.022
https://doi.org/10.1016/J.EJOR.2018.01.022
https://doi.org/10.1007/S13675-014-0020-9
https://doi.org/10.1007/S10732-005-2135-X
https://doi.org/10.1016/J.CIE.2007.06.022
https://doi.org/10.1016/S1568-4946(02)00033-9
https://doi.org/10.1016/S1568-4946(02)00033-9
https://doi.org/10.1007/S10589-007-9060-X
https://www.netl.doe.gov/research/energy-analysis/searchpublications/vuedetails?id=543
https://www.netl.doe.gov/research/energy-analysis/searchpublications/vuedetails?id=543

10:14 A Genetic Algorithm for Multi-Capacity Fixed-Charge Flow Network Design

24 Daniel Olson, Caleb Eardley, and Sean Yaw. Planning for edge failure in fixed-charge flow
networks, 2024. doi:10.48550/arXiv.2407.20036.

25 Diane Prisca Onguetou and Wayne D Grover. Solution of a 200-node p-cycle network design
problem with ga-based pre-selection of candidate structures. In 2009 IEEE International
Conference on Communications, pages 1–5, 2009. doi:10.1109/ICC.2009.5199466.

26 Hossain Poorzahedy and Omid Rouhani. Hybrid meta-heuristic algorithms for solving network
design problem. European Journal of Operational Research, 182:578–596, 2007. doi:10.1016/
J.EJOR.2006.07.038.

27 Caleb Whitman, Sean Yaw, Brendan Hoover, and Richard Middleton. Scalable algorithms for
designing CO2 capture and storage infrastructure. Optimization and Engineering, 23(2):1057–
1083, June 2022.

28 Fanrong Xie and Renan Jia. Nonlinear fixed charge transportation problem by minimum
cost flow-based genetic algorithm. Computers & Industrial Engineering, 63:763–778, 2012.
doi:10.1016/J.CIE.2012.04.016.

29 Yufeng Xin, George N Rouskas, and Harry G Perros. On the physical and logical topology
design of large-scale optical networks. Journal of lightwave technology, 21(4):904, 2003.

30 Shangyao Yan, Der shin Juang, Chien rong Chen, and Wei shen Lai. Global and local
search algorithms for concave cost transshipment problems. Journal of Global Optimization,
33:123–156, 2005. doi:10.1007/S10898-004-3133-5.

31 Sean Yaw, Richard S Middleton, and Brendan Hoover. Graph simplification for infrastructure
network design. In International Conference on Combinatorial Optimization and Applications,
pages 576–589. Springer, 2019. doi:10.1007/978-3-030-36412-0_47.

https://doi.org/10.48550/arXiv.2407.20036
https://doi.org/10.1109/ICC.2009.5199466
https://doi.org/10.1016/J.EJOR.2006.07.038
https://doi.org/10.1016/J.EJOR.2006.07.038
https://doi.org/10.1016/J.CIE.2012.04.016
https://doi.org/10.1007/S10898-004-3133-5
https://doi.org/10.1007/978-3-030-36412-0_47

Design of Distance Tariffs in Public Transport
Philine Schiewe #

Department of Mathematics and Systems Analysis, Aalto University, Finland

Anita Schöbel #

Department of Mathematics, RPTU University Kaiserslautern-Landau, Germany
Fraunhofer Institute of Industrial Mathematics ITWM, Kaiserslautern, Germany

Reena Urban
Department of Mathematics, RPTU University of Kaiserslautern-Landau, Germany

Abstract
Setting the ticket prices is a crucial decision in public transport. Its basis, relevant for all related
questions, such as dynamic prices or prices for different passenger groups, is the underlying fare
strategy. Popular fare strategies are based on zones or on distances. Transitions from one fare strategy
to another occur frequently, e.g., if public transport operators are joined to a larger association, or if
structural decisions in a region have taken place.

In this paper we report practically relevant issues when a fare structure should be changed
to a distance tariff, a problem frequently arising when a ticket system based on mobile devices is
introduced. We present mixed-integer linear programs for finding the parameters of a distance tariff,
analyze rounding properties, and reflect how the change in revenue for the operator and the number
of highly affected passengers can be controlled. Additionally, we evaluate the developed models
experimentally.

2012 ACM Subject Classification Applied computing → Transportation; Mathematics of computing
→ Mixed discrete-continuous optimization

Keywords and phrases public transport, fare strategy, distance tariff

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.11

Funding Reena Urban: European Union’s Horizon 2020 research and innovation programme [Grant
875022] and by the Federal Ministry of Education and Research [Project 01UV2152B] under the
project sEAmless SustaInable EveRyday urban mobility (EASIER).

1 Introduction

The choice of ticket prices for public transport usage is a crucial decision. Ticket prices are
important for covering the costs of the public transport operator. Through price elasticities
(see, e.g., [9, 2, 5]), they affect the number of people traveling by public transport. They
also contribute to the passenger satisfaction, and they even may affect the routes passengers
choose [3, 12]. A variety of fare strategies is implemented worldwide, each with a different
focus and purpose. In the following we sketch three basic types which come with many
variations in practice.

Flat tariffs. In a flat tariff, every ticket has the same price. This has the advantage that
it is very easy to understand, but on the other hand it is often perceived as unfair because
passengers with a short journey pay the same price as passengers with a long journey.

Zone tariffs. Zone tariffs are more granular. They group stations to zones and set fares
based on the traversed zones. Within each fare zone a flat tariff is applied, but traversing
different zones yields different prices. It is common that the price for a journey in a zone
tariff depends on the number of traversed zones, usually with a few exceptions. Such a zone

© Philine Schiewe, Anita Schöbel, and Reena Urban;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 11; pp. 11:1–11:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philine.schiewe@aalto.fi
https://orcid.org/0000-0002-4223-3246
mailto:anita.schoebel@math.rptu.de
https://orcid.org/0000-0002-9306-5529
https://orcid.org/0000-0002-9340-9387
https://doi.org/10.4230/OASIcs.ATMOS.2025.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

11:2 Design of Distance Tariffs in Public Transport

tariff is also called counting zone tariff. In the past years, zone tariffs have been very popular
and are implemented in many cities in Europe (e.g., Berlin, London, Paris, Copenhagen)
as well as worldwide (e.g., Vancouver, Melbourne, Johannesburg). The design of and the
transition to zone tariffs with practical applications has been broadly investigated in the
literature, e.g., [8, 4, 13, 27].

Distance tariffs. Distance tariffs are the most differentiated fare strategy. They determine
the price of a ticket based on the length of the corresponding journey. This can for example be
the actual distance traveled in the network (network distance tariff) or the beeline (Euclidean)
distance between the start and the end station of the journey (beeline distance tariff, also
called airline distance tariff). In this paper, we consider affine distance tariffs, which are
composed of a price per kilometer and an additional base amount. Distance tariffs are the
standard system in most long-distance (railway) transportation systems and get nowadays
more popular also in regional bus transportation. There are several reasons for this: First of
all, charging a price which is proportional to the beeline distance seems to be fair in an area
where rivers and mountains do not impose barriers for traveling. Furthermore, the rising
popularity of mobile tickets and smart cards has led to an increased interest in distance
tariffs because check-in/check-out systems can rather easily be used to determine the length
of a journey. A particular promising setting is that passengers use mobile devices that track
the coordinates and compute the distance traveled when the destination is reached. This
is easy to handle for people that use public transport only occasionally and therefore in
Germany an alternative to the so-called Deutschlandticket that offers unlimited access to all
urban and regional public transport systems for frequent users.

The transition to a distance tariff has been regarded mainly with respect to demand
change. [12] simulates route choice effects when changing from a zone tariff to a distance
tariff and evaluates travel times as well as amount of fares paid. In [28], a bilevel approach
maximizing the demand under the consideration of route choice based on cost and time
components is discussed. A different kind of distance tariff that takes the number of stations
into account instead of a kilometer distance is considered in [14, 15, 10].

In this paper, we consider a different topic than previous papers. We develop mathematical
models for the design of a distance tariff focusing on practice-oriented questions arising. The
models are based on standard data available for ticket sales, and the formulations presented
can be implemented directly. Therefore, this paper provides the means to generate relevant
tariff setting and make informed decisions.

The design of an affine distance tariff seems to be an easy exercise: one only has to
determine the price per kilometer and a fixed base amount. Nevertheless, when we discussed
the introduction of a distance tariff with partners from public transport operators, we learned
of several issues to be considered. In this paper we share our findings that occurred during
such projects by presenting how such practical requirements can be modeled.

The remainder of the paper is structured as follows. We present the general model for the
transition to a distance tariff in Section 2. We then discuss the modeling issues that stem
from our partners within a (confidential) real-world case study: Distance tariffs should be
integral (Section 3). In most real cases there exists an upper limit as a cap on the ticket price.
This upper limit is a third variable in the model as shown in Section 4. Public transport
operators wish to control the deviation in revenues (Section 5.1) and are also interested in
the passengers’ perspective, which means that there should be a bound on the number of
highly affected passengers as introduced in Section 5.2. An experimental evaluation of the
developed models is presented in Section 6. We conclude in Section 7.

P. Schiewe, A. Schöbel, and R. Urban 11:3

2 A model for the transition to a distance tariff

Informally speaking, a fare structure assigns a ticket price to every passengers’ journey.
Hence, in order to define formally what a fare structure and a distance tariff are, we first
need the network in which the passengers travel.

Let us define the public transport network PTN as a graph PTN = (V, E) with V being
the stations and E being the links between stations on which a regular service exists. A
passengers’ journey is a path in the PTN. In order to reflect all possible passengers journeys
through the network, we define J as the set of all paths in the PTN.

A fare structure assigns a ticket price to every path in the PTN, realizing a fare strategy,
which may be a distance tariff, a zone tariff or a flat tariff. This paper deals with models to
determine distance tariffs.

Given an org-dest-path J in the PTN, we consider two common options to assign a
distance (or length) l(J) to path J :

Network distance: In this case, l(J) is the length of path J in the PTN.
Beeline distance: In this case, l(J) is the beeline distance between the origin and the

destination of path J . The path J itself is not needed.

We assume that that all paths have positive lengths and that all distances are rounded
up to full kilometers. The latter means that a distance tariff as described in the following
requires passengers to pay the price per kilometer for every kilometer started on their journey.
In small regions of operation a smaller unit might be used to round to. Note that, while
network and beeline distance are the most common options, any other way to determine
the length of a path l(J) ∈ N can be employed as well, where N = {1, 2, 3, . . .} is the set of
natural numbers starting from 1.

▶ Notation 1. Let J be the set of all paths in the PTN. A fare structure π : J → R is a
distance tariff if the price for every path J ∈ J is defined as

π(J) := p · l(J) + f,

where the two parameters p and f describe the price per kilometer and the base amount of
the distance tariff, and l(J) is the length of path J .

We denote a distance tariff π with price per kilometer p and base amount f by (p, f).
The corresponding price list of π is given as (πkm

i)i∈N with πkm
i := p · i + f for all i ∈ N.

The goal of this paper is to develop models for the transition from an existing tariff to
a distance tariff as defined in Notation 1. Since neither the operator would like to have
a (big) loss in its income nor the passengers would like to have a (large) increase in their
ticket prices, the idea is to design the distance tariff such that the new prices are as close as
possible to the current prices. This leads to the concept of reference prices, which may be
the current ticket prices or other preferable prices that should be realized. The goal then is
to minimize the deviation to the reference prices. This objective has been introduced in [7],
and is followed in many other publications such as [1, 8, 14, 15, 4].

In order to model the deviations, let a set of passenger groups D be given. For each group
d ∈ D let wd ∈ N be the number of passengers of group d, Jd the path the passengers of
group d wish to travel, ld ∈ N its length, and rd ∈ R≥0 the reference price.

The set D of passenger groups can for example be a set of origin-destination (OD) pairs
D ⊆ V × V, which means to consider at most one passenger group (and hence one path)
between each pair of an origin station and a destination station. We also can allow
different passenger groups within the same OD pair, representing different paths between
the same origin and destination.

ATMOS 2025

11:4 Design of Distance Tariffs in Public Transport

The distance ld can be derived as network or beeline distance of path Jd of passenger
group d, i.e., ld = l(Jd) > 0. Note that all paths with the same pair of origin and
destination station are assigned the same distance ld if the beeline distance is applied,
whereas the network distance may lead to passenger groups with the same pair of origin
and destination station but with different distances because their paths differ.
As the reference price rd, we apply the current price to be paid by passenger group d ∈ D
for traveling along path Jd.
Note that two passenger groups d1, d2 with ld1 = ld2 , rd1 = rd2 can be joined to a new
passenger group d with ld = ld1 = ld2 , rd = rd1 = rd2 and wd = wd1 + wd2 . We hence may
assume that passenger groups are pairwise disjoint regarding distance or reference price.

Finally, the new price of the passenger group d is denoted by πd. If it is determined by a
distance tariff (p, f), we have πd = p · ld + f . The vector (πd)d∈D contains all the new prices.

The basic distance tariff design model for a transition to a distance tariff can now be
stated. It looks for a distance tariff π with price per kilometer p and base amount f , requiring
p, f ≥ 0, and minimizing the sum of absolute deviations between the new prices (πd)d∈D and
the reference prices (rd)d∈D:

min
p, f, πd

∑
d∈D

wd|rd − πd|

s.t. πd = p · ld + f for all d ∈ D
p, f ≥ 0.

(1)

The variables πd with d ∈ D can be replaced such that the program consists of only two
variables, p and f , and the absolute value can be replaced by a bottleneck variable zd for
each d ∈ D such that we equivalently obtain its linear version:

min
p, f, zd

∑
d∈D

wdzd

s.t. rd − p · ld − f ≤ zd for all d ∈ D
p · ld + f − rd ≤ zd for all d ∈ D

p, f ≥ 0.

(2)

▶ Example 2. To illustrate the different tariff types considered in this paper, we consider
an example derived from the sioux_falls data set, see Figure 4, of the software library
LinTim [18, 19]. To generate passenger groups, we compute the network distance of each
origin destination pair and a reference price based on the zone tariff depicted in Figure 4a.
As noted above, we combine passenger groups which share the same distance and reference
price. Note that this example is part of the experimental evaluation in Section 6 (where it is
denoted as data set A with ratio_zone = 1).

In the graphical representations, e.g. in Figure 1a, each passenger group is marked as
a point (ld, rd) showing its distance (rounded to full kilometers) and reference price. The
size of the marker depends on the number of passengers wd of the group. The fare structure
π is plotted as a function of the distance l, e.g., in Figure 1a, the orange line l 7→ p · l + f

represents the distance tariff. The price list πkm
i := p · i + f can be read off as the function

values at i ∈ N.

We illustrate an optimized distance tariff for Example 2 in Figure 1a.
Recall that ld > 0 for all d ∈ D. We can add additional bounds to model (1):

P. Schiewe, A. Schöbel, and R. Urban 11:5

0 2 4 6 8 10 12 14 16 18

distance

1

2

3

4

5

6

7
p
ri
ce

reference price

dist

(a) Distance tariff.

0 2 4 6 8 10 12 14 16 18

distance

1

2

3

4

5

6

7

p
ri
ce

reference price

dist

π integer

π rounded

f, p integer

f, p rounded

(b) Integer distance tariffs and rounded solutions.

Figure 1 Example data from Example 2 with optimal solutions. Each passenger group is marked
as a point (ld, rd) showing its distance (rounded to full kilometers) and reference price. The size of
the marker depends on the number of passengers wd of the group. The optimized fare structures are
plotted as functions of the distance.

▶ Lemma 3. Let rmax := max
d∈D

rd. Every optimal solution (p, f) to model (1) satisfies
p ≤ max

d∈D
rd

ld
and f ≤ rmax. In particular, these are valid inequalities for model (1).

Proof. Let (p, f) be an optimal distance tariff. First assume that f > rmax. This means
that πd = p · ld + f > p · ld + rmax ≥ p · ld + rd ≥ rd for all d ∈ D. Decreasing f to rmax hence
decreases the objective function value, which is a contradiction to (p, f) being an optimal
distance tariff.

Second assume that p > maxd∈D
rd

ld
. This yields

πd = p · ld + f > max
d′∈D

rd′

ld′
· ld + f ≥ rd

ld
· ld + f = rd + f ≥ rd

for all d ∈ D. Decreasing p to maxd∈D
rd

ld
hence decreases the objective function value, again

a contradiction to (p, f) being an optimal distance tariff. ◀

Note that instead of the sum of absolute deviations
∑

d∈D wd|rd − πd| as in (1) also the
maximum absolute deviation maxd∈D |rd−πd| or the sum of squared deviations

∑
d∈D wd(rd−

πd)2 may be considered as objective functions [21, 8, 1, 14, 15, 4]. Minimizing the maximum
absolute deviation is strongly dependent on outliers, and hence does not lead to good results
in practice. Also, while minimizing the sum of squared deviations is easy to solve by a simple
regression analysis, it is not what practitioners want; it is still more dependent on outliers
than minimizing the sum of absolute deviations. Another reason that makes minimizing the
sum of absolute deviations attractive for practical settings is that optimization problem (1)
satisfies the following two properties (which are not satisfied if the sum of absolute deviations
is replaced by the maximum absolute deviation or by the the sum of squared deviations):

(P1) There is always an optimal solution with a passenger group d ∈ D for which the
reference price rd and the new price πd coincide, i.e., rd = πd. If p ̸= 0 and f ≠ 0, then
there are even two passenger groups with this property [26]. This means that there always
exist two passenger groups d ∈ D whose ticket prices stay the same when the old fare
structure is transformed to a distance tariff.

ATMOS 2025

11:6 Design of Distance Tariffs in Public Transport

(P2) As we show in Lemma 4, with a few exceptions, the new ticket price is larger than
the reference price for at most half of the passengers and it is smaller for at most half of
the passengers, i.e., it may be considered as balanced. Consequently, at most half of the
passengers experience increasing ticket prices when the fare structure is transformed to a
distance tariff.

Moreover, some detailed analysis [26] shows that the optimization problem (1) can be solved
in linear time in the number of passenger groups.

▶ Lemma 4 (Halving property). Let (p, f) be an optimal distance tariff, i.e., an optimal
solution to model (1). Then one of the following is true:

1.
∑

d∈D: rd<p·ld+f

wd ≤
∑

d∈D
wd

2 and
∑

d∈D: rd>p·ld+f

wd ≤
∑

d∈D
wd

2 .

2. f = 0 and
∑

d∈D: rd<p·ld+f

wd >

∑
d∈D

wd

2 .

Proof. We apply the argument from [22, 23]. Assume
∑

d∈D: rd>p·ld+f

wd >

∑
d∈D

wd

2 . Then

we can increase the base amount f by some h ∈ R>0 so that

{d ∈ D : rd > p · ld + f} = {d ∈ D : rd > p · ld + (f + h)}.

This however improves the objective function value because∑
d∈D

wd|rd − (p · ld + f + h)|

=
∑

d∈D: rd>p·ld+f

wd(rd − p · ld − f − h) +
∑

d∈D: rd<p·ld+f

wd(p · ld + f + h − rd)

=
∑
d∈D

wd|rd − (p · ld + f)| + h︸︷︷︸
>0

·

−
∑

d∈D: rd>p·ld+f

wd +
∑

d∈D: rd≤p·ld+f

wd


︸ ︷︷ ︸

<0

<
∑
d∈D

wd|rd − (p · ld + f)|.

Hence, (p, f + h) is a better solution, which is a contradiction to (p, f) being optimal.

The same argument works for the case that
∑

d∈D: rd<p·ld+f

wd >

∑
d∈D

wd

2 with h ∈ R

and −f ≤ h < 0 as long as f > 0. However, if f = 0, it is not allowed to reduce the base
amount f . This is the only situation in which it can be optimal that more than half of the
passengers have a higher new ticket price than their (old) reference price. ◀

3 Integrality constraints

A common practical requirement is to have integer values for the resulting ticket prices. Note
that by scaling the reference prices, we can ensure integer multiples of 10ct, 50ct, etc. Here,
we not only want to ensure this for the ticket prices πd of the actual set of passenger groups
d ∈ D, but also for all potential journeys, i.e., for all paths J ∈ J in the PTN. This can be
guaranteed by requiring the integrality condition for the whole price list, i.e.,

πkm
i ∈ N0 for each positive kilometer distance i ∈ N.

P. Schiewe, A. Schöbel, and R. Urban 11:7

These conditions may be added to the basis formulation (1):

min
p, f, πd

∑
d∈D

wd|rd − πd|

s.t. πd = p · ld + f for all d ∈ D
yi = p · i + f for all i ∈ N

p, f ≥ 0 for all d ∈ D
yi ∈ Z for all i ∈ N.

(3)

We may replace i ∈ N by i = {1, 2, . . . , imax} for some sufficiently large imax, but it is
computationally not advantageous to have so many integer variables. This number can be
reduced since it is in fact equivalent to require integrality only for p and f as the next lemma
shows.

▶ Lemma 5. p, f ∈ Z if and only if πkm
i ∈ Z for all i ∈ N.

Proof. If p and f are integer, then clearly πkm
i = p·i+f is integer for all natural numbers i ∈ N.

Vice versa, let p · i + f be integer for all i ∈ N. For i = 1 and i = 2 we receive that z1 := p + f

and z2 := 2p + f are both integer. Hence also z2 − z1 = p is integer, and from this we get
that z1 − p = f is also integer. ◀

The consequence is that (3) is equivalent to

min
p, f, πd

∑
d∈D

wd|rd − πd|

s.t. πd = p · ld + f for all d ∈ D
p, f ≥ 0
p, f ∈ Z,

(4)

in which we only have two integer variables f and p instead of the imax many variables
y1, . . . , yimax . Clearly, the program can again be linearized as already seen for (2).

▶ Corollary 6. The formulations (3) and (4) are equivalent.

Two heuristic solutions that we have tested are the following:
f, p rounded As a heuristic we can also solve the program (1) without integrality constraints

and round the optimal variables f∗ and p∗ to their closest integers. However, this is
only a heuristic, although the rounding property of [11] is often satisfied for location or
regression-like problems (see [24]), which have a similar structure as (1).

π rounded Another option is to round the prices π∗
d to the closest integer. Note however,

that this does not result in a distance tariff since the resulting values round(π∗
d) will not

satisfy round(π∗
d) = p · ld + f any more.

Both optimal integer solutions and the two heuristics are illustrated in Figure 1b.

4 Setting an upper price cap on the ticket prices

Implementing a distance tariff as in Notation 1, the ticket price increases unlimitedly with
the distance. In practice, public transport tariffs often have a cap on the maximum ticket
price per journey. Consider a path J ∈ J . As long as the length of J is small, the price

ATMOS 2025

11:8 Design of Distance Tariffs in Public Transport

function is an affine linear distance tariff (p, f) that becomes constant if the length of the
path exceeds a threshold distance Lmax. Formally, let the price cap be pmax. Then the price
π(l) for a path with length l is defined as a continuous piecewise linear function in l:

π(l) = min{p · l + f, pmax}

which results in a threshold distance Lmax for which p · Lmax + f = pmax, i.e., the price
stays at pmax for all passengers traveling further than Lmax. In the following we investigate
distance tariffs with such a cap on the ticket prices.

▶ Notation 7. Let J be the set of all paths in the PTN. A fare structure π : J → R is a
capped distance tariff if the price for every path J ∈ J is defined as

π(J) := min{p · l(J) + f, pmax},

where the parameters p and f describe the price per kilometer and the base amount of the
distance tariff, and pmax is the cap on the ticket price. As before, l(J) is the length of path J ,
measured by beeline or network distance. We denote a capped distance tariff π with price per
kilometer p, base amount f and upper price limit pmax by (p, f, pmax). If p ̸= 0, its threshold
distance Lmax is given as Lmax = pmax−f

p .

0 2 4 6 8 10 12 14 16 18

distance

1

2

3

4

5

6

7

p
ri
ce

reference price dist dist (cap)

(a) Capped distance tariff.

0 2 4 6 8 10 12 14 16 18

distance

1

2

3

4

5

6

7

p
ri
ce

reference price π integer π integer (cap)

(b) Integer capped distance tariff.

Figure 2 Example data from Example 2 with optimal solutions. Each passenger group is marked
as a point (ld, rd) showing its distance (rounded to full kilometers) and reference price. The size of
the marker depends on the number of passengers wd of the group. The optimized fare structures are
plotted as functions of the distance.

Figure 2 shows an example of input data with an optimized capped distance tariff
analogously to Figure 1. The horizontal part is the result of the upper price limit pmax.

P. Schiewe, A. Schöbel, and R. Urban 11:9

We can compute p, f and pmax with the following model:

min
p, f, pmax, xmax

d , πd

∑
d∈D

wd|rd − πd|

s.t. πd ≤ p · ld + f for all d ∈ D
πd ≤ pmax for all d ∈ D
πd ≥ p · ld + f − M · xmax

d for all d ∈ D
πd ≥ pmax − M · (1 − xmax

d) for all d ∈ D
pmax ≥ p · ld + f − M · xmax

d for all d ∈ D
pmax ≤ p · ld + f + M · (1 − xmax

d) for all d ∈ D
p, f, pmax ≥ 0

xmax
d ∈ {0, 1} for all d ∈ D.

(5)

The additional variable pmax denotes the maximum price of the capped distance tariff,
and the binary variables xmax

d indicate whether a passenger group d ∈ D has to pay the
maximum price, or not. The first two constraints ensure that πd is always smaller than the
minimum of the affine distance tariff and the upper price limit. The next two constraints
ensure that πd is not smaller, but equal to p · ld + f if xmax

d = 0 and equal to pmax if xmax
d = 1.

Finally, the last two constraints ensure the relation between pmax and p · ld + f : If xmax
d = 0,

the constant part pmax must be larger than the affine part p · ld +f , and vice versa if xmax
d = 1.

In the following we first bound the optimal value for pmax. This then enables us to
determine a reasonable constant for the big M parameter in model (5). Recall that rmax =
maxd∈D rd.

▶ Lemma 8. There is always an optimal solution (p, f, pmax) to model (5) with p ≤ max
d∈D

rd

ld

and f ≤ pmax ≤ rmax.

Proof. Let (p, f, pmax) denote an optimal capped distance tariff.
First, assume that f > pmax. We then have pmax < p · ld + f for all d ∈ D. Therefore, we

can replace (p, f, pmax) by (0, pmax, pmax), which yields the same optimal objective function
value and is hence also an optimal solution. For the following let f ≤ pmax.

Second, assume that pmax > rmax. We replace (p, f, pmax) by (p, min{f, rmax}, rmax). For
all passenger groups d ∈ D with p · ld + f ≤ rmax (which only can occur if f ≤ rmax), the
contribution to the objective function value does not change. For the remaining passenger
groups, we have that min{p · ld + f, pmax} > rmax ≥ rd and hence obtain a reduction in the
objective function value, which is a contradiction to (p, f, pmax) being optimal. This yields
that there is an optimal solution with pmax ≤ rmax and hence also with f ≤ rmax.

Third, assume that p > max
d∈D

rd

ld
. We consider replacing (p, f, pmax) by

(
max
d∈D

rd

ld
, f, pmax

)
.

For all passenger groups d ∈ D with pmax ≤ max
d′∈D

rd′
ld′

· ld + f < p · ld + f the contribution to
the objective function value does not change because the price is determined by pmax. For
the remaining passenger groups, we have that pmax > max

d′∈D
rd′
ld′

· ld + f . Therefore,

min{p · ld + f, pmax} > max
d′∈D

rd′

ld′
· ld + f

(
= min

{
max
d′∈D

rd′

ld′
· ld + f, pmax

})
≥ rd

ld
· ld + f = rd + f ≥ rd.

Thus, in this case the objective function value of
(
max
d∈D

rd

ld
, f, pmax

)
is smaller than of

(p, f, pmax), which is a contradiction to (p, f, pmax) being an optimal solution. This yields
that there is an optimal solution with p ≤ max

d∈D
rd

ld
. ◀

ATMOS 2025

11:10 Design of Distance Tariffs in Public Transport

▶ Lemma 9. We consider model (5) with the additional constraints stated in Lemma 8.
Then the parameter M can be chosen as M := max

d∈D
rd

ld
· max

d∈D
ld + rmax.

Proof. Let M := rmax+maxd∈D
rd

ld
·max

d∈D
ld. Because of the additional constraints of Lemma 8,

we have p ≤ maxd∈D
rd

ld
and f ≤ pmax ≤ rmax in any feasible solution (p, f, pmax). This

yields p · ld + f − M ≤ 0, pmax − M ≤ 0 and p · ld + f + M ≥ rmax. The big-M constraints
in (5) are therefore redundant in case the big-M is active. ◀

The halving property as shown for model (1) in Lemma 4 does analogously hold for
capped distance tariffs:

▶ Lemma 10 (Halving property). Let (p, f, pmax) be an optimal capped distance tariff, i.e.,
an optimal solution to model (5). Then one of the following is true:

1.
∑

d∈D:
rd<min{p·ld+f,pmax}

wd ≤
∑

d∈D
wd

2 and
∑

d∈D:
rd>min{p·ld+f,pmax}

wd ≤
∑

d∈D
wd

2 .

2. f = 0 and
∑

d∈D:
rd<min{p·ld+f,pmax}

wd >

∑
d∈D

wd

2 .

Proof. The result can be shown analogously to Lemma 4. Instead of shifting the line
l 7→ p · l + f , we shift the complete graph of l 7→ min{p · l + f, pmax}. ◀

5 Controlling the revenue and number of highly affected passengers

The objective function minimizing the sum of absolute deviations between reference prices
and new prices implicitly controls the deviation of revenue and ticket price increases. However,
in practice it may be required explicitly that the revenue is changed by a certain amount or
that only a certain amount of passengers is affected by a high increase in the ticket price.
These additional requirements are taken into consideration in Sections 5.1 and 5.2.

5.1 Controlling the changes in revenue
Under the assumption that all passengers pay the reference prices for their tickets, the
revenue is given by

∑
d∈D wdrd. When designing a new fare structure, there might be the

requirement to obtain a certain revenue R ∈ R. In practice the value R may be given in
relation to the revenue gained by the reference prices as R =

∑
d∈D wdrd − α1 with α1 ∈ R or

as R = α2 ·
∑

d∈D wdrd with α2 ∈ R≥0. This bound can be acknowledged in the optimization
process by adding the following linear constraint to the previous models (1)–(5) independent
of the integrality and upper price limit specifications:∑

d∈D

wdπd ≥ R. (6)

Note that this additional constraint does in general not preserve previously shown
properties of the solutions like the halving property.

Starting with model (1) or (5) without a constraint on the revenue and noticing that
the revenue is lower than desired, one may be inclined to equally increase all ticket prices
until the desired revenue is realized. Formally, this means that if

∑
d∈D wdπd < R, we set

∆ := R −
∑

d∈D wdπd and increase the base amount f to f̃ := f + ∆∑
d∈D

wd
. This however

does in general not lead to an optimal solution with respect to the objective of minimizing
the sum of absolute deviations from reference prices as illustrated in Figure 3a. Thus, it is
only a heuristic.

P. Schiewe, A. Schöbel, and R. Urban 11:11

0 2 4 6 8 10 12 14 16 18

distance

1

2

3

4

5

6

7
p
ri
ce

reference price

dist

revenue

revenue heuristic

(a) Optimal solution and heuristic for controlling
for revenue with R = 1.1 ·

∑
d∈D wdrd.

0 2 4 6 8 10 12 14 16 18

distance

1

2

3

4

5

6

7

p
ri
ce

reference price dist

dist (cap)

passengers

passenger (cap)

(b) Optimal distance and capped distance tariff
for controlling for highly affected passengers with
r̄d = 1.1rd, W = 0.1 ·

∑
d∈D wd.

Figure 3 Example data from Example 2 with optimal solutions. Each passenger group is marked
as a point (ld, rd) showing its distance (rounded to full kilometers) and reference price. The size of
the marker depends on the number of passengers wd of the group. The optimized fare structures are
plotted as functions of the distance.

5.2 Controlling the number of highly affected passengers
While a high deviation between a reference price and a new ticket price is recognized and
punished by the objective function, it is still possible that the price for a passenger group
increases significantly. To prevent this, we can add a set of constraints to the previous models:
For each passenger group d ∈ D let r̄d be a threshold for the ticket price. Let W ∈ R≥0 be a
limit on the number of passengers for which the new ticket price exceeds the threshold. In
practice the threshold r̄d may be chosen as r̄d = rd + β1 with β1 ∈ R or as r̄d = β2 · rd with
β2 ∈ R≥0. The limit W may be given as W = γ ·

∑
d∈D wd with γ ∈ [0, 1]. An example is

illustrated in Figure 3b.
This restriction can be realized by incorporating the following set of constraints into the

previous models (1)–(5) independent of the integrality and upper price limit specifications::

πd ≤ r̄d + M · xd for all d ∈ D, (7)∑
d∈D

wdxd ≤ W, (8)

xd ∈ {0, 1} for all d ∈ D, (9)

where we choose M as in Lemma 9. If πd > r̄d, then the binary variable xd is set to 1 and
indicates that the new price exceeds the threshold. The total number of all passengers for
which the threshold is exceeded is computed and limited by W . Note that this additional
constraint does in general not preserve previously shown properties of the solutions like the
halving property.

6 Experimental evaluation

In order to discuss the differences of the models, we conduct an experimental evaluation. For
the input data we consider the data set sioux_falls provided in the open source software
library LinTim [18, 19], see Figure 4. We generate two sets of passenger groups D1, D2
where for D1 the reference prices rd are computed according to a zone tariff depicted in

ATMOS 2025

11:12 Design of Distance Tariffs in Public Transport

Figure 4a and for D2 the reference prices rd are computed based on a network distance
tariff. Small perturbations are introduced by rounding the distances ld of the passenger
groups. For ratio_zone ∈ {0, 0.25, 0.5, 0.75, 1}, we create a set of passenger groups D =
{(ld, rd, ratio_zone · wd) : d ∈ D1)} ∪ {(ld, rd, (1 − ratio_zone) · wd) : d ∈ D2}. Thus,
the reference prices for ratio_zone = 0 represent a perturbed distance tariff and for
ratio_zone = 1 a perturbed zone tariff. By using two distance functions to determine ld,
d ∈ D, in data set A and data set B, we get a total of 10 instances, detailed in Table 1. The
models are implemented on a machine with Intel(R) Core(TM) i5-1335U CPU and 32GB
RAM using Gurobi 12 [6].

1 2

3 4 5 6

9 8 7

10 16 18

17

12 11

14 15 19

23 22

13 24 21 20

(a) Public transport network where
stations of the same color form a zone.

(b) Demand used to generate passenger groups D1, D2.
Darker colors represent higher demand.

Figure 4 Public transport network and demand data for sioux_falls.

Table 1 Input data for data set A and data set B, detailing the distance function used to compute
ld, the maximum distance over all passenger groups as well as the number of passenger groups
depending on ratio_zone. Note that the distances ld are rounded up to the nearest integer.

|D| for ratio_zone

Data set distance function maxd∈D ld 0 0.25 0.5 0.75 1

data set A rounded network 15 92 129 129 129 40
data set B rounded beeline 153 128 183 183 183 59

We implement and test 12 models discussed in this paper, see Table 2. In particular, we
consider the basic distance tariff design models (dist), models with integer prices (integer)
as well as controlling the revenue (revenue) and the number of highly affected passengers
(passengers). For each of these models, a version with capped prices (cap) is implemented,
as well as alternative models and heuristic approaches marked by ∗.

For controlling the revenue, we set R = 1 ·
∑

d∈D wdrd, i.e., the revenue of the new
solution has to be at least as high as the revenue generated by the reference prices. For
controlling the number of highly affected passengers, we choose r̄d = 1.1rd, i.e., all passengers
that have to pay more than 110% of the reference price are highly affected. Additionally,
we restrict the number of highly affected passengers to W = 0.1

∑
d∈D wd, i.e., at most 10%

of the passengers may be highly affected. When integer prices are considered, we consider
integer multiples of 10ct, both for the prices π and the parameters f, p.

P. Schiewe, A. Schöbel, and R. Urban 11:13

Table 2 Abbreviation and parameters of implemented models. Alternative formulations and
heuristics are marked by ∗ and are evaluated in Section 6.3.

Abbreviation Model Added parameters

dist LP (2) –
dist (cap) MIP (5)

π integer MIP (3) (linearized)

multiples of 10ct
π integer (cap) MIP (5) with πd ∈ Z
π rounded∗ LP (2), π rounded a posteriori
f, p integer∗ MIP (4) (linearized)
f, p rounded∗ LP (2), f, p rounded a posteriori

revenue LP (2) with (6)
R = 1 ·

∑
d∈D wdrdrevenue (cap) MIP (5) with (6)

revenue heuristic∗ LP (2), f̃ := f + ∆∑
d∈D

wd

a posteriori

passengers MIP (2) with (7)-(9) r̄d = 1.1rd,
W = 0.1

∑
d∈D wdpassengers (cap) MIP (5) with (7)-(9)

6.1 Solver time

0.0 0.25 0.5 0.75 1.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

so
lv
er

ti
m
e
[s
]

(a) Solver time, data set A.

0.0 0.25 0.5 0.75 1.0
0

10

20

30

40

50

so
lv
er

ti
m
e
[s
]

(b) Solver time, data set B.

dist

dist (cap)

π integer

π integer (cap)

revenue

revenue (cap)

passengers

passenger (cap)

Figure 5 Solver time of the different models, grouped by ratio_zone.

As shown in Figure 5, the solver time of all models is low, with a maximal solver time
of under 50 seconds. However, there is a clear difference between non-capped models and
capped models. All non-capped models have solver times of under 2 seconds. For the capped
models, however, the solver time increases to almost 50 seconds.

Additionally, the influence of the input structure and the corresponding number of
passenger groups |D|, see Table 1, on the solver time is evident. While a pure zone tariff
as input (ratio_zone = 1) is the easiest to solve with solver times under 2 seconds also for
models with an upper bound, the instances where both zone tariffs and distance tariffs are
used to generate the input, i.e., 0 < ratio_zone < 1, are hardest to solve. Furthermore,
since data set A is a smaller data set, it has lower solver times than data set B.

ATMOS 2025

11:14 Design of Distance Tariffs in Public Transport

0.0 0.25 0.5 0.75 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

so
lv
er

ti
m
e
[s
]

(a) Solver time, data set A.

0.0 0.25 0.5 0.75 1.0
0.0

0.1

0.2

0.3

0.4

0.5

so
lv
er

ti
m
e
[s
]

(b) Solver time, data set B.

dist π integer

π rounded

f, p integer

f, p rounded

revenue

revenue heuristic

Figure 6 Solver time of the different alternative formulations and heuristics, grouped by
ratio_zone.

Figure 6 details the solver time of the alternative formulations and heuristics. Note that
for integer distances ld, d ∈ D, the models (3) and (4) are equivalent. However, modeling
only f, p as integer variables clearly outperforms modeling all prices πd, d ∈ D, as integer
variables. Note that the solver times of the revenue model and the heuristic revenue model
are almost identical.

6.2 Evaluating different models
Solutions for the models described in Table 2 for ratio_zone = 0.25 are depicted Figure 7.
Note that for other values of ratio_zone the solutions are structured similarly.

0 2 4 6 8 10 12 14 16 18

distance

1

2

3

4

5

6

7

p
ri
ce

(a) Input data and solutions for data set A.

0 20 40 60 80 100 120 140 160 180

distance

1

2

3

4

5

6

7

p
ri
ce

(b) Input data and solutions for data set B.

reference price dist

dist (cap)

π integer

π integer (cap)

revenue

revenue (cap)

passengers

passenger (cap)

Figure 7 Input data and solutions for ratio_zone= 0.25. Every passenger group is marked as
a point (ld, rd) showing its distance and reference price. The size of the marker depends on the
number of passengers wd of the group.

P. Schiewe, A. Schöbel, and R. Urban 11:15

We observe that for data set A, for all models except π integer, the non-capped model
and the capped model share the same base amount and price per kilometer f, p. Further
evaluation shows that here the added flexibility of capped distance tariffs can hardly result
in better solutions, see Figure 8. For data set B, however, introducing an upper limit results
in new base amount and price per kilometer f, p for all models. Thus, the capped distance
tariffs can better represent the reference prices of the passengers. For both data sets, the
solutions for models with continuous prices are similar to each other. However, enforcing
integer prices leads to considerably different solutions. For data set B, with a maximum
distance of 153, enforcing integer prices results in a flat tariff, or a capped distance tariff
that closely resembles a flat tariff. If integer prices are required here, it might be better to
aggregate distances, e.g to multiples of 5.

Evaluating the total deviation between prices and reference prices. Figure 8 details
the objective value, i.e., the weighted absolute deviation from the reference prices for all
considered models. In addition to the absolute objective value, a normalized version is
depicted, where the objective value is represented in comparison to the objective value of the
basic distance tariff (dist), i.e.,

normalized objective(model) = objective(model) − objective(dist)
objective(dist) . (10)

Figure 8 shows that reference prices derived from a distance tariff (ratio_zone=0) can be
approximated best but due to structure of the input data the reference prices cannot be met
exactly. Furthermore, the absolute value of the total deviation increases with ratio_zone.
Only for a zone-tariff-based input, i.e., ratio_zone = 1, the absolute objective values fall a
little. This might be due to having fewer passenger groups D.

By introducing an upper limit on the prices, the weighted absolute deviation can be
reduced compared to the model without upper bound. In particular, multiple models
outperform the basic distance tariff (dist). As observed in Figure 7, this effect is more
pronounced for data set B than for data set A.

Note that for data set B, enforcing integer prices has a considerable effect on the solution
quality, increasing the weighted absolute deviation to up to 180% of the corresponding
deviation for the basic distance tariff. This is due to the high number of integer distance
values paired with low prices, which often leads to flat tariffs that cannot approximate the
input data well.

For all other models, the solution quality does not deviate by more than 25% compared
to the deviation for the basic distance and the deviation is often considerably lower. Note
that for data set B, enforcing the revenue to be at least as high as the revenue according to
the reference prices can be done without noticeable losses in the objective value. This shows
that imposing additional constraints still allows for tariffs that represent the reference prices
well.

ATMOS 2025

11:16 Design of Distance Tariffs in Public Transport

0.0 0.25 0.5 0.75 1.0
0

250

500

750

1000

1250

1500

1750

2000

w
ei
gh

te
d
ab

so
lu
te

d
ev
ia
ti
o
n

(a) Objective value, data set A.

0.0 0.25 0.5 0.75 1.0
0

500

1000

1500

2000

2500

w
ei
gh

te
d
ab

so
lu
te

d
ev
ia
ti
o
n

(b) Objective value, data set B.

0.0 0.25 0.5 0.75 1.0

0.0

0.2

0.4

0.6

0.8

w
ei
gh

te
d
a
b
so
lu
te

d
ev
ia
ti
on

(c) Normalized objective value (10), data set A.

0.0 0.25 0.5 0.75 1.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

w
ei
gh

te
d
a
b
so
lu
te

d
ev
ia
ti
on

(d) Normalized objective value (10), data set B.

dist

dist (cap)

π integer

π integer (cap)

revenue

revenue (cap)

passengers

passenger (cap)

Figure 8 Evaluating the objective value (weighted absolute deviation from the reference prices)
of the optimal solutions grouped by ratio_zone.

Evaluating the revenue. In addition to the objective value, we evaluate the revenue of the
solutions in Figure 9. Note that the revenue is normalized by the revenue of the reference
prices, i.e.,

normalized revenue(model) =
revenue(model) −

∑
d∈D wdrd∑

d∈D wdrd
. (11)

Compared to the revenue generated by the reference prices, the revenue according to
the new tariffs reduces by at most 7% and even increases slightly for some models. Note
that when controlling for the revenue, the revenue does not decrease. Thus, simplifying the
tariff to a distance based tariff with relevant practical constraints is possible without a high
impact on the operator’s revenue.

P. Schiewe, A. Schöbel, and R. Urban 11:17

0.0 0.25 0.5 0.75 1.0
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01
to
ta
l
re
v
en
u
e

(a) Normalized revenue (11), data set A.

0.0 0.25 0.5 0.75 1.0

−0.06

−0.04

−0.02

0.00

0.02

0.04

to
ta
l
re
v
en
u
e

(b) Normalized revenue (11), data set B.

dist

dist (cap)

π integer

π integer (cap)

revenue

revenue (cap)

passengers

passenger (cap)

Figure 9 Evaluating the revenue value of the optimal solutions, normalized by reference revenue,
grouped by ratio_zone.

6.3 Evaluating alternative models and heuristics
The alternative models and heuristics solution methods marked by ∗ in Table 2 are evaluated
in comparison to the original models.

0.0 0.25 0.5 0.75 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

w
ei
gh

te
d
a
b
so
lu
te

d
ev
ia
ti
on

(a) Normalized objective value (10), data set A.

0.0 0.25 0.5 0.75 1.0

0

1

2

3

4

5

w
ei
gh

te
d
a
b
so
lu
te

d
ev
ia
ti
on

(b) Normalized objective value (10), data set B.

dist π integer

π rounded

f, p integer

f, p rounded

revenue

revenue heuristic

Figure 10 Evaluating the objective value (weighted absolute deviation from the reference prices)
of the optimal solutions for alternative formulations and heuristics, grouped by ratio_zone.

Evaluating the total deviation between prices and reference prices. When considering
integer prices, Figure 10 shows that the equivalent models (3) (π integer) and (4) (f, p integer)
do indeed find equally good solutions. However, rounding the prices π or the base amount
and price per kilometer f, p a posteriori results in very different solutions. While rounding π

ATMOS 2025

11:18 Design of Distance Tariffs in Public Transport

does not lead to a distance tariff, the total deviation from the reference prices is always as
good as the distance tariff (dist) and sometimes even results in slightly lower deviations. In
contrast, rounding the base amount and price per kilometer f, p results in solutions with up
to 5 times higher deviations form the reference prices compared to the basic distance tariff.
This effect is even more pronounced for data set B, where there are more integer values
for the considered distances. Note that the heuristic for revenue controlled tariffs performs
almost as well as the exact solution method. However, a closer examination of the solutions
shows that the resulting tariffs differ even though the objective values are almost identical.

Evaluating the revenue. When considering the revenue depicted in Figure 11, we observe
again that rounding the base amount and price per kilometer f, p is an outlier compared to
other models and can lead to significantly reduced revenues. The exact and heuristic models
for revenue control are both able to avoid revenue losses. Note that while the heuristic model
is designed to meet the reference price revenue exactly, the exact method can lead to slightly
higher revenues with the same deviation from the reference prices.

0.0 0.25 0.5 0.75 1.0

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

to
ta
l
re
v
en
u
e

(a) Normalized revenue (11), data set A.

0.0 0.25 0.5 0.75 1.0

−0.3

−0.2

−0.1

0.0

to
ta
l
re
v
en
u
e

(b) Normalized revenue (11), data set B.

dist π integer

π rounded

f, p integer

f, p rounded

revenue

revenue heuristic

Figure 11 Evaluating the revenue value of the optimal solutions for alternative formulations and
heuristics, grouped by ratio_zone.

7 Conclusion and further research

This paper provides models with several practically relevant specifications for changing a fare
strategy to a distance tariff. In addition to a basic distance tariff composed of a price per
kilometer and a base amount, also integrality requirements are discussed. A capped distance
tariff additionally implements an upper price bound on the ticket prices. Furthermore, two
constraints that can be added to the models and control the change in the revenue or the
number of highly affected passengers, respectively, are suggested. The reported optimization
models allow to explore and evaluate different options for distance tariffs with the possibility
to add special requirements in the constraints. The experimental evaluation shows that
practical constraints can be added when designing distance tariffs without sacrificing too
much solution quality or revenue. In a confidential case study our partners found the results
useful for their decisions on a distance tariff.

P. Schiewe, A. Schöbel, and R. Urban 11:19

We anticipate further research in two different directions: First, the results are related to
locating lines and other structures in computational geometry. In particular, for the capped
distance tariff, we locate an “angled line” whose theoretical properties could be discussed
along the lines of [25], not only for the median but also for the respective center problem.

Second, further research in tariff planning in public transport is interesting. We aim to
strengthen the MIP formulations to solve large, realistic data sets by leveraging the structure
of the reference prices. This is especially promising when the reference prices are derived from
a zone tariff with few zones. Additionally, a bicriteria version as in [20] in which the revenue
and the number of passengers using public transport are considered as two (conflicting)
objective functions is a useful extension. Furthermore, passengers’ routes are influenced not
only by their travel times but also by the tariff system. Since the routes of the passengers are
crucial for planning lines and timetables, there is a need of integrating also tariff planning
with these stages, and to discuss the differences between the sequential and the integrated
approach [16, 17] also in this setting.

References
1 L. Babel and H. Kellerer. Design of tariff zones in public transportation networks: theoretical

results and heuristics. Mathematical Methods of Operations Research, 58(3):359–374, December
2003. doi:10.1007/s001860300311.

2 R. Cervero. Transit pricing research. Transportation, 17(2):117–139, February 1990. doi:
10.1007/BF02125332.

3 A. Chin, A. Lai, and J. Y. J. Chow. Nonadditive Public Transit Fare Pricing Under Congestion
with Policy Lessons from a Case Study in Toronto, Ontario, Canada. Transportation Research
Record, 2544(1):28–37, January 2016. doi:10.3141/2544-04.

4 A. Galligari, M. Maischberger, and F. Schoen. Local search heuristics for the zone planning prob-
lem. Optimization Letters, 11(1):195–207, January 2017. doi:10.1007/s11590-016-1069-6.

5 D. Gattuso and G. Musolino. A Simulation Approach of Fare Integration in Regional Transit
Services. In F. Geraets, L. Kroon, A. Schöbel, D. Wagner, and C. D. Zaroliagis, editors,
Algorithmic Methods for Railway Optimization, Lecture Notes in Computer Science, pages
200–218, Berlin, Heidelberg, 2007. Springer. doi:10.1007/978-3-540-74247-0_10.

6 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2025. URL: https://www.
gurobi.com.

7 H. W. Hamacher and A. Schöbel. On Fair Zone Designs in Public Transportation. In J. R.
Daduna, I. Branco, and J. M. P. Paixão, editors, Computer-Aided Transit Scheduling, Lecture
Notes in Economics and Mathematical Systems, pages 8–22, Berlin, Heidelberg, 1995. Springer.
doi:10.1007/978-3-642-57762-8_2.

8 H. W. Hamacher and A. Schöbel. Design of Zone Tariff Systems in Public Transportation.
Operations Research, 52(6):897–908, December 2004. doi:10.1287/opre.1040.0120.

9 D.A. Hensher and J. King. Establishing fare elasticity regimes for urban passenger transport.
Technical Report C37, The University of Sydney, 1998.

10 R. Hoshino and J. Beairsto. Optimal pricing for distance-based transit fares. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32(1), 2018. doi:10.1609/aaai.
v32i1.11413.

11 R. Hübner and A. Schöbel. When is rounding allowed in integer nonlinear optimization?
European Journal of Operational Research, 237:404–410, 2014. doi:10.1016/j.ejor.2014.01.
059.

12 S. Maadi and J.-D. Schmöcker. Route choice effects of changes from a zonal to a distance-based
fare structure in a regional public transport network. Public Transport, 12(3):535–555, October
2020. doi:10.1007/s12469-020-00239-9.

ATMOS 2025

https://doi.org/10.1007/s001860300311
https://doi.org/10.1007/BF02125332
https://doi.org/10.1007/BF02125332
https://doi.org/10.3141/2544-04
https://doi.org/10.1007/s11590-016-1069-6
https://doi.org/10.1007/978-3-540-74247-0_10
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-642-57762-8_2
https://doi.org/10.1287/opre.1040.0120
https://doi.org/10.1609/aaai.v32i1.11413
https://doi.org/10.1609/aaai.v32i1.11413
https://doi.org/10.1016/j.ejor.2014.01.059
https://doi.org/10.1016/j.ejor.2014.01.059
https://doi.org/10.1007/s12469-020-00239-9

11:20 Design of Distance Tariffs in Public Transport

13 B. Otto and N. Boysen. Zone-based tariff design in public transportation networks. Networks,
69(4):349–366, 2017. doi:10.1002/net.21731.

14 S. Paluch. On a fair fare rating an a bus line. Communications-Scientific letters of the
University of Zilina, 15(1):25–28, 2013. doi:10.26552/com.C.2013.1.25-28.

15 S. Paluch and T. Majer. On a fair manifold fare rating on a long traffic line. Transport
Problems, 12(2):5–11, 2017. doi:10.20858/tp.2017.12.2.1.

16 P. Schiewe and A. Schöbel. Periodic timetabling with integrated routing: Towards applicable
approaches. Transportation Science, 54(6):1714–1731, 2020. doi:10.1287/trsc.2019.0965.

17 P. Schiewe and A. Schöbel. Integrated optimization of sequential processes: General analysis
and application to public transport. EURO Journal on Transportation and Logistics, 11:100073,
2022. doi:10.1016/j.ejtl.2022.100073.

18 P. Schiewe, A. Schöbel, S. Jäger, S. Albert, C. Biedinger, T. Dahlheimer, V. Grafe, O. Herrala,
K. Hoffmann, S. Roth, A. Schiewe, M. Stinzendörfer, and R. Urban. LinTim - Integrated
Optimization in Public Transportation. Homepage. https://www.lintim.net/. Open source.
Accessed 2025-01.

19 P. Schiewe, A. Schöbel, S. Jäger, S. Albert, C. Biedinger, T. Dahlheimer, V. Grafe, O. Herrala,
K. Hoffmann, S. Roth, A. Schiewe, M. Stinzendörfer, and R. Urban. LinTim: An integrated
environment for mathematical public transport optimization. Documentation for version
2024.12. Technical report, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau,
2024. URL: https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-85839.

20 P. Schiewe, A. Schöbel, and R. Urban. A Bi-Objective Optimization Model for Fare Structure
Design in Public Transport. In Paul C. Bouman and Spyros C. Kontogiannis, editors, 24th
Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2024), volume 123 of Open Access Series in Informatics (OASIcs), pages
15:1–15:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/OASIcs.ATMOS.2024.15.

21 A. Schöbel. Zone Planning in Public Transportation Systems. In L. Bianco and P. Toth,
editors, Advanced Methods in Transportation Analysis, Transportation Analysis, pages 117–133,
Berlin, Heidelberg, 1996. Springer. doi:10.1007/978-3-642-85256-5_6.

22 A. Schöbel. Locating least-distant lines in the plane. European Journal of Operational Research,
106(1):152–159, April 1998. doi:10.1016/S0377-2217(97)00254-3.

23 A. Schöbel. Locating Lines and Hyperplanes: Theory and Algorithms, volume 25 of Applied
Optimization Series. Kluwer, 1999. doi:10.1007/978-1-4615-5321-2.

24 A. Schöbel. Integer location problems. In Contributions to Location Analysis, pages 125–145.
Springer, 2019.

25 A. Schöbel. Locating dimensional facilities in a continuous space. In G. Laporte, S. Nickel, and
F. Saldanha da Gama, editors, Location Science, chapter 7, pages 143–184. Springer, 2020.

26 A. Schöbel and R. Urban. Fare structure design in public transport, 2025. doi:10.48550/
arXiv.2502.08228.

27 Y. Yang, L. Deng, Q. Wang, and W. Zhou. Zone Fare System Design in a Rail Transit Line.
Journal of Advanced Transportation, 2020:e2470579, December 2020. doi:10.1155/2020/
2470579.

28 D. Yook and K. Heaslip. Determining Appropriate Fare Levels for Distance-Based Fare
Structure: Considering Users’ Behaviors in a Time-Expanded Network. Transportation
Research Record, 2415(1):127–135, January 2014. doi:10.3141/2415-14.

https://doi.org/10.1002/net.21731
https://doi.org/10.26552/com.C.2013.1.25-28
https://doi.org/10.20858/tp.2017.12.2.1
https://doi.org/10.1287/trsc.2019.0965
https://doi.org/10.1016/j.ejtl.2022.100073
https://www.lintim.net/
https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-85839
https://doi.org/10.4230/OASIcs.ATMOS.2024.15
https://doi.org/10.1007/978-3-642-85256-5_6
https://doi.org/10.1016/S0377-2217(97)00254-3
https://doi.org/10.1007/978-1-4615-5321-2
https://doi.org/10.48550/arXiv.2502.08228
https://doi.org/10.48550/arXiv.2502.08228
https://doi.org/10.1155/2020/2470579
https://doi.org/10.1155/2020/2470579
https://doi.org/10.3141/2415-14

Separator-Based Alternative Paths in Customizable
Contraction Hierarchies
Scott Bacherle
Karlsruhe Institute of Technology, Germany

Thomas Bläsius
Karlsruhe Institute of Technology, Germany

Michael Zündorf
Karlsruhe Institute of Technology, Germany

Abstract
We propose an algorithm for computing alternatives to the shortest path in a road network, based on
the speed-up technique CCH (customizable contraction hierarchy). Computing alternative paths is a
well-studied problem, motivated by the fact that route-planning applications benefit from presenting
different high-quality options the user can choose from. Another crucial feature of modern routing
applications is the inclusion of live traffic, which requires speed-up techniques that allow efficient
metric updates. Besides CCH, the other speed-up technique supporting metric updates is CRP
(customizable route planning). Of the two, CCH is the more modern solution with the advantages
of providing faster queries and being substantially simpler to implement efficiently. However, so far,
CCH has been lacking a way of computing alternative paths. While for CRP, the commonly used
plateau method for computing alternatives can be applied, this is not so straightforward for CCH.

With this paper, we make CCH a viable option for alternative paths, by proposing a new
separator-based approach to computing alternative paths that works hand-in-hand with the CCH
data structure. With our experiments, we demonstrate that CCH can indeed be used to compute
alternative paths efficiently. With this, we provide an alternative to CRP that is simpler and has
lower query times.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases Alternative routes, realistic road networks, customizable contraction hier-
archies, route planning, shortest paths

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.12

Supplementary Material Software (Source Code): https://github.com/mzuenni/Separator-Based
-Alternative-Paths-in-CCHs

Funding This work was supported by funding from the pilot program Core-Informatics of the
Helmholtz Association (HGF).

1 Introduction

Computing shortest paths in a graph is a fundamental problem in computer science, with
practical relevance in a wide range of applications. One of the most prominent examples
is interactive navigation systems. For this application, the default solution for efficiently
computing shortest paths – Dijkstra’s algorithm [10] – is impractical due to the sheer size of
real-world road networks. One can, however, make use of the fact that road networks do
not change too frequently, which enables speed-up techniques that accelerate shortest-path
queries via precomputation [3]. Beyond requiring fast shortest-path computations, modern
navigation systems pose additional challenges. This includes real-time traffic updates and
suggestions for alternative paths the user can choose from.

© Scott Bacherle, Thomas Bläsius, and Michael Zündorf;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 12; pp. 12:1–12:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2450-744X
https://orcid.org/0009-0004-3289-6670
https://doi.org/10.4230/OASIcs.ATMOS.2025.12
https://github.com/mzuenni/Separator-Based-Alternative-Paths-in-CCHs
https://github.com/mzuenni/Separator-Based-Alternative-Paths-in-CCHs
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

12:2 Separator-Based Alternative Paths in CCHs

To formalize the concept of good alternatives to a shortest path Abraham, Delling,
Goldberg, and Werneck [1] proposed a definition based on three properties.
1. The set of alternatives should be diverse, i.e., each proposed alternative should be

sufficiently unique compared to the shortest path and other alternatives in the set.
2. The alternatives should have bounded stretch, i.e., they should never make big detours.
3. The alternatives should not contain obvious detours, i.e., any subpath that is sufficiently

short should be a shortest path.
Abraham et al. [1] also proposed the concept of via paths as a technique to compute alternative
paths. The idea here is to obtain a candidate path from the start s to the destination t

by concatenating shortest paths from s to a via vertex v and from v to t. For each such
candidate alternative, one then has to check whether it actually satisfies the conditions for
being a good alternative.

A common method to produce promising candidates for via vertices uses the concept
of plateaus, which are subpaths shared by the shortest path trees of a forward search from
the start and a backward search from the destination. The resulting via vertex candidates
are promising in the sense that a large plateau guarantees that an alternative via the
plateau has no obvious detour (Property 3). While there are other approaches to alternative
paths like the penalty method [7] and compact representations of a large set of multiple
alternatives [2, 14,17], most previous approaches are based on plateaus [1, 2, 8, 15,16].

In its most basic form, the plateau approach works as follows [1]. Run Dijkstra’s algorithm
bidirectionally, i.e., forward from the start and backward from the destination. To just
compute the shortest path, one could stop the searches once the shortest path has been
found. To compute alternatives, let instead both searches run a bit longer, building larger
and overlapping search trees, from which the plateaus can be extracted. With this, one
obtains at least one admissible alternative for 95 % of shortest path queries [1]. As mentioned
above, Dijkstra’s algorithm is prohibitively slow on large road networks, and running it longer
than necessary does certainly not improve this. It is thus not surprising that most work on
alternative paths is concerned with using speed-up techniques to improve efficiency. Note
that this leads to diametrically opposite objectives: On the one hand, speed-up techniques
aim to prune as much of the search space as possible, ideally exploring only the vertices on
the shortest path during a query. On the other hand, to get candidates for via vertices, we
explicitly want to find vertices that are not on the shortest path.

Nonetheless, various speed-up techniques have been successfully used for computing
alternative paths. Abraham et al. [1] demonstrate how to compute high-quality alternatives
based on Reach [12] and Contraction Hierarchies [11]. Luxen and Schieferdecker [16] further
improved the query times reported by Abraham et al. at the cost of excessive precomputation
and a significantly reduced number of found alternatives. Bader, Dees, Geisberger, and
Sanders [2] introduced the concept of an alternative graph to efficiently encode the union
of many alternatives. Paraskevopoulos and Zaroliagis further engineered this approach to
achieve faster runtime [17] and Kobitzsch used the alternative graph to efficiently extract
new alternatives [14].

In their paper introducing the speed-up technique CRP, Delling, Goldberg, Pajor, and
Werneck [8] also evaluate how well their algorithm is suited to compute alternatives. Similar
to the basic bidirectional approach mentioned above, they observe that relaxing the stopping-
criterion of the search leads to the discovery of plateaus, which result in at least one admissible
alternative for 91 % of the queries. This comes at the cost of a slow-down of only slightly
above 3 compared to a normal CRP query. We note that the result by Delling et al. [8]
stands out in the sense that CRP (which is the abbreviation for customizable route planning)
is the only approach that allows for efficient metric updates, which is essential as it enables
features like real-time traffic updates.

S. Bacherle, T. Bläsius, and M. Zündorf 12:3

While the technique customizable contraction hierarchy (CCH), introduced by Dibbelt,
Strasser, and Wagner [9], is an alternative to CRP that also allows metric updates, CCHs
have not yet been studied in terms of alternative paths. This is unfortunate, as except for the
lacking feature of alternative paths, CCH is generally preferable compared to CRP. It is easier
to implement, achieves an order of magnitude faster queries with the same preprocessing
time [9], and has a stronger theoretical foundation [4, 9, 19]. With this paper, we study how
CCHs also can be used to compute alternative paths.

Challenges, Contribution, and Outline. As outlined above, a common approach to compute
alternative paths is to run the normal shortest-path query longer than necessary to obtain
plateaus. Our first observation is that this approach is not compatible with CCH: The
CCH-query (at least in its basic form) runs upwards in a hierarchy defined by a so-called
elimination tree until it reaches the root, without any preemptive stopping criterion; we
refer the reader to Section 2.3 for a brief introduction to CCH. It follows that the strategy
“run the query longer” is not well-defined for CCH, as there is nothing left to explore after
reaching the root. Thus, instead of using plateaus, we propose a different approach to obtain
good candidates for via vertices that is more aligned with the inner workings of CCH.

Our approach to find candidates for via vertices is based on separators. Assume that
we are interested in alternative s-t-paths and that S is a separator that separates the start
s from the destination t, i.e., removing the vertices in S from the graph places s and t in
different connected components. Then any s-t-path must use one of the vertices from S,
making S a set of promising candidates for via vertices. Interestingly, the above mentioned
elimination tree of the CCH defines a hierarchy of separators. Moreover, the CCH query visits
all vertices in the top-level separator that separates s from t. Thus, without any overhead
compared to the normal CCH query, this provides us with a set of candidate via vertices.
Additionally, the query already provides us with distances from and to the separator vertices,
which already provides an upper bound to the stretch (Property 2). With little additional
overhead (factor 2), we can check all three properties properly.

Interestingly, the previously mentioned opposition – alternative paths requiring via
vertices that are not on the shortest path vs. speed-up technique trying to reduce the search
space – becomes apparent for CCHs. We observe that only considering the top-level separator
for potential via vertices yields an admissible alternative in only 65 % of the queries. To
improve upon this, we propose an algorithm that not only considers the top-level separator
but also separators on lower levels. Going down just one level already yields an admissible
alternative in 84 % and we achieve 90 % by going even deeper, which is competitive to the
state-of-the-art. Compared to a normal CCH query, this comes at the cost of a running time
increase by factors of 4.5 and 9.4, respectively. This outperforms CRP, the only previous
speed-up technique supporting alternative paths and efficient metric updates. Moreover,
for finding two and three alternatives, we get success rates of 69 % and 45 %, which is a
moderate improvement compared to CRP. Beyond the comparison to the state-of-the-art,
we additionally provide experiments that foster the understanding of our algorithm, e.g., in
terms of the trade-offs between running time and success rate.

After the preliminaries in Section 2, we introduce our separator-based approach for
computing alternative paths with CCH in Section 3. Our experimental evaluation can be
found in Section 4. We conclude with a discussion and some final remarks in Section 5.

ATMOS 2025

12:4 Separator-Based Alternative Paths in CCHs

2 Preliminaries

Let G = (V, E) be a directed graph with vertices V and edges E ⊆ V × V . Moreover, let G be
weighted, i.e., we have a cost function c : E → R≥0.1 For a directed edge e = (u, v) ∈ E we
refer to u and v as the tail and head, respectively. A sequence P = ⟨e0, . . . , ek⟩ of edges ei ∈ E

is a path if the head of ei−1 equals the tail of ei for i ∈ [k]. Let s be the tail of e0 and t be
the head of ek. Then we call P an s-t-path. Slightly abusing notation, we also use P to refer
to the set of edges in P . For P ′ ⊆ P , we call P ′ a subpath of P if P ′ appears consecutively
in P . Moreover, if P ′ is an a-b-path for a, b ∈ V , then P is called a-b-subpath of P .

We extend the cost function c from individual edges to sets of edges (and in particular
to paths), i.e., for E′ ⊆ E we define c(E′) =

∑
e∈E′ c(e). For a path P , c(P) is called the

length of P . The distance between s and t in G is the minimum length of an s-t-path and is
denoted by d(s, t). In the remainder of this paper, we make the common assumption that
there is only one s-t-path of length d(s, t) and therefore call this path the shortest s-t-path
and denote it with Ps,t.

2.1 Alternative Path Problem
Let Ps,t be the shortest s-t-path for s, t ∈ V . Following the definition by Abraham et al. [1],
we say that an s-t-path P is an admissible alternative if it has limited sharing, bounded
stretch, and local optimality, which are defined as follows, depending on parameters γ, ε,
and α, respectively.
1. P has limited sharing if c(P ∩ Ps,t) ≤ γ · d(s, t).
2. P has bounded stretch if for every a-b-subpath P ′ ⊆ P it holds that c(P ′) ≤ (1+ε) ·d(a, b).
3. P is locally optimal if for every a-b-subpath P ′ ⊆ P with c(P ′) ≤ α · d(s, t), it holds that

P ′ is the shortest a-b-path, i.e., c(P ′) = d(a, b).
In case we do not want just one but multiple alternatives, we require limited sharing
(Property 1) to not only hold for the shortest path Ps,t but for the union of Ps,t and all
other alternatives. Thus, we call a set P of alternative s-t-paths admissible if each P ∈ P
has bounded stretch (Property 2), is locally optimal (Property 3), and

c
(

P ∩
(⋃

P ′∈P
P ′ ̸=P

P ′ ∪ Ps,t

))
≤ γ · d(s, t).

We use the parameter values γ = 0.8, ε = 0.25, and α = 0.25 typically used in the literature.

2.2 Checking Admissibility
As already noted in the literature [1], it is unknown how to check bounded stretch (Property 2)
and local optimality (Property 3) without requiring quadratic time in the length of the
path. It is thus common to not check the properties exactly but instead use the approaches
described in the following.

For bounded stretch (Property 2), instead of checking every subpath P ′ ⊆ P , we only
check the parts that deviate from the shortest path Ps,t. More precisely, we check the
a-b-subpath P ′ if P ′ is maximal (with respect to inclusion) among the subpaths of P that
are edge-disjoint with the shortest path Ps,t. For paths based on one via vertex v, i.e., if P

1 For the purpose of the routing application, think of c as the cost to traverse an edge. Most commonly c
is the travel time.

S. Bacherle, T. Bläsius, and M. Zündorf 12:5

s ta
b

v

a′
b′

α · d(a, b)

Ps,t

Ps,v,t

Pa′,b′
?

Figure 1 Visualization of via alternative Ps,v,t and the vertices along it that are used for
admissibility checks. The vertices a and b are the vertices where the shortest path Ps,t diverges and
meets the alternative. The vertices a′ and b′ are those vertices along the alternative that are used
for the T-test. The dotted line between a′ and b′ symbolizes the possible existence of a shorter path
between a′ and b′ not via v which in turn would imply that the T-test is not passed.

is the concatenation of the shortest paths Ps,v and Pv,t, one can see that there is just one
such a-b-subpath; see Figure 1. More generally, for multiple via-vertices there is at most one
such subpath for each via vertex.

For the local optimality (Property 3), we use the so-called T-test, which guarantees
local optimality with respect to α but sometimes falsely rejects alternatives if they are not
locally optimal with respect to 2α [1]. For this, consider a via vertex v and let Ps,v,t be the
concatenation of the shortest paths Ps,v and Pv,t. Moreover, let a′ and b′ be the vertices on
Ps,v,t at distance α · d(a, b) from v; see Figure 1. The alternative Ps,v,t passes the T-test if
Pa′,v,b′ is the shortest a′-b′-path.

2.3 Customizable Contraction Hierarchies
Here we introduce the concepts of CCH necessary to understand our alternative path
algorithm. For a more general introduction and in-depth discussion, see the recent survey [5].
In general, CCH follows a three-phase approach: The first phase is a metric-independent
preprocessing, i.e., a preprocessing of the graph G, ignoring the cost function c. This is the
most costly phase, taking in the order of a few minutes for a continentally sized network,
which is acceptable as the topology of G rarely changes. The second step is the customization
phase, where the cost function c is preprocessed. Taking just a few seconds, this allows for
frequent traffic updates. Finally, the third phase are the actual queries, which usually take
less than a millisecond, exploiting the additionally information computed in the first two
phases.

Given the graph G, the CCH preprocessing computes the following two additional
structures. First, it computes a hierarchy of small balanced separators that splits the graph
recursively into pieces; see Figure 2 (left) for an illustration. This hierarchy is represented
by a rooted tree T called elimination tree; see Figure 2 (right). Let S ⊆ V be one of the
separators. Then S forms a path in T and only the bottom-most vertex of S has multiple
children. The different subtrees below these children contain the vertices from the different
connected components that were separated by S. From this, one can already make the
following crucial observation: For two vertices s and t, let A ⊆ V be the set of common
ancestors of s and t in T . Then, A separates s from t (or contains one of the two) and thus
any s-t-path goes through a vertex of A. Hence, to compute the distance d(s, t), it suffices
to compute the distances d(s, v) and d(v, t) for all v ∈ A and then choose the vertex v that
minimizes d(s, v) + d(v, t).

To achieve this, we need the second additional structure computed in the precomputation;
the augmented graph G+. The augmented graph is obtained from G by inserting additional
edges, which are called shortcuts and represent paths. Explaining why this works is beyond

ATMOS 2025

12:6 Separator-Based Alternative Paths in CCHs

s

t

t

s

Figure 2 Sketch of separators inside a CCH (left) and the corresponding search spaces (right).
Even though the union of the blue and lilac separators already separates s from t we still consider
the red separator because it is also in the common search space of s and t.

the scope of this paper (see e.g., [5]), but adding shortcuts in a clever way yields the following
crucial property. Let s ∈ V be any vertex and let ⟨v1, . . . , vk⟩ be the path in the elimination
tree T from s = v1 to the root vk. Now run Dijkstra’s algorithm, but instead of using a
priority queue to decide which vertices to relax, only relax the vertices v1, . . . , vk in that
order. Then this computes the correct distances d(s, vi) for all i ∈ [k], i.e., for all ancestors
of s in the elimination tree T . Running this type of search from s and (backwards) from
t thus yields the distances d(s, v) and d(v, t) for every common ancestor of s and t, which
yields the distance d(s, t) as noted above.

3 Separator Based Alternatives with CCH

Let G = (V, E) be the graph for which we have built the CCH and let T be the corresponding
elimination tree. Moreover, let the start s ∈ V and the destination t ∈ V be given, and let A

be the set of common ancestors of s and t in T . As outlined in Section 2.3, A separates s

from t. The idea of our basic approach is to use A as the set of potential via vertices.
We believe that this is a rather natural set of candidates for via vertices: As A separates s

from t, every s-t-path, and thus every alternative, has to go through a vertex in A. Moreover,
the separator hierarchy used for the CCH attempts to use small and balanced separators.
Small separators mean that we do not have too many candidates to check, making the
runtime acceptable. Balanced separation means that the separators lie somewhat in the
middle between many s-t-pairs, which intuitively makes for good via vertex candidates; see
Figure 3 for examples. With the set of candidate via vertices A, it remains to check for
admissibility. More precisely, we need to select a subset of A such that the corresponding
alternatives form an admissible set of alternatives.

3.1 Selection of Via Vertices

To maximize the number of found alternatives, we would ideally check for each separator
vertex v ∈ S whether the via vertex v yields an admissible alternative. From the resulting
set of individually admissible alternatives, one would then have to extract a maximum set of
alternatives that are also admissible together (recall that the limited sharing property for sets
of alternatives also depends on the other selected alternatives). As this is computationally
too expensive, we instead use the following greedy strategy, which is also commonly used in
the literature regarding alternative paths.

S. Bacherle, T. Bläsius, and M. Zündorf 12:7

Figure 3 Alternative paths computed by the basic approach. Left: Alternative paths between
Berlin and Paris. All paths have to cross the Rhine with some bridges. These bridges also form a
small balanced separator between Berlin and Paris. Right: Alternative paths between two blocks in
the german city of Mannheim. The corresponding separator vertices are highlighted.

We iteratively process the alternatives defined by vertices in A. When processing v ∈ S,
we check whether the via path Ps,v,t is admissible with respect to the already selected
alternatives. If yes, we add it to the selection and discard it otherwise. We prioritize shorter
alternatives, i.e., we process the candidates in the order of increasing length. We note that
the CCH approach is very well suited for this. Recall that the CCH query computes d(s, v)
and d(v, t) for every v ∈ S. Thus we already know the length of every via path Ps,v,t without
any overhead compared to the normal query.

It remains to check whether the next candidate path Ps,v,t is admissible with respect to
the already selected alternatives. To do this efficiently, we use four different checks that we
apply in order of increasing computational cost. The reason for this is that, if an early cheap
check already rules out a path, then we can save the later more expensive checks. The steps
and how to implement them efficiently in the CCH approach are described in detail in the
following. The first two steps check the bounded stretch requirement. The third step ensures
limited sharing and the fourth and final step is the T-test checking for local optimality.

Total Stretch Pruning. If an alternative is already longer than (1 + ε) · d(s, t) it will clearly
violate the bounded stretch (Property 2). Since we process alternatives by increasing length
this implies that all following alternatives will be too long as well, which allows us to return
early. This property can also be used to speed up the standard CCH in the same fashion as
proposed by Buchhold et al. [6]. They proposed that any vertex whose distance to either
s or t already exceeds the length of the shortest path found so far can be skipped. In our
setting, we can do the same pruning by additionally including the factor 1 + ε.

Bounded Stretch. For the bounded stretch, we need to find the a-b-subpath deviating
from the shortest path as shown in Figure 1. In the following, we describe how to find a;
determining b works analogously.

Let A be the common ancestors of s and t in the elimination tree and let v ∈ A be the via
vertex we are currently interested in. From the CCH query, we already obtain the shortest
paths P +

s,u in the augmented graph G+. Note that this path might still contain shortcut
edges. The naive approach would be to unpack it and then check where the resulting path
deviates from the shortest path. We can improve this by only unpacking the first edge on
P +

s,v that deviates from the shortest path. We note that unpacking this edge once might
again yield shortcut edges, which have to be unpacked recursively. However, in each step, we
only have to unpack one edge. Once this deviating edge is an edge of G, i.e., not a shortcut,
we have found the vertex a which is the tail of the edge. Moreover, during this unpacking,

ATMOS 2025

12:8 Separator-Based Alternative Paths in CCHs

Figure 4 Alternatives between London and Paris. Left: the shortest path, which is also the only
alternative that can be found by the basic approach because of the trivial separator. Right: the
alternatives found by the two step approach. In this case all alternatives use the same path after
using the Eurotunnel.

we can maintain the distance to v. Thus, we not only find a but also know d(s, a) and
d(a, v). With this checking the bounded stretch (Property 2) boils down to checking whether
d(a, v) + d(v, b) ≤ (1 + ε) · (d(s, t) − d(s, a) − d(b, t)).

Limited Sharing. To check limited sharing for the shortest path Ps,t, observe that from the
previous checks, we already know

c(Ps,v,t ∩ Ps,t) = c(Ps,v,t) − c(Pa,v,b) .

Thus, Property 1 can be checked with almost no overhead.
If we have already selected other alternatives, we also have to check the sharing with

them. For this, we actually compute Ps,v,t in G by fully unpacking the path found by the
CCH, i.e., we transform a path in the augmented graph G+ to a path in G by replacing
shortcuts with paths. To efficiently check sharing, we maintain the invariant that all edges
along the shortest path and along all previous selected alternatives are marked. Computing
the sharing is then done by summing over all marked edges along the unpacked path Ps,v,t .
Note that we can slightly improve the efficiency here by only summing over the detour and
adding the distance d(s, a) and d(b, t) directly.

Local Optimality. Performing the T-test is conceptually easy even though it is computa-
tionally expensive. We first determine the vertices a′ and b′ along Ps,v,t closest to v with
distance at least α · d(a, b). Then we perform a separate CCH query to compute d(a′, b′) and
check if it is equal to c(Pa′,b′). Note that determining a′, b′ and c(Pa′,b′) is trivial because
we already unpacked the path in the previous step.

After all tests are passed we add the alternative to our selection and mark all edges to
maintain the invariant required by the limited sharing check.

3.2 Two-Step Approach
The biggest advantage of road networks for efficiently computing shortest paths – its small
natural separators – can become a problem for our basic algorithm described above if the
separators are too small. Figure 4 shows the example of London and Paris, which are
separated by only a few vertices. The shortest path uses the Eurotunnel and the only possible
way to avoid this is by using ferries which take too long to provide admissible alternatives.
A similar issue can arise if the separator is too close to either s or t. In such a case most
separator vertices already violate the global stretch and get pruned.

S. Bacherle, T. Bläsius, and M. Zündorf 12:9

The goal in the following is to extend our approach to also provide admissible alternatives
in these situations. For this, we use the following intuitive observation. The above scenario
happens if the separator vertex v used by the shortest path is too important to be avoided.
Thus, we decide to keep v and instead look for alternatives in the subpaths from s to v and
from v to t. The basic idea is to consider these two sides of the separator v as independent
subproblems of the alternative path problem.

To make this more precise, let v be the vertex on the shortest path Ps,t that is closest
to the root in the elimination tree T . Moreover, let vs and vt be the two neighbors of v in
Ps,t. Then we recursively call the basic algorithm to compute alternatives for s to vs and
vt to t; see Figure 5. It remains to fill out the following details. First, we have to describe
how to combine the subpaths that are returned by the recursive calls. Secondly, we want the
resulting alternatives to be admissible for the original query of s and t. While admissibility
of the resulting paths can be checked when combining subpaths, we also have to adjust the
requirements for admissibility in the recursive calls to not falsely prune promising subpaths
or return subpaths that can never be completed to admissible alternatives.

Path Combination. Assume we have recursively computed alternative paths from s to
vs and from vt to t. As this typically does not yield too many paths, we consider every
possible combination of these paths to obtain alternative s-t-paths. As in the basic approach,
the order in which we consider these paths might have an impact on the resulting set of
alternatives. As before, we greedily add alternatives ordered by their length. We note that
we can save some time here by sorting the paths by their length before unpacking them and
stopping as soon as the constructed paths become larger than (1 + ε) · d(s, t).

For each combination we consider, we have to check, whether it is admissible. For the
bounded stretch, running the recursive call with the same ε already provides the check as
described in Section 2.2, so there is nothing to do there.Checking the sharing is straight
forward, by unpacking the path. Finally, for the local optimality, adjusting the α-value
appropriately in the recursive call (see one of the following paragraphs) makes sure that
there are no local detours within the subpaths.Here we additionally run the T-test at the
vertex v to also ensure overall local optimality.

Limited Sharing in the Recursive Call. Although limited sharing is ultimately tested when
we combine the subpaths of the recursive calls, we can still exclude some alternative subpaths
based on their sharing with the shortest path. For this, we only consider sharing with the
shortest path (and not with other alternatives) in the recursive calls. Here we describe how
we adjust γ in the recursive calls.

Let s and vs be the start and destination of the recursive call. Our goal is to choose a γ′

such that the following property holds. If an alternative s-vs-path P shares at least γ′ ·d(s, vs)
with the shortest path Ps,vs , then it should be safe to exclude P as every combination using
P would have too much sharing with Ps,t. We claim that this is achieved by setting

γ′ = γ · d(s, t) − d(vs, vt)
d(s, vs) .

To see this, assume that the path P is excluded due to the fact that c(P ∩Ps,vs
) ≥ γ′ ·d(s, vs).

Plugging in the above definition for γ′ and slightly rearranging yields c(P ∩Ps,vs
)+d(vs, vt) ≥

γ · d(s, t). Note that any combination involving P clearly shares c(P ∩ Ps,vs
). Moreover,

the subpath from vs to vt (consisting of just two edges) is also shared in every combination.
Thus, it is fair to exclude P as any combination with P will fail the bounded shared check
anyways.

ATMOS 2025

12:10 Separator-Based Alternative Paths in CCHs

s vs

v

vt t

v′ v′′

Ps,t

Pvt,v′′,t

Ps,v′,vs

Figure 5 Visualization of the two-step approach. We consider v as a separator and therefore solve
the alternative route problem from s to v and from v to t separately. More precisely, we consider
the neighbors of v for this to be able to use the basic algorithm again. In the end, the alternatives
of the subproblems can be used to create an alternative from s to t.

Local Optimality in the Recursive Call. Recall that the requirement for local optimality is
relative to the distance d(s, t), i.e., optimality is required for all subpaths between vertices at
distance α · d(s, t). To maintain the same guarantee in the recursive call, we run it with

α′ = α
d(s, t)
d(s, vs) .

Note that being locally optimal for α′ relative to d(s, vs) in the recursive call is equivalent to
being locally optimal for α relative to d(s, vs). We note that α′ can become larger than 1.
In this case we can stop the recursive call and just report the shortest path.

3.3 Recursive Approach
A natural extension to the two step approach is to not compute the paths from v to vs and
vt to t with the basic approach but with the two step approach itself. More precisely, we
first use the base algorithm, if that does not yield sufficiently many alternatives we go one
recursion step deeper and afterwards combine the paths in the same way as in Section 3.2
This approach ensures that even multiple small separators between s and t can be handled
while only doing more work if necessary. As a stopping condition for the recursive descend,
we propose to stop as soon as the distance between the current start s′ and destination t′

becomes too small. More precisely we introduce the new parameter µ. The recursive call
returns just the shortest path if d(s′, t′) is less than µ · d(s, t).

4 Experimental Evaluation

The main objective of this section is to evaluate the performance of our algorithmic approaches
in regards to quality – measured by the number of found alternatives – and runtime. For
this, we start with an algorithm comparison in Section 4.2. We focus on the comparison with
CRP, which is the main competitor due to the fact that no other speed-up technique also
supports efficient metric updates. Additionally, we will also see that our different variants
provide a trade-off between success rate and runtime.

Afterwards we provide a more detailed look into the inner workings of our algorithm. In
Section 4.3, we provide statistics on how many candidates for alternative paths are considered
and due to which checks they are filtered out. There we will also see that almost no
candidates are rejected due to too much sharing with previously selected paths, which serves
as a justification to greedily select alternatives. In Section 4.4, we consider the impact of the
separator hierarchy used in the CCH on the success rate. Finally, in Section 4.5, we study
the trade-off between success rate and runtime the parameter µ in our recursive approach
provides. Before we start with the actual evaluation, we briefly specify our experiment setup.

S. Bacherle, T. Bläsius, and M. Zündorf 12:11

Table 1 Comparison of various alternative route techniques. We report the success rate and the
run time for all approaches for the first up to k = 3 alternatives. The runtime is the accumulated
time needed to find the first k alternatives. Note that the reported times have to be taken with a
grain of salt since the tests were executed on different machines. X-BDV, X-REV and X-CHV are
due to Abraham et al. [1]. X-CHASEV and its variants are due to Luxen et al. [16]. HiDAR is due
to Kobitzsch [14]. CRP is due to Delling et al. [8]. The bottom three rows represent the different
variants of our algorithm (the recursive variant uses µ = 0.3). Only the algorithms in the second
part (CRP and our algorithms) allow efficient metric updates.

first second third

success [%] time [ms] success [%] time [ms] success [%] time [ms]

X-BDV 94.5 26 352.0 81.1 29 795.0 61.6 33 443.0
X-REV-1 91.3 20.4 70.3 33.6 43.0 42.6
X-REV-2 94.2 24.3 79.0 50.3 56.9 64.9
X-CHV-3 90.7 16.9 70.1 20.3 42.3 22.1
X-CHV-5 92.9 55.2 77.0 65.0 53.3 73.2

X-CHASEV 75.5 0.5 40.2 0.7 14.2 1.0
two-level 80.5 0.1 50.8 0.3 24.8 0.4

multi-level 81.2 0.1 51.2 0.3 25.0 0.4

HiDAR 91.5 18.2 75.5 18.2 55.9 18.2

CRP 90.9 5.8 65.4 3.3 39.2 3.4

SeArCCH 65.3 0.5 37.3 0.7 17.2 1.0
two-step 84.1 1.1 62.9 1.6 38.7 2.3
recursive 90.0 2.3 68.6 4.2 44.7 6.0

4.1 Experimental Setup

The input instance for all our experiments is the DIMACS Europe graph with travel-time as
edge weights. The resulting graph has 18 million vertices, 42 million edges and represents the
complete road network of west Europe around the year 2000. We chose to use this graph even
though larger networks are available since it is the main benchmark for various other route
planning techniques and has also been used to evaluate all other alternative path techniques.

To make the comparison with the related work easier we copy the methodology introduced
by Abraham et al. [1]. That is, we test our algorithm with the same parameters. More
precisely, we require alternatives to be locally optimal for α = 25 %, have at most γ = 80 %
sharing, and bounded stretch of 1 + ε = 125 %. Note that these are hard constraints and any
alternative satisfying them is considered good. Thus, the quality of the algorithm can be
measured by the success rate of finding alternatives. Additionally, we will consider the time
required to find those alternatives. If not stated otherwise all numbers are averaged over 105

random queries.

Our algorithms are implemented in C++17 and compiled with the GNU compiler 13.3.1
using optimization level 3. Our test machine runs Fedora 39 (kernel 6.8.11), and has 32 GiB
of DDR4-4266 RAM and a AMD Ryzen 7 PRO 5850U CPU with 16 cores clocked at 4.40 Ghz
and 8 × 64 KiB of L1, 8 × 4 MiB of L2, and 16 MiB of L3 cache.

ATMOS 2025

12:12 Separator-Based Alternative Paths in CCHs

4.2 Algorithm Comparison

Unfortunately, no implementations of the competitor algorithms are freely available and the
queries used during their respective evaluations were not published. To nonetheless make a
comparison possible, we report the success rates and computation times from the related
work in Table 1. The success rate for k ∈ {1, 2, 3} represents the fraction of queries, for
which an admissible set of alternatives of size at least k was found. Even though the numbers
are based on different sets of sampled queries, the success rates should be comparable since
they are averaged over at least 104 queries. The timings on the other hand should not be
compared directly; see the more detailed discussion of the running time below.

We want to note that CRP and our approach are arguably the most practically relevant
approaches due to their support for efficient metric updates. We thus focus our discussion on
the comparison to CRP. The other approaches listed in Table 1 are included for completeness.

Success Rates. The algorithm X-BDV can be considered as the baseline in terms of success
rate, since it checks all admissible alternatives that use a single via vertex. Even though this
approach is infeasible for real applications it shows what success rates are achievable. Based
on the related work we consider as success rate of 90 % as desirable for the first alternative.
As we can see in Table 1 this is achieved by our recursive approach (with µ = 0.3). Moreover,
the two-step approach is with 84.1 % already close to this goal while being significantly faster.
For the second and the third alternative, our approaches performs slightly worse than the
baseline. However, compared to CRP, we obtain slightly higher success rates: We get an
improvement from 65.4 % to 68.6 % and from 39.2 % to 44.7 % for the second and third
alternative, respectively.

Runtime. For the runtime comparison with CRP, our recursive variant is the most relevant,
as it achieves comparable success rates. Additionally, it is also interesting to compare the
runtime with our two-step approach, which has only slightly worse success rates. We want
to note that, ideally, we could run comparison experiments for CRP on the same machine.
Unfortunately, the implementation is not publicly available and building a competitive CRP
implementation is highly non-trivial. Nonetheless, we believe that we can draw the conclusion
that our algorithm outperforms CRP.

To make the comparison, we start with the base algorithms CCH and CRP and consider
the slowdown encountered by additionally computing alternative paths. For the base
algorithms, it is already well established that the query of CCH is a magnitude faster than
CRP’s query [9]. Moreover, for CRP, Delling et al. [8] report a slowdown of at least 3
for computing alternatives. Thus, even with a slowdown of 30, we would still obtain a
competitive performance. We can report a runtime of 0.245 ms for the basic CCH query.
Compared to this, our recursive algorithm computing alternatives leads to slowdowns of 9.4
for the first, 17.1 for the second, and 24.5 for the third alternative. With these numbers, we
can safely conclude that our approach is at least on par with CRP and faster most of the
time. We also note that our two-step approach with a success rate of 84.1 % for the first
alternative has only a slowdown of 4.5. With the above estimation, we expect this to be at
least 6 times faster than CRP. We note that the two-step variant forms the initial part of
recursive. Thus, in the 84.1 % of the queries where two-step finds an alternative, recursive
also finds the first alternative in the same time.

S. Bacherle, T. Bläsius, and M. Zündorf 12:13

1 2 3
0
2
4
6
8

10

10
.7

6

10
.0

8

8.
59

2.
67 3.

75

3.
511.

57

3.
48

3.
421.

57

3.
45 3.
4

0.
65

0.
37

0.
17

alternative

av
er

ag
e

nu
m

be
r

of
al

te
rn

at
iv

es
within range
satisfy bounded stretch
satisfy sharing with Ps,t

satisfy sharing with all
satisfy T-test

Figure 6 This plot visualizes the average number of alternatives remaining after each of the
successive checks. We can observe that most alternatives are rejected due to bounded stretch or
sharing with the shortest path. Almost none of the alternatives are rejected due to the sharing with
previously selected alternatives.

4.3 Checking Admissibility of Candidates

Recall that our algorithm starts with a set of candidates for alternative paths, which are then
filtered by different checks ensuring the resulting set of alternatives is admissible. Figure 6
shows for our basic (non-recursive) approach, how many candidates pass which check before
we find the first, second, or third alternative (after finding the previous alternative). The
first bar indicates the number of considered candidate paths that have overall length at most
(1 + ε) · d(s, t). The second bar shows how many of those have bounded stretch (property 2).
The third bar shows the number of checked candidates additionally having limited sharing
with the shortest path Ps,t and the fourth bar is obtained by additionally requiring limited
sharing with all previously selected alternatives (property 1). Finally, the fifth bar indicates
the average number of paths also passing the T-test (property 3), which coincides with the
fraction of queries finding at least one, two, or three alternatives.

One can clearly see that most considered candidates are rejected due to the stretch. For
the second and third alternative, the T-test additionally rules out a big fraction of candidates.
Note that only very few checked candidates are rejected due to too much sharing with
previously selected alternatives.

We believe that the last observation is particularly interesting for the following reason.
While the alternative path problem ensures high-quality alternatives by requiring admissibility
(hard constraints), the optimization goal is to maximize the number of found alternatives.
However, our approach follows the literature by greedily adding alternative paths to the set
of alternatives, prioritizing shorter paths. A better approach to maximize the number of
alternatives might be to somehow select the alternatives based on how much they share with
candidates that are considered later. However, the fact that there is almost no difference
between the third and fourth bars in Figure 6 shows that earlier selected alternatives very
rarely make later candidates non-admissible due to a large overlap. This justifies the decision
to select alternatives greedily by length instead of trying to explicitly maximize their number.

ATMOS 2025

12:14 Separator-Based Alternative Paths in CCHs

1 2 3 4 5 6 7
0

25

50

75

66
.6

6

44
.0

3

25
.2

5

10
.4

6

3.
87

1.
33

0.
32

65
.3

5

37
.2

5

17
.2

4

7.
13

2.
78

1.
01

0.
34

alternative

av
g.

su
cc

es
s

ra
te

[%
]

InertialFlow
InertialFlowCutter

Figure 7 Impact of the contraction order on the success rate of finding k alternatives with the
basic algorithm. We compare two contraction orders, one derived from InertialFlow, and the other
from InertialFlowCutter. We can see that the order has negligible impact on the success rate for the
first alternative but a slight impact on the subsequent alternatives.

4.4 Impact of the Separator Hierarchy
An important degree of freedom in CCH is the used separator hierarchy. Except when expli-
citly stated otherwise, we use the state-of-the-art algorithm InertialFlowCutter2 engineered
by Gottesbüren, Hamann, Uhl and Wagner in the default configuration [13]. This can be
seen as the the default choice for high-performance CCHs. However, as already mentioned
in Section 1, larger separators (which are worse for performance) provide more candidates
for via vertices. For comparison, we thus additionally ran our alternative path algorithm
using separators provided by the simpler InertialFlow algorithm proposed by Schild and
Sommer [18], using the implementation in RoutingKIT3 in the default configuration.

Figure 7 shows the number of alternatives found by the basic (non-recursive) variant of
our algorithm for the different separator hierarchies. We can see that, indeed, the number of
found alternatives slightly increases with the larger separators. Thus, in principle, choosing
different separators provides a trade-off between quality and runtime. However, since the
effect is quite small, we suggest using the InertialFlowCutter separators together with our
recursive algorithm, which also provides a trade-off between quality and runtime, as discussed
in the next section.

4.5 Impact of the Recursion Parameter µ

Figure 8 shows the trade-off between success rate and runtime of our recursive algorithm
depending on the parameter µ. In the right plot, we can clearly see that less recursive
calls (i.e., larger µ) yields lower runtimes. The plot on the left shows that the success rate
already starts on a high level for large µ, which agrees with our previous observation that the
two-step variant4 already yields good results. From this high level, the success rate further
increases for smaller µ. A success rate of at least 90% for the first alternative is obtained for
µ ≥ 0.3 and with µ = 0.3, we obtain a runtime of just below 6 ms. As 90% is comparable
with the state-of-the-art, we suggest and use µ = 0.3 as the default value.

2 https://github.com/kit-algo/InertialFlowCutter
3 https://github.com/RoutingKit/RoutingKit
4 We note that the two-step variant is incomparable with the recursive variant. The two-step variant

always makes two recursive calls, one for each subpath on the top level. The recursive variant might,
e.g., make multiple nested recursive calls but always only for one of the two subpaths.

https://github.com/kit-algo/InertialFlowCutter
https://github.com/RoutingKit/RoutingKit

S. Bacherle, T. Bläsius, and M. Zündorf 12:15

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

µ

av
g.

su
cc

es
s

ra
te

[%
]

first alternative second alternative third alternative

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

µ

av
er

ag
e

ru
nt

im
e

[m
s]

Figure 8 Impact on the stop parameter µ for the recursive algorithm on the success rate (left)
and runtime (right).

5 Conclusion and Future Work

We have demonstrated that the speed-up technique CCH is well suited to compute alternative
paths, resulting in an algorithm that is competitive with the state-of-the-art in performance
and quality. With our implementation, we provide the first publicly available data structure
that combines highly efficient queries for shortest paths and alternative paths with fast
metric updates, which hopefully enables future research on the topic. As future directions,
we believe it would be interesting to further explore how multiple via vertices can lead to
more alternatives, in particular in cases where currently no single-via alternative is available.
It would also be interesting to see if this can be used to beat the commonly used baseline
algorithm, which is restricted to single-via alternatives. Concerning the baseline, we believe
that it would also be interesting to develop exact algorithms for testing whether there exists
an admissible alternative, even if this would prove computationally too expensive for actual
applications.

References

1 Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Alternative
routes in road networks. Journal of Experimental Algorithmics (JEA), 2013. doi:10.1145/
2444016.2444019.

2 Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. Alternative route
graphs in road networks. In International Conference on Theory and Practice of Algorithms
in (Computer) Systems, 2011. doi:10.1007/978-3-642-19754-3_5.

3 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in trans-
portation networks. In Algorithm Engineering: Selected Results and Surveys, Lecture Notes in
Computer Science. Springer, 2016. doi:10.1007/978-3-319-49487-6_2.

4 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space size in
contraction hierarchies. Theoretical Computer Science, 2016. doi:10.1016/j.tcs.2016.07.
003.

5 Thomas Bläsius, Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf.
Customizable contraction hierarchies – a survey, 2025. doi:10.48550/arXiv.2502.10519.

ATMOS 2025

https://doi.org/10.1145/2444016.2444019
https://doi.org/10.1145/2444016.2444019
https://doi.org/10.1007/978-3-642-19754-3_5
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.48550/arXiv.2502.10519

12:16 Separator-Based Alternative Paths in CCHs

6 Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Real-time traffic assignment using
engineered customizable contraction hierarchies. ACM Journal of Experimental Algorithmics,
2019. doi:10.1145/3362693.

7 Yanyan Chen, Michael GH Bell, and Klaus Bogenberger. Reliable pretrip multipath planning
and dynamic adaptation for a centralized road navigation system. IEEE Transactions on
Intelligent Transportation Systems, 2007.

8 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning in road networks. Transportation Science, 2017. doi:10.1287/trsc.2014.0579.

9 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
ACM Journal of Experimental Algorithmics, 2016. doi:10.1145/2886843.

10 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1959. doi:10.1145/3544585.3544600.

11 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 2012. doi:
10.1287/trsc.1110.0401.

12 Andrew V Goldberg, Haim Kaplan, and Renato F Werneck. Reach for A*: Shortest path
algorithms with preprocessing. In The shortest path problem, 2006.

13 Lars Gottesbüren, Michael Hamann, Tim Niklas Uhl, and Dorothea Wagner. Faster and
better nested dissection orders for customizable contraction hierarchies. Algorithms, 2019.
doi:10.3390/a12090196.

14 Moritz Kobitzsch. An alternative approach to alternative routes: Hidar. In European
Symposium on Algorithms, 2013. doi:10.1007/978-3-642-40450-4_52.

15 Cambridge Vehicle Information Technology Ltd. Choice routing, 2009. URL: http://www.
camvit.com.

16 Dennis Luxen and Dennis Schieferdecker. Candidate sets for alternative routes in road networks.
In International Symposium on Experimental Algorithms, Lecture Notes in Computer Science,
2012. doi:10.1007/978-3-642-30850-5_23.

17 Andreas Paraskevopoulos and Christos Zaroliagis. Improved alternative route planning. In
ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems-2013, 2013. doi:10.4230/OASIcs.ATMOS.2013.108.

18 Aaron Schild and Christian Sommer. On balanced separators in road networks. In Proceedings
of the 14th International Symposium on Experimental Algorithms (SEA’15), 2015. doi:
10.1007/978-3-319-20086-6_22.

19 Ben Strasser and Dorothea Wagner. Graph fill-in, elimination ordering, nested dissection
and contraction hierarchies. In Gems of Combinatorial Optimization and Graph Algorithms.
Springer, 2015. doi:10.1007/978-3-319-24971-1_7.

https://doi.org/10.1145/3362693
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1145/2886843
https://doi.org/10.1145/3544585.3544600
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.3390/a12090196
https://doi.org/10.1007/978-3-642-40450-4_52
http://www.camvit.com
http://www.camvit.com
https://doi.org/10.1007/978-3-642-30850-5_23
https://doi.org/10.4230/OASIcs.ATMOS.2013.108
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1007/978-3-319-24971-1_7

Multi-Criteria Route Planning with Little Regret
Carina Truschel #

University of Konstanz, Germany

Sabine Storandt #

University of Konstanz, Germany

Abstract
Multi-criteria route planning arises naturally in real-world navigation scenarios where users care
about more than just one objective – such as minimizing travel time while also avoiding steep inclines
or unpaved surfaces or toll routes. To capture the possible trade-offs between competing criteria,
many algorithms compute the set of Pareto-optimal paths, which are paths that are not dominated
by others with respect to the considered cost vectors. However, the number of Pareto-optimal paths
can grow exponentially with the size of the input graph. This leads to significant computational
overhead and results in large output sets that overwhelm users with too many alternatives. In this
work, we present a technique based on the notion of regret minimization that efficiently filters the
Pareto set during or after the search to a subset of specified size. Regret minimizing algorithms
identify such a representative solution subset by considering how any possible user values any
subset with respect to the objectives. We prove that regret-based filtering provides us with quality
guarantees for the two main query types that are considered in the context of multi-criteria route
planning, namely constrained shortest path queries and personalized path queries. Furthermore,
we design a novel regret minimization algorithm that works for any number of criteria, is easy to
implement and produces solutions with much smaller regret value than the most commonly used
baseline algorithm. We carefully describe how to incorporate our regret minimization algorithm into
existing route planning techniques to drastically reduce their running times and space consumption,
while still returning paths that are close-to-optimal.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Shortest paths

Keywords and phrases Pareto-optimality, Regret minimization, Contraction Hierarchies

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.13

Funding Carina Truschel: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Project-ID 251654672 – TRR 161.

1 Introduction

In many real-world navigation tasks, the optimal route is not sufficiently defined by a single
criterion. For example, cyclists might want to follow the shortest path in terms of distance
but only if it does not include too many steep climbs. For electric vehicles, travel time might
be a primary objective but limited energy consumption should also be taken into account.
Furthermore, users might want to also consider criteria as road surface quality, curviness, or
tolls among others. Multi-criteria route planning addresses these scenarios. Here, given a
graph G(V, E), the edge costs are d-dimensional vectors c : E → Rd

≥0, where, for example,
c1 encodes travel time, c2 distance, c3 gas or energy consumption, and so on. As for the
one-dimensional case, the cost of a path π in the graph is the summed cost of its traversed
edges c(π) :=

∑
e∈π c(e). A path π dominates another path π′, if ci(π) ≤ ci(π′) holds for

all cost dimensions i = 1, . . . , d and ∃i : ci(π) < ci(π′). There are three main types of route
planning queries that are of interest for a given input source-target-node pair s, t ∈ V :

Full Pareto Set (FPS). Compute the set of Pareto-optimal paths from s to t.
© Carina Truschel and Sabine Storandt;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 13; pp. 13:1–13:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carina.truschel@uni-konstanz.de
https://orcid.org/0009-0009-7582-7209
mailto:sabine.storandt@uni-konstanz.de
https://orcid.org/0000-0001-5411-3834
https://doi.org/10.4230/OASIcs.ATMOS.2025.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

13:2 Multi-Criteria Route Planning with Little Regret

Constrained Shortest Path (CSP). Given budgets B2, . . . , Bd, compute the s-t-path π

with minimum cost c1(π) under the constraint that for i = 2, . . . , d we have ci(π) ≤ Bi.
Personalized Shortest Path (PSP). For a given input weight vector α ∈ Rd

≥0, compute
the s-t-path π that minimizes the personalized path cost αT c(π).

It is well known, that CSP and PSP solutions are always Pareto-optimal. Thus, given the
FPS, the last two types of queries can easily be answered. However, the goal for CSP and PSP
is usually to compute the respective path without having to explore all Pareto-optimal paths.
While the CSP problem is known to be NP-hard, PSP can indeed be solved in polynomial
time using Dijkstra’s algorithm on the personalized edge costs αT c. In [11] computing FPS
for multi-criteria shortest paths in time-dependent train networks is tackled. As an example
for CSP, finding constrained shortest paths for electric vehicles considers the travel time
while not exceeding a maximum number of recharging stops [22] or the energy consumption
does not exceed the capacity of the battery [4]. However, preprocessing based techniques
to accelerate PSP queries also store sets of Pareto-optimal paths between selected node
pairs [14].

The main issue is that the number of Pareto-optimal solutions can become huge (even
in the bi-criteria case) and thus oftentimes further filtering needs to be applied to make
route planning algorithms efficient and to present a sensible selection of alternatives to the
user. Different ideas were proposed in the literature to filter a given set of Pareto-optimal
elements. The goal is to efficiently maintain a core of solutions that are still representative
of the full set. One such method is to define a relaxation of the dominance criterion. In [17]
a tailored relaxation was implemented to reduce the number of Pareto-optimal journeys
in public transport planning. For bi-objective shortest path problems, [15] describe an
interesting approach to approximate the Pareto frontier using pairs of paths and guarantees
per objective. Filtering the Pareto set in multi-criteria public transit routing in [8] uses
fuzzy logic to identify significant journeys. In [7] restricted Pareto sets are used to provide a
subset of the full Pareto set which excludes outliers having undesirable trade-offs between the
criteria. A general and quite powerful approach for dominance relaxation in two-dimensional
sets was described in [21]. Here the idea is to enlarge the dominance area, which for strict
dominance is simply the lower left quadrant of the point. The problem with existing methods
is that most of them are tailored to the bi-criteria case. Furthermore, one has little control
over the number of Pareto-optimal elements that survive the filtering process. It could still
be too large or it might happen that almost all solutions are filtered out.

In this paper, we use the notion of regret as introduced in [18] to identify representative
subsets of size k, where k can be chosen as desired. Given a set of d-dimensional elements S

and a subset S′, a user’s regret measures their disappointment when they have to choose
the best option according to their preferences from S′ instead of S. More formally, a
user u has a preference or utility function fu : S → R≥0 and the regret of the user with
respect to S′ is defined as ru(S, S′) = 1 − maxs∈S′ fu(s)/ maxs∈S fu(s). By definition, we
have ru(S, S′) ∈ [0, 1].1 The regret of S′ is defined by the most regretful user, that is
r(S, S′) := maxu∈U r(u). Typically, the set of users U is the set of all functions in a given
class, most commonly the class of all non-negative linear combinations, that is fu(s) = αT

u s,
where the weight vector αu ∈ Rd

≥0 describes the importance of each dimension for the user.
Figure 1 illustrates these concepts.

Given k ∈ N, the optimization goal of regret minimization algorithms is to find the subset
S′ of size at most k with smallest regret. Obviously, S′ can be restricted to only contain
Pareto-optimal points from S, as a dominated point can never have a higher utility than

1 In case maxs∈S fu(S) = 0, we simply set ru = 0.

C. Truschel and S. Storandt 13:3

(2,11)

(6,10)

(7,6)

(11,5)

(1,0)

(0.25,0.75)
8.75

9.00

6.25

6.50

2.00

6.00

7.00

11.00

Figure 1 Two-dimensional point set S containing four Pareto-optimal elements (blue labels).
Two example users (orange and green) assign each point a different utility based on their personal
preferences. The respective values are provided for the Pareto-optimal elements. Among all points,
the orange user assigns the highest value to point (6, 10), namely 0.25 · 6 + 0.75 · 10 = 9, while
the green user prefers (11, 5). For S′ = {(2, 11), (6, 10)}, the orange user has a regret of 0, as their
preferred choice from S is contained in S′. For the green user the regret is 1 − 6

11 = 0.45.

the dominating point. Still, computing an optimal S′ poses an NP-hard problem [5]. We
present a novel heuristic that computes subsets with small regret very quickly. This allows to
integrate regret minimization in many applications where finding a representative subset of
solutions is a frequent task, including multi-criteria route planning in road networks. Indeed,
we show that leveraging regret filtering allows to compute constrained or personalized paths
significantly faster, while ensuring that the resulting path (set) comes with small regret.

1.1 Further Related Work

A multitude of algorithms and heuristics has been proposed for all three main query types
for multi-criteria route planning mentioned above. A* variants tailored to bi-objective search
(BOA*) or multi-objective search (MOA*) have been demonstrated to greatly reduce the
search space compared to Pareto-Dijkstra for FPS and CSP queries [24, 2, 20]. Methods to
approximate the Pareto frontier were described in [15, 30]. In [29], an anytime approach
was introduced that discovers a subset of Pareto-optimal paths quickly and then adds new
solutions over time. A recent overview of the development of multi-objective route planning
is provided in [27].

Even more pronounced speed-ups can be achieved if preprocessing is applied to the input
graph. In [28], query answering for bi-criteria FPS using a contraction hierarchy (CH) data
structure was reported to be two orders of magnitude faster than with BOA*. CH was also
successfully applied to accelerate CSP [23, 13] as well PSP queries [12]. In [16], it was shown
that filtering dominated points can be the bottleneck in bi-criteria CH construction as well as
query answering. There, faster methods were proposed to compute Pareto-optimal path sets.
But if the final set size remains large, the approach might still be too slow in practice. In all
of these preprocessing-based techniques, sets of Pareto-optimal paths are precomputed and
stored between selected pairs of nodes. While [12] allows to obtain approximate query results
faster by only considering a subset of stored solutions on query time, non of the techniques
apply filtering during the preprocessing, which results in data structures of substantial size.

ATMOS 2025

13:4 Multi-Criteria Route Planning with Little Regret

1.2 Contribution
We show how multi-criteria route planning can be integrated with regret minimization.
Compared to existing filtering methods, regret-based filtering has the advantage that it works
for an arbitrary number of objectives and provides the user with the power to decide how
many Pareto-optimal solutions shall be maintained to not exceed memory or running time
resources. We first prove new theoretical properties of regret minimizing sets that are crucial
for their application to route planning. As one main result, we show that the regret value
does not deteriorate if we concatenate paths and combine their (filtered) solutions. This
is important for many preprocessing-based techniques, in which this operation frequently
occurs, for example, in multi-criteria contraction hierarchies (CH).

We describe how to construct the CH data structure with regret-based filtering as part
of the preprocessing step (and thus significantly reduced space consumption), such that
CSP and PSP queries can be answered much faster but with almost no loss in solution
quality. As computing the solution subset with smallest regret poses an NP-hard problem,
we also propose a novel and very efficient divide & conquer heuristic to compute high-quality
subsets. In our experimental evaluation, we demonstrate that our new heuristic significantly
outperforms the prevailing algorithm in solution quality, with only a small increase in running
time. Furthermore, we show that using this heuristic as a subroutine for multi-criteria route
planning results in well-performing preprocessing and query algorithms, even for a large
number of cost dimensions.

2 Regret-Based Route Planning

The main idea is to use regret minimizing subsets to combat the combinatorial explosion
of Pareto-optimal paths that is often observed in multi-criteria route planning algorithms.
Regret is normally defined with respect to users that want to maximize their utility functions
fu. But in the context of route planning, users want to minimize their (perceived) path costs.
Thus, we now redefine regret as follows ru(S, S′) = 1 − mins∈S fu(s)/ mins∈S′ fu(s) ∈ [0, 1],
where now fu expresses a penalty function. We remark that all regret minimizing algorithms
can easily be adapted to also work with this definition.

2.1 Theoretical Bounds
Next, we prove a crucial property of the regret measure, namely that it does not stack
when we combine partial solutions. This allows us to guarantee a good output quality when
integrating regret-based pruning into various route planning algorithms, even if they need
to combine partial solutions frequently. To concisely phrase our result, we introduce the
following notations: With Pab we refer to the set of cost vectors of Pareto-optimal paths from
a to b, and with P ′

ab to a subset with regret rab. For two sets of cost vectors P, Q, we use
P ⊕ Q := {p + q|p ∈ P, q ∈ Q} to denote the set of elements derived from pairwise addition.

▶ Theorem 1. Let P ′
sv and P ′

vt be path sets with regret rsv and rvt with respect to Psv and
Pvt, then the regret of the combined path set is upper bounded by r(Psv ⊕ Pvt, P ′

sv ⊕ P ′
vt) ≤

max{rsv, rvt}.

Proof. We use P := Psv ⊕ Pvt and P ′ = P ′
sv ⊕ P ′

vt to abbreviate the notation. Let
u ∈ U be any user and fu(p) = αT c(p) their penalty function for paths p with cost
c(p). Let π := arg minp∈P fu(p) denote the preferred path of u in the full path set, and
π′ := arg minp∈P ′ fu(p) the best one in the subset. Further, we use πsv ∈ Psv and πvt ∈ Pvt

C. Truschel and S. Storandt 13:5

to denote the two subpaths of π with c(πsv) + c(πvt) = c(π). We have fu(π) = αT c(π) =
αT c(πsv) + αT c(πvt). With rsv = 1 − qsv and rvt = 1 − qvt, we know that there exist paths
π′

sv ∈ P ′
sv and π′

vt ∈ P ′
vt with c(πsv)/c(π′

sv) ≥ qsv and c(πvt)/c(π′
vt) ≥ qvt, respectively. Thus,

it follows that:

fu(π′) ≤ αT c(π′
sv) + αT c(π′

vt) ≤ αT c(πsv)
qsv

+ αT c(πvt)
qvt

≤ αT c(π)
min{qsv, qvt}

= fu(π)
min{qsv, qvt}

Accordingly, fu(π)/fu(π′) ≥ min{qsv, qvt} and therefore ru(P, P ′) ≤ 1 − min{qsv, qvt} =
max{1 − qsv, 1 − qvt} = max{rsv, rvt}. As this inequality holds for all users u ∈ U , the
theorem follows. ◀

Of course, if we apply further filtering to a set that already was the result of prior filtering,
the regret value might increase.

▶ Lemma 2. Let P, P ′, P ′′ be path sets with P ′ ⊂ P, P ′′ ⊂ P ′ and regrets r(P, P ′) =
1 − q1, r(P ′, P ′′) = 1 − q2, then r(P, P ′′) ≤ 1 − q1q2.

Proof. For a user u ∈ U , let the preferred paths from P, P ′, P ′′ be π, π′, π′′, respectively. It
follows that fu(π) ≥ q1fu(π′) and fu(π′) ≥ q2fu(π′′). Combining the two inequalities yields
fu(π) ≥ q1q2fu(π′′). Thus, fu(π)/fu(π′′) ≥ q1q2 and ru(P, P ′′) ≤ 1 − q1q2. As this upper
bound applies for all users, the lemma follows. ◀

Below, we will present route planning algorithms that aim to produce concise path sets P ′
st

for a given s-t-query that induce little regret with respect to the FPS Pst. The impact on
PSP and CSP queries is expressed in the following lemmas.

▶ Lemma 3. For a PSP query from s to t with weight vector α, returning minπ′∈P ′
st

αT c(π′)
yields a 1

q -approximation with q := 1 − r(Pst, P ′
st).

Proof. Let π ∈ Pst be the path with smallest personalized cost for the weight vector α. As the
regret for a subset is defined by the most regretful user, we know that r(Pst, P ′

st) ≥ 1− αT c(π)
αT c(π′)

and thus αT c(π)
αT c(π′) ≥ q. Rearranging this formula, we get αT c(π′) ≤ 1

q αT c(π). ◀

Accordingly, ensuring small regret automatically provides us with an approximation guarantee
for PSP queries. The same is not possible for CSP queries, as here the user specifies hard
constraints on the accumulated path costs in all but the first dimension. Thus, if we prune
any solution from Pst, the CSP query might become infeasible. However, we can determine
an upper bound on the accumulated constraint violation which is sufficient to guarantee a
feasible solution.

▶ Lemma 4. For a CSP query from s to t with bounds B2, . . . , Bd for which Pst contains
a feasible path π, the set P ′

st contains a path π′ that obeys
∑d

i=2 ci(π′) ≤ 1
q

∑d
i=2 Bi with

q := 1 − r(Pst, P ′
st).

Proof. The universe U of users u that define the regret value contains all linear combinations
of the cost dimensions. We now focus on αu = (0, 1, . . . , 1) ∈ Rd

≥0. Using this weight vector,

we have fu(p) =
∑d

i=2 ci(p) for any path p. Accordingly, ru(Pst, P ′
st) ≥ 1 −

∑d

i=2
ci(π)∑d

i=2
ci(π′)

where∑d
i=2 ci(π) ≤

∑d
i=2 Bi holds by the feasibility of π. The statement follows from applying

the same rearrangement to the formula as in the proof of Lemma 3. ◀

ATMOS 2025

13:6 Multi-Criteria Route Planning with Little Regret

(2,7)

(1,
5)

(8,0) (2,12
)

(8,9)

(5,3)
(3,20)

(3,5) (2,6)

(5,1) (3,2)

(3,
2) (4,1)

(1
,4
) (3,

3) (1,0)

(1,3)

(8,15), (9,14),
(10,12), (13,11)

(3,20), (4,13),
(5,11), (6,10),
(7,8), (8,3)

(11,35), (12,28), (13,26),
(14,25), (15,23), (16,18),
(17,17), (18,15), (21,14)

(2,7)

(1,
5)

(8,0) (2,12
)

(8,9)

(5,3)
(3,20)

(3,5) (2,6)

(5,1) (3,2)

(3,
2) (4,1)

(1
,4
) (3,

3) (1,0)

(1,3)

(8,15), (10,12), (13,11) (3,20), (7,8), (8,3)

(11,35), (15,23), (21,14)

a) Full Pareto Set b) Regret Pruning

Figure 2 Example road network (gray edges) with bi-criteria edge costs. The blue and green edges
indicate shortcut edges. Left: Each shortcut has a set of cost vectors that encodes the aggregated
costs of all Pareto-optimal paths between its endpoints. Right: Applying regret-based pruning to
the cost vector sets S(e) per shortcut edge with k = 3 results in labels of fixed size.

We remark that for the bi-criteria case, feasible CSP queries can easily be guaranteed by
always maintaining the solution with smallest cost in the second dimension in P ′

st.

2.2 Regret Minimizing Contraction Hierarchies
Contraction hierarchies (CH) were shown to be a very powerful technique for accelerating bi-
and multi-objective route planning queries [9, 13, 12, 28, 16, 6, 3].

In the CH preprocessing phase, nodes are ordered by a ranking function r : V → [n].
Then, so called shortcut edges are inserted between nodes v, w if r(v) < r(w) and there exists
at least one Pareto-optimal path from v to w that does not contain a node of rank higher
than r(w). The shortcut edge e = {v, w} represents all such Pareto-optimal paths from v to
w and thus gets assigned the respective set of cost vectors S(e). To obtain this shortcut set
E+ efficiently, a bottom-up approach is used. For original edges e, the set S(e) initially only
contains the cost vector associated with that edge. Then the nodes are considered in the order
implied by the ranking and are contracted one-by-one. In the contraction step for node v, it
is checked for all pairs of neighbors u, w of v whether S(uv) ⊕ S(vw) encodes Pareto-optimal
paths from u to w. If this is the case, a shortcut from u to w is added (if it not already
exists) and S(uw) is augmented with the relevant cost vectors from S(uv) ⊕ S(vw). Then, v

and its incident edges are temporarily deleted from the graph. Note that by construction it
holds that after each contraction the Pareto-optimal path costs between the remaining nodes
in the graph are the same as in the original graph. After all nodes have been contracted, all
temporarily deleted nodes and edges are inserted back into the graph.

In the resulting CH-graph, queries are answered with a bi-directional run of the Pareto-
Dijkstra algorithm (or a MOA* variant). Here, forward and backward search only relax
edges (v, w) incident to a node v if r(w) > r(v). This significantly reduces the search space
but can be proven to nevertheless ensure correct query answering. To not only obtain the
cost vectors of Pareto-optimal paths but also the paths themselves, a cost vector c ∈ S(uw)
stores references to c1 ∈ S(uv) and c2 ∈ S(vw) with c1 + c2 = c. This allows to recursively
unpack a path that contains shortcut edges to a path that consists solely of original edges.

The memory consumption of the CH graph and the query performance crucially depend
on the number of shortcut edges and especially the sizes of the cost vector sets S(e) associated
with them. A simple approach to reduce the set sizes is to apply regret-based filtering to all
S(e) independently with some fixed size upper bound k. By virtue of Theorem 1, the regret

C. Truschel and S. Storandt 13:7

for the result of any FPS query is upper bounded by the maximum regret obtained for any
shortcut. But if one is interested not only in the path costs but also the paths themselves, the
approach is insufficient. This is because we can no longer guarantee that the path unpacking
procedure is successful, as for c ∈ S(uw) with c1 + c2 = c and c1 ∈ S(uv), c2 ∈ S(vw) either
c1 or c2 (or both) could have been pruned from their respective sets. Therefore, we use the
following bottom-up approach instead: We process the edges/shortcuts e = {u, w} ordered by
min{r(u), r(w)}. For a shortcut e = {u, w} we consider all pairs of edges {u, v}, {v, w} with
r(v) < r(u) and construct S(e) as the union of S(uv) ⊕ S(vw). Then, we apply regret-based
pruning to S(e). In this way, we guarantee that each cost vector that remains in S′(e) is
represented by two cost vectors in S′(uv) and S′(vw), respectively. Figure 2 demonstrates
the difference of maintaining the Pareto-optimal cost vector sets versus applying regret-based
pruning on the set of cost vectors with a fixed size k = 3.

2.3 Route Planning Queries with Little Regret
For PSP queries there is no need to apply label pruning on query time, as the personalized
weight vector reduces the edge costs to scalar values of which only the minimum needs to
be maintained. But for FPS and CSP queries, label sizes tend to become huge during the
search. A simple way to integrate regret pruning into answering FPS queries is to apply it
whenever forward and backward search meet in bi-directional search. For query answering
with CH, bi-directional search is the standard and it is also used as a standalone to reduce
query time and space consumption [2]. For a node v with a forward label Pst and a backward
label Pvt, computing Psv ⊕ Pvt can be very time consuming if both sets are large. First
applying regret-based pruning to both sets to reduce them to a size of k, respectively, allows
to restrict the number of relevant elements to inspect to k2. According to Theorem 1, the
resulting regret is upper bounded by the maximum of the individual regrets.

However, we can also use regret pruning within the forward or backward (or in unidirec-
tional) search as follows. Whenever a node label size |Psv| exceeds a threshold t, e.g. t = 2k,
we apply pruning to reduce the size back to k and then only proceed with the reduced label.
Here, the regret might increase as shown in Lemma 2. However, this approach allows us to
limit the space consumption of a query to O(tn) and the cost of an edge relaxation to O(t).

3 Regret Minimization Algorithms

The regret minimizing set problem (RMS) was introduced by [18], inspired by the application
of multi-criteria decision making. Presenting a huge set of possibilities to an agent is often
infeasible. Therefore, the goal is to select a (small) subset of possible decisions that are
representative for the whole set and only communicate those to the agent. The approach is
also used for database compression. A recent survey by [25] provides an extensive overview
of several aspects of the regret minimization problem.

In [5, 1], RMS was proven to be NP-hard for dimensions d ≥ 3. Several heuristic and
approximation algorithms were designed for RMS that work for arbitrary d. The algorithm
by [18] greedily adds points to the solution subset until reaching the specified output size.
The point selection leverages linear programming. The GeoGreedy algorithm by [19] greedily
derives a solution subset based on geometric computations. The Sphere algorithm by [26]
relies on sampling utility functions in order to find points with high scores. Similarly,
the HittingSet approach introduced by [1] samples utility functions and reduces the RMS
problem to a hitting set problem based thereupon. [18] also introduce the Cube algorithm.
It partitions the multi-dimensional space into hypercubes by constructing ⌊(k − d + 1)d−1⌋

ATMOS 2025

13:8 Multi-Criteria Route Planning with Little Regret

RMS RMS RMS RMS RMS RMS RMS RMS

RMS RMS RMS RMS

RMSRMS

S’

Partition

Regret Minimizing
Algorithm

Merge

S

Figure 3 Overview of the HRMS algorithm for obtaining representative subsets with little regret.

equally-sized intervals in the first d − 1 dimensions. From each hypercube the point having
the highest value in the last dimension is added to the solution subset. Thus, the Cube
algorithm returns a subset of size at most k and a regret ratio of at most d−1

t+d−1 . The running
time of the Cube algorithm is in O(knd) with the space consumption being in O(kd + n). As
this algorithm is easy to implement, scales very well in d, and comes with quality guarantees,
it is applicable in practice.

3.1 Hierarchical Regret Minimization
We propose a novel hierarchical regret minimizing algorithm HRMS that produces represent-
ative subsets of size k for arbitrary dimension d. The divide and conquer approach partitions
the input set into smaller subsets and applies any pre-existing regret minimizing algorithm
on each of the subsets to obtain intermediate regret minimizing sets. These sets are then
merged in a hierarchical manner until only the final regret minimizing set remains. The
hierarchical regret minimizing algorithm allows for user-defined adjustments to its hierarchy
in order to obtain desired trade-offs between running time and solution quality. Figure 3
illustrates the basic algorithmic concept. Algorithm 1 shows the respective pseudo-code.

Here, RMS(P, k′) is supposed to return a subset of P of size k′ with (hopefully) small
regret. In our implementation, we use the Cube algorithm [18] for this purpose, due to its
simplicity and efficiency even for high dimensions. However, one could plug in any other
RMS algorithm as well. Partition(S, p) is supposed to partition S into p subsets, and
Merge(S′

A, S′
B , k′) to merge two point sets into one and to reduce the resulting set to the

desired size. We next discuss sensible implementations of these two important routines.

3.2 Partitioning and Merging
The goal of the Partition method is to break the input set S down into sufficiently small
subsets of roughly similar size for efficient processing. A very simple partitioning method, is to
randomly assign n

p points to each of the p subsets. However, it is advantageous to partition the
input set in such way that the smaller subsets cover continuous parts of the multi-dimensional
space. A good partition with regards to the HRMS algorithm yields subsets containing points
from the Pareto front i.e. non-dominated points together with dominated points. During the

C. Truschel and S. Storandt 13:9

Algorithm 1 HRMS.

Input: S, k

Output: S′ ⊂ S with |S′| ≤ k

1 P(S) = Partition(S, p)
2 k′ = kd

3 for each subset P ∈ P(S) do
4 S′ = RMS(P, k′)
5 Add S′ to the list of intermediate sets
6 while ∃ pair of intermediate sets S′

A and S′
B do

7 S′
M = Merge(S′

A, S′
B , k′)

8 Add S′
M to the list of intermediate sets

9 Define S′
L as the last intermediate set

10 S′ = RMS(S′
L, k)

11 return S′

conquer phase of the algorithm we handle each subset separately and reduce the number of
overall points during the merging phase. In the worst case, all Pareto-optimal points are in
one subset. Then, during the conquer phase we would exclude many such points in favor of
dominated points from other subsets. Thus, it is ideal to have Pareto-optimal points in each
of the p subsets to ensure that the RMS algorithm is able to retrieve all of them. Our idea
to achieve this is to divide the input space into p equally-sized wedges between the x- and y-
axes and to assign points to the wedges they are contained in. This likely ensures that each
of the wedges covers a wide range of point values and also includes some Pareto-optimal
points. Figure 4 depicts an exemplarily partitioning of the input space in d = 2 and d = 3
dimensions.

The goal of the MERGE operation is to combine two point sets S′
A and S′

B but only
keep the best k points among them. A naive approach would again be to just randomly
sample k points from the union S′

A ∪ S′
B . However, this method is unlikely to produce good

results. Since we already use an RMS algorithm to obtain the intermediate sets S′
A and S′

B , a
natural way to merge would be to rerun said RMS algorithm on their union. In practice, this
merging technique significantly increases the running time of the HRMS algorithm, though.
A third method is to greedily remove points from the union until the desired output size is
reached. Ideally, we would like to always select the point whose removal increases the regret
the least. But computing the regret ratio requires to solve a linear program [18] and is thus
also time intensive. As a compromise, we propose a sorted merge algorithm. It initially sorts
S′

A and S′
B decreasingly in each of the d dimensions. Then, the first ⌊ k

2d ⌋ points from the
sets S′

A and S′
B corresponding to the decreasing order in the first dimension are retrieved.

This procedure is repeated for each dimension to obtain the output set of given size. In this
way, we select the promising points in each dimension.

3.3 Running Time Analysis
Considering the running time of the HRMS algorithm, we define tPart as the running time
required by the partitioning method, tRMS as the maximum running time of the chosen RMS
algorithm executed on a subset S′, and tMerge be the running time of the chosen merging
technique. With the partition method producing p subsets, the total running time is in
O(tPart + p · (tRMS + tMerge)). Wedge-based partitioning takes O(nd). The Cube algorithm

ATMOS 2025

13:10 Multi-Criteria Route Planning with Little Regret

Figure 4 Exemplary partitioning of uniformly distributed input sets in d = 2 and d = 3 dimensions.
The wedges divide the input space into k = 5 subsets based on the angle of the points to the x-axis.

executed on a point subset P with a desired output size of k′ = kd takes O(k′|P |d). Thus,
the total time for processing all p subsets P ∈ P(S) is in O(knd2). The merging calls
take O(dn log n) to go from p subsets to p/2 subsets. Thus, the total merging time is in
O(dn log n log p). As we have p ≤ n, we get an overall running time in O(nd(dk + log2 n))
which is close to the theoretical running time of the Cube algorithm. We will see that the
two algorithms indeed also have similar practical running times, while HRMS produces sets
with significantly smaller regret than Cube.

4 Experimental Evaluation

For regret minimizing set computation, we implemented the Cube and the HRMS algorithm
in C++. Furthermore, we implemented the multi-objective CH approach with and without
regret pruning, as well as the described query answering variants. Experiments were conducted
on a single core of a 4.5 GHz AMD Ryzen 9 7950X 16-Core Processor with 188 GB of RAM.

4.1 Regret Minimization Results
First, we investigate the performance of our proposed HRMS algorithm and compare it to
the Cube baseline. We chose the Cube algorithm since it scales well in arbitrary dimension
and allows for a straightforward implementation. For our experiments, we use input sets S

consisting of n points in d dimensions and obtain subsets S′ ⊂ S of size of k = 2d. Generating
the input sets is done by randomly sampling d values from the uniform distribution in the
range [0, nd) for each point. Running times and regret ratios are always averaged over 100
generated instances per tested value of n.

In order to evaluate the solution quality of the HRMS algorithm, we need to obtain the
regret r(S, S′) of the solution subset S′ which is defined by the most regretful user. To this
end, we uniformly sample 1, 000 users represented by their weight vectors αu ∈ [0, 1]d. We
approximate the regret of the solution subset S′ by computing the regret ru(S, S′) for each

C. Truschel and S. Storandt 13:11

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.06

0.07

0.08

0.09

0.10

0.11

Re
gr

et
 R

at
io

Approximating the Regret Ratio

User Sample Size
100
1,000
10,000
100,000
1,000,000

Figure 5 Approximating the maximum regret ratio for a given subset S′ ⊆ S is done by randomly
sampling 102, . . . , 106 user weight vectors αu ∈ [0, 1]d and obtaining the maximum value among the
regret ratios of all users in the sample.

sampled user u and extract the maximum among them. A similar approach is done in [1] by
randomly sampling 20, 000 user weight vectors. We experimentally explore the effect of the
sample size of users in the set U on the resulting solution quality in Figure 5. Comparing
sample sizes ranging from |U | = 102, . . . , 106 we conclude that the obtained regret ratios for
the solution subsets S′ are sufficiently similar among the sample sizes when ensuring that
the extreme values 0.0 and 1.0 are represented at least once per dimension. Since computing
the regret ratio for a given user weight vector αu involves traversing the entire input set S,
we use a sample size of 1, 000 to efficiently approximate the regret ratio for our experiments.

Prior to the experiments, we want to evaluate the geometric partitioning with respect
to the resulting subset sizes and asses how close this angle-based partitioning comes to an
ideal partitioning of the input space. The partitioning divides the input set into p subsets
based on the position of points in the d-dimensional space. For the statistical assessment in
Figure 6 input sizes of n = 102, . . . , 106 in d = 2 dimensions and the output size k = 4 and
intermediate output size k′ = 8 are used to obtain p subsets. The value of p is determined
such that n

p > k′d = 16. Per tested value of n, the partitioning described in Section 3.2 is
executed on 100 instances. Figure 6 reports on the average distribution of resulting subset
sizes with the minimum, maximum and median size of subsets P ∈ P(S) in the partition of
the input set. Additionally, the number of subsets p is also provided for each input size. An
ideal partitioning yields equally-sized subsets each containing exactly n

p points. This value
depending on n and p is denoted as ideal (red markers).

The difference between the minimum and maximum subset sizes is fairly small considering
input sets of up to 1 million points being divided into p = 215 subsets. The smallest subsets
contain 2 points and the largest 72 points. However, most observations in the distribution
are much closer to the ideal subset size. The interquartile range for all input sizes always
encloses the ideal subset size and the 25th percentile is 12 points below the ideal value and
the 75th percentile is 20 points above the ideal value. Moreover, the median of actual subset
sizes from the partitioning is within 3 points of the ideal value. For n ≥ 1000 the variation
reduces to one point or less. The median is closer to the lower quartile value thus more
subsets are slightly smaller than the median subset size.

Overall, the distribution of subset sizes is consistent throughout all input sizes. As the
value of p is equal for some input sizes e.g. n = 6 · 105, . . . , 106, the ideal subset size varies,
consequently shifting the box plots to a slightly higher subset size.

ATMOS 2025

13:12 Multi-Criteria Route Planning with Little Regret

100 1000 10000 50000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
Input Size n

0

10

20

30

40

50

60

70
S

ub
se

t S
iz

e

22 25 29 211 212 213 214 214 214 215 215 215 215 215p =

Partitioning Phase: Distribution of Subset Sizes

Max
Ideal
Median
Min

Figure 6 Statistical evaluation of the subset sizes resulting from the geometric partitioning
of the input set into p subsets using the angle of points to the x-axis. Depicted are input sizes
n = 102, . . . , 106 in d = 2 dimensions using an output size of k = 4 and intermediate k′ = 8. The
number of subsets p is determined to ensure n

p
> k′d = 16. The ideal value of n

p
points encapsulates

the goal of equally-sized subsets (red markers).

In conclusion, the geometric partitioning based on angles to the x-axis produces subsets
which are fairly equally-sized and close to the ideal subset size for a given value of p. Further,
the advantages of dividing the input space geometrically in contrast to a random partitioning
prevail as the former ensures an even coverage of the Pareto-optimal points among the
subsets.

Figure 7 compares the regret ratios of the HRMS algorithm using the geometric parti-
tioning and the random partitioning. The former divides the input space into equally-sized
wedges between the x- and y-axes whereas the latter divides the input set into p subsets
using the indices of points within the set. The solution quality resulting from the geometric
partitioning is clearly preferable compared to the random partitioning. In d = 2 dimensions,

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 2

HRMS: Random Partition
HRMS: Geometric Partition

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.16

0.18

0.20

0.22

0.24

0.26

0.28

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 5

HRMS: Random Partition
HRMS: Geometric Partition

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 10

HRMS: Random Partition
HRMS: Geometric Partition

Figure 7 Comparison of the average regret ratios produced by the HRMS algorithm using the
geometric partitioning based on wedges between the x- and y-axes and the random partitioning into
p subsets. The input sets in d = 2, 5, 10 dimensions consist of n = 102, . . . , 106 points.

C. Truschel and S. Storandt 13:13

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0

1

2

3

4
Ti

m
e

[s
ec

on
ds

]
Running Time of HRMS in d = 2

HRMS
Cube

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0

1

2

3

4

Ti
m

e
[s

ec
on

ds
]

Running Time of HRMS in d = 5

HRMS
Cube

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0

2

4

6

8

Ti
m

e
[s

ec
on

ds
]

Running Time of HRMS in d = 10

HRMS
Cube

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0

1

2

3

4

5

Ti
m

e
[s

ec
on

ds
]

Running Time of HRMS in d = 50

HRMS
Cube

Figure 8 Average running times for the HRMS algorithm compared to the Cube algorithm on
generated input sets of sizes n = 102, . . . , 106 in d = 2, 5, 10, 50 dimensions.

the improvement in regret ratio is up to a factor of 227 on average to the random partitioning.
The beneficial behavior of the geometric approach was observed consistently up to d = 10
dimensions. Only for higher dimensions both versions of HRMS provide similar regret ratios.
Thus, we conclude that the geometric partitioning is indeed preferred over the random
partitioning in practice matching the previous theoretical considerations.

Considering the dimensional scalability of the HRMS algorithm, we use input sets of up to
n = 106 points in d = 2, . . . , 50 dimensions with the selection of d = 2, 5, 10, 50 being depicted
in Figure 8 (running time) and Figure 9 (solution quality). For all tested dimensions, we
observe the HRMS algorithm requiring slightly more time than the Cube algorithm executed
directly on the input set which is in compliance with our theoretical analysis. However, as
the number of dimensions increases, the practical running time of HRMS algorithm gets
closer towards the running times of the Cube algorithm. In terms of the solution quality, the
HRMS algorithm consistently outperforms the Cube algorithm by providing significantly
lower regret ratios among all tested dimensions. The most significant improvement by the
HRMS algorithm of up to a factor of 174 on average is obtained in d = 2 dimensions compared
to Cube. In d = 5, d = 10 and d = 50 dimensions, the average improvement of HRMS
compared to Cube is by factors of 1.49, 1.40 and 1.48, respectively. However, the HRMS
algorithm optimizes for 50 objectives simultaneously and provides small representing subsets
that still ensure that the most regretful user is about 79% happy with the provided solution
instead of the full 106 alternatives in the input set. Hence, we conclude that the geometric
partitioning together with the hierarchical merging of the HRMS algorithm is consistently
advantageous in terms of the solution quality as opposed to the state-of-the-art algorithm
Cube.

Further, we evaluate the ratio of Pareto-optimal points in the solution subsets of the
HRMS algorithm compared to the Cube algorithm in Figure 10 for d = 2 and d = 3
dimensions and up to n = 106 input points. In both dimensions, the HRMS algorithm

ATMOS 2025

13:14 Multi-Criteria Route Planning with Little Regret

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 2

Cube
HRMS

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 5

Cube
HRMS

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 10

Cube
HRMS

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 50

Cube
HRMS

Figure 9 Average regret ratios for the HRMS algorithm compared to the Cube algorithm on
generated input sets of sizes n = 102, . . . , 106 in d = 2, 5, 10, 50 dimensions.

retrieves more Pareto-optimal points in its output set than the Cube algorithm. More
precisely, for two dimensions the HRMS provides a Pareto ratio of 87% while the Cube only
achieves 70%. In three dimensions, the Pareto ratios are 91% for the HRMS and 77% for
the Cube algorithm. Hence, the improvement in solution quality provided by the HRMS
algorithm is due to retrieving more Pareto-optimal points from the input set S than the
Cube algorithm. During the partitioning phase we emphasize on dividing the input space in
such way that each subset ideally contains a small fraction of the Pareto frontier. Further,
the sorted merge during the hierarchical merging ensures to select points having high values
in each of the dimensions which corresponds to the concept of Pareto-optimality.

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Pe
rc

en
ta

ge

Percentage of Pareto Points in Output

HRMS, d = 3
HRMS, d = 2

Cube, d = 3
Cube, d = 2

Figure 10 Comparison of the ratio of Pareto-optimal points in the solution subsets of the
HRMS algorithm and the Cube algorithm in d = 2 and d = 3 dimensions, using input sizes of
n = 102, . . . , 106.

C. Truschel and S. Storandt 13:15

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 2

Cube
HRMS

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 5

Cube
HRMS

0.0 0.2 0.4 0.6 0.8 1.0
Input Size n 1e6

0.04

0.06

0.08

0.10

Re
gr

et
 R

at
io

Regret Ratio of HRMS in d = 50

Cube
HRMS

Figure 11 Gaussian input: Comparison of the regret ratios obtained by the HRMS algorithm and
the Cube algorithm on input sets of size n = 102, . . . , 106 in d = 2, 5, 50 dimensions using Gaussian
distributed inputs.

We now want to evaluate the HRMS algorithm on input sets following different distribu-
tions which are closer to realistic input scenarios. To this end, we execute the algorithms
on Gaussian distributed input sets. For the Gaussian generator, we sample d values from
the normal distribution with mean µ = nd

2 and standard deviation σ = µ
4 ensuring that all

values are positive integers. The corresponding regret ratios for the HRMS algorithm are
displayed in Figure 11. Again, the HRMS algorithm consistently produces lower regret ratios
than the Cube algorithm on all tested dimensions up to 50. On average among the input
sizes, we gain a maximal improvement factor of 2.6 in d = 2 dimensions compared to the
Cube algorithm. Over all dimensions and input sizes, the average improvement of the HRMS
algorithm is by a factor of 1.24.

4.2 Multi-Objective Route Planning Results
For studying the impact of regret-based filtering in multi-objective route planning, we used an
established benchmark, namely the German road network with d = 10 real cost dimensions2

such as the distance, travel time, positive height difference and energy consumption for
electric vehicles [12]. Each cost dimension was normalized to the interval [0, 1]. To study the
scalability of the different methods, we selected cutouts with the number of nodes ranging
from 10000 to 3 million.

4.2.1 Preprocessing
To allow for a fair comparison between classical multi-objective CH and our proposed variant
with regret-based filtering, we first constructed a metric-independent CH-graph, also called
Customizable Contraction Hierarchy (CCH) [10]. Here, shortcuts are assigned between all
pairs of neighbors when a node is contracted. Afterwards, we use the described bottom-up
procedure to equip the edges and shortcuts with sets of cost vectors that encode Pareto-
optimal paths between their endpoints. We either use the mode full where we only filter
dominated points, or the mode regret where we additionally use HRMS to reduce the cost
vector size to at most k. If not stated otherwise, we use k = 5.

In Table 1, the statistics of our benchmark instances are provided together with the
experimental results for the first preprocessing step, namely the CCH construction. Note that
we actually stop after contracting 99.7% of the nodes. Leaving this “core” of uncontracted
nodes is a common method for multi-objective CH construction (see e.g. [12]), as the

2 https://www.dropbox.com/s/tclrjdkfhabu27h/ger10.zip?dl=0

ATMOS 2025

https://www.dropbox.com/s/tclrjdkfhabu27h/ger10.zip?dl=0

13:16 Multi-Criteria Route Planning with Little Regret

Table 1 Road network instances with number of nodes n and number of edges m. The right
columns indicate the time for the CCH construction as well as the number |E+| of inserted shortcuts.

properties CCH
n m time |E+|

RN1 10000 21498 17ms 19958
RN2 100000 214362 0.3s 207900
RN3 1000000 2125904 3.8s 2070908
RN4 3064263 6468394 20.2s 6347312

Table 2 Results for the vector assignment step when maintaining all Pareto-optimal cost vectors
(CH full) or with pruning to k = 5 vectors (CH regret). The columns avg and max show the average
and maximum number of cost vectors per shortcut in the final graph.

CH full CH regret
time avg max time avg max

RN1 0.1s 1.78 606 30ms 1.19 5
RN2 1.5m 5.80 30709 0.4s 1.23 5
RN3 2.7h 7.45 161260 4.2s 1.22 5
RN4 - - - 19.9s 1.21 5

shortcuts introduced late in the process usually span large portions of the graph and thus
usually also encode a huge number of Pareto-optimal paths. Preventing their insertion by
stopping early helps to reduce the query time, although the query algorithm has to consider
all nodes in the core. We observe that this preprocessing step is very fast and the number of
shortcuts that are inserted is less than the number of original edges.

In the second preprocessing step, the edge cost vectors are assigned. We set a timeout of
5 hours for this step. In Table 2, we see that for the full setting in which all Pareto-optimal
solutions are maintained, we could only stay within that time limit for the graphs with up to
1 million nodes. While the average number of vectors per edge is not huge even for RN3,
the maximum number grows quite severely. This not only consumes a lot of space but also
increases the preprocessing time. Applying regret pruning, however, allows to perform this
step very quickly on all networks as the number of vectors to process per shortcut is limited.

4.2.2 Personalized Shortest Path (PSP) queries
Having fewer cost vectors per shortcut also positively affects the query time, as fewer vectors
need to be considered when relaxing an edge. We first evaluate PSP queries, where the
user inputs source and target as well as a preference vector α. We select 100 random
source-target-pairs in each graph and choose d + 2 different preference vectors for each pair:
One random weight vector, one vector with all entries set to 1/d (that means, all dimensions
are equally important) and the d unit vectors. Therefore, in total we have 1200 test queries
per graph in our setup with d = 10. As shown in Table 3, the running time of the Dijkstra
baseline is in the order of seconds on the larger graphs. Using the full CH approach, query
times are significantly reduced as only a small percentage of nodes and edges are considered
on query time. But the acceleration also decreases steeply with increasing graph size, from
around 940 for RN1 to around 45 for RN3. The main reason is that the average number of
vectors that have to be relaxed per edge is quite large for RN3, which increases the query
time. Using CH with regret filtering for every shortcut, that ratio is always upper bounded

C. Truschel and S. Storandt 13:17

Table 3 PSP query times. The ratio denotes the number of cost vectors considered in the query
divided by the number of edges that were relaxed in the query. For the Dijkstra baseline, this value
is always 1.

Dijkstra CH full CH regret
time time ratio time ratio

RN1 47ms 0.05ms 25.7 0.02ms 3.6
RN2 0.5s 9.17ms 196.1 0.20ms 4.2
RN3 5.3s 0.12s 257.3 8.14ms 4.4
RN4 17.6s - - 28.59ms 4.4

Table 4 Observed maximum regret values for varying values of d and k on the RN3 instance
using 1200 queries each.

d k = 3 k = 5 k = 10
5 0.0409 0.0544 0.0204

10 0.0625 0.0572 0.0419
50 0.0638 0.0519 0.0481

100 0.0749 0.0495 0.0474

by k. Note that the ratio of vectors per edge in a query comes indeed close to k and is thus
much larger than the average cost vector number per edge which is provided in Table 2. This
is due to the fact that shortcuts between nodes with higher contraction rank are more likely
to be considered on query time, but these are also the ones which tend to have the most cost
vectors. Nevertheless, the cost vector size is drastically reduced compared to CH full and
therefore the query answering stays fast even in the larger graphs, with a speed-up of over
600 for RN3 and RN4.

But of course the question is how the result quality is compromised by the regret-based
filtering of the solutions. Over all instances, the observed maximum regret was at most
0.0613 and the average an order of magnitude smaller, namely around 0.0029. Thus, the
obtained approximation factor (see Lemma 3) for PSP queries is upper bounded by 1.065
in our experiments, and on average solutions were within 2-3% of the optimal cost. This
demonstrates that regret pruning allows to get close-to-optimal query results for PSP while
significantly reducing the preprocessing and query time, as well as the space consumption.

To further shed light on the interplay of the dimension d and the maximum number of
cost vectors k per shortcut, Table 4 shows regret values on the RN3 instance where cost
vectors were created with entries u.a.r. in [0, 1]. We observe that the maximum regret stays
small even if we only preserve k = 3 vectors per shortcut. The average regret was again at
least one order of magnitude smaller in all scenarios.

4.2.3 Constrained Shortest Path (CSP) queries
Finally, we investigate whether regret pruning is also useful in the context of CSP queries,
where the user specifies upper bounds on all but the first cost dimension and aims at retrieving
the path which obeys these bounds and has minimum cost in the first dimension. To construct
sensible queries, we proceed as follows: We first select d′ out of the d available cost dimensions
randomly. Then, for a source-target-pair, we compute the shortest path cost ci for all but
the first cost dimension individually and set the bound Bi = ci · (1 + ε), i = 2, . . . , d′ for
some ε > 0. If not stated otherwise, we use ε = 0.05. We consider the following query

ATMOS 2025

13:18 Multi-Criteria Route Planning with Little Regret

Table 5 CSP query results for different query algorithms and dimensions on the two smallest
instances.

RN1 RN2
d′ = 2 d′ = 3 d′ = 5 d′ = 2 d′ = 3

PD 25.0ms 100.2ms 2.7s 2.1s 22.0s
PDr 22.1ms 59.5ms 0.5s 0.8s 2.7s
PCHD 1.2ms 13.0ms 0.3s 16.2ms 57.3ms
PCHDr 0.2ms 0.4ms 1.4ms 1.3ms 2.5ms

algorithms: Pareto-Dijkstra (PD), Pareto-Dijkstra with regret pruning (PDr), Pareto-CH-
Dijkstra (PCHD) and Pareto-CH-Dijkstra with regret pruning (PCHDr). For the variants
with regret pruning, we applied HRMS whenever the number of labels assigned to a node is
equal to or exceeds 2k to bring it back down to k. We use k = 10 · d in our experiments.
Setting k too low can actually be detrimental to faster query answering, as pruning too
many labels might lead to additional operations if labels that dominate many others are
removed. Thus, it is sensible to choose k proportional to the dimension. Labels are pruned
in all algorithms if a cost entry in any dimension exceeds the respective bound. Table 5
summarizes our findings on the RN1 and RN2 instances. In the 100 queries per experiment,
we never observed that PD found a feasible solution but the regret-based variants did not.
However, the costs in the first dimension were on average 2-5% larger than for the baseline.
But this is a small increase compared to the large performance gain. For RN2 with larger d′

and RN3 and RN4 the PD(r) baselines were too slow to conduct sufficiently many queries
(single queries took hours). But PCHD(r) are applicable. For example, for RN4 and d′ = 2,
query times for PCHD were in the order of several minutes, while PCHDr took at most 5
seconds.

5 Conclusions and Future Work

We demonstrated in this paper, that the regret-based pruning of multi-dimensional solution
sets can be a very beneficial ingredient in multi-objective route planning, as it helps to
significantly reduce query times and space consumption without having a severe impact on
the solution quality. The efficiency of our new hierarchical algorithm for computing regret
minimizing subsets, which produces solutions of high quality, is crucial in achieving these
outcomes.

The proposed methods should be easy to integrate with existing heuristics for multi-
objective search as MOA*. Nevertheless, it would be interesting to explore their interplay
further and to apply methods as dimensionality reduction, used for faster dominance checks
in MOA*, also for regret pruning.

References

1 Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. Efficient Algorithms
for k-Regret Minimizing Sets. In 16th International Symposium on Experimental Algorithms
(SEA 2017), pages 7:1–7:23, 2017. doi:10.4230/LIPIcs.SEA.2017.7.

2 Saman Ahmadi, Guido Tack, Daniel D Harabor, and Philip Kilby. Bi-objective search with
bi-directional A*. In Proceedings of the International Symposium on Combinatorial Search,
volume 12, pages 142–144, 2021. doi:10.1609/socs.v12i1.18563.

https://doi.org/10.4230/LIPIcs.SEA.2017.7
https://doi.org/10.1609/socs.v12i1.18563

C. Truschel and S. Storandt 13:19

3 Gernot Veit Batz and Peter Sanders. Time-dependent route planning with generalized
objective functions. In European Symposium on Algorithms, pages 169–180. Springer, 2012.
doi:10.1007/978-3-642-33090-2_16.

4 Moritz Baum, Julian Dibbelt, Dorothea Wagner, and Tobias Zündorf. Modeling and engineering
constrained shortest path algorithms for battery electric vehicles. Transportation Science,
54(6):1571–1600, 2020. doi:10.1287/trsc.2020.0981.

5 Sean Chester, Alex Thomo, S. Venkatesh, and Sue Whitesides. Computing k-regret minimizing
sets. Proceedings of the VLDB Endowment, 7(5):389–400, 2014. doi:10.14778/2732269.
2732275.

6 Marek Cuchỳ, Jiří Vokřínek, and Michal Jakob. Multi-objective electric vehicle route and
charging planning with contraction hierarchies. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 34, pages 114–122, 2024. doi:10.1609/icaps.
v34i1.31467.

7 Daniel Delling, Julian Dibbelt, and Thomas Pajor. Fast and exact public transit routing with re-
stricted pareto sets. In 2019 Proceedings of the Twenty-First Workshop on Algorithm Engineer-
ing and Experiments (ALENEX), pages 54–65. SIAM, 2019. doi:10.1137/1.9781611975499.5.

8 Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F Werneck.
Computing multimodal journeys in practice. In International Symposium on Experimental
Algorithms, pages 260–271. Springer, 2013. doi:10.1007/978-3-642-38527-8_24.

9 Daniel Delling and Dorothea Wagner. Pareto paths with sharc. In International Symposium on
Experimental Algorithms, pages 125–136. Springer, 2009. doi:10.1007/978-3-642-02011-7_
13.

10 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
Journal of Experimental Algorithmics (JEA), 21:1–49, 2016. doi:10.1145/2886843.

11 Yann Disser, Matthias Müller-Hannemann, and Mathias Schnee. Multi-criteria shortest paths
in time-dependent train networks. In International Workshop on Experimental and Efficient
Algorithms, pages 347–361. Springer, 2008. doi:10.1007/978-3-540-68552-4_26.

12 Stefan Funke, Sören Laue, and Sabine Storandt. Personal routes with high-dimensional costs
and dynamic approximation guarantees. In 16th International Symposium on Experimental
Algorithms (SEA 2017). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2017. doi:10.
4230/LIPIcs.SEA.2017.18.

13 Stefan Funke and Sabine Storandt. Polynomial-time construction of contraction hierarchies for
multi-criteria objectives. In 2013 Proceedings of the Fifteenth Workshop on Algorithm Engineer-
ing and Experiments (ALENEX), pages 41–54. SIAM, 2013. doi:10.1137/1.9781611972931.4.

14 Stefan Funke and Sabine Storandt. Personalized route planning in road networks. In Proceedings
of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information
Systems, pages 1–10, 2015. doi:10.1145/2820783.2820830.

15 Boris Goldin and Oren Salzman. Approximate bi-criteria search by efficient representation
of subsets of the pareto-optimal frontier. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 31, pages 149–158, 2021. doi:10.1609/icaps.
v31i1.15957.

16 Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel. Pareto sums of pareto
sets. In 31st Annual European Symposium on Algorithms (ESA 2023). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ESA.2023.60.

17 Matthias Müller-Hannemann and Mathias Schnee. Finding all attractive train connections by
multi-criteria pareto search. In Algorithmic Methods for Railway Optimization: International
Dagstuhl Workshop, Dagstuhl Castle, Germany, June 20-25, 2004, 4th International Workshop,
ATMOS 2004, Bergen, Norway, September 16-17, 2004, Revised Selected Papers, pages 246–263.
Springer, 2007. doi:10.1007/978-3-540-74247-0_13.

18 Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J Lipton, and Jun Xu. Regret-
minimizing representative databases. Proceedings of the VLDB Endowment, 3(1-2):1114–1124,
2010. doi:10.14778/1920841.1920980.

ATMOS 2025

https://doi.org/10.1007/978-3-642-33090-2_16
https://doi.org/10.1287/trsc.2020.0981
https://doi.org/10.14778/2732269.2732275
https://doi.org/10.14778/2732269.2732275
https://doi.org/10.1609/icaps.v34i1.31467
https://doi.org/10.1609/icaps.v34i1.31467
https://doi.org/10.1137/1.9781611975499.5
https://doi.org/10.1007/978-3-642-38527-8_24
https://doi.org/10.1007/978-3-642-02011-7_13
https://doi.org/10.1007/978-3-642-02011-7_13
https://doi.org/10.1145/2886843
https://doi.org/10.1007/978-3-540-68552-4_26
https://doi.org/10.4230/LIPIcs.SEA.2017.18
https://doi.org/10.4230/LIPIcs.SEA.2017.18
https://doi.org/10.1137/1.9781611972931.4
https://doi.org/10.1145/2820783.2820830
https://doi.org/10.1609/icaps.v31i1.15957
https://doi.org/10.1609/icaps.v31i1.15957
https://doi.org/10.4230/LIPIcs.ESA.2023.60
https://doi.org/10.1007/978-3-540-74247-0_13
https://doi.org/10.14778/1920841.1920980

13:20 Multi-Criteria Route Planning with Little Regret

19 Peng Peng and Raymond Chi-Wing Wong. Geometry approach for k-regret query. In
IEEE 30th International Conference on Data Engineering (ICDE 2014), pages 772–783, 2014.
doi:10.1109/ICDE.2014.6816699.

20 Zhongqiang Ren, Richard Zhan, Sivakumar Rathinam, Maxim Likhachev, and Howie Choset.
Enhanced multi-objective A* using balanced binary search trees. In Proceedings of the
international symposium on combinatorial search, volume 15, pages 162–170, 2022. doi:
10.1609/socs.v15i1.21764.

21 Nicolás Rivera, Jorge A Baier, and Carlos Hernández. Subset approximation of pareto regions
with bi-objective a. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 10345–10352, 2022. doi:10.1609/aaai.v36i9.21276.

22 Sabine Storandt. Quick and energy-efficient routes: computing constrained shortest paths
for electric vehicles. In Proceedings of the 5th ACM SIGSPATIAL international workshop on
computational transportation science, pages 20–25, 2012. doi:10.1145/2442942.2442947.

23 Sabine Storandt. Route planning for bicycles – exact constrained shortest paths made practical
via contraction hierarchy. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 22, pages 234–242, 2012. doi:10.1609/icaps.v22i1.13495.

24 Carlos Hernández Ulloa, William Yeoh, Jorge A Baier, Han Zhang, Luis Suazo, and Sven
Koenig. A simple and fast bi-objective search algorithm. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 30, pages 143–151, 2020. doi:
10.1609/icaps.v30i1.6655.

25 Min Xie, Raymond Chi-Wing Wong, and Ashwin Lall. An experimental survey of regret
minimization query and variants: bridging the best worlds between top-k query and skyline
query. The VLDB Journal, 29(1):147–175, 2020. doi:10.1007/s00778-019-00570-z.

26 Min Xie, Raymond Chi-Wing Wong, Jian Li, Cheng Long, and Ashwin Lall. Efficient k-
regret query algorithm with restriction-free bound for any dimensionality. In Proceedings
of the 2018 International Conference on Management of Data, pages 959–974, 2018. doi:
10.1145/3183713.3196903.

27 Mingzhou Yang, Ruolei Zeng, Arun Sharma, Shunichi Sawamura, William F Northrop,
and Shashi Shekhar. Towards pareto-optimality with multi-level bi-objective routing: A
summary of results. In Proceedings of the 17th ACM SIGSPATIAL International Workshop
on Computational Transportation Science GenAI and Smart Mobility Session, pages 36–45,
2024. doi:10.1145/3681772.3698215.

28 Han Zhang, Oren Salzman, Ariel Felner, TK Satish Kumar, Carlos Hernández Ulloa, and Sven
Koenig. Efficient multi-query bi-objective search via contraction hierarchies. In Proceedings
of the International Conference on Automated Planning and Scheduling, volume 33, pages
452–461, 2023. doi:10.1609/icaps.v33i1.27225.

29 Han Zhang, Oren Salzman, Ariel Felner, Carlos Hernández Ulloa, and Sven Koenig. A*pex:
Efficient anytime approximate multi-objective search. In Proceedings of the International
Symposium on Combinatorial Search, volume 17, pages 179–187, 2024. doi:10.1609/socs.
v17i1.31556.

30 Han Zhang, Oren Salzman, TK Satish Kumar, Ariel Felner, Carlos Hernández Ulloa, and Sven
Koenig. A* pex: Efficient approximate multi-objective search on graphs. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 32, pages 394–403,
2022. doi:10.1609/icaps.v32i1.19825.

https://doi.org/10.1109/ICDE.2014.6816699
https://doi.org/10.1609/socs.v15i1.21764
https://doi.org/10.1609/socs.v15i1.21764
https://doi.org/10.1609/aaai.v36i9.21276
https://doi.org/10.1145/2442942.2442947
https://doi.org/10.1609/icaps.v22i1.13495
https://doi.org/10.1609/icaps.v30i1.6655
https://doi.org/10.1609/icaps.v30i1.6655
https://doi.org/10.1007/s00778-019-00570-z
https://doi.org/10.1145/3183713.3196903
https://doi.org/10.1145/3183713.3196903
https://doi.org/10.1145/3681772.3698215
https://doi.org/10.1609/icaps.v33i1.27225
https://doi.org/10.1609/socs.v17i1.31556
https://doi.org/10.1609/socs.v17i1.31556
https://doi.org/10.1609/icaps.v32i1.19825

Using A* for Optimal Train Routing on Moving
Block Systems
Stefan Engels1 #

Chair for Design Automation, Technical University of Munich, Germany

Robert Wille # Ñ

Chair for Design Automation, Technical University of Munich, Germany

Abstract
Modern control systems based on Moving Block allow for shorter headways and higher capacity on
existing railway infrastructure. At the same time, few algorithms for optimal routing on networks
equipped with such modern control systems exist. Previous methods rely on Mixed Integer Linear
Programming (MILP) and face a trade-off between model size and accuracy, especially considering
comparably complex and nonlinear headway constraints as well as train dynamics. With this work,
we propose a complementary approach based on A*. Under a reasonable and easy assumption on
train driver behavior, we propose a solution encoding and state space that is flexible concerning
the choice of search algorithm and the modeling detail. The applicability is showcased on a small
benchmark set. The implementation is available open-source as part of the Munich Train Control
Toolkit (MTCT) on GitHub at https://github.com/cda-tum/mtct.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases ETCS, Train Routing, Moving Block, A*, Munich Train Control Toolkit

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.14

Supplementary Material Software (Source Code): https://github.com/cda-tum/mtct [4]
archived at swh:1:dir:9eb5851e7f0b80f88dc6f09a8c9c54b58d15ee5b

1 Introduction

Railway traffic plays a vital role in the future of sustainable transportation. Due to long
braking distances, trains cannot operate on sight (if they should travel at a reasonable speed).
Instead, signaling systems are needed for safe separation. In the past, these systems have
been specified on a national level. With increasing international rail traffic, control systems
have been unified across Europe, leading to the European Train Control System (ETCS).
Other common systems are the Chinese Train Control System (CTCT), and Positive Train
Control (PTC) [12] as well as Communication Based Train Control (CBTC) for metro
systems [16].

Today, many railway lines operate at their capacity limit. Building new infrastructure is
costly and time-consuming. Complementary to that, the specifications of control systems
have been improved. Modern versions (e.g., based on Hybrid Train Detection or Moving
Block) allow for shorter headways. However, the capacity can only be used if they are
adequately considered in the infrastructure planning process. To cope with the additional
degree of freedom, new design tasks arise [5].

Secondly, modern headway concepts need to be considered when creating a timetable.
Most research on timetable optimization and train routing focuses on networks equipped
with classical control systems [1]. Only limited research considers modern Moving Block

1 Corresponding author

© Stefan Engels and Robert Wille;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 14; pp. 14:1–14:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.engels@tum.de
https://orcid.org/0000-0002-0844-586X
mailto:robert.wille@tum.de
https://www.cda.cit.tum.de/team/wille/
https://orcid.org/0000-0002-4993-7860
https://github.com/cda-tum/mtct
https://doi.org/10.4230/OASIcs.ATMOS.2025.14
https://github.com/cda-tum/mtct
https://archive.softwareheritage.org/swh:1:dir:9eb5851e7f0b80f88dc6f09a8c9c54b58d15ee5b;origin=https://github.com/cda-tum/mtct;visit=swh:1:snp:427338aeff595fef78df193555413c97e0596701;anchor=swh:1:rev:338f866a4831e8a221e10bba88887a36af9a9df5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

14:2 Using A* for Optimal Train Routing on Moving Block Systems

TTD1 TTD2 TTD3 TTD4

AC AC AC ACtr2
H

tr1
H

(a) Classical Block Signaling.

tr2
Hd

tr1
Hd

(b) Moving Block Signaling.

Figure 1 Schematic drawings of different signaling principles [7].

systems [15, 11, 7]. Engels and Wille [8] show that these solutions can also be used as part
of an optimization pipeline for design tasks [5] within the context of Hybrid Train Detection
systems.

Previous methods are mainly based on Mixed Integer Linear Programming (MILP). There
is always a trade-off between efficiency and accuracy when creating a model. Usually, sensible
headway constraints are the most complex to model. For this, discretization and linearization
techniques are used.

In this work, we propose an alternative, complementary approach to train routing on
Moving Block systems that can operate at an arbitrary level of detail. Any (black-box)
simulator can be used to evaluate train movements. Our proposed approach is based on
A*. It has already been successfully applied to different areas within the design automation
community, e.g., in Nanotechnologies [10]. Even within the rail domain, first solutions based
on A* exist [13]. However, their approach cannot easily be generalized to consider train
movements and headways at sensible levels of detail due to the choice of solution encoding.
With this work, we propose a different approach that incorporates the complex constraints
already in the encoding. Because of this, more complex relations can be incorporated without
further complicating the A* search.

The remainder of this work is structured as follows. Section 2 reviews the relevant concepts
of train control systems and A* search. Under an additional but sensible assumption, a
solution encoding is proposed in Section 3. Sections 4 and 5 showcase how this can be used
to design an optimization algorithm for train routing. Section 6 provides a proof of concept.
Finally, Section 7 concludes this work.

2 Background

This section reviews the relevant concepts of train control systems and informed search
algorithms such as A*.

2.1 Train Control Principles
Classically, railway networks are separated into fixed blocks. To detect the status of a
given block, tracks are equipped with Trackside Train Detection (TTD) hardware, e.g., axle
counters. A train may only proceed into the next section if the entire block is unoccupied.

▶ Example 1 ([7]). Consider two trains following each other on a single track as depicted in
Figure 1a. Train tr2 can only move until the end of TTD2. It cannot enter TTD3 because
it is still occupied and, hence, might have to slow down in order to be able to come to a full
stop before entering the occupied block section.

S. Engels and R. Wille 14:3

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

Figure 2 Example network.

Trains equipped with a Train Integrity Monitoring (TIM) system can safely report their
position. In that case, trains can follow each other at absolute braking distance without the
need for any block sections2. Moving Block control systems make use of this concept and are
already implemented on some metro networks.

▶ Example 2 ([7]). In contrast to Example 1, consider a moving block control implemented
in Figure 1b. Because trains operate at the ideal absolute braking distance, tr2 can move up
to the actual end of tr1 (minus a little buffer). In particular, it can already enter what has
been TTD3 previously. Hence, trains can follow each other more closely.

2.2 Train Routing
This work considers time-optimal train routing on railway networks equipped with a Moving
Block control system. For this, we are given general timetable requests. Routing is the task
of deciding on which specific track to use and when trains are moving; all constraints of the
signaling system need to be fulfilled. In particular, we consider the tasks on a microscopic
level. In theory, many different objectives are possible. We aim to optimize the respective
travel time.

▶ Problem 3 (Optimal Train Routing (on Moving Block Systems)). Given:
A railway network with vertices V and (directed) edges E as described in Section A.
A set of trains, where wi denotes the weight of importance of train tri

Demands for every train tr consisting of:
an entry node u

(tr)
in ∈ V together with a desired entry time interval [t(tr)

in , t
(tr)
in] and

initial velocity v
(tr)
0 ,

an exit node u
(tr)
out ∈ V together with a desired exit time interval [t(tr)

out , t
(tr)
out] and exiting

velocity v
(tr)
out , as well as,

a list of stations S1, . . . , Smi ⊂ E together with stopping requests, i.e., a latest arrival
time α

(tr)
i , an earliest departure time δ

(tr)
i and a minimal stopping time ∆t

(tr)
i .

Task: Find a routing satisfying every train’s demand, obeying the constraints imposed by a
moving block control system, and minimizing the (weighted) exit times.

▶ Example 4. Consider the railway network in Figure 2. It consists of one train station
(with two edges and one platform3), as well as two TTD sections to prevent collisions on
the respective railway switches. Two trains (tr1 and tr2) enter at ul and traverse toward ur,
whereas tr3 travels in opposite direction. Assume that tr1 has to stop at the train station,
i.e., stop on edge e4 or e5. Hence, it will travel on the bottom line. Depending on the timings,

2 At the same time, we allow the existence of some TTD sections. They can be used to, e.g., provide
basic flank protection around switches.

3 Of course, the station could also consist of multiple parallel platforms

ATMOS 2025

14:4 Using A* for Optimal Train Routing on Moving Block Systems

tr2 might follow the same path, allowing tr3 to pass in the opposite direction on the upper
track. If tr3 travels at an earlier or later time, the upper track could also be used for tr2 to
overtake tr1 in an alternative solution.

2.3 A*-Algorithm

A* is an informed search algorithm (classically designed to find shortest paths on directed
graphs). It functions similarly to Dijkstra’s algorithm but expands toward the destination
more quickly by making use of a heuristic approximation of the remaining distance.

Let G = (V, E, c) be a weighted graph, s0 ∈ V an initial vertex (also called state in this
context), as well as a set of terminal states T ⊂ V . The task is finding the shortest path
from s0 to any vertex in T . A* explores the graph starting from s0. For every vertex s ∈ V ,
it keeps track of the shortest path from s0 to s found so far. We denote the length of this
path by g(s). Dijkstra would expand on the vertex with the smallest g(·). However, A* uses
a different evaluation function. For every s ∈ V , we apply an efficiently computable heuristic
function h(s) approximating the shortest (remaining) distance from s to T . A* then explores
the neighbors Γ(s) of the vertex with the smallest combined value f(s) := g(s) + h(s). By
doing this, the exploration is guided toward goal states.

Algorithm 1 A*-Algorithm [9].
C ← ∅; f(s)←∞ for all s ∈ V

add s0 to priority queue (pq); f(s0)← 0
while pq is not empty:

select s ∈ arg minσ∈pq f(σ)
C ← C ∪ \{s\}
if s ∈ T : return s

explore all successors Γ(s)
for s+ ∈ Γ(s)− C:

add or update s+ to pq
f(s+)← min{f(s+), g(s) + c(s, s+) + h(s+)}

return infeasible

In theory, we can use any heuristic function h. However, A* is only guaranteed to return
optimal values if the heuristic meets certain conditions, namely, that h never overestimates
the actual cost. If h satisfies a triangle-like inequality, A* can safely be terminated as soon
as the first terminal vertex is explored (as specified in Algorithm 1).

▶ Definition 5 (Consistent Heuristic [9]). A heuristic h is consistent if h(s) ≤ c(s, s+)+h(s+)
for every (s, s+) ∈ E, and h(t) = 0 for every t ∈ T .

▶ Theorem 6 ([9]). If h is consistent, then Algorithm 1 returns a minimal path.

Hart et al. [9] show Theorem 6 for the case of δ-graphs, i.e., if there exists a δ > 0 such
that c(e) ≥ δ for every e ∈ E. However, this condition is only used to show termination in a
weaker case, when h is just admissible but not consistent. It is easy to verify that Algorithm 1
is optimal even for arbitrary (including negative4) edge weights, see, e.g., [2, Theorem 2.9].

4 Note that G cannot have negative cycles if there exists a consistent heuristic.

S. Engels and R. Wille 14:5

3 Solution Encoding

When solving any problem, one must decide on the underlying modeling and its consequences
on possible algorithms. A classical approach is to model optimization problems as linear or
nonlinear constraints and use general and well-developed solvers for the respective problem
class. Often, it is possible to formulate Mixed Integer Linear Programs (MILP). E.g.,
Problem 3 in the presented or similar forms were considered in [15, 11, 7]. Finding detailed
and efficient models is difficult. With respect to train routing tasks, it is usually most
challenging to model adequate headway times induced by the underlying signaling system.
To linearize these constraints, previous MILP approaches consider a velocity-extended graph
and model simplistic headways only at the vertices of the railway network and do not enforce
headways in between. Hence, one must always trade-off between performance and accuracy
when choosing the discretization levels.

Previously, A* was proposed as a different approach to solve design tasks within the
infrastructure planning process [13]. At the same time, their approach is also closely related
to train routing as described in Problem 3. Peham et al. use a state space discretized by
time, hence encountering similar problems. Train dynamics and headways were not properly
considered. It is unclear how they could be easily incorporated into their approach since
these rather complex constraints would have to be considered while determining possible
successor states.

Hence, we propose a fundamentally different encoding, which flexibly incorporates most
constraints already at this stage. By doing so, it is also more natural to apply Algorithm 1
on the so-defined states. For this, we reconsider what the relevant decisions to be made by
the solution algorithm are. Previous solutions leave much freedom for trains to accelerate
and decelerate anytime and anywhere on the network. To reduce the search space, we make
an assumption on the behavior of trains.

▶ Assumption 7 (Greedy Train Driver Assumption). Trains always move as fast as the control
system allows; they do not slow down unless forced to do so.

Of course, this assumption changes the feasible region of Problem 3, at the same time,
arguably almost only cutting off suboptimal solutions. However, there is no theoretical
guarantee because one could design situations in which it is beneficial (also with respect
to time) to slow down, e.g., in order not to rear-end slow trains before they might exit the
main track. At the same time, under Assumption 7, deciding on the train positions at every
time step is no longer necessary. Instead, the train behavior is uniquely determined by the
following:
1. the edges (track sections) used by each train,
2. the order of trains on each border vertex and TTD section5, and
3. the stop positions of every train within the respective stations.
If this information is decided upon, the train movements can be simulated to determine the
objective (or decide that no valid train movements are possible using the predetermined
information). Any such fully determined state (in which the simulation succeeds) is a feasible
solution to Problem 3, hence, a terminal state (see also Section 2.3).

5 the order on single edges can be induced from that

ATMOS 2025

14:6 Using A* for Optimal Train Routing on Moving Block Systems

▶ Example 8. Again, consider Example 4 and the corresponding network depicted in Figure 2.
We might specify:

tr1 and tr2 use (e1, e2, e3, e4, e5, e6, e7, e8); tr3 uses (e8, e7, e11, e10, e9, e2, e1).
Order on ul and TTD1: (tr1, tr2, tr3); order on ur and TTD2: (tr3, tr1, tr2).
tr1 stops in the station at the end of e5.

Simulating under Assumption 7 might lead to the following movement of trains: tr1 and tr3
enter the network at their respective vertices. tr1 moves all the way to e5 as fast as possible,
stops for the time specified in the timetable request, and continues to its exit vertex ur. tr2
enters the network some time after tr1 and follows tr2 as close as possible at absolute braking
distance. tr3 moves all the way to e10 and stops (even though it does not have a scheduled
stop). Only after tr2 has cleared TTD1 will it continue to its exit vertex ul.

4 Optimization using A*

Having established the relevant decisions in Section 3, we can construct a specific A* approach
for Problem 3 under Assumption 7. For this, we need to establish a state space, i.e., a graph
on which Algorithm 1 is applied to and sensible heuristic estimates h(·).

4.1 State Space
To use search algorithms, it does not suffice to encode only terminal states. Instead, we must
also encode partial solutions that might lead to feasible solutions encoded by terminal states.

▶ Definition 9 (Partial Solution). A partial solution is given by information on every train
tri consisting of

a list of adjacent edges
(

e
(tri)
1 , . . . , e

(tri)
ki

)
, possibly empty6, with u

(tri)
in if ki ≥ 1 and

a list of specific stop positions in stations S1, . . . , Sm̂i
for the first 0 ≤ m̂i ≤ mi stations7.

Moreover, the train orders are specified on every TTD section with more than one train
traveling on, as well as on the entry and exit vertices.

In contrast to terminal states (i.e., fully specified movements), u
(tri)
out ̸∈ e

(tri)
ki

and m̂i ≠ mi

are possible. When simulating, it is assumed that, in such a case, trains stop at the end of
their last specified edge and end their journey on the network. In the objective, the exit time
of tri is replaced by the time it reaches the end of e

(tri)
ki

with velocity 0. The state space,
i.e., the “vertices” of the graph used in Section 2.3, is then given by the set of all (partial)
solutions.

▶ Example 10. Again, consider Example 4 and the corresponding network depicted in
Figure 2. In contrast to Example 8 the train routes are only specified partially, e.g.,:

tr1 uses (e1, e2, e3, e4, e5); tr2 uses no edges; tr3 uses (e8, e7, e11).
Order on vl and TTD1: (tr1); order on vr and TTD2: (tr3).

In this scenario, tr1 enters at vl, moves to the end of e5 as fast as possible, and stops there
permanently; similarly, tr3 moves to e11. tr2 does not enter the network at all.

▶ Assumption 11. We are given a (possibly black-box) simulator that can (under Assump-
tion 7) determine the unique train movements given a partial solution (Definition 9) or
return that no feasible trajectory exists (e.g., due to a deadlock situation).

6 ki = 0 is possible
7 hence, no stops in stations Sm̂i+1, . . . ,Smi are specified in this case

S. Engels and R. Wille 14:7

4.2 Transitions
It remains to define transitions between states, i.e., the “edges” of the graph used in Section 2.3.
Naturally, the initial state is given by the empty state, i.e., no train enters the network, with
objective value 0. The target states T are all fully specified states corresponding to feasible
train movements that respect all timetable requests.

The main idea is to traverse the state space edge by edge. Given any (partial) state s, we
obtain possible successor states s+ ∈ Γ(s) by one of the following:
1. Any single train stops at its current route end (if the respective edge is part of the next

scheduled station).
2. Any single train moves to any succeeding edge on the network.
3. Any single train enters the network from outside.
The respective TTD- and vertex-orders are induced by the order in which these transitions
were chosen to reach s+ from the initial state. If a TTD is entered, the train is appended to
the respective TTD-order; analog for entry and exit vertices.

▶ Example 12. Consider the state depicted on the left of Figure 3a with three trains. tr1
and tr2 have already entered the network, whereas tr3’s route is still empty. There are five
possible successor states:

tr1 (orange) can either use the current route end to stop in the train station or move
onward to the next edge. In this case, tr1 first enters TTD2, hence, the train order on
TTD2 (which was empty before) is now given by (tr1).
tr2 (blue) can move one edge. Due to the switch, it can either stay on the main track or
divert to the left. Since it was already in TTD1, no adjustments to the order are needed,
and the order on TTD1 is still given by (tr1, tr2).
tr3 (purple) can enter the network on the right, hence, the order on ur is now given by
(tr3).

Following this strategy, many intermediate states are created, even if there is only one
plausible decision to continue with. Note that trains cannot overtake or cross on single-track
lines without turnouts. Hence, train movements of more than one edge can be safely assumed
until the next switch is reached. Doing so can reduce the number of states explored by
skipping unnecessary intermediate steps.

▶ Example 13. Consider the state depicted on the left of Figure 3b with a single train that
has already traversed the first edge. If the train continues, it enters TTD1. Since no other
train can enter TTD1 before tr1 has left, we can move it all the way to the end of the TTD
section without skipping any relevant state. The train can either move left or right. Given
that decision, there is no routing choice until the next switch, so we can move the train
all the way to just before TTD2. We cannot safely extend tr1’s route into TTD2 because
another train might still enter TTD2 before without producing a deadlock. Finally, there are
two more possible successors because tr1 might stop at any of the two possible stop positions
of the station.

4.3 Suitable Heuristic
For any state s, we can simulate the movements of each train (Assumption 11). Let t̄i be
the time at which tri either exits the network or reaches the end of its route as specified by
the (partial) state s. We define

g(s) :=
tr∑
i=1

wi · t̄i. (1)

ATMOS 2025

14:8 Using A* for Optimal Train Routing on Moving Block Systems

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur

tr2 tr1 tr3

e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

(a) Single-Edge Successor State Exploration.

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

ul ur
e1 e2 e3

e4 e5

e6 e7 e8

e9

e10
e11

TTD1 TTD2

(b) Multi-Edge Successor State Exploration.

Figure 3 Determination of successor states.

S. Engels and R. Wille 14:9

Note that for any terminal state t ∈ T , g(t) coincides with the objective value of the
corresponding feasible (but not necessarily optimal) solution to Problem 3. Furthermore, its
value does not depend on specific state transitions but is the same regardless of which path
was taken to reach a particular state, as all relevant information for simulation is contained
in the state itself. We do not define the transition costs c(s, s+) explicitly, but they are
implicitly given by

c(s, s+) = g
(
s+)− g (s) . (2)

Usually, c(s, s+) > 0 will hold. However, for terminal t ∈ T , c(s, t) ≤ 0 is theoretically
possible because the train is not forced to stop at the exit vertex in contrast to the end of
partial routes in intermediate states. However, this is not a problem because we will handle
this by choosing a sensible heuristic h(s).

To guide the search algorithm, we need suitable edge weights and an optimistic heuristic
estimating the lowest cost g∗(s, T) from any state s to the nearest terminal. For this,
we estimate the remaining time for every individual train tri with hi(s). If a train has
already reached its exit vertex, we have hi(s) = 0. Otherwise, let τ∗

i (p1, p2) be the minimal
running time for tri between any two points8 on the railway network N , ignoring headway
constraints induced by other trains. Let τ̂i(p1, p2) be an optimistic approximation, i.e.,
0 ≤ τ̂i(p1, p2) ≤ τ∗

i (p1, p2), which still fulfills the triangle inequality

τ̂i(p1, p2) ≤ τ̂i(p1, pk) + τ̂i(pk, p2) ∀pk. (3)

For e = (u0, u1) ∈ E a natural and easy to compute choice is

τ̂i(e) = τ̂i(u0, u1) = len(e)
min

{
v

(max)
tri

, v
(max)
e

} , (4)

i.e., assuming a train always moves at the maximum speed, disregarding constraints on
acceleration and deceleration. In general, we can induce any τ̂i(p1, p2) as the quickest path
from p1 to p2 by using the edge timings τ̂i(e) defined in Equation (4).

▶ Example 14. Consider the network with edge length and maximal velocities depicted in
Figure 4a. Assume, we have two trains, tr1 with maximal velocity v

(max)
tr1

= 50 m/s, and tr2

with maximal velocity v
(max)
tr2

= 20 m/s. Using τ̂(·, ·) defined in Equation (4), the quickest
path of tr1 from u0 to u3 is via u1 and

τ̂1 (u0, u3) = 100 m
20 m/s + 500 m

50 m/s = 5 s + 10 s = 15 s, (5)

whereas the quickest path of tr2 is via u1 and u2 with

τ̂2 (u0, u3) = 100 m
20 m/s + 100 m

20 m/s + 100 m
10 m/s = 5 s + 5 s + 10 s = 20 s. (6)

However, we do not use τ̂i directly as a heuristic. Recall that hi(s) should estimate
g⋆(s, T) and be optimistic. However, in state s, tri might be forced to slow down because it
has to stop at the end of its partially defined route. This is not the case in a terminal state
t ∈ T , so the actual travel time difference can be less than τ⋆

i (s, t). However, this can easily

8 not necessarily vertices

ATMOS 2025

14:10 Using A* for Optimal Train Routing on Moving Block Systems

u0 u1 u2 u3

20m/s

100m

20m/s

100m

10m/s

100m

50m/s

500m

(a) Example of τ̂(·, ·) defined in Equation (4).

u1 ... uj uoutp0

v(t)

(b) Definition of hi(s).

Figure 4 Heuristic to use within the A* algorithm.

be incorporated into the heuristic. Consider Figure 4b and assume that at point p0 and time
t0, a train starts to decelerate only because it has to stop at the end of its partial route. While
braking, it traverses vertices u1, u2, . . . , uj and finally stops at uj at time tj . These values
can be easily returned from the (black-box) simulator while determining g(s) (Equation (1)).
In a terminal state, tri might not be forced to slow down at p0, but could potentially follow
the orange speed profile in Figure 4b. Because of this, it would reach uj earlier than tj in
this terminal state, and the final exit time might be less than tj + τ⋆

i

(
uj , u

(tri)
out

)
. We need

to adjust for the time that tri could reach uj earlier than tj in any terminal state reachable
from s. This can be achieved by defining

hi(s) := τ̂i(p0, u1) +
j∑

k=2
τ̂i(uk−1, uk) − (tj − t0)︸ ︷︷ ︸

≤0

+τ̂i

(
uj , u

(tri)
out

)
. (7)

Finally, we combine these individual heuristics into the final h used in Algorithm 1:

h(s) :=
tr∑
i=1

wi · hi(s). (8)

▶ Lemma 15. h defined in Equation (8) is consistent.

Proof. W.l.o.g., assume that we use the simple successor state exploration since the multi-
edge version can be seen as traversing multiple transitions in one iteration. Let s be any state
and s+ ∈ Γ(s) be any successor state. Then s and s+ differ by a single action on a single
train tri. Let t̄

(s)
i and t̄

(s+)
i be the times at which tri either exits the network or reaches the

end of its route in state s and s+, respectively. Then

c
(
s, s+) = g

(
s+)− g (s) = wi ·

(
t̄
(s+)
i − t̄

(s)
i

)
(9)

and

h (s) − h
(
s+) = wi ·

(
hi (s) − hi

(
s+)) . (10)

If the transition s → s+ relates to tri stopping in a station, we have

hi (s) − hi

(
s+) = 0 ≤ ∆t = t̄

(s+)
i − t̄

(s)
i , (11)

where ∆t denotes the stopping time in the respective station.
Otherwise, let (u0, u1, . . . , un) be the path of tri in state s+. Hence, (u0, . . . , un−1) is its

path in state s. Let ps be the braking point in state s and ps+ in state s+ respectively, see
Figure 5. Let uk (0 < k ≤ n − 1) be the first vertex after ps and ul (k ≤ l ≤ n) be the first
vertex after ps+ . Then

S. Engels and R. Wille 14:11

u0 uk ul un−1 un uoutps ps+

τ̂(un−1, uout)

τ̂(un, uout)

Figure 5 Proof that h defined in Equation (8) is consistent.

hi (s) − hi

(
s+) = τ̂i (ps, uk) +

n−1∑
j=k+1

τ̂i (uj−1, uj) −
(

t(s)
un−1

− t(s)
ps

)
+ τ̂i

(
un−1, u

(tri)
out

)
− τ̂i (ps+ , ul) −

n∑
j=l+1

τ̂i (uj−1, uj) +
(

t(s+)
un

− t(s+)
ps+

)
− τ̂i

(
un, u

(tri)
out

)
(12)

By optimality of the quickest path, we obtain

τ̂i

(
un−1, u

(tri)
out

)
− τ̂i

(
un, u

(tri)
out

)
≤ τ̂i (un−1, un) + τ̂i

(
un, u

(tri)
out

)
− τ̂i

(
un, u

(tri)
out

)
︸ ︷︷ ︸

=0

. (13)

Moreover, the adjustments made to hi due to early braking nicely cancel out to

τ̂i (ps, uk) +
n−1∑

j=k+1
τ̂i (uj−1, uj) − τ̂i (ps+ , ul) −

n−1∑
j=l+1

τ̂i (uj−1, vj)

= τ̂i (ps, uk) +
l−1∑

j=k+1
τ̂i (uj−1, uj) + τ̂i (ul−1, ul) − τ̂i (ps+ , ul) (14)

≤ τ̂i (ps, uk) +
l−1∑

j=k+1
τ̂i (uj−1, uj) + τ̂i (ul−1, ps+) + τ̂i (ps+ , ul) − τ̂i (ps+ , ul) (15)

= τ̂i (ps, uk) +
l−1∑

j=k+1
τ̂i (uj−1, uj) + τ̂i (ul−1, ps+) ≤

(
t(s+)
ps+ − t(s+)

ps

)
(16)

assuming l > k (analog if l = k). Hence, we obtain

hi (s) − hi

(
s+) ≤

(
t(s+)
ps+ − t(s+)

ps

)
−
(

t(s)
un−1

− t(s)
ps

)
+
(

t(s+)
un

− t(s+)
ps+

)
+ τ̂i (un−1, un) − τ̂i (un−1, un) (17)

=
(

t(s+)
ps+ − t(s)

ps

)
−
(

t(s)
un−1

− t(s)
ps

)
+
(

t(s+)
un

− t(s+)
ps+

)
(18)

=
(

t(s+)
un

− t(s)
un−1

)
= t̄

(s+)
i − t̄

(s)
i , (19)

where we use that t
(s+)
ps = t

(s)
ps , because the constraint to stop at uj affects tri only after

reaching point ps, hence, the train behavior up to ps are identical in states s and s+. Similarly,
one can easily show that hi (s) − hi (s+) ≤ t̄

(s+)
i − t̄

(s)
i also holds for the edge cases when a

train enters or exits the network. Overall

h (s) − h
(
s+) = wi ·

(
hi (s) − hi

(
s+)) ≤ wi ·

(
t̄
(s+)
i − t̄

(s)
i

)
= c

(
s, s+) (20)

proving that h is consistent. ◀

ATMOS 2025

14:12 Using A* for Optimal Train Routing on Moving Block Systems

▶ Theorem 16. Algorithm 1 together with g defined in Equation (1) and h defined in
Equation (8) outputs an optimal solution to Problem 3 under Assumption 7.

Proof. Follows directly from Lemma 15 and Theorem 6. ◀

4.4 Extending the Heuristic
The heuristic presented in Section 4.3 can be further extended to approximate the remaining
time more accurately by using more information provided by Problem 3. Note that the train
has to visit a specified list of stations before leaving the network, so it might not be possible
for a train to take the quickest route anyway. Assume that in state s, tri has not stopped in
stations Sl, . . . , Smi

yet, i.e., m̂i = l − 1 in Definition 9, then we can update Equation (7) to

hi(s) := τ̂i(p0, u1) +
j∑

k=2
τ̂i(uk−1, uk) − (ti − t0) +

mi∑
k=l

∆ttri

k

+ τ̂i(uj , Sl) +
mi−1∑
k=l

τ̂i(Sk, Sk+1) + τ̂i

(
Smi , u

(tri)
out

)
, (21)

where

τ̂i(A, B) := min
p1∈A,p2∈B

τ̂i(p1, p2) (22)

is the natural extension of τ̂i to distances between sets.
Moreover, Problem 3 provides information on the earliest departure times. Since the train

is not allowed to leave before that time, we can already incorporate this into the heuristic.
For this, set

h
(l)
i (s) := τ̂i(p0, u1) +

j∑
k=2

τ̂i(uk−1, uk) − (ti − t0) + τ̂i(uj , Sl) + ∆ttri

l . (23)

For any future station, we can already incorporate the earliest departure times of the previous
station by

h
(k)
i (s) := max

{
h

(k−1)
i (s), δtri

k−1

}
+ τ̂i(Sk−1, Sk) + ∆ttri

k (24)

and, finally,

hi(s) := max
{

h
(mi)
i (s), δtri

mi

}
+ τ̂i

(
Smi

, u
(tri)
out

)
. (25)

▶ Corollary 17. The heuristics h induced from Equations (21) and (25) are consistent and,
hence, Algorithm 1 outputs an optimal solution to Problem 3 under Assumption 7.

Proof. Analog to the proof of Lemma 15. Equation (11) changes to

hi (s) − hi

(
s+) = ∆t = t̄

(s+)
i − t̄

(s)
i . (26)

The main ideas of the proof carry over. ◀

5 Evaluation of Objective Value using Simulation

For implementation, it remains to have access to a simulator for evaluating g(·) (Assump-
tion 11). To showcase the proposed method, we implement a simulator based on Assumption 7
and simple laws of motion, i.e., every train has a constant maximal acceleration a

(tr)
max > 0

and deceleration d
(tr)
max. In theory, one could use any simulation tool at hand and, e.g., even

incorporate more exact braking curves.

S. Engels and R. Wille 14:13

e

TTD1

xtr xTTD

xstopxe

v
(e)
max

(a) Moving authority.

uout

vt
vout

vt+∆t

(b) Maxmial exit velocity.

Figure 6 Moving authority and maximal exit velocity.

5.1 Principles

For simplicity, we use a time discretization of ∆t := 6 s, which seems to be the standard time
between two consecutive train position reports [3, Section 7.5.1.143]. For every time step
t ∈ {0, 6, . . . }, we keep track of the velocity v

(tr)
t ∈ [0, vtr

max] and position9 x
(tr)
t of each train.

In between, we assume linear movement; hence,

x
(tr)
t+∆t − x

(tr)
t =

v
(tr)
t+∆t + v

(tr)
t

2 · ∆t. (27)

Assume that at time t, the signaling system allows a train to move at most a distance x
(tr)
t

(moving authority). Using basic laws of motion, the braking distance of a train at speed v is
given by v2

2∗d
(tr)
max

, hence,

v
(tr)
t+∆t + v

(tr)
t

2 · ∆t +

(
v

(tr)
t+∆t

)2

2 ∗ d
(tr)
max

≤ x
(tr)
t , (28)

and, thus,

v
(tr)
t+∆t ≤ 1

2 ·

(√
(d · ∆t)2 + 4 ·

(
2 · d · x

(tr)
t − d · ∆t · v

(tr)
t

)
− d · ∆t

)
=: ν

(
v

(tr)
t , x

(tr)
t

)
. (29)

In general, we will set v
(tr)
t+∆t = ν

(
v

(tr)
t , x

(tr)
t

)
by Assumption 7 unless there are further

constraints on the maximal velocity (see Section 5.3).

5.2 Moving Authority

There are four main reasons why the moving authority may be restricted. They are exemplarily
depicted in Figure 6a. A train may only advance to the rear of a preceding train, its next
scheduled stop position, or the beginning of a TTD section, which the preceding train has
not fully cleared yet. In order to enforce speed constraints on future edges (that are not
reachable within one timestep10), we restrict the moving authority by the point at which the
train would stop if it decelerates at full rate just after entering the edge at its speed limit.

9 The position refers to the front of the train. The rear end can be directly induced from its length.
10 refer to Section 5.3 in that case

ATMOS 2025

14:14 Using A* for Optimal Train Routing on Moving Block Systems

5.3 Restrictions on Maximal Velocity
Finally, there are some cases where it is more natural to restrict the speed directly instead
of incorporating it into the moving authority, in which case we might not be able to set
v

(tr)
t+∆t = ν

(
v

(tr)
t , x

(tr)
t

)
. Naturally, the speed is restricted by the speed limit of the current

edge (and any edge that can be reached within one timestep) as well as the train’s maximal
velocity. Moreover, by maximal acceleration, v

(tr)
t+∆t ≤ v

(tr)
t + a · ∆t The most complex

restriction is to ensure that a train can leave the network at its target velocity, but only
at a time ≥ t

(tr)
out . In that case, a train might need to slow down in order not to arrive at

the exit too early but still have enough distance left to accelerate to the target exit velocity
v

(tr)
out before leaving the network. Assume that v

(tr)
t+∆t is fixed, then it is easy to calculate the

maximal possible runtime to the exit node by assuming that the train decelerates until the
point where it has to accelerate again to reach the target velocity at exit. Trying difference
values for v

(tr)
t+∆t, they can either lead to an exit at time ≥ t

(tr)
out (green lines in Figure 6b), at

time < t
(tr)
out (orange lines) or the target velocity cannot be attained at exit (red lines). Using

binary search, we choose the largest value for v
(tr)
t+∆t that still leads to an exit at time ≥ t

(tr)
out .

6 Case Study

To test the proposed method, we implement Algorithm 1 together with the transitions
described in Section 4.2, the heuristics in Section 4.4, and the simulator in Section 5. All
code is available open-source as part of the Munich Train Control Toolkit (MTCT) available
on GitHub at https://github.com/cda-tum/mtct. The user can choose among different
strategies when executing the A* algorithm.

Dijkstra-like: This setting makes use of the single-edge transitions described in Section 4.2
and does not use a heuristic, i.e., h(s) ≈ 0. However, in order to remain consistent,
the heuristic amends for the time “lost” by braking at the end of its partial route, i.e.,
hi(s) := τ̂i(p0, u1) +

∑j
k=2 τ̂i(uk−1, uk) − (ti − t0) ≤ 0.

Single-Edge: This setting combines the single-edge transitions described in Section 4.2
together with the heuristic defined in Equation (21), i.e., future stations are considered in
the approximation, however not the earliest exit times defined in the problem instance.
Single-Edge with Earliest Exit: Same as “Single-Edge”, but using Equation (25) for the
heuristic, instead, i.e., also considering minimal runtimes due to the constraints on earliest
departure in the problem description.
Multi-Edge and Multi-Edge with Earliest Exit: Same as above, but using the multi-edge
transitions described in Section 4.2

We tested these strategies on an Intel(R) Xeon(R) W-1370P system using a 3.60GHz
CPU (8 cores) and 128GB RAM running Ubuntu 20.04. We use the benchmark network
from [6]. Additionally, we use the random timetables generated by [7] on two of the networks,
including Munich’s S-Bahn Stammstrecke. We compare runtimes to the MILP-approach [7].

The results are plotted in Figure 7, and raw data is provided in Section B. On the x-axis,
we denote the runtime in seconds11 The y-axis corresponds to the fraction of instances solved
within that time (or faster). Hence, a line to the left/top is generally better. By design, all

11 Note that the scale is logarithmic.

https://github.com/cda-tum/mtct

S. Engels and R. Wille 14:15

Figure 7 Runtime comparison.

lines are monotonically increasing, and the left ends of each “step” are the runtimes of some
instance. From the horizontal distance between the lines, one can approximately12 read off
the runtime difference on that instance.

We can see a clear trend. Reducing the size of the explored solution space by skipping
states with only one sensible successor significantly reduces the runtime. Additionally, using
as much information as possible already in the heuristic is beneficial, i.e., the one induced
by Equation (25). This trend suggests that there is still significant performance potential
if both transitions and guiding heuristics are improved. Instead of using Equation (4) for
runtime approximation, one could, e.g., use the minimal runtimes in [15], incorporating
simple acceleration and deceleration limitations.

7 Conclusions

In this work, we have proposed an algorithm based on A* (Sections 3–5) that can find optimal
train routings on networks equipped with moving block control systems (Problem 3) under a
reasonable assumption on driver behavior (Assumption 7) and showed its applicability to
benchmark instances (Section 6). It is designed in such a way that any arbitrary black-box
function can be used to evaluate the arising states. Because of this, our algorithm can, e.g.,
be used with any arbitrary detailed simulation tool that might consider more detailed braking
curves or headways than reasonable to model within a MILP framework.

It is not unexpected that the increased accuracy (while still guaranteed to be optimal)
comes with a downside in runtime. At the same time, Section 6 shows the general applicability
of our approach and how the choice of the guiding heuristic and transition strategy affects
the overall runtime and number of solvable instances. By simple extensions to these, we
were able to improve the efficiency notably, even if the runtime of previous MILP approaches
could not be reached yet on larger instances.

At the same time, our approach is model-agnostic and flexible. It is not limited to
being used within an (exact) A* method. Instead, any search algorithm can be applied.
In particular, approximative approaches might have the potential for further significant

12 assuming that the order of instances solved is identical for every algorithm, which is, of course, not
guaranteed

ATMOS 2025

14:16 Using A* for Optimal Train Routing on Moving Block Systems

performance gains. The simplest choice might be a weighted version of A* that guides the
search quicker towards terminal states [14]. However, we are not limited to variants of A*,
but one could, e.g., also consider genetic algorithms, local search, reinforcement learning,
and more.

Overall, this work provides a valuable basis for applying general and well-established
search algorithms to routing tasks on railway networks. The modeling can be arbitrarily
exact by using any (possibly black-box) evaluation methods, such as simulation. Research
on improved guiding of the search algorithms and exploring the potential of approximative
search algorithms on the presented encoding is left to future work.

References
1 Ralf Borndörfer, Torsten Klug, Leonardo Lamorgese, Carlo Mannino, Markus Reuther, and

Thomas Schlechte, editors. Handbook of Optimization in the Railway Industry. Springer
International Publishing, 2018. doi:10.1007/978-3-319-72153-8.

2 Stefan Edelkamp. Heuristic search. Morgan Kaufmann, Waltham, MA, 2012. doi:10.1016/
C2009-0-16511-X.

3 EEIG ERTMS USERS GROUP. ERTMS/ETCS System Requirements Specification, SUBSET-
026. European Union Agency for Railways, 2023.

4 Stefan Engels. Munich Train Control Toolkit (MTCT). Software, swhId:
swh:1:dir:9eb5851e7f0b80f88dc6f09a8c9c54b58d15ee5b (visited on 2025-08-27). URL:
https://github.com/cda-tum/mtct, doi:10.4230/artifacts.24436.

5 Stefan Engels, Tom Peham, Judith Przigoda, Nils Przigoda, and Robert Wille. Design tasks and
their complexity for the European Train Control System with hybrid train detection. EURO
Journal on Transportation and Logistics, 14:100161, 2025. doi:10.1016/j.ejtl.2025.100161.

6 Stefan Engels, Tom Peham, and Robert Wille. A symbolic design method for ETCS Hybrid
Level 3 at different degrees of accuracy. In Daniele Frigioni and Philine Schiewe, editors,
23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS), volume 115 of OASIcs, pages 6:1–6:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/OASIcs.ATMOS.2023.6.

7 Stefan Engels and Robert Wille. Comparing lazy constraint selection strategies in train
routing with moving block control. In Marek Bolanowski, Maria Ganzha, Leszek A. Maciaszek,
Marcin Paprzycki, and Dominik Slezak, editors, Proceedings of the 19th Conference on
Computer Science and Intelligence Systems (FedCSIS), volume 39 of Annals of Computer
Science and Information Systems, pages 585–590. Polish Information Processing Society, 2024.
doi:10.15439/2024F3041.

8 Stefan Engels and Robert Wille. Towards an optimization pipeline for the design of train
control systems with hybrid train detection (short paper). In Paul C. Bouman and Spyros C.
Kontogiannis, editors, 24th Symposium on Algorithmic Approaches for Transportation Mod-
elling, Optimization, and Systems (ATMOS), volume 123 of OASIcs, pages 12:1–12:6. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/OASIcs.ATMOS.2024.12.

9 Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Systems Science and Cybernetics, 4(2):100–
107, 1968. doi:10.1109/TSSC.1968.300136.

10 Simon Hofmann, Marcel Walter, and Robert Wille. A* is born: Efficient and scalable physical
design for field-coupled nanocomputing. In 2024 IEEE 24th International Conference on
Nanotechnology (NANO), pages 80–85. IEEE, 2024. doi:10.1109/nano61778.2024.10628808.

11 Torsten Klug, Markus Reuther, and Thomas Schlechte. Does laziness pay off? - A lazy-
constraint approach to timetabling. In Mattia D’Emidio and Niels Lindner, editors, 22nd
Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS), volume 106 of OASIcs, pages 11:1–11:8. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/OASIcs.ATMOS.2022.11.

https://doi.org/10.1007/978-3-319-72153-8
https://doi.org/10.1016/C2009-0-16511-X
https://doi.org/10.1016/C2009-0-16511-X
https://archive.softwareheritage.org/swh:1:dir:9eb5851e7f0b80f88dc6f09a8c9c54b58d15ee5b;origin=https://github.com/cda-tum/mtct;visit=swh:1:snp:427338aeff595fef78df193555413c97e0596701;anchor=swh:1:rev:338f866a4831e8a221e10bba88887a36af9a9df5
https://github.com/cda-tum/mtct
https://doi.org/10.4230/artifacts.24436
https://doi.org/10.1016/j.ejtl.2025.100161
https://doi.org/10.4230/OASIcs.ATMOS.2023.6
https://doi.org/10.15439/2024F3041
https://doi.org/10.4230/OASIcs.ATMOS.2024.12
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/nano61778.2024.10628808
https://doi.org/10.4230/OASIcs.ATMOS.2022.11

S. Engels and R. Wille 14:17

12 Jörn Pachl. Railway Signalling Principles: Edition 2.0. Universitätsbibliothek Braunschweig,
2021. doi:10.24355/dbbs.084-202110181429-0.

13 Tom Peham, Judith Przigoda, Nils Przigoda, and Robert Wille. Optimal railway routing using
virtual subsections. In Simon Collart Dutilleul, Anne E. Haxthausen, and Thierry Lecomte,
editors, Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification,
and Certification (RSSRail), volume 13294 of Lecture Notes in Computer Science, pages 63–79.
Springer International Publishing, 2022. doi:10.1007/978-3-031-05814-1_5.

14 Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial Intelligence, 1(3):193–204,
1970. doi:10.1016/0004-3702(70)90007-X.

15 Thomas Schlechte, Ralf Borndörfer, Jonas Denißen, Simon Heller, Torsten Klug, Michael
Küpper, Niels Lindner, Markus Reuther, Andreas Söhlke, and William Steadman. Timetable
optimization for a moving block system. Journal of Rail Transport Planning & Management,
22:100315, 2022. doi:10.1016/j.jrtpm.2022.100315.

16 Lars Schnieder. Communications-Based Train Control (CBTC). Springer Berlin Heidelberg,
2021. doi:10.1007/978-3-662-62876-8.

A Railway Network

In this paper, we use the formal model of a railway network introduced in [5]. In general,
a railway network is given as a directed graph, i.e., there might be restrictions on travel
direction. If (u, v) ∈ E and (v, u) ∈ E, we sometimes use undirected edges for illustration
purposes. Every edge e ∈ E has a specified length len(e) ∈ R>0 as well as a maximal speed
v

(max)
e ∈ R>0. Because turnouts (i.e., vertices v ∈ V with deg(v) ≥ 3) do not allow arbitrary

transitions in general, we are given a successor function sv : δin(v) → P (δout(v)) for every
vertex. If e+ ∈ sv(e), the railway network allows a train to move from edge e to e+ via v.
Moreover, a set of border vertices B ⊆ V is specified at which trains can enter and leave the
railway network with predefined headway times. Finally, even though we consider moving
block control systems, some TTD sections with classical train separation are given to model
basic flank protection around turnouts.

▶ Definition 18 (Railway Network). A railway network N =
(
G, len, {sv}v∈V

)
is defined by

a directed graph G = (V, E) with vertices V being the set of points of interest and edges
E being the railway tracks between the aforementioned points of interest,
a mapping len : E → R>0 denoting the length of each edge such that len(e) = len(e◦) for
every pair of edges e, e◦ ∈ E13,
maximal velocities v

(max)
e ∈ R>0 for every e ∈ E,

a family of mappings {sv}v∈V , where sv : δin(v) → P (δout(v)) represents the valid move-
ments over v, and
border vertices B ⊆ V together with headway times h : B → R≥0.

We refer to [5] for more details and examples.

13 For e = (u, v) ∈ E, e◦ := (v, u).

ATMOS 2025

https://doi.org/10.24355/dbbs.084-202110181429-0
https://doi.org/10.1007/978-3-031-05814-1_5
https://doi.org/10.1016/0004-3702(70)90007-X
https://doi.org/10.1016/j.jrtpm.2022.100315
https://doi.org/10.1007/978-3-662-62876-8

14:18 Using A* for Optimal Train Routing on Moving Block Systems

B Raw Data

M
IL

P
D

ijk
st

ra
-li

ke
S1

ng
le

-E
dg

e
SE

w
ith

E
ar

lie
st

E
xi

t
M

ul
ti-

E
dg

e
M

E
w

ith
E

ar
lie

st
E

xi
t

In
st

an
ce

t[s
]

t[s
]

#
it

t[s
]

#
it

t[s
]

#
it

t[s
]

#
t[s

]
#

it

H
ig

h
Sp

ee
d

Tr
ac

k
(0

2
Tr

ai
ns

)
0.

03
0.

00
4

0.
00

4
0.

00
4

0.
00

4
0.

00
4

H
ig

h
Sp

ee
d

Tr
ac

k
(0

5
Tr

ai
ns

)
0.

02
0.

07
17

7
0.

01
32

0.
01

26
0.

01
32

0.
01

26
O

ve
rt

ak
e

tim
eo

ut
4.

43
36

14
1

1.
02

82
67

0.
54

47
00

0.
19

10
91

0.
10

59
7

Si
m

pl
e

2-
Tr

ac
k

St
at

io
n

0.
40

0.
39

45
86

0.
15

18
72

0.
11

13
64

0.
06

44
9

0.
04

31
9

Si
m

pl
e

N
et

w
or

k
1.

56
17

8.
30

35
70

54
18

.7
0

37
81

0
10

.9
9

25
89

0
2.

61
47

96
1.

46
29

71
Si

m
pl

e
N

et
w

or
k

(0
3

R
an

do
m

Tr
ai

ns
)

1.
20

5.
85

24
06

5
0.

83
37

06
0.

83
37

06
0.

17
62

5
0.

17
62

5
Si

m
pl

e
N

et
w

or
k

(0
6

R
an

do
m

Tr
ai

ns
)

9.
21

tim
eo

ut
16

22
72

5
tim

eo
ut

13
33

01
3

40
2.

94
37

67
82

19
2.

57
15

30
66

53
.3

4
45

16
0

Si
m

pl
e

N
et

w
or

k
(0

9
R

an
do

m
Tr

ai
ns

)
9.

18
tim

eo
ut

14
20

51
7

tim
eo

ut
13

18
51

6
tim

eo
ut

12
16

81
9

tim
eo

ut
85

33
80

tim
eo

ut
79

19
87

Si
m

pl
e

N
et

w
or

k
(1

2
R

an
do

m
Tr

ai
ns

)
17

.8
2

tim
eo

ut
80

26
35

tim
eo

ut
87

49
64

tim
eo

ut
81

48
70

tim
eo

ut
49

83
27

tim
eo

ut
49

59
54

Si
m

pl
e

N
et

w
or

k
(1

5
R

an
do

m
Tr

ai
ns

)
99

.4
3

tim
eo

ut
60

66
14

tim
eo

ut
53

69
84

tim
eo

ut
57

35
02

tim
eo

ut
39

66
91

tim
eo

ut
38

69
92

Si
m

pl
e

N
et

w
or

k
(1

8
R

an
do

m
Tr

ai
ns

)
47

.1
5

tim
eo

ut
43

31
82

tim
eo

ut
36

20
13

tim
eo

ut
35

68
77

tim
eo

ut
26

26
70

tim
eo

ut
26

44
95

Si
m

pl
e

N
et

w
or

k
(2

1
R

an
do

m
Tr

ai
ns

)
tim

eo
ut

tim
eo

ut
30

23
00

tim
eo

ut
24

13
50

tim
eo

ut
29

01
07

tim
eo

ut
18

58
69

tim
eo

ut
18

22
79

Si
m

pl
e

N
et

w
or

k
(2

4
R

an
do

m
Tr

ai
ns

)
tim

eo
ut

tim
eo

ut
20

98
72

tim
eo

ut
17

62
01

tim
eo

ut
17

97
20

tim
eo

ut
11

46
16

tim
eo

ut
10

04
10

Si
m

pl
e

N
et

w
or

k
(2

7
R

an
do

m
Tr

ai
ns

)
22

2.
51

tim
eo

ut
17

73
86

tim
eo

ut
15

03
95

tim
eo

ut
14

54
67

tim
eo

ut
10

57
65

tim
eo

ut
98

35
6

Si
m

pl
e

N
et

w
or

k
(3

0
R

an
do

m
Tr

ai
ns

)
43

2.
38

tim
eo

ut
12

63
64

tim
eo

ut
99

87
8

tim
eo

ut
10

92
18

tim
eo

ut
72

24
3

tim
eo

ut
72

95
0

Si
ng

le
Tr

ac
k

W
ith

St
at

io
n

0.
04

0.
01

11
4

0.
00

44
0.

00
39

0.
00

32
0.

00
28

Si
ng

le
Tr

ac
k

W
ith

ou
t

St
at

io
n

0.
05

0.
00

4
0.

00
4

0.
00

4
0.

00
4

0.
00

4
St

am
m

st
re

ck
e

(0
1

R
an

do
m

Tr
ai

ns
)

0.
35

0.
00

57
0.

00
23

0.
00

23
0.

00
9

0.
00

9
St

am
m

st
re

ck
e

(0
2

R
an

do
m

Tr
ai

ns
)

1.
03

3.
08

30
57

6
0.

18
12

21
0.

18
12

21
0.

07
28

9
0.

07
28

9
St

am
m

st
re

ck
e

(0
3

R
an

do
m

Tr
ai

ns
)

1.
04

51
3.

15
26

95
38

9
4.

80
19

27
8

4.
67

19
27

8
0.

97
23

92
0.

94
23

92
St

am
m

st
re

ck
e

(0
4

R
an

do
m

Tr
ai

ns
)

tim
eo

ut
tim

eo
ut

77
48

17
8

85
.9

5
24

53
84

84
.1

4
24

53
84

5.
37

10
64

2
5.

31
10

64
2

St
am

m
st

re
ck

e
(0

4
Tr

ai
ns

)
0.

89
tim

eo
ut

81
10

53
9

25
1.

52
50

14
66

24
2.

45
50

14
66

24
.6

6
31

87
2

24
.1

6
31

87
2

St
am

m
st

re
ck

e
(0

5
R

an
do

m
Tr

ai
ns

)
7.

11
tim

eo
ut

51
86

92
8

38
3.

87
81

75
60

37
4.

54
81

75
60

22
.9

4
35

64
8

22
.5

7
35

64
8

St
am

m
st

re
ck

e
(0

8
Tr

ai
ns

)
1.

94
tim

eo
ut

37
58

14
4

tim
eo

ut
25

28
21

5
tim

eo
ut

95
84

00
tim

eo
ut

12
77

84
7

tim
eo

ut
57

20
97

St
am

m
st

re
ck

e
(1

6
Tr

ai
ns

)
6.

91
tim

eo
ut

15
21

60
4

tim
eo

ut
74

89
51

tim
eo

ut
23

03
70

tim
eo

ut
59

79
78

tim
eo

ut
14

25
32

Exact and Heuristic Dynamic Taxi Sharing with
Transfers Using Shortest-Path Speedup Techniques
Johannes Breitling #

Karlsruhe Institute of Technology, Germany

Moritz Laupichler #

Karlsruhe Institute of Technology, Germany

Abstract
We introduce a first-of-its-kind efficient, exact algorithm for the dynamic taxi-sharing problem with
single-transfer journeys, i.e., a dispatcher that assigns traveler requests to a fleet of shared taxi-like
vehicles allowing transfers between vehicles. We extend an existing no-transfer solution by collecting
all viable pickup and dropoff vehicles for a request and computing the optimal transfer point for
every pair of vehicles. We analyze underlying shortest-path problems and employ state-of-the-art
routing algorithms to compute distances on-the-fly, which serves as the basis of dispatching requests
with exact and up-to-date travel time information. We utilize constraints on existing routes, pruning
techniques for transfer points, and both instruction- and thread-level parallelism to speed up the
computation of the best assignment for every traveler. In addition to the exact variant, we propose
a tunable heuristic approach that sacrifices solution quality in favor of improved running time.

We evaluate our algorithm on a large road network with realistic input sets (up to 150000
requests). We demonstrate the effectiveness of our speedup techniques and the heuristic. We show
first results on the benefits of transfers for taxi sharing on dense request sets, proving that our
algorithm is well suited for the analysis of taxi sharing with transfers on large input instances.

2012 ACM Subject Classification Applied computing → Transportation; Theory of computation →
Shortest paths; Information systems → Geographic information systems

Keywords and phrases Dynamic taxi sharing, ride pooling, dial-a-ride problem, transfers, route
planning

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.15

Supplementary Material Software: https://github.com/JohannesBreitling/karri-with-trans-
fers [6], archived at swh:1:dir:2e1d2d7c9139eb1a02b7cdd760c7c13365d35805

Funding This paper was created in the “Country 2 City - Bridge” project of the “German Center
for Future Mobility”, which is funded by the German Federal Ministry of Transport.
Moritz Laupichler : This work was supported by funding from the pilot program Core Informatics of
the Helmholtz Association (HGF).

1 Introduction

The current landscape of transportation systems is usually designed around two extremes:
Individual transport focuses on private cars that use a lot of space and resources while polluting
the environment. On the other end, public transit is mostly slow and inconvenient, especially
in border regions and the periphery of larger cities. This leaves a gap for transportation
methods that are convenient and fast like cars but also reduce resource usage by grouping
passengers with similar destinations like public transit. Recent developments in autonomous
vehicles increase the attractiveness of taxi sharing systems in which a fleet of taxi-like vehicles
is intelligently controlled to transport travelers without fixed stops or schedules. These
systems attempt to bundle riders and maximize the usage of each vehicle’s capacity for more
resource efficient journeys compared to private cars or traditional taxis. The advantages of

© Johannes Breitling and Moritz Laupichler;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 15; pp. 15:1–15:22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:johannes.breitling@student.kit.edu
https://orcid.org/0009-0000-9706-0074
mailto:moritz.laupichler@kit.edu
https://orcid.org/0009-0001-1193-3477
https://doi.org/10.4230/OASIcs.ATMOS.2025.15
https://github.com/JohannesBreitling/karri-with-transfers
https://github.com/JohannesBreitling/karri-with-transfers
https://archive.softwareheritage.org/swh:1:dir:2e1d2d7c9139eb1a02b7cdd760c7c13365d35805;origin=https://github.com/JohannesBreitling/karri-with-transfers;visit=swh:1:snp:3b2c376750a7e258e80ce8925fb368460ff05c6d;anchor=swh:1:rev:e3f23d16c4b0afa908e0d5edf32f02af06d0c391
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

15:2 Exact and Heuristic Dynamic Taxi Sharing with Transfers

such systems have been extensively studied in numerous simulation studies [4, 29, 1, 16, 44, 49]
and real-world field tests [20, 28, 46, 43, 25, 41, 18, 47]. The advent of autonomous vehicles
and a focus on more sustainable transportation are predicted to expedite the adoption of
taxi sharing [16, 17, 35, 15, 3, 40, 46].

Taxi sharing could further be improved upon by allowing riders to transfer between
vehicles during their journey. This additional option may allow the vehicle dispatcher to
reduce vehicle operation times and increase the occupancy rates of vehicles without negatively
affecting rider trip times. Thus, transfers may provide both economical and ecological benefits
to taxi sharing systems. However, current studies into taxi sharing largely lack the option of
transfers due to large computation times. Taxi sharing is already a difficult problem without
transfers [33, 38] but transfers lead to an even more complex problem as the number of
possible assignments of a rider to one or more vehicles increases combinatorially.

Based on recent advances in efficient dynamic taxi sharing without transfers [7, 31], we
propose the first exact dispatching algorithm for dynamic taxi sharing with transfers that is
able to scale to realistic city-scale input instances. For this purpose, we extend the model for
traditional taxi sharing to allow journeys with at most one transfer. We find that a main
issue of dynamic taxi sharing with transfers is the exploding number of shortest-path (SP)
distances in the road network that need to be known to choose the best assignment for a rider.
We focus on computing these distances on-the-fly when a rider request comes in, as this serves
as the basis of a dynamic dispatcher that uses exact and up-to-date travel time information.
We analyze the SP problems at hand and employ state-of-the-art speedup techniques for SPs
in road networks to efficiently solve them. Also, we propose techniques to prune the number
of assignments that need to be considered and explore both instruction-level and thread-level
parallelization. In addition to an exact algorithm, we describe a heuristic approach that
sacrifices some solution quality for improved running times.

In an experimental evaluation, we show that the proposed measures lead to viable
dispatching times for realistic request sets on the road network of Berlin, Germany. We give
first indications that transfers improve vehicle operation times and occupancy rates at the
cost of slightly increased rider trip times. Our approach lays the groundwork for more precise
studies of taxi sharing with transfers on large urban road networks with realistic request sets.
This analysis is left to future work in cooperation with application experts.

1.1 Related Work
Taxi sharing and closely related problems like ride matching have seen considerable attention
in the last decade. We provide a short overview with a focus on transfers. A more detailed
summary of work on dynamic taxi sharing in general can be found in [31].

Taxi Sharing. Taxi sharing describes the problem of dispatching a fleet of taxi-like vehicles to
transport travelers that request to travel from an origin to a destination location. Unrelated
riders with similar destinations may be assigned to the same vehicle to reduce vehicle
operation costs. The dispatcher has to choose assignments that optimize rider trip times and
the usage of vehicle resources. Additional time constraints ensure user-friendly journeys.

Taxi sharing is closely related to the well-studied Dial-a-Ride problem [10, 21]. As the
static variant of the DARP is known to be NP-complete (e.g. [39]), only small instances
can be solved optimally [21, 9, 2]. Many heuristics have been developed to provide solutions
in acceptable runtime on realistic instances, while giving up optimality [37, 26, 32]. While
most research is conducted on the static variant, where all riders and requests are known in
advance, we consider the dynamic taxi-sharing problem, where requests are served as soon

J. Breitling and M. Laupichler 15:3

as they are issued, without knowledge of future requests. Due to the online nature of the
problem, we implement a simple so-called insertion heuristic [24, 21] which greedily chooses
a vehicle for a rider immediately upon receiving the request based on the current route state.
Insertion heuristics are efficient and have been shown to perform reasonably well for the
dynamic problem [36]. However, we are not aware of any in-depth experimental studies that
compare online solutions to offline solutions of the same set of requests.

Most existing approaches assume that shortest paths in the road network (which are
needed to assess vehicle detours) are already known. However, travel times in road networks
change frequently, e.g. due to congestion. Thus, it is unreasonable to precompute all shortest
paths in a road network as this information quickly becomes outdated. The existing state-
of-the-art dispatchers for the dynamic taxi-sharing problem, LOUD [7] and its extension
KaRRi [31], solve the problem by computing shortest paths on-the-fly, i.e., when a request is
issued. The dispatchers combine state-of-the-art routing algorithms with pruning techniques
based on constraints of existing vehicle routes to speed up distance computation. By using
so-called customizable variants of these routing algorithms, updated information on travel
times in the road network can be introduced periodically.

Taxi Sharing with Transfers. There has not been much work on dynamic taxi sharing
with transfers. Most approaches consider a fixed set of transfer points that is known in
advance (e.g. charging stations for electric vehicles) and find solutions using mixed-integer
programming [23, 42, 8]. Again, shortest distances between vertices are assumed to be known.

The approach that is most closely related to our work is an extension of the LOUD
dispatcher that locates feasible transfer points based on three different heuristics [45]. Their
results show a reduction in total operation cost due to transfers. Note, though, that the
cost model differs from the one we use since vehicle wait times are not considered part of a
vehicle’s detour and rider trip times are only taken into account as constraints.

To the best of our knowledge, there are no existing approaches for dynamic taxi sharing
with optimal transfers that are able to scale to realistic instances of large urban areas.

2 Problem Statement

This section describes the formal foundations for the dynamic taxi sharing problem without
transfers and provides an extension of the model that allows the incorporation of transfers.

Road Network. We consider a road network to be a directed graph G = (V, E). Road
segments are represented as edges and intersections are represented as vertices. For every
edge e = (v, w) ∈ E we define an edge weight ℓ(e) = ℓ(v, w) which is the travel time of the
road segment. We denote the shortest-path distance between vertices v, w ∈ V as δ(v, w).

Vehicles and Stops. Our algorithm manages the schedules for a fleet F of vehicles. Each
vehicle has a seating capacity cap(ν) and a service time interval [tmin

serv, tmax
serv] in which it

operates. The current route R(ν) = ⟨s0(ν), . . . , sk(ν)(ν)⟩ of a vehicle ν is a sequence of stops.
Each stop si is mapped to a location loc(si) ∈ V in the network1. After arriving at a stop,

1 Our implementation actually maps each stop to an edge e = (u, v) ∈ E in the road network.We make
sure that the vehicle travels the length of e from u to v to allow a pickup or dropoff anywhere along the
edge. However, we set the time of arrival to the time when v is reached, i.e., we do not actually route
with intra-edge precision. To streamline the notation, we simplify locations to vertices in the paper.

ATMOS 2025

15:4 Exact and Heuristic Dynamic Taxi Sharing with Transfers

o

d

si

si+1

sj

ν1

ν2

sj+1

ν3

(a) No-transfer insertion (r, ν1, i, j).

o

d

x

sip
sjd

sjp

sid

sid+1

sjd+1

sjp+1

ν1
sip+1

ν3

ν2

(b) Transfer insertion (r, x, ν2, ν3, ip, jp, id, jd).

Figure 1 Illustration of routes of three vehicles ν1, ν2, and ν3 and a request r = (o, d, treq).
Full arrows show current routes while dashed arrows denote detours made for a possible insertion.
Figure 1a depicts an insertion without transfer using ν1. Figure 1b illustrates a single-transfer
insertion using pickup vehicle ν2 and dropoff vehicle ν3 with a transfer at x.

or when a new stop is scheduled, the route is updated, s.t. the vehicle’s location is always
between its previous (or current) stop s0(ν) and the next stop s1(ν). The number of stops
yet to reach is k(ν) = |R(ν)| − 1. We denote the currently scheduled arrival time of vehicle ν

at stop si as tmin
arr (si(ν)) and the departure time of vehicle ν at stop si as tmin

dep (ν). If sufficient
context is provided, we may write si instead of si(ν) and si instead of loc(si).

Request, (No-Transfer) Insertion. In the dynamic taxi-sharing problem, a ride request is
immediately assigned to a vehicle. A ride request r = (orig, dest, treq) has an origin location
orig ∈ V , a destination dest ∈ V and a request time treq at which the request is issued. We
do not allow pre-booking, so the earliest possible time of departure is the request time.

For every request r, the dispatcher assigns r to a vehicle ν by constructing a (no-transfer)
insertion ι = (r, ν, i, j) with 0 ≤ i, j ≤ k(ν). For an insertion ι = (r, ν, i, j), the vehicle ν

performs the pickup immediately after stop si and the dropoff immediately after stop sj .
For this, the vehicle leaves its scheduled route after stop si and sj to pick up and drop off
the rider at orig and dest, respectively, before returning to the next scheduled stop si+1 and
sj+1 (if i < k(ν) and j < k(ν), respectively). Figure 1a illustrates a no-transfer insertion.

Cost Function and Constraints. To evaluate the quality of insertions, we define the cost
c(ι) of an insertion ι = (r, ν, i, j) as a linear combination

c(ι) = tdetour(ι) + τ · (ttrip(ι) + t+
trip(ι)) + cvio

wait(ι) + cvio
trip(ι).

To define the components of the cost function, first assume that the request r =
(orig, dest, treq) has already been inserted according to ι. Let sp be the stop introduced to
pick up the rider at orig, and let sd be the stop introduced to drop the rider off at dest. Then,
the route of ν after the insertion is R′(ν) = ⟨s0, . . . , si, sp, si+1, . . . , sj , sd, sj+1, . . . , sk(ν)⟩.
Let tmin ′

arr (si) and tmin ′
dep (si) describe the scheduled arrival and departure times in R′(ν).

The vehicle detour tdetour(ι) denotes the total additional operation time for ν caused by
ι, i.e., tdetour(ι) = tmin ′

dep (sk(ν)) − tmin
dep (sk(ν)). This is equivalent to the sum of detours made,

i.e., δ(si, orig) + δ(orig, si+1) − δ(si, si+1) + δ(sj , dest) + δ(dest, sj+1) − δ(sj , sj+1).
The trip time ttrip(ι) is the total travel time for the new rider from issuing the request

to their arrival at the destination, i.e., ttrip(ι) = tmin ′
arr (sd) − treq. The trip times of existing

riders may also increase due to detours. The added trip time t+
trip(ι) is the sum of all such

changes for riders of ν. Model parameter τ determines the importance of trip times.

J. Breitling and M. Laupichler 15:5

We aim to limit riders’ maximum wait and trip times using constraints. A rider’s trip
should not take longer than their maximum trip time tmax

trip (r) = α · δ(orig, dest) + β. A rider
should not wait to be picked up longer than tmax

wait ∈ R≥0. The values α, β, tmax
wait are model

parameters. For existing riders, these constraints are hard, i.e., if an insertion violates them,
its cost is ∞. For the new rider, the constraints are soft and only incur penalties cvio

wait(ι)
and cvio

trip(ι) to the insertion cost. This allows the system to serve every request.
Note that to compute the updated route R′(ν) with tmin ′

arr and tmin ′
dep , as well as the cost of

the insertion, we generally need to know the distance δ(si, orig) from si to orig, the distance
δ(orig, si+1) from orig to the following stop (if i < k(ν)), as well as the distance δ(sj , dest)
from sj to dest and the distance δ(dest, sj+1) from dest to the following stop (if j < k(ν)). If
i = j, we additionally need to know δ(orig, dest). It is one of the main challenges of dynamic
taxi sharing to solve the according shortest-path problems.

Single-Transfer Insertions. In this work, we focus on efficiently finding optimal single-
transfer journeys, where a rider changes vehicles at most once. This extension induces
a significant combinatorial increase in the number of possible insertions compared to the
traditional case without transfers, which poses the main challenge of our work. The taxi-
sharing model described above can be easily modified for single-transfer journeys.

Single-transfer insertions take the form ιtransfer = (r, x, νp, νd, ip, jp, id, jd). The pickup
vehicle νp picks up the new rider at orig immediately after stop sip

(νp) and drops them off
at the transfer location x immediately after stop sjp

(νp). The dropoff vehicle νd picks the
rider up at x for the second leg of the trip immediately after stop sid

(νd) and drops them off
at dest immediately after stop sjd

(νd). A single-transfer insertion is illustrated in Figure 1b.

2.1 Cost Computation of Single-Transfer Insertions
The structure of the cost function remains the same for transfer insertions, and transfer
insertions are subject to the same constraints as before. Computing the cost of a transfer
insertion requires us to know the distances between existing stops and the transfer point in
addition to the distances for orig and dest. Compared to no-transfer insertions, this increases
the amount of work that needs to be spent solving shortest-path problems. In the following,
we describe some additional intricacies that come with transfers.

Riders Waiting at the Transfer Location. The definition of the trip time ttrip(ιtransfer) of
the new rider as well as the trip time violation cvio

trip(ιtransfer) remain unchanged. However,
the wait time of the new rider now also incorporates the time that the rider spends waiting
at the transfer location for the dropoff vehicle, which potentially has an impact on the wait
time soft constraint cvio

wait(ιtransfer).

Vehicles Waiting at the Transfer Location. After processing a transfer insertion where the
dropoff vehicle arrives at the transfer location x sooner than the pickup vehicle, the dropoff
vehicle has to wait at x for the arrival of the transferring rider. Thus, vehicles may now
have wait times at stops along their routes, which impact the way detours affect a vehicle’s
total operation time. Assume vehicle ν has a wait time at stop sw. Then, making a detour
before sw delays the arrival of ν at sw as much as before, but since the vehicle would have
waited some time at sw, the delay in the departure time may be smaller. Effectively, to
compute the change in operation time, we can subtract the wait times at stops from the
actual detours made since the time that would have been spent waiting is spent driving
instead. The increase in operation time for any affected vehicle can still be characterized

ATMOS 2025

15:6 Exact and Heuristic Dynamic Taxi Sharing with Transfers

as tmin ′
dep (sk(ν)) − tmin

dep (sk(ν)) but the computation of tmin ′
dep (sk(ν)) becomes more complex.

Vehicle wait times similarly affect the added trip time of existing riders as the updated arrival
times tmin ′

arr (s) now have to take vehicle wait times into account. The authors of KaRRi have
previously encountered the issue of vehicle wait times in the context of meeting points. The
full paper on KaRRi [30] gives a detailed explanation on how vehicle wait times affect the
computation of updated schedules and the resulting cost terms.

Dependencies between Vehicle Schedules. Transfers introduce dependencies between
vehicles’ schedules. As described in the previous paragraph, a dropoff vehicle can only leave a
transfer point once the transferring rider arrives in the pickup vehicle. Thus, any delay to the
arrival of the pickup vehicle at the transfer stop may also delay the departure of the dropoff
vehicle. In effect, vehicles other than the pickup or dropoff vehicle can also be affected by an
insertion due to previously introduced transfers. To account for this, we explicitly memorize
the dependency between pickup and dropoff vehicle whenever a transfer insertion is performed.
Then, when computing the cost for a new insertion ιtransfer = (r, x, νp, νd, ip, jp, id, jd), we
find any vehicles that depend on νp or νd, and potentially propagate the detours caused by
ιtransfer to their routes. For any such dependent vehicle, we obtain an added operation time
and added trip time for existing riders, which we consider in the total cost of ιtransfer.

3 Preliminaries

In this section, we explain the shortest-path algorithms used in this work, as well as the
existing algorithms for taxi sharing without transfers that we base our work on.

3.1 Shortest-Path Algorithms
Here, we summarize the shortest-path techniques most relevant to this paper.

Dijkstra’s Algorithm. Dijkstra’s algorithm [14] serves as the basis of many shortest-path
algorithms. Given a directed graph G = (V, E), a weight function ℓ : E → R≥0, and a source
vertex s ∈ V , the algorithm computes the shortest path w.r.t. ℓ from s to every v ∈ V . The
algorithm maintains a distance label d[v] for v ∈ V as well as a priority queue Q of vertices.
The key of a vertex v in Q is d[v]. Initially, d[s] := 0, d[v] := ∞ for v ̸= s, and Q := {s}.
The algorithm proceeds by removing the vertex v with the smallest d[v] from Q and settling
it. To settle v, all edges (v, w) ∈ E are relaxed. To relax an edge e = (v, w), the algorithm
checks whether d[v] + ℓ(e) < d[w]. If so, the path to w via v is now the best known path to
w and d[w] is updated to d[v] + ℓ(e). Then, w is inserted into Q or its key is updated. When
a vertex v is settled, its tentative distance d[v] is equal to the shortest-path distance δ(s, v).

Contraction Hierarchies. Contraction Hierarchies (CH) [19] are a speedup technique for
the computation of shortest paths in road networks that leverage the inherent hierarchy of
road networks. Every shortest-path algorithm employed in this work is ultimately based on
CHs. The CH algorithm works in two phases, a pre-processing phase and a query phase.

In the preprocessing phase, each vertex v ∈ V of a road network G = (V, E) is heuristically
assigned a unique rank representing the vertex’s importance. Higher ranks are assigned
to more important vertices. Vertices are then contracted in order of increasing rank. To
contract a vertex v, it is removed from the graph. To preserve shortest paths, a shortcut
edge (u, w) with ℓ(u, w) = ℓ(u, v) + ℓ(v, w) is created if (u, v, w) is the shortest path from u

J. Breitling and M. Laupichler 15:7

to w. After contracting all vertices, the original graph is restored and augmented with all
shortcut edges created in the contraction process. Let E+ be the set containing all original
edges E and all shortcut edges. The graph G+ = (V, E+) constitutes the CH. For the
query phase, we partition E+ into up-edges E↑ = {(u, v) ∈ E+ | rank(u) < rank(v)} and
down-edges E↓ = {(u, v) ∈ E+ | rank(u) > rank(v)}. We define an upward search graph
G↑ = (V, E↑) and a downward search graph G↓ = (V, E↓). Let δ↑(u, v) and δ↓(u, v) denote
the shortest-path distance from u to v in G↑ and G↓, respectively.

In a point-to-point CH query, a shortest path from s ∈ V to t ∈ V is found, using the
fact that for any u, v ∈ V there is a shortest path from u to v that consists of only up-edges
followed by only down-edges [19]. Running a forward Dijkstra search in G↑ from s and a
reverse Dijkstra search in G↓ rooted at t suffices to find the shortest up-down path.

PHAST. PHAST [11] is a CH-based speedup technique for the one-to-all shortest-path
problem in road networks. PHAST uses a CH as well as a specific memory layout to linearize
the process of settling vertices and relaxing edges in memory. It proceeds in two phases.

First, given a source vertex s ∈ V , PHAST runs a forward search in G↑ rooted at s,
exploring the entire search space and initializing a distance d[v] := δ↑(s, v) at every settled
vertex v. Every vertex not settled gets d[v] := ∞. Second, PHAST settles every v ∈ V in
decreasing order of CH rank, propagating the distances from the forward search through
G↓ by relaxing incoming edges in E↓. This finds shortest up-down paths to every v ∈ V .
Scanning vertices in top-down order ensures that d[u] is finished before d[v] for (u, v) ∈ E↓.

PHAST reorders the vertices in G↓ according to the order in which vertices are scanned
in the top-down sweep. Thus, the write operations to d[v] during the sweep are in sequential
order and reads of d[u] for relaxed edges (u, v) ∈ E↓ are likely to hit the cache.

PHAST leverages both instruction parallelism and multi-threading for additional speedups.
Instruction parallelism is applicable if there are k > 1 sources. Then, d[v] is a distance
vector of width k where the i-th entry refers to the distance from the i-th source to v. Edge
relaxations can use vector instructions to update the distance for all k sources simultaneously.
To utilize multi-threading, PHAST groups vertices into CH levels such that vertices within
the same level can be settled in parallel (for details, see [11]).

CH-based One-to-Many Queries. There are two main ways to use CHs for one-to-many
queries from a source s ∈ V to each t ∈ T for a set of targets T ⊆ V . Both approaches
use a target selection phase followed by a query phase. Bucket Contraction Hierarchies
(BCH) [19, 27] run reverse Dijkstra searches in G↓ from every t ∈ T that memorize every
δ↓(v, t) in a bucket at vertex v (selection). Then, a forward query in G↑ rooted at s can use
these buckets to find shortest paths in the CH (query). RPHAST [12] computes a subgraph
H↓ of G↓ that contains all vertices from which any t ∈ T can be reached using only edges in
E↓ (selection). Then, the top-down sweep of a PHAST query rooted at s can be restricted
to H↓ and still find the shortest path to each t ∈ T (query).

3.2 The LOUD and KaRRi Taxi-Sharing Dispatchers
KaRRi [31] is an algorithm for the dynamic taxi-sharing problem without transfers that acts
as the basis of our solution to the problem with transfers. Here, we describe how KaRRi and
its predecessor LOUD [7] use engineered routing techniques to dispatch requests efficiently.

Elliptic Pruning. LOUD [7] uses constraints on vehicle routes for faster shortest-path
queries between vehicle stops and a rider’s origin and destination. As described in Section 2,
every rider induces hard constraints for maximum wait time and trip time on a vehicle.

ATMOS 2025

15:8 Exact and Heuristic Dynamic Taxi Sharing with Transfers

These constraints define a latest permissible arrival time tmax
arr (s) for the stops s of the

respective vehicle. Let tmin
dep (si) be the scheduled departure time at stop si. Then, a

vehicle ν may take a time of at most λ(si, si+1) = tmax
arr (si+1) − tmin

dep (si) to travel from si

to si+1 without breaking any rider’s constraint. We call the value λ(si, si+1) the leeway
between si and si+1. An origin location orig can only be inserted between stops si and
si+1 if δ(si, orig) + δ(orig, si+1) ≤ λ(si, si+1) (analogous for destination locations). The set
E(si) = {u ∈ V | δ(si, u) + δ(u, si+1) ≤ λ(si, si+1)} is called the detour ellipse of si.

LOUD uses BCH searches to compute the distances from every vehicle stop to the
origin/destination of a request and vice versa. The authors of LOUD find that bucket entries
for a stop si only need to be generated at certain vertices within E(si) to find all relevant
distances. This approach reduces the number of bucket entries that need to be scanned and
restricts the set of pickup or dropoff vehicles to those seen during the queries.

Last-Stop Queries. It is necessary for taxi sharing to also allow insertions that append new
stops at the end of a vehicle’s route instead of only inserting new stops in between existing
stops. We can utilize BCH searches to compute the required distances between the last stops
of every vehicle route and the origin and destination location of a new rider. However, since
a vehicle’s last stop has no following stop, there is no leeway and no detour ellipse to employ
elliptic pruning. Instead, KaRRi [31] uses sorted BCH buckets and lower bounds on the cost
of insertions to speed up this one-to-many shortest-path computation.

4 Algorithm Overview

We describe the use of detour ellipses for transfer insertions and identify two distinct types
of transfer insertions. Based on this, we give an overview of the structure of our algorithm.

4.1 Detour Ellipses for Transfers

The central challenge of computing single-transfer insertions is the fact that the pickup
vehicle νp and the dropoff vehicle νd can move freely in the road network, which makes every
location in the road network a potential transfer point. Without further limitations, the
number of transfer insertions that need to be checked would be at least linear in the size of
the road network. However, we can reduce the number of viable transfer locations for each
request by taking into account the constraints on vehicle detours imposed by existing riders.

As mentioned in Section 3.2, the constraints on vehicle routes induce a detour leeway
λ(si, si+1) between any two consecutive stops si and si+1. This leeway defines the ellipse
E(si) ⊆ V containing all locations to which a detour between si and si+1 can be made without
breaking any constraints. Thus, for any feasible transfer insertion (r, x, νp, νd, ip, jp, id, jd),
the transfer point x must lie in E(sjp

(νp)) if jp < k(νp) and in E(sid
(νd)) if id < k(νd). If we

know the detour ellipses of stop pairs along the routes of relevant vehicles, we can deduce a
limited set of viable transfer locations for which transfer insertions need to be constructed.

In the following, we describe how detour ellipses can be used to enumerate transfer
insertions of different types. For now, we assume that all necessary detour ellipses are known.
We explain how to compute a detour ellipse on-the-fly in Section 5.1. We describe how to
compute the necessary shortest-path distances in Sections 5.2 and 5.3.

J. Breitling and M. Laupichler 15:9

o d

x2

x1

sip sip+1

sjp

sjp+1
sid

sid+1

sjd sjd+1

si′d

si′d+1

sj′d sj′d+1

si′p = sj′p = sk(ν3)

ν1

ν2

ν3

ν4

Figure 2 Illustration of routes of four vehicles ν1, ν2, ν3, and ν4, and a request r = (o, d, treq).
Depicts an ordinary transfer insertion (r, x1, ν1, ν2, ip, jp, id, jd) and an after-last-stop transfer inser-
tion (r, x2, ν3, ν4, k(ν3), k(ν3), i′

d, j′
d). Shaded areas indicate detour ellipses.

4.2 Types of Transfers
We distinguish between two types of transfer insertions that differ in how detour ellipses
constrain the set of potential transfer points.

Ordinary Transfers. An ordinary transfer insertion is any insertion (r, x, νp, νd, ip, jp, id, jd)
where both jp < k(νp) and id < k(νd), i.e., for which the transfer point x is inserted
before the last stop in the routes of both the pickup vehicle and the dropoff vehicle. Let
Fp(r) = {(ν, i) ∈ F × N | i ∈ {0, . . . , k(ν)} and orig ∈ E(si(ν))} denote the set of vehicles
and associated stops in the vehicle route such that ν can perform a pickup of r at orig
immediately after stop si without breaking any of the vehicle’s constraints. Analogously,
let Fd(r) = {(ν, j) ∈ F × N | j ∈ {0, . . . , k(ν)} and dest ∈ E(sj(ν))} be the set of candidate
dropoff vehicles and associated stops.

In ordinary transfer insertions, the transfer point needs to be contained in the intersection
of two ellipses E(sjp

(νp)) ∩ E(sid
(νd)). Thus, for any (νp, ip) ∈ Fp(r) and any (νd, jd) ∈ Fd(r),

every insertion (r, x, νp, νd, ip, jp, id, jd) for every jp = ip, . . . , k(νp) − 1, every id = 0, . . . , jd,
and every x ∈ E(sjp

(νp))∩E(sid
(νd)) is feasible. Figure 2 shows an ordinary transfer insertion

using vehicle ν1 and ν2 and a transfer after stops sjp and sid
. Any point in the overlap of

the orange and purple ellipses is a viable transfer location for these vehicles and stops.

After-Last-Stop (ALS) Transfers. Any transfer insertion which is not ordinary has either
jp = k(νp) or id = k(νd). This means, either the pickup vehicle brings the new rider to the
transfer location after its current last stop sk(νp) or the dropoff vehicle picks up the new rider
at the transfer location after its current last stop sk(νd). Therefore, we call these insertions
after-last-stop (ALS) transfer insertions. Note that transfer insertions with both jp = k(νp)
and id = k(νd) will always have a higher cost than the non-transfer insertion (r, νp, ip, k(ν))
in our model, so we do not have to consider this case.

Focus on the case jp = k(νp) and id < k(νd). In this case, the pickup vehicle is not bound
by any detour ellipse since it will have already dropped off all other passengers when it reaches
sjp

. Thus, there are no rider constraints at this point. However, the viable transfer points

ATMOS 2025

15:10 Exact and Heuristic Dynamic Taxi Sharing with Transfers

Algorithm 1 Algorithm Outline. Comments indicate description of implementation.

1: Input: r = (orig, dest, treq) Output: best insertion
2: ιnone := KaRRi(r) ▷ no-transfer solution [31]
3: Fp(r), Fd(r) := findPickupAndDropoffVehicles(r) ▷ Section 5.2
4: E := computeDetourEllipses(Fp(r), Fd(r)) ▷ Section 5.1
5: ιord := findBestOrdinaryTransferInsertion(r, Fp(r), Fd(r),E) ▷ Section 5.2
6: ιalsp := findBestALSTransferInsertionPVeh(r, Fp(r), Fd(r),E) ▷ Section 5.3
7: ιalsd := findBestALSTransferInsertionDVeh(r, Fp(r), Fd(r),E) ▷ Section 5.3
8: return argminι∈{ιnone,ιord,ιalsp,ιalsd}c(ι)

are still limited to the detour ellipse E(sid
(νd)). Therefore, for any vehicle that can perform

a pickup at any index ip along its route and any (νd, jd) ∈ Fd(r), the set of feasible insertions
contains (r, x, νp, νd, ip, k(νp), id, jd) for every id = 0, . . . , jd, and every x ∈ E(sid

(νd)). Note
that this may include the case of ip = k(νp), i.e., a paired ALS insertion.

Analogously, for any dropoff vehicle νd that can perform a dropoff after its last stop
sk(νd) and any (νp, ip) ∈ Fp, the insertion (r, x, νp, νd, ip, jp, k(νd), k(νd)) is feasible for every
jp = ip, . . . , k(νp) − 1, and every x ∈ E(sjp

(νp)).
In Figure 2, a paired ALS transfer insertion is depicted where vehicle ν3 extends its route

after its last stop to pick up the rider at o and bring them to a transfer location x2 within
the ellipse E(si′

d
(ν4)). Any location within this ellipse would be a feasible choice for x.

4.3 Structure of Algorithm
Whenever a new request r = (orig, dest, treq) is issued, the dispatching algorithm is started
with the current route state. The best insertion returned by the algorithm is used to update
the route state before the next request is processed.

Our dispatching algorithm is outlined in Algorithm 1. We always allow a rider to use no-
transfer or transfer insertions. Thus, to start with, we use the base KaRRi algorithm to find
the best no-transfer insertion. Then, we compute the sets Fp(r) and Fd(r) of potential pickup
and dropoff vehicles. We compute the detour ellipse for every stop along the routes of these
vehicles where a transfer may be made as described in the previous section. Subsequently,
we enumerate all ordinary transfer insertions, all ALS transfer insertions for pickup vehicles,
and all ALS transfer insertions for dropoff vehicles.

5 Exact Transfer Points

In this section, we describe how we can efficiently implement each step of the algorithm
mentioned in Section 4.3 to find a locally exact solution to dynamic taxi sharing with transfers.
More precisely, for each request r = (orig, dest, treq), we aim to find the single-transfer insertion
(r, x, νp, νd, ip, jp, id, jd) with the smallest total cost (at the time of dispatching r).

5.1 Computing Detour Ellipses On-the-Fly
Finding exact transfer insertions requires us to compute the detour ellipses E(si) of many
stop pairs (si, si+1). To find out whether a vertex v ∈ V lies within E(si) we need to know
the distances δ(si, v) and δ(v, si+1) in order to check if δ(si, v) + δ(v, si+1) ≤ λ(si, si+1). In
effect, we need to compute the distances δ(si, v) and δ(v, si+1) for every v ∈ V .

J. Breitling and M. Laupichler 15:11

These two one-to-all shortest path problems can simply be solved by running a forward
Dijkstra search rooted at si and a reverse Dijkstra search rooted at si+1. The Dijkstra
searches can be stopped once a vertex v ∈ V with d[v] > λ(si, si+1) is settled. During the
searches, we memorize which vertices have been settled. For every vertex settled by both
searches, we check whether δ(si, v) + δ(v, si+1) ≤ λ(si, si+1) to determine if v ∈ E(si).

As an alternative, we can use the one-to-all speedup technique PHAST (see Section 3.1).
We run a forward PHAST search rooted at si as well as a reverse PHAST search rooted at
si+1. Then, we check whether v ∈ E(si) for every v ∈ V using the computed distances. Note
that PHAST queries cannot be pruned using λ(si, si+1) like the Dijkstra searches.

As proposed by the authors of PHAST, the queries can be accelerated using both
instruction- and thread-level parallelism (cf. Section 3.1). In contrast to PHAST, it is notori-
ously difficult to apply multi-threading to speed up Dijkstra queries with good scalability [34].
Similarly, bundling Dijkstra queries for vectorized edge relaxations only works well if the
sources are close to each other in the graph and thus have overlapping shortest-path trees.
Unfortunately, this is not the case for arbitrary stops.

Note that both approaches provide the shortest-path distances between vehicle stops and
transfer points that are later required to compute the cost of an insertion.

5.2 Optimal Ordinary Transfers
To find all ordinary transfers, we need to compute the intersection of the detour ellipses of
stops of pickup vehicles in Fp(r) and dropoff vehicles in Fd(r), as described in Section 4.2.

The LOUD no-transfer dispatcher provides a way to compute the sets Fp(r) and Fd(r)
of potential pickup and dropoff vehicles. For both orig and dest, we run a forward and
reverse BCH search that identifies the vehicles and stops at which a detour can be made to
perform the pickup or dropoff. Elliptic pruning speeds up these queries and limits the size of
Fp(r) and Fd(r) (cf. Section 3.2). These BCH searches also provide the distances needed to
compute the detour made for the pickup and the dropoff.

To facilitate intersecting ellipses, we sort every ellipse by vertex ID. Then, any intersection
E(sjp(νp)) ∩ E(sid

(νd)) can be constructed with a linear sweep over E(sjp(νp)) and E(sid
(νd)).

If ip ̸= jp and id ≠ jd, the distances between stops and transfer points computed during
the ellipse reconstruction suffice to calculate the cost of the insertion. In the case of a paired
insertion, i.e., ip = jp or id = jd, we need to additionally know the distances from orig to
the transfer point x or the distance from x to dest, respectively. For paired insertions, we
first assume δ(orig, x) = 0 or δ(x, dest) = 0 and compute a lower bound for the cost of the
insertion. If this lower bound is worse than the best known cost, we can safely discard it.
Otherwise, we compute the distance δ(orig, x) or δ(x, dest) using a point-to-point CH query.

5.3 Optimal After-Last-Stop Transfers
As described in Section 4.2, in an ALS insertion, a transfer point may be any location within
the detour ellipse of the non-ALS vehicle. Here, we focus on the case that the pickup vehicle
νp is the ALS vehicle and brings the rider to a transfer point in an ellipse of a dropoff vehicle
νd. Then, we need to know the distances from the last stop sk(νp) to every location in this
ellipse. Extending this to all possible pickup vehicles in Fp(r) and dropoff vehicles in Fd(r),
we get a many-to-many shortest path problem where the set of sources L contains all last
stops of pickup vehicles, while the set of targets T is the union of all eligible ellipses, i.e.,

L = {sk(νp) | (νp, _) ∈ Fp(r)}, and T =
⋃

(νd,jd)∈Fd(r)

⋃
id∈{0,...,jd}

E(sid
(νd)).

ATMOS 2025

15:12 Exact and Heuristic Dynamic Taxi Sharing with Transfers

We utilize RPHAST for this problem. We run the selection phase once for T and then
run a query from every l ∈ L. We can bundle and vectorize these queries (cf. Section 3.1).

A pickup vehicle may also perform both the pickup and the trip to the transfer after
its current last stop in a paired ALS insertion (r, x, νp, νd, k(νp), k(νp), id, jd). In this case,
we need to know the distance from orig to every transfer point x. Thus, we run a single
RPHAST query from orig to T . Additionally, we need to identify vehicles νp that need to
be considered for a pickup after their last stop as Fp(r) is not guaranteed to contain all of
them. For this purpose, we utilize BCH searches as proposed by KaRRi (cf. Section 3.2).
We construct bucket entries for every last stop. Then, a single reverse BCH query rooted at
orig computes the distances from all last stops to orig. We prune the set of viable vehicles
by comparing cost lower bounds based on these distances to the best known cost.

Now consider the case that the dropoff vehicle goes to the transfer after its last stop
while the pickup vehicle incorporates the transfer somewhere along its existing route. Then,
the ALS insertion will always be paired since the dropoff must necessarily be performed after
the transfer. Thus, we can use the same techniques outlined for paired ALS insertions above.

5.4 Speeding up Enumeration of Insertions
Computing the cost for a transfer insertion takes much longer than for a no-transfer insertion.
Thus, we describe three ways to speed up the computation of insertions and their cost. We
focus on ordinary insertions but all techniques are applicable to ALS insertions, too.

Cost Bounds. For each request r, our algorithm first finds the best no-transfer insertion.
The cost of this no-transfer insertion serves as an upper bound for the best cost for r.

Consider a set of possible transfer insertions (r, x, νp, νd, ip, jp, id, jd) for fixed νp, νd, ip,
jp, id, and jd, and x ∈ E(sjp

(νp)) ∩ E(sid
(νd)). We can obtain a lower bound on the cost of

any insertion in this set by applying the cost function with lower bounds on the distances
from and to any transfer point x. If this lower bound cost is already worse than the best
no-transfer cost, we do not have to consider any of the individual insertions in the set. To get
lower bounds on the distances from and to any feasible transfer point, we simply memorize
the smallest such distances seen while intersecting the ellipses.

Pareto-Dominance between Transfer Points. We find that many transfer points can never
lead to a best insertion as there are other transfer points which are guaranteed to lead to
better insertions. We devise a measure of pareto-dominance between transfer points within
the same intersection that allows to exclude these dominated transfer points.

▶ Definition 1. Let x1, x2 ∈ E(sjp
(νp)) ∩ E(sid

(νd)). Then, x1 dominates x2 if

δ(sjp
, x1) + δ(x1, sjp+1) < δ(sjp

, x2) + δ(x2, sjp+1), (1)
δ(sid

, x1) + δ(x1, sid+1) < δ(sid
, x2) + δ(x2, sid+1), and (2)

δ(sjp , x1) + δ(x1, sid+1) < δ(sjp , x2) + δ(x2, sid+1). (3)

▷ Claim 2. If x1 dominates x2, then

c(ι1 = (r, x1, νp, νd, ip, jp, id, jd)) < c(ι2 = (r, x2, νp, νd, ip, jp, id, jd)).

Proof. See Section A. ◁

J. Breitling and M. Laupichler 15:13

In road networks with heterogeneous travel speeds, there can easily be locations that
are not well accessible to both the pickup and the dropoff vehicle (e.g., side roads within a
neighborhood), which leads to them being dominated by locations on more easily accessible
roads in the vicinity. Note that a test for domination between two transfer points can be
computed quickly. Thus, it is worth filtering transfer points based on domination before
performing the much more expensive calculation of insertion costs.

Parallelization. Computing the cost of all feasible insertions can be trivially parallelized.
We iterate over pairs of pickup and dropoff vehicles in Fp(r) × Fd(r) in parallel with the
same thread computing the cost for all insertions of one vehicle pair. Each thread keeps
a thread-local best insertion seen. When all threads are done, the best of the thread-local
insertions is chosen. Pareto-dominance and cost bounds can still be applied by each thread.

6 Heuristic Transfer Points

In this section, we describe a way to reduce running times by heuristically choosing a subset
of transfer points based on CHs. CHs aim to order vertices by their importance for shortest
paths in the road network during construction. Therefore, we can assume that vertices of
high CH rank can be reached easily and may be good candidates for transfer points.

In our heuristic, we only consider the k percent of vertices in the network with the highest
ranks as transfer points. Let Vsorted = ⟨v1, . . . , vn | vj ∈ V, rank(vj) ≥ rank(vj+1)⟩. Let Vk%
denote the subset of the first nk/100 vertices. When computing the potential transfer points
for a request, for every ellipse E(si), candidate vertices are now limited to E(si) ∩ Vk%.

This restriction provides two advantages with regard to computation time. Firstly, the
one-to-all PHAST queries used to reconstruct detour ellipses (see Section 5.1) can now stop
after scanning only the top k% of vertices. Secondly, the average size of each restricted
detour ellipse will be much smaller which reduces the number of transfer insertions that
need to be tried. As a trade-off, the heuristic may negatively affect the solution quality since
potentially good transfer locations that are not in the top k% of vertices may be missed. The
parameter k allows an interpolation between the reduced running time and loss in quality.

7 Experimental Evaluation

We experimentally evaluate our approach on realistic input instances for dynamic taxi sharing.
In this section, we refer to our approach as KaRRiT (KaRRi with Transfers).

7.1 Experimental Setup and Benchmark Instances
Our source code2 is written in C++20 and compiled with GCC 11.5 using -O3. We use two
machines for separate experiments, both running Rocky Linux 9.5. Machine A has 64 GiB of
memory and a single 16-core AMD Ryzen 9 3950X processor at 3.5GHz. Machine B has 512
GiB of memory and a single 32-core Intel Xeon Gold 6314U processor at 2.3 GHz. We use
32-bit distance labels and the AVX2 SIMD instruction set with 256-bit registers to compute
up to 8 operations in one vector instruction.

We evaluate KaRRiT on the Berlin-1pct (B-1%), and Berlin-10pct (B-10%) request
sets [7] that, respectively, represent taxi-sharing demand for 1% and 10% of the population
of the Berlin metropolitan area on a weekday. The request sets for Berlin were artificially

2 Available at https://github.com/JohannesBreitling/karri-with-transfers.

ATMOS 2025

https://github.com/JohannesBreitling/karri-with-transfers

15:14 Exact and Heuristic Dynamic Taxi Sharing with Transfers

ba
se

+
bo

un
ds

+
do

m.

+
SIM

D
+

T=4

+
T=8

+T=16

0

100

200

300
av

g.
tim

e
pe

r
re

qu
es

t
[m

s] Ell.
Ord.
ALS P.-Veh.
ALS D.-Veh.

Figure 3 Average running times per request of main components of KaRRiT in incrementally
more efficient configurations. The configuration “base” uses PHAST and RPHAST wherever possible
but none of the other optimizations described in Section 5. The other configurations add the specified
optimization to the configuration to their left. (The configurations “T=n” each add multi-threading
with n threads to the “+ SIMD” configuration.)

generated using the Open Berlin Scenario [48] for the MATSim transport simulation [22]3.
Both sets cover a time window of 30 hours and follow a realistic distribution of demand on
a weekday regarding both time and space. The Berlin-1pct and Berlin-10pct request
sets contain 16569 and 149185 requests, respectively. Images on the temporal and spatial
distribution can be found in Figure 4 in Section B. We use 1000 vehicles for Berlin-1pct
and 10000 vehicles for Berlin-10pct. Each vehicle has a capacity of four and a service time
interval covering the entire 30 hours. The initial locations of all vehicles are drawn uniformly
at random. The underlying road network of Berlin and the surrounding area is obtained
from publicly available OpenStreetMap data4. It contains 94422 vertices and 193212 edges.
We use the known speed limit of each road to determine the travel time of the according
edge in the vehicle network. We compute a contraction hierarchy of the road network using
the open-source library RoutingKit5. This takes less than a minute for Berlin.

For our cost function (see Section 2), we adopt a basic “time is money” approach. We
use τ = 1 to weight the time of a driver and a rider equally. In accordance with the MATSim
transport simulation, we choose α = 1.7 and β = 2min. For the remaining parameters, we
choose tmax

wait = 600s, γwait = 1, and γtrip = 10.

7.2 Analysis of Optimizations for the Exact Algorithm
We analyze the impact of individual features of our algorithm on the running time. For this,
we run experiments on machine A. We use the Berlin-1pct instance as running times for a
non-optimized implementation are infeasible on Berlin-10pct. We consider the four main
components of our algorithm (lines 4-7 in Algorithm 1) separately.

3 MATSim generates realistic demand data but considering more than 10% of the population would take
processing times in the order of multiple months. For details, see [7].

4 https://download.geofabrik.de/.
5 https://github.com/RoutingKit.

https://download.geofabrik.de/
https://github.com/RoutingKit

J. Breitling and M. Laupichler 15:15

Table 1 Comparison of running times and key performance metrics for main components of exact
(E) and heuristic (H) variants of KaRRiT on the Berlin-1pct and Berlin-10pct instances. Shows
average running time per request for each step as well as average total running time per request in
milliseconds. Additionally, shows number of insertions tried (ins) for ordinary and ALS, as well as
number of potential transfer points (|T |) for ALS (both in thousands).

Ell. Ord. ALS P.-Veh. ALS D.-Veh. Total

inst. alg. time
[ms]

ins
[·103]

time
[ms]

|T |
[·103]

ins
[·103]

time
[ms]

|T |
[·103]

ins
[·103]

time
[ms]

time
[ms]

B-1%
E 10.4 3.6 8.6 60.6 2.1 7.8 31.3 14.0 6.9 34.0
H 2.7 0.3 1.0 1.2 0.3 0.9 0.8 1.6 0.8 5.7

B-10%
E 58.2 42.8 85.6 148.6 80.5 37.0 93.9 189.5 73.4 255.2
H 16.0 5.1 9.3 2.8 9.9 2.8 1.5 26.3 3.7 32.4

To start with, utilizing PHAST speeds up the computation of detour ellipses by a factor
of about 2.5 compared to the Dijkstra-based implementation (cf. Section 5.1). Thus, we start
from this baseline of using PHAST and RPHAST, and illustrate the speedups achieved with
our additional measures in Figure 3.

Applying cost bounds (see Section 5.4) has the greatest effect on ALS insertions for the
dropoff vehicle with a speedup of about 7.74. The enumeration of ALS insertions for the
pickup vehicle and ordinary insertions become 1.89 and 1.56 times faster, respectively.

Additionally checking transfer points for pareto-dominance speeds up the enumeration of
ordinary transfer insertions, ALS transfer insertions for the pickup vehicle, and ALS transfer
insertions for the dropoff vehicle by factors of 2.96, 2.15, and 1.19, respectively. This shows
that transfer point dominance and cost bounds work well in combination. In fact, the two
methods seem to synergize as the speedups for transfer point domination are highest for the
components where cost bounds provide the least benefit.

Bundling PHAST queries and employing SIMD vector instructions to run up to eight
searches simultaneously speeds up ellipse reconstruction by a factor of 2.72. However, it has
almost no effect on the ALS steps because their runtime is dominated by work not affected
by SIMD speedups like enumerating insertions or the RPHAST selection phase.

Using four threads for parallel PHAST queries and enumeration of insertions leads to
mediocre speedups, ranging from 1.62 for ALS transfer insertions for the pickup vehicle,
to 2.56 for the dropoff vehicle. For the PHAST queries used during ellipse reconstruction,
this can be attributed to the fact that PHAST can only settle vertices in parallel within
individual CH levels. Since our road network is comparatively small, the sizes of CH levels
are limited and synchronization overhead may be large. For the enumeration of transfers,
speedups are again held back by work that we did not parallelize, e.g., the RPHAST selection
phase. These effects contribute to the lack of scalability to larger numbers of threads. With
16 threads we hardly see any speedups compared to 4 threads. The only component that
benefits from more threads is the enumeration of ALS transfer insertions for the dropoff
vehicle, which spends a lot of time on trivially parallelizable cost computation.

7.3 Effect of Heuristic on Running Time
We compare the running time of the heuristic variant (H) of KaRRiT (see Section 6) with the
exact variant (E). The experiments were run on machine B with 32 threads, all optimizations,
and k = 10% for H. Running times per request for different steps are shown in Table 1.

ATMOS 2025

15:16 Exact and Heuristic Dynamic Taxi Sharing with Transfers

Table 2 Comparison of dispatch quality on Berlin-1pct and Berlin-10pct between the baseline
without transfers KaRRi (K) and KaRRiT in the exact (E) and heuristic (H) variants. Shows
average rider wait time and trip time in minutes and seconds, average trip time relative to shortest
orig-dest path, average vehicle operation time in hours and minutes, and vehicle occupancy rate
averaged over time. Last column gives average total running time of the dispatcher per request.

inst. alg. wait
[mm:ss]

trip
[mm:ss]

trip
(rel.)

drive
[hh:mm]

occ total
[ms]

B-1%
K 03:30 16:30 1.46 04:00 0.886 0.2
H 03:29 16:32 1.47 03:59 0.894 5.7
E 03:30 16:35 1.47 03:58 0.898 34.0

B-10%
K 02:43 15:33 1.72 02:55 1.061 0.4
H 02:45 15:52 1.75 02:49 1.109 32.4
E 02:48 16:02 1.78 02:47 1.127 255.2

Restricting transfer points to vertices of high CH rank using H reduces the running time
of the ellipse reconstruction by a factor of about four compared to the exact solution. As
discussed in Section 6, this is caused by the PHAST queries having to perform only one
tenth of the work, settling the top k = 10% of vertices in the CH. Since the upper CH levels
are small and only vertices within the same CH level can be settled in parallel, the ellipse
reconstruction in H does not benefit from multi-threading. This limits the speedup over E
to four instead of being closer to ten. Due to reduced ellipse sizes, H computes the cost of
about eight times fewer insertions than E. In the ordinary transfer step, the smaller ellipse
sizes also reduce the time needed for intersecting ellipses. Additionally, the set of targets T
for RPHAST in the ALS transfer components is around two orders of magnitude smaller for
H than for E, which speeds up the selection and query phases of RPHAST.

For E, the set of transfer points T includes almost all locations in the road network6.
Thus, a PHAST query without an expensive RPHAST selection phase may perform better.
For H, the number of transfer points is small enough to warrant using RPHAST.

Note that the number of insertions tried can exceed the number of transfer points because
every pickup or dropoff vehicle may be matched with any transfer point. In turn, the
transfer point pruning strategies outlined in Section 5.4 reduce the number of insertions tried.
Interestingly, these pruning strategies appear to be more successful for E than for H as the
ratio between the number of insertions tried and the number of potential transfer points is
much larger for H than for E. This may be explained by the fact that H already heuristically
selects good transfer points based on CH rank such that they may be harder to prune using
cost bounds or especially transfer point domination.

7.4 Impact of Transfers on Solution Quality
We evaluate the impact of allowing transfers on the solution quality of dynamic taxi sharing
by experimentally comparing KaRRiT in the exact (E) and heuristic (H) variants to the
no-transfer baseline KaRRi. Results for experiments run on machine B are shown in Table 2.
Note that we give only preliminary results on dispatch quality, since the focus of this work is
on the algorithmic aspects. In the future, we plan to use our new fast algorithm to consider
the effect of transfers in more detail with a larger variety of input instances.

6 It is possible that |T | > |V | since our implementation of KaRRiT uses edges, not vertices, as transfer
locations. We still always have |T | ≤ |E|.

J. Breitling and M. Laupichler 15:17

Considering the running time of the algorithms, KaRRi is up to two orders of magnitude
faster than the heuristic variant, and three orders faster than the exact variant. The running
time of H can still be considered practical while E seems infeasibly slow.

On Berlin-1pct, transfers appear to have almost no effect on the solution quality. This
can be attributed to the fact that the density of requests is small with about one request
per minute. Thus, it is unlikely that two riders share a vehicle (as evidenced by the low
vehicle occupancies). Moreover, a vehicle may always be available to take a passenger to
their destination directly, which often outperforms any transfer insertions. In additional
experiments with artificially increased request densities, we were able to confirm that request
density is in fact a deciding factor for the viability of transfers.

As Berlin-10pct also provides a much denser request set, we focus on this instance here.
When comparing the exact solution E to KaRRi, we see decent improvements in occupancy
rates and slight improvements in vehicle operation times. Average occupancy rates increase
by 5.9%, and vehicle operation times decrease by 4.6%. This is a significant benefit with
respect to the use of space on the roads and the operating costs of the taxi-sharing provider.
As a drawback, rider trip times increase by 3.1% compared to KaRRi. This matches the
expectation that transfers may be good for efficiency at a cost of rider satisfaction.

While these gains may not justify the large running time of E, the heuristic H retains
most of the benefits. The improvement for vehicles are about one third smaller than for E,
but rider trip times are also less severely affected. Since H is an order of magnitude faster
than E, it may therefore be a more viable candidate for a production system.

8 Conclusions

KaRRiT provides an efficient algorithmic approach to find optimal single-transfer journeys
for the dynamic taxi-sharing problem with on-the-fly distance computation. We explore
the usage of state-of-the-art shortest-path speedup techniques and propose new pruning
techniques for the large solution space. While we only show first results on the benefits of
transfers on dense request sets, we find that our approach is suited to conduct experiments
on city-scale real-world instances. We aim to use this new opportunity to design more precise
studies on the service quality and resource usage of taxi sharing with transfers in cooperation
with application experts. This analysis should include considerations on the viability of
transfer locations with regard to aspects like safety, accessibility, and efficiency of transfers.

In the future, we would like to improve the efficiency of our exact algorithm, in particular
by introducing multi-threading to non-parallelized regions of the algorithm or by introducing
a prunable version of the PHAST algorithm to speed up the ellipse reconstruction process.
Further, various extensions of the problem could be explored: Although our algorithm
currently assumes fixed travel times, there are so-called customizable variants of shortest-path
algorithms [5, 13], which allow efficient updates of travel times in the road network, for
example, to incorporate information on traffic congestion. In the future, we would like to
consider how these updates can also be applied efficiently to the current vehicle schedules
in a taxi-sharing system to employ fully up-to-date information when answering requests.
Allowing multi-transfer journeys in dynamic taxi sharing, especially three-leg journeys with
high-capacity trunk vehicles and smaller feeder vehicles, may improve dispatch quality.
Similarly, KaRRiT may be integrated into a multi-modal transportation system and used
alongside public transit. This would offer good flexibility while utilizing the economics of
scale of public transit. Allowing pre-booking or the batching of requests in a rolling horizon
approach would open up the possibility for local optimizations and could improve dispatch
quality by reducing the impact of the online characteristics of the problem.

ATMOS 2025

15:18 Exact and Heuristic Dynamic Taxi Sharing with Transfers

References
1 Niels Agatz, Alan Erera, Martin Savelsbergh, and Xing Wang. Dynamic ride-sharing: A

simulation study in metro Atlanta. Transportation Research Part B: Methodological, 45:1450–
1464, 2011. doi:10.1016/j.trb.2011.05.017.

2 Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus.
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings
of the National Academy of Sciences of the United States of America, 114:462–467, 2017.
doi:10.1073/pnas.1611675114.

3 Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius B.
Cardoso, Avelino Forechi, Luan F. R. Jesus, Rodrigo Ferreira Berriel, Thiago M. Paixão,
Filipe Wall Mutz, Lucas de Paula Veronese, Thiago Oliveira-Santos, and Alberto F. De
Souza. Self-driving cars: A survey. Expert Systems with Applications, 165, 2021. doi:
10.1016/j.eswa.2020.113816.

4 Joschka Bischoff, Michal Maciejewski, and Kai Nagel. City-wide shared taxis: A simulation
study in berlin. In 20th IEEE International Conference on Intelligent Transportation Systems,
ITSC 2017, Yokohama, Japan, October 16-19, 2017, pages 275–280. IEEE, 2017. doi:
10.1109/ITSC.2017.8317926.

5 Thomas Bläsius, Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf.
Customizable contraction hierarchies - A survey. CoRR, 2025. doi:10.48550/arXiv.2502.
10519.

6 Johannes Breitling and Moritz Laupichler. karri-with-transfers. Software, swhId: swh:1:dir:
2e1d2d7c9139eb1a02b7cdd760c7c13365d35805 (visited on 2025-08-27). URL: https://
github.com/JohannesBreitling/karri-with-transfers, doi:10.4230/artifacts.24437.

7 Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Fast, exact and scalable dynamic
ridesharing. In Proceedings of the Symposium on Algorithm Engineering and Experiments,
ALENEX, pages 98–112. SIAM, 2021. doi:10.1137/1.9781611976472.8.

8 Brian Coltin. Multi-Agent Pickup And Delivery Planning With Transfers. PhD thesis, Carnegie
Mellon University, USA, 2014. doi:10.1184/R1/6720740.v1.

9 Jean-François Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Operations
Research, 54(3):573–586, 2006. doi:10.1287/opre.1060.0283.

10 Jean François Cordeau and Gilbert Laporte. The dial-a-ride problem: Models and algorithms.
Annals of Operations Research, 153(1):29–46, 2007. doi:10.1007/s10479-007-0170-8.

11 Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck. PHAST:
Hardware-accelerated shortest path trees. Journal of Parallel and Distributed Computing,
73(7):940–952, 2013. doi:10.1016/j.jpdc.2012.02.007.

12 Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Faster batched shortest paths
in road networks. In 11th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS), volume 20 of OASIcs, pages 52–63. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Germany, 2011. doi:10.4230/OASIcs.ATMOS.2011.52.

13 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
Journal of Experimental Algorithmics, 21(1):1.5:1–1.5:49, 2016. doi:10.1145/2886843.

14 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959. doi:10.1007/BF01386390.

15 Fábio Duarte and Carlo Ratti. The impact of autonomous vehicles on cities: A review. Journal
of Urban Technology, 25:3–18, 2018. doi:10.1080/10630732.2018.1493883.

16 Daniel J. Fagnant and Kara M. Kockelman. The travel and environmental implications of
shared autonomous vehicles, using agent-based model scenarios. Transportation Research Part
C: Emerging Technologies, 40:1–13, 2014. doi:10.1016/j.trc.2013.12.001.

17 Daniel J. Fagnant and Kara M. Kockelman. Dynamic ride-sharing and fleet sizing for a
system of shared autonomous vehicles in Austin, Texas. Transportation, 45:143–158, 2018.
doi:10.1007/s11116-016-9729-z.

https://doi.org/10.1016/j.trb.2011.05.017
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1016/j.eswa.2020.113816
https://doi.org/10.1016/j.eswa.2020.113816
https://doi.org/10.1109/ITSC.2017.8317926
https://doi.org/10.1109/ITSC.2017.8317926
https://doi.org/10.48550/arXiv.2502.10519
https://doi.org/10.48550/arXiv.2502.10519
https://archive.softwareheritage.org/swh:1:dir:2e1d2d7c9139eb1a02b7cdd760c7c13365d35805;origin=https://github.com/JohannesBreitling/karri-with-transfers;visit=swh:1:snp:3b2c376750a7e258e80ce8925fb368460ff05c6d;anchor=swh:1:rev:e3f23d16c4b0afa908e0d5edf32f02af06d0c391
https://archive.softwareheritage.org/swh:1:dir:2e1d2d7c9139eb1a02b7cdd760c7c13365d35805;origin=https://github.com/JohannesBreitling/karri-with-transfers;visit=swh:1:snp:3b2c376750a7e258e80ce8925fb368460ff05c6d;anchor=swh:1:rev:e3f23d16c4b0afa908e0d5edf32f02af06d0c391
https://github.com/JohannesBreitling/karri-with-transfers
https://github.com/JohannesBreitling/karri-with-transfers
https://doi.org/10.4230/artifacts.24437
https://doi.org/10.1137/1.9781611976472.8
https://doi.org/10.1184/R1/6720740.v1
https://doi.org/10.1287/opre.1060.0283
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1016/j.jpdc.2012.02.007
https://doi.org/10.4230/OASIcs.ATMOS.2011.52
https://doi.org/10.1145/2886843
https://doi.org/10.1007/BF01386390
https://doi.org/10.1080/10630732.2018.1493883
https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1007/s11116-016-9729-z

J. Breitling and M. Laupichler 15:19

18 Eleonora Gargiulo, Roberta Giannantonio, Elena Guercio, Claudio Borean, and Giovanni
Zenezini. Dynamic ride sharing service: Are users ready to adopt it? Procedia Manufacturing,
3:777–784, 2015. doi:10.1016/j.promfg.2015.07.329.

19 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
2012. doi:10.1287/trsc.1110.0401.

20 Mireia Gilibert, Imma Ribas, Christian Rosen, and Alexander Siebeneich. On-demand
shared ride-hailing for commuting purposes: Comparison of Barcelona and Hannover case
studies. In Transportation Research Procedia, volume 47, pages 323–330. Elsevier, 2020.
doi:10.1016/j.trpro.2020.03.105.

21 Sin C. Ho, W.Y. Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering, and
Terence W.H. Tou. A survey of dial-a-ride problems: Literature review and recent de-
velopments. Transportation Research Part B: Methodological, 111:395–421, 2018. doi:
10.1016/j.trb.2018.02.001.

22 Andreas Horni, Kai Nagel, and Kay W. Axhausen, editors. The Multi-Agent Transport
Simulation MATSim. Ubiquity Press, 2016. doi:10.5334/baw.

23 Yunfei Hou, Weida Zhong, Lu Su, Kevin F. Hulme, Adel W. Sadek, and Chunming Qiao.
Taset: Improving the efficiency of electric taxis with transfer-allowed rideshare. Trans. Veh.
Technol., 65(12):9518–9528, 2016. doi:10.1109/TVT.2016.2592983.

24 Jang-Jei Jaw, Amedeo R. Odoni, Harilaos N. Psaraftis, and Nigel H.M. Wilson. A
heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time
windows. Transportation Research Part B: Methodological, 20(3):243–257, 1986. doi:
10.1016/0191-2615(86)90020-2.

25 Jani-Pekka Jokinen, Teemu Sihvola, and Milos N. Mladenovic. Policy lessons from the flexible
transport service pilot Kutsuplus in the Helsinki capital region. Transport Policy, 76:123–133,
2019. doi:10.1016/j.tranpol.2017.12.004.

26 Jaeyoung Jung, R. Jayakrishnan, and Ji Young Park. Dynamic shared-taxi dispatch algorithm
with hybrid-simulated annealing. Computer-Aided Civil and Infrastructure Engineering,
31(4):275–291, 2016. doi:10.1111/mice.12157.

27 Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.
Computing many-to-many shortest paths using highway hierarchies. In Workshop on Algorithm
Engineering and Experiments (ALENEX). SIAM, 2007. doi:10.1137/1.9781611972870.4.

28 Nadine Kostorz, Eva Fraedrich, and Martin Kagerbauer. Usage and user characteris-
tics—insights from MOIA, europe’s largest ridepooling service. Sustainability, 13:958, 2021.
doi:10.3390/su13020958.

29 Nico Kuehnel, Hannes Rewald, Steffen Axer, Felix Zwick, and Rolf Findeisen. Flow-inflated
selective sampling for efficient agent-based dynamic ride-pooling simulations. Transportation
Research Record: Journal of the Transportation Research Board, page 036119812311706, 2023.
doi:10.1177/03611981231170624.

30 Moritz Laupichler and Peter Sanders. Fast many-to-many routing for dynamic taxi sharing
with meeting points. CoRR, 2023. doi:10.48550/arXiv.2311.01581.

31 Moritz Laupichler and Peter Sanders. Fast many-to-many routing for dynamic taxi sharing
with meeting points. In 2024 Proceedings of the Symposium on Algorithm Engineering and
Experiments (ALENEX), pages 74–90. SIAM, 2024. doi:10.1137/1.9781611977929.6.

32 Yeqian Lin, Wenquan Li, Feng Qiu, and He Xu. Research on optimization of vehicle routing
problem for ride-sharing taxi. Procedia – Social and Behavioral Sciences, 43:494–502, 2012.
doi:10.1016/j.sbspro.2012.04.122.

33 Shuo Ma, Yu Zheng, and Ouri Wolfson. T-Share: A large-scale dynamic taxi ridesharing
service. In IEEE 29th International Conference on Data Engineering (ICDE), pages 410–421.
IEEE, 2013. doi:10.1109/ICDE.2013.6544843.

ATMOS 2025

https://doi.org/10.1016/j.promfg.2015.07.329
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1016/j.trpro.2020.03.105
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.5334/baw
https://doi.org/10.1109/TVT.2016.2592983
https://doi.org/10.1016/0191-2615(86)90020-2
https://doi.org/10.1016/0191-2615(86)90020-2
https://doi.org/10.1016/j.tranpol.2017.12.004
https://doi.org/10.1111/mice.12157
https://doi.org/10.1137/1.9781611972870.4
https://doi.org/10.3390/su13020958
https://doi.org/10.1177/03611981231170624
https://doi.org/10.48550/arXiv.2311.01581
https://doi.org/10.1137/1.9781611977929.6
https://doi.org/10.1016/j.sbspro.2012.04.122
https://doi.org/10.1109/ICDE.2013.6544843

15:20 Exact and Heuristic Dynamic Taxi Sharing with Transfers

34 Ulrich Meyer and Peter Sanders. δ-stepping: a parallelizable shortest path algorithm. Journal
of Algorithms, 49(1):114–152, 2003. 1998 European Symposium on Algorithms. doi:10.1016/
S0196-6774(03)00076-2.

35 Dimitris Milakis, Bart van Arem, and Bert van Wee. Policy and society related implications
of automated driving: A review of literature and directions for future research. Journal
of Intelligent Transportation Systems, 21(4):324–348, 2017. doi:10.1080/15472450.2017.
1291351.

36 Motahare Mounesan, Vindula Jayawardana, Yaocheng Wu, Samitha Samaranayake, and
Huy T. Vo. Fleet management for ride-pooling with meeting points at scale: A case study in
the five boroughs of New York City. CoRR, 2021. doi:10.48550/arXiv.2105.00994.

37 Douglas O. Santos and Eduardo C. Xavier. Taxi and ride sharing: A dynamic dial-a-ride
problem with money as an incentive. Expert Systems with Applications, 42(19):6728–6737,
2015. doi:10.1016/j.eswa.2015.04.060.

38 Martin Savelsbergh. Local search in routing problems with time windows. Annals of Operations
Research, 4:285–305, 1985. doi:10.1007/BF02022044.

39 Michael Schilde, Karl F. Doerner, and Richard F. Hartl. Metaheuristics for the dynamic
stochastic dial-a-ride problem with expected return transports. Computers and Operations
Research, 38(12):1719–1730, 2011. doi:10.1016/j.cor.2011.02.006.

40 Changle Song, Julien Monteil, Jean-Luc Ygnace, and David Rey. Incentives for ridesharing:
A case study of welfare and traffic congestion. Journal of Advanced Transportation, 2021.
doi:10.1155/2021/6627660.

41 Chichung Tao and Chungjung Wu. Behavioral responses to dynamic ridesharing services - the
case of taxi-sharing project in Taipei. In International Conference on Service Operations and
Logistics, and Informatics, pages 1576–1581. IEEE, 2008. doi:10.1109/SOLI.2008.4682777.

42 Dujuan Wang, Qi Wang, Yunqiang Yin, and T.C.E. Cheng. Optimization of ride-sharing with
passenger transfer via deep reinforcement learning. Transportation Research Part E: Logistics
and Transportation Review, 172:103080, 2023. doi:10.1016/j.tre.2023.103080.

43 Christoffer Weckström, Miloš N. Mladenović, Waqar Ullah, John D. Nelson, Moshe Givoni,
and Sebastian Bussman. User perspectives on emerging mobility services: Ex post analysis
of Kutsuplus pilot. Research in Transportation Business & Management, 27:84–97, 2018.
doi:10.1016/j.rtbm.2018.06.003.

44 Gabriel Wilkes, Roman Engelhardt, Lars Briem, Florian Dandl, Peter Vortisch, Klaus Bogen-
berger, and Martin Kagerbauer. Self-regulating demand and supply equilibrium in joint simu-
lation of travel demand and a ride-pooling service. Transportation Research Record: Journal
of the Transportation Research Board, 2675:226–239, 2021. doi:10.1177/0361198121997140.

45 Max Willich. Improving vehicle detour in dynamic ridesharing using transfer stops. Master’s
thesis, Karlsruher Institut für Technologie (KIT), 2023. doi:10.5445/IR/1000165197.

46 Biying Yu, Ye Ma, Meimei Xue, Baojun Tang, Bin Wang, Jinyue Yan, and Yi-Ming Wei.
Environmental benefits from ridesharing: A case of Beijing. Applied Energy, 191:141–152,
2017. doi:10.1016/j.apenergy.2017.01.052.

47 Dianzhuo Zhu. The limits of money in daily ridesharing: Evidence from a field experiment in
rural France. Revue d’économie industrielle, pages 161–202, 2021. doi:10.4000/rei.9984.

48 Dominik Ziemke, Ihab Kaddoura, and Kai Nagel. The MATSim Open Berlin scenario: A
multimodal agent-based transport simulation scenario based on synthetic demand modeling and
open data. In 8th International Workshop on Agent-based Mobility, Traffic and Transportation
Models, April 29 - May 2, 2019, Leuven, Belgium, volume 151 of Procedia Computer Science,
pages 870–877. Elsevier, 2019. doi:10.1016/j.procs.2019.04.120.

49 Felix Zwick, Gabriel Wilkes, Roman Engelhardt, Steffen Axer, Florian Dandl, Hannes Rewald,
Nadine Kostorz, Eva Fraedrich, Martin Kagerbauer, and Kay W. Axhausen. Mode choice and
ride-pooling simulation: A comparison of mobiTopp, Fleetpy, and MATSim. In 11th Interna-
tional Workshop on Agent-based Mobility, Traffic and Transportation Models, Methodologies
and Applications (ABMTRANS), March 22-25, 2022, Porto, Portugal, volume 201 of Procedia
Computer Science, pages 608–613. Elsevier, 2022. doi:10.1016/j.procs.2022.03.079.

https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.48550/arXiv.2105.00994
https://doi.org/10.1016/j.eswa.2015.04.060
https://doi.org/10.1007/BF02022044
https://doi.org/10.1016/j.cor.2011.02.006
https://doi.org/10.1155/2021/6627660
https://doi.org/10.1109/SOLI.2008.4682777
https://doi.org/10.1016/j.tre.2023.103080
https://doi.org/10.1016/j.rtbm.2018.06.003
https://doi.org/10.1177/0361198121997140
https://doi.org/10.5445/IR/1000165197
https://doi.org/10.1016/j.apenergy.2017.01.052
https://doi.org/10.4000/rei.9984
https://doi.org/10.1016/j.procs.2019.04.120
https://doi.org/10.1016/j.procs.2022.03.079

J. Breitling and M. Laupichler 15:21

A Omitted Proof for Pareto-Dominance between Transfer Points

▶ Definition 1. Let x1, x2 ∈ E(sjp
(νp)) ∩ E(sid

(νd)). Then, x1 dominates x2 if

δ(sjp
, x1) + δ(x1, sjp+1) < δ(sjp

, x2) + δ(x2, sjp+1), (1)
δ(sid

, x1) + δ(x1, sid+1) < δ(sid
, x2) + δ(x2, sid+1), and (2)

δ(sjp
, x1) + δ(x1, sid+1) < δ(sjp

, x2) + δ(x2, sid+1). (3)

▷ Claim 2. If x1 dominates x2, then

c(ι1 = (r, x1, νp, νd, ip, jp, id, jd)) < c(ι2 = (r, x2, νp, νd, ip, jp, id, jd)).

Proof. The insertions ι1 and ι2 differ only in the transfer point. Thus, if the vehicle detour
as well as the rider trip time incurred for x1 is smaller than for x2, the cost of ι1 will be
smaller than that of ι2.

Conditions (1) and (2) ensure that the vehicle detour is smaller for x1 than for x2. This
also guarantees that the added trip times for existing passengers of νp and νd will not be
larger for x1 than for x2.

For the rider trip time, it suffices to make sure that the arrival time at sid+1 is smaller for
x1 than for x2. This is more complex than the issue of detours, though, since the departure
time at the transfer point is determined by whether the pickup vehicle or the dropoff vehicle
arrives sooner. Assume that the pickup vehicle departs at sjp at time tdep(sjp) after making
the detour for the pickup. Similarly, let tdep(sid

) describe the time at which the dropoff
vehicle leaves sid

. Then, the arrival time of the pickup and dropoff vehicles at transfer point
x can be characterized as tp

arr(x) := tdep(sjp
) + δ(sjp

, x) and td
arr(x) := tdep(sid

) + δ(sid
, x),

respectively. The trip time until sid+1 is ttrip(x) := max
{

tp
arr(x), td

arr(x)
}

+δ(x, sid+1). Thus,
we need to show that ttrip(x1) < ttrip(x2) if x1 dominates x2. We consider two cases:

Case 1 : Assume tp
arr(x1) ≤ td

arr(x1). Then,

ttrip(x1) = td
arr(x1) + δ(x1, sid+1)

= tdep(sid
) + δ(sid

, x1) + δ(x1, sid+1)
(2)
< tdep(sid

) + δ(sid
, x2) + δ(x2, sid+1)

= td
arr(x2) + δ(x2, sid+1) ≤ ttrip(x2).

Case 2 : Assume tp
arr(x1) > td

arr(x1). Then,

ttrip(x1) = tp
arr(x1) + δ(x1, sid+1)

= tdep(sjp) + δ(sjp , x1) + δ(x1, sid+1)
(3)
< tdep(sjp

) + δ(sjp
, x2) + δ(x2, sid+1)

= tp
arr(x2) + δ(x2, sid+1) ≤ ttrip(x2). ◀

ATMOS 2025

15:22 Exact and Heuristic Dynamic Taxi Sharing with Transfers

B Additional Information on Benchmark Instances

00:00 06:00 12:00 18:00 24:00 30:00
0

100

200

300

(a) Berlin-1pct.

00:00 06:00 12:00 18:00 24:00 30:00
0

1,000

2,000

3,000

(b) Berlin-10pct.

(c) Origins in Berlin-1pct. (d) Destinations in Berlin-1pct.

(e) Origins in Berlin-10pct. (f) Destinations in Berlin-10pct.

Figure 4 Additional information on Berlin-1pct and Berlin-10pct input instances. Histograms
of distribution of requests over time (Figures 4a–4b, bin width of 15 minutes). Spatial distribution
of requests (Figures 4c–4f).

A Model for Strategic Ridepooling and Its
Integration with Line Planning
Lena Dittrich1 #

Department of Mathematics, RPTU University Kaiserslautern-Landau, Germany

Michael Rihlmann #

Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany

Sarah Roth #

Department of Mathematics, RPTU University Kaiserslautern-Landau, Germany

Anita Schöbel #

Department of Mathematics, RPTU University Kaiserslautern-Landau, Germany
Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany

Abstract
Ridepooling becomes more and more popular and providing comfortable and easy-to-use trans-
portation (nearly as taxi rides) is known to motivate passengers to use public transport. In this
paper we develop a model for strategic planning of ridepooling. Here we decide in which regions
ridepooling should be offered and what capacities are needed, neglecting the operational details of
dial-a-ride planning. We use this model for integrating ridepooling and line planning, and analyze
the integrated model theoretically and numerically. Our experiments show the potential of the
approach.

2012 ACM Subject Classification Applied computing → Transportation; Applied computing →
Decision analysis

Keywords and phrases Multi-modal planning, Line plan, Ridepooling, Integrated models

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.16

Funding Lena Dittrich: Funded by BMBF Project number 05M22UKB (SynphOnie).
Sarah Roth: Funded by BMBF Project number 05M22UKB (SynphOnie).

Acknowledgements We want to thank Prof. Dr.-Ing. Markus Friedrich and Julian Zimmer from
Institut für Straßen- und Verkehrswesen at University of Stuttgart for providing us with some
estimations for realistic input parameters of our models. We also want to thank Ricardo Reicherz
who developed and implemented a heuristic for the classic dial-a-ride problem.

1 Motivation

Line planning is an important step in public transport optimization and numerous papers on
the topic exist in the literature, ranging from the now 100 years old paper of [15] to very
recent surveys [21, 22] summarizing the various models that have been developed for line
generation, line selection, frequency setting, their integration, the different underlying routing
models and robustness issues. Typically, in line planning, the task is to choose a set of lines
and assign frequencies to the lines. Determining a timetable which is then implemented in
practice is usually a separate problem.

In regional areas or outside the main traffic hours, schedule-based transportation with
large buses is often replaced by smaller vehicles operating on a demand-based and more
flexible basis. Such systems are often called ridepooling. Passengers can request a ridepooling

1 corresponding author

© Lena Dittrich, Michael Rihlmann, Sarah Roth, and Anita Schöbel;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 16; pp. 16:1–16:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lena.dittrich@math.rptu.de
https://orcid.org/0009-0006-6093-2610
mailto:michael.rihlmann@itwm.fraunhofer.de
https://orcid.org/0009-0007-5639-583X
mailto:s.roth@math.rptu.de
https://orcid.org/0009-0005-3681-4465
mailto:anita.schoebel@rptu.de
https://orcid.org/0000-0002-9306-5529
https://doi.org/10.4230/OASIcs.ATMOS.2025.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

16:2 A Model for Strategic Ridepooling and Its Integration with Line Planning

vehicle for a trip from one location to another at a specific time. An operator decides about
the routes of the ridepooling vehicles and schedules the specific requests of the passengers.
There is a growing offer of ridepooling services across Europe. In Italy, for example, there
are about ten bigger projects of on-demand services in the area between Milan and Florence.
In Germany, the operator MOIA services cities like Hamburg and Hannover (c.f. [14]). In
the UK, there are, e.g., the West Midlands Bus on Demand service [28] and the On-Demand
Rideshare in Birmingham [1].

The operational details of scheduling the requests in ridepooling have been researched
extensively. The underlying model is called the (online) dial-a-ride problem, which has
already become popular in the 80s of the previous century often with an application to
scheduling trips of elderly persons (e.g. [3], [12], see [25] for a survey), but is nowadays
researched again (see e.g. [9], [11], and [29] for a survey), also with the perspective of future
self-driving cars in mind. However, the strategic aspects of ridepooling, i.e., to identify where
in the network ridepooling areas are needed and with how many vehicles they should be
operated have to the best of our knowledge not been modeled and treated algorithmically so
far. This is in particular important when designing a multi-modal transport system in which
both, lines and ridepooling vehicles, operate. Then it is important to understand whether
the two modes (regular bus lines and ridepooling) compete or complement each other.

The goal of this paper is to design a public transport system which consists of regularly
operated bus lines as well as ridepooling services. This means we want to treat line planning
and ridepooling simultaneously. As a first step towards this goal, we need a model for
strategic ridepooling in which we disregard operational details, similarly to how line planning
is a preparatory step to determining a timetable to implement. Our contribution is hence
the following.
1. We develop a model for strategic ridepooling: Given some demand, which ridepooling

areas are needed and with how many vehicles should they be operated?
2. We integrate line planning and strategic ridepooling to plan lines and ridepooling areas

simultaneously.
3. We analyze the resulting model, its complexity status and give bounds on its objective

function value.
4. Our experiments are promising: Problems can be solved for small and medium instances

and show reasonable results. We discuss how optimal solutions and the runtime of the
model vary depending on the input parameters.

The remainder of this paper is structured as follows: Based on the known cost model
of line planning (described in Section 2.1) we develop a model for strategic ridepooling in
Section 2.2. The ridepooling model requires a set of potential ridepooling areas with given
vehicle frequencies. In Section 2.3 the construction of this input data is discussed.

The integrated ridepooling and line planning model is stated and analyzed in Section 3.
In Section 4, results from numerical experiments are presented. We conclude in Section 5.

2 Strategic Planning of Ridepooling Areas

2.1 Line Planning
Line planning is well known in the literature, see [6] for a survey. Nevertheless, there are
two reasons why we briefly introduce line planning here. First, the model we propose for
strategic ridepooling is analogous to the basic line planning model. Second, in Section 3 we
integrate the two tasks: planning lines and planning ridepooling services.

L. Dittrich, M. Rihlmann, S. Roth, and A. Schöbel 16:3

Let PTN = (V, E) be a public transport network where V is a set of stops and the set
of edges E consists of the direct links between pairs of stops. A line is a path in the PTN.
Usually, it is assumed that a set of potential lines, the so-called line pool LPool is given. The
goal is to choose a set L of lines from the line pool (line selection) and to assign frequencies
to them such that every edge in the PTN on which passengers wish to travel is covered by a
line. The frequency fl is defined as the number of runs of line l ∈ L within a given planning
interval T . The chosen lines L are called a line plan. The lines l ∈ L together with their
frequencies fl are called a line concept.

The line planning problem may involve many different constraints, and many different
approximations of a reasonable objective function exist. For our investigations we use the
basic version of the cost model of [5], see also [23]: Let LPool be a given set of potential lines.
We assume that for every line l ∈ LPool the costs l-costl for operating it once from its first
to its last station are known. These costs depend on the length of the line and on the time
needed to drive from its first to its last station. As decision variables we use the frequencies
fl for all l ∈ LPool. We require them to be non-negative and integral. A frequency of fl = 0
means that line l is not selected in the line plan. The cost model of line planning reads as

min
∑

l∈LPool

l-costl · fl

s.t. Le ≤
∑

l∈LPool:e∈l

fl ≤ Ue ∀e ∈ E (1)

fl ∈ IN0 ∀l ∈ LPool.

It minimizes the sum of costs for operating the selected lines. The constraints ensure
that there is the right amount of “frequency” along every edge. The lower bounds Le usually
stem from a passenger-oriented consideration: In a first step, passengers are routed along
shortest paths in the PTN. This gives an amount of wmin

e passengers wishing to travel along
edge e. Assuming that all vehicles have the same capacity l-cap the values Le are chosen as
Le :=

⌈
wmin

e

l-cap

⌉
, where wmin

e is the number of passengers who wish to travel along this edge.
The upper bounds Ue can represent capacity constraints to restrict the number of vehicles
that pass along an edge in the planning period. The cost model as stated above has been
used, e.g., in [27, 7, 17, 18].

For the usage in the current paper, we transform constraint (1) that currently bounds
the frequency directly to instead bound the total capacity for transporting passengers on
each edge. I.e., we use the passenger data wmin

e as lower bound instead of a lower bound on
the frequencies. Instead of rounding the number of vehicles needed on every edge, we now
require directly that all passengers are transported, i.e.,∑

l∈LPool:e∈l

l-cap · fl ≥ wmin
e

for every edge e ∈ E. Defining wmax
e := Ue · l-cap hence results in the (equivalent) line

planning model used in this paper:
Given a PTN with lower and upper bounds wmin

e , wmax
e for every edge e ∈ E, a line pool

LPool with costs l-costl for every line l ∈ LPool, and a capacity l-cap for a vehicle operating
on the lines, the line planning model is the following.

ATMOS 2025

16:4 A Model for Strategic Ridepooling and Its Integration with Line Planning

Line Planning (LC) (Finding a line concept)

min
∑

l∈LPool

l-costl · fl (LC)

s.t. wmin
e ≤

∑
l∈LPool:e∈l

l-cap · fl ≤ wmax
e ∀e ∈ E

fl ∈ IN0 ∀l ∈ LPool.

2.2 A new Model for Planning Ridepooling Areas
In order to combine line planning and ridepooling decisions on a strategic level, we need a
model for ridepooling that leaves out the operational details such as which exact route which
ridepooling vehicle travels at which time to cover which request. While these operational
details are changing scenario-dependently from hour to hour and from day to day, we are
interested in average passenger numbers as they are also used for line planning. In this
section we develop a ridepooling model analogous to the cost model (LC) of line planning
described in the previous section.

Let us again assume that a PTN=(V, E) is given and that we want to cover all the
demand. However, here we want to cover the demand by ridepooling and not by bus lines.
The main idea is to introduce ridepooling areas in which the same ridepooling provider offers
a transportation service. This is in many regions common practice: only if the origin and
the destination of a trip belong to a pre-specified area, a passenger is allowed to request a
ridepooling vehicle for this trip. Such ridepooling areas may have different sizes and shapes.
In a first step, we construct a pool RPool of such ridepooling areas. This is analogous to the
idea of using a line pool LPool in the line planning problem. In line planning, the frequency
fl of a selected line l must be chosen so that there is enough capacity on every edge to
transport all passengers. For ridepooling we proceed analogously and allow to adapt the
supply to the demand. More precisely, for each ridepooling area in the pool we choose the
number of ridepooling vehicles vr that serve this area such that the demand along every edge
is covered.

More formally, we define a ridepooling area r as a set of edges r ⊆ E. A ridepooling
area r is called connected, if its induced graph Gr := (V (r), r) is a connected graph where
V (r) := {v ∈ V : v is incident with an edge e ∈ r} contains the endpoints of the edges in r.
While connectedness is usually required in practice, it is technically not needed for our model.
For each ridepooling area we determine the number of vehicles for this ridepooling area.

Note that a line (i.e. a path in the PTN) can be interpreted as a special case of a
ridepooling area in which the vehicles move along pre-determined trips instead of moving
around freely within their assigned area. However, there is a difference: If a line l runs with
a specific frequency, say, fl = 3, all edges e ∈ l are visited three times per planning period.
A ridepooling vehicle, on the other hand, does not need to visit all edges with the same
frequency, but could visit a specific edge more often than others. Hence, a ridepooling area
has a higher flexibility than a line. We take this into account by introducing a new parameter

αr,e as the vehicle frequency of edge e ∈ E

for ridepooling area r ∈ RPool. The vehicle frequency αr,e says how often a single vehicle
from ridepooling area r ∈ RPool visits edge e ∈ E on average within the planning interval T .
Since the demand changes from day to day, αr,e can only be an approximation. The product
αr,e · vr gives us the number of times edge e is served within the planning period T . This is
hence analogous to the frequency for the edges of a line.

L. Dittrich, M. Rihlmann, S. Roth, and A. Schöbel 16:5

Table 1 Comparison of models for line planning and strategic ridepooling.

Line planning Ridepooling

Pool Pool of lines LPool Pool of ridepooling areas RPool

Supply Frequencies of lines fl Number of vehicles in ridepooling
areas vr

Distribution on edges Frequency fl is the same for all
edges e ∈ l

Vehicle frequencies αr,e allow edge-
dependent frequencies for edges
e ∈ r

Cost Depends linearly on the frequency
of a line

Depends linearly on the number of
vehicles

Given a PTN with lower and upper bounds wmin
e , wmax

e for every edge e ∈ E, a pool of
ridepooling areas RPool with costs r-costr for every ridepooling area r ∈ RPool, values αr,e

for every r ∈ RPool, e ∈ E and a capacity r-cap for the ridepooling vehicles, the resulting
strategic ridepooling model (RP) is the following.

Strategic Ridepooling (RP)

min
∑

r∈RPool

r-costr · vr (RP)

s.t. wmin
e ≤

∑
r∈RPool:e∈r

αr,e · r-cap · vr ≤ wmax
e ∀e ∈ E

vr ∈ IN0 ∀r ∈ RPool.

Since lines can be seen as special ridepooling areas, (LC) is a special case of (RP):

▶ Lemma 1. Model (LC) for line planning is a special case of the model for strategic
ridepooling (RP).

This directly clarifies the complexity status of (RP) (see Appendix C.1 for a formal
proof).

▶ Corollary 2. (RP) is NP-hard, even if we require that all ridepooling areas are simple
paths.

Table 1 compares the setting for line planning and strategic ridepooling.

2.3 Vehicle Frequencies
(RP) needs not only ridepooling areas as input but also vehicle frequencies αr,e. We now
discuss how reasonable values for αr,e can be found. Recall that for each ridepooling vehicle
assigned to the ridepooling area r ∈ RPool, αr,e says how many times, on average, it traverses
the edge e ∈ r within the planning period T . Let r be a ridepooling area. We want to find
values αr,e such that:

The values reflect the demand, i.e., edges with high demand should be visited more often
(on average) than edges with low demand. The goal is to be as proportional to the traffic
loads as possible.
The values should also be realizable by the ridepooling vehicles in the following sense:
There exists a set of tours, one for each vehicle, such that the number of visits of a vehicle
at an edge is proportional to αr,e.

ATMOS 2025

16:6 A Model for Strategic Ridepooling and Its Integration with Line Planning

In this section we show how values αr,e which are realizable and rather proportional to
the demand can be found. Since we do not know a priori how many vehicles will be assigned
to ridepooling area r, the idea is to construct one feasible tour for the (average) vehicle
which visits every edge approximately proportional to its traffic load.

Let de be the time needed to drive along the edge e ∈ E. Due to the definition of αr,e,
namely the average number of visits of edge e in one period T , we receive∑

e∈r

αr,e · de ≤ T for every ridepooling area r ∈ RPool.

An “optimal” set of values for αr,e would be proportional to the number Le of visits
needed to transport all passengers, i.e., to

Le :=
⌈

wmin
e

r-cap

⌉
.

Let us assume that a tour C that visits each edge e exactly Le times exists. Then C has a
duration DL

r of

DL
r =

∑
e∈r

Le · de.

A single vehicle can drive tour C at most T
DL

r
times within the planning period T . We hence

have that every edge is traversed α∗
r,e := Le · T

DL
r

times within period T , i.e., the values α∗
r,e

are proportional to Le and are realizable if all vehicles of the ridepooling area always drive
along the tour C. This is hence the best possible case.

Let us first answer the question when such a tour that visits each edge exactly Le times
exists. To this end we look for a Euler cycle. We do not use the graph Gr of the ridepooling
area r, but we build a multigraph G′

r which reflects the given demand structure. G′
r has

the same node set as Gr, but the number of edges between two nodes corresponds to the
minimum number of times a vehicle needs to drive between them to cover the passenger
demand. Formally, let Gr = (V (r), r) be given. Then we construct G′

r = (V (r), E(r))
with the same set of nodes as Gr and for every edge e = (u, v) ∈ r of Gr we introduce
Le :=

⌈
wmin

e

r-cap

⌉
edges between u and v in G′

r. Note that the values Le are often assumed to
be given right from the start in line planning. We receive the edge set

E(r) :=
⋃

e=(u,v)∈r

{(u, v)1, . . . , (u, v)Le
}.

▶ Lemma 3. Let r ∈ RPool. Then there exists a tour which visits every edge e ∈ r exactly
α∗

r,e times if and only if every node in G′
r has even node degree.

Proof. This is due to the well-known fact that an Euler tour in a graph exists if and only if
all node degrees are even. ◀

Even node degrees need not always be the case in G′
r. We hence add further edges to

the multigraph so that every node in the graph has an even node degree. This results in Ne

edges per original edge e ∈ r. One (heuristic) way to determine Ne is to replace every edge
e ∈ r not by Le but Ne edges, where

Ne :=
{

Le if Le is even,
Le + 1 if Le is odd.

We call the resulting multigraph with even node degrees G′′
r .

L. Dittrich, M. Rihlmann, S. Roth, and A. Schöbel 16:7

The multiplicities of the edges can then be transformed to the vehicle frequencies of
ridepooling area r: The graph G′′

r hence contains an Euler cycle whose duration is

DN
r =

∑
e∈r

Ne · de.

Within the planning period T a vehicle can make this trip T
DN

r
times. This means that every

edge e ∈ r is traversed Ne · T
DN

r
times. Hence, for all e ∈ r define αr,e := Ne · T

DN
r

.
We summarize what we have obtained, for the proof see Appendix C.2.

▶ Lemma 4. The values αr,e := Ne · T
DN

r
for all r ∈ RPool, e ∈ r

can be computed in polynomial time,
can be realized, i.e., there exists a set of tours for the vehicles such that the values αr,e

equal the number of average visits of a vehicle on the edge e in ridepooling area r within
period T ,
and for all e ∈ r they satisfy that

αr,e − α∗
r,e ≤ T · Le ·

∑
e∈r:Le odd

de

(DL
r)2+DL

r ·
∑

e∈r:Le odd
de

≤ α∗
r,e

αr,e − α∗
r,e ≥

{
− T

DL
r

if Le is odd,
0 if Le is even.

Part 3 of Lemma 4 shows that the gap between αr,e and α∗
r,e is bounded. The lower and

upper bounds on the gap have an intuitive interpretation: The smallest possible gap for an
edge e depends on whether or not the constructed multigraph G′′

r has “too many”, i.e., more
than Le edges corresponding to e. The upper bound on the gap depends on how many edges,
overall throughout the whole ridepooling area r have too many corresponding edges in the
multigraph. From the upper bound we additionally get that αr,e ≤ 2α∗

r,e.

The resulting values αr,e have been evaluated and tested compared to solutions for the
classic dial-a-ride problem showing very promising results: A simple insertion heuristic for
the classic dial-a-ride problem has been implemented in LinTim ([20]). A more detailed
description of the heuristic can be found in Appendix B.

The heuristic and the vehicle frequencies were tested on a five by five grid network for
randomly generated demand and a maximum detour factor of 2, i.e., passengers might have
to make detours, but these are restricted by the (travel) length of a shortest path, meaning
the length of their trip is bounded by twice the length of a shortest path. The number of
vehicles resulting from the vehicle frequencies αr,e is only slightly lower as the number of
vehicles required by the insertion heuristic. Assuming that the heuristic solutions are not
always optimal, i.e., it is probably possible to serve the passengers with slightly fewer vehicles,
the number of vehicles from the optimal solution of (RP) appears to be a good estimation.

This procedure for defining the vehicle frequencies αr,e can be further generalized by,
instead of replacing each edge e ∈ r of a ridepooling area r ∈ RPool by Ne edges, replacing
it by Me ∈ IN edges such that the resulting multigraph G′

r is connected and every node
has even degree. Then, the resulting vehicle frequencies for all e ∈ r are αr,e = Me · T

DM
r

where DM
r =

∑
e∈r Me · de. Also completely other methods to obtain values for the vehicle

frequencies are possible, e.g., simulations.

Note that the direction of the passenger demand has been disregarded in the construction
of the vehicle frequencies αr,e. However, passengers tend to have a preferred direction for
their journey. The strategic ridepooling model (RP) can also be considered with a directed
graph as the underlying network. The construction of the vehicle frequencies αr,e works

ATMOS 2025

16:8 A Model for Strategic Ridepooling and Its Integration with Line Planning

analogously to the undirected case described above, using the well-known fact that a directed
graph has a Euler cycle if and only if it is strongly connected and for each vertex the in-degree
equals the out-degree.

We remark that it is allowed to include the same ridepooling area multiple times with
different vehicle frequencies in the ridepooling pool RPool. This offers more flexibility for the
model and potentially improves the resulting solutions. However, it also increases the size of
the problem, making it more difficult to solve.

3 Integrating Line planning and Strategic Planning of Ridepooling
Areas

In Section 2, key differences between line-based and demand responsive public transport
have been discussed. Ideally, when designing a public transport system, both modes are
established in a way that utilizes their strengths and advantages such that they complement
each other. We now propose a model for the integrated planning of a line network and
ridepooling areas by combining (LC) with the strategic ridepooling model (RP).

In this combination we are again not interested in the specific routes the ridepooling
vehicles should drive for a specific scenario, but we have the strategic aspects in mind. Let
us mention that there exist a few papers integrating line planning with ridepooling in the
operational planning in the following sense: Passengers’ requests can be covered not only by
ridepooling vehicles but passengers can also be routed with legs using the existing (and fixed)
public transport system. This problem is called Integrated Dial-A-Ride Problem (IDARP),
see [16].

In contrast to (IDARP) we do not assume the public transport system as fixed, but we
aim at planning the lines and their frequencies simultaneously with setting up the ridepooling
system. As already said we are furthermore not interested in the operational details, but
plan strategically.

In our integrated model we minimize the overall costs, which are the sum of costs of
the line network and the ridepooling vehicles. The demand may be covered by lines and
by ridepooling areas. The combined problem (LC+RP) hence aims at determining the
frequencies fl and the number of vehicles vr for all l ∈ LPool and all r ∈ RPool.

min
∑

l∈LPool

l-costl · fl +
∑

r∈RPool

r-costr · vr (LC+RP)

s.t. wmin
e ≤

∑
l∈LPool:

e∈l

l-cap · fl +
∑

r∈RPool:
e∈r

r-cap · αr,e · vr ≤ wmax
e ∀e ∈ E

fl, vr ∈ IN0 ∀l ∈ LPool, r ∈ RPool.

Both separate problems (LC) and (RP) are NP-complete, which shows the complexity of
the integrated model (LC+RP).

▶ Corollary 5. (LC+RP) is NP-complete.

In the following we present an analysis of (LC+RP) including bounds and valid inequalities.
We also state that by variable fixing we receive (LC) and (RP) again. These results lay the
basis for future research on algorithms for solving (LC+RP). The proofs of the following
results can all be found in Appendix C.3.

L. Dittrich, M. Rihlmann, S. Roth, and A. Schöbel 16:9

Since (LC+RP) is a combination of (LC) and (RP), feasible solutions for the separate
problems immediately yield feasible solutions for the integrated problems, which, in turn,
yield upper bounds for the optimal objective function value of (LC+RP).

▶ Theorem 6. The optimal objective function values z(LC) and z(RP) of (LC) and (RP)
yield upper bounds for the optimal objective function value z(LC+RP) of LC+RP:

z(LC+RP) ≤ min{z(LC), z(RP)}

The demand on all edges needs to be covered sufficiently by lines or ridepooling areas. In
some cases and for some edges, this yields a valid inequality.

▶ Theorem 7. Let e ∈ E.
If there exists a ridepooling area r ∈ RPool such that e ∈ r and for all r′ ∈ RPool\{r} we
have e /∈ r′ and for all l ∈ LPool we have e /∈ l, then in any feasible solution for (LC+RP)
it holds that vr ≥

⌈
wmin

e

r-cap·αr,e

⌉
.

If there exists a line l ∈ LPool such that e ∈ l and for all l′ ∈ LPool\{l} we have e /∈ l′

and for all r ∈ RPool we have e /∈ r, then in any feasible solution for (LC+RP) it holds
that fl ≥

⌈
wmin

e

l-cap

⌉
.

Finally, fixing part of a solution for (LC+RP) leads, again, to an instance of (LC+RP).

▶ Theorem 8. Let LPool
fixed ⊆ LPool and fl ∈ IN for all l ∈ LPool

fixed, RPool
fixed ⊆ RPool and vr ∈ IN

for all r ∈ RPool
fixed, such that for all e ∈ E it holds that∑

l∈LPool
fixed :e∈l

l-cap · fl +
∑

r∈RPool
fixed :e∈r

r-cap · αr,e · vr ≤ wmax
e .

Then, the remaining problem of optimizing fl and vr for l ∈ LPool\LPool
fixed and r ∈ RPool\RPool

fixed
is an instance of (LC+RP).

This result yields that fixing fl leads to a problem of type (RP) and fixing vr leads to a
problem of type (LC). This means, iterative solution approaches are possible.

▶ Corollary 9. The following holds in the same setting as Theorem 8:
Fixing the ridepooling variables vr for all r ∈ RPool such that

∑
r∈RPool:e∈r r-cap·αr,e ·vr ≤

wmax
e leads to an instance of (LC).

Fixing the line frequency variables fl for all l ∈ LPool such that
∑

l∈LPool:e∈l l-cap · fl ≤
wmax

e leads to an instance of (RP).

4 Numerical Experiments

The model (LC+RP) has been implemented in the software toolbox LinTim ([20]) and tested
on different instances and for different input parameters. The MIP formulations were solved
using Gurobi 11.0.1 [10]. In this section, first an example is introduced and its solution is
described in Section 4.1. Then interpretations and observations about properties of solutions
are discussed in Section 4.2. Different experiments and results regarding the runtime of the
model are presented in Section 4.3.

We test our model on three different instances of varying size. All three networks are still
smaller than real-life instances, and further tests on larger networks are conceivable.

ATMOS 2025

16:10 A Model for Strategic Ridepooling and Its Integration with Line Planning

Table 2 Input parameters for the example in Section 4.1.

l-costfixed l-costdist r-cost l-cap r-cap
8 4 60 42 6

For our experiments, we need a method for line pool generation. Line Pool generation
is its own area of research (see [8] and references therein) and the underlying line pool can
have a big impact on the quality of the resulting solution. For our experiments we want a
line pool that is large enough to offer sufficient flexibility for the model but also not so large
as to render the model too complex to solve. In all experiments we used the same method
for line pool generation which we describe next: First, a basic line pool is computed with
the LinTim-method k_shortest_paths [20, p.33]: For each OD-pair we compute k shortest
paths with k = 3. Afterwards only those paths are added to the line pool, that are not
already contained in other paths. When planning a line service and a ridepooling service
simultaneously it can be beneficial to also have shorter versions of the lines in the line pool,
to allow peripheral areas to be covered more by ridepooling areas. Therefore, in Sections 4.1
and 4.2 in which we provide an example solution and an analysis of properties of solutions,
we added for each line also the copies of the line to the line pool, where the first and the last
edge are trimmed on each of the two ends separately and also on both ends. In Section 4.3,
where we give an analysis of the runtime of (LC+RP), copies of lines where not just one but
up to two edges have been trimmed on one or both ends of the lines have been added to the
line pool of k_shortest_paths, resulting in an even larger line pool. The cost of each line
is computed by an affine-linear function:

l-costl = l-costfixed +
∑
e∈l

l-costdist · de.

4.1 Example
For this example we use the LinTim-dataset Mandl, based on [13], which is depicted in
Figure 1a.

The ridepooling pool RPool for this example contains all connected subgraphs with at
most five edges. The ridepooling vehicle costs are the same for each ridepooling area, i.e.,
r-costr = r-cost for all r ∈ RPool.

Realistic input parameters, especially for the costs, can be difficult to estimate, since they
can vary greatly based on assumptions about the vehicles utilized in practice: electric vehicles
have lower operating costs than those with a combustion engine but are, currently, more
expensive. In the future, it is likely that public transport vehicles will drive autonomously,
rendering the driver and hence also their salary unnecessary. The input parameters used for
the example in this section can be seen in Table 2.

The passenger demand is represented by edge loads depicted in Figure 1b. There are 10
passengers who wish to travel on the edges 1 through 5 and 50 passengers for the edges 17,
18, 20 and 21. The remaining edges have a much higher passenger demand of 1000 passengers
per edge. Such a structure of passenger demand, while artificially created and rather simple,
is not very far from many realistic scenarios: Large cities often have a high passenger volume
while neighboring suburban areas typically have lower passenger demand.

The resulting optimal solution is shown in Figure 2. The area of the network with very
high demand is covered exclusively by lines, while the two smaller areas with lower demand
are supplied by ridepooling services. One of the areas is covered only by a ridepooling area,

L. Dittrich, M. Rihlmann, S. Roth, and A. Schöbel 16:11

(a) The PTN. (b) Passenger demand.

Figure 1 The network Mandl for the example in Section 4.1.

(a) Line Concept. (b) Ridepooling areas.

Figure 2 Optimal solution of (LC+RP) on the Mandl dataset.

while the other also has some line service. It shows that, while line-based public transport is
very useful for areas with high passenger demand, the smaller, cheaper and more flexible
ridepooling vehicles are a useful alternative wherever there are not enough passengers to fill
a whole line vehicle.

4.2 Ridepooling Percentage
We want to evaluate solutions of (LC+RP), in particular we are interested to visualize in
which parts of the network ridepooling is offered instead of classic lines. To this end, we need
a measure for the amount of capacity offered by ridepooling. We introduce the ridepooling
percentage for a solution (fl, vr) of (LC+RP).

First, for each edge e ∈ E there is a certain amount of capacity in the chosen lines and
ridepooling areas that contain the edge:

Line-Cape :=
∑

l:e∈l fl · l-cap
RP-Cape :=

∑
r:e∈r αre · vr · r-cap

Then the ridepooling percentage on the edge is defined as follows:

RP-percentagee := RP-Cape

Line-Cape + RP-Cape

ATMOS 2025

16:12 A Model for Strategic Ridepooling and Its Integration with Line Planning

Figure 3 Edge Loads.

For the whole network, the ridepooling percentage is defined analogously:

RP-percentage =
∑

e∈E RP-Cape∑
e∈E Line-Cape + RP-Cape

The ridepooling percentage can be used to visualize (optimal) solutions computed for
different input parameters. We observe that the ridepooling percentage and hence the shape
of the optimal solution strongly depends on the ratio of the costs of the ridepooling vehicles
and the lines.

Figure 4 shows the ridepooling percentage on each edge of the network. The cost of the
ridepooling vehicles varies, while all other input parameters stay the same. The ridepooling
pool contains all connected subgraphs of the network with at most five edges, the line pool,
as in Section 4.1, was computed using the k_shortest_paths method and then adapted by
adding subpaths of already existing lines. The passenger demand is given by edge loads, which
are shown in Figure 3. The line costs are computed using l-costfixed = 10 and l-costdist = 5.
The line vehicle capacity is l-cap = 60 and the ridepooling vehicle capacity is r-cap = 5. We
vary the costs for the ridepooling vehicle using 10,20,30, and 40 as input parameters.

All solutions depicted in Figure 4 are either optimal or have an optimality gap of less
than 3%.

For increasing the cost of the ridepooling vehicles, we observe that the ridepooling
percentage overall decreases and fewer edges are covered by ridepooling. Typically, ridepooling
vehicles are smaller than line vehicles such as buses. As the cost of the ridepooling vehicles
increases, only areas of the network with low demand are covered by ridepooling areas:
wherever there is not enough passenger demand to justify introducing a large and expensive
line vehicle, on-demand transport with its smaller and cheaper vehicles is a good alternative.

Ridepooling can also be useful as an addition in areas with high passenger demand.
For instance, if there already is a line network but in some areas the passenger demand is
exceptionally high, then ridepooling can be introduced to supplement the line based public
transport system. This effect can be observed in the solution with r-cost = 20 in Figure 4.

Generally, the more passengers there are the more useful large line vehicles become, since
the cost per passenger is small if the demand is high enough. Figure 5 investigates what
happens when we increase the demand. It shows the ridepooling percentage when increasing
the edge loads, where we assume the same amount of passenger demand on each edge of
the Mandl network (see Figure 7b), and the same input parameters as for the solutions in
Figure 4. Not all depicted solutions are optimal, but all have an optimality gap below 5%.

Basically, we observe that a higher amount of passenger demand leads to a lower the
overall ridepooling percentage. However, this is not a strict rule. The capacity of the line
vehicles is l-cap = 60, which could explain some of the non-monotonicity of the graphs in

L. Dittrich, M. Rihlmann, S. Roth, and A. Schöbel 16:13

(a) r-costr = 10. (b) r-costr = 20.

(c) r-costr = 30. (d) r-costr = 40.

Figure 4 The effect of the cost of ridepooling vehicles on the ridepooling percentage of each edge.

(a) Ridepooling percentage with respect to edge
loads of 10, 20, . . . , 100.

(b) Ridepooling percentage with respect to edge
loads of 100, 200, . . . , 1000.

Figure 5 RP-percentage for constant edge loads.

ATMOS 2025

16:14 A Model for Strategic Ridepooling and Its Integration with Line Planning

Figure 5: whenever dividing the edge loads by the line vehicle capacity l-cap leaves a large
remainder, the ridepooling percentage is smaller. When the remainder is small, then instead
of using line vehicles with empty seats, the passengers can be transported using smaller
ridepooling vehicles instead and the ridepooling percentage becomes larger. This effect is
known as step-fixed costs.

4.3 Runtime
To analyze the impact of ridepooling (RP) to the integrated line planning and ridepooling
problem (LC+RP) we use three instances varying in size and three different sized ridepooling
pools. The dataset Toy is a small artificial instance consisting of 8 stops, while the larger
datasets Mandl [13] and Sioux-Falls [26] are based on real-world data with 15 stops and 24
stops, respectively. The PTNs of the three instances are shown in Figure 7 in Appendix A.

With each dataset we performed four computations: As a benchmark, we solve the line
planning problem (LC). The integrated line planning and ridepooling problem (LC+RP) is
solved with a small, a medium-sized and a large pool of ridepooling areas RPool. We use the
same line pool LPool throughout the four runs.

The ridepooling pool includes connected subgraphs of the PTN induced by at least lN
and at most uN nodes. Table 3 shows the values of lN and uN for the three considered PTNs.
For each node v of the PTN one induced connected subgraph containing v with exactly i

nodes for lN ≤ i ≤ uN is chosen randomly. The ridepooling pools for a fixed dataset are
constructed such that smaller ridepooling pools are subsets of the larger pools. For a more
detailed description of the algorithms for the generation of potential lines and potential
ridepooling areas in these experiments, see our Software Library LinTim [20].

Table 3 Number of nodes of the induced subgraphs used as areas in the different sized ridepooling
pools.

small medium large
lN uN lN uN lN uN

Toy 3 3 3 4 2 4
Mandl 3 5 3 7 3 10
Sioux-Falls 3 8 3 10 2 12

The runtime experiments were performed on an Intel(R) Xeon(R) Gold 6240R CPU @
2.40GHz with 380GB memory. Table 4 summarizes the runtime results together with the
sizes of the used line pool and ridepooling pool.

Table 4 Runtime results in seconds for different sized datasets and ridepooling pools. The largest
instance was not solved to optimality within the time limit of 8 hours. The table shows the remaining
optimality gap.

Toy Mandl Sioux-Falls
|LPool| |RPool| time |LPool| |RPool| time |LPool| |RPool| time

(LC)

43

– 0.17

625

– 0.41

1955

– 6.51
(LC+RP) small 6 0.19 41 52.43 135 2699.0
(LC+RP) med 12 1.41 67 75.97 183 9226.25
(LC+RP) large 19 1.42 107 912.14 249 0.297%

L. Dittrich, M. Rihlmann, S. Roth, and A. Schöbel 16:15

(a) Boxplot of the line costs in
the line pool.

(b) Runtimes and ridepooling percentages for varying costs of a
ridepooling vehicle.

Figure 6 The runtime of (LC+RP) depends on the ratio of line and ridepooling costs.

We observe that runtime increases significantly when integrating ridepooling to the line
planning problem. Considering larger ridepooling pools leads to longer runtimes. The
integrated problem with the large ridepooling pool on the Sioux-Falls datasets was not solved
to optimality within the time limit of 8 hours. Table 4 shows the remaining optimality
gap. Note that the cardinalities of the ridepooling pools and the line pools created by the
methods described above do not scale with the same rate, i.e. the ratio of |RPool| and |LPool|
decreases for larger datasets. However, considering larger ridepooling pools would lead to
even longer runtimes.

We also found that the runtime of the integrated line planning and ridepooling problem
highly depends on the relation of the costs of lines determined by l-costfixed and l-costdist to
the costs of a ridepooling vehicle r-cost. To demonstrate the impact, we did multiple runs
on the dataset Mandl with the medium-sized pool and varying costs of ridepooling vehicles.
The line pool and the costs of the lines were the same throughout all runs. Figure 6 shows
on the left a boxplot of the line costs in the line pool and on the right a plot of the runtime
and the ridepooling percentage. Note that the runtime is depicted on a logarithmic scaled
axis. The run for r-cost = 3.25 could not be solved within the time limit of 8 hours. The
remaining gap was 0.0267%.

For low values of r-cost the model was solved very fast and all demand was covered by
ridepooling. High values of r-cost also lead to fast runtimes and solutions with a ridepooling
percentage of nearly 0. In both cases, the demand is covered (almost) only with one of the
two service types. Those types of solutions seem to be found very fast by the model. If the
ratio of the ridepooling and line costs is balanced, there are a lot more possible combinations
of the services to discover and thus the solution process of (LC+RP) is very time consuming.
This seems to be the reason for the curve starting with a small runtime, increasing up
to a maximum and then decreasing again. The overall curve is not concave due to local
disturbances which most likely stem from the effect of step-fixed costs already described at
the end of Section 4.2.

5 Conclusion and further research

In this paper we developed a model for strategic ridepooling which then could be combined
with line planning. We analyze the integrated model theoretically and experimentally. The
results are promising. As future research we mention the following topics:

ATMOS 2025

16:16 A Model for Strategic Ridepooling and Its Integration with Line Planning

First, there is plenty of literature to generate line pools, e.g., [8]. For (RP) and for
(LC+RP) we need a pool of ridepooling areas. A first step of future research is to develop
criteria for good ridepooling areas and use them to design algorithms that construct such a
pool which is reasonable in its size but contains promising areas.

Second, the model (LC+RP) relies on the cost model of line planning. In this model
origin-destination (OD)-pairs are not used, but only their resulting traffic loads wmin

e . This
comes with drawbacks: First, transfers cannot be counted, and second, passengers’ paths
are considered as fixed although they depend on the lines and the ridepooling areas. There
exist extensions to more realistic line planning models in which transfers are accounted for
(e.g., the direct travelers approach [4]) and in which routing of passengers is integrated (see
[2, 24, 19]). In future research we plan to use also such models for integrating line planning
and ridepooling.

More experiments on larger and even real-life instances are a topic of ongoing research.
We are also currently developing a column generation approach for LC+RP to generate
both lines and ridepooling areas within the solution process. Other heuristic approaches for
larger instances could be developed. Furthermore, similarly to how a line concept is used to
determine a timetable in a following step, the operational aspects of a ridepooling service
as planned by LC+RP could be evaluated by applying algorithms for the classic dial-a-ride
problem.

Finally, a further aspect of future research is to consider not only the two modes bus
transportation and ridepooling but also other modes such as metro transportation, car
transportation or even bikes, see [30] for some first ideas on this.

References
1 Birmingham on Demand. Ride for less with Birmingham On-Demand. https://city.

ridewithvia.com/birmingham. Accessed: 2025-07-01.
2 R. Borndörfer, M. Grötschel, and M. E. Pfetsch. A column generation approach to line planning

in public transport. Transportation Science, 41:123–132, 2007. doi:10.1287/TRSC.1060.0161.
3 Ralf Borndörfer, Martin Grötschel, Fridolin Klostermeier, and Christian Küttner. Berliner

Telebussystem bietet Mobilität für Behinderte. Der Nahverkehr, 1:20–22, 1997.
4 M.R. Bussieck, P. Kreuzer, and U.T. Zimmermann. Optimal lines for railway systems. European

Journal of Operational Research, 96(1):54–63, 1997.
5 M.T. Claessens, N.M. van Dijk, and P.J. Zwaneveld. Cost optimal allocation of rail

passenger lines. European Journal on Operational Research, 110:474–489, 1998. doi:
10.1016/S0377-2217(97)00271-3.

6 Javier Durán-Micco and Pieter Vansteenwegen. A survey on the transit network design
and frequency setting problem. Public Transport, 14(1):155–190, 2022. doi:10.1007/
S12469-021-00284-Y.

7 M. Friedrich, M. Hartl, A. Schiewe, and A. Schöbel. Integrating Passengers’ Assignment in
Cost-Optimal Line Planning. In ATMOS 2017, volume 59 of OpenAccess Series in Informatics
(OASIcs), pages 1–16, 2017. doi:10.4230/OASIcs.ATMOS.2017.5.

8 P. Gattermann, J. Harbering, and A. Schöbel. Line pool generation. Public Transport,
9(1-2):7–32, 2017. doi:10.1007/s12469-016-0127-x.

9 Konstantinos Gkiotsalitis and A. Nikolopoulou. The multi-vehicle dial-a-ride problem with
interchange and perceived passenger travel times. Transportation research part C: emerging
technologies, 156:104353, 2023.

10 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL: https://www.
gurobi.com.

11 Andy Ham. Dial-a-ride problem: mixed integer programming revisited and constraint pro-
gramming proposed. Engineering Optimization, 55(2):257–270, 2023.

https://city.ridewithvia.com/birmingham
https://city.ridewithvia.com/birmingham
https://doi.org/10.1287/TRSC.1060.0161
https://doi.org/10.1016/S0377-2217(97)00271-3
https://doi.org/10.1016/S0377-2217(97)00271-3
https://doi.org/10.1007/S12469-021-00284-Y
https://doi.org/10.1007/S12469-021-00284-Y
https://doi.org/10.4230/OASIcs.ATMOS.2017.5
https://doi.org/10.1007/s12469-016-0127-x
https://www.gurobi.com
https://www.gurobi.com

L. Dittrich, M. Rihlmann, S. Roth, and A. Schöbel 16:17

12 Jang-Jei Jaw, Amedeo R. Odoni, Harilaos N. Psaraftis, and Nigel H.M. Wilson. A heur-
istic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows.
Transportation Research Part B: Methodological, 20(3):243–257, 1986.

13 C.E. Mandl. Applied Network Optimization. Academic Press, London, UK, 1979.
14 Moia. Ridepooling in europe. https://www.moia.io/en/blog/ridepooling-in-europe. Ac-

cessed: 2025-07-01.
15 A. Patz. Die richtige Auswahl von Verkehrslinien bei großen Strassenbahnnetzen. Verkehrs-

technik, 50/51, 1925. (in German).
16 Marcus Posada, Henrik Andersson, and Carl H. Häll. The integrated dial-a-ride problem

with timetabled fixed route service. Public Transport, 9(1-2):217–241, November 2017. doi:
10.1007/s12469-016-0128-9.

17 Güvenç Şahin, Amin Ahmadi Digehsara, Ralf Borndörfer, and Thomas Schlechte. Multi-period
line planning with resource transfers. Transportation Research Part C: Emerging Technologies,
119:102726, 2020.

18 A. Schiewe, A. Schöbel, and L. Sieber. Line planning for different demand periods. Operations
Research Forum, 4:92, 2023. doi:10.1007/S43069-023-00268-7.

19 P. Schiewe. Integrated Optimization in Public Transport Planning, volume 160 of Optimization
and Its Applications. Springer, 2020. doi:10.1007/978-3-030-46270-3.

20 Philine Schiewe, Anita Schöbel, Sven Jäger, Sebastian Albert, Christine Biedinger, Thorsten
Dahlheimer, Vera Grafe, Olli Herrala, Klara Hoffmann, Sarah Roth, Alexander Schiewe,
Moritz Stinzendörfer, and Reena Urban. Documentation for lintim 2024.12, 2024. URL:
https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-85839.

21 M. Schmidt and A. Schöbel. Modeling and optimizing transit lines. In S. Parragh and T.V.
Woensel, editors, Handbook on Transport Modeling, Research Handbooks in Transportation
Studies, chapter 16. Edward Elgar Publishing, 2025.

22 M. Schmidt and A. Schöbel. Passenger-oriented and robust transit line planning. In S. Par-
ragh and T.V. Woensel, editors, Handbook on Transport Modeling, Research Handbooks in
Transportation Studies, chapter 17. Edward Elgar Publishing, 2025.

23 A. Schöbel. Line planning in public transportation: models and methods. OR Spectrum,
34(3):491–510, 2012. doi:10.1007/S00291-011-0251-6.

24 A. Schöbel and S. Scholl. Line planning with minimal travel time. In 5th Workshop on
Algorithmic Methods and Models for Optimization of Railways (ATMOS’05), Open Access
Series in Informatics (OASIcs), pages 1–16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2006. doi:10.4230/OASIcs.ATMOS.2005.660.

25 Marius M. Solomon and Jacques Desrosiers. Survey paper – time window constrained routing
and scheduling problems. Transportation science, 22(1):1–13, 1988. doi:10.1287/TRSC.22.1.1.

26 Ben Stabler. Sioux Falls – Github, 2018. URL: https://github.com/bstabler/
TransportationNetworks/tree/master/SiouxFalls.

27 L. M. Torres, R. Torres, R. Borndörfer, and M. E. Pfetsch. Line planning on paths and
tree networks with applications to the quito trolebús system. In Matteo Fischetti and Peter
Widmayer, editors, 8th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’08), Open Access Series in Informatics (OASIcs), pages
1–13, Dagstuhl, Germany, 2008. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/OASIcs.ATMOS.2008.1583.

28 Transport for West Midlands. West midlands bus on demand. https://www.
tfwm.org.uk/plan-your-journey/ways-to-travel/buses-in-the-west-midlands/
on-demand-buses-in-the-west-midlands/. Accessed: 2025-07-01.

29 P. Vansteenwegen, L. Melis, D. Aktaş, B. D. G. Montenegro, F. S. Vieira, and K. Sörensen. A
survey on demand-responsive public bus systems. Transportation Research Part C: Emerging
Technologies, 137:103573, 2022.

30 J. Zimmer, M. Friedrich, and A. Schöbel. Suitability of different transport means as a function
of travel demand: Pareto-optimal solutions (in german). Straßenverkehrstechnik, pages 796–805,
2024. doi:10.53184/SVT10-2024-3.

ATMOS 2025

https://www.moia.io/en/blog/ridepooling-in-europe
https://doi.org/10.1007/s12469-016-0128-9
https://doi.org/10.1007/s12469-016-0128-9
https://doi.org/10.1007/S43069-023-00268-7
https://doi.org/10.1007/978-3-030-46270-3
https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-85839
https://doi.org/10.1007/S00291-011-0251-6
https://doi.org/10.4230/OASIcs.ATMOS.2005.660
https://doi.org/10.1287/TRSC.22.1.1
https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
https://doi.org/10.4230/OASIcs.ATMOS.2008.1583
https://doi.org/10.4230/OASIcs.ATMOS.2008.1583
https://www.tfwm.org.uk/plan-your-journey/ways-to-travel/buses-in-the-west-midlands/on-demand-buses-in-the-west-midlands/
https://www.tfwm.org.uk/plan-your-journey/ways-to-travel/buses-in-the-west-midlands/on-demand-buses-in-the-west-midlands/
https://www.tfwm.org.uk/plan-your-journey/ways-to-travel/buses-in-the-west-midlands/on-demand-buses-in-the-west-midlands/
https://doi.org/10.53184/SVT10-2024-3

16:18 A Model for Strategic Ridepooling and Its Integration with Line Planning

A Graphics

(a) Toy [20]. (b) Mandl [13]. (c) Sioux-Falls [26].

Figure 7 PTNs of the LinTim instances Toy, Mandl, and Sioux-Falls.

B Dial-a-ride Heuristic

In a network, passenger requests are given by their origin, destination and desired departure
time. The algorithm then goes through the passenger requests one by one and checks for
every already operating vehicle if the request can be inserted into its tour to serve the
corresponding passengers. A new request can be inserted into the trip of a vehicle if this
insertion does not violate any given constraints, such as the maximum detour factor or
waiting time for the passengers or the capacity of the vehicle. If a vehicle is found where
the new request can be inserted, then this is done. Otherwise, a new vehicle is added. This
insertion heuristic must not lead to optimal solutions, but provides an estimate for the
number of vehicles necessary to serve a given amount of passenger demand.

The constants αr,e, determined by the procedure described in Section 2.3, have been
tested in comparison to this insertion heuristic as follows: The passenger requests have been
transformed into so-called OD-data, disregarding the desired departure times and simply
computing for each pair of nodes u, v ∈ V the number of passengers who wish to travel from
u to v. Traffic loads wmin

e for the edges e ∈ E are then generated by routing all passengers
along shortest paths in the underlying network. Then, having computed αr,e as described
before with a single ridepooling area r = E, the optimal solution for (RP) is the following:

vr = max
e∈E

⌈
wmin

e

αr,e · r-cap

⌉
.

The resulting number of vehicles can be compared to the number of vehicles required in the
solution from the insertion-heuristic.

L. Dittrich, M. Rihlmann, S. Roth, and A. Schöbel 16:19

C Proofs

C.1 From Section 2.2
Proof of Lemma 1. Given an instance of the line planning problem, we set

RPool := LPool since every line l ∈ LPool can be interpreted as a (connected) ridepooling
area,
r-costr := l-costr for all r ∈ RPool,
r-cap := l-cap, and
αe,r := 1 for all e ∈ E, r ∈ RPool.

We receive an instance of the ridepooling problem (RP) in which the variables vr correspond
to the frequencies fr. I.e., the resulting program of type (RP) is exactly the line planning
problem (LC). ◀

C.2 From Section 2.3
Proof of Lemma 4.
1. The values αr,e can be immediately computed using the procedure described in Section

2.3. The number of constants that need to be computed is
∑

r∈RPool |r| which has the
following polynomial upper bound:∑

r∈RPool

|r| ≤
∑

r∈RPool

|E| = |RPool||E|.

2. For every vehicle of ridepooling area r ∈ RPool we know that an Euler tour in G′′
r exists

which realizes exactly the values αr,e. If all vehicles drive this tour, the result follows.
3. Clearly, 0 ≤ Ne − Le ≤ 1, i.e., DN

r ≥ DL
r . Note that:

DL
r · DN

r = DL
r ·

(
DL

r +
∑

e∈r:Le odd
de

)
= (DL

r)2 + DL
r ·

∑
e∈r:Le odd

de

Now, consider the gap between αr,e and α∗
r,e:

αr,e − α∗
r,e = Le · T

DL
r

− Ne · T

DN
r

= T · Le · DN
r − Ne · DL

r

DN
r · DL

r

On the one hand that gives

αr,e − α∗
r,e ≤ T · Le · DN

r − Le · DL
r

DN
r · DL

r

= T · Le · DN
r − DL

r

DN
r · DL

r

= T · Le ·
∑

e∈r Ne · de − Le · de

DL
r · DL

r

= T · Le ·
∑

e∈r:Le odd de

(DL
r)2 + DL

r ·
∑

e∈r:Le odd de
≤ T

DL
r

Le = α∗
r,e

and on the other hand we get

αr,e − α∗
r,e ≥ T · Le · DN

r − Ne · DN
r

DN
r · DL

r

= T · Le − Ne

DL
r

=
{

− T
DL

r
ifLe is odd,

0 ifLe is even.
◀

ATMOS 2025

16:20 A Model for Strategic Ridepooling and Its Integration with Line Planning

C.3 From Section 3
Proof of Theorem 6. Feasible solutions for LC and (RP) can be transformed into feasible
solutions for (LC+RP):

Let (fl)l∈LPool be a feasible solution for (LC), then ((fl)l∈LPool , (0)r∈RPool) is feasible for
(LC+RP) with the same objective function value.
Let (vr)r∈RPool be a feasible solution for (RP), then ((0)l∈LPool , (vr)r∈RPool) is also feasible
for (LC+RP) with the same objective function value. ◀

Proof of Theorem 7. We only show the first case, the proof of the second case is analogous.
As r is the only ridepooling area or line that contains e, it is required that r-cap · αr,evr ≥

wmin
e satisfies the constraint for the edge e.

⇒ vr ≥ wmin
e

r-cap·αr,e

⇒ Since vr needs to be integer, we can conclude that vr ≥
⌈

wmin
e

r-cap·αr,e

⌉
. ◀

Proof of Theorem 8. Obtain a new instance of (LC+RP) by defining new lower and upper
bounds ˆwmin

e and ˆwmax
e :

ˆwmin
e := wmin

e −

 ∑
l∈LPool

fixed:e∈l

l-cap · fl +
∑

r∈RPool
fixed:e∈r

r-cap · αr,e · vr


ˆwmax
e := wmax

e −

 ∑
l∈LPool

fixed:e∈l

l-cap · fl +
∑

r∈RPool
fixed:e∈r

r-cap · αr,e · vr

 ◀

The Line-Based Dial-a-Ride Problem with Transfers
Jonas Barth #

Department of Computer Science, University of Würzburg, Germany

Kendra Reiter1 #

Department of Computer Science, University of Würzburg, Germany

Marie Schmidt #

Department of Computer Science, University of Würzburg, Germany

Abstract
We introduce the line-based dial-a-ride problem with transfers (liDARPT), a variation of the well-
studied dial-a-ride problem (DARP), where vehicles transport requests on-demand but are constrained
to operate along a set of lines, and passengers are allowed to transfer between lines on their journey.
We develop an event-based solution approach for the liDARPT that relies on the construction of
an event-based graph and uses a MILP to find optimal circulations in the event-based graph. To
make this solution approach effective, we devise a pre-processing routine to limit the size of the
event-based graph. We extensively test our approach on novel benchmark instances, inspired by
real-life long-distance bus networks. In our experiments, problem instances with up to 80 requests
can be solved to optimality within 15 minutes, and an average of 99.69% of requests are accepted in
all instances solved to optimality.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases dial-a-ride, line-based, transfers, on-demand, ridepooling

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.17

Supplementary Material Software (Source Code): https://github.com/barjon0/liDARPT [3]
archived at swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a83841a

1 Introduction

In many rural areas, public transport is unattractive for potential users for two reasons: due
to low demand, scheduled bus services only depart a few times a day, and rural bus lines
often visit a large number of stations which leads to a high detour compared to a direct
connection between a passenger’s origin and destination.

An alternative to organize transport in low-demand areas is to operate transport services
fully on-demand, i.e., to plan and schedule routes for each time span, based on the set of
individual travel requests known at that time. The corresponding optimization problem
is known as the dial-a-ride problem (DARP). In the static case, i.e., when the full set of
requests is known in advance, the additional flexibility leads to solutions that are much better
with respect to the chosen metric. However, the assumption that regular public transport
passengers would be willing to decide on, commit to, and send out travel requests (several
hours) in advance is questionable.

In this paper, we study a transport system that can be seen an an intermediate option
between fully-scheduled and completely on-demand services: in the line-based dial-a-ride
problem with transfers (liDARPT), the studied transport system is line-based in the sense
that there is a set of lines that defines admissible vehicle routes (each vehicle is assigned to a
line, it may take shortcuts or wait at stations while serving the line, but may only turn when

1 corresponding author

© Jonas Barth, Kendra Reiter, and Marie Schmidt;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 17; pp. 17:1–17:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jonas.barth@stud-mail.uni-wuerzburg.de
https://orcid.org/0009-0004-5776-0489
mailto:kendra.reiter@uni-wuerzburg.de
https://orcid.org/0009-0004-7281-6516
mailto:marie.schmidt@uni-wuerzburg.de
https://orcid.org/0000-0001-9563-9955
https://doi.org/10.4230/OASIcs.ATMOS.2025.17
https://github.com/barjon0/liDARPT
https://archive.softwareheritage.org/swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a83841a;origin=https://github.com/barjon0/liDARPT;visit=swh:1:snp:9e991754ac51080c4671363ee2e149da96bd534e;anchor=swh:1:rev:eae0411fec481c24c2f82a32bf3319292f47c08a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

17:2 The Line-Based Dial-a-Ride Problem with Transfers

empty), but uses passenger request data to plan and schedule the specific routes that are
realized. Providing this structure is expected to prove more favorable in a dynamic setting,
where requests are submitted at or a few minutes before the desired departure time.

As a first step towards exploring the liDARPT as an alternative to existing operational
models for public transport, we propose a solution approach for the static variant, laying the
foundation for future investigations. Being able to solve such a model efficiently allows us to
obtain a reference point against which we can compare approaches for the dynamic case.

To solve the liDARPT, we follow an event-based approach as first proposed in [12] for the
DARP. In a first step, this approach represents the “structural part” of a DARP variant as
a so-called event-based graph, where each node encodes a distinct event, i.e., the boarding
or alighting action of a passenger and the set of passengers on board of the vehicle during
this action. Arcs are added between compatible events, such that feasible vehicle routes
constitute circulations. In a second step, a MILP based on the event-based graph is used to
find a set of circulations that is temporally feasible and optimizes the objective function. In
[26], it was shown that this approach outperforms other MILP-based solution approaches for
solving the line-based dial-a-ride problem (liDARP), a special case of the liDARPT where
there is just one line. However, the tractability of the MILP based on the event-based graph
depends crucially on clever pre-processing of the event-based graph, removing events and
actions that are infeasible due to spatial or temporal incompatibilities of requests. While
effective pre-processing rules for DARP and liDARP have been proposed in [12, 13, 26], there
are two factors that complicate building and pre-processing an event-based graph for the
liDARPT: a) a passenger may transfer, and thus in consequence may board several vehicles
sequentially, and b) the sequence of lines taken by a specific passenger request is not fixed a
priori.

The contribution of this paper is fourfold:
We introduce the line-based dial-a-ride problem with transfers (liDARPT) that models
the on-demand transportation of passengers in line-based transport systems, explicitly
routing passengers through the network and allowing the transfers of passengers between
lines.
We extend the concept of an event-based graph to this setting and develop effective
non-trivial pre-processing rules to reduce the size of the graph.
Based on the event-based graph, we state a MILP formulation for the liDARPT that
takes into account the routing and transfers.
We demonstrate the applicability of the developed approach on a set of instances with
up to 100 requests, varying the number of lines, number of requests, and the (temporal)
request density.

1.1 Related Work
The dial-a-ride problem and variants thereof have been studied extensively in the literature,
see the surveys by [9] (up until 2007) and [16] (until 2018) for an overview, as well as
the typography provided by [21]. Solution methods for the static setting include exact,
MILP-based methods such as branch-and-cut [7, 27, 28] or branch-cut-and-price [15], as well
as (meta-)heuristic-based methods, including tabu search [8], simulated annealing [5, 25],
and adaptive large neighborhood search [22, 23, 24, 29], to give an overview. Further works
study dynamic variants of the DARP, see, e.g., [1, 2, 6, 12, 17].

Recently, a number of DARP variants that allow transfers, named DARPT, have been
proposed, see, e.g., [10, 14, 20, 25, 30], whose solution approaches all use (meta-)heuristics.
Solely [14], who consider a single transfer station, additionally evaluate a branch-and-cut
approach for instances with up to 10 requests.

J. Barth, K. Reiter, and M. Schmidt 17:3

The line-based dial-a-ride problem (on a single line) was first introduced by [26], wherein
different MILP formulations were proposed and compared. Lauerbach et al. [18] study the
complexity of the liDARP (and the related MinTurn problem).

In this paper, we develop an event-based approach for the liDARPT, which first constructs
an event-based graph encoding structural instance information, and then finds feasible
circulations on this graph using a MILP. Such an approach was proposed first for the DARP
in [12, 13]. In an event-based graph, nodes represent so-called events, consisting of a boarding
or alighting action and information on which passengers are already on board of the vehicle,
and arcs represent feasible transitions between the events. In [13], it was already observed
that the number of events is exponential in the vehicle capacity for DARP event-based
graphs. Event-based MILPs introduce a binary variable for each arc in the event-based
graph. To obtain a tractable event-based MILP, it is crucial to delete (nodes and) arcs
corresponding to infeasible (events and) transitions. Pre-processing rules for the DARP
have been proposed in [11, 13]. In [26], these have been extended for the liDARP, where
the additional restrictions on vehicle operations lead to a significant decrease in event-based
graph size and computation times for the event-based MILP.

In [11], the authors improve the event-based MILP formulation from [13] to the location-
augmented event-based (LAEB) formulation by incorporating the time consistency of the
location-based (two-index) formulation by Ropke et al. [28], effectively halving the com-
putation times compared to state-of-the-art event-based approaches on tested benchmark
instances.

2 Problem Formulation and Model

We summarize all notation in Table 2 in the Appendix.

2.1 Problem Description
In the liDARPT, we are given a set of stations S and a set of lines I, where each line i ∈ I
is an ordered sequence of stations λi and each station lies on at least one line. The lines may
intersect at transfer stations s ∈ ST . For each line i ∈ I, the distance between two stations
s1, s2 ∈ λi is given by t(s1, s2) > 0 and respects the triangle inequality. The value t(s1, s2)
equivalently corresponds to the length of the segment between s1, s2 on line i. Both distance
and length are measured in time.

Each line is assigned at least one vehicle k ∈ K which travels according to the driving
restrictions introduced by [26] for the liDARP: a vehicle may travel along the line in both
directions, may take shortcuts or wait at stations, but may only turn when empty. Vehicles
may only serve stations on their respective lines and every vehicle starts and ends its tour at a
line-specific depot sdepot ∈ S. The vehicles assigned to the same line i ∈ I are homogeneous
in the sense that they have the same capacity ci ∈ N.

Furthermore, we are given a set of requests R. Each request r ∈ R consists of a number
of passengers qr ∈ N, a pick-up station r+ ∈ S, a drop-off station r− ∈ S, a time window for
the pick-up and one for the drop-off of the request, denoted as [e(r+), l(r+)], [e(r−), l(r−)],
respectively, and a maximum travel time Lr ≥ 0 between their initial pick-up (at their origin)
and last drop-off (at their destination). We assume each request is willing to wait a fixed
amount of time for their pick-up/drop-off, defining the time window length. Each request
can either be accepted, i.e., it is transported from its origin to destination, or rejected. We
define a route option of a request as an alternating sequence of lines and transfer stations,
starting at the origin and ending at the destination, that describes a set of possible options

ATMOS 2025

17:4 The Line-Based Dial-a-Ride Problem with Transfers

for transporting this request. Then, a request’s route consists of a route option together with
the vehicle used on each line and the associated pick-up and drop-off times at the transfer
points.

At each station, we assume that it takes a fixed total service time b ≥ 0 to service all
requests, i.e., for all requests to leave and enter the vehicle. Requests may transfer from
one line to another at a transfer station, but we do not consider transfers between vehicles
belonging to the same line.

A solution to the liDARPT then consists of a plan for each of the vehicles, and, for each
request, a route - or the decision to reject the request. A vehicle’s plan specifies the sequence
of stations where the vehicle stops, starting and ending with the depot associated to the
vehicle’s line, as well as the arrival and departure time at each station. A route specifies
when and where a passenger boards and alights vehicles.

We have two objectives that we consider in lexicographic order: our primary goal is to
maximize the number of accepted requests, and the second objective is to minimize the total
traveled distance by the vehicles, which may reflect both cost and environmental concerns.

2.2 Modeling Route Options of Requests
Each line i ∈ I consists of an ordered sequence of stations λi := (s1, . . . , s|λi|) with
{s1, . . . , s|λi|} =: Si ⊆ S and defines a complete graph on Si. Then, we denote by net-
work the union2 of all these graphs, which share vertices at exactly the transfer stations
ST . We require that the network is connected (else we consider each connected component
separately). Note that this definition gives a direction to each line, according to the sequence’s
order. Each line may be served both in ascending and in descending order, i.e., requests’
route options and vehicles’ plans both constitute directed paths in the underlying undirected
network.

Since a network of multiple lines may allow for multiple paths between the same stations,
a single request may have different route options: (unique) paths through the network along
one or more lines, from the requests’ pick-up to its drop-off location. These route options
may differ in length, number of transfers, and number of lines that are used.

Following [20], to represent a route option through the network, we introduce actions
as follows: for a request r ∈ R which transfers between vehicles from/to a line i ∈ I at a
transfer vertex s ∈ ST , we call ρi,−

s,r the inbound action and ρi,+
s,r the outbound action of r at

s on i. That is, the inbound action represents the drop-off (from i) and the outbound action
represents the pick-up (to i) of r at s.

Then, a possible route option ϕr for a request r ∈ R can be formalized as a sequence of
(an even number of) actions (ρi,+

r+,r, ρ
i,−
s,r , ρ

i′,+
s,r , . . . , ρ

i′′,−
s′,r , ρ

i′′′,+
s′,r , ρi′′′,−

r−,r), for s, s′ ∈ ST , s ̸= s′,
i, i′, i′′, i′′′ ∈ I, where

the first action is outbound, corresponding to a pick-up at the station r+,
all intermediate actions (second to penultimate action) are pairs of inbound and outbound
actions at the same transfer station s ∈ ST , ensuring transfers,
the last action is inbound, corresponding to a drop-off at the station r−, and
all actions (first to last) are pairs of outbound and inbound actions on the same line
i ∈ I, ensuring consecutiveness in each line.

Note that each station s can only be visited once per route option, forbidding cycles in
each requests’ travel path.

2 a union of two graphs G1 = (V1, A1), G2 = (V2, A2) is the graph G := (V1 ∪ V2, A1 ∪A2).

J. Barth, K. Reiter, and M. Schmidt 17:5

We divide this sequence of actions into tuples by pairing each outbound with the following
inbound action, i.e., for some s, s′ ∈ ST , s ≠ s′, ϕr :=

(
(ρi,+

r+,r, ρ
i,−
s,r), . . . , (ρi′,+

s′,r , ρ
i′,−
r−,r)

)
,

where we call each tuple (ρi,+
s,r , ρ

i,−
s′,r) a split ψi

s,s′,r of r between stations s, s′ ∈ S, s ≠ s′, on
line i ∈ I. We construct a sequence of subroutes which are separated exactly by a transfer
between two lines at a transfer station. A split may be part of multiple route options.

The length of a route option is defined as the sum of lengths of its splits, where the length
of a split ψi

s,s′,r is exactly the length t(s, s′) on i ∈ I.
For a request r ∈ R, we use Φ(r) to denote the set of all route options and Ψ(r) the set

of all splits of r. Further, P(r) denotes the set of all actions of r and P denotes the set of all
possible actions for all requests.

s1

r+

r−

s2

Figure 1 Example of a network with cycles and a single request r with two route options.

An example for a request on a circular network of three lines is pictured in Figure 1.
There are two possible route options for request r to travel to their destination: the first
route option transfers at station s1 (along the green, then the blue line), the second route
option transfers at s2 (along the green, then the red line).

We assume that each transfer disrupts the travel experience, as it adds uncertainty to
a request’s trip and could reduce customer satisfaction. Hence, we impose the following
restriction: for each request r ∈ R, we identify the shortest (wrt. time length) route option
from r+ to r− and count the amount of transfers. Then, to limit the passenger disutiliy, we
only allow route options in Φ(r) with at most one extra transfer, as transfers are generally
perceived as an inconvenience.

The directionality property introduced by [26] enforces that a vehicle traveling along a line
may only change direction when it is empty. We adopt the same property and introduce a
travel direction: for each line i ∈ I with λi = (s1, s2, . . . , s|λi|), we define the travel direction
from a station sm to sn, denoted by dir(i, sm, sn), to be ascending if m < n, else descending.
Then, requests traveling on a part of this line, from a transfer station s ∈ ST to s′ ∈ ST

with s, s′ ∈ λi, inherit the traveling direction dir(i, s, s′) for this split in their route option.
Until here, we have defined route options for requests based only on lines, locations, and

actions, without considering when the actions will take place. We now add a timestamp
to every action, corresponding to the end of the pick-up/drop-off of this action, and call a
timestamped route option a route of a request r. Every route needs to be feasible, i.e., it
needs to respect the initial pick-up and drop-off time windows of its request, else we can
disregard the route and the underlying route option.

ATMOS 2025

17:6 The Line-Based Dial-a-Ride Problem with Transfers

Recall that every request r ∈ R has a (tight) time window for its pick-up and drop-off,
respectively. Using these time windows, along with the service time b and the length of a
split, we derive a time window

[
e(ρi,±

s,r), l(ρi,±
s,r)

]
for each action ρi,±

s,r associated with r.
In case an action appears in multiple route options, its time window is defined as the

union of the individual time window intervals: that is, e(ρi,±
s,r) is the earliest departure time

and l(ρi,±
s,r) is the latest arrival time among all relevant options.

Similarly, we can then derive time windows of each split from its actions: for a split
ψi

s,s′,r, we have e(ψi
s,s′,r) := e(ρi,+

s,r) and l(ψi
s,s′,r) := l(ρi,−

s′,r).

2.3 The Event-Based Graph for the liDARPT
In the first step of our event-based approach, we construct an event-based graph G = (V,A),
a concept that was proposed first in [13] and adapted for the liDARP in [26]. Here, we
discuss how to create an event-based graph for the liDARPT.

An event v ∈ V is defined as a tuple v = (ρi,±
s,r1

, ψi
s′,s′′,r2

, . . .) consisting of an action ρi,±
s,r1

and a set of at most ci −1 splits of requests that may be on board of a vehicle with capacity ci

traveling on the line i ∈ I when the action takes place. Each event thus represents a feasible
combination of splits which may share part of their journey, in contrast to the events in [13],
which consist of combinations of requests. Our representation allows us to incorporate tighter
time windows at each transfer station on a requests’ route option, and explicitly models the
subroutes of each requests’ path. Note that each event is associated with a station and a
line, namely the station s ∈ S and the line i ∈ I where the action ρi,±

s,r1
takes places.

For the tuple representation of v, we sort the splits in v in ascending order of their
request’s index. We use 0i to denote the empty state at the start and end of each vehicle’s
plan at the depot of its line i ∈ I. The events constitute the nodes V of the event-based
graph.

For example, the event (ρi,+
s2,3, ψ

i
s1,s3,1, ψ

i
s1,s4,2) represents that a vehicle of line i is currently

at transfer station s2 where request 3 boards while requests 1 (who is traveling from station
s1 to s3) and 2 (traveling from station s1 to s4) are already in the vehicle.

The arcs of the event-based graph represent feasible sequences of events. For example,
(ρi,+

s2,3, ψ
i
s1,s3,1, ψ

i
s1,s4,2) may be connected by an arc to the event (ρi,−

s3,1, ψ
i
s1,s4,2, ψ

i
s2,s4,3),

where request 1 is dropped-off at transfer station s3 and requests 2 and 3 are still on board.
The event-based graph G consists of |I| connected components Gi, one for each line i ∈ I,

where the number of (potential) nodes (and arcs) of each component Gi grows exponentially
in the vehicle capacity ci.

For this reason, we now describe a number of pre-processing steps to identify infeasible
combinations of splits, and thus limit the amount of nodes we create. Specifically, our goal
is to identify, for every action ρi,±

s,r ∈ P(r) of every request r ∈ R, the set of compatible
splits ψi

g,g′,r′ ∈
⋃

r′∈R\{r} Ψ(r′) , i.e., splits belonging to requests r′ that may be on board of
the same vehicle at the time when the action ρi,±

s,r is occurring. Note that we only need to
consider splits traveling on the same line i ∈ I.

Let r ∈ R and ψi
s,s′,r = (ρi,+

s,r , ρ
i,−
s′,r) with s, s′ ∈ S, s ̸= s′, be a split of r traveling on a

line i ∈ I. We check three conditions to determine if another split ψi
g,g′,r′ , with g, g′ ∈ S,

g ̸= g′, r′ ∈ R \ {r}, is compatible to an action in ψi
s,s′,r:

First, the directionality property: we check if the two splits travel in the same direction,
i.e., if dir(i, g, g′) = dir(i, s, s′), as there can never be two splits traveling in opposite directions
in the same vehicle at the same time.

We proceed by checking the remaining two conditions for either action in the split
(ρi,+

s,r , ρ
i,−
s′,r) individually and here describe the process for ρi,+

s,r (ρi,−
s′,r follows analogously):

J. Barth, K. Reiter, and M. Schmidt 17:7

Second, the spatial overlap: we check if the action’s location s lies on the subsequence of
stations (g, . . . , g′) ⊆ λi.

Third, the temporal overlap: recall that each action is assigned a time window during
which it has to occur. Then, we check if

[e(ρi,+
s,r), l(ρi,+

s,r)]
⋂

[e(ρi,+
g,r′), l(ρi,−

g′,r′)] ̸= ∅,

i.e., if r and r′ may overlap in their time windows.
We call a split satisfying these three conditions compatible with the action ρi,+

s,r (analogously
ρi,−

s′,r) and repeat these checks for every request r ∈ R.
As an example, consider the line i depicted in Figure 2 with a split ψi

s3,s5,r = (ρi,+
s3,r, ρ

i,−
s5,r)

of request r and four other splits for requests r1, r2, r3, and r4. Suppose the action ρi,+
s3,r has

a time window of [0, 15], while the split ψi
s2,s4,r3

has a time window of [80, 120] and ψi
s3,s7,s4

has a time window of [5, 60].

s1 s5 s6

ρi,+s3,r ρi,−s5,r

s2 s3 s4 s7
i

ψi
s6,s1,r1

ψi
s6,s7,r2

ψi
s2,s4,r3

ψi
s3,s7,r4

Figure 2 Example of a line i with multiple splits of different requests.

Consider the outbound action ρi,+
s3,r and check the compatibility of each split in Figure 2:

split ψi
s6,s1,r1

does not fulfill the directionality property, as it travels in the opposite
direction to ψi

s3,s5,r, hence it is disregarded.
split ψi

s6,s7,r2
does not satisfy the spatial overlap since s3 /∈ (s6, s7), as its pick-up station

s6 lies beyond the station s3 in the travel direction, hence it is disregarded.
split ψi

s2,s4,r3
does not satisfy the temporal overlap since [0, 15] ∩ [80, 120] = ∅, as the

earliest start time of its outbound action is later than the time window of ρi,+
s3,r, hence is

is disregarded.
split ψi

s3,s7,r4
fulfills both the directionality property and the spatial overlap as s3 ∈

(s3, . . . , s7). Additionally, the temporal overlap is satisfied as [0, 15] ∩ [5, 60] = [5, 15] ̸= ∅.

Hence, only the split ψi
s3,s7,r4

of request r4 is compatible to ρi,+
s3,r in this example.

Once we have identified all compatible splits for each action on a line i ∈ I, we increment-
ally build combinations of splits of size at most ci. In each step, we check if the combination
is feasible wrt. the time windows of the contained splits and only explore supersets further if
this is guaranteed. See [7] for details on the feasibility checks based on time windows and [4]
for further details on the implementation of our method.

We add two further conventions at a transfer station to limit the number of events: if
multiple compatible actions take place at the same station s ∈ ST , then the inbound actions
are handled first. This corresponds to the widely-accepted convention of letting people leave
the vehicle first before boarding. Second, if multiple outbound (resp. inbound) actions are
compatible and located at the same station s ∈ ST , then we only consider the sequence
of events in which they board in descending order of their time window end l(ρi,+

s,r) (resp.
l(ρi,−

s,r)).

ATMOS 2025

17:8 The Line-Based Dial-a-Ride Problem with Transfers

The vertex set V of our event-based graph G then consists, for every line i ∈ I, exactly
of the feasible combinations v = (v1, . . . , vm) where the first entry v1 is an action and the
remaining entries v2, . . . , vm are splits, with m ≤ ci. Each entry corresponds to a different
request.

Every event v = (v1, . . . , vm) ∈ V is assigned a time window during which it can occur,
which is not only dependent on the time window of the action v1 but also considers the travel
time from every predecessor event (for the earliest start time) and the successor events (for
the latest end time), similar to the check for temporal overlap.

Lastly, we define the arc set A of the event-based graph G. We add an arc (v, v′) for
v = (ρi,±

s,r , v2, . . . , vm), v′ = (ρi′,±
s′,r′ , v′

2, . . . , v
′
n) ∈ V of lines i, i′ ∈ I if the following conditions

are met:
the set of requests in the vehicle after completing the action ρi,±

s,r of v is the same as the
set of requests in the vehicle before completing the action ρi′,±

s′,r′ of v′, and
the events are compatible wrt. their time windows and travel times, i.e.,

l(v′) ≥

{
e(v) + t(s, s′) + b if s ̸= s′,

e(v) else.

The travel time of the arc a = (v, v′) ∈ A is given by t(a) := t(v, v′) := t(s, s′).
Now, each plan for a vehicle of line i ∈ I corresponds to a circulation on Gi which starts

and ends at the vehicle’s depot. However, not every circulation is a feasible plan: it has
to respect the time windows and maximum travel time of every request. Additionally, the
set of plans, jointly, has to ensure that, if a request r is accepted, then all splits of exactly
one route option of r are part of the solution. That is, while the described pre-processing
in the event-based graph allows to sort out many infeasible combinations of requests, and
can handle the logic of vehicle routing well, there are a number of constraints that it cannot
represent. This motivates the use of MILP model that we present in Section 2.4.

2.4 Mixed-Integer Linear Programming Model

In this section, we present a MILP model for the liDARPT. It is based on the location-
augmented event-based formulation introduced by [11] for the DARP and uses the event-based
graph G = (V,A) we have defined in Section 2.3.

The binary variables xa, defined for every a ∈ A, encode which arcs of the event-based
are chosen and thus encode the plan for each vehicle, as well as the selected route options for
each request. For every request r ∈ R, the variable pr indicates if r is accepted.

For the liDARPT, we introduce variables yr
j for every route option ϕr

j ∈ Φ(r) to denote if
this route option is chosen in our solution. This information spans over multiple lines across
our underlying network and thus across multiple components of the event-based graph. If a
route option is chosen, then all corresponding splits must be part of our solution. At most
one route option may be chosen per request, ensuring it is accepted at most once.

To represent the temporal information in our solution, we add a continuous variable Bρi,±
s,r

for every action ρi,±
s,r ∈ P to denote the end of this action. As in the LAEB formulation, a

single Bρi,±
s,r

variable is associated with all v ∈ V with v1 = ρi,±
s,r .

For an event v ∈ V , we denote its incoming arcs by δin(v) and its outgoing arcs by δout(v).
The set P(r)+ (resp. P(r)−) contains all outbound (resp. inbound) actions of r, and the set
P(r)+

j contains all outbound actions belonging to the route option ϕr
j of r.

J. Barth, K. Reiter, and M. Schmidt 17:9

We denote by σ(k) the assigned line of a vehicle k ∈ K and by σ−1(i) the set of vehicles
assigned to line i ∈ I. The earliest departure time (resp. latest arrival time) of a vehicle
from the depot of its line σ(k) = i is denoted by e(sdepot

i) = e(0i) (resp. l(sdepot
i) = l(0i)).

min
∑
a∈A

t(a) · xa +W ·
∑
r∈R

(1 − pr) (1a)

s.t.∑
a∈δin(v)

xa −
∑

a∈δout(v)

xa = 0, ∀v ∈ V (1b)

∑
a∈δin(v):
v1∈P(r)+

j

xa ≥ yr
j , ∀r ∈ R, ϕr

j ∈ Φ(r) (1c)

∑
a∈δout(0i)

xa ≤ |σ−1(i)|, ∀i ∈ I (1d)

B
ρ

i′,±
s′,r′

≥ B
ρ

i,±
s,r

+ b+ t(s, s′) ∀ρi,±
s,r , ρ

i′,±
s′,r′ ∈ P : s ̸= s′,

−M1

(
1 −

∑
(u,v)∈A:

u1=ρ
i,±
s,r ∧v1=ρ

i′,±
s′,r′

x(u,v)

)
,

(
(ρi,±

s,r , . . .), (ρi′,±
s′,r′ , . . .)

)
∈ A (1e)

B
ρ

i′,±
s,r′

≥ B
ρ

i,±
s,r

∀ρi,±
s,r , ρ

i′,±
s,r′ ∈P :

−M1

(
1 −

∑
(u,v)∈A:

u1=ρ
i,±
s,r ∧v1=ρ

i′,±
s,r′

x(u,v)

)
,
(

(ρi,±
s,r , . . .), (ρi′,±

s,r′ , . . .)
)

∈A (1f)

B
ρ

i,+
r+,r

≥ e (0i) + b+ t
(
0i, r

+) ∑
v∈V:

v1=ρ
i,+
r+,r

x(0i,v), ∀r ∈ R, i ∈ I :ρi,+
r+,r

∈ P(r)+ (1g)

B
ρ

i,−
r−,r

≤ l (0i) − t
(
r−,0i

) ∑
v∈V:

v1=ρ
i,−
r−,r

x(v,0i), ∀r ∈ R, i ∈ I :ρi,−
r−,r

∈ P(r)− (1h)

e
(
ρi,±

s,r

)
≤ B

ρ
i,±
s,r

≤ l
(
ρi,±

s,r

)
, ∀ρi,±

s,r ∈ P (1i)

B
ρ

i′,−
r−,r

−B
ρ

i,+
r+,r

− b ≤ Lr, ∀r ∈ R,ϕr ∈ Φ(r) :ρi′,−
r−,r

, ρi,+
r+,r

∈ ϕr (1j)

B
ρ

i′,+
s,r

≥ B
ρ

i,−
s,r

−M2(1 − yr
j), ∀r ∈ R, s ∈ S, ϕr

j ∈ Φ(r) :ρi,−
s,r , ρ

i′,+
s,r ∈ ϕr

j (1k)∑
ϕr

j
∈Φ(r)

yr
j = pr, ∀r ∈ R (1l)

xa ∈ {0, 1}, ∀a ∈ A (1m)
pr ∈ {0, 1}, ∀r ∈ R (1n)
yr

j ∈ {0, 1}, ∀r ∈ R, ϕr
j ∈ Φ(r) (1o)

The objective function (1a) maximizes the number of accepted requests, adding a large
penalty W in case request r is not accepted. As a a secondary goal, the total distance driven
by the vehicles (referred to as traveled distance) is minimized. Constraints (1b) are the
typical flow constraints. Next, constraints (1c) guarantee that, for an accepted request r
and selected route option ϕr

j , all of the corresponding splits of ϕr
j are part of the solution.

There may be at most one plan per vehicle for every line i, enforced by constraints (1d).

ATMOS 2025

17:10 The Line-Based Dial-a-Ride Problem with Transfers

Constraints (1e) to (1k) handle time constraints. For subsequent events, constraints (1e)
and constraints (1f) ensure the end time of the respective actions is consecutive, where
constraints (1e) ensure the necessary travel and service time are respected if the events do
not occur at the same station. We choose the parameter M1 large enough to ensure these
constraints are only active if the corresponding succession of actions is part of the solution.
Then, constraints (1g) guarantee the correctness of the departure times for the very first
action on the paths and similarly, constraints (1h) guarantee the correctness of the arrival
times for the last action on the paths. Together, constraints (1g) and constraints (1h) ensure
each vehicle travels within a pre-specified travel time span. The time windows of each action
are ensured by constraints (1i). Furthermore, we make sure the the maximum travel time is
upheld with constraints (1j), by checking the difference of the last split’s drop-off time and
the pick-up time of the first split for a request. For the timing of all subsequent splits of the
same request, constraints (1k) enforce that no user is picked up before they even arrive at a
station s. Again, we choose M2 large enough to ensure this constraint is only active if the
corresponding route option is chosen. Finally, in constraints (1l), we ensure that exactly one
route option is selected if and only if the request is transported.

Note that a split may be part of multiple route options and that it is not forbidden by
our MILP that a split may be part of a vehicle’s plan, even though none of the corresponding
route options are chosen. Hence, after every model solve, we run a clean-up routine, removing
unnecessary events from the solution. These events have no effect on the solution: they may
not add to the traveled distance nor may they occupy a seat which could otherwise have
been assigned to a rejected request, as both would increase our objective function.

We now prove a bound on the objective function penalty W to enforce our lexicographic
objective function (1a).

▶ Lemma 1. Let N be sum of lengths of all lines. Setting W = 2N |R| + 1, the optimal
solution OPT of (1) accepts the maximum number of requests.

Proof. Let W = 2N |R| + 1 and assume there exists a different solution ALT with more
accepted requests than OPT . We know that the difference in penalty is at least 2N |R| + 1.
However, we also know that OPT ≤ ALT . This means that the difference in traveled distance
has to be at least 2N |R| + 1:

Note that for a given set of accepted requests |R′|, even if all requests need to use all
lines from beginning to end and no requests can be transported together due to incompatible
time windows, and all requests are accepted, the distance driven to serve them is at most∑

a∈A t(a)xa = 2N |R′| < 2N |R| + 1 = W .
Thus, the improvement in traveled distance cannot compensate for the loss in number of

transported passengers. ◀

3 Computational Experiments

In this section, we present numerical experiments for the liDARPT on new, synthetic
benchmark instances that are based on real-world bus networks. The code and all instances
are available on GitHub3.

For all presented experiments, every line is assigned two buses of capacity six. The
service time b is set to two minutes and we set the maximum waiting time of each request
to 15 minutes. The maximum travel time Lr of a request r is given by t∗r + 1.2 · log1.2(t∗r),
where t∗r is the shortest direct travel time of r along the network. We set the penalty weight
W = 3N |R|, where N is the sum of lengths of all lines.

3 https://github.com/barjon0/liDARPT

https://github.com/barjon0/liDARPT

J. Barth, K. Reiter, and M. Schmidt 17:11

All experiments were conducted on a 24 core Intel i9-13900F machine with 32GB RAM
and operating system nixOS 24.11. The model was implemented in Python 3.10 and solved
using CPLEX 22.1.1. All runs were limited to 15 minutes of computational time and the
results are averaged over three runs. A summary is provided in Table 3 in the Appendix.

3.1 Benchmark Instances

We create a new set of benchmark instances modeled after the long-distance bus network in
the region of Unterfranken, Germany. Table 1 provides an overview of the seven networks,
where the total transfer degree denotes the sum of degrees of all transfer stations as a
further measure of complexity. A visualization of the networks is provided in Figure 12
in the Appendix. Networks with the same base name build upon each other; for example,
sw-schlee_3 consists of the sw-schlee_2 network with an additional line.

Table 1 Overview of benchmark networks.

Network #Lines #Stops #Transfer Stops Total Transfer Deg. Length [km]

markt-karl 3 15 3 8 109.3
markt-karl-lohr 5 26 5 14 165.6
sw-geo_2 2 21 2 5 76.5
sw-geo_full 4 32 4 13 120.1
sw-schlee_2 2 14 2 6 58.6
sw-schlee_3 3 21 3 11 92.8
sw-schlee_full 5 28 5 17 129.9

For each network, we create multiple instances with 10 to 100 requests distributed over a
time span of three, six, or nine hours, where each request r is assigned a pick-up and drop-off
station under a uniform random distribution across S. We split the time span into 5-minute
intervals and, for each r, draw an earliest pick-up time e(r+) uniformly at random from the
resulting set of intervals. The remaining time bounds, i.e., l(r+), e(r−), and l(r−), are then
computed from the maximum wait time of 15 minutes, and the shortest direct and maximum
travel times of r. Finally, the number of passengers in a request is chosen by assigning a 90%
probability for picking a single passenger, 9% for two, and 1% for three passengers.

3.2 Computational Performance

20 40 60 80 100
Number of Requests

0

200

400

600

800

Co
m

pu
ta

tio
n

Ti
m

e
in

 se
co

nd
s

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

20 40 60 80 100
Number of Requests

0

200

400

600

800

Co
m

pu
ta

tio
n

Ti
m

e
in

 se
co

nd
s

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0

200

400

600

800

Co
m

pu
ta

tio
n

Ti
m

e
in

 se
co

nd
s

(c) Nine hour time span.

Figure 3 Average computation time per instance. The dashed line marks the solver timeout.

ATMOS 2025

17:12 The Line-Based Dial-a-Ride Problem with Transfers

Figure 3 visualizes the computation times per instance. As expected, this increases with
the number of requests, with timeout first being reached at 40, 50, and 70 requests for
time spans of three, six, nine hours, respectively. The computation time seems to correlate
stronger with the number of requests than the number of lines of the network. Further, the
temporal density, defined as the number of requests per hour, has a significant impact: the
computation time reaches timeout for a temporal density greater than 13 (for three hours)
and 7.77 (for six and nine hours). This may also be explained by the size of the underlying
event-based graph, where a higher temporal density correlates to a larger graph, see Figure 5.

Here, the markt-karl-lohr instance with 30 requests in six hours reached a MIP gap
of 0.05% within 16 seconds, indicating a near-optimal solution was found early in the
optimization process.

Next, Figure 4 shows the relative MIP gap4, for all instances. The MIP gap tends to rise
with the number of requests for a given time span, and is lower for larger time spans overall.
Interestingly, the MIP gap of instances on the supposedly harder networks with more lines,
sw-schlee_full and sw-geo_full, is often smaller than on the other networks, rising only for
instances with large numbers of requests, e.g., sw-schlee_full at 100 request in six hours.

20 40 60 80 100
Number of Requests

0

20

40

60

80

100

Re
la

tiv
e

M
IP

 G
ap

 in
 %

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

20 40 60 80 100
Number of Requests

0

20

40

60

80

100

Re
la

tiv
e

M
IP

 G
ap

 in
 %

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0

20

40

60

80

100

Re
la

tiv
e

M
IP

 G
ap

 in
 %

(c) Nine hour time span.

Figure 4 Average relative MIP gap in percentage per instance.

We postulate that this correlates to the number of available vehicles per line: since each
line is assigned two vehicles, networks with less lines have a lower seat-to-request ratio, which
increases the complexity when aiming to transport all passengers.

0 5 10 15 20 25 30
Temporal Density

100

101

102

103

104

105

106

Nu
m

be
r o

f E
ve

nt
s

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Number of nodes.

0 5 10 15 20 25 30
Temporal Density

100

101

102

103

104

105

106

Nu
m

be
r o

f E
dg

es

(b) Number of edges.

Figure 5 Number of nodes and edges in the underlying event-based graph by temporal density.

4 the relative gap between the current objective value and the best known bound, in percent.

J. Barth, K. Reiter, and M. Schmidt 17:13

Figure 5 examines the size of the event-based graph versus the temporal density. For
instances of the same temporal density, networks with less lines, such as the sw-geo_2 and
sw-schlee_2, produce smaller graphs (with both less nodes and less arcs) than networks
with more lines. Interestingly, one of the largest networks, sw-schlee_full is surpassed by
sw-schlee_3 (a subgraph with two less lines) multiple times. This suggests that the length of
the lines, as well as the number and location of transfer stations, may have an additional
impact on the size of the event-based graph.

Finally, Figure 7 shows the number of variables and constraints in the MILP. Both rise
with the temporal density and the number of lines in the network: the smallest networks,
sw-geo_2 and sw-schlee_2, require both the smallest number of variables and constraints.
Larger networks enable more transfers, which in turn also allows for more route options per
request, requiring more variables and constraints in our MILP.

102 103 104 105

Number of Nodes

100

101

102

103

104

105

106

Nu
m

be
r o

f E
dg

es

0

200

400

600

800

se
co

nd
s

Figure 6 Size of event-based graph in relation to computation time in seconds.

Both the absolute number of requests and the number of requests per hour have an impact
on the number of admissible events in the event-based graph. Indeed, Figure 6 demonstrates
that the computation time for the MILP increases with the size of the underlying event-based
graph. This underlines the value of effective pre-processing approaches. Furthermore, we
observe that, in our experiments, the ratio of number of arcs to number of nodes is quasi
constant across instances and networks, suggesting that our pre-processing effectively prunes
a large fraction of infeasible events and arcs.

3.3 Service Quality Metrics
As a large MIP gap indicates a far-from-optimal solution, we restrict our analysis to instances
with ≤ 60 requests in three hours and ≤ 90 requests in six hours for this section.

Figure 8 shows that all instances accepted over 78% of requests, with those spanning
nine hours accepting over 88%. Note that it may not be feasible to accept all requests in our
instances with the given number of vehicles (e.g., the optimal solution on sw-schlee_2 with
30 requests in three hours denies a single request). Instances which were solved to optimality
accepted the maximum amount of passengers due to our choice of penalty W (see Lemma 1)
and instances with the lowest acceptance rates correspond to those with the highest MIP
gaps, compare Figure 4. Among all instances solved to optimality, 99.69% of requests were
accepted on average.

As a measure of routing quality, [19] propose the metric system efficiency, computed as
the fraction of total booked kilometers (as a straight-line path between origin and destination)
to total driven distance by all vehicles. A value greater than 1 corresponds to our system
saving distance compared to each passenger traveling in their own vehicle.

ATMOS 2025

17:14 The Line-Based Dial-a-Ride Problem with Transfers

0 5 10 15 20 25 30
Temporal Density

100

101

102

103

104

105

106

Nu
m

be
r o

f C
on

st
ra

in
ts

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Number of constraints.

0 5 10 15 20 25 30
Temporal Density

100

101

102

103

104

105

106

Nu
m

be
r o

f V
ar

ia
bl

es

(b) Number of variables.

Figure 7 Number of constraints and variables in the MILP by temporal density.

10 20 30 40 50 60
Number of Requests

80

85

90

95

100

Ac
ce

pt
ed

 R
eq

ue
st

s i
n

%

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

10 20 30 40 50 60 70 80 90
Number of Requests

80

85

90

95

100

Ac
ce

pt
ed

 R
eq

ue
st

s i
n

%

(b) Six hour time span.

20 40 60 80 100
Number of Requests

80

85

90

95

100

Ac
ce

pt
ed

 R
eq

ue
st

s i
n

%

(c) Nine hour time span.

Figure 8 Average percentage of accepted requests per instance.

As can be seen in Figure 9, the system efficiency increases with the number of requests of
the instances and temporal density, with more dense instances achieving a higher system
efficiency, but only one instances surpasses a value of 1. The differences across networks,
where networks with more routing freedom (e.g., the sw-geo_full) achieve higher efficiencies,
suggests that the liDARPT can better utilize the network here.

10 20 30 40 50 60
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sy
st

em
 E

ffi
cie

nc
y

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

10 20 30 40 50 60 70 80 90
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sy
st

em
 E

ffi
cie

nc
y

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sy
st

em
 E

ffi
cie

nc
y

(c) Nine hour time span.

Figure 9 Average system efficiency per instance.

The system efficiency metric may be overly harsh in evaluating liDARPT outcomes, as
road network distances would, in most cases, significantly exceed the straight line distances
used here for comparison. For this reason, we complement the system efficiency metric with
the network system efficiency, which is defined as the ratio of

∑
r∈R tr∗ , the sum of the

shortest network travel time of all requests, to the total distance traveled of all vehicles.

J. Barth, K. Reiter, and M. Schmidt 17:15

Figure 10 shows that the network system efficiency surpasses the threshold of 1 multiple
times, with the lowest efficiency slightly below 0.4 and overall densely clustered results. The
results show a clear trend of increasing network system efficiency with larger temporal density,
where notably several instances surpass the threshold of 1, indicating that the solver is able
to identify more efficient paths than those in a fixed bus network.

10 20 30 40 50 60
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ne
tw

or
k

Sy
st

em
 E

ffi
cie

nc
y

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

10 20 30 40 50 60 70 80 90
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ne
tw

or
k

Sy
st

em
 E

ffi
cie

nc
y

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ne
tw

or
k

Sy
st

em
 E

ffi
cie

nc
y

(c) Nine hour time span.

Figure 10 Average network system efficiency per instance.

Lastly, Figure 11 considers the vehicle utilization5, which increases with the number of
requests, surpassing the threshold of 1 in all three time spans for higher request numbers,
and reaches values up to 1.32 for larger instances. This suggests that the liDARPT is able to
effectively pool passengers for medium and high densities.

10 20 30 40 50 60
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ve
hi

cle
 U

til
iza

tio
n

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

(a) Three hour time span.

10 20 30 40 50 60 70 80 90
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ve
hi

cle
 U

til
iza

tio
n

(b) Six hour time span.

20 40 60 80 100
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ve
hi

cle
 U

til
iza

tio
n

(c) Nine hour time span.

Figure 11 Average vehicle utilization per instance. The dashed line indicates a utilization of one.

In general, smaller instances achieve a lower utilization due to limited flexibility, resulting
in longer trips to reposition the vehicles between requests. Differences in network structures
may additionally play a role: the sw-schlee_3 network contains two relatively long lines
without a transfer point at their end, resulting in many empty driven kilometers, e.g., after
a request has been transported to the end of a line and the vehicle needs to return empty,
and thus an overall lower utilization when compared to similarly sized networks. However,
we cannot observe a general trend related to the networks: the vehicle utilization seems to
correlate strongly with the number of requests but not with the number of lines or transfer
points in the network.

5 ratio of total passenger kilometers to the total vehicle distance traveled.

ATMOS 2025

17:16 The Line-Based Dial-a-Ride Problem with Transfers

4 Conclusion

Inspired by the combination of scheduled bus services and dial-a-ride systems, we present
the novel line-based dial-a-ride problem with transfers (liDARPT), wherein vehicles operate
on-demand on a multi-line network, allowing passengers to transfer during their journey.

Our computational experiments with benchmark instances based on long-distance bus
networks demonstrate the viability of our solution approach for the liDARPT under varying
conditions, examining effects of increasing number of passengers, total time span, and number
of lines in the network. As a feasibility study, our results show that the liDARPT can accept
a large amount of passengers, and additionally pool these passengers in the available vehicles,
achieving environmental savings by reducing the traveled distance. Hence, the model is a
viable alternative to public transport, enabling a more flexible usage of existing infrastructure,
especially in regions with low demand.

In the static variant studied here, our approach was able to solve instances with up to
80 requests in the given time limit of 15 minutes. Across all instances solved to optimality,
99.69% of requests were accepted, and, for increasing instance size, both the network system
efficiency and the vehicle utilization surpass their threshold of 1.

To better address passenger satisfaction, future work could incorporate the generalized
travel time, i.e., the sum of travel, waiting, and transfer times, in the objective function
as a measure of service quality. Beyond this, further research should concentrate on the
development and evaluation of solution approaches for the dynamic liDARPT, and the
comparison to public transport systems operated fully on demand, on the one hand, and
scheduled public transport, on the other hand. Furthermore, future work on the liDARPT
may explore an extension where vehicles may be dynamically reassigned between lines,
allowing a responsive (or preemptive) approach to variable demand and a varying amount of
vehicles per line. As a first step, the current MILP formulation may be extended to determine
the optimum number of vehicles per line for the given instance, subject to a global fleet
size constraint. Building on this, a second step could incorporate vehicle transfers between
lines at the transfer stations, which would require significant modifications to the current
underlying event-based graph structure.

References
1 Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus.

On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114(3):462–467, 2017. doi:10.1073/pnas.1611675114.

2 Andrea Attanasio, Jean-François Cordeau, Gianpaolo Ghiani, and Gilbert Laporte. Parallel
Tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing,
30(3):377–387, March 2004. doi:10.1016/j.parco.2003.12.001.

3 Jonas Barth. liDARPT. Software, swhId: swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a
83841a (visited on 2025-08-27). URL: https://github.com/barjon0/liDARPT, doi:10.4230/
artifacts.24588.

4 Jonas Barth. The line-based dial-a-ride problem with transfers. Master’s thesis, Julius-
Maximilians-Universität Würzburg, Germany, 2025.

5 John W. Baugh, Gopala Krishna Reddy Kakivaza, and John R. Stone. Intractability of the
Dial-a-Ride Problem and a Multiobjective Solution Using Simulated Annealing. Engineering
Optimization, 30(2):91–123, February 1998. doi:10.1080/03052159808941240.

6 Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. A Hybrid Tabu Search and
Constraint Programming Algorithm for the Dynamic Dial-a-Ride Problem. INFORMS Journal
on Computing, 24(3):343–355, 2012. doi:10.1287/IJOC.1110.0454.

7 Jean-François Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Operations
research, 54(3):573–586, 2006. doi:10.1287/OPRE.1060.0283.

https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1016/j.parco.2003.12.001
https://archive.softwareheritage.org/swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a83841a;origin=https://github.com/barjon0/liDARPT;visit=swh:1:snp:9e991754ac51080c4671363ee2e149da96bd534e;anchor=swh:1:rev:eae0411fec481c24c2f82a32bf3319292f47c08a
https://archive.softwareheritage.org/swh:1:dir:f4c2255f2efac8e14d97cf8b152dd7df1a83841a;origin=https://github.com/barjon0/liDARPT;visit=swh:1:snp:9e991754ac51080c4671363ee2e149da96bd534e;anchor=swh:1:rev:eae0411fec481c24c2f82a32bf3319292f47c08a
https://github.com/barjon0/liDARPT
https://doi.org/10.4230/artifacts.24588
https://doi.org/10.4230/artifacts.24588
https://doi.org/10.1080/03052159808941240
https://doi.org/10.1287/IJOC.1110.0454
https://doi.org/10.1287/OPRE.1060.0283

J. Barth, K. Reiter, and M. Schmidt 17:17

8 Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological, 37(6):579–594, 2003.
doi:10.1016/S0191-2615(02)00045-0.

9 Jean-François Cordeau and Gilbert Laporte. The Dial-a-Ride Problem (DARP): Variants,
modeling issues and algorithms. Quarterly Journal of the Belgian, French and Italian Operations
Research Societies, 1(2):89–101, June 2003. doi:10.1007/s10288-002-0009-8.

10 Samuel Deleplanque and Alain Quilliot. Dial-a-ride problem with time windows, trans-
shipments, and dynamic transfer points. IFAC Proceedings Volumes, 46(9):1256–1261,
2013. 7th IFAC Conference on Manufacturing Modelling, Management, and Control.
doi:10.3182/20130619-3-RU-3018.00435.

11 Daniela Gaul, Kathrin Klamroth, Christian Pfeiffer, Michael Stiglmayr, and Arne Schulz.
A tight formulation for the dial-a-ride problem. European Journal of Operational Research,
321(2):363–382, 2024. doi:10.1016/j.ejor.2024.09.028.

12 Daniela Gaul, Kathrin Klamroth, and Michael Stiglmayr. Solving the Dynamic
Dial-a-Ride Problem Using a Rolling-Horizon Event-Based Graph. In DROPS-
IDN/v2/document/10.4230/OASIcs.ATMOS.2021.8. Schloss-Dagstuhl - Leibniz Zentrum für
Informatik, 2021. doi:10.4230/OASIcs.ATMOS.2021.8.

13 Daniela Gaul, Kathrin Klamroth, and Michael Stiglmayr. Event-based MILP models for ride-
pooling applications. European Journal of Operational Research, 301(3):1048–1063, September
2022. doi:10.1016/j.ejor.2021.11.053.

14 Konstantinos Gkiotsalitis and A Nikolopoulou. The multi-vehicle dial-a-ride problem with
interchange and perceived passenger travel times. Transportation research part C: emerging
technologies, 156:104353, 2023. doi:10.1016/j.trc.2023.104353.

15 Timo Gschwind and Stefan Irnich. Effective handling of dynamic time windows and its
application to solving the dial-a-ride problem. Transportation Science, 49(2):335–354, 2015.
doi:10.1287/trsc.2014.0531.

16 Sin C. Ho, W.Y. Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering, and
Terence W.H. Tou. A survey of dial-a-ride problems: Literature review and recent de-
velopments. Transportation Research Part B: Methodological, 111:395–421, 2018. doi:
10.1016/j.trb.2018.02.001.

17 Ailing Huang, Ziqi Dou, Liuzi Qi, and Lewen Wang. Flexible Route Optimization for Demand-
Responsive Public Transit Service. Journal of Transportation Engineering Part A Systems,
146, September 2020. doi:10.1061/JTEPBS.0000448.

18 Antonio Lauerbach, Kendra Reiter, and Marie Schmidt. The complexity of counting turns
in the line-based dial-a-ride problem. In International Conference on Current Trends in
Theory and Practice of Computer Science, pages 85–98. Springer, 2025. doi:10.1007/
978-3-031-82697-9_7.

19 Christian Liebchen, Martin Lehnert, Christian Mehlert, and Martin Schiefelbusch. Betriebliche
Effizienzgrößen für Ridepooling-Systeme, pages 135–150. Springer Fachmedien Wiesbaden,
Wiesbaden, 2021. doi:10.1007/978-3-658-32266-3_7.

20 Renaud Masson, Fabien Lehuédé, and Olivier Péton. The dial-a-ride problem with transfers.
Computers & Operations Research, 41:12–23, 2014. doi:10.1016/j.cor.2013.07.020.

21 Yves Molenbruch, Kris Braekers, and An Caris. Typology and literature review for dial-
a-ride problems. Annals of Operations Research, 259(1):295–325, December 2017. doi:
10.1007/s10479-017-2525-0.

22 Sophie N. Parragh, Jean-François Cordeau, Karl F. Doerner, and Richard F. Hartl. Models
and algorithms for the heterogeneous dial-a-ride problem with driver-related constraints. OR
Spectrum, 34(3):593–633, 2012. doi:10.1007/s00291-010-0229-9.

23 Sophie N. Parragh and Verena Schmid. Hybrid column generation and large neighborhood
search for the dial-a-ride problem. Computers & Operations Research, 40(1):490–497, 2013.
doi:10.1016/j.cor.2012.08.004.

ATMOS 2025

https://doi.org/10.1016/S0191-2615(02)00045-0
https://doi.org/10.1007/s10288-002-0009-8
https://doi.org/10.3182/20130619-3-RU-3018.00435
https://doi.org/10.1016/j.ejor.2024.09.028
https://doi.org/10.4230/OASIcs.ATMOS.2021.8
https://doi.org/10.1016/j.ejor.2021.11.053
https://doi.org/10.1016/j.trc.2023.104353
https://doi.org/10.1287/trsc.2014.0531
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1061/JTEPBS.0000448
https://doi.org/10.1007/978-3-031-82697-9_7
https://doi.org/10.1007/978-3-031-82697-9_7
https://doi.org/10.1007/978-3-658-32266-3_7
https://doi.org/10.1016/j.cor.2013.07.020
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s00291-010-0229-9
https://doi.org/10.1016/j.cor.2012.08.004

17:18 The Line-Based Dial-a-Ride Problem with Transfers

24 Christian Pfeiffer and Arne Schulz. An ALNS algorithm for the static dial-a-ride problem
with ride and waiting time minimization. OR Spectrum, 44(1):87–119, 2022. doi:10.1007/
s00291-021-00656-7.

25 Line Blander Reinhardt, Tommy Clausen, and David Pisinger. Synchronized dial-a-ride
transportation of disabled passengers at airports. European Journal of Operational Research,
225(1):106–117, February 2013. doi:10.1016/j.ejor.2012.09.008.

26 Kendra Reiter, Marie Schmidt, and Michael Stiglmayr. The line-based dial-a-ride problem. In
24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems, 2024. doi:10.4230/OASIcs.ATMOS.2024.14.

27 Yannik Rist and Michael A. Forbes. A new formulation for the dial-a-ride problem. Trans-
portation Science, 55(5):1113–1135, 2021. doi:10.1287/trsc.2021.1044.

28 Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. Models and branch-and-cut
algorithms for pickup and delivery problems with time windows. Networks, 49(4):258–272,
2007. doi:10.1002/net.20177.

29 Stefan Ropke and David Pisinger. An Adaptive Large Neighborhood Search Heuristic for the
Pickup and Delivery Problem with Time Windows. Transportation Science, 40(4):455–472,
2006. doi:10.1287/trsc.1050.0135.

30 Jörn Schönberger. Scheduling constraints in dial-a-ride problems with transfers: a metaheuristic
approach incorporating a cross-route scheduling procedure with postponement opportunities.
Public Transport, 9:243–272, 2017. doi:10.1007/s12469-016-0139-6.

A Benchmark Networks

Marktheidenfeld

Karlstadt

(a) markt-karl.

Marktheidenfeld

Karlstadt

Lohr

(b) markt-karl-lohr.
Schweinfurt

Gerolzhofen

(c) sw-geo_2.

Volkach

Schweinfurt

Gerolzhofen

(d) sw-geo_full.
Schweinfurt

Werneck

(e) sw-schlee_2.

Schweinfurt

Werneck

(f) sw-schlee_3.

Schweinfurt

Hammelburg

Werneck

(g) sw-schlee_full.

Figure 12 Visualization of the underlying networks of our benchmark instances. The black square
markers signify the transfer stations.

https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1016/j.ejor.2012.09.008
https://doi.org/10.4230/OASIcs.ATMOS.2024.14
https://doi.org/10.1287/trsc.2021.1044
https://doi.org/10.1002/net.20177
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1007/s12469-016-0139-6

J. Barth, K. Reiter, and M. Schmidt 17:19

B Variable Overview

Table 2 Summary of notation.

Identifier Definition

Parameters

S set of stations
ST set of transfer stations
I set of lines
K set of vehicles
R set of requests
λi sequence of stations of a line i
σ(k) line of bus k
σ−1(i) set of vehicles assigned to line i
ci capacity of vehicles on line i
sdepot

i start and end depot of a line i
t(s, s′) (time) distance between stations s, s′

qr number of passengers in request r
r+, r− pick-up, drop-off station for request r
[e(r+), l(r+)] pick-up time window for request r
[e(r−), l(r−)] drop-off time window for request r
Lr maximum travel time of request r
b service time

P set of actions
P(r) set of actions of request r
P(r)+,P(r)− set of outbound and inbound actions of request r
P(r)+

j set of outbound actions in route option ϕr
j of request r

Φ(r) set of route options of request r
Ψ(r) set of splits of a request r
ρi,+

s,r , ρ
i,−
s,r outbound and inbound action of request r at station s on line i

ϕr
j = (ρi,+

r+,r
, . . . , ρi′,−

r−,r
) route option of request r

ψi
s,s′,r = (ρi,+

s,r , ρ
i,−
s′,r

) split of a request r on line i from s to s′

dir(i, s, s′) travel direction of a split ψi
s,s′,r on line i

G = (V,A) event-based graph
(v1, v2, . . .) event node in V
0i empty event at depot of line i
δin(v), δout(v) incoming and outgoing edges of node v

Model Variables

pr binary variable, is 1 if request r is accepted
xa binary variable, is 1 if arc a is selected
yr

j binary variable, is 1 if route option ϕr
j is selected

B
ρ

i,±
s,r

continuous variable, end time of the action ρi,±
s,r

ATMOS 2025

17:20 The Line-Based Dial-a-Ride Problem with Transfers

C Summary of Results

The following tables provide a summary of results, averaged over all networks, per time span.
MaxOcc denotes the maximum occupancy in all vehicles.

Table 3 Averaged results over all networks.

(a) Three hour time span.

#Req MIPGap AccReq SysEff NetEff VehUtil MaxOcc Avg#Transfers

10 0.00 100.00 0.37 0.55 0.57 1.71 0.74
20 0.00 100.00 0.46 0.67 0.75 3.14 0.68
30 0.00 99.05 0.60 0.77 0.85 3.14 0.61
40 1.57 97.02 0.66 0.91 1.02 4.14 0.70
50 5.57 94.38 0.74 1.02 1.14 4.05 0.68
60 18.52 84.29 0.78 1.06 1.17 4.43 0.71
70 27.90 78.23 0.81 1.09 1.22 5.05 0.65
80 40.43 71.37 0.82 1.07 1.18 4.48 0.59
90 48.95 67.41 0.81 1.08 1.19 4.48 0.58
100 73.05 58.05 0.80 1.02 1.11 4.05 0.51

(b) Six hour time span.

#Req MIPGap AccReq SysEff NetEff VehUtil MaxOcc Avg#Transfers

10 0.00 100.00 0.41 0.53 0.56 1.86 0.60
20 0.00 100.00 0.51 0.67 0.75 2.43 0.69
30 0.00 100.00 0.53 0.76 0.85 2.86 0.81
40 0.00 99.64 0.56 0.80 0.90 3.29 0.79
50 0.38 99.14 0.64 0.89 1.01 3.86 0.77
60 1.29 97.86 0.67 0.94 1.05 4.14 0.74
70 1.95 97.01 0.70 0.93 1.04 4.48 0.72
80 4.76 94.46 0.72 0.98 1.10 4.67 0.74
90 13.43 88.41 0.73 1.02 1.14 4.67 0.70
100 21.19 82.57 0.75 1.00 1.12 4.24 0.64

(c) Nine hour time span.

#Req MIPGap AccReq SysEff NetEff VehUtil MaxOcc Avg#Transfers

10 0.00 100.00 0.38 0.50 0.55 1.86 0.64
20 0.00 100.00 0.48 0.68 0.74 2.43 0.82
30 0.00 100.00 0.53 0.70 0.75 2.71 0.66
40 0.00 100.00 0.54 0.76 0.83 2.71 0.77
50 0.00 99.71 0.62 0.84 0.92 3.52 0.71
60 0.00 100.0 0.60 0.85 0.93 3.43 0.72
70 0.00 99.18 0.65 0.90 1.00 3.57 0.69
80 0.81 98.69 0.69 0.93 1.03 4.14 0.75
90 2.33 97.46 0.70 0.95 1.05 4.67 0.75
100 4.48 95.57 0.69 0.96 1.07 4.14 0.75

Energy-Efficient Line Planning by Implementing
Express Lines
Sarah Roth #

Department of Mathematics, RPTU University Kaiserslautern-Landau, Germany

Anita Schöbel #

Department of Mathematics, RPTU University Kaiserslautern-Landau, Germany
Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany

Abstract
While a shift from individual transport to public transport reduces greenhouse gas emissions, public
transport itself also consumes a non-negligible amount of energy. Acceleration processes have a high
part in that, especially in urban transportation networks where stops are not far from each other.
Express lines which skip stops hence use less energy than a vehicle on a normal line on the same
route. Additionally, they increase the attractiveness of public transport by reducing travel times. In
this paper, we introduce the express line planning problem ELP which extends the well-known line
planning problem by the additional planning of express lines and which stops they skip. The problem
is stated in a bicriteria setting minimizing the passengers travel time and the energy consumption of
the public transport system. We investigate the problem’s complexity and develop two different
MIP formulations and show their equivalence. The models are tested numerically on medium sized
instances.

2012 ACM Subject Classification Applied computing → Transportation; Applied computing →
Decision analysis

Keywords and phrases Line Planning, Express Lines, Sustainable Public Transport

Digital Object Identifier 10.4230/OASIcs.ATMOS.2025.18

Funding Sarah Roth: Funded by BMBF Project number 05M22UKB (SynphOnie).

1 Motivation

While an expansion of public transport facilitates the shift from individual transport to
public transport and hence reduces greenhouse gas emissions, also public transport itself
consumes a non-negligible amount of energy. Both aspects improving the attractiveness of
public transport, and avoiding emissions can be improved by introducing express lines that
skip some of the stops: This enables people to travel faster between their origins and their
destinations making the usage of public transport more attractive. Further, each skipped
stop means that the vehicle avoids an acceleration process, and, hence, consumes less energy
than a vehicle on a normal line on the same route. This is underlined by the fact that the
acceleration process is the most energy consuming part of driving in an urban transportation
network where stops are not that far from each other.

However, there are also some downsides in the implementation of express lines as skipping
a stop might lead to higher travel times for the passengers who want to board/alight at that
stop. In addition, the introduction of new lines might increase the energy consumption of the
transport system if it results in a higher number of vehicles. Therefore, the decisions where
express lines are implemented and which stops are skipped are essential to its practical effect.

The goal of this paper is to design a line concept consisting of both express lines that skip
some stops and normal lines that stop at every stop. Therefore, we integrate the decision
which stops to skip in an express line into the line planning process. Our contribution is the
following.

© Sarah Roth and Anita Schöbel;
licensed under Creative Commons License CC-BY 4.0

25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2025).
Editors: Jonas Sauer and Marie Schmidt; Article No. 18; pp. 18:1–18:21

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.roth@math.rptu.de
https://orcid.org/0009-0005-3681-4465
mailto:anita.schoebel@rptu.de
https://orcid.org/0000-0002-9306-5529
https://doi.org/10.4230/OASIcs.ATMOS.2025.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

18:2 Energy-Efficient Line Planning by Implementing Express Lines

1. We state the express line planning problem ELP in a bicriteria setting, minimizing the
passengers’ travel time as well as the energy consumption of the transport system.

2. We discuss the complexity of ELP and develop two distinct MIP formulations.
3. We compare the two MIP formulations in terms of size and prove their equivalence.
4. We also provide an experimental comparison of the two MIP formulations in terms of

their run times and analyze the usage of express lines as well as the trade off between a
reduction of travel time and a decrease in energy consumption.

The remainder of the paper is structured as follows: In Section 2 we give an overview of
relevant literature. The basis of the new express line planning problem is the known line
planning problem with minimal transfers and frequencies (described in Section 3.1). For its
modeling we provide two different ways of representing an express line in Section 3.2. The
express line planning problem ELP is then stated in Section 4.1. Here also its complexity is
discussed. Now, the two MIP models which are based on the representation of express lines
by stops (see Section 4.2) and by edges (see Section 4.3) are formulated. They are compared
in Section 5. In Section 6, results from numerical experiments are presented. We conclude in
Section 7.

2 Literature

2.1 Express Lines reducing Energy Consumption
In recent years, there were many papers published studying the possibility to reduce the
energy consumption of a public transport system by installing an express mode (e.g. [3, 6, 5,
15, 13, 14]). Here, the implementation of express lines is often investigated in the context of
timetabling (see e.g. [3, 14, 5]) and often solved by genetic algorithms ([6, 15, 13, 14]). The
combination with timetabling is due to the fact that, in the context of railways, the necessity
of an express line’s train to overtake a normal line’s train might cause serious problems due
to a limited number of tracks. This problem is often studied on a small instance of one single
line (see [3, 6, 5, 13, 14]) while [15] plan a cross-line express into an existing metro system.
While the decrease of the total travel time is an objective in all these papers, [3] and [14]
also aimed at minimizing the energy consumption. This paper also aims at investigating the
implementation of express lines under both objectives, the minimization of the passengers’
travel time and the minimization of the transport systems’ energy consumption. However,
we want to do the planning of express lines on the whole public transport network instead of
just a single line, which enables us to consider passenger route changes. Further, we want to
plan express lines already in the line planning step deciding where an express line should be
implemented.

2.2 Line Planning with Passenger Routing and Express Lines
Line planning is a well-researched field in public transport optimization. There have been
numerous papers published in this area. Recent overviews include [1, 10]. Different objective
functions have been researched in Line Planning [11]. While there are many papers that
minimize the total cost of a line plan we are interested in those that minimize the total
travel time of the passengers. Here, the integration of passenger routing is of particular
interest as it allows flexibility in the passengers route choice depending on the design of
the public transport system (see [8]). The model developed in this paper will be based on
the line planning model with minimal transfers and frequencies (LPMTF) presented in [12].

S. Roth and A. Schöbel 18:3

That paper, however, like most research in line planning, only considers lines that stop at all
stops on their path. Only a few papers have been published on line planning with different
stopping patterns, see Section 16.4.1. in [10] for a recent overview. Often, a system split
is assumed (cf. [7]), i.e. we know in advance whether the passengers will travel on express
or on normal lines. This might be reasonable in the context of long distance trains, but
in the context of a public transport system, we would like to have more flexibility in the
choice of passenger routes. We hence develop a model in which passengers can freely choose
their mode of transport. Another point that distinguishes our model from the ones in the
literature is the objective of minimizing the system’s energy consumption. The models on
express lines or on skip stop planning usually have the objective of minimizing operating
costs.

Another interesting stream of literature is the design of a BRT line, see [4] and references
therein.

3 Modeling Express Lines

3.1 The Underlying Line Planning Model

Line planning problems aim at covering the links of a public transport network with lines
such that passengers can travel on these lines from their origins to their destinations. A
public transport network PTN = (V, E) is a graph whose vertices V are stops and whose
edge set E consists of the direct links between pairs of stops. A line is now defined as follows:

▶ Definition 1. A line ℓ is a (simple) path in the PTN. The set of vertices of line ℓ is
denoted by Vℓ and the set of edges of line ℓ is denoted by Eℓ. Let φℓ : Vℓ → {1, . . . , nℓ} give
us the position of a vertex in the path of line ℓ with nℓ = |Vℓ| denoting the number of stops
of line ℓ. Given a fixed planning period, say one hour, the frequency of a line fℓ says how
often the line is operated during this planning period.

Given a line pool L which contains candidate lines, the goal of line planning is to determine
the set of lines L∗ ⊆ L which should be operated and determine a frequency fℓ for each of
them. The set of selected lines L∗ is called a line plan, and the pair (L∗, fℓ for all ℓ ∈ L∗) is
called a line concept.

The express line planning problem to be developed in this paper is an extension of the
line planning problem with minimal transfers and frequencies (LPMTF) from [12]. It aims at
finding a subset of lines from a given line pool as well as passenger paths through the network
such that the line-and-frequency-dependent operating costs are within a given budget and
the total travel time of the passengers is minimized. The passengers’ travel time consists
of the driving times along every edge in the PTN together with a penalty added for every
transfer from one line to another. Therefore, as underlying graph structure, the so-called
change&go network CGN = (V ′, E′) is used. The CGN is an extended PTN based on a
given line pool L. We use a slightly modified version 1 of the original definition from [12].
Transferring as well leaving the origin and entering the destination are performed by the
passengers via a station node v ∈ V ′

ST . The change&go network is built as follows:

1 We thank Sven Jäger for the efficient modification of the CGN.

ATMOS 2025

18:4 Energy-Efficient Line Planning by Implementing Express Lines

(a) PTN with three lines. (b) Change&go network.

Figure 1 Networks for Line Planning.

V ′ := V ′
CG ∪ V ′

ST

V ′
CG := {(s, ℓ) ∈ V × L : s ∈ Vℓ}

V ′
ST := {(s, 0) : s ∈ V }

E′ := E′
change ∪ E′

go

E′
go := {((s, ℓ), (s′, ℓ)) ∈ V ′

CG × V ′
CG : (s, s′) ∈ Eℓ, ℓ ∈ L}

E′
change := {((s, 0), (s, ℓ)) ∈ V ′

ST × V ′
CG and ((s, ℓ), (s, 0)) ∈ V ′

CG × V ′
ST : s ∈ Vℓ, ℓ ∈ L}

Figure 1b shows the change&go network derived from the PTN and the three lines
depicted in Figure 1a.

Let us briefly state the MIP formulation for (LPMTF). We are given a PTN = (V, E)
with passenger demand Cuv for each u, v ∈ V denoting the number of passengers intending
to travel from u to v. For each edge e ∈ E, we know the time needed for its traversal w′

e. In
addition, we are given a change penalty α. Further, we are given a line pool L and costs cℓ

for each line ℓ ∈ L as well as a budget B on the total cost of the line concept. Each vehicle
serving a line has capacity for A passengers. Θ denotes the node-arc-incidence matrix of the
corresponding CGN = (V ′, E′). The travel time function w : E′ → R+

0 on the edges of the
CGN is defined by we := wij for e = ((i, ℓ), (j, ℓ)) ∈ Ego and by we := 0.5α for e ∈ Echange.
Now, let us define the node potential for the uv flow of passengers:

buv
s =


Cuv if s = (v, 0)
−Cuv if s = (u, 0)
0 else

for each s ∈ V ′ and u, v ∈ V .
The decision variables are the frequency fℓ assigned to each line and the passenger flow,

i.e., the number of passengers puv
e with origin u and destination v traveling on edge e.

(LPMTF) min
∑
e∈E′

∑
u,v∈V : Cuv>0

wepuv
e (1)

s.t. Θpuv = buv ∀u, v ∈ V : Cuv > 0 (2)∑
u,v∈V

puv
e ≤ Afℓ ∀ℓ ∈ L, e ∈ E′

ℓ (3)

S. Roth and A. Schöbel 18:5

∑
ℓ∈L

cℓfℓ ≤ B (4)

puv
e ∈ N ∀u, v ∈ V ∀e ∈ E′ (5)

fℓ ∈ N ∀ℓ ∈ L (6)

The objective (1) minimizes the total travel time of the passengers. Constraints (2) are
passenger flow constraints. These determine paths from the origins to the destinations for
all passengers. Constraints (3) ensure that sufficient capacity is offered on each edge to
transport all passengers along the paths determined in (2), and constraint (4) ensures that
the given budget on the total cost is respected.

3.2 Two Ways of Modeling Express Lines
In the express line planning problem we do not only want to select lines from a given line
pool, but we also want to be able to install an express line for each selected line. In the
following, the notion of an express line is formally defined. An illustration can be found in
Figure 2.

Figure 2 An express line (light blue) based on a normal line (blue).

▶ Definition 2. Let ℓ with Vℓ = {v1, . . . , vn} be a line. An express line ℓexp based on line ℓ

is given by Vℓexp = {v1} ∪ S ∪ {vn} with S ⊊ {v2, . . . , vn−1}.

▶ Remark 3. For a line with n stops there are 2n−2 − 1 possible express lines.
It is possible to just add the express lines to the line pool and use the normal line planning
models with passenger routing from the literature. However, adding all possible express lines
to the pool would mean adding an exponential number of lines. This is computationally
not possible. Hence, we now define two different ways of describing an express line. An
express line can be given by its nodes (stop-based representation) or its edges (edge-based
representation). In Figure 3, the two ways of modeling an express line ℓexp based on a normal
line ℓ are depicted.

1 2 3 4 5

(a) Stop-based Representation:
red stops are served.

1 2 3 4 5

(b) Edge-based Representation:
red edges are part of the express line.

Figure 3 Two Representations of the same Express Line.

We, now, first define the notion of a stopping pattern for the stop-based representation.

▶ Definition 4. Let ℓexp be an express line based on a line ℓ with n stops, Vℓ = {v1, . . . , vn}.

The vector σℓexp ∈ {0, 1}n with σℓexp(i) :=
{

1 if vi ∈ Vℓexp

0 else
is called the stopping pattern

of ℓexp.

ATMOS 2025

18:6 Energy-Efficient Line Planning by Implementing Express Lines

Note that an express line is, by definition, required to skip at least one stop and to stop
at the first and the last stop of the normal line it is based on. Hence, we can define the
notion of a valid stopping pattern.

▶ Definition 5. A stopping pattern σℓexp based on a line ℓ with Vℓ = {v1, . . . , vn} is called
valid if σℓexp(v1) = σℓexp(vn) = 1 and

∑n
i=1 σℓexp(vi) ≤ n − 1.

A valid stopping pattern defines an express line ℓexp based on line ℓ.

Second, we define the notion of an edge choice for the edge-based representation. Therefore,
we define the set of the

(
n
2
)

potential edges of an express line based on a line with n vertices
by:

Epot
ℓexp := {vivj |i < j and i, j ∈ [n]}.

From these edges, we want to choose which ones belong to the express line.

▶ Definition 6. Let ℓexp be an express line based on a line ℓ with n stops. The indicator

vector γℓexp ∈ {0, 1}(n
2) with γℓexp(e) =

{
1 if e ∈ Eℓexp

0 else
is called the edge choice of ℓexp.

However, not every subset of these edges corresponds to a feasible express line. For
example, the edge set {(1, 4), (3, 4), (2, 5)} from Figure 3b does not correspond to a reasonable
express line. Hence, we introduce the notion of a valid choice of edges.

▶ Definition 7. An edge choice γℓexp ∈ {0, 1}(n
2) is called valid, if it corresponds to a

directed path from 1 to vertex n = |Vℓ| on the directed graph F = (Vℓ, Aℓexp) with Aℓexp :=
{ij |γ(ij) = 1 and i < j} and if

∑
e∈Epot

ℓexp
γℓexp(e) ≤ n − 2.

An express line given by a choice of edges γ stops at the nodes incident to the chosen
edges. By the definition of it being valid, it is ensured that the stops of the express line
do not change their order. They can only be skipped. Further, the first and the last stop
must be visited and at least one stop is skipped. Now, let us show that these two ways of
representing an express line are equivalent and that the notions of validity of the edge choice
and the stopping pattern coincide.

▶ Lemma 8. Let ℓ with Vℓ = {1, . . . , n} be a line and ℓexp be an express line based on ℓ .
Each valid stopping pattern σℓexp corresponds to a valid edge choice γℓexp , and vice versa.

The proof of this lemma can be found in Section A.1. In the following, we will exploit this
knowledge to develop two equivalent MIP formulations of the express line planning problem.

4 The Express Line Planning Problem and two MIP Formulations

4.1 The Express Line Planning Problem (ELP)
Let us now state the express line planning problem ELP. As input we have a PTN = (V, E)
together with a line pool L. Additionally, some lines Lexp ⊆ L of the pool can be implemented
as express lines. This means that for each line in Lexp ∩ L we have four choices: It can be
implemented as a regular and as an express line, only as an express line, only as a regular
line or it is not chosen at all. We treat the sets L and Lexp as disjoint sets but for ease of
notation we do not introduce an additional index for the express lines. We are interested in
minimizing energy and travel times.

S. Roth and A. Schöbel 18:7

For the energy, let the energy consumption ce for traversing the edge be given for each
edge e ∈ E in the PTN. For a line ℓ in L we hence have a total consumption of energy
cℓ =

∑
e∈Eℓ

ce. For an express line based on ℓ ∈ Lexp its energy consumption depends on its
stopping pattern. We assume that by skipping a stop we can save csaved of energy, i.e., the
energy consumption of an express line ℓexp based on line ℓ is cℓexp = cℓ − m · csaved where m

is the number of skipped stops in ℓ.
For the travel time we assume the travel times we for the passengers along edge e to

be given for all e ∈ E. Further, we are given a change penalty α and we assume that by
skipping a stop we can save a travel time of wsaved. Finally, there is OD data provided that
gives us the number of passengers Cuv who want to travel from one stop u ∈ V to another
stop v ∈ V . The travel time of a passenger along a path is computed as in LPMTF.

The problem is then to find a feasible set of lines for each line pool L ⊂ L and L′ ⊂ Lexp

together with frequencies and a stopping pattern for each ℓ ∈ L′ as well as passenger paths
P , such that all passengers can travel between their origins and destinations. We aim to
minimize both the total sum of all travel times over the passengers and the total energy
consumption of all lines in the line concept.

▶ Theorem 9. The express line planning problem ELP is NP-complete.

Proof. In the decision version of the (bicriteria) express line planning problem, we want to
decide whether there exist feasible line selections L ⊂ L and L′ ⊂ Lexp with frequencies, a
stopping pattern for each ℓ ∈ L′ and a path for every OD-pair such that the total travel time
is below a certain value M and the total energy consumption is below a certain value N . For
a given set of lines, stopping patterns and passenger paths it can be verified in polynomial
time whether the solution is feasible to this problem. Therefore, it lies in NP .

In order to see that ELP is NP-complete we use that the line planning problem (LPMTF)
is NP-complete ([12]) and show that its decision version is a special case of the decision
version of ELP: This can be seen by setting Lexp := ∅, i.e., the special case in which there
are no express lines to plan. For LPMTF the NP-hardness is shown for equal costs cℓ = 1
for every line ℓ ∈ L. It can be easily modified to the costs cℓ =

∑
e∈Eℓ

ce which we use in
ELP (by adding additional edges to the lines). ◀

In the following we present two different ways of modeling the express line planning
problem as a MIP. The models differ mainly in the expression of the choice of the stopping
pattern of an express line.

4.2 The Stop-Based Model
First, we model the express line planning problem with express line being defined by their stop-
ping patterns. As input we have an instance I = (PTN, OD, L, Lexp, c, w, csaved, wsaved, α, A)
of the ELP. In addition, for this model, we assume an upper bound Mf on the frequency
f . Such an upper bound is e.g. given by sum of all passengers divided by the capacity
A of a vehicle. Further, we set an upper bound on the number of passengers traveling on
an arc to Mp := A · Mf . The network for the stop-based model is the change&go network
CGN = (V , E) based on the PTN and the union of the line pools L ∪· Lexp (a line that
might be chosen as a normal line and a line that might serve as basis for an express line
are considered as two different lines). Figure 4 depicts the change&go network as described
before for the lines in Figure 1a that simultaneously serve as basis for express lines.

We introduce the following notation for the edge set belonging to a specific line ℓ ∈ L∪· Lexp:

Eℓ := {((s, ℓ), (s′, ℓ)) ∈ Ego : (s, s′) ∈ Eℓ}.

ATMOS 2025

18:8 Energy-Efficient Line Planning by Implementing Express Lines

Figure 4 Change&Go Network CGN = (V , E) for Stop-based Express Line Planning.

Further, we need to define a travel time function for the arcs in the CGN. These are
based on the given travel times in the PTN. We define

w : E → R+
0 with w(((i, ℓ), (j, ℓ′))) :=

{
wij for ((i, ℓ), (j, ℓ′)) ∈ Ego

1
2 α for ((i, ℓ), (j, ℓ′)) ∈ Echange

The decision variables puv
e yield the number of passengers of OD-pair uv on edge e, fℓ decides

on the frequency of line ℓ for all lines ℓ ∈ L ∪· Lexp, and the binary variable yℓs decides on
the stopping pattern of an express line by

yℓs =
{

1 if ℓ skips stop s

0 else
.

So, y is complementary to the stopping pattern (Definition 5). The MIP formulation reads:

min
∑
ℓ∈L

cℓ · fℓ +
∑

ℓ∈Lexp

(cℓ − csaved ·
∑
s∈Vℓ

yℓs) · fℓ (7)

min
∑
e∈E

∑
u,v∈V :Cuv>0

w(e)puv
e − wsaved ·

∑
ℓ∈Lexp

∑
s∈Vℓ

yℓs ·
∑

u,v∈V :Cuv>0

∑
e∈δ+((s,ℓ))

puv
e

(8)

s.t. Θpuv = buv ∀u, v ∈ V : Cuv > 0 (9)∑
u,v∈V

puv
e ≤ Afℓ ∀ℓ ∈ L ∪· Lexp, e ∈ Eℓ (10)

∑
u,v∈V

puv
((s,0),(s,ℓ)) ≤ (1 − yℓs) · Mp ∀s ∈ Vℓ ∀ℓ ∈ Lexp (11)

∑
u,v∈V

puv
((s,ℓ),(s,0)) ≤ (1 − yℓs) · Mp ∀s ∈ Vℓ ∀ℓ ∈ Lexp (12)

fℓ ≤ Mf ·
∑
s∈Vℓ

yℓs ∀ℓ ∈ Lexp (13)

∑
s∈Vℓ

yℓs ≤ |Vℓ| · fℓ ∀ℓ ∈ Lexp (14)

∑
l∈L

∑
s∈Vℓ:φ(s)∈{1,nℓ}

yℓs ≤ 0 (15)

puv
e , fℓ ∈ N ∀u, v ∈ V, ℓ ∈ L ∪· Lexp, e ∈ E (16)

yℓs ∈ {0, 1} ∀ℓ ∈ Lexp, s ∈ Vℓ (17)

S. Roth and A. Schöbel 18:9

The first objective Equation (7) minimizes the total energy consumption of the line
concept. The second objective Equation (8) minimizes the total travel time of the passengers.
Constraints Equation (9) and Equation (10) are already known from (LPMTF) and yield a
passenger flow as well as the capacity constraints. If a stop is skipped, passengers cannot
board (Equation (11)) or alight (Equation (12)) at this stop. By choosing Mp large enough,
this does not impose any constraints on the passenger flow if the stop is served. Constraints
Equation (13) ensure that an express line is only implemented, if a stop is skipped. As Mf

is chosen large enough, this does not impose any constraint on the frequency in the case that
the stop is served. Constraints Equation (14) ensure that no stops are counted as skipped if
the corresponding express line is not chosen to be in the line concept (fℓ = 0). Equation (15)
ensures that line ℓ stops at the first and the last stop of the underlying normal line.

▶ Lemma 10. Any feasible assignment of the decision variables yℓ yields a valid stopping
pattern σℓ and each valid stopping pattern σℓ can be represented as a feasible assignment of
the variables yℓ.

Proof. The stopping pattern obtained by σℓ(s) := 1 − yℓs for all s ∈ Vℓ is valid due to
constraints 13 and 15 being respected by the feasible assignment yℓs. On the other hand,
every valid stopping pattern yields a feasible assignment of the y variables by yℓs := 1 − σℓ(s).
Due to validity of σ the constraints 13 and 15 are respected. ◀

The two objectives of the MIP above are not linear. We provide a linearization of this
model in the appendix (Section A.2).

4.3 The Edge-Based Model
The second model is based on the depiction of express lines as a choice of edges. Hence, we
need a new network including all the potential edges for each express line.

4.3.1 The Edge-Based Express Change and Go Network
For an express line based on a line with nℓ nodes, we further introduce two artificial nodes
vsrc and vsink for initializing a flow that determines the choice of edges of that line. We set
φ(vsrc) := 0 and φ(vsink) := nℓ + 1.

For an express line ℓx the set of potential vertices coincides with the vertex set of the
line ℓ which it is based on (Vℓexp = Vℓ = {v1, . . . , vn}). Further, we denote by V →

ℓexp :=
{vsrc, v1, . . . , vn, vsink} the vertices of express line ℓexp including the source and the sink
node for the flow. Let us further define the vertex set V → := V ∪

⋃
ℓ∈Lexp{vsrc

ℓ , vsink
ℓ }.

The vertex set of the express change&go network is now defined as follows:

Ṽ := ṼOD ∪ ṼCG ∪ ṼEX

ṼOD := {(s, 0) : s ∈ V } ṼCG := {(s, ℓ) ∈ V × (L ∪· Lexp) : s ∈ Vℓ}

ṼEX := {(s, ℓ) ∈ V → × Lexp : ℓ ∈ V →
ℓ }

Now, we also distinguish between the following two edge sets of express line ℓ. While

Ẽℓ := {((s, ℓ), (s′, ℓ)) ∈ ṼEX × ṼEX : s, s′ ∈ Vℓ}

denotes the set of all possible edges (arcs into both directions) of express line ℓ, there is also
another arc set associated with express line ℓ:

ATMOS 2025

18:10 Energy-Efficient Line Planning by Implementing Express Lines

(a) The flow arc set E→
ℓexp . (b) E-CGN.

Figure 5 Modeling Express Lines in a Network.

Ẽ→
ℓ :={((vsrc, ℓ), (s, ℓ)) ∈ ṼEX × ṼEX : φ(vsrc) = 0, φ(s) = 1, s ∈ Vℓ}

∪ {((s, ℓ), (vsink, ℓ)) ∈ ṼEX × ṼEX : φ(s) = nℓ, s ∈ Vℓ}

∪ {((vsrc, ℓ), (vsink, ℓ)) ∈ ṼEX × ṼEX}

∪ {((s, ℓ), (s′, ℓ)) ∈ Ẽℓ|φ(s) < φ(s′)}

This set includes all forward arcs from the set of possible edges and links them with the
source and the sink node. Also the source and the sink are linked by an arc. This set of arcs is
depicted in Figure 5a. Now, we can define the edge set of the express change and go network.

Ẽ := Ẽchange ∪ Ẽgo ∪ Ẽexgo

Ẽgo := {((s, ℓ), (s′, ℓ)) ∈ VCG × VCG : (s, s′) ∈ Eℓ, ℓ ∈ L}

Ẽexgo := {e ∈ Ẽ→
ℓ ∪ Ẽℓ|ℓ ∈ Lexp}

Ẽchange := {((s, 0), (s, ℓ)) ∈ VOD × VCG and ((s, ℓ), (s, 0)) ∈ VCG × VOD : s ∈ Vℓ, ℓ ∈ L ∪· Lexp}

An example for an express change and go network based on the PTN with three lines
(see Figure 1a) can be found in Figure 5b. Here, the three lines also serve as set for the
potential express lines (L = Lexp).

The passengers can use all edges for traveling except those connecting an artificial source
or sink node to an express line. Hence, we allow passenger flow on the following edge set:

ẼP := Ẽchange ∪ Ẽgo ∪
⋃

ℓ∈Lexp

Ẽℓ.

4.3.2 The Edge-Based Express Line Planning MIP Formulation
The second MIP formulation that we develop is based on the choice of edges of an express
line. As input we have an instance I = (PTN, OD, L, Lexp, c, w, csaved, wsaved, α, A) of the
ELP. In addition, we assume, as before, an upper bound on the frequency Mf . The network
for the edge-based model is the previously defined edge-based express-change&go network
E − CGN = (Ṽ , Ẽ) based on the PTN and the two line pools L and Lexp. Again, we need
to define two functions that, based on the input, assign travel times and, respectively, energy
costs to the edges of the CGN:

c̃ :
⋃

ℓ∈Lexp

Ẽℓ → R+
0 and w̃ : ẼP → R+

0 .

S. Roth and A. Schöbel 18:11

As these costs should, for edges of an express line, depend on the number of stops skipped
by this edge, we first introduce the following notation for an edge’s number of skipped stops
mij

ℓ as well as the set of corresponding edges in the PTN:

mij
ℓ := |{s ∈ Vl|φ(i) < φ(s) < φ(j) or φ(j) < φ(s) < φ(i)}|

to be the number of stops skipped by edge e ∈ Ẽℓ and

Ebetw
ℓ (ij) := {uv ∈ Eℓ|φ(i) ≤ φ(u) < φ(v) ≤ φ(j) or φ(j) ≤ φ(u) < φ(v) ≤ φ(i)}.

Now, we define the travel time on each arc of the CGN as

w̃(((i, ℓ), (j, ℓ′))) :=


∑

e∈Ebetw
ℓ

(ij) we − mij
ℓ · wsaved for ((i, ℓ), (j, ℓ′)) ∈ Eexgo (ℓ = ℓ′)

wij for ((i, ℓ), (j, ℓ′)) ∈ Ego (ℓ = ℓ′)
1
2 α for ((i, ℓ), (j, ℓ′)) ∈ Echange (ℓ = 0 ∨ ℓ′ = 0)

.

For the energy consumption of line ℓ ∈ Lexp on edge ((i, ℓ), (j, ℓ)) ∈ Ẽℓ we define

c̃((i,ℓ),(j,ℓ)) :=
∑

e∈Ebetw
ℓ

(ij)

ce − mij
ℓ · csaved

The decision variables puv
e yield the number of passengers of OD-pair uv on edge e ∈ Ẽ,

fl decides on the frequency of line ℓ for all lines ℓ ∈ L ∪ Lexp, and the binary variable xl
e

decides on the express line’s choice of edges.
Further, for each express line ℓ, let ∆ℓ be the incidence matrix of the graph F ℓ = (V →

ℓ , Ẽ→
ℓ)

which is a subgraph of E − CGN. Let us define hℓ
s =


1 if s = vsrc

−1 if s = vsink

0 else
for each s ∈ V →

ℓ .

The MIP model now reads:

min
∑
ℓ∈L

cℓ · fℓ +
∑

ℓ∈Lx

fℓ ·
∑

e∈Ẽℓ∩Ẽ→
ℓ

c̃(e) · xℓ
e (18)

min
∑

u,v∈V :Cuv>0

∑
e∈ẼP

w̃epuv
e (19)

s.t. Θpuv = buv ∀u, v ∈ V : Cuv > 0 (20)∑
u,v∈V

puv
e ≤ Afℓ ∀e ∈ Ẽgo, ℓ ∈ L, (21)

∑
u,v∈V

puv
e ≤ Af ℓ · xℓ

e ∀e ∈ Ẽℓ, ℓ ∈ Lexp (22)

∆ℓxℓ = hℓ ∀ℓ ∈ Lexp (23)∑
e∈Ẽℓ∩Ẽ→

ℓ

xℓ
e ≤ nℓ − 2 ∀ℓ ∈ Lexp (24)

xℓ
ij = xℓ

ji ∀ij ∈ Ẽℓ, ℓ ∈ Lexp (25)

puv
e ∈ N ∀e ∈ ẼP , u, v ∈ V (26)
fℓ ∈ N ∀ℓ ∈ L ∪· Lexp (27)

xℓ
e ∈ {0, 1} ∀e ∈ Ẽ→

ℓ ∪ Ẽℓ, ℓ ∈ Lexp (28)

ATMOS 2025

18:12 Energy-Efficient Line Planning by Implementing Express Lines

The two objectives minimize the total travel time of all passengers (19) as well as the
total energy consumption (18). Constraints (20) to (22) are the passenger flow and capacity
constraints on the express change&go network. In particular, constraints (22) make sure,
that passengers cannot travel on all potential edges of an express line but only on the chosen
ones. Constraints (23) ensure the line flow for each express line and Constraints (24) ensure
that at least one stop must be skipped. Due to Constraints (25) an express line is always
implemented into both directions.

▶ Lemma 11. Each valid edge choice γℓ corresponds to a feasible assignment of the variables
xℓ and for each feasible solution (x, p, f) there is a valid edge choice derived from the x

variables.

Proof. Given a feasible assignment of the x, we set γℓ(ij) := xℓ
ij = xℓ

ji for all ij ∈ Ẽℓ ∩ Ẽ→
ℓ .

Due to constraints (23) and (24) γℓ is a valid edge choice. On the other hand, every valid
choice of edges γℓ yields a feasible assignment of the xℓ variables by xℓ

s := γℓ(s). Due to the
validity of γ the constraints (23) and (24) are respected. ◀

The first Objective (18) and the Constraints (22) of the MIP above are not linear. We
provide a linearization of this model in the appendix (Section A.3).

5 Comparison of the Models

In this chapter, we want to compare the two MIP formulations of the Express Line Planning
Problem (ELP) developed in the previous section. As a brief reminder, Table 1 provides an
overview of all three models described in this paper.

Table 1 Comparison of the three models in this paper.

Model LPMTF Stop-based ELP Edge-based ELP
Problem Line Planning Express Line Planning Express Line Planning
Line Pool L L ∪· Lexp L ∪· Lexp

Network change&go network
CGN = (V ′, E′)

change&go network
CGN = (V , E)

express change&go network
E − CGN = (Ṽ , Ẽ)

Network
Figure

Figure 1b Figure 4 Figure 5b

Decision
Variables

f - frequency
p - passenger flow

f - frequency
p - passenger flow
y - stopping pattern

f - frequency
p - passenger flow
x - edge choice

We now want to compare the two new MIP formulations of the ELP. In order to show
their equivalence, let us first prove the equivalence of the express lines of the two models.

▶ Lemma 12. Each feasible express line in the stop-based model corresponds to an express
line in the edge-based model, and vice versa, and they yield the same objective function values
concerning both the passengers’ travel time and the energy consumption.

Proof. By Lemma 10 we know that the assignment of yℓ in the stop-based MIP corresponds
to a valid stopping pattern which by Lemma 8 corresponds 1:1 to a valid choice of edges for
ℓ that can be translated to an assignment to the variables xℓ in the edge-based MIP which is
feasible by Lemma 11. As all these transformations are equivalent, this reasoning also works
into the other direction. Let cstop, cedge denote the energy cost functions and wstop, wedge

S. Roth and A. Schöbel 18:13

the travel time functions of the stop- and the edge-based MIP formulation, respectively. Let
us now show that for any two subsequent non-skipped stops i, j ∈ Vℓ, i.e. xij = 1 the travel
times on line ℓ of the two models are equal, i.e.

wedge(ij) =
∑

e∈Ebetw
ℓ

(ij)

we −wsaved ·mij
ℓ =

∑
e∈Ebetw

ℓ
(ij)

wstop(e)−wsaved
∑

s∈Vℓ:φ(i)<φ(s)<φ(j)

ys

Now, let us compare the energy costs of the two lines obtained in the two models.

cstop
ℓ =

∑
e∈Eℓ

ce −
∑

s∈Vℓ:φ(i)<φ(s)<φ(j)

csaved · ys

=
∑

e∈Eℓ:xℓ
e=1

∑
e∈Ebetw

ℓ
(ij)

ce − mij
ℓ · csaved

=
∑

e∈Eℓ:xℓ
e=1

cedge
e = cedge

ℓ ◀

Now, we can state the following theorem.

▶ Theorem 13. Let I be an instance of the express line planning problem. The two models
are equivalent, i.e. for each feasible solution SN (I) of the node-based model there is a solution
SE(I) of the edge-based model yielding the same set of lines, frequencies and passenger paths
as well as the same objective function value, and vice versa.

The proof of Theorem 13 is based on Lemma 12 and can be found in Section A.4.
Although they yield equivalent solutions, the stop-based model and the edge-based model

differ in the sizes of the networks that they are based on. Both the change&go network used
for the stop-based model and the express change&go network used for the edge-based model
are based on the PTN = (V, E) as well as the line pools L and Lexp. By the definition of
the CGN = (V , E) for the edge-based model and the E − CGN = (Ṽ , Ẽ) for the edge-based
model, we obtain V ⊊ Ṽ and E ⊊ Ẽ.

In order to estimate the actual sizes depending on the input PTN and the line pools,
we define nmax

ℓ := max{nℓ|ℓ ∈ L ∪· Lexp} to be the maximal line length in the line pool. In
Table 2 the numbers of nodes as well as the numbers of edges are compared. The terms in
which they differ are marked in red. The express change&go network for the edge-based
model has only a few more nodes than the change&go network, however, in one summand
the number of edges is quadratic in the length of the longest line in the line pool while the
corresponding summand for the number of edges in the change&go network of the stop-based
model is linear in that length.

Table 2 Comparison of the underlying Networks.

Stop-based Model Edge-based Model

Network CGN = (V , E) E − CGN = (Ṽ , Ẽ)

Nodes |V | ≤ |V | + nmax · |L ∪· Lexp| |Ṽ | ≤ |V | + nmax · |L ∪· Lexp| + 2 · |Lexp|

Edges |E| ≤ (2nmax − 1) · |L| |Ẽ| ≤ (2nmax − 1) · |L ∪· Lexp|
+nmax

· |Lexp| +nmax · |Lexp|
+(nmax − 1) · |Lexp| +(

(
nmax

2
)

+ 3) · |Lexp|

ATMOS 2025

18:14 Energy-Efficient Line Planning by Implementing Express Lines

Similarly, we oppose the sizes of the two MIP formulations in Table 3. Again, the terms
in which the numbers of variables and constraints differ are marked in red. For each of them,
it is the case that the term in the edge-based model is quadratic in the length of the longest
line in the line pool while the corresponding one for the number of edges in the change&go
network of the stop-based model is linear in that length. Hence, the edge-based model has
more variables and more constraints and is based on a bigger network. This also holds for
the linearized version of the models. In Table 3 there is one row each, where the number of
variables/constraints added for the linearization of the models is depicted.

Table 3 Comparison of the Model Sizes.

Stop-based Model Edge-based Model

Variables (nmax + 1) · |Lexp| (2
(

nmax

2
)

+ 4) · |Lexp|
+|L| + |V |2 · |E| +|L| + |V |2 · |Ẽ|

added for lineraization +2nmax · |Lexp| +2
(

nmax

2
)

· |Lexp|

Constraints |V |3 + nmax · |L| + 1 |V |3 + nmax · |L|
(3nmax) · |Lexp| +(3

(
nmax

2
)

+ nmax + 1) · |Lexp|

added for linearization +4nmax · |Lexp| +4
(

nmax

2
)

· |Lexp|

6 Numerical Experiments

In this section, we compare the run times of the stop-based and the edge-based MIP
formulation for ELP with each other and with LPMTF for the line planning problem without
express lines. The two models for ELP have been implemented in python in the software
toolbox LinTim ([9]) in their linearized versions. For the LPMTF, we use the implementation
provided by LinTim. We tested the models on different instances using Gurobi on a 13th
Gen Intel(R) Core(TM) i5-1335U with 1.30 GHz memory.

6.1 Instance Parameters / Setting of the Experiments

The instances under consideration are the two networks “Mandl” and “Sioux-Falls” from
LinTim depicted in Figure 6. The instance data from LinTim, besides the PTN , also
comprises OD-data and distances de as well as travel times we for all edges e ∈ E. For the
time saved by skipping one stop we assume wsaved = 2 time units. The change penalty is
set to α = 4 time units. The energy consumed for one edge ce is calculated based on the
formulas for the energy consumption during the acceleration process, the cruising phase as
well as the amount of regenerated energy in the braking phase of an electric bus given in [2].
As a target speed for the bus we assume 30 km/h and we use the distance de as input for
these formulas. For the other parameters, we refer to the appendix. These formulas are also
used for the calculation of the energy saved by skipping one stop csaved. For each instance,
we assume that the express lines can be based on all normal lines in the pool, i.e. L = Lexp.
For this pool, we provide two options: a small line pool and a larger line pool which are both
computed with the LinTim-method k_shortest_paths for k = 3. Their sizes are depicted
in Figure 6c.

S. Roth and A. Schöbel 18:15

(a) PTN of Mandl. (b) PTN of Sioux-Falls.

Mandl Sioux-Falls
|N | 15 24
|E| 21 38

|Lsmall| 10 20
|Llarge| 23 54

(c) Instance Sizes.

Figure 6 Networks of the Instances considered.

6.2 Runtime Analysis

In this subsection, we want to compare the run times of the node-based MIP formulation and
the edge-based MIP formulation of the ELP. We solve the models in a one-criteria setting
minimizing the travel time and bounding the total energy consumption from above. Like
this we can also compare their solution times to the one of the line planning model LPMTF
denoted by LP in Table 4. For each instance, we calculate the solutions for five different
values of this energy bound. The run time experiments were stopped after a time of one
hour. Table 4 shows the run times or, respectively, the optimality gap in percent concerning
the travel time objective with a bounded amount of energy consumption for the different
models and instances. We observe that, although the edge-based model has a bigger number
of variables and constraints than the node-based model, it yields faster computation times
and smaller optimality gaps on all instances. This holds, in particular, for the bigger network
(Sioux Falls). A possible explanation might be that the edge-based model relies on flow
constraints that are relatively easily solvable. Further, the stop-based model requires two
different big M (Mf - an upper bound on the frequencies - and Mp - an upper bound on
the number of passengers on an arc) as input, while the edge-based model requires only Mf .
In addition, Mp := A · Mf is much larger than Mf . This might also be a reason for the
stop-based model being solved more slowly than the edge-based model. Further, we observe
the strong tendency that the lower the bound on the energy consumption is chosen the more
time is needed to solve the model. This holds for both the node-based and the edge-based
MIP formulation. The ELP that also aims at finding a stopping pattern for the express lines
has significantly higher computation times than the problem LPMTF on the same instance.
This holds for all instances.

6.3 Pareto Fronts: The Usage of Express Lines

In this section, the objective values of the computed solutions are analyzed. Therefore, we
calculate Pareto fronts that show the pairs of solution values for which it is not possible to
obtain a better value for one objective without worsening the other. For the computation we
used the edge-based model but as we are just looking at the solution values and not at the
run times, we could as well have used the equivalent stop-based model. The Pareto fronts
were generated using an ϵ-constraint method minimizing the total travel time and varying
the bound on the energy consumption. In Figure 7, three different Pareto fronts for the
two different networks are plotted. The blue graph corresponds to the solutions obtained by

ATMOS 2025

18:16 Energy-Efficient Line Planning by Implementing Express Lines

Table 4 Run Times.

Energy Run Time (s)/ Gap (%) after 1h
Bound small pool size large pool size

Node-based Edge-based LP Node-based Edge-based LP

85 000 3.94 (%) 1070.18 0.25 11.44 (%) 1.18 (%) 1.08
80 000 5.99 (%) 2080.46 0.48 11.66 (%) 2.63(%) 0.86

Mandl 75 000 5.42 (%) 0.35 (%) 0.41 10.09 (%) 2.75 (%) 1.47
70 000 6.87 (%) 0.96 (%) 0.59 12.13 (%) 3.68 (%) 1.87
65 000 6.69 (%) 3.60 (%) – 11.35 (%) 3.42 (%) –

170 000 2.27 (%) 107.26 0.26 9.47(%) 0.85 (%) 0.26
155 000 2.64 (%) 93.62 0.23 10.5 (%) 1.08 (%) 0.23

Sioux 140 000 2.93 (%) 1218.49 0.65 11.37 (%) 2.52 (%) 19.76
Falls 125 000 2.86 (%) 0.07 (%) 6.13 12.92 (%) 3.35 (%) 6.13

110 000 3.79 (%) 0.64 (%) 5.13 19.27 (%) 4.55 (%) 5.13

3.05 3.1 3.15 3.2 3.25 3.3
·105

6

7

8

·104

Travel Time

En
er

gy
C

on
su

m
pt

io
n

large L, LP
small L, ELP
large L, ELP

(a) Pareto Fronts – Mandl.

1 1.2 1.4 1.6 1.8 2
·105

1.2

1.25

1.3

1.35

·105

Travel Time

En
er

gy
C

on
su

m
pt

io
n

large L, LP
small L, ELP
large L, ELP

(b) Pareto Fronts – Sioux Falls.

Figure 7 Pareto Fronts.

the model for Line Planning without express lines (LPMTF). The green and the red graph
depict the solution values of the express line planning problem on a small line pool (green)
and a larger line pool (red). We can observe that the introduction of express lines improves
the solution quality in both objectives. A larger line pool enables even better solutions.
Nevertheless, we can see that there is a trade-off between the amount of energy consumption
and the total travel time of the passengers.

7 Conclusion and Outlook

In this paper, we introduced the express line planning problem ELP and showed that it is
NP-complete. Further, we developed the stop-based and the edge-based MIP, we proved the
equivalence of the two MIP models. Numerical experiments solving a linearized version of
the MIPs with Gurobi have shown that the edge-based MIP formulation, though of larger
size, yields faster to results or, respectively, obtain solutions with a smaller optimality gap
than the stop-based model. In addition, we observe that the introduction of express lines
decreases both the total energy consumption of the public transport system as well as the
total travel time of the passengers. Further research might be conducted on investigations of
the structure of optimal line plans depending on the demand. The development of efficient
solution methods for solving real-world instances is also an interesting research area.

S. Roth and A. Schöbel 18:17

References

1 Javier Durán-Micco and Pieter Vansteenwegen. A survey on the transit network design
and frequency setting problem. Public Transport, 14(1):155–190, 2022. doi:10.1007/
S12469-021-00284-Y.

2 Marc Gallet, Tobias Massier, and Thomas Hamacher. Estimation of the energy demand of
electric buses based on real-world data for large-scale public transport networks. Applied
energy, 230:344–356, 2018.

3 Yuan Gao, Lixing Yang, and Ziyou Gao. Energy consumption and travel time analysis for metro
lines with express/local mode. Transportation Research Part D: Transport and Environment,
60:7–27, May 2018. doi:10.1016/j.trd.2016.10.009.

4 R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban. The bus rapid transit
investment problem. Computers and Operations Reserach, 167(106640), 2024.

5 Zhujun Li, Baohua Mao, Yun Bai, and Yao Chen. Integrated optimization of train stop
planning and scheduling on metro lines with express/local mode. IEEE Access, 2019. doi:
10.1109/ACCESS.2019.2921758.

6 Qin Luo, Yufei Hou, Wei Li, and Xiongfei Zhang. Stop plan of express and local train for regional
rail transit line. Journal of Advanced Transportation, 2018. doi:10.1155/2018/3179321.

7 Bum Hwan Park, Yong-Il Seo, Sung-Pil Hong, and Hag-Lae Rho. Column generation
approach to line planning with various halting patterns - application to the korean high-
speed railway. Asia-Pacific Journal of Operational Research, 30(04):1350006, 2013. doi:
10.1142/S0217595913500061.

8 P. Schiewe. Integrated Optimization in Public Transport Planning, volume 160 of Optimization
and Its Applications. Springer, 2020. doi:10.1007/978-3-030-46270-3.

9 Philine Schiewe, Anita Schöbel, Sven Jäger, Sebastian Albert, Christine Biedinger, Thorsten
Dahlheimer, Vera Grafe, Olli Herrala, Klara Hoffmann, Sarah Roth, Alexander Schiewe,
Moritz Stinzendörfer, and Reena Urban. Documentation for lintim 2024.12, 2024. URL:
https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-85839.

10 M. Schmidt and A. Schöbel. Modeling and optimizing transit lines. In S. Parragh and T.V.
Woensel, editors, Handbook on Transport Modeling, Research Handbooks in Transportation
Studies, chapter 16. Edward Elgar Publishing, 2025.

11 A. Schöbel. Line planning in public transportation: models and methods. OR Spectrum,
34(3):491–510, 2012. doi:10.1007/S00291-011-0251-6.

12 Anita Schöbel and Susanne Scholl. Line Planning with Minimal Traveling Time. In Leo G.
Kroon and Rolf H. Möhring, editors, 5th Workshop on Algorithmic Methods and Models
for Optimization of Railways (ATMOS’05), volume 2 of Open Access Series in Informatics
(OASIcs), pages 1–16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2006. doi:10.
4230/OASIcs.ATMOS.2005.660.

13 Lianhua Tang, Andrea D’Ariano, Xingfang Xu, Yantong Li, Xiaobing Ding, and Marcella Samà.
Scheduling local and express trains in suburban rail transit lines: Mixed–integer nonlinear
programming and adaptive genetic algorithm. Computers & Operations Research, 135:105436,
November 2021. doi:10.1016/j.cor.2021.105436.

14 Jia Xie, Jie Zhang, KeYang Sun, ShaoQuan Ni, and DingJun Chen. Passenger and energy-saving
oriented train timetable and stop plan synchronization optimization model. Transportation
Research Part D: Transport and Environment, 98:102975, September 2021. doi:10.1016/j.
trd.2021.102975.

15 Anan Yang, Bo Wang, Jianling Huang, and Chen Li. Service replanning in urban rail
transit networks: Cross-line express trains for reducing the number of passenger transfers and
travel time. Transportation Research Part C: Emerging Technologies, 115:102629, June 2020.
doi:10.1016/j.trc.2020.102629.

ATMOS 2025

https://doi.org/10.1007/S12469-021-00284-Y
https://doi.org/10.1007/S12469-021-00284-Y
https://doi.org/10.1016/j.trd.2016.10.009
https://doi.org/10.1109/ACCESS.2019.2921758
https://doi.org/10.1109/ACCESS.2019.2921758
https://doi.org/10.1155/2018/3179321
https://doi.org/10.1142/S0217595913500061
https://doi.org/10.1142/S0217595913500061
https://doi.org/10.1007/978-3-030-46270-3
https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-85839
https://doi.org/10.1007/S00291-011-0251-6
https://doi.org/10.4230/OASIcs.ATMOS.2005.660
https://doi.org/10.4230/OASIcs.ATMOS.2005.660
https://doi.org/10.1016/j.cor.2021.105436
https://doi.org/10.1016/j.trd.2021.102975
https://doi.org/10.1016/j.trd.2021.102975
https://doi.org/10.1016/j.trc.2020.102629

18:18 Energy-Efficient Line Planning by Implementing Express Lines

A Appendix

A.1 Proof of Lemma 8
Proof. Let ℓexp be an express line based on a line ℓ with Vℓ = {1, . . . , n}.

▷ Claim 14. Let σℓexp be a valid stopping pattern of ℓexp. Then γℓ′ with

γℓ′
(ij) :=

{
1 if

∑j
k=i σℓexp(k) = 2 and

∑j−1
k=i+1 σℓexp(k) = 0

0 else

is a valid choice of edges and ℓ′ = ℓexp.

Proof. A valid choice of edges must allow a flow from 1 to n in the graph F = (Vℓ, Aℓ′).
There is a flow from 1 to n on the graph F = (Vℓ, Al′exp) if the flow constraints hold:∑

ij∈δ+(1)

γℓ′
(ij) = 1 (29)

∑
ij∈δ−(n)

γℓ′
(ij) = 1 (30)

∑
ij∈δ+(i)

γℓ′
(ij) −

∑
ki∈δ−(i)

γℓ′
(ki) = 0 ∀i ∈ Vℓ (31)

First let us show that for each v ∈ Vℓ there is at most one outgoing arc vj ∈ Aℓ′ with
γℓ′(vj) = 1.

Assume there were two nodes i and j with v < i < j ≤ n such that γℓ′(vi) = 1
and γℓ′(vj) = 1 but then

∑j−1
k=v−1 σℓexp(k) = 0 is a contradiction to

∑i
k=v σℓexp(k) = 1.

Analogously, we can argue that there is at most one incoming arc iv ∈ Aℓ′ for each v ∈ Vℓ.
As σℓexp is a valid stopping pattern, it holds σℓexp(1) = σℓexp(n) = 1. This yields the

existence of the following minima: For v ∈ Vℓ, let j′ := min{j ∈ {v + 1, . . . , n}|σℓexp(j) = 1}
and i′ := min{i ∈ {1, . . . , v−1}|σℓexp(i) = 1}. Now, if σℓexp(v) = 1 it follows that γℓ′(vj′) = 1
for all v ∈ Vℓ \ {n} and γℓ′(i′v) = 1 for all v ∈ Vℓ \ {1}. Consequently, the flow constraints
Equation (29) - Equation (31) hold.

Hence, we obtain the inequality

∑
e∈Epot

ℓexp

γℓ′
(e) =

n∑
i=1

σℓexp
(vi) − 1 ≤ n − 2.

As from γℓ′(ij) = 1 it follows that σℓexp(i) = σℓexp(j) = 1, we know that ℓ′ stops at
exactly the same vertices as ℓexp. ◁

▷ Claim 15. Let γℓexp be a valid choice of edges for ℓexp. Then σℓ′ with

σℓ′
(i) :=

{
1 if

∑i
k=1 γℓexp(ki) = 1 or i = 1

0 else

is a valid stopping pattern and ℓ′ = ℓexp.

Proof. As γℓexp is a valid choice of edges, there is a flow from 1 to n on the arcs corresponding
to the chosen edges. In particular, this means that there is exactly one incoming edge e

for node n with γℓexp(e) = 1, hence by definition we get σℓ′(n) = 1. Further exploiting the
definition of σℓ′ we get also obtain that σℓ′(1) = 1.

S. Roth and A. Schöbel 18:19

Further, as γℓexp is a valid choice of edges, we get that
∑

e∈Epot
ℓexp

γℓexp(e) ≤ n − 2. Due to
the fact that γℓexp defines a flow on F (containing no backwards arcs), there is at most one
incoming edge for each vertex, and, therefore, we get

∑n
i=1 σℓ′(vi) ≤ n − 1. Hence, σℓ′ yields

a valid stopping pattern. By definition of σℓ′ we know that ℓ′ stops exactly at those vertices
that are adjacent to the edges of ℓexp. ◁

◀

A.2 Linearized Stop-Based MIP
In order to linearize the stop-based MIP formulation, we introduce the following variables
for each express line ℓ ∈ Lexp and each stop s ∈ Vℓ on that line. They are set to 0 if the
stop is served and, otherwise, take the value of the frequency or, respectively, the number of
passengers traveling there:

zf
ℓs =

{
fℓ if stop s of line ℓ is skipped
0 else

zp
ℓs =

{
pass. at s on ℓ if s is skipped
0 else

With the help of these variables, we can reformulate the two objectives so that we obtain
the corresponding linear objectives Equation (32) and Equation (33). Hence, we obtain the
MIP formulation below. Constraints (34) to (37) ensure the desired behavior of the newly
introduced decision variables.

min
∑
ℓ∈L

cℓ · fℓ −
∑

ℓ∈Lexp

csaved ·
∑
s∈Vℓ

zf
ℓs (32)

min
∑
e∈E

∑
u,v∈V :Cuv>0

wepuv
e − wsaved ·

∑
ℓ∈L

∑
s∈Vℓ

zp
ℓs (33)

s.t. (9) − (14)

zf
ℓs ≤ fℓ ∀s ∈ Vℓ ∀ℓ ∈ Lexp (34)

zf
ℓs ≤ yℓs · Mf ∀s ∈ Vℓ ∀ℓ ∈ Lexp (35)

zp
ℓs ≤

∑
u,v∈V :Cuv>0

∑
e∈δ+((s,ℓ))

puv
e ∀s ∈ Vℓ ∀ℓ ∈ Lexp (36)

zp
ℓs ≤ yℓs · Mp ∀s ∈ Vℓ ∀ℓ ∈ Lexp (37)

zf
ℓs ∈ R ∀s ∈ Vℓ, ∀ℓ ∈ Lexp (38)

zp
ℓs ∈ R ∀s ∈ Vℓ, ∀ℓ ∈ Lexp (39)

(16), (17) (40)

A.3 Linearization of the Edge-based Model
In order to linearize the edge-based MIP formulation, we introduce the following variables
for each express line ℓ ∈ Lexp and each stop e ∈ Ẽℓ on that line. They are set to the line’s
frequency if the edge is chosen for the express line and 0 otherwise:

ATMOS 2025

18:20 Energy-Efficient Line Planning by Implementing Express Lines

f ℓ
e =

{
fℓ if stop s of line ℓ is skipped
0 else

The objective (18) and the Constraints (22) of the edge-based MIP are not linear.
With the help of these variables, we can reformulate the objective (18) and the Constraints

(22) so that we obtain the corresponding linear objectives Equation (41) and Equation (44).
Hence, we obtain the MIP formulation below. Constraints (45) to (47) ensure the desired
behavior of the newly introduced decision variables.

min
∑
ℓ∈L

cℓ · fℓ +
∑

ℓ∈Lexp

∑
e∈Ẽℓ

ce · f ℓ
e (41)

min
∑

u,v∈V :Cuv>0

∑
e∈ẼP

wepuv
e (42)

s.t. (20), (21), (23) − (25) (43)∑
u,v∈V

puv
e ≤ Af ℓ

e ∀e ∈ Ẽℓ, ℓ ∈ Lexp (44)

fe ≤ fℓ ∀e ∈ Ẽℓ, ℓ ∈ Lexp (45)

fℓ − (1 − xe) · Mf ≤ fe ∀e ∈ Ẽℓ, ℓ ∈ Lexp (46)

fe ≤ xe · Mf ∀e ∈ Ẽℓ, ℓ ∈ Lexp (47)

f ℓ
e ∈ N ∀e ∈ Ẽℓ, ℓ ∈ Lexp (48)

(26) − (28) (49)

A.4 Proof of Theorem 13 - Equivalence of the Models
Proof.

▷ Claim 16. Any feasible solution of the stop-based model can be transformed to a feasible
solution of the edge-based model with the same objective function values.

Proof. Let puv
e , f ℓ and yℓs be the solution values of the stop-based models for the cor-

responding variables. Now we set the values of the frequencies of the edge-based model
to:

f ℓ := f ℓ ∀ℓ ∈ L ∪ Lexp

For all ℓ ∈ Lexp and s ∈ Vℓ we set:

xℓ
ij :=


1 if

∑
s∈Vℓ:φ(i)≤φ(s)≤φ(j)(1 − yℓs) = 2 and∑
s∈Vℓ:φ(i)+1≤φ(s)≤φ(j)−1(1 − yℓs) = 0

0 else
∀ℓ ∈ Lexp, ij ∈ Vℓ

For all ℓ ∈ Lexp and e ∈ Ẽ→
ℓ \ Ẽℓ we set:

If e = ((vsrc, ℓ), (vsink, ℓ)) we set xℓ
e :=

{
1 if f ℓ = 0
0 else

and else,

S. Roth and A. Schöbel 18:21

we set xℓ
e :=

{
0 if f ℓ = 0
1 else

Finally, we determine the values for the passenger flow for all u, v ∈ V . Let us assume
wlog that φ(i) < φ(j). Let us choose s ∈ Vℓ such that φ(i) + 1 = φ(s). Then we set

puv
e :=

{
puv

e if e ∈ Ẽgo ∪ Ẽchange

puv
e if e ∈ Ẽexgo ∩ ẼP (else)

This assignment yields a feasible solution to the edge-based model. Due to Lemma 8 (and
its proof) the valid stopping pattern obtained by the feasible solution y′

ℓs corresponds to a
valid choice of edges given by the values of xℓ

e, hence by Lemma 11 the constraints (23), (24)
and (25) are respected. As the stopping patterns of express line ℓ coincide in both models
(Lemma 8), also the passenger flow (20) is feasible and the frequencies respect the capacities
(21), (22).

The values of the objective functions of the edge-based model coincide with the values of
the stop-based model by Lemma 12. ◁

▷ Claim 17. Any feasible solution of the edge-based model can be transformed to a feasible
solution of the node-based model with the same objective function values.

Proof. Let p̃uv
e , f̃ℓ and x̃ℓ

e be the solution values of the edge-based model for the corresponding
variables. Now we set the values of the frequencies:

f ℓ := f̃ℓ ∀ℓ ∈ L ∪ Lexp

yℓs :=

1 if
∑

e∈δ−(s)∩Ẽ→
ℓ

x̃ℓ
e = 1

0 else

Finally, we determine the values for the passenger flow for all u, v ∈ V . Let us assume
wlog that φ(i) < φ(j). Now we set:

puv
ij :=

p̃uv
ij if e ∈ E

L
go ∪ Echange∑

is∈δ−(s)∩Ẽℓ:φ(i)<φ(s) p̃uv
is if e ∈ E

Lexp

go (else)
.

This assignment yields a feasible solution to the stop-based model. Due to Lemma 8 (and
its proof) the valid choice of edges obtained by the feasible solution x̃ℓ

e corresponds to a valid
stopping pattern given by the values of yℓs, hence by Lemma 11 the constraints (13), (14)
and (15) are respected. As the stopping patterns of express line ℓ coincide in both models (
Lemma 8), also the passenger flow (9) is feasible and the frequencies respect the capacities
(10). Obviously, no passenger in a feasible flow of the edge-based model could enter/board
at a skipped node as the express line was not incident to it, therefore, constraints (11) and
(12) are valid. The values of the objective functions of the stop-based model coincide with
the values of the edge-based model by Lemma 12. ◁

◀

ATMOS 2025

	p000-Frontmatter
	Preface
	Committees

	p001-VanLieshout
	1 Introduction
	1.1 Problem Description
	1.2 Background and Related Literature
	1.3 Main Contributions

	2 Periodic Assignment
	2.1 Theory
	2.2 Algorithms

	3 Fair Periodic Assignment
	3.1 Nearest Neighbor
	3.2 Theory
	3.3 Patching

	4 Fair versus Balanced Assignments

	p002-Lobel
	1 Introduction
	2 Problem Modeling
	2.1 Extended Event-Activity Networks
	2.2 The TimPass Problem

	3 The Restricted Integrated Modulo Network Simplex Algorithm
	4 Geometric Interpretation of TimPass
	4.1 Introductory Examples
	4.2 Theoretic Results

	5 Integrated Tropical Neighborhood Search
	5.1 The Coarse Polytrope Heuristic
	5.2 The Fine Polytrope Heuristic
	5.3 Integrated Tropical Neighborhood Search

	6 Computational Study
	6.1 Obtaining an Initial Solution
	6.2 Computational Results

	7 Conclusion and Outlook
	A Result Tables

	p003-Meusel
	1 Introduction
	2 Formal Problem Definition
	3 Characterization of Feasible Instances
	3.1 A Necessary and Sufficient Condition for Feasibility in DiTTR
	3.2 Efficiently Solvable Cases

	4 Hardness Results
	4.1 NP-completeness of DiTGR and TGR for Delta = 2
	4.2 NP-complete Cases with Linear Size Gadgets
	4.3 NP-Complete Cases with Quadratic Size Gadgets

	5 Conclusion and Further Research

	p004-Hartleb
	1 Introduction
	2 Preliminaries
	3 Problem Complexity
	4 An Exact Reduction Rule
	5 Exact Integer Linear Programming Approaches
	6 Experimental Analysis
	7 Conclusion and Future Work
	A Complexity Results for the Turn-Minimization Problem

	p005-Rosner
	1 Introduction
	2 Problem Statement and Preliminaries
	2.1 Our Results
	2.2 Related Work

	3 Optimal Algorithm for Unit-length Jobs
	4 APX-hardness Proof for pj in 1,2
	5 Optimal Algorithm for Job-dependent Due-dates
	6 Discussion

	p006-Karathanasis
	1 Introduction
	2 Problem Description & Mathematical Formulation
	3 Heuristics, Improvement Heuristics & Metaheuristics
	3.1 Constructive Heuristics
	3.2 Improvement Heuristics
	3.3 Metaheuristics
	3.4 Implementation Details

	4 Experimental Evaluation
	4.1 Data Generation
	4.2 Calibration of Parameters for Metaheuristic Algorithms
	4.3 Experimental Results

	5 Conclusions and Future Work

	p007-Hojny
	1 Introduction
	2 Notation and Terminology
	2.1 Objectives

	3 Policies
	3.1 Optimal Expected Minimum Fill Rate Policy
	3.2 Optimal Forward Expected Minimum Fill Rate Policy
	3.3 Two-Node Decomposition Heuristic
	3.4 Projected Proportional Allocation Heuristic
	3.5 LP-Based Non-Adaptive Allocation Heuristic
	3.6 LP-Based Adaptive Allocation Heuristic

	4 Computational Experiments
	4.1 Setup
	4.2 Results

	5 Conclusion

	p008-Mallach
	1 Introduction
	2 Preliminaries and Related Work
	3 Three Refined Integer Programming Formulations for the TVP
	4 Polyhedral Results for P_{TVE}^n
	5 Computational Experiments
	6 Conclusion

	p009-Rosolia
	1 Introduction
	1.1 Background & Motivation
	1.2 Literature Review
	1.3 Methodology & Contributions
	1.4 Paper Organization & Notation

	2 Model and Problem Formulation
	2.1 Minimum cost MCND-U
	2.2 Modeling network speed
	2.3 Speed-aware MCND-U

	3 Solution Approach
	3.1 Parametric interpolation of unique inventory
	3.2 Parametric speed-aware MCND-U
	3.3 Approximation Strategy

	4 Experiments
	4.1 Trading-off transportation costs and speed
	4.2 The effect of the proposed approximation

	5 Conclusion

	p010-Eardley
	1 Introduction
	2 Problem Formulation
	3 Non-Integer Linear Program
	4 Genetic Algorithm
	5 Optimal Search Viability
	6 Evaluation
	7 Conclusion

	p011-Schiewe
	1 Introduction
	2 A model for the transition to a distance tariff
	3 Integrality constraints
	4 Setting an upper price cap on the ticket prices
	5 Controlling the revenue and number of highly affected passengers
	5.1 Controlling the changes in revenue
	5.2 Controlling the number of highly affected passengers

	6 Experimental evaluation
	6.1 Solver time
	6.2 Evaluating different models
	6.3 Evaluating alternative models and heuristics

	7 Conclusion and further research

	p012-Bacherle
	1 Introduction
	2 Preliminaries
	2.1 Alternative Path Problem
	2.2 Checking Admissibility
	2.3 Customizable Contraction Hierarchies

	3 Separator Based Alternatives with CCH
	3.1 Selection of Via Vertices
	3.2 Two-Step Approach
	3.3 Recursive Approach

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Algorithm Comparison
	4.3 Checking Admissibility of Candidates
	4.4 Impact of the Separator Hierarchy
	4.5 Impact of the Recursion Parameter mu

	5 Conclusion and Future Work

	p013-Truschel
	1 Introduction
	1.1 Further Related Work
	1.2 Contribution

	2 Regret-Based Route Planning
	2.1 Theoretical Bounds
	2.2 Regret Minimizing Contraction Hierarchies
	2.3 Route Planning Queries with Little Regret

	3 Regret Minimization Algorithms
	3.1 Hierarchical Regret Minimization
	3.2 Partitioning and Merging
	3.3 Running Time Analysis

	4 Experimental Evaluation
	4.1 Regret Minimization Results
	4.2 Multi-Objective Route Planning Results
	4.2.1 Preprocessing
	4.2.2 Personalized Shortest Path (PSP) queries
	4.2.3 Constrained Shortest Path (CSP) queries

	5 Conclusions and Future Work

	p014-Engels
	1 Introduction
	2 Background
	2.1 Train Control Principles
	2.2 Train Routing
	2.3 A*-Algorithm

	3 Solution Encoding
	4 Optimization using A*
	4.1 State Space
	4.2 Transitions
	4.3 Suitable Heuristic
	4.4 Extending the Heuristic

	5 Evaluation of Objective Value using Simulation
	5.1 Principles
	5.2 Moving Authority
	5.3 Restrictions on Maximal Velocity

	6 Case Study
	7 Conclusions
	A Railway Network
	B Raw Data

	p015-Breitling
	1 Introduction
	1.1 Related Work

	2 Problem Statement
	2.1 Cost Computation of Single-Transfer Insertions

	3 Preliminaries
	3.1 Shortest-Path Algorithms
	3.2 The LOUD and KaRRi Taxi-Sharing Dispatchers

	4 Algorithm Overview
	4.1 Detour Ellipses for Transfers
	4.2 Types of Transfers
	4.3 Structure of Algorithm

	5 Exact Transfer Points
	5.1 Computing Detour Ellipses On-the-Fly
	5.2 Optimal Ordinary Transfers
	5.3 Optimal After-Last-Stop Transfers
	5.4 Speeding up Enumeration of Insertions

	6 Heuristic Transfer Points
	7 Experimental Evaluation
	7.1 Experimental Setup and Benchmark Instances
	7.2 Analysis of Optimizations for the Exact Algorithm
	7.3 Effect of Heuristic on Running Time
	7.4 Impact of Transfers on Solution Quality

	8 Conclusions
	A Omitted Proof for Pareto-Dominance between Transfer Points
	B Additional Information on Benchmark Instances

	p016-Dittrich
	1 Motivation
	2 Strategic Planning of Ridepooling Areas
	2.1 Line Planning
	2.2 A new Model for Planning Ridepooling Areas
	2.3 Vehicle Frequencies

	3 Integrating Line planning and Strategic Planning of Ridepooling Areas
	4 Numerical Experiments
	4.1 Example
	4.2 Ridepooling Percentage
	4.3 Runtime

	5 Conclusion and further research
	A Graphics
	B Dial-a-ride Heuristic
	C Proofs
	C.1 From Section 2.2
	C.2 From Section 2.3
	C.3 From Section 3

	p017-Barth
	1 Introduction
	1.1 Related Work

	2 Problem Formulation and Model
	2.1 Problem Description
	2.2 Modeling Route Options of Requests
	2.3 The Event-Based Graph for the liDARPT
	2.4 Mixed-Integer Linear Programming Model

	3 Computational Experiments
	3.1 Benchmark Instances
	3.2 Computational Performance
	3.3 Service Quality Metrics

	4 Conclusion
	A Benchmark Networks
	B Variable Overview
	C Summary of Results

	p018-Roth
	1 Motivation
	2 Literature
	2.1 Express Lines reducing Energy Consumption
	2.2 Line Planning with Passenger Routing and Express Lines

	3 Modeling Express Lines
	3.1 The Underlying Line Planning Model
	3.2 Two Ways of Modeling Express Lines

	4 The Express Line Planning Problem and two MIP Formulations
	4.1 The Express Line Planning Problem (ELP)
	4.2 The Stop-Based Model
	4.3 The Edge-Based Model
	4.3.1 The Edge-Based Express Change and Go Network
	4.3.2 The Edge-Based Express Line Planning MIP Formulation

	5 Comparison of the Models
	6 Numerical Experiments
	6.1 Instance Parameters / Setting of the Experiments
	6.2 Runtime Analysis
	6.3 Pareto Fronts: The Usage of Express Lines

	7 Conclusion and Outlook
	A Appendix
	A.1 Proof of Lemma 8
	A.2 Linearized Stop-Based MIP
	A.3 Linearization of the Edge-based Model
	A.4 Proof of Theorem 13 - Equivalence of the Models

