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Abstract
We present a novel method to measure saliency in molecular dynamics simulation data. This
saliency measure is based on a multiscale center-surround mechanism, which is fast and efficient
to compute. We explore the use of the saliency function to guide the selection of representative
and anomalous timesteps for summarization of simulations. To this end, we also introduce a
multiscale keyframe selection procedure which automatically provides keyframes representing the
simulation at varying levels of coarseness. We compare our saliency guided keyframe approach
against other methods, and show that it consistently selects superior keyframes as measured by
their predictive power in reconstructing the simulation.
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1 Introduction

Molecular dynamics trajectories play a vital role in enhancing our understanding of the
building blocks of life at the nanoscale. A number of recent advances in modeling and
simulation of proteins and nucleic acids continue to provide us with novel insights into the
relationship between the form and function of these dynamic biological nanomachines. In our
efforts to simulate ever-more accurate models of physics and chemistry, such simulations out
of necessity have to occur over very small time scales, typically femtoseconds. However, the
major molecular conformational changes of interest typically occur over timescales ranging
from a few microseconds to seconds. This difference in simulation timescales is being bridged
by novel algorithmic approximations, advances in hardware, as well as by simply running
longer time-scale simulations facilitated by larger storage capacities of modern computer
systems [9].

However, just because we now have the ability to simulate exceedingly long timescale
molecular dynamics simulations, does not necessarily mean that we are better equipped to
gain visual insights using such simulation datasets. Since the capabilities of the human visual
system remain unchanged and the bandwidth into the human cognitive machinery remains
constant, we have now reached a stage where the current generation simulation datasets can
easily overwhelm the limits of human comprehension. In real world, the human visual system
deals with the glut of information coming at it from the world by focusing retinal hardware
and attention on what is most important, or salient. The challenge of visual presentation
and analysis of very large datasets compels us to re-examine not just how to present data,
but what data to present. In this paper we discuss some of our recent research that deals
with how to effectively summarize large molecular dynamics trajectories using ideas inspired
by the visual saliency mechanism of the human visual system.
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The main contributions of this paper are:
We present a multiscale saliency operator for molecular dynamics trajectories that is
successful at identifying the most salient time steps of a molecular dynamics simulation.
We show how one can find the most representative frames of a molecular dynamics
trajectory by simply inverting the multiscale saliency operator.
We quantitatively show the benefits of using our multiscale saliency operator to summarize
molecular dynamics trajectories compared with other methods such as a random scheme
or the Douglas-Peucker scheme.
We validate our methods using several real-world examples of long time scale molecular
dynamics trajectories.

We believe that the research directions that we have identified in this paper are early-stage
efforts that will hopefully spark a number of follow-on methods to automatically or semi-
automatically identify and visualize salient features, events, and trends in very large-scale
time-varying datasets. Our methods, in turn, build upon the seminal work of several other
prominent researchers in the field. We give a summary of the related research in the next
section.

2 Background and Related Work

The last few years have seen a growing interest in summarization of large-time varying datasets.
Perhaps the greatest amount of research has been in abstraction [14] and summarization of
videos [3]. However, much of the research on video summarization is not directly applicable
to summarization of 3D datasets. In graphics, very interesting work has been done in
summarization of articulated characters [2] as well as their compression [11, 1]. In volume
visualization, Silver and Wang [12] have used the framework of template matching to identify
key features such as reconnection events in large time-varying 3D volumes, such as those
arising from computational fluid dynamics (CFD) simulations.

Almost all the previous work in characterization of time-varying datasets has been
with either articulated skeletal human models or time-varying volume datasets. Although
these methods provide helpful insights, they do not directly carry over for use in molecular
dynamics simulations. This is because, unlike molecular dynamics simulations the movements
in character animation are purposive, described by a set of continuously changing joint
angles. Thus an event of interest in character animation can be detected by a change of
such movements. Molecular dynamics simulations are characterized by a variety of motions
at multiple scales. There are fine-scale Brownian motions and larger-scale conformational
changes. To handle this challenge, we define a multiscale saliency operator that works with
several different-sized sliding windows.

Ideally, we would like to identify the most important time steps in large time-varying
molecular dynamics simulations for the purposes of summarization, fast-previewing, indexing,
and further analysis. We build upon the ideas of image saliency by Itti et al. [8] and mesh
saliency by Lee et al. [10]. They use a center-surround operator to identify the uniqueness of a
pixel or a vertex with respect to its neighborhood. In our approach, we define the importance
of a timestep by its difference from its neighbors, both forward and backward in time, over
multiple scales. Specifically, we analyze a difference of Gaussian weighted average positions
centered around each timestep for several different scales. Subsequently, we combine this
information into a single multiscale saliency function S, and present a multiscale keyframe
selection procedure to obtain representative (or conversely, anomalous) frames based upon
this function. Further details of our approach are in Sections 3 and 4.
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Figure 1 This figure gives an overview of our salient timestep selection procedure. In step 1,
the per-atom saliency measure is taken at multiple scales. Step 2 then composites these per-atom
saliency functions into a single per-timestep saliency function for each scale. In step 3, the separate
single-scale saliency functions are combined into a single multiscale saliency function. Finally, in step
4, the multiscale keyframe selection (MSKS) procedure is used to select representative timesteps
from the simulation using the multiscale saliency function.

3 Multiscale Saliency for Molecular Dynamics Trajectories

The notion of saliency is general. Indeed, even in the particular domain of molecular dynamics
simulations, one might reasonably suggest many methods by which to compute saliency. In
order to focus the scope of this work, we shall consider saliency on a per-timestep basis. In
section 4, we consider the representation of simulation data through the selection of key
timesteps. Thus, we are motivated to define our saliency measure on a per-timestep basis.
Inspired by the saliency mechanism of the human visual system, we have decided to formulate
our saliency operator for molecular dynamics trajectories to be multiscale and to make use
of a center-surround mechanism [8].

Even among those measures adhering to these criteria, there are numerous possible
definitions of per-timestep saliency. However, since the notion of saliency in the domain of
molecular dynamics simulations has not been well explored, we shall introduce a simple but
straightforward definition, which we have found to be very effective. An overview of our
method is given in figure 1.

3.1 Saliency Definition
In order to define our notion of saliency, it will be necessary to introduce some notation.
Our main analysis will be on an order-3 tensor P, containing the position of each atom for
every timestep of the simulation data. For a simulation with n timesteps and m atoms, P
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324 Saliency Guided Summarization of Molecular Dynamics Simulations

will be an m× n× 3 tensor, such that Pa,t,− = ~pa,t is the 3-vector containing the Cartesian
coordinates of atom a at timestep t. For the sake of brevity, we shall write Pa,t,− as Pa,t. It
will also be useful to index ranges of P. The expression PI,J will be used to denote a block
of values from P spanning atoms I = [i1, i2, . . . ], timesteps J = [j1, j2, . . . ] , and all spatial
coordinates.

Further, it will be useful to define the notion of a selection window. Let w(i, σ) =
[i − σ

2 , . . . , i + σ
2 ] denote the selection window of size σ + 1 centered about i, where σ is

assumed to be an even integer. As these selection windows will be used to address our
position tensor P, we must be careful to assure they have a valid definition for each timestep
i. This is achieved simply by “reflecting” the simulation data about the first and last frame
to handle the respective border cases.

Finally, we shall make use of the notion of a discretely sampled Normal distribution. We
denote by N(i, σ), the normal distribution with mean i and variance σ, and by N(i, σ)(j), the
evaluation ofN(i, σ) at j. Then, we define Gkσ,i = [N(i, σ)(i−k2 ), . . . , N(i, σ)(i), . . . , N(i, σ)(i+
k
2 )] as the set containing k values, each value obtained via the evaluation of the appropriately
parametrized normal distribution at a given location. Gkσ,i is symmetric about its center,
which is at the k

2
th entry, Gkσ,i[k2 ].

3.1.1 Per-atom Saliency
In practice, we define our saliency field for each atom and for each timestep over a number of
scales. To simplify the exposition, we will first consider only a single scale σ. Let us consider
computing the saliency of atom a at timestep t; it is given by the following equation:

Sσ[a, t] =

∣∣∣∣∣∣
∣∣∣∣∣∣
 ∑
i∈w(t,2σ)

(G2σ
σ,t[j] ∗Pa,i)

−
 ∑
i∈w(t,2σ)

(G2σ
2σ,t[j] ∗Pa,i)

∣∣∣∣∣∣
∣∣∣∣∣∣ (1)

Where j = i − (t − σ) is used as the local index into the discretely sampled Normal
distributions. Essentially, we consider the Gaussian weighted average of the atom’s position
at scales σ and 2σ, and define the saliency as the norm of the difference. In this formulation,
we consider σ as the “center” scale and 2σ as the “surround” scale. The greater the difference
between the center and the surround, the higher the saliency at the point of evaluation.

3.1.2 Per-timestep Saliency
Once we have computed the per-atom saliency for each atom and timestep, we can aggregate
information to obtain a per-timestep measure of saliency. We define the saliency of timestep
t at scale σ as follows:

Sσ[t] = 1
m

m∑
a=1
Sσ[a, t] (2)

The saliency for timestep t is given simply as the mean saliency of all m constituent
atoms at timestep t.

3.1.3 Multiscale Saliency
The definition of saliency we have so far provided exists only at a single scale, σ. Formulating
multiscale saliency is as simple as considering multiple values of σ and composing the results.
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(a) Saliency Function at Different Scales

(b) Multiscale Saliency Function

Figure 2 Each scale considered produces a different saliency function, as seen in (a). These
saliency functions are combined into a single multiscale saliency function S, as shown in (b).

The multiscale saliency measure for a given timestep t is defined over a set of scales as follows:

S[t] = 1
|Λ|

∑
σ∈Λ

S̄σ[t] (3)

Where S̄σ is the normalized saliency function at scale σ and Λ = {σ1, σ2, . . .} is the set of
scales from which the multiscale saliency is composed. Throughout this work, we will simply
consider Λ = {σ, 2σ, 3σ, 4σ}, though many different choices are possible. The composition
of the different single scale saliency functions into the single multiscale saliency function in
illustrated in figure 2.

4 Using Saliency

4.1 Interpreting The Saliency Function
Having obtained the multiscale saliency function S, we may now inquire about its intuitive
relationship to the original simulation data. What, precisely, does S measure? We shall answer
this question by again appealing to the criteria by which we defined our saliency function.
The computation of S relies on a center-surround mechanism; effectively determining the
uniqueness of a particular timestep with respect to its temporal neighborhood. Furthermore,
the computation of S is multiscale; suggesting that it encodes this uniqueness over temporal
neighborhoods of various size.
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Thus, we suggest that S[t] provides a measure of the uniqueness of timestep t with respect
to neighboring timesteps over multiple scales. Local extrema of S may now be interpreted to
tell us something about the timesteps to which they correspond. In particular, local maxima
of S correspond to timesteps which are very different, or anomalous, with respect to their
surroundings. Similarly, local minima of S correspond to timesteps which are very similar to,
or representative of, their surroundings. Equipped with this intuitive interpretation of S,
we can now suggest how the saliency function can be used, and how this intuition can be
verified.

4.2 Representative Keyframe Selection
As mentioned in section 2, the changes in atomic position between consecutive timesteps of
a simulation are dominated by Brownian motion. Only over larger timescales do interesting
and purposeful molecular conformational changes occur. This suggest that one might be
able to summarize the content of the simulation very precisely by choosing only a few
timesteps (keyframes) to represent the entire simulation. Such keyframes can be useful for
summarization, indexing, and numerous other tasks.

When finding such keyframes, there is a particular constraint that we wish to respect.
Namely, keyframes should be drawn from the actual simulation data. Though it might be
tempting to produce representative molecular conformations by aggregating information
from multiple timesteps of simulation data, there are compelling reasons to avoid this
approach. Molecular dynamics simulations are highly computationally intensive and modeled
upon equations which respect numerous physical constraints (e.g. atom positions may
not superpose, and a molecular configuration should be consistent with the potential field
induced by the molecule’s constituent atoms). Data representations which aggregate data
and synthesize a representation may easily violate such constraints which are painstakingly
considered during the course of the simulation. In order to avoid such problems, we shall
not consider synthesizing representative keyframes. Rather, the representative keyframes we
select will be taken directly from the original simulation data; thus ensuring that they are
valid and consistent with the underlying physical model of the simulation.

Respecting this constraint, and understanding its motivation, we may now consider some
different approaches to keyframe selection. In particular, we will suggest three methods for
keyframe selection.

4.2.1 Random Keyframe Selection
Perhaps the simplest approach to obtaining keyframes is to sample uniformly at random
from the full simulation. We shall label this approach as RS. Since differences in molecular
configuration between nearby timesteps are dominated by Brownian motion, the selection
of timesteps which are well distributed and reasonably temporally separated will likely
provide a meaningful summary of the simulation. This approach has no dependence on the
underlying data, and may yield an arbitrarily poor set of representative keyframes. However,
its implementation is completely trivial and exceedingly fast.

4.2.2 Douglas-Peucker Keyframe Selection
The second method we shall consider for keyframe selection is an extension of the classical
Douglas-Peucker (DP) algorithm [4]. Classically, this algorithm has been used to approximate
planar curves by polylines. The algorithm itself is fairly simple and has an elegant recursive
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definition. Consider two points, p1 and p2 residing on the planar curve C. Consider the line
segment p1p2 as the linear approximation of C between these two points. The Douglas-Peucker
algorithm considers the orthogonal projection of C onto p1p2 at n uniform discrete sample
positions between p1 and p2. Let c∗ ∈ C denote the point for which this orthogonal projection
is farthest from the true curve. The DP algorithm will add c∗ to the set of approximation
samples and then recursively descend onto the line segments p1c∗ and c∗p2. Various criteria
may be established for the termination of the algorithm; for example, one may terminate
the algorithm when a desired number of approximation samples has been chosen, or when a
maximum acceptable per-sample error threshold has been achieved.

The extension of the Douglas-Peucker algorithm to molecular dynamics simulation data
is fairly straightforward. Instead of a planar curve, one attempts to approximate atom
positions. Linear interpolation of atom positions is considered between consecutive keyframes,
where the temporal distance between these keyframes is used as the linear interpolant. Thus,
one may obtain a linear prediction ~̄pa,t for each atom (a) at each timestep (t) of the true
simulation data ~pa,t. The difference between the linear prediction of a timestep t and the
true simulation data at t can simply be computed as the sum of differences between predicted
and actual atom positions as in equation 4:

εt =
m∑
a=1

∣∣∣∣~̄pa,t − ~pa,t∣∣∣∣ (4)

In this adaptation of the DP algorithm, εt simply replaces the orthogonal distance between
the curve and the approximating line segment; leaving the remainder of the algorithm largely
the same.

4.2.3 Saliency Guided Keyframe Selection
Finally, we may consider using the multiscale saliency function S to guide the selection
of keyframes. We shall refer to this approach as saliency guided (SG) keyframe selection.
Though the intuition behind this method is simple, some care must be taken when actually
using S for keyframe selection. First we must determine precisely how S should guide the
selection of keyframes. In section 4.1, we suggested that local minima of S correspond
to representative timesteps from the simulation. Therefore, it makes sense to choose the
timesteps corresponding to the local minima of S as keyframes. First, however, we must more
carefully define what we mean by local minima. Since S is obtained from the composition of
saliency functions spanning multiple different scales, it is possible that the fine scale saliency
functions will lead to small fluctuations between consecutive values of S. However, unless
the surrounding values of S are relatively smooth, such small fluctuations should not trigger
keyframe selection.

To address this issue, we make use of non-maximal suppression. Given a window size, w,
non-maximal suppression will suppress the entire signal with the exception of the w-local
maxima. For example, when we consider S[t] for some timestep t, non-maximal suppression
will suppress S[t] to 0 unless S[t] > S[t+ i], i ∈ [−w2 ,

w
2 ]. A reasonable value of w will ensure

that not too many keyframes are selected, and that small and non-meaningful fluctuations
in S do not trigger keyframe selection. Here it is important to note that we consider non-
maximal suppression of the function 1−S, which is equivalent to a non-minimal suppression
of S itself.

However, the use of non-maximal suppression introduces a new consideration. How should
one choose a reasonable value of the window size w? Recall that w should be related to the
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scale in S at which we wish to detect keyframes. Rather than choosing a fixed value of w,
we introduce a procedure for multiscale keyframe selection (MSKS). The user provides the
MSKS procedure with a target number of keyframes, k, and the procedure will return the
smallest number k′ ≥ k of keyframes obtained using a coarse to fine selection procedure.
The MSKS is possible in part due to the subset containment property of non-maximal
suppression. Consider performing non-maximal suppression on 1− S using a window of size
w. We shall denote by NMS(f, w) the non-maximal suppression of the function f using a
window of size w. Further, let NZ(f) denote the indices for which the discrete function f
takes non-zero values. Then we may denote the set of desired keyframes (w-local maxima) as
Fw = NZ (NMS(1−S, w)) . Now, consider a window of size w′ < w. The subset containment
property ensures that Fw ⊆ Fw′ . This means that if 1− S[t] is a w-local maximum, then it
is also a w′-local maximum ∀w′ < w. Bearing this property in mind, we will now describe
the MSKS procedure.

Algorithm 1: MSKS.
Input: S, k
Output: F
F = ∅;
w = |S|;
f = 1− S;
while |F | < k do

w = w
2 ;

f ′ = NMS(f, w);
for i = 0 ; i < |f ′| ; i = i+ 1 do

if f ′[i] > 0 then
F = F ∪ i;

return F ;

The MSKS procedure iteratively builds up a set of keyframes by running non-maximal
suppression on 1− S with windows of decreasing width. The pseudo-code for this algorithm
is given in algorithm 1. One important aspect of this algorithm is that when the user requests
k keyframes, the algorithm will actually return k′ ≥ k keyframes. This is due to a natural
notion of scale, both in the saliency function S and in the multiscale keyframe selection
procedure. For each window size used during the non-maximal suppression procedure,
there are a number of natural keyframes which will be selected at the corresponding scale.
This feature is important, because it allows the algorithm to select representations of the
underlying simulation at varying levels of coarseness.

Figure 3 shows a plot of the multiscale saliency function S, where 12 keyframes have
been chosen using the MSKS procedure. For each keyframe that has been selected, a circle
has been plotted at the corresponding local minima of S. The color of each circle denotes
the scale (window size = w), at which the timestep corresponding to that circle was first
selected as a keyframe.
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Figure 3 This figure illustrates the selection of keyframes from the multiscale saliency function,
S, using the MSKS procedure. For each timestep chosen as a keyframe, the corresponding local
minima is marked with a circle. The color of each circle denotes the non-maximal suppression
window size, w, at which the corresponding timestep was first chosen as a keyframe.

5 Results

5.1 Datasets

GroEL Transitions

GroEL is a molecular nanomachine that changes its conformation empowered by ATP
chemistry. Spectacular conformational changes between the conformational states of GroEL ,
such as T → R and R→ R′′ transitions, are induced upon ATP binding and hydrolysis at
the catalytic site of equatorial domain, respectively. Normal operation of the GroEL -GroES
chaperonin system [13] is of utmost importance for the cell function as this increases the yield
of substrate proteins that are prone to misfold. The misfolding of proteins and subsequent
aggregations often lead to the fatal neurodegenerative disorders such as Alzheimers and
prion diseases. To better understand the allosteric transitions of GroEL molecule at the
microscopic level, multiple sets of Brownian dynamics simulation were performed using a
self-organized polymer (SOP) model [7, 5]. The SOP model adopts a strategy of using the
minimal representation of proteins and RNA that retains the topological information. The
simulations [6] show that T → R transition of GroEL , in which the apical domains undergo
counterclockwise motion, is mediated by a multiple salt-bridge switch mechanism at the
interfaces of seven subunits. The initial event in the R→ R′′ transition, during which GroEL
rotates clockwise, involves a dramatic outside-in concerted movement of helices K and L,
exerting a substantial strain on he GroEL structure, induces the 90 degree clockwise rotation
and 40 degree upward movement of apical domain. This simulation consists of 3668 atoms
and 834 timesteps.

Folding of Tetrahymena Ribozyme

Large RNAs fold into complex structures which determine their biological activities. The
RNA folding problem studies how RNA folds into a unique structure without searching
through all possible conformation. How macromolecules from thermophilic organisms achieve
thermostability has been a fascinating question for structural biologist and the biotechnology
industry. There are many pathways in the folding procedure. Some pathways lead directly to
the native state, while others result in “kinetically trapped” conformations that contain some
native, as well as non-native interactions. This dataset presents the folding simulation of the
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Tetrahymena Ribozyme. Force-quench refolding of the P4-P6 subdomain of the Tetrahymena
ribozyme occurs through a compact intermediate. Subsequent formation of tertiary contacts
between helices P5b-P6a and P5a/P5c-P4 leads to the native state. This simulation consists
of 158 atoms and 1540 timesteps.

5.2 Verification Procedure
It is difficult to visually verify the representative power of the chosen keyframes. Thus, we
will rely on a purely quantitative verification procedure. Representative keyframes should be
able to predict their temporal neighborhood well. To measure this predictive power, we shall
make use of the keyframes chosen by the various selection algorithms (i.e. RS,DP, and SG)
and perform an interpolation procedure over them. The total error between the simulation
data predicted solely by the keyframes and the actual simulation data will be used as a
measure of the predictive/representative power of the selected keyframes. More precisely,
for every timestep t which is not, itself, a keyframe, the interpolation procedure will yield a
prediction with some resultant error εt. The representative power of the selected keyframes
will be measured by ε =

∑n
t=1 εt, where a smaller ε is indicative of more representative

keyframes. εRS, εDP, and εSG are used to indicate the errors using the three methods.

5.3 Experimental Results
The saliency guided keyframe selection approach (SG), in paper is compared against the
Douglas-Peucker(DP) and random selection methods (RS); all of which are described in
section 4.2. The experiments show the keyframes selected by the saliency approach better
approximates the simulations than the other two methods. For each simulation, we consider
representing the simulation using three different numbers of key frames, selected using the
SG, DP, and RS methods. The random sampling method illustrates the difficulty of this
problem and establishes a baseline performance for comparison, and the DP algorithm is
considered as the current state of the art. Random selection of keyframes are sampled 1000
times for each experiment. The reported performance of the random sampling method is an
average across all the samples. The statistics intend to show the error of approximations
produced by the two keyframes selection methods (DP and SG) are lower than random
selection, and they are statically significant. The performance difference in between the
average random selection and the other two method shows it is unlikely to randomly pick
good keyframes to approximate the simulations. This shows that not all timesteps are equally
representative, and that it is important to select the correct timesteps when summarizing
these complex molecular dynamics simulations.

Table 1 and Table 2 show statistics of the relative improvement between SG and RS.
The relative improvement is computed by:

εRS − εSG

εRS

Most of the results show the SG method performance is 10% - 20% better than the
random selection performance.

The null hypothesis here is that the distribution of error due to SG is drawn from the
same distribution of RS. The t-values shown in Table 1 and Table 2 shows this hypothesis
can be safely rejected (95% confidence interval).

The relative cumulative approximation error of the experiments with respect to the RS
method are shown in Figure 4 and Figure 5. The horizontal axis represents the timesteps and
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Table 1 Relative improvement statistics of saliency guided (SG) frame selection over random
selection (RS) for the GroEL simulation.

# keyframes Relative improvement stdev t value

2 +1.49% 19.46% 2.58
5 +13.63% 15.63% 28
10 +18.0% 8.97% 63

Table 2 Relative improvement statistics of saliency guided (SG) frame selection over random
selection (RS) for the Tetrahymena Ribozyme simulation.

# keyframes Relative improvement stdev t value

15 +22.58% 9.51% 75
24 +22.96% 6.97% 94
45 +15.44% 4.2% 113

Table 3 Relative improvement statistics of saliency guided selection (SG) over Douglas-Peucker
selection (DP).

(a) GroEL

# keyframes Relative improvement

2 +22.81%
5 +9.25%
10 +6.61%

(b) Tetrahymena Ribozyme

# keyframes Relative improvement

15 +12.13%
24 +12.12%
42 +8.99%

the vertical axis represents the relative cumulative error. The three plotted lines represent
the errors obtained by the SG, DP, and RS methods. Each line shows the cumulative error
relative to the RS method at a certain timestep throughout the simulations.

In the GroEL simulation, the SG method consistently results in the lowest overall error;
whereas the 5 or 10 keyframes selected by the DP algorithm approximate the simulation
better than random selection. The approximations produced by the SG method are 6%−22%
better than those produced by the DP algorithm. In the 2 keyframe experiment, The DP
algorithm selects only the beginning and the ending timesteps, this results in significant loss
of details during the simulation and hence it was even outperformed by average random
selection.

In the Tetrahymena Ribozyme simulation, the SG method consistently results in the
lowest overall error, and the DP algorithm also consistently approximates the simulation
better than random selection. The approximations produced by the SG method are 12% -
15% better than those produced by the DP algorithm. The trend of the error plot shows that
the SG method outperformed the DP algorithm and RS approach at every frame across
the simulation.

Table 3 shows a summary of relative improvement obtained by employing the SG frame
selection method rather than the DP frame selection method.
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(c) 10 keyframes

Figure 4 Relative cumulative error (with respect to RS) of approximating the GroEL simulation
by the selected keyframes.

5.3.1 Selected Keyframes

The selected keyframes from the two simulation are presented in this section.
The frames from the GroEL simulation show the conformational changes of the functional

subunits during the course of the R → R′′ transition. Figure 6 shows the 10 keyframes
selected using the SG method for summarizing the GroEL simulation.

The frames from the Tetrahymena Ribozyme simulation show how the Ribozyme molecule
folds from a straight chain in to it native state. Figure 7 shows the 10 keyframes selected via
the SG method for summarizing the Tetrahymena Ribozyme simulation.

5.3.2 The Most Salient Frames

Recall that when using the SG method to obtain keyframes, we are interested in obtaining
the most representative timesteps from the simulation data. These timesteps are chosen by
using the MSKS procedure to find the local maxima of 1− S over various scales.

This procedure naturally leads one to wonder about the effect of using the MSKS
procedure on S rather than 1− S. While the local maxima of 1− S signify the timesteps
which are the most similar with respect to their temporal neighborhood over various scales,
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Figure 5 Relative cumulative error (with respect to RS) of approximating the Tetrahymena
Ribozyme simulation by the selected keyframes.

the local maxima of S correspond to those which are most different. Such anomalous
timesteps are useful and informative in their own right. By simply inverting our multiscale
saliency function, we are able to select both the most representative and the most anomalous
timesteps of a simulation. Figure 8 and Figure 9 show the 5 most salient frames from the
GroEL and Tetrahymena Ribozyme simulations.

6 Conclusion

In this work, we have introduced a notion of temporal saliency for molecular dynamics
simulation. Such a notion is useful for summarizing, abstracting, indexing, previewing, and
analyzing these large time-varying datasets. We have shown how our multiscale saliency
function S can be used in conjunction with a multiscale keyframe selection procedure to
choose representative frames from among the locally chaotic motion of molecular dynamics
simulations. By employing interpolation over such keyframes as a measure of their predictive
power, we have shown that saliency guided keyframe selection consistently chooses more
representative frames than other methods.
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Figure 6 The 10 most representative timesteps from the simulation of GroEL nanomachine
consisting of 3668 atoms and 834 timesteps. The corresponding saliency function is shown in
Figure 2.

Figure 7 The 10 most representative timesteps from Tetrahymena Ribozyme simulation consisting
of 158 atoms and 1540 timesteps.

Figure 8 The 5 most salient timesteps from the 834 timesteps of the GroEL simulation with
3668 atoms.

Figure 9 The 5 most salient timesteps from the 1540 timesteps of the Tetrahymena Ribozyme
simulation with 158 atoms.
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